WO2016024453A1 - 硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置 - Google Patents

硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置 Download PDF

Info

Publication number
WO2016024453A1
WO2016024453A1 PCT/JP2015/070156 JP2015070156W WO2016024453A1 WO 2016024453 A1 WO2016024453 A1 WO 2016024453A1 JP 2015070156 W JP2015070156 W JP 2015070156W WO 2016024453 A1 WO2016024453 A1 WO 2016024453A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
ion
component
membrane
Prior art date
Application number
PCT/JP2015/070156
Other languages
English (en)
French (fr)
Inventor
和臣 井上
基 原田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016542523A priority Critical patent/JPWO2016024453A1/ja
Priority to EP15832204.0A priority patent/EP3181227A4/en
Publication of WO2016024453A1 publication Critical patent/WO2016024453A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/461Apparatus therefor comprising only a single cell, only one anion or cation exchange membrane or one pair of anion and cation membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/248Measuring crosslinking reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide

Definitions

  • the present invention relates to a polymer functional membrane for removing nitrate ions, a method for producing the same, a separation membrane module, and an ion exchange device.
  • ion exchange membranes As membranes having various functions as polymer functional membranes, ion exchange membranes, reverse osmosis membranes, forward osmosis membranes, gas separation membranes and the like are known.
  • ion exchange membranes are used for electrodeionization (EDI), continuous electrodeionization (CEDI), electrodialysis (ED), reverse electrodialysis (EDR), and the like.
  • Electrodesalting (EDI) is a water treatment process in which ions are removed from an aqueous liquid using ion exchange membranes and electrical potentials to achieve ion transport. Unlike other water purification techniques such as conventional ion exchange, it does not require the use of chemicals such as acid or caustic soda and can be used to produce ultrapure water.
  • Electrodialysis (ED) and reverse electrodialysis (EDR) are electrochemical separation processes that remove ions and the like from water and other fluids.
  • the problem to be solved by the present invention is a polymer functional membrane for removing nitrate ions excellent in the results of an electrodialysis test, a production method thereof, and a separation membrane using the polymer functional membrane for removing nitrate ions A module and an ion exchange device are provided.
  • ⁇ 1> As the structural unit A, an ion-exchangeable polymer containing a structural unit represented by the formula CL is contained, and the ion exchange capacity represented by the formula a is 2.5 meq / g or more and 6.0 meq / g or less.
  • Ion exchange capacity (amount of ionic groups in membrane meq) / (dry weight of membrane)
  • Crosslink group density (Amount of component A in the film mmol) / (Dry weight of the film)
  • L 1 represents an alkylene group or an alkenylene group
  • R 1 , R 2 , R 3 and R 4 each independently represents an alkyl group or an aryl group
  • R 1 and R 2 , and / or R 3 and R 4 may be bonded to each other to form a ring
  • n1 and n2 each independently represents an integer of 1 to 10
  • X 1 - and X 2 - are each independently an organic or inorganic anion Represents ⁇ 2>
  • R s1 represents —N + (R s2 ) (R s3 ) (R s4 ) (X 3 ⁇ ), n3 represents an integer of 1 to 10, and R s2 to R s4 each independently represents Represents an alkyl group or an aryl group, R s2 and R s3 , or R s2 , R s3, and R s4 may combine with each other to form an aliphatic heterocycle, and X 3 ⁇ represents an organic or inorganic anion ,
  • R A1 represents a hydrogen atom or an alkyl group
  • R A2 to R A4 each independently represents an alkyl group or an aryl group, and two or more of R A2 to R A4 are bonded to each other to form a ring.
  • Z A1 represents —O— or —N (Ra) —
  • Ra represents a hydrogen atom or an alkyl group
  • L A1 represents an alkylene group
  • X A1 represents a halogen ion or an aliphatic carboxylic acid. Represents an ion, an aromatic carboxylate ion, an aliphatic sulfonate ion, or an aromatic sulfonate ion.
  • the ion-exchange polymer is obtained by polymerizing a composition containing a compound represented by the formula CL2 as the component A and a photopolymerization initiator represented by the formula PI as the component B.
  • a functional polymer membrane for removing nitrate ions according to the above,
  • L 21 represents an alkylene group or an alkenylene group
  • R 21 , R 22 , R 23 and R 24 each independently represents an alkyl group or an aryl group
  • R 21 and R 22 , and / or R 23 and R 24 may be bonded to each other to form a ring
  • n21 and n22 each independently represents an integer of 1 to 10
  • X 21 ⁇ and X 22 ⁇ each independently represents an organic or inorganic anion.
  • R p1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group
  • R p2 and R p3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group.
  • R p2 and R p3 may be bonded to each other to form a ring.
  • ⁇ 4> The functional polymer membrane for removing nitrate ions according to ⁇ 3>, wherein the content of component A is 55 to 99% by mass with respect to the total solid content of the composition
  • ⁇ 5> The polymer functional film for removing nitrate ions according to ⁇ 3> or ⁇ 4>, wherein the content of component B is 0.1 to 10% by mass relative to the total solid content of the composition.
  • composition further includes a compound represented by Formula SM2 or a compound represented by Formula MA2 as Component C, and the molar ratio of Component A to Component C in the composition is Component A:
  • the polymer functional membrane for removing nitrate ions according to any one of ⁇ 3> to ⁇ 5>, wherein component C 60: 40 to 100: 0,
  • R s21 represents —N + (R s22 ) (R s23 ) (R s24 ) (X 23 ⁇ ), n23 represents an integer of 1 to 10, and R s22 to R s24 are each independently Represents an alkyl group or an aryl group, R s22 and R s23 , or R s22 , R s23 and R s24 may combine with each other to form an aliphatic heterocycle, and X 23 ⁇ represents an organic or inorganic anion ,
  • R A21 represents a hydrogen atom or an alkyl group
  • R A22 to R A24 each independently represents an alkyl group or an aryl group
  • two or more of R A22 to R A4 are bonded to each other to form a ring.
  • Z A21 represents —O— or —N (Ra) —
  • Ra represents a hydrogen atom or an alkyl group
  • L A21 represents an alkylene group
  • X A21 represents a halogen ion or an aliphatic carboxylic acid.
  • the ion-exchange polymer is obtained from a composition containing a compound represented by the formula CL2 as component A, and the mo
  • L 21 represents an alkylene group or an alkenylene group
  • R 21 , R 22 , R 23 and R 24 each independently represents an alkyl group or an aryl group
  • R 21 and R 22 , and / or R 23 and R 24 may be bonded to each other to form a ring
  • n21 and n22 each independently represents an integer of 1 to 10
  • X 21 ⁇ and X 22 ⁇ each independently represents an organic or inorganic anion.
  • ⁇ 12> A curing step of polymerizing a composition containing a compound represented by formula CL2 as component A, wherein the ion exchange capacity represented by formula a is 2.5 meq / g or more and 6.0 meq / g or less.
  • L 21 represents an alkylene group or an alkenylene group
  • R 21 , R 22 , R 23 and R 24 each independently represents an alkyl group or an aryl group
  • R 21 and R 22 , and / or R 23 and R 24 may be bonded to each other to form a ring
  • n21 and n22 each independently represents an integer of 1 to 10
  • X 21 ⁇ and X 22 ⁇ each independently represents an organic or inorganic anion.
  • R p1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group
  • R p2 and R p3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group.
  • R p2 and R p3 may be bonded to each other to form a ring, ⁇ 14>
  • R s21 represents —N + (R s22 ) (R s23 ) (R s24 ) (X 23 ⁇ ), n23 represents an integer of 1 to 10, and R s22 to R s24 are each independently Represents an alkyl group or an aryl group, R s22 and R s23 , or R s22 , R s23 and R s24 may combine with each other to form an aliphatic heterocycle, and X 23 ⁇ represents an organic or inorganic anion ,
  • R A21 represents a hydrogen atom or an alkyl group
  • R A22 to R A24 each independently represents an alkyl group or an aryl group
  • two or more of R A22 to R A4 are bonded to each other to form a ring.
  • Z A21 represents —O— or —N (Ra) —
  • Ra represents a hydrogen atom or an alkyl group
  • L A21 represents an alkylene group
  • X A21 represents a halogen ion or an aliphatic carboxylic acid.
  • the composition further contains a polymerization inhibitor as component E.
  • ⁇ 17> The method for producing a functional polymer membrane for removing nitrate ions according to any one of ⁇ 12> to ⁇ 16>, comprising a coating step of coating and / or impregnating the porous composition with the composition.
  • ⁇ 18> The production of a polymer functional film for removing nitrate ions according to any one of ⁇ 12> to ⁇ 17>, wherein the curing step is a step of polymerizing the composition by irradiation with energy rays.
  • a separation membrane module comprising the polymer functional membrane for removing nitrate ions according to any one of ⁇ 1> to ⁇ 11>
  • An ion exchange apparatus comprising the polymer functional membrane for removing nitrate ions according to any one of ⁇ 1> to ⁇ 11>.
  • the geometrical isomer which is the substitution mode of the double bond in each general formula is not limited to the E-form or the Z-form unless otherwise specified. Or a mixture thereof.
  • the chemical structural formula in this specification may be expressed as a simplified structural formula in which a hydrogen atom is omitted.
  • “(meth) acrylate” represents acrylate and methacrylate
  • “(meth) acryl” represents acryl and methacryl
  • “(meth) acryloyl” represents acryloyl and methacryloyl
  • (meth) ) Acrylamide refers to acrylamide and methacrylamide.
  • “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous.
  • the combination of a preferable aspect is a more preferable aspect.
  • the functional polymer membrane for removing nitrate ions of the present invention contains an ion containing a structural unit represented by the formula CL as the structural unit A. It contains an exchangeable polymer, has an ion exchange capacity of 2.5 meq / g or more and 6.0 meq / g or less represented by Formula a, and a crosslink group density represented by Formula b of 0.9 mmol / g or more and 2. 0 mmol / g or less.
  • Formula a: Ion exchange capacity (amount of ionic groups in membrane meq) / (dry weight of membrane)
  • L 1 represents an alkylene group or an alkenylene group
  • R 1 , R 2 , R 3 and R 4 each independently represents an alkyl group or an aryl group
  • R 1 and R 2 , and / or R 3 and R 4 may be bonded to each other to form a ring
  • n1 and n2 each independently represents an integer of 1 to 10
  • X 1 - and X 2 - are each independently an organic or inorganic anion Represents.
  • the inventors of the present invention include an ion exchange polymer containing the structural unit A, and the polymer functional membrane for removing nitrate ions contained in a specific range having an ion exchange capacity and a crosslinking group density is: It has been found that it has excellent scaling resistance and excellent selective permeability of monovalent anions.
  • a commercially available polystyrene-based strongly basic anion exchange resin or polystyrene-based strongly acidic cation exchange resin described in Patent Document 2 above is kneaded with a binder resin, and heated and melt-pressed with a flat plate press to perform ionization. An exchange membrane is produced, and an oppositely charged polymer is applied onto the membrane.
  • the polymer functional membrane of the present invention is an anion exchange membrane having monovalent ion selective permeability.
  • the thickness of the film of the present invention is preferably 30 to 500 ⁇ m, more preferably 50 to 300 ⁇ m, particularly preferably 50 to 250 ⁇ m, including the support.
  • the polymer functional membrane of the present invention has an ion exchange capacity represented by the formula a of 2.5 meq / g or more and 6.0 meq / g or less.
  • Formula a: Ion exchange capacity (amount of ionic groups in membrane meq) / (dry weight of membrane)
  • the dry weight of the membrane includes the weight of the support.
  • the ion exchange capacity of the polymer functional membrane of the present invention is preferably 2.7 meq / g to 6.0 meq / g or more, more preferably 3.0 meq / g to 6.0 meq / g.
  • the upper limit of the ion exchange capacity is not particularly limited, but is practically 6.0 meq / g or less.
  • meq is milliequivalent.
  • the ion exchange capacity and electrical resistance can be measured by the methods described in Membrane Science, 319, 217-218 (2008), Masayuki Nakagaki, Membrane Experimental Method, pages 193-195 (1984).
  • the ion exchange capacity is measured by the following procedure. 1) A sample film cut out to 5 cm ⁇ 5 cm is immersed in a 2M NaNO 3 aqueous solution for 30 minutes, and then washed in 500 mL of pure water. 2) Place the sample membrane in 100 mL of 2M NaCl aqueous solution. Immerse for 6 hours or more while changing 2M NaCl aqueous solution every hour. 3) Wash thoroughly with 500 mL of pure water while exchanging pure water.
  • the polymer functional film of the present invention has a crosslink group density represented by the formula b of 0.9 mmol / g or more and 2.0 mmol / g or less.
  • the dry weight of the membrane includes the weight of the support.
  • the crosslinkable group density of the polymer functional film of the present invention is preferably 1.15 to 2.0 mmol / g, more preferably 1.35 to 2.0 mmol / g, and 1.45 to 2 More preferably, it is 0.0 mmol / g.
  • the crosslinking group density is calculated by the following method.
  • the crosslinking group density is calculated from the storage modulus of the target sample and the calibration curve.
  • films having crosslink group densities of 0.3, 0.5, 0.7, 1.0, 1.4 mmol / g were prepared by the method described in Examples using SM-1 and CL-8, Dynamic viscoelasticity measurement is performed at 25 ° C., and the storage elastic modulus E ′ of each sample is measured. Measurement conditions were such that the film was cut into 10 mm length ⁇ 5 mm width, measured in a tensile mode, a frequency of 10 Hz, in a nitrogen atmosphere at a temperature of 25 ° C., and a storage elastic modulus E ′ was determined.
  • Rheogel-E1500 manufactured by UBM
  • UBM As a measuring device, Rheogel-E1500 (manufactured by UBM) was used. A graph in which the cross-linking group density is plotted on the horizontal axis and the storage elastic modulus is plotted on the vertical axis is obtained, and an approximate curve is obtained using the least square method. The crosslink group density is calculated from the storage modulus of the target sample using the approximate curve.
  • each component which comprises the polymeric functional film of this invention is demonstrated.
  • an electrically neutral and inactive group can be used without inhibiting the function of the polymer functional film. is there.
  • the polymer functional film of the present invention contains, as the structural unit A, an ion-exchange polymer containing a structural unit represented by the formula CL.
  • L 1 represents an alkylene group or an alkenylene group, and is preferably an alkylene group.
  • the alkylene group and alkenylene group may have a branch or a ring structure.
  • the alkylene group in L 1 preferably has 2 to 10 carbon atoms, more preferably 2 or 3 carbon atoms, and examples thereof include an ethylene group and a propylene group.
  • the alkenylene group in L 1 preferably has 2 to 10 carbon atoms, more preferably 2 or 3 carbon atoms, and still more preferably an ethenylene group.
  • R 1 , R 2 , R 3 and R 4 each independently represents an alkyl group or an aryl group, preferably an alkyl group, and R 1 and R b2 and / or R 3 and R 4 are They may combine with each other to form a ring.
  • R 1 and R 2 are bonded to each other to form a ring
  • R 3 and R 4 are bonded to each other to form a ring
  • R a And R b and R 3 and R 4 are particularly preferably bonded to each other to form a ring.
  • R 1 and R 2 and / or R 3 and R 4 are bonded to each other to form a ring
  • R 1 and R 2 and / or R 3 and R 4 are bonded to each other Is preferably an alkylene group, more preferably an alkylene group having 2 to 4 carbon atoms, and still more preferably a 1,2-ethylene group.
  • R 1 and R 2 are preferably bonded to each other to form a piperazine ring or a dihydropyrazine ring together with L 1 , and in addition to R 1 and R 2 , R 3 and R 4 are further bonded to each other, and L 1 It is more preferable to form a triethylenediamine ring (1,4-diazabicyclo [2.2.2] octane ring) together.
  • the formed ring may have a substituent.
  • an alkyl group is preferable.
  • R 1 , R 2 , R 3 and R 4 each independently preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 4 carbon atoms.
  • the alkyl group is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, More preferably, it has 1 or 2 carbon atoms.
  • the alkyl group include methyl, ethyl, isopropyl, n-butyl, and 2-ethylhexyl.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms, and more preferably a phenyl group.
  • the alkyl group may have a branch or a ring structure.
  • n1 and n2 each independently represents an integer of 1 to 10, preferably an integer of 1 to 4, more preferably 1 or 2, and still more preferably 1. From the viewpoint of synthesis, n1 and n2 are preferably the same.
  • X 1 ⁇ and X 2 ⁇ each independently represents an organic or inorganic anion, and an inorganic anion is preferred.
  • the organic or inorganic anion may be a monovalent anion or a divalent or higher anion. In the case of a divalent or higher anion, there is an amount that is electrically equivalent to a cation such as an ammonium group in formula CL.
  • X 1 ⁇ and X 2 ⁇ in the formula CL may be one divalent anion, or the divalent or higher anion is X 1 ⁇ and / or X of the structural unit represented by the formula CL having two or more. 2 - may also be present as.
  • the organic anion include an alkyl sulfonate anion, an aryl sulfonate anion, an alkyl or aryl carboxylate anion, and examples thereof include a methane sulfonate anion, a benzene sulfonate anion, a toluene sulfonate anion, and an acetate anion.
  • inorganic anions examples include halogen anions, sulfate dianions, and phosphate anions, with halogen anions being preferred.
  • halogen anions examples include a chlorine anion and a bromine anion, and a chlorine anion is particularly preferable.
  • the structural unit A is preferably a structural unit derived from the following compounds CL-1 to CL-12, but the present invention is not limited thereto.
  • the structural unit A is preferably a structural unit derived from a compound having a molecular weight of preferably 300 to 600, more preferably 300 to 500, and most preferably 300 to 450. That is, the molecular weight of component A is preferably 300 or more and 600 or less.
  • the ion exchange polymer in this invention may contain the structural unit A individually by 1 type, or may contain 2 or more types.
  • the content of the structural unit A is preferably 55 to 99% by mass, more preferably 70 to 99% by mass, and 75 to 99% by mass with respect to the total mass of the ion-exchangeable polymer. More preferred is 85 to 99% by mass, and most preferred is 90 to 99% by mass.
  • the content of the structural unit A is in the above range, the physical strength of the formed film is excellent, and the film performance is excellent.
  • Structural Unit C Structural Unit Represented by Formula SM or Structural Unit Represented by Formula MA
  • the ion-exchangeable polymer in the present invention is the structural unit represented by formula SM or the structural formula MA as the structural unit C. It is preferable to further contain the structural unit represented by these.
  • R s1 represents —N + (R s2 ) (R s3 ) (R s4 ) (X 3 ⁇ ), n3 represents an integer of 1 to 10, and R s2 to R s4 each independently represents Represents an alkyl group or an aryl group, R s2 and R s3 , or R s2 , R s3, and R s4 may combine with each other to form an aliphatic heterocycle, and X 3 ⁇ represents an organic or inorganic anion .
  • R A1 represents a hydrogen atom or an alkyl group
  • R A2 to R A4 each independently represents an alkyl group or an aryl group, and two or more of R A2 to R A4 are bonded to each other to form a ring.
  • Z A1 represents —O— or —N (Ra) —
  • Ra represents a hydrogen atom or an alkyl group
  • L A1 represents an alkylene group
  • X A1 represents a halogen ion or an aliphatic carboxylic acid. Represents an ion, an aromatic carboxylate ion, an aliphatic sulfonate ion, or an aromatic sulfonate ion.
  • R s2 to R s4 represent an alkyl group
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 or 2.
  • the alkyl group include methyl, ethyl, isopropyl, n-butyl, and 2-ethylhexyl.
  • R s2 to R s4 represent an aryl group
  • the aryl group preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms.
  • a phenyl group is preferable.
  • R s2 , R s3 and R s4 preferably represent an alkyl group, and particularly preferably represent a methyl group.
  • R s2 and R s3 , or R s2 , R s3, and R s4 may be bonded to each other to form a ring.
  • the ring formed by combining R s2 and R s3 with each other is preferably a 5- or 6-membered ring, and examples thereof include a pyrrolidine ring, a piperidine ring, a morpholine ring, a thiomorpholine ring, and a piperazine ring.
  • Examples of the ring formed by combining R s2 , R s3, and R s4 include a quinuclidine ring and a triethylenediamine ring (1,4-diazabicyclo [2.2.2] octane ring).
  • X 3 ⁇ in formula SM has the same meaning as X 1 ⁇ in formula CL, and the preferred range is also the same.
  • n3 has the same meaning as n1 in formula CL, and the preferred range is also the same.
  • the structural unit represented by the formula SM is preferably a structural unit derived from the following compounds SM-1 to SM-9, but the present invention is not limited thereto.
  • the structural unit represented by the formula SM is preferably a structural unit derived from a compound having a molecular weight of preferably 150 to 350, more preferably 150 to 300, and most preferably 150 to 270.
  • the alkyl group of R A1 , R A2 to R A4 and Ra is a linear or branched alkyl group, preferably having 1 to 10 carbon atoms, more preferably 1 to 6, more preferably 1 to 4, more preferably 1 or 2. More preferably, 1 is particularly preferable.
  • the carbon number of the aryl group of R A2 to R A4 is preferably 6 to 16, more preferably 6 to 12, and still more preferably 6 to 10.
  • Examples of the aryl group of R A2 to R A4 include a phenyl group and a naphthyl group.
  • the ring formed by bonding two or more of R A2 to R A4 to each other is preferably a 5- or 6-membered monocyclic or bridged ring, and preferably has 4 to 16 carbon atoms, more preferably 4 to 10 carbon atoms. preferable. Examples include pyrrolidine ring, piperazine ring, piperidine ring, morpholine ring, thiomorpholine ring, indole ring, and quinuclidine ring.
  • the number of carbon atoms of L A1 is preferably 1 to 10, more preferably 2 to 10, still more preferably 2 to 6, particularly preferably 2 to 4, still more preferably 2 or 3, and most preferably 3.
  • halogen ions in X A1 include fluorine ions, chlorine ions, bromine ions, and iodine ions.
  • the carbon number of the aliphatic carboxylate ion in X A1 is preferably 1 to 11, more preferably 2 to 7, further preferably 2 to 5, particularly preferably 2 or 3, and most preferably 2.
  • the number of carbon atoms of the aliphatic sulfonate ion in X A1 is preferably 1 to 11, more preferably 2 to 7, further preferably 2 to 5, particularly preferably 2 or 3, and most preferably 2.
  • the aliphatic carboxylate ion may be either a saturated hydrocarbon carboxylic acid or an unsaturated hydrocarbon carboxylic acid, but is preferably a saturated hydrocarbon carboxylic acid.
  • the aliphatic sulfonic acid ion may be either a saturated hydrocarbon sulfonic acid or an unsaturated hydrocarbon sulfonic acid, but is preferably a saturated hydrocarbon sulfonic acid.
  • the aromatic sulfonate ion in X A1 is preferably an aryl sulfonate ion or a heteroaryl sulfonate ion.
  • the heteroaryl is preferably a 5- or 6-membered ring, and the ring-forming heteroatom is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a nitrogen atom.
  • the aromatic sulfonate ion preferably has 1 to 17 carbon atoms, more preferably 2 to 13 carbon atoms, and still more preferably 3 to 11 carbon atoms.
  • a methanesulfonic acid anion, a benzenesulfonic acid anion, and a toluenesulfonic acid anion are mentioned.
  • R A1 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R A1 to R A4 are preferably a methyl group or an ethyl group.
  • Z A1 is preferably —N (Ra) —, and Ra is preferably a hydrogen atom.
  • X A1 is preferably a halogen atom.
  • the structural unit represented by the formula MA is preferably a structural unit derived from the following compounds MA-1 to MA-26, but the present invention is not limited thereto.
  • the structural unit represented by the formula MA is preferably a structural unit derived from a compound having a molecular weight of 150 to 350, more preferably a structural unit derived from a compound having a molecular weight of 150 to 300, and most preferably. Is a structural unit derived from a compound having a molecular weight of 150 to 270.
  • two or more structural units represented by the formula SM or MA may be used in combination.
  • the content of the structural unit C is preferably from 0 to 40% by mass, more preferably from 0 to 30% by mass, still more preferably from 0 to 20% by mass, based on the total mass of the ion exchange polymer. 13 mass% is particularly preferred, and 0-6 mass% is most preferred.
  • the ion-exchangeable polymer used in the present invention is a composition containing a compound represented by the formula CL2 as component A (hereinafter also referred to as “ion-exchangeable polymer-forming composition” or “composition”). It is preferably obtained by polymerization.
  • L 21 represents an alkylene group or an alkenylene group
  • R 21 , R 22 , R 23 and R 24 each independently represents an alkyl group or an aryl group
  • R 21 and R 22 , and / or R 23 and R 24 may be bonded to each other to form a ring
  • n21 and n22 each independently represents an integer of 1 to 10
  • X 21 ⁇ and X 22 ⁇ each independently represents an organic or inorganic anion. Represents.
  • R p1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group
  • R p2 and R p3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group.
  • R p2 and R p3 may be bonded to each other to form a ring.
  • Component A Compound Represented by Formula CL2
  • L 21 , R 21 , R 22 , R 23 , R 24 , n21, n22, X 21 - and X 22 - represent L 1 in formula CL.
  • R 1 , R 2 , R 3 , R 4 , n1, n2, X 1 - and X 2 - are each synonymous, and the preferred embodiments are also the same.
  • Component A is preferably a compound represented by CL-1 to CL-12.
  • Component A can be synthesized by the method described in JP-A-2000-229917 or a method analogous thereto.
  • the composition for forming an ion-exchange polymer in the present invention may contain component A alone or in combination of two or more.
  • the content of component A with respect to the total solid content of the composition is preferably 55 to 99% by mass, more preferably 70 to 99% by mass, and even more preferably 75 to 99% by mass. 85 to 99% by mass is particularly preferable, and 90 to 99% by mass is most preferable.
  • the total solid content of a composition means the quantity remove
  • the molecular weight of component A is preferably 300 to 600, more preferably 300 to 500.
  • Component B Compound Represented by Formula PI
  • the ion-exchangeable polymer used in the present invention comprises, as Component A, a compound represented by Formula CL2, and as Component B, a photopolymerization initiator represented by Formula PI. It is preferably obtained by polymerizing the contained composition.
  • the ion-exchangeable polymer used in the present invention uses a composition containing a compound represented by the formula CL2 as the component A and a photopolymerization initiator represented by the formula PI as the component B. Then, it is obtained by polymerizing the compound represented by the formula CL2.
  • R p1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group
  • R p2 and R p3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group.
  • R p2 and R p3 may be bonded to each other to form a ring.
  • R p1 is preferably a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms.
  • An alkoxy group, and an aryloxy group may have a substituent, and the substituent is not particularly limited, and examples thereof include an alkyl group, an aryl unit, an alkoxy group, an aryloxy group, an acyl group, an acyloxy group, and a hydroxy group. Examples are groups.
  • the aryl of the aryloxy group is preferably phenyl.
  • R p1 is preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • an alkoxy group a methoxy group and a 2-hydroxyethoxy group are preferable.
  • a methyl group substituted with a group is preferable, and the phenyl group may be substituted with —C ( ⁇ O) —C (R p2 ) (R p3 ) (OH) to form a methylene bis-form as a whole molecule. preferable.
  • R p2 and R p3 are each independently preferably an alkyl group, an alkenyl group, an alkoxy group or an aryloxy group, an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms.
  • Group is preferably an aryloxy group having 6 to 10 carbon atoms, more preferably an alkyl group, and particularly preferably methyl.
  • the alkyl group, alkenyl group, alkoxy group, and aryloxy group may have a substituent, and the substituent is not particularly limited, and examples thereof include an alkyl group, an aryl group, an alkoxy group, an aryloxy group, and an acyl group. , Acyloxy group, hydroxy group and the like.
  • the ring formed by combining R p2 and R p3 with each other is preferably a 5- or 6-membered ring, more preferably a cyclopentane ring or a cyclohexane ring.
  • polymerization initiator represented by the general formula (PI) are shown below, but the present invention is not limited to these.
  • the component B is preferably a compound represented by PI-2 or PI-4.
  • the polymerization initiator represented by Formula PI can be obtained from BASF Japan Ltd.
  • composition used for forming the composition for forming an ion-exchange polymer in the present invention may contain Component B alone or in combination of two or more.
  • the content of Component B is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass, and particularly preferably 0.5 to 3% by mass with respect to the total solid content of the composition. preferable.
  • Component C Compound represented by Formula SM or Compound represented by Formula MA
  • the composition for forming an ion-exchangeable polymer in the present invention is a compound represented by Formula SM2 or a formula MA2 as Component C. It is preferable to further contain the represented compound.
  • R s21 represents —N + (R s22 ) (R s23 ) (R s24 ) (X 23 ⁇ ), n23 represents an integer of 1 to 10, and R s22 to R s24 are each independently Represents an alkyl group or an aryl group, R s22 and R s23 , or R s22 , R s23 and R s24 may combine with each other to form an aliphatic heterocycle, and X 23 ⁇ represents an organic or inorganic anion .
  • R A21 represents a hydrogen atom or an alkyl group
  • R A22 to R A24 each independently represents an alkyl group or an aryl group
  • two or more of R A2 to R A4 are bonded to each other to form a ring.
  • Z A21 represents —O— or —N (Ra) —
  • Ra represents a hydrogen atom or an alkyl group
  • L A21 represents an alkylene group
  • X A21 represents a halogen ion or an aliphatic carboxylic acid. Represents an ion, an aromatic carboxylate ion, an aliphatic sulfonate ion, or an aromatic sulfonate ion.
  • R s21, R s22, R s23, R s24, n23 and,, X 23 - may, R s1 in the formula SM, R s2, R s3, R s4, n23 and,, X 23 - respectively It is synonymous and the preferable range is also the same.
  • the compound represented by the formula SM2 the compounds represented by the above SM-1 to SM-9 are preferable.
  • the compound represented by the formula SM2 can be synthesized by the method described in JP-A No. 2000-229917 and JP-A No. 2000-212306 or a method analogous thereto. It can also be obtained as a commercial product from Sigma-Aldrich.
  • R A21 , R A22 , R A23 , R A24 , Z A21 , L A21 , and X A21 are R A1 , R A2 , R A3 , R A4 , Z A1 , L A1 , And X A1 has the same meaning, and the preferred range is also the same.
  • compounds represented by the above-mentioned MA-1 to MA-26 are preferable.
  • two or more compounds represented by the formula SM or MA may be used in combination.
  • the content of component C is preferably 0 to 40% by mass, more preferably 0 to 30% by mass, and further preferably 0 to 20% by mass with respect to the total solid content of the ion exchange polymer-forming composition. 0 to 13% by mass is particularly preferable, and 0 to 6% by mass is most preferable.
  • composition for forming an ion-exchangeable polymer in the present invention preferably further contains a solvent as Component D.
  • the content of the solvent in the ion exchange polymer forming composition is preferably 10 to 60 parts by mass, more preferably 20 to 40 parts by mass with respect to 100 parts by mass of the total ion exchange polymer forming composition. preferable.
  • the content of the solvent is within the above range, the composition for forming an ion-exchange polymer as a coating solution can be applied uniformly on a support, which is preferable.
  • the solvent those having a solubility in water and / or water of 5% by mass or more are preferably used, and more preferably those freely mixed with water and / or water. For this reason, a solvent selected from water and a water-soluble solvent is preferable, and water alone, a water-soluble solvent alone, or a mixture thereof is preferable.
  • a solvent selected from water and a water-soluble solvent is preferable, and water alone, a water-soluble solvent alone, or a mixture thereof is preferable.
  • the water-soluble solvent alcohol solvents, ether solvents that are aprotic polar solvents, amide solvents, ketone solvents, sulfoxide solvents, sulfone solvents, nitrile solvents, and organic phosphorus solvents are particularly preferable. . Water and alcohol solvents are preferred.
  • alcohol solvents examples include methanol, ethanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, diethylene glycol, and dipropylene glycol.
  • alcohol solvents ethanol, isopropanol, n-butanol, and ethylene glycol are more preferable, and isopropanol is particularly preferable.
  • These can be used alone or in combination of two or more. Water alone or a combination of water and a water-soluble solvent is preferred, and water alone or a combination of water and at least one alcohol solvent is more preferred.
  • aprotic polar solvents include dimethyl sulfoxide, dimethyl imidazolidinone, sulfolane, N-methylpyrrolidone, dimethylformamide, acetonitrile, acetone, dioxane, tetramethylurea, hexamethylphosphorotriamide, pyridine, propionitrile, Preferred examples of the solvent include butanone, cyclohexanone, tetrahydrofuran, tetrahydropyran, ethylene glycol diacetate, and ⁇ -butyrolactone.
  • dimethylsulfoxide N-methylpyrrolidone, dimethylformamide, dimethylimidazolidinone, sulfolane, acetone or acetonitrile, and tetrahydrofuran are preferable. preferable. These can be used alone or in combination of two or more.
  • composition for forming an ion-exchangeable polymer in the present invention preferably contains a polymerization inhibitor in order to impart stability to the coating solution for forming a film.
  • a known polymerization inhibitor can be used, and examples thereof include a phenol compound, a hydroquinone compound, an amine compound, a mercapto compound, and a free radical derivative.
  • the phenol compound include hindered phenol (phenol having a t-butyl group at the ortho position, typically 2,6-di-t-butyl-4-methylphenol) and bisphenol.
  • Specific examples of the hydroquinone compound include monomethyl ether hydroquinone.
  • the amine compound include N-nitroso-N-phenylhydroxylamine and N, N-diethylhydroxylamine.
  • Specific examples of the free radical derivative include 4-hydroxy-2,2,6,6, -tetramethylpiperidinyloxyl and 2,2,6,6-tetramethylpiperidine 1-1-oxyl.
  • the content of the polymerization inhibitor is preferably 0.005 to 5% by mass, more preferably 0.01 to 1% by mass, and more preferably 0.01 to 0% by mass with respect to the total solid content in the composition for forming an ion-exchangeable polymer. More preferably, 5% by mass.
  • Component F Polymerizable compound other than Component A and Component C
  • the composition for forming an ion-exchangeable polymer according to the present invention includes, as Component F, a polymerizable compound other than Component A and Component C (hereinafter “other polymerizable compound”). May also be included).
  • the component F is preferably a component that plays a role of adjusting the hydrophilicity / hydrophobicity and the crosslinking density of the membrane in order to adjust the water permeability of the polymer functional membrane of the present invention and the electrical resistance of the membrane.
  • the other polymerizable compound may be any of a monomer, an oligomer, and a polymer, but is preferably a monomer, and the monomer is preferably a monofunctional polymerizable compound.
  • an oligomer means a compound having a weight average molecular weight of more than 3,000 and not more than 10,000
  • a polymer means a compound having a weight average molecular weight of more than 10,000.
  • the “other polymerizable compound” is a polymerizable compound that does not correspond to the above component A and component C. Examples of such other polymerizable compound include acrylic acid esters, methacrylic acid esters, and acrylamides.
  • monomers such as methacrylamides, vinyl esters, styrenes, acrylonitrile, maleic imides.
  • various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.
  • Examples of the monomer synthesis method include, for example, the item of ester synthesis in “5th Edition Experimental Science Course 16 Synthesis of Organic Compounds (II-1)” of Maruzen Co., Ltd., edited by The Chemical Society of Japan, and “5th Edition Experimental Science Course 26”. Reference can be made to the handling and purification of monomers in “Polymer Chemistry”.
  • Examples of other monofunctional polymerizable compounds include compounds described in JP-A-2008-208190 and JP-A-2008-266561.
  • composition for forming an ion-exchange polymer in the present invention may contain a surfactant, a polymer dispersant, an anti-crater agent and the like in addition to the above components A to F.
  • Various polymer compounds can also be added to the composition for forming an ion-exchange polymer in the present invention in order to adjust film properties.
  • High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
  • a nonionic surfactant, a cationic surfactant, an organic fluoro compound, etc. can also be added in order to adjust the liquid physical property of the coating liquid which is an ion exchange polymer formation composition.
  • the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl
  • Anionic surfactants such as alkyl carboxylates of sulfonamides, alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol,
  • Nonionic surfactants such as ethylene oxide adducts of glycerin and polyoxyethylene sorbitan fatty acid esters, and other amphoteric boundaries such as alkyl betaines and amide betaines
  • the ion-exchangeable polymer forming composition used in the present invention may contain a polymer dispersant.
  • the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Among them, polyvinyl pyrrolidone is preferably used.
  • Anti-crater agent is also called surface conditioner, leveling agent or slip agent, and prevents unevenness on the film surface.
  • organic modified polysiloxane mixture of polyether siloxane and polyether
  • polyether modified poly examples thereof include compounds having a structure of siloxane copolymer or silicon-modified copolymer.
  • commercially available products include, for example, Tego Glide 432, 110, 130, 406, 410, 411, 415, 420, 435, 440, 450, 482, and 480 manufactured by Evonik Industries. A115, B1484, and ZG400 (all are trade names).
  • the crater inhibitor is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and preferably 0.01 to 2% by mass with respect to the total solid content in the composition for forming an ion-exchange polymer. Further preferred.
  • the ion-exchangeable polymer forming composition in the present invention may contain, for example, a viscosity improver and a preservative, as necessary.
  • the polymer functional membrane of the present invention preferably has a support, and more preferably has a porous support.
  • a support can be used as the membrane reinforcing material, and a porous support can be preferably used.
  • This porous support can form a part of a membrane by applying and / or impregnating the ion exchange polymer-forming composition and then polymerizing it.
  • the support include a resin film, a woven fabric, a non-woven fabric, and a sponge. Among these, a nonwoven fabric is preferable.
  • the porous support include a woven fabric, a nonwoven fabric, a sponge film, and a film having fine through holes.
  • porous support examples include a synthetic woven fabric or synthetic nonwoven fabric, a sponge film, and a film having fine through holes.
  • the material forming the porous support of the present invention is, for example, polyolefin (polyethylene, polypropylene, etc.), polyacrylonitrile, polyvinyl chloride, polyester, polyamide and copolymers thereof, or, for example, polysulfone, polyethersulfone, Polyphenylene sulfone, polyphenylene sulfide, polyimide, polyetherimide, polyamidoimide, polyacrylonitrile, polycarbonate, polyacrylate, cellulose acetate, poly (4-methyl-1-pentene), polyvinylidene fluoride, polytetrafluoroethylene, poly It can be a porous membrane based on hexafluoropropylene, polychlorotrifluoroethylene and copolymers thereof.
  • polyolefin is preferable from the viewpoint of chemical resistance and physical durability.
  • porous supports are commercially available from, for example, Japan Vilene Co., Ltd., Freudenberg Filtration Technologies (Novatex material), and Separ AG.
  • the support preferably has hydrophilicity.
  • general treatment methods such as corona treatment, ozone treatment, sulfuric acid treatment, and silane coupling agent treatment can be used.
  • the thickness of the support is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, still more preferably 50 to 300 ⁇ m, and particularly preferably 80 to 300 ⁇ m.
  • the polymer functional membrane of the present invention is preferably a membrane having a resin having a structural unit derived from Component A and Component B on the surface and / or inside of the porous support.
  • the polymer functional film of the present invention is preferably a film containing water, and is a film in which a resin having a structural unit derived from the component A and the component C contains water and forms a gel. It is more preferable.
  • the method for producing a functional polymer membrane for removing nitrate ions of the present invention includes a curing step of polymerizing a composition containing a compound represented by formula CL2 as component A, and an ion exchange capacity represented by formula a. Is 2.5 meq / g or more and 6.0 meq / g or less, and the crosslinking group density represented by Formula b is 0.9 mmol / g or more and 2.0 mmol / g or less.
  • the preferable aspect of the said composition is the same as the preferable aspect of the composition for ion exchange polymer formation used for this invention.
  • the conditions for forming the functional polymer film of the present invention are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., more preferably ⁇ 10 to 80 ° C., and particularly preferably 5 to 60 ° C.
  • a gas such as air or oxygen may coexist at the time of forming the film, but it is preferably in an inert gas atmosphere.
  • the manufacturing method of the polymeric functional film of this invention includes the application
  • the polymer functional membrane of the present invention can be prepared in a batch system using a fixed support (batch system), but it can be prepared in a continuous system using a moving support (continuous system). May be.
  • the support may be in the form of a roll that is continuously rewound.
  • a process is performed in which a support is placed on a belt that is continuously moved, and a film is formed by polymerizing with a coating solution that is a composition for forming an ion-exchangeable polymer. It can be carried out.
  • a temporary support body it peels a film
  • a temporary support does not need to consider material permeation, and may be any material as long as it can be fixed for film formation, including a metal plate such as an aluminum plate.
  • the composition can be immersed in a porous support and polymerized without using a support other than the porous support.
  • the ion-exchangeable polymer forming composition can be applied in various ways, such as curtain coating, extrusion coating, air knife coating, slide coating, nip roll coating, forward roll coating, reverse roll coating, dip coating, kiss coating, rod bar coating or spraying. By coating, it can be applied or immersed in the porous support. Multiple layers can be applied simultaneously or sequentially. For simultaneous multi-layer application, curtain coating, slide coating, slot die coating and extrusion coating are preferred.
  • Production of the polymer functional membrane in a continuous manner is performed by continuously applying the ion-exchangeable polymer-forming composition to the moving support, and more preferably, the ion-exchangeable polymer-forming composition application portion, An irradiation source for polymerizing the polymerizable compound in the ion-exchangeable polymer-forming composition, a film winding portion, and a support from the ion-exchangeable polymer-forming composition coating portion. And a means for moving to the part.
  • a support which is a composition for forming an ion-exchange polymer, or at least one of coating and impregnation
  • the composition for forming an ion-exchange polymer It is preferable that the polymer functional film of the present invention is produced through a process of irradiating light and (iii) removing the film from the support if desired.
  • the ion exchange polymer-forming composition application part can be placed upstream of the irradiation source of energy rays (also referred to as “active radiation”), and the irradiation source is in the composite film winding part. It is placed at an upstream position.
  • the viscosity of the ion-exchangeable polymer-forming composition at 35 ° C. is 4,000 mPa.s. less than s, preferably 1 to 1,000 mPa.s. s is more preferable, and 1 to 500 mPa.s is preferable. s is most preferred.
  • the viscosity at 35 ° C. is 1 to 100 mPa.s. s is preferred.
  • the ion exchange polymer-forming composition can be applied to the moving support at a speed exceeding 15 m / min, and can be applied at a speed exceeding a maximum of 400 m / min.
  • a support when using a support to increase the mechanical strength of the membrane, before applying the ion exchange polymer-forming composition to the surface of the support, for example, to improve the wettability and adhesion of the support. Further, it may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment and the like.
  • the hardening process in the manufacturing method of the polymeric functional film of this invention is a process of irradiating an energy ray to a composition and polymerizing the polymeric compound in a composition.
  • polymerizable compounds such as Component A and Component C are polymerized to form a polymer.
  • the polymerization is preferably carried out by irradiation with energy rays (more preferably, irradiation with light) under the condition that the polymerization occurs rapidly enough to form a film within 30 seconds.
  • Irradiation of energy rays to the ion exchange polymer forming composition is preferably within 60 seconds, more preferably within 15 seconds, particularly preferably after application of the ion exchange polymer forming composition to a support. Starts within 5 seconds, most preferably within 3 seconds.
  • Polymerization of the polymerizable compound is performed by irradiating the ion exchange polymer-forming composition with an energy beam for preferably less than 10 seconds, more preferably less than 5 seconds, particularly preferably less than 3 seconds, and most preferably less than 2 seconds. Do. In the continuous method, irradiation is performed continuously, and the polymerization time is determined by the speed at which the ion-exchangeable polymer-forming composition moves through the irradiation beam.
  • UV light ultraviolet rays
  • a support coated with a light source lamp and an ion-exchangeable polymer forming composition is applied.
  • IR light infrared light
  • the active radiation is preferably ultraviolet light.
  • the irradiation wavelength is preferably the same as the absorption wavelength of any photopolymerization initiator that can be included in the ion-exchangeable polymer-forming composition.
  • UV-A 400 to 320 nm
  • UV-B 320-280 nm
  • UV-C 280-200 nm
  • Ultraviolet sources are mercury arc lamps, carbon arc lamps, low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, swirling plasma arc lamps, metal halide lamps, xenon lamps, tungsten lamps, halogen lamps, lasers and ultraviolet light emitting diodes.
  • Medium pressure or high pressure mercury vapor type UV lamps are particularly preferred.
  • additives such as metal halides may be present to modify the emission spectrum of the lamp. In most cases, lamps having an emission maximum between 200 and 450 nm are particularly suitable.
  • the energy output of the active radiation source is preferably 20 to 1,000 W / cm, more preferably 40 to 500 W / cm, but higher if this can achieve the desired exposure dose. However, it may be low.
  • the degree of curing of the film can be adjusted by changing the exposure intensity.
  • Exposure dose is High Energy UV Radiometer (UV Power PuckTM manufactured by EIT-Instrument Markets) Is preferably at least 40 mJ / cm 2 or more, more preferably 100 to 2,000 mJ / cm 2 , still more preferably 150 to 1,500 mJ / cm 2 as measured in the UV-B range.
  • the exposure time can be chosen freely, but is preferably short and most preferably less than 2 seconds.
  • a plurality of light sources may be used to obtain a necessary exposure dose. In this case, the plurality of light sources may have the same or different exposure intensity.
  • the polymer membrane of the present invention is preferably a composite membrane combined with a porous support, and more preferably a separation membrane module using this. Moreover, it can be set as the ion exchange apparatus which has a means for ion-exchange or desalting
  • the polymer membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral, hollow fiber, pleated, tubular, plate & frame, and stack types.
  • the functional polymer membrane of the present invention is mainly intended to be used for nitrate ion removal particularly by selective permeation of ions.
  • the polymer functional membrane of the present invention is not limited to ion exchange and can be suitably used for reverse osmosis, forward osmosis, and gas separation.
  • Example 1 (Creation of anion exchange membrane)
  • a composition (composition for forming an ion-exchange polymer) having the composition (unit: g) shown in Table 1 below was manually applied to an aluminum plate at a speed of about 5 m / min using an applicator having a clearance of 200 ⁇ m.
  • a non-woven fabric (FO-2223-10 manufactured by Freudenberg, thickness: 100 ⁇ m) was impregnated with a composition for forming an ion-exchange polymer (coating solution).
  • the excess coating solution on the aluminum plate was removed using a rod.
  • the temperature of the coating solution at the time of coating was about 25 ° C. (room temperature).
  • the composition-impregnated nonwoven fabric (support) is exposed.
  • the anion exchange membrane was prepared by curing the composition by a polymerization reaction.
  • the exposure amount was 1,000 to 5,000 mJ / cm 2 in the UV-A region.
  • the amount of exposure can be controlled by changing the conveyor speed so that sufficient curing can be obtained. That is, the components eluted when the anion exchange membrane was immersed in pure water were analyzed by liquid chromatography, and the minimum exposure amount at which monomer elution was below the detection limit was determined.
  • the resulting membrane was removed from the aluminum plate and stored in 0.1 M NaCl solution for at least 12 hours.
  • Examples 2 to 37 In the production of the anion exchange membrane of Example 1, the compositions of Examples 2 to 37 were changed in the same manner as in Example 1 except that the composition of the ion exchange polymer forming composition was changed to the compositions shown in Tables 1 to 3 below. An anion exchange membrane was prepared.
  • ⁇ Electrical resistance ER ( ⁇ ⁇ cm 2 ) of membrane> Wipe both sides of the membrane immersed in 0.5M NaNO 3 aqueous solution for about 2 hours with dry filter paper, two-chamber cell (effective membrane area 1 cm 2 , use Ag / AgCl reference electrode (made by Metrohm) as electrode) Sandwiched between. Both chambers are filled with 100 mL of NaNO 3 aqueous solution of the same concentration, placed in a constant temperature water bath at 25 ° C. and allowed to reach equilibrium, and after the liquid temperature in the cell reaches 25 ° C. correctly, an AC bridge (frequency: 1,000 Hz) ) To measure the electric resistance r1.
  • the film was removed, and the electric resistance r2 between the two electrodes was measured using only a 0.5M NaNO 3 aqueous solution, and the electric resistance r of the film was determined as r1-r2. This was taken as the electrical resistance ER (0.5M NaNO 3 ) of the membrane.
  • the electrical resistance ER (0.5M NaNO 3 ) of the membrane Similar to the electrical resistance ER (0.5M NaNO 3 ) of the membrane, the electrical resistance ER (0.5M Na 2 SO 4 ), ER (0.05M NaNO 3 ), ER (0.05M Na 2 SO 4 ) of the membrane ) was measured. The electrical resistance ER of the film is omitted and described as “ER”.
  • the ER ratio ( ER Na 2 SO 4 / ER NaNO 3 ) was calculated in order to compare the permeability of monovalent ions and divalent ions. A larger value indicates that divalent ions are less likely to permeate monovalent ions, and is highly selective.
  • a stack is prepared by combining a commercially available cation exchange membrane (CMX, manufactured by Astom Co., Ltd.) and the anion exchange membrane of the present invention, and a desalting experiment is performed using an electrodialyzer (Acylizer ED, manufactured by Astom Co., Ltd.). It was.
  • a stack was prepared by alternately laminating three cation exchange membranes and two anion exchange membranes with a spacer provided with a channel between them.
  • An aqueous solution was prepared so that the concentrations of NaNO 3 and NaSO 4 were 0.05M, respectively, to prepare a mixed solution.
  • Electrodialysis was performed by flowing a constant current of 5 mA while flowing the mixed solution through the gaps of the laminate at a flow rate of 1 m / min.
  • the diluted aqueous solution was sampled every 5 minutes, and the concentration of NO 3 ⁇ and SO 4 2 ⁇ ions was quantified by ion chromatography. 30 minutes after the current starts to flow, the change in the concentration of SO 4 2 ⁇ ions is less than 40% with respect to the change in the concentration of NO 3 ⁇ ions, A, and B in the case of 40% or more and less than 70%.
  • the anion exchange membrane used in the electrodialysis test was evaluated with C being 70% or more.
  • a stack is prepared by combining a commercially available cation exchange membrane (CMX, manufactured by Astom Co., Ltd.) and the anion exchange membrane of the present invention, and a desalting experiment is performed using an electrodialyzer (Acylizer ED, manufactured by Astom Co., Ltd.). It was.
  • a stack was prepared by alternately laminating three cation exchange membranes and two anion exchange membranes with a spacer provided with a channel between them.
  • An aqueous solution was prepared so that the NaNO 3 and NaSO 4 concentrations were 0.05M and the MgCl 2 and CaCl 2 concentrations were 0.005M, respectively, and a mixed solution was prepared.
  • Electrodialysis was performed by flowing a constant current of 5 mA while flowing the mixed solution through the gaps of the laminate at a flow rate of 1 m / min.
  • the NaNO 3 concentration on the dilution side reached 0.005M
  • the mixed solution was discarded, the mixed solution prepared above was added again, and electrodialysis was performed. This operation was repeated, and the electrodialysis test was performed for a total of 72 hours. After completion of the test, the anion exchange membrane was taken out and thoroughly washed with water, and then the anion exchange membrane surface was observed with a microscope.
  • the anion exchange membranes of Examples 1 to 37 are anion exchange membranes having an electric resistance ratio of 0.5 M aqueous solution of 3 or more and excellent monovalent ion selectivity. I understand.
  • the anion exchange membranes of Comparative Examples 1 to 19 that do not satisfy the provisions of the present invention have an electric resistance ratio of 0.5 M aqueous solution of less than 2.1 and low monovalent ion selectivity.
  • the electrical resistance ratio of 0.05M aqueous solution is worse than that of 0.5M aqueous solution. In the case of a dilute aqueous solution, it is presumed that the resistance value of the aqueous solution itself is large and the contribution of the performance of the film is hardly reflected.
  • the performance of the anion exchange membrane of the example is superior to the performance of the anion exchange membrane of the comparative example even in a dilute solution.
  • the anion exchange membrane of the comparative example has an electric resistance ratio of about 1 and has almost no monovalent ion selectivity, while the anion exchange membranes of Examples 8, 16, and 23 are in particular 0.05M aqueous solution.
  • the resistance ratio is twice or more, and the performance is excellent. This difference in performance agrees well with the results of the electrodialysis test.
  • the anion exchange membranes of the examples had good scaling resistance.
  • the principle that good monovalent ion selectivity was obtained is not clear, but by forming a dense membrane with a high cross-linking group density, the molecular sieving effect is more effective than NO 3 - ions. It is presumed that the transmission of SO 4 2 ⁇ ions having a large ion radius was suppressed. It is also estimated that the ion exchange capacity, that is, the charge density in the membrane, increased the number of points interacting with divalent SO 4 2- ions, and the permeation of the infiltrated SO 4 2- ions was relatively suppressed. Is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 硝酸イオン除去用高分子機能性膜は、構成単位Aとして、式CLで表される構成単位を含有するイオン交換性ポリマーを含有し、式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下であり、式bで表される架橋基密度が0.9mmol/g以上2.0mmol/g以下である。 式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量) 式b: 架橋基密度=(膜中の成分Aの量 mmol)/(膜の乾燥重量)

Description

硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置
 本発明は、硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置に関する。
 高分子機能性膜としての各種の機能を有する膜として、イオン交換膜、逆浸透膜、正浸透膜又はガス分離膜等が知られている。
 例えば、イオン交換膜は、電気脱塩(EDI:Electrodeionization)、連続的な電気脱塩(CEDI:Continuous Electrodeionization)、電気透析(ED:Electrodialysis)、逆電気透析(EDR:Electrodialysis reversal)等に用いられる。
 電気脱塩(EDI)は、イオン輸送を達成するためにイオン交換膜と電位を使用して、水性液体からイオンが取り除かれる水処理プロセスである。従来のイオン交換のような他の浄水技術と異なり、酸又は苛性ソーダのような化学薬品の使用を要求せず、超純水を生産するために使用することができる。電気透析(ED)及び逆電気透析(EDR)は、水及び他の流体からイオン等を取り除く電気化学の分離プロセスである。
近年、地下水中の硝酸イオン濃度上昇は世界規模で問題となっており、イオン交換膜を用いた電気透析による硝酸イオン除去方法が注目されている。電気透析において、長期間の駆動で二価の硫酸イオンなどに起因する難溶性塩の析出(スケーリング)が発生し、効率が低下することが知られている。一般的にイオン交換膜はカチオン又はアニオンのみを選択的に透過する性質を有するが、この選択性に加えて、スケーリングの要因となりうる硫酸イオンなどの二価のアニオンを排除しつつ、一価の硝酸イオンのみを選択的に透過させ、効率よく除去することが重要である。そのため、一価イオンのみを選択的に透過させる技術の開発が盛んに行われている(例えば、引用文献1、2参照)。
一価イオンのみを選択的に透過させる方法として、イオン交換膜の一方の表面にイオン交換膜の官能基のイオンとは反対電荷となる層を有する複層イオン交換膜(例えば、特許文献2参照)が知られている。
特開平7-265863号公報 特開2001-49009号公報
 本発明が解決しようとする課題は、電気透析試験の結果に優れた硝酸イオン除去用高分子機能性膜、及び、その製造方法、並びに、硝酸イオン除去用高分子機能性膜を用いた分離膜モジュール、及び、イオン交換装置を提供することである。
 本発明の上記課題は、好ましい実施態様を含む以下の<1>~<20>に記載の手段により解決された。
 <1> 構成単位Aとして、式CLで表される構成単位を含有するイオン交換性ポリマーを含有し、式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下であり、式bで表される架橋基密度が0.9mmol/g以上2.0mmol/g以下である硝酸イオン除去用高分子機能性膜、
 式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)
 式b: 架橋基密度=(膜中の成分Aの量 mmol)/(膜の乾燥重量)
Figure JPOXMLDOC01-appb-C000013
 式CL中、L1はアルキレン基又はアルケニレン基を表し、R1、R2、R3及びR4はそれぞれ独立に、アルキル基又はアリール基を表し、R1とR2、及び/又は、R3とR4が互いに結合して環を形成してもよく、n1及びn2はそれぞれ独立に、1~10の整数を表し、X1 -及びX2 -はそれぞれ独立に、有機又は無機のアニオンを表す、
 <2> 上記イオン交換性ポリマーが、構成単位Cとして、式SM、又は、式MAで表される構成単位を更に含有する、<1>に記載の硝酸イオン除去用高分子機能性膜、
 式SM中、Rs1は-N+(Rs2)(Rs3)(Rs4)(X3 -)を表し、n3は1~10の整数を表し、Rs2~Rs4はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs2とRs3、又はRs2、Rs3及びRs4が互いに結合して脂肪族ヘテロ環を形成してもよく、X3 -は有機又は無機のアニオンを表す、
Figure JPOXMLDOC01-appb-C000015
 式MA中、RA1は水素原子又はアルキル基を表し、RA2~RA4はそれぞれ独立に、アルキル基又はアリール基を表し、RA2~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA1は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA1はアルキレン基を表し、XA1はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す。
 <3> 上記イオン交換性ポリマーが、成分Aとして、式CL2で表される化合物と、成分Bとして、式PIで表される光重合開始剤とを含有する組成物を重合させて得られる、<1>又は<2>に記載の硝酸イオン除去用高分子機能性膜、
Figure JPOXMLDOC01-appb-C000016
 式CL2中、L21はアルキレン基又はアルケニレン基を表し、R21、R22、R23及びR24はそれぞれ独立に、アルキル基又はアリール基を表し、R21とR22、及び/又は、R23とR24が互いに結合して環を形成してもよく、n21及びn22はそれぞれ独立に、1~10の整数を表し、X21 -及びX22 -はそれぞれ独立に、有機又は無機のアニオンを表す、
Figure JPOXMLDOC01-appb-C000017
 式PI中、Rp1は水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2及びRp3は各々独立に、水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2とRp3が互いに結合して環を形成してもよい。
 <4> 上記組成物の全固形分に対し、成分Aの含有量が55~99質量%である、<3>に記載の硝酸イオン除去用高分子機能性膜、
 <5> 上記組成物の全固形分に対し、成分Bの含有量が0.1~10質量%である、<3>又は<4>に記載の硝酸イオン除去用高分子機能性膜。
 <6> 上記組成物が、成分Cとして、式SM2で表される化合物、又は、式MA2で表される化合物を更に含み、組成物中の成分Aと成分Cのモル比が、成分A:成分C=60:40~100:0である、<3>~<5>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜、
Figure JPOXMLDOC01-appb-C000018
 式SM2中、Rs21は-N+(Rs22)(Rs23)(Rs24)(X23 -)を表し、n23は1~10の整数を表し、Rs22~Rs24はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs22とRs23、又はRs22、Rs23及びRs24が互いに結合して脂肪族ヘテロ環を形成してもよく、X23 -は有機又は無機のアニオンを表す、
Figure JPOXMLDOC01-appb-C000019
 式MA2中、RA21は水素原子又はアルキル基を表し、RA22~RA24はそれぞれ独立に、アルキル基又はアリール基を表し、RA22~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA21は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA21はアルキレン基を表し、XA21はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す、
 <7> 上記組成物が、成分Dとして、溶媒を更に含有する、<3>~<6>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜、
 <8> 上記組成物が、成分Dとして、水又は水溶性溶媒を含む、<7に記載の硝酸イオン除去用高分子機能性膜、
 <9> 支持体を更に有する、<1>~<8>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜、
 <10> 上記支持体が多孔質支持体である、<9>に記載の硝酸イオン除去用高分子機能性膜、
 <11> 上記イオン交換性ポリマーが、成分Aとして、式CL2で表される化合物を含有する組成物より得られ、成分Aの分子量が、300以上600以下である、<1>~<10>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜、
Figure JPOXMLDOC01-appb-C000020
 式CL2中、L21はアルキレン基又はアルケニレン基を表し、R21、R22、R23及びR24はそれぞれ独立に、アルキル基又はアリール基を表し、R21とR22、及び/又は、R23とR24が互いに結合して環を形成してもよく、n21及びn22はそれぞれ独立に、1~10の整数を表し、X21 -及びX22 -はそれぞれ独立に、有機又は無機のアニオンを表す。
 <12> 成分Aとして、式CL2で表される化合物を含有する組成物を重合させる硬化工程を含み、式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下であり、式bで表される架橋基密度が0.9mmol/g以上2.0mmol/gである、硝酸イオン除去用高分子機能性膜の製造方法、
 式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)
 式b: 架橋基密度=(膜中の成分Aの量 mmol)/(膜の乾燥重量)
Figure JPOXMLDOC01-appb-C000021
 式CL2中、L21はアルキレン基又はアルケニレン基を表し、R21、R22、R23及びR24はそれぞれ独立に、アルキル基又はアリール基を表し、R21とR22、及び/又は、R23とR24が互いに結合して環を形成してもよく、n21及びn22はそれぞれ独立に、1~10の整数を表し、X21 -及びX22 -はそれぞれ独立に、有機又は無機のアニオンを表す、
 <13> 上記組成物が、成分Bとして、式PIで表される光重合開始剤を更に含有する、<12>に記載の硝酸イオン除去用高分子機能性膜の製造方法、
Figure JPOXMLDOC01-appb-C000022
 式PI中、Rp1は水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2及びRp3は各々独立に、水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2とRp3が互いに結合して環を形成してもよい、
 <14> 上記組成物が、成分Cとして、式SM2で表される化合物、又は、式MA2で表される化合物を更に含有する、<12>又は<13>に記載の硝酸イオン除去用高分子機能性膜の製造方法、
Figure JPOXMLDOC01-appb-C000023
 式SM2中、Rs21は-N+(Rs22)(Rs23)(Rs24)(X23 -)を表し、n23は1~10の整数を表し、Rs22~Rs24はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs22とRs23、又はRs22、Rs23及びRs24が互いに結合して脂肪族ヘテロ環を形成してもよく、X23 -は有機又は無機のアニオンを表す、
Figure JPOXMLDOC01-appb-C000024
 式MA2中、RA21は水素原子又はアルキル基を表し、RA22~RA24はそれぞれ独立に、アルキル基又はアリール基を表し、RA22~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA21は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA21はアルキレン基を表し、XA21はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す、
 <15> 上記組成物が、成分Dとして、水を更に含有する、<12>~<14>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜の製造方法、
 <16> 上記組成物が、成分Eとして、重合禁止剤を更に含有する、<12>~<15>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜の製造方法、
 <17> 上記組成物を多孔質支持体に塗布及び/又は含浸させる塗布工程を含む、<12>~<16>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜の製造方法、
 <18> 上記硬化工程が、上記組成物にエネルギー線を照射して重合させる工程である、<12>~<17>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜の製造方法、
 <19> <1>~<11>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜を備えた分離膜モジュール、
 <20> <1>~<11>のいずれか1つに記載の硝酸イオン除去用高分子機能性膜を備えたイオン交換装置。
 本発明によれば、電気透析試験の結果に優れた硝酸イオン除去用高分子機能性膜、及び、その製造方法を提供することができた。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 更に、各一般式における二重結合の置換様式である幾何異性体は、表示の都合上、異性体の一方を記載したとしても、特段の断りがない限り、E体であってもZ体であっても、これらの混合物であっても構わない。
 また、本明細書における化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 なお、本明細書中において、“(メタ)アクリレート”はアクリレート及びメタクリレートを表し、“(メタ)アクリル”はアクリル及びメタクリルを表し、“(メタ)アクリロイル”はアクリロイル及びメタクリロイルを表し、”(メタ)アクリルアミド”はアクリルアミド及びメタクリルアミドを表す。
 また、本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。
(硝酸イオン除去用高分子機能性膜)
 本発明の硝酸イオン除去用高分子機能性膜(以下、単に「膜」又は「高分子機能性膜」ともいう。)は、構成単位Aとして、式CLで表される構成単位を含有するイオン交換性ポリマーを含有し、式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下であり、式bで表される架橋基密度が0.9mmol/g以上2.0mmol/g以下である。
 式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)
 式b: 架橋基密度=(膜中の成分Aの量 mmol)/(膜の乾燥重量)
Figure JPOXMLDOC01-appb-C000025
 式CL中、L1はアルキレン基又はアルケニレン基を表し、R1、R2、R3及びR4はそれぞれ独立に、アルキル基又はアリール基を表し、R1とR2、及び/又は、R3とR4が互いに結合して環を形成してもよく、n1及びn2はそれぞれ独立に、1~10の整数を表し、X1 -及びX2 -はそれぞれ独立に、有機又は無機のアニオンを表す。
 本発明者等は鋭意検討した結果、構成単位Aを含有するイオン交換性ポリマーを含有し、イオン交換容量及び架橋基密度がある特定の範囲に含まれる硝酸イオン除去用高分子機能性膜は、優れたスケーリング耐性、及び、優れた一価アニオンの選択的透過性を有することを見出した。
 また、上記特許文献2に記載の、市販されているポリスチレン系の強塩基性陰イオン交換樹脂若しくはポリスチレン系の強酸性陽イオン交換樹脂をバインダー樹脂と混練し、平板プレスで加熱溶融プレスしてイオン交換膜を作製し、この膜上に、反対荷電のポリマーを塗布して製造するものである。
 特許文献2に記載の複合イオン交換膜は、樹脂層と補助層の間が疎水性相互作用のみで接着しているために、剥離が起こりやすく、膜を取り扱う際のこすれや長時間使用で補助層が消失し、性能が低下する。更に複合イオン交換膜を製造するのにイオン交換膜の製造工程と補助層の塗布工程の二段階を要するため、コスト増につながる。
 これに対し、本発明における高分子機能性膜は補助層を用いていないため、長時間使用においても性能低下することがなく、更に一段階の工程で製造可能であるため、コスト低減に優れる。
 以下、本発明の高分子機能性膜の特性、及び、本発明の高分子機能性膜を構成する、各成分について説明する。
<高分子機能性膜の特性>
 本発明の高分子機能性膜は、一価イオン選択透過性を有するアニオン交換膜である。
 本発明の膜の厚さは、支持体を有する場合は支持体を含めて、30~500μmが好ましく、50~300μmがより好ましく、50~250μmが特に好ましい。
〔イオン交換容量〕
 本発明の高分子機能性膜は、式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下である。
 式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)
 ここで、膜が支持体を有する場合、膜の乾燥重量には支持体の重量を含む。
 本発明の高分子機能性膜の上記イオン交換容量は、2.7meq/g~6.0meq/g以上であることが好ましく、3.0meq/g~6.0meq/gで有ることがより好ましい。
 イオン交換容量の上限に特に制限はないが、6.0meq/g以下であることが実際的である。ここで、meqはミリ当量である。
 イオン交換容量及び電気抵抗は、Membrane Science,319,217~218(2008)、中垣正幸著,膜学実験法,193~195頁(1984)に記載されている方法により測定することができる。
 特にイオン交換容量については下記の手順で測定を実施する。
1)5cm×5cmに切り出した試料膜を2M NaNO3水溶液に30分間浸漬した後、500mLの純水中で水洗する。
2)100mLの2M NaCl水溶液中に試料膜をいれる。1時間ごとに2M NaCl水溶液を交換しながら、6時間以上浸漬する。
3)500mLの純水中で純水を交換しながら十分に水洗する。洗浄液に1M AgNO3水溶液を一滴いれ、白濁しないことを確認する。白濁する場合は洗浄が不十分であるため、純水での洗浄を繰り返す。
4)水洗した試料膜を30mLの2M NaNO3水溶液に浸漬し、1時間ごとに2回液を交換し(各30mL)、最後に6時間以上浸漬する。
5)膜を取り出し、30mLの純水に浸漬する。1時間ごとに2回液を交換し(各30mL)、最後に6時間以上浸漬する。最後の浸漬液に1M AgNO3水溶液を一滴いれ、白濁しないことを確認する。白濁する場合は洗浄が不十分であるため、純水での洗浄を繰り返す。
6)交換液・浸漬液・洗浄液を全て混合し、更に1/60mol/Lのクロム酸カリウム水溶液を0.3g添加する。0.1M AgNO3水溶液で赤褐色の析出物が発生する点を終点として滴定する。滴定量から膜中に含まれるイオン性基の量 c(meq)を算出する。
7)滴定に使用した膜を60℃の真空オーブンで12時間乾燥後、重量を測定して乾燥重量を求めた。更にこの値とcの値から式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)を用いてイオン交換容量を算出した。
〔架橋基密度〕
 本発明の高分子機能性膜は、式bで表される架橋基密度が0.9mmol/g以上2.0mmol/g以下である。
 式b: 架橋基密度=(膜中の成分Aの量 mmol)/(膜の乾燥重量)
 ここで、膜が支持体を有する場合、膜の乾燥重量には支持体の重量を含む。
 本発明の高分子機能性膜の架橋基密度は、1.15~2.0mmol/gであることが好ましく、1.35~2.0mmol/gであることがより好ましく、1.45~2.0mmol/gであることが更に好ましい。
 架橋基密度は下記の手法により、算出する。
 式CLで表される構成単位のR1とR2、及び/又は、R3とR4が互いに結合して環を形成している場合は、膜の赤外分光測定において、920cm-1付近にピペラジン環類似構造に由来する特徴的な吸収ピークが得られる。このピーク強度と芳香環(1,605cm-1)又はアミド(1,650cm-1)、エステル(1,750cm-1)のピーク強度から膜中に含まれるモノマーユニット比を算出できる。
 その他の場合は動的粘弾性測定により、架橋基密度を算出する。架橋基密度を変化させた標準試料を作製し、25℃における貯蔵弾性率E‘を測定して検量線を作成する。目的の試料の貯蔵弾性率と検量線から架橋基密度を算出する。
標準試料はSM-1とCL-8を用いて実施例に記載の方法で架橋基密度0.3、0.5、0.7、1.0、1.4mmol/gの膜を作製し、25℃において動的粘弾性測定を行い、各試料の貯蔵弾性率E’を測定する。測定条件は、膜を縦10mm×横5mmに切断し、引張モード、周波数10Hz、窒素雰囲気下、温度を25℃として測定を行い、貯蔵弾性率E’を決定した。測定装置はRheogel-E1500(UBM社製)を用いた。横軸に架橋基密度、縦軸に貯蔵弾性率をプロットしたグラフを作成し、最小二乗法を用いて近似曲線を得る。近似曲線を用いて目的試料の貯蔵弾性率から架橋基密度を算出する。
 以下、本発明の高分子機能性膜を構成する、各成分について説明する。
 また、本発明に用いられる各構成単位や成分における置換基としては、電気的に中性で、不活性な基であれば、高分子機能性膜の機能を阻害せず使用することが可能である。
<イオン交換性ポリマー>
構成単位A:式CLで表される構成単位
 本発明の高分子機能性膜は、構成単位Aとして、式CLで表される構成単位を含有するイオン交換性ポリマーを含有する。
 式CL中、L1はアルキレン基又はアルケニレン基を表し、アルキレン基であることが好ましい。
 上記アルキレン基及びアルケニレン基は、分岐を有していてもよいし、環構造を有していてもよい。
 L1におけるアルキレン基は、炭素数2~10であることが好ましく、炭素数2又は3であることがより好ましく、エチレン基、プロピレン基が挙げられる。
 L1におけるアルケニレン基は、炭素数2~10であることが好ましく、炭素数2又は3であることがより好ましく、エテニレン基が更に好ましい。
 R1、R2、R3及びR4はそれぞれ独立に、アルキル基又はアリール基を表し、アルキル基であることが好ましく、R1とRb2と、及び/又は、R3とR4とが互いに結合して環を形成してもよい。中でも、R1とR2とが互いに結合して環を形成していることがより好ましく、また、R3とR4とが互いに結合して環を形成していることがより好ましく、RaとRbと、及び、R3とR4とが互いに結合して環を形成していることが特に好ましい。
 R1とR2と、及び/又は、R3とR4とが互いに結合して環を形成する場合、R1とR2と、及び/又は、R3とR4とが互いに結合した基は、アルキレン基であることが好ましく、炭素数2~4のアルキレン基であることがより好ましく、1,2-エチレン基であることが更に好ましい。
 R1とR2が互いに結合し、L1とともにピペラジン環又はジヒドロピラジン環を形成することが好ましく、また、R1とR2に加え、更にR3とR4が互いに結合して、L1とともにトリエチレンジアミン環(1,4-ジアザビシクロ[2.2.2]オクタン環)を形成することがより好ましい。また形成された環は置換基を有していてもよい。上記置換基としては、アルキル基が好ましい。
 R1、R2、R3及びR4の炭素数はそれぞれ独立に、1~20であることが好ましく、1~10であることがより好ましく、1~4であることが更に好ましい。
 R1、R2、R3及びR4が互いに結合して環を形成しない場合、アルキル基としては、炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、炭素数1又は2が更に好ましい。アルキル基としては、例えば、メチル、エチル、イソプロピル、n-ブチル、2-エチルヘキシルが挙げられる。
 また、アリール基としては、炭素数6~10のアリール基が好ましく、フェニル基がより好ましい。
 上記アルキル基は、分岐を有していても、環構造を有していてもよい。
 n1及びn2はそれぞれ独立に、1~10の整数を表し、1~4の整数であることが好ましく、1又は2であることがより好ましく、1であることが更に好ましい。
 また、合成上の観点から、n1とn2とは同じであることが好ましい。
 X1 -及びX2 -はそれぞれ独立に、有機又は無機のアニオンを表し、無機アニオンが好ましい。上記有機又は無機のアニオンは、一価のアニオンであっても、二価以上のアニオンであってもよい。二価以上のアニオンの場合、式CLにおけるアンモニウム基等のカチオンと電気的に等量となる量存在する。例えば、式CLにおけるX1 -及びX2 -が1つの二価アニオンであってもよいし、二価以上のアニオンが2以上の式CLで表される構成単位のX1 -及び/又はX2 -として存在してもよい。
 有機アニオンとしては、アルキルスルホン酸アニオン、アリールスルホン酸アニオン、アルキル若しくはアリールカルボン酸アニオンが挙げられ、例えば、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオン、酢酸アニオンが挙げられる。
 無機アニオンとしてはハロゲンアニオン、硫酸ジアニオン、リン酸アニオンが挙げられ、ハロゲンアニオンが好ましい。ハロゲンアニオンの中でも塩素アニオン、臭素アニオンが好ましく、塩素アニオンが特に好ましい。
 構成単位Aは、下記化合物CL-1~CL-12に由来する構成単位であることが好ましいが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 構成単位Aとしては、分子量が好ましくは300~600、より好ましくは300~500、最も好ましくは300~450である化合物に由来する構成単位であることが好ましい。すなわち、成分Aの分子量が、300以上600以下であることが好ましい。
〔構成単位Aの含有量〕
 本発明におけるイオン交換性ポリマーは、構成単位Aを、1種単独で含有しても、2種以上を含有してもよい。
 イオン交換性ポリマーの全質量に対し、構成単位Aの含有量は、55~99質量%であることが好ましく、70~99質量%であることがより好ましく、75~99質量%であることが更に好ましく、85~99質量%が特に好ましく、90~99質量%が最も好ましい。
 構成単位Aの含有量が上記範囲であれば、形成される膜の物理強度により優れ、また、膜性能により優れる。
構成単位C:式SMで表される構成単位、又は、式MAで表される構成単位
 本発明におけるイオン交換性ポリマーは、構成単位Cとして、式SMで表される構成単位、又は、式MAで表される構成単位を更に含有することが好ましい。
Figure JPOXMLDOC01-appb-C000028
 式SM中、Rs1は-N+(Rs2)(Rs3)(Rs4)(X3 -)を表し、n3は1~10の整数を表し、Rs2~Rs4はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs2とRs3、又はRs2、Rs3及びRs4が互いに結合して脂肪族ヘテロ環を形成してもよく、X3 -は有機又は無機のアニオンを表す。
Figure JPOXMLDOC01-appb-C000029
 式MA中、RA1は水素原子又はアルキル基を表し、RA2~RA4はそれぞれ独立に、アルキル基又はアリール基を表し、RA2~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA1は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA1はアルキレン基を表し、XA1はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す。
〔式SMで表される構成単位〕
 式SM中、Rs2~Rs4がアルキル基を表す場合、アルキル基の炭素数は、1~8が好ましく、1~4がより好ましく、1又は2が更に好ましい。上記アルキル基としては、例えば、メチル、エチル、イソプロピル、n-ブチル、2-エチルヘキシルが挙げられる。
 Rs2~Rs4がアリール基を表す場合、アリール基の炭素数は6~12が好ましく、6~10がより好ましく、6~8が更に好ましい。アリール基としては、フェニル基が好ましい。
 Rs2、Rs3及びRs4はアルキル基を表すことが好ましく、メチル基を表すことが特に好ましい。
 Rs2とRs3、又はRs2、Rs3及びRs4はそれぞれ互いに結合して環を形成してもよい。Rs2とRs3が互いに結合して形成する環は5又は6員環が好ましく、例えば、ピロリジン環、ピペリジン環、モルホリン環、チオモルホリン環、ピペラジン環等が挙げられる。Rs2、Rs3及びRs4が互いに結合して形成する環としては、キヌクリジン環、トリエチレンジアミン環(1,4-ジアザビシクロ[2.2.2]オクタン環)が挙げられる。式SMにおけるX3 -は式CLにおけるX1 -と同義であり、好ましい範囲も同じである。n3は式CLにおけるn1と同義であり、好ましい範囲も同じである。
 式SMで表される構成単位は、下記化合物SM-1~SM-9に由来する構成単位であることが好ましいが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
 式SMで表される構成単位としては、分子量が好ましくは150~350、より好ましくは150~300、最も好ましくは150~270である化合物に由来する構成単位であることが好ましい。
〔式MAで表される構成単位〕
 RA1、RA2~RA4及びRaのアルキル基は、直鎖又は分岐のアルキル基で、炭素数は1~10が好ましく、1~6が好ましく、1~4がより好ましく、1又は2が更に好ましく、1が特に好ましい。
 RA2~RA4のアリール基の炭素数は、6~16が好ましく、6~12がより好ましく、6~10が更に好ましい。RA2~RA4のアリール基の例としては、フェニル基、ナフチル基が挙げられる。
 RA2~RA4のうち2つ以上が互いに結合して形成する環としては、5又は6員環の単環若しくは架橋環が好ましく、炭素数は、4~16が好ましく、4~10がより好ましい。例えば、ピロリジン環、ピペラジン環、ピペリジン環、モルホリン環、チオモルホリン環、インドール環、キヌクリジン環が挙げられる。
 LA1の炭素数は、1~10が好ましく、2~10がより好ましく、2~6が更に好ましく、2~4が特に好ましく、2又は3が更に特に好ましく、3が最も好ましい。
 XA1におけるハロゲンイオンは、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンが挙げられる。
 XA1における脂肪族カルボン酸イオンの炭素数は、1~11が好ましく、2~7がより好ましく、2~5が更に好ましく、2又は3が特に好ましく、2が最も好ましい。
A1における脂肪族スルホン酸イオンの炭素数は、1~11が好ましく、2~7がより好ましく、2~5が更に好ましく、2又は3が特に好ましく、2が最も好ましい。
 上記脂肪族カルボン酸イオンは、飽和炭化水素のカルボン酸、不飽和炭化水素のカルボン酸のいずれでもよいが、飽和炭化水素のカルボン酸が好ましい。
 上記脂肪族スルホン酸イオンは、飽和炭化水素のスルホン酸、不飽和炭化水素のスルホン酸のいずれでもよいが、飽和炭化水素のスルホン酸が好ましい。
 XA1における芳香族スルホン酸イオンは、アリールスルホン酸イオン及びヘテロアリールスルホン酸イオンが好ましい。ここで、ヘテロアリールは、5又は6員環が好ましく、環構成ヘテロ原子は、窒素原子、酸素原子又は硫黄原子が好ましく、窒素原子がより好ましい。芳香族スルホン酸イオンの炭素数は、1~17が好ましく、2~13がより好ましく、3~11が更に好ましい。例えば、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオンが挙げられる。
 RA1は、水素原子、メチル基が好ましく、水素原子がより好ましい。RA1~RA4はメチル基、エチル基が好ましい。ZA1は、-N(Ra)-が好ましく、Raは、水素原子が好ましい。XA1は、ハロゲン原子が好ましい。
 式MAで表される構成単位は、下記化合物MA-1~MA-26に由来する構成単位であることが好ましいが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 式MAで表される構成単位としては、好ましくは分子量が150~350である化合物に由来する構成単位であり、より好ましくは分子量が150~300である化合物に由来する構成単位であり、最も好ましくは分子量が150~270である化合物に由来する構成単位である。
 本発明の高分子機能性膜には、式SM又はMAで表される構成単位を2種以上組み合わせて用いてもよい。
 本発明において、イオン交換性ポリマーの全質量に対し、構成単位Cの含有量は、0~40質量%が好ましく、0~30質量%がより好ましく、0~20質量%が更に好ましく、0~13質量%が特に好ましく、0~6質量%が最も好ましい。
 本発明におけるイオン交換性ポリマー中の、構成単位Aと構成単位Cのモル比は、構成単位A:構成単位C=40:60~100:0が好ましく、60:40~100:0がより好ましく、70:30~100:0が更に好ましく、80:20~100:0が特に好ましく、90:10~100:0が最も好ましい。
<イオン交換性ポリマー形成用組成物>
 本発明に用いられるイオン交換性ポリマーは、成分Aとして、式CL2で表される化合物を含有する組成物(以下、「イオン交換性ポリマー形成用組成物」、「組成物」ともいう。)を重合させて得られることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 式CL2中、L21はアルキレン基又はアルケニレン基を表し、R21、R22、R23及びR24はそれぞれ独立に、アルキル基又はアリール基を表し、R21とR22、及び/又は、R23とR24が互いに結合して環を形成してもよく、n21及びn22はそれぞれ独立に、1~10の整数を表し、X21 -及びX22 -はそれぞれ独立に、有機又は無機のアニオンを表す。
Figure JPOXMLDOC01-appb-C000034
 式PI中、Rp1は水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2及びRp3は各々独立に、水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2とRp3が互いに結合して環を形成してもよい。
成分A:式CL2で表される化合物
 式CL2中の、L21、R21、R22、R23、R24、n21、n22、X21 -及びX22 -は、式CL中の、L1、R1、R2、R3、R4、n1、n2、X1 -及びX2 -とそれぞれ同義であり、好ましい態様も同様である。
 成分Aとしては、上記CL-1~CL-12で表される化合物が好ましい。
 また成分Aは、特開2000-229917号公報に記載の方法若しくはこれに準じた方法で合成できる。
〔成分Aの含有量〕
 本発明におけるイオン交換性ポリマー形成用組成物は、成分Aを、1種単独で含有しても、2種以上を含有してもよい。
 組成物の全固形分に対し、成分Aの含有量は、55~99質量%であることが好ましく、70~99質量%であることがより好ましく、75~99質量%であることが更に好ましく、85~99質量%が特に好ましく、90~99質量%が最も好ましい。なお、組成物の全固形分とは、組成物中の溶媒を除いた量をいう。
 成分Aの含有量が上記範囲であれば、形成される膜の物理強度により優れ、また、膜性能により優れる。
 成分Aの分子量は、300~600であることが好ましく、300~500であることがより好ましい。
成分B:式PIで表される化合物
 本発明に用いられるイオン交換性ポリマーは、成分Aとして、式CL2で表される化合物と、成分Bとして、式PIで表される光重合開始剤とを含有する組成物を重合させて得られることが好ましい。換言すれば、本発明に用いられるイオン交換性ポリマーは、成分Aとして、式CL2で表される化合物と、成分Bとして、式PIで表される光重合開始剤とを含有する組成物を用いて、式CL2で表される化合物を重合させることにより得られる。
Figure JPOXMLDOC01-appb-C000035
 式PI中、Rp1は水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2及びRp3は各々独立に、水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2とRp3が互いに結合して環を形成してもよい。
 Rp1は水素原子、炭素数1~18のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数6~12のアリールオキシ基が好ましく、アルキル基、アルケニル基、アルコキシ基、アリールオキシ基は置換基を有してもよく、上記置換基としては、特に限定されないが、例えば、アルキル基、アリール器、アルコキシ基、アリールオキシ基、アシル基、アシルオキシ基、ヒドロキシ基等が例示される。
 アリールオキシ基のアリールはフェニルが好ましい。
 Rp1は水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基が中でも好ましく、アルコキシ基の場合、メトキシ基及び2-ヒドロキシエトキシ基が好ましく、アルキル基の場合は、フェニル基が置換したメチル基が好ましく、上記フェニル基には、-C(=O)-C(Rp2)(Rp3)(OH)が置換して、分子全体として、メチレンビス体を形成することも好ましい。
 Rp2及びRp3はそれぞれ独立に、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基が好ましく、炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数1~8のアルコキシ基、炭素数6~10のアリールオキシ基が好ましく、アルキル基が更に好ましく、特にメチルが好ましい。アルキル基、アルケニル基、アルコキシ基、アリールオキシ基は置換基を有してもよく、上記置換基としては、特に限定されないが、例えば、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アシルオキシ基、ヒドロキシ基等が例示される。
 Rp2とRp3が互いに結合して形成する環は、5又は6員環が好ましく、シクロペンタン環、シクロヘキサン環がより好ましい。
 以下に、一般式(PI)で表される重合開始剤の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000036
 上記化合物の中でも、成分BとしてはPI-2又はPI-4で表される化合物が好ましい。
 式PIで表される重合開始剤は、BASF・ジャパン(株)等から入手することができる。
 本発明におけるイオン交換性ポリマー形成用組成物の形成に用いられる組成物は、成分Bを、1種単独で含有しても、2種以上を含有してもよい。
 本発明において、組成物の全固形分に対し、成分Bの含有量は、0.1~10質量%が好ましく、0.1~5質量%がより好ましく、0.5~3質量%が特に好ましい。
成分C:式SMで表される化合物、又は、式MAで表される化合物
 本発明におけるイオン交換性ポリマー形成用組成物は、成分Cとして、式SM2で表される化合物、又は、式MA2で表される化合物を更に含有することが好ましい。
Figure JPOXMLDOC01-appb-C000037
 式SM2中、Rs21は-N+(Rs22)(Rs23)(Rs24)(X23 -)を表し、n23は1~10の整数を表し、Rs22~Rs24はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs22とRs23、又はRs22、Rs23及びRs24が互いに結合して脂肪族ヘテロ環を形成してもよく、X23 -は有機又は無機のアニオンを表す。
Figure JPOXMLDOC01-appb-C000038
 式MA2中、RA21は水素原子又はアルキル基を表し、RA22~RA24はそれぞれ独立に、アルキル基又はアリール基を表し、RA2~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA21は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA21はアルキレン基を表し、XA21はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す。
〔式SM2で表される化合物〕
 式SM2中、Rs21、Rs22、Rs23、Rs24、n23、及び、X23 -は、式SM中のRs1、Rs2、Rs3、Rs4、n23、及び、X23 -とそれぞれ同義であり、好ましい範囲も同様である。
 式SM2で表される化合物としては、上記SM-1~SM-9で表される化合物が好ましい。
 また式SM2で表される化合物は、特開2000-229917号公報、特開2000-212306号公報に記載の方法若しくはこれに準じた方法で合成できる。また、シグマ-アルドリッチ社等から市販品として入手することも可能である。
〔式MA2で表される化合物〕
 式MA2中、RA21、RA22、RA23、RA24、ZA21、LA21、及び、XA21は、式MA中のRA1、RA2、RA3、RA4、ZA1、LA1、及び、XA1とそれぞれ同義であり、好ましい範囲も同様である。
 式MA2で表される化合物としては、上記MA-1~MA-26で表される化合物が好ましい。
 本発明の高分子機能性膜には、式SM又はMAで表される化合物を2種以上組み合わせて用いてもよい。
 本発明において、イオン交換性ポリマー形成用組成物の全固形分に対し、成分Cの含有量は、0~40質量%が好ましく、0~30質量%がより好ましく、0~20質量%が更に好ましく、0~13質量%が特に好ましく、0~6質量%が最も好ましい。
 本発明におけるイオン交換性ポリマー形成用組成物において、成分Aと成分Cのモル比は、成分A:成分C=40:60~100:0が好ましく、60:40~100:0がより好ましく、70:30~100:0が更に好ましく、80:20~100:0が特に好ましく、90:10~100:0が最も好ましい。
成分D:溶媒
 本発明におけるイオン交換性ポリマー形成用組成物は、成分Dとして、溶媒を更に含有することが好ましい。
 本発明において、上記イオン交換性ポリマー形成用組成物の溶媒の含有量は、全イオン交換性ポリマー形成用組成物100質量部に対し、10~60質量部が好ましく、20~40質量部がより好ましい。
 溶媒の含有量が上記範囲内にあることで、塗布液としてのイオン交換性ポリマー形成用組成物を支持体に均一になるように塗布することができ好ましい。
 溶媒は、水及び/又は水に対する溶解度が5質量%以上であるものが好ましく用いられ、更には水及び/又は水に対して自由に混合するものが特に好ましい。このため、水及び水溶性溶媒から選択される溶媒が好ましく、水単独、水溶性溶媒単独、又は、これらの混合物が好ましい。
 水溶性溶媒としては、特に、アルコール系溶媒、非プロトン性極性溶媒であるエーテル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒、スルホン系溶媒、二トリル系溶媒、有機リン系溶媒が好ましい。水及びアルコール系溶媒が好ましく、アルコール系溶媒としては例えばメタノール、エタノール、イソプロパノール、n-ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコールなどが挙げられる。アルコール系溶媒の中では、エタノール、イソプロパノール、n-ブタノール、エチレングリコールがより好ましく、イソプロパノールが特に好ましい。これらは1種類単独又は2種類以上を併用して用いることができる。水単独又は水と水溶性溶媒の併用が好ましく、水単独又は水と少なくとも一つのアルコール系溶媒の併用がより好ましい。
 また、非プロトン性極性溶媒としては、ジメチルスルホキシド、ジメチルイミダゾリジノン、スルホラン、N-メチルピロリドン、ジメチルホルムアミド、アセトニトリル、アセトン、ジオキサン、テトラメチル尿素、ヘキサメチルホスホロトリアミド、ピリジン、プロピオニトリル、ブタノン、シクロヘキサノン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジアセテート、γ-ブチロラクトン等が好ましい溶媒として挙げられ、中でもジメチルスルホキシド、N-メチルピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、スルホラン、アセトン又はアセトニトリル、テトラヒドロフランが好ましい。これらは1種類単独又は2種類以上を併用して用いることができる。
成分E:重合禁止剤
 本発明におけるイオン交換性ポリマー形成用組成物は、膜を形成する際の塗布液に安定性を付与するために、重合禁止剤を含むことも好ましい。
 重合禁止剤としては、公知の重合禁剤が使用でき、フェノール化合物、ハイドロキノン化合物、アミン化合物、メルカプト化合物、フリーラジカル誘導体などが挙げられる。
 フェノール化合物としては、ヒンダードフェノール(オルト位にt-ブチル基を有するフェノールで、代表的には、2,6-ジ-t-ブチル-4-メチルフェノールが挙げられる)、ビスフェノールが挙げられる。ハイドロキノン化合物の具体例としては、モノメチルエーテルハイドロキノンが挙げられる。アミン化合物の具体例としては、N-ニトロソ-N-フェニルヒドロキシルアミン、N,N-ジエチルヒドロキシルアミンが挙げられる。フリーラジカル誘導体の具体例としては、4-ヒドロキシ-2,2,6,6,-テトラメチルピペリジニルオキシル、2,2,6,6-テトラメチルピペリジン1-1-オキシルが挙げられる。なお、これらの重合禁止剤は、1種単独又は2種以上を組み合わせて使用してもよい。
 重合禁止剤の含有量は、イオン交換性ポリマー形成用組成物中の全固形分に対し、0.005~5質量%か好ましく、0.01~1質量%がより好ましく、0.01~0.5質量%が更に好ましい。
成分F:成分A及び成分C以外の重合性化合物
 本発明のイオン交換性ポリマー形成用組成物は、成分Fとして、成分A及び成分C以外の重合性化合物(以下、「他の重合性化合物」ともいう。)を含有していてもよい。ここで、成分Fは、本発明の高分子機能性膜の透水性や、膜の電気抵抗を調整するために、膜の親疎水性及び架橋密度を調整する役割を果たす成分であることが好ましい。
 なお、他の重合性化合物は、モノマー、オリゴマー及びポリマーのいずれでもよいが、モノマーであることが好ましく、モノマーは、単官能重合性化合物が好ましい。なお、本発明において、オリゴマーとは、重量平均分子量が3,000を超え、10,000以下の化合物を意味し、ポリマーとは、重量平均分子量が10,000を超える化合物を意味する。
 「他の重合性化合物」とは、上記成分A及び成分Cに該当しない重合性化合物であり、このような他の重合性化合物としては、例えば、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、ビニルエステル類、スチレン類、アクリロニトリル、マレイン酸イミド等の公知のモノマーも挙げられる。このようなモノマー類を使用することで、製膜性、膜強度、親水性、疎水性、溶解性、反応性、安定性等の諸物性を改善することができる。モノマーの合成法としては、例えば丸善(株)、日本化学会編の「第5版実験科学講座16 有機化合物の合成(II-1)」におけるエステル合成の項目や「第5版実験科学講座26 高分子化学」におけるモノマーの取り扱い、精製の項目などを参考とすることができる。
 これらの中でも、得られた高分子機能性膜の安定性、pH耐性から、エステル結合を有さないもの、(メタ)アクリルアミド化合物、ビニルエーテル化合物、芳香族ビニル化合物、N-ビニル化合物(アミド結合を有する重合性モノマー)、アリル化合物が好ましく、(メタ)アクリルアミド化合物が特に好ましい。
 他の単官能重合性化合物としては、例えば、特開2008-208190号公報や特開2008-266561号公報に記載の化合物が挙げられる。
<その他の成分等>
 本発明におけるイオン交換性ポリマー形成用組成物は、上記成分A~Fの他に、界面活性剤、高分子分散剤及びクレーター防止剤等を含んでいてもよい。
〔界面活性剤〕
 本発明におけるイオン交換性ポリマー形成用組成物には、膜物性を調整するため、各種高分子化合物を添加することもできる。高分子化合物としては、アクリル系重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用しても構わない。
 また、イオン交換性ポリマー形成用組成物である塗布液の液物性調整のためにノニオン性界面活性剤、カチオン性界面活性剤や、有機フルオロ化合物などを添加することもできる。
 界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩、高級アルコールエーテルのスルホン酸塩、高級アルキルスルホンアミドのアルキルカルボン酸塩、アルキルリン酸塩などのアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アセチレングリコールのエチレンオキサイド付加物、グリセリンのエチレンオキサイド付加物、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤、また、この他にもアルキルベタインやアミドベタインなどの両性界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤などを含めて、従来公知である界面活性剤及びその誘導体から適宜選ぶことができる。
〔高分子分散剤〕
 本発明で用いられるイオン交換性ポリマー形成用組成物は高分子分散剤を含んでいてもよい。
 高分子分散剤として、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド等が挙げられ、中でもポリビニルピロリドンを用いることが好ましい。
〔クレーター防止剤〕
 クレーター防止剤とは、表面調整剤、レベリング剤又はスリップ剤とも称し、膜表面の凹凸を防止するものであり、例えば、有機変性ポリシロキサン(ポリエーテルシロキサンとポリエーテルの混合物)、ポリエーテル変性ポリシロキサンコポリマー、シリコン変性コポリマーの構造の化合物が挙げられる。
 市販品としては、例えば、Evonik industries社製のTego Glide 432、同110、同130、同406、同410、同411、同415、同420、同435、同440、同450、同482、同A115、同B1484、同ZG400(いずれも商品名)が挙げられる。
 クレーター防止剤は、イオン交換性ポリマー形成用組成物中の全固形分に対し、0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.01~2質量%が更に好ましい。
 上記以外に、本発明におけるイオン交換性ポリマー形成用組成物は必要により、例えば、粘度向上剤、防腐剤を含有してもよい。
<支持体>
 本発明の高分子機能性膜は、支持体を有することが好ましく、多孔質支持体を有することがより好ましい。
 膜の機械的強度を高めるために、多くの技術を用いることができる。例えば、膜の補強材料として支持体を用いることができ、好ましくは多孔質支持体を使用することができる。この多孔質支持体は、上記イオン交換性ポリマー形成用組成物を塗布及び又は含浸させた後、重合させることにより膜の一部を構成することができる。
 支持体としては、樹脂フィルム、織布、不織布、スポンジ等が挙げられる。これらの中でも、不織布が好ましく挙げられる。
 多孔質支持体としては、例えば、織布、不織布、スポンジ状フィルム、微細な貫通孔を有するフィルム等が挙げられる。
 多孔質支持体としては、例えば、合成織布又は合成不織布、スポンジ状フィルム、微細な貫通孔を有するフィルム等が挙げられる。本発明の多孔質支持体を形成する素材は、例えば、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ポリアクリロニトリル、ポリ塩化ビニル、ポリエステル、ポリアミド及びそれらのコポリマーであるか、あるいは、例えばポリスルホン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド、ポリイミド、ポリエーテルミド(polyethermide)、ポリアミドイミド、ポリアクリロニトリル、ポリカーボネート、ポリアクリレート、酢酸セルロース、ポリ(4-メチル-1-ペンテン)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリクロロトリフルオロエチレン及びそれらのコポリマーに基づく多孔質膜であることができる。これらのうち、本発明では、薬液耐性、物理的耐久性の観点からポリオレフィンが好ましい。
 市販の多孔質支持体としては、例えば、日本バイリーン(株)やFreudenbergFiltration Technologies(Novatexx材料)及びSefar AGから市販されている。
 支持体は親水性を有することが好ましい。支持体に親水性を付与するための手法として、コロナ処理、オゾン処理、硫酸処理、シランカップリング剤処理などの一般的な処理方法を使用することができる。
 支持体の厚さとしては、10~500μmであることが好ましく、20~400μmであることがより好ましく、50~300μmであることが更に好ましく、80~300μmであることが特に好ましい。
 本発明の高分子機能性膜は、多孔質支持体の表面及び/又は内部に成分A及び成分Bに由来する構成単位を有する樹脂を有する膜であることが好ましい。
 また、本発明の高分子機能性膜は、水を含む膜であることが好ましく、上記成分A及び成分Cに由来する構成単位を有する樹脂が水を含んでゲル状となっている膜であることがより好ましい。
(高分子機能性膜の製造方法)
 本発明の硝酸イオン除去用高分子機能性膜の製造方法は、成分Aとして、式CL2で表される化合物を含有する組成物を重合させる硬化工程を含み、式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下であり、式bで表される架橋基密度が0.9mmol/g以上2.0mmol/g以下である。
 上記組成物の好ましい態様は、本発明に用いられるイオン交換性ポリマー形成用組成物の好ましい態様と同様である。
 本発明の高分子機能性膜を形成する条件には特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~60℃が特に好ましい。
 本発明においては、膜を形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが好ましい。
<塗布工程>
 本発明の高分子機能性膜の製造方法は、上記組成物を支持体に塗布及び/又は含浸させる塗布工程を含むことが好ましい。
 本発明の高分子機能性膜は、固定された支持体を用いてバッチ式で調製(バッチ方式)することが可能であるが、移動する支持体を用いて連続式で調製(連続方式)してもよい。支持体は、連続的に巻き戻されるロール形状でもよい。なお、連続方式の場合、連続的に動かされるベルト上に支持体を載せ、イオン交換性ポリマー形成用組成物である塗布液の連続的な塗布と重合して膜を形成する工程を連続して行うことができる。ただし、塗布工程と膜形成工程の一方のみを連続的に行ってもよい。
 なお、支持体と別に、イオン交換性ポリマー形成用組成物を支持体に浸漬させ重合が終わるまでの間、仮支持体(重合終了後、仮支持体から膜を剥がす)を用いてもよい。
 このような仮支持体は、物質透過を考慮する必要がなく、例えば、アルミ板等の金属板を含め、膜形成のために固定できるものであれば、どのようなものでも構わない。
 また、組成物を多孔質支持体に浸漬させ、多孔質支持体以外の支持体を用いずに重合させることもできる。
 イオン交換性ポリマー形成用組成物は、種々の方法、例えば、カーテンコーティング、押し出しコーティング、エアナイフコーティング、スライドコーティング、ニップロールコーティング、フォワードロールコーティング、リバースロールコーティング、浸漬コーティング、キスコーティング、ロッドバーコーティング又は噴霧コーティングにより、多孔質支持体に塗布若しくは浸漬することができる。複数の層の塗布は、同時又は連続して行うことができる。同時重層塗布するには、カーテンコーティング、スライドコーティング、スロットダイコーティング及び押し出しコーティングが好ましい。
 高分子機能性膜の連続方式での製造は、イオン交換性ポリマー形成用組成物を、移動している支持体に連続的に、より好ましくは、イオン交換性ポリマー形成用組成物塗布部と、このイオン交換性ポリマー形成用組成物中の重合性化合物を重合するための照射源と、膜巻取り部と、支持体を上記イオン交換性ポリマー形成用組成物塗布部から照射源及び膜巻取り部に移動させるための手段とを含む製造ユニットにより製造する。
 本発明において、(i)イオン交換性ポリマー形成用組成物である塗布液を支持体に塗布及び含浸、又は塗布と含浸の少なくとも一方を施し、(ii)上記イオン交換性ポリマー形成用組成物に光を照射し、(iii)所望により膜を支持体から取り外す、という過程を経て本発明の高分子機能性膜が作製されることが好ましい。
 上記製造ユニットでは、イオン交換性ポリマー形成用組成物塗布部はエネルギー線(「活性放射線」ともいう。)の照射源に対し上流の位置に置くことができ、照射源は複合膜巻取り部に対し上流の位置に置かれる。高速塗布機で塗布するのに十分な流動性を有するために、イオン交換性ポリマー形成用組成物の35℃での粘度は、4,000mPa.s未満が好ましく、1~1,000mPa.sがより好ましく、1~500mPa.sが最も好ましい。スライドビードコーティングのようなコーティング法の場合の35℃での粘度は1~100mPa.sが好ましい。
 高速塗布機では、イオン交換性ポリマー形成用組成物を、15m/分を超える速度で、移動する支持体に塗布することができ、最高400m/分を超える速度で塗布することもできる。
 特に、膜の機械的強度を高めるために支持体を使用する場合、イオン交換性ポリマー形成用組成物を支持体の表面に塗布する前に、例えば支持体の湿潤性及び付着力を改善するために、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理などに付してもよい。
<硬化工程>
 本発明の高分子機能性膜の製造方法における硬化工程は、組成物にエネルギー線を照射して組成物中の重合性化合物を重合させる工程であることが好ましい。
〔エネルギー線照射〕
 重合中に、成分A及び成分Cなどの重合性化合物が重合してポリマーを形成する。重合は、30秒以内に膜を形成するのに十分な迅速さで重合が起こるという条件で、エネルギー線の照射(より好ましくは、光照射)により行うことが好ましい。
 上記イオン交換性ポリマー形成用組成物へのエネルギー線の照射は、上記イオン交換性ポリマー形成用組成物を支持体に塗布してから、好ましくは60秒以内、より好ましくは15秒以内、特に好ましくは5秒以内、最も好ましくは3秒以内に開始する。
 重合性化合物の重合は、イオン交換性ポリマー形成用組成物に、好ましくは10秒未満、より好ましくは5秒未満、特に好ましくは3秒未満、最も好ましくは2秒未満にわたりエネルギー線を照射して行う。連続法では照射を連続的に行い、イオン交換性ポリマー形成用組成物が照射ビームを通過して移動する速度によって、重合時間を決める。
 強度の高い紫外線(UV光)を用いて重合を行う場合、かなりの量の熱が生じる可能性があり、過熱を防ぐために、光源のランプ及びイオン交換性ポリマー形成用組成物を塗布した支持体、又は、光源のランプとイオン交換性ポリマー形成用組成物を塗布した支持体の少なくとも一方とを、冷却用空気などで冷却することが好ましい。著しい線量の赤外光(IR光)がUVビームと一緒に照射される場合、IR反射性石英プレートをフィルターにしてUV光を照射することが好ましい。
 活性放射線は紫外線が好ましい。照射波長は、イオン交換性ポリマー形成用組成物中に包含され得る任意の光重合開始剤の吸収波長と照射波長が適合することが好ましく、例えばUV-A(400~320nm)、UV-B(320~280nm)、UV-C(280~200nm)の波長が挙げられる。
 紫外線源は、水銀アーク灯、炭素アーク灯、低圧水銀灯、中圧水銀灯、高圧水銀灯、旋回流プラズマアーク灯、金属ハロゲン化物灯、キセノン灯、タングステン灯、ハロゲン灯、レーザー及び紫外線発光ダイオードである。中圧又は高圧水銀蒸気タイプの紫外線発光ランプがとりわけ好ましい。これに加えて、ランプの発光スペクトルを改変するために、金属ハロゲン化物などの添加剤が存在していてもよい。大抵の場合、200~450nmに発光極大を有するランプがとりわけ適している。
 活性照射線の照射源のエネルギー出力は、好ましくは20~1,000W/cm、より好ましくは40~500W/cmであるが、所望の暴露線量を実現することができるならば、これより高くても、低くても構わない。暴露強度を変更することで、膜の硬化度を調整することができる。暴露線量は、High Energy UV Radiometer(EIT-Instrument Markets製のUV Power PuckTM)
により、UV-B範囲で測定して、好ましくは少なくとも40mJ/cm2以上、より好ましくは100~2,000mJ/cm2、更に好ましくは150~1,500mJ/cm2である。暴露時間は自由に選ぶことができるが、短いことが好ましく、最も好ましくは2秒未満である。
 なお、塗布速度が速い場合、必要な暴露線量を得るために、複数の光源を使用しても構わない。この場合、複数の光源は暴露強度が同じでも異なってもよい。
<分離膜モジュール・イオン交換装置>
 本発明の高分子膜は多孔質支持体と組み合わせた複合膜とすることが好ましく、更にはこれを用いた分離膜モジュールとすることが好ましい。また、本発明の高分子膜、複合膜又は高分子膜モジュールを用いて、イオン交換又は脱塩、精製させるための手段を有するイオン交換装置とすることができる。燃料電池としても好適に用いることが可能である。
 本発明の高分子膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型、スタック型などが挙げられる。
 本発明の高分子機能性膜は、特にイオンの選択透過による硝酸イオン除去用途で使用することを主として意図している。しかしながら、本発明の高分子機能性膜はイオン交換に限定されるものではなく、逆浸透、正浸透及びガス分離にも好適に用いることができると考えられる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
(実施例1)
(アニオン交換膜の作成)
 下記表1に示す組成(単位:g)の組成物(イオン交換性ポリマー形成用組成物)をクリアランスが200μmのアプリケーターを用いて、手動で約5m/分の速さで、アルミ板に塗布し、続いて、不織布(Freudenberg社製 FO-2223-10、厚さ100μm)にイオン交換性ポリマー形成用組成物(塗布液)を含浸させた。ロッドを用いて、アルミ板上の余分な塗布液を除去した。塗布時の塗布液の温度は約25℃(室温)であった。UV露光機(Fusion UV Systems社製、型式Light Hammer 10、D-バルブ、コンベア速度1.0~9.5m/分、100%強度)を用いて、上記組成物含浸不織布(支持体)を露光し、重合反応により組成物を硬化させることにより、アニオン交換膜を調製した。露光量はUV-A領域にて1,000~5,000mJ/cm2であった。露光量はコンベア速度を変更することで制御可能であり、十分な硬化が得られるようにした。すなわち、アニオン交換膜を純水に浸漬した際に溶出する成分を液体クロマトグラフィーによって解析し、モノマーの溶出が検出限界以下となる最低の露光量とした。得られた膜をアルミ板から取り外し、0.1M NaCl溶液中で少なくとも12時間保存した。
(実施例2~37)
 実施例1のアニオン交換膜の作成において、イオン交換性ポリマー形成用組成物の組成を下記表1~3に記載の組成に変えた以外は、実施例1と同様にして実施例2~37のアニオン交換膜を作成した。
(比較例1)
 アストム社から市販されているアニオン交換膜ネオセプタAMXをそのまま用いた。
(比較例2~19)
 実施例1のアニオン交換膜の作成において、イオン交換性ポリマー形成用組成物の組成を下記表4~5に記載の組成に変えた以外は、実施例1と同様にして、比較例2~19のアニオン交換膜をそれぞれ作成した。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 表1~表5における組成物の各成分欄における数値の単位は質量部である。また、表中の「-」は、その成分を含有しないことを意味する。
 成分Cの比率(mol%)=成分Cの含有量(mol)/(成分Aの含有量(mol)+成分Cの含有量(mol))×100
 成分Aの比率(mol%)=成分Aの含有量(mol)/(成分Aの含有量(mol)+成分Cの含有量(mol))×100
 表中の「CL質量/固形分」とは、組成物中の固形分に対する化合物CL-1又は化合物CL-8の含有率である。
 また、表中の「樹脂質量比率」とは、アニオン交換膜中に占める樹脂の割合を示す。
樹脂比率=(アニオン交換膜の乾燥重量-支持体重量)÷アニオン交換膜の乾燥重量×100
 実施例及び比較例で使用した化合物や支持体の詳細を以下に示す。
<成分A>
 CL-1:合成品、下記方法により合成
 CL-8:合成品、下記方法により合成
<成分B>
 PI-1:BASF社製、商品名;Darocur 1173(2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)
 PI-2:BASF社製、商品名;Irgacure 2959(1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン)
<成分C>
 SM-1:上記例示化合物、シグマ-アルドリッチ社製
 MA-1:上記例示化合物、商品名:DMAPAA-Q、KJケミカルズ社製
 MA-26:上記例示化合物、商品名:メタクロイルコリンクロリド、シグマ-アルドリッチ社製
<成分D>
 水:純水(和光純薬工業(株)製)
 NMP:N-メチル-2-ピロリドン(和光純薬工業(株)製)
<重合禁止剤>
 4OH-TEMPO:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル(ポリストップ7300P、伯東(株)製)
〔CL-1の合成〕
 クロロメチルスチレン321g(2.10mol、セイミケミカル製CMS-P)、2,6-ジ-t-ブチル-4-メチルフェノール1.30g(和光純薬工業(株)製)、アセトニトリル433gの混合溶液に対し、1,4-ジアザビシクロ[2.2.2]オクタン(1.00mol、和光純薬工業(株)製)を加え、混合溶液を80℃にて15時間加熱撹拌した。
 生じた結晶を濾過し化合物(CL-1)の白色結晶405g(収率97%)を得た。
〔CL-8の合成〕
 クロロメチルスチレン458g(3.00mol、セイミケミカル製CMS-P)、2,6-ジ-t-ブチル-4-メチルフェノール1.85g(和光純薬工業(株)製)、ニトロベンゼン1232gの混合溶液に対し、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン130g(1.00mol、東京化成工業(株)製)を加え、混合溶液を80℃にて20時間加熱撹拌した。
 生じた結晶を濾過し化合物(CL-8)の白色結晶218g(収率50%)を得た。
 実施例1~37及び比較例1~19で作成したアニオン交換膜について、下記項目を評価した。
<イオン交換容量(meq/g)>
 イオン交換容量は下記の手順で測定する。
1)5cm×5cmに切り出した試料膜を2M NaNO3水溶液に30分間浸漬した後、500mLの純水中で水洗する。
2)100mLの2M NaCl水溶液中に試料膜をいれる。1時間ごとに2M NaCl水溶液を交換しながら、6時間以上浸漬する。
3)500mLの純水中で純水を交換しながら十分に水洗する。洗浄液に1M AgNO3水溶液を一滴いれ、白濁しないことを確認する。白濁する場合は洗浄が不十分であるため、純水での洗浄を繰り返す。
4)水洗した試料膜を30mLの2M NaNO3水溶液に浸漬し、1時間ごとに2回液を交換し(各30mL)、最後に6時間以上浸漬する。
5)膜を取り出し、30mLの純水に浸漬する。1時間ごとに2回液を交換し(各30mL)、最後に6時間以上浸漬する。最後の浸漬液に1M AgNO3水溶液を一滴いれ、白濁しないことを確認する。白濁する場合は洗浄が不十分であるため、純水での洗浄を繰り返す。
6)交換液・浸漬液・洗浄液を全て混合し、更に1/60mol/Lのクロム酸カリウム水溶液を0.3g添加する。0.1M AgNO3水溶液で赤褐色の析出物が発生する点を終点として滴定する。滴定量から膜中に含まれるイオン性基の量 c(meq)を算出する。
7)滴定に使用した膜を60℃の真空オーブンで12時間乾燥後、重量を測定して乾燥重量を求めた。更にこの値とcの値から、
式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)
を用いてイオン交換容量を算出した。
<膜の電気抵抗ER(Ω・cm2)>
 約2時間、0.5M NaNO3水溶液中に浸漬した膜の両面を乾燥ろ紙で拭い、2室型セル(有効膜面積1cm2、電極にはAg/AgCl参照電極(Metrohm社製)を使用)に挟んだ。両室に同一濃度のNaNO3水溶液を100mL満たし、25℃の恒温水槽中に置いて平衡に達するまで放置し、セル中の液温が正しく25℃になってから、交流ブリッジ(周波数1,000Hz)により電気抵抗r1を測定した。次に膜を取り除き、0.5M NaNO3水溶液のみとして両極間の電気抵抗r2を測り、膜の電気抵抗rをr1-r2として求めた。これを膜の電気抵抗ER(0.5M NaNO3)とした。
 膜の電気抵抗ER(0.5M NaNO3)と同様にして、膜の電気抵抗ER(0.5M Na2SO4)、ER(0.05M NaNO3)、ER(0.05M Na2SO4)を測定した。なお、膜の電気抵抗ERを省略して「ER」と記載した。
 一価イオンと二価イオンの透過性を比較するためにER比(=ER Na2SO4/ER NaNO3)を算出した。この値が大きいほど、二価イオンが一価イオンに対して透過しにくいことを示し、選択性が高いといえる。
<電気透析試験>
 市販のカチオン交換膜(CMX、アストム(株)製)と本発明のアニオン交換膜を組み合わせてスタックを作製し、電気透析装置(アシライザーED、アストム(株)製)を用いて脱塩実験を行った。カチオン交換膜3枚とアニオン交換膜2枚を、間に流路が設けられたスペーサーを入れて、交互に積層することで、スタックを作製した。NaNO3とNaSO4の濃度がそれぞれ0.05Mとなるように水溶液を調製し、混合溶液を作製した。積層体の間隙に流速1m/分で混合溶液を流しながら、5mAの定電流を流し、電気透析を行った。5分おきに希釈側の水溶液をサンプリングし、NO3 -及びSO4 2-イオンの濃度をイオンクロマトグラフィーによって定量した。電流を流し始めてから30分後、NO3 -イオンの濃度変化に対して、SO4 2-イオンの濃度変化が40%未満である場合をA、40%以上70%未満である場合をB、70%以上である場合をCとして、電気透析試験に用いたアニオン交換膜を評価した。
<スケーリング試験>
 市販のカチオン交換膜(CMX、アストム(株)製)と本発明のアニオン交換膜を組み合わせてスタックを作製し、電気透析装置(アシライザーED、アストム(株)製)を用いて脱塩実験を行った。カチオン交換膜3枚とアニオン交換膜2枚を、間に流路が設けられたスペーサーを入れて、交互に積層することで、スタックを作製した。NaNO3とNaSO4濃度がそれぞれ0.05M、MgCl2とCaCl2の濃度が0.005Mとなるように水溶液を調製し、混合溶液を作製した。積層体の間隙に流速1m/分で混合溶液を流しながら、5mAの定電流を流し、電気透析を行った。希釈側のNaNO3濃度が0.005Mになった段階で混合溶液を捨て、再び上記で調製した混合溶液を追加し、電気透析を行った。この操作を繰り返し、累積で72時間電気透析試験を行った。試験終了後、アニオン交換膜を取り出して十分に水洗した後、アニオン交換膜表面を顕微鏡で観察した。アニオン交換膜の表面に白色の析出物が見られた場合をC、アニオン交換膜の表面に、少量の析出物が認められたが、実用上問題がない場合をB、アニオン交換膜の表面に析出物が見られなかったものをAとして、スケーリング試験に用いたアニオン交換膜を評価した。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 表6~11の結果から、実施例1~37のアニオン交換膜は、0.5M水溶液の電気抵抗比が3以上の値を示し、一価イオン選択性に優れたアニオン交換膜であることが分かる。これに対し、本発明の規定を満たさない比較例1~19のアニオン交換膜は、0.5M水溶液の電気抵抗比が2.1未満であり、一価イオン選択性が低い。
 0.05M水溶液の電気抵抗比は0.5M水溶液に比べて悪化する。希薄な水溶液の場合、水溶液自体の抵抗値が大きく、膜の性能の寄与が反映されにくいことが推測される。 実施例のアニオン交換膜の性能は、希薄な溶液でも比較例のアニオン交換膜の性能に対して優位性がある。比較例のアニオン交換膜は、電気抵抗比がほぼ1で、ほとんど一価イオン選択性を有さないのに対し、特に実施例8、16、23のアニオン交換膜は、0.05M水溶液の電気抵抗比は2倍以上を示し、性能に優れる。この性能差は電気透析試験の結果ともよく合致する。また、スケーリングの要因となる、SO4 2-の透過を抑制したことで、実施例のアニオン交換膜のスケーリング耐性は良好であった。
 実施例のアニオン交換膜において、良好な一価イオン選択性が得られた原理は定かではないが、架橋基密度が高い緻密な膜を形成することで、分子篩効果によって、NO3 -イオンよりもイオン半径が大きなSO4 2-イオンの透過が抑制されたと推定される。また、イオン交換容量、すなわち膜内の電荷密度が大きいことにより、二価のSO4 2-イオンと相互作用する点が増え、浸入したSO4 2-イオンの透過が相対的に抑制されたと推定される。

Claims (20)

  1.  構成単位Aとして、式CLで表される構成単位を含有するイオン交換性ポリマーを含有し、
     式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下であり、
     式bで表される架橋基密度が0.9mmol/g以上2.0mmol/g以下である、
     硝酸イオン除去用高分子機能性膜。
     式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)
     式b: 架橋基密度=(膜中の成分Aの量 mmol)/(膜の乾燥重量)
    Figure JPOXMLDOC01-appb-C000001

     式CL中、Lはアルキレン基又はアルケニレン基を表し、R、R、R及びRはそれぞれ独立に、アルキル基又はアリール基を表し、RとR、及び/又は、RとRが互いに結合して環を形成してもよく、n1及びn2はそれぞれ独立に、1~10の整数を表し、X 及びX はそれぞれ独立に、有機又は無機のアニオンを表す。
  2.  前記イオン交換性ポリマーが、構成単位Cとして、式SM、又は、式MAで表される構成単位を更に含有する、請求項1に記載の硝酸イオン除去用高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000002

     式SM中、Rs1は-N(Rs2)(Rs3)(Rs4)(X3 )を表し、n3は1~10の整数を表し、Rs2~Rs4はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs2とRs3、又はRs2、Rs3及びRs4が互いに結合して脂肪族ヘテロ環を形成してもよく、X3 は有機又は無機のアニオンを表す。
    Figure JPOXMLDOC01-appb-C000003

     式MA中、RA1は水素原子又はアルキル基を表し、RA2~RA4はそれぞれ独立に、アルキル基又はアリール基を表し、RA2~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA1は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA1はアルキレン基を表し、XA1はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す。
  3.  前記イオン交換性ポリマーが、成分Aとして、式CL2で表される化合物と、成分Bとして、式PIで表される光重合開始剤とを含有する組成物を重合させて得られる、請求項1又は2に記載の硝酸イオン除去用高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000004

     式CL2中、L21はアルキレン基又はアルケニレン基を表し、R21、R22、R23及びR24はそれぞれ独立に、アルキル基又はアリール基を表し、R21とR22、及び/又は、R23とR24が互いに結合して環を形成してもよく、n21及びn22はそれぞれ独立に、1~10の整数を表し、X21 及びX22 はそれぞれ独立に、有機又は無機のアニオンを表す。
    Figure JPOXMLDOC01-appb-C000005

     式PI中、Rp1は水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2及びRp3は各々独立に、水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2とRp3が互いに結合して環を形成してもよい。
  4.  前記組成物の全固形分に対し、成分Aの含有量が55~99質量%である、請求項3に記載の硝酸イオン除去用高分子機能性膜。
  5.  前記組成物の全固形分に対し、成分Bの含有量が0.1~10質量%である、請求項3又は4に記載の硝酸イオン除去用高分子機能性膜。
  6.  前記組成物が、成分Cとして、式SM2で表される化合物、又は、式MA2で表される化合物を更に含み、組成物中の成分Aと成分Cのモル比が、成分A:成分C=60:40~100:0である、請求項3~5のいずれか1項に記載の硝酸イオン除去用高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000006

     式SM2中、Rs21は-N(Rs22)(Rs23)(Rs24)(X23 )を表し、n23は1~10の整数を表し、Rs22~Rs24はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs22とRs23、又はRs22、Rs23及びRs24が互いに結合して脂肪族ヘテロ環を形成してもよく、X23 は有機又は無機のアニオンを表す。
    Figure JPOXMLDOC01-appb-C000007

     式MA2中、RA21は水素原子又はアルキル基を表し、RA22~RA24はそれぞれ独立に、アルキル基又はアリール基を表し、RA22~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA21は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA21はアルキレン基を表し、XA21はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す。
  7.  前記組成物が、成分Dとして、溶媒を更に含有する請求項3~6のいずれか1項に記載の硝酸イオン除去用高分子機能性膜。
  8.  前記組成物が、成分Dとして、水又は水溶性溶媒を含む、請求項7に記載の硝酸イオン除去用高分子機能性膜。
  9.  支持体を更に有する、請求項1~8のいずれか1項に記載の硝酸イオン除去用高分子機能性膜。
  10.  前記支持体が多孔質支持体である、請求項9に記載の硝酸イオン除去用高分子機能性膜。
  11.  前記イオン交換性ポリマーが、成分Aとして、式CL2で表される化合物を含有する組成物を重合させて得られ、成分Aの分子量が、300以上600以下である、請求項1~10のいずれか1項に記載の硝酸イオン除去用高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000008

     式CL2中、L21はアルキレン基又はアルケニレン基を表し、R21、R22、R23及びR24はそれぞれ独立に、アルキル基又はアリール基を表し、R21とR22、及び/又は、R23とR24が互いに結合して環を形成してもよく、n21及びn22はそれぞれ独立に、1~10の整数を表し、X21 及びX22 はそれぞれ独立に、有機又は無機のアニオンを表す。
  12.  成分Aとして、式CL2で表される化合物を含有する組成物を重合させる硬化工程を含み、式aで表されるイオン交換容量が2.5meq/g以上6.0meq/g以下であり、式bで表される架橋基密度が0.9mmol/g以上2.0mmol/gである、硝酸イオン除去用高分子機能性膜の製造方法。
     式a: イオン交換容量=(膜中のイオン性基の量 meq)/(膜の乾燥重量)
     式b: 架橋基密度=(膜中の成分Aの量 mmol)/(膜の乾燥重量)
    Figure JPOXMLDOC01-appb-C000009

     式CL2中、L21はアルキレン基又はアルケニレン基を表し、R21、R22、R23及びR24はそれぞれ独立に、アルキル基又はアリール基を表し、R21とR22、及び/又は、R23とR24が互いに結合して環を形成してもよく、n21及びn22はそれぞれ独立に、1~10の整数を表し、X21 及びX22 はそれぞれ独立に、有機又は無機のアニオンを表す。
  13.  前記組成物が、成分Bとして、式PIで表される光重合開始剤を更に含有する、請求項12に記載の硝酸イオン除去用高分子機能性膜の製造方法。
    Figure JPOXMLDOC01-appb-C000010

     式PI中、Rp1は水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2及びRp3は各々独立に、水素原子、アルキル基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、Rp2とRp3が互いに結合して環を形成してもよい。
  14.  前記組成物が、成分Cとして、式SM2で表される化合物、又は、式MA2で表される化合物を更に含有する、請求項12又は13に記載の硝酸イオン除去用高分子機能性膜の製造方法。
    Figure JPOXMLDOC01-appb-C000011

     式SM2中、Rs21は-N(Rs22)(Rs23)(Rs24)(X23 )を表し、n23は1~10の整数を表し、Rs22~Rs24はそれぞれ独立に、アルキル基若しくはアリール基を表し、Rs22とRs23、又はRs22、Rs23及びRs24が互いに結合して脂肪族ヘテロ環を形成してもよく、X23 は有機又は無機のアニオンを表す。
    Figure JPOXMLDOC01-appb-C000012

     式MA2中、RA21は水素原子又はアルキル基を表し、RA22~RA24はそれぞれ独立に、アルキル基又はアリール基を表し、RA22~RA4のうち2つ以上が互いに結合して環を形成してもよく、ZA21は-O-又は-N(Ra)-を表し、Raは水素原子又はアルキル基を表し、LA21はアルキレン基を表し、XA21はハロゲンイオン、脂肪族カルボン酸イオン、芳香族カルボン酸イオン、脂肪族スルホン酸イオン、又は芳香族スルホン酸イオンを表す。
  15.  前記組成物が、成分Dとして、水を更に含有する、請求項12~14のいずれか1項に記載の硝酸イオン除去用高分子機能性膜の製造方法。
  16.  前記組成物が、成分Eとして、重合禁止剤を更に含有する、請求項12~15のいずれか1項に記載の硝酸イオン除去用高分子機能性膜の製造方法。
  17.  前記組成物を多孔質支持体に塗布及び/又は含浸させる塗布工程を含む、請求項12~16のいずれか1項に記載の硝酸イオン除去用高分子機能性膜の製造方法。
  18.  前記硬化工程が、前記組成物にエネルギー線を照射して重合させる工程である、請求項12~17のいずれか1項に記載の硝酸イオン除去用高分子機能性膜の製造方法。
  19.  請求項1~11のいずれか1項に記載の硝酸イオン除去用高分子機能性膜を備えた分離膜モジュール。
  20.  請求項1~11のいずれか1項に記載の硝酸イオン除去用高分子機能性膜を備えたイオン交換装置。
     
PCT/JP2015/070156 2014-08-14 2015-07-14 硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置 WO2016024453A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016542523A JPWO2016024453A1 (ja) 2014-08-14 2015-07-14 硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置
EP15832204.0A EP3181227A4 (en) 2014-08-14 2015-07-14 Polymeric functional membrane for removing nitrate ions, production method therefor, separation membrane module, and ion exchange device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014165208 2014-08-14
JP2014-165208 2014-08-14

Publications (1)

Publication Number Publication Date
WO2016024453A1 true WO2016024453A1 (ja) 2016-02-18

Family

ID=55304082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070156 WO2016024453A1 (ja) 2014-08-14 2015-07-14 硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置

Country Status (3)

Country Link
EP (1) EP3181227A4 (ja)
JP (1) JPWO2016024453A1 (ja)
WO (1) WO2016024453A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185507A (ja) * 1985-02-14 1986-08-19 Tokuyama Soda Co Ltd 陰イオン交換体の製造方法
JPH06172559A (ja) * 1992-12-02 1994-06-21 Asahi Glass Co Ltd 一価陰イオン選択性陰イオン交換膜
JPH07171574A (ja) * 1993-12-20 1995-07-11 Asahi Glass Co Ltd 一価の有害陰イオンを含む水の処理方法
JP2001002738A (ja) * 1999-06-17 2001-01-09 Mitsubishi Chemicals Corp 陰イオン交換体及びその製造方法
WO2010110333A1 (ja) * 2009-03-25 2010-09-30 株式会社クラレ 陰イオン交換膜及びその製造方法
WO2013155608A1 (en) * 2012-04-19 2013-10-24 Saltworks Technologies Inc. Resilient ion exchange membranes prepared by polymerizing ionic surfactant monomers
JP2014505762A (ja) * 2010-12-23 2014-03-06 ゼネラル・エレクトリック・カンパニイ 酸ブロック陰イオン膜
WO2014050993A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 高分子機能性膜及びその製造方法
JP2014208335A (ja) * 2013-03-26 2014-11-06 富士フイルム株式会社 高分子機能性膜及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842592A1 (de) * 2006-04-04 2007-10-10 Metrohm Ag Ionenaustauschmaterial, Ionenaustauschsäule und Herstellungsverfahren

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185507A (ja) * 1985-02-14 1986-08-19 Tokuyama Soda Co Ltd 陰イオン交換体の製造方法
JPH06172559A (ja) * 1992-12-02 1994-06-21 Asahi Glass Co Ltd 一価陰イオン選択性陰イオン交換膜
JPH07171574A (ja) * 1993-12-20 1995-07-11 Asahi Glass Co Ltd 一価の有害陰イオンを含む水の処理方法
JP2001002738A (ja) * 1999-06-17 2001-01-09 Mitsubishi Chemicals Corp 陰イオン交換体及びその製造方法
WO2010110333A1 (ja) * 2009-03-25 2010-09-30 株式会社クラレ 陰イオン交換膜及びその製造方法
JP2014505762A (ja) * 2010-12-23 2014-03-06 ゼネラル・エレクトリック・カンパニイ 酸ブロック陰イオン膜
WO2013155608A1 (en) * 2012-04-19 2013-10-24 Saltworks Technologies Inc. Resilient ion exchange membranes prepared by polymerizing ionic surfactant monomers
WO2014050993A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 高分子機能性膜及びその製造方法
JP2014208335A (ja) * 2013-03-26 2014-11-06 富士フイルム株式会社 高分子機能性膜及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3181227A4 *

Also Published As

Publication number Publication date
EP3181227A4 (en) 2017-08-23
JPWO2016024453A1 (ja) 2017-04-27
EP3181227A1 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6313454B2 (ja) 高分子膜形成用組成物及びその製造方法、高分子膜、分離膜モジュール、並びに、イオン交換装置
JP6126498B2 (ja) 高分子機能性膜及びその製造方法
US10046285B2 (en) Polymer functional film and method for producing same
US9790338B2 (en) Ion exchange membrane and method for manufacturing the same
EP3040365A1 (en) Ion exchange film, composition for forming ion exchange film, and production method for ion exchange film
WO2014050992A1 (ja) 高分子機能性膜及びその製造方法
WO2016174906A1 (ja) 高分子機能性膜及びその製造方法、高分子機能性膜形成用組成物、分離膜モジュール、並びに、イオン交換装置
JP5893578B2 (ja) 機能性複合膜及びその製造方法、並びに機能性複合膜を具備したイオン交換膜及びプロトン伝導膜
WO2015030072A1 (ja) 高分子機能性膜およびその製造方法
WO2014163001A1 (ja) イオン交換膜の製造方法
WO2016132799A1 (ja) 複合アニオン交換膜及びその製造方法、イオン交換膜モジュール、並びに、イオン交換装置
JP5905371B2 (ja) 高分子機能性膜及びその製造方法
JP2016137434A (ja) 高分子機能性膜及びその製造方法、積層体、並びに、装置
WO2017038328A1 (ja) イオン交換ポリマー、硬化性組成物、硬化物、部材、及び、装置
WO2017038276A1 (ja) 光硬化性組成物、硬化物、部材、及び、装置
JP2014069155A (ja) 高分子機能性膜及びその製造方法
WO2016024453A1 (ja) 硝酸イオン除去用高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置
JP6271747B2 (ja) 高分子機能性膜形成用組成物、高分子機能性膜及びその製造方法、分離膜モジュール、並びに、イオン交換装置
JP2017000941A (ja) 高分子機能性膜、モジュール、及び、装置
WO2016121280A1 (ja) 複合アニオン交換膜及びその製造方法、イオン交換膜モジュール、並びに、イオン交換装置
JP2018167134A (ja) 高分子機能性膜、モジュール、及び、装置
WO2017033593A1 (ja) 高分子機能性膜、モジュール、及び、装置
JP2018103062A (ja) 高分子機能性膜及びその製造方法、高分子機能性膜形成用組成物、分離膜モジュール、並びに、イオン交換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542523

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015832204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015832204

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE