WO2016024421A1 - 改質装置 - Google Patents

改質装置 Download PDF

Info

Publication number
WO2016024421A1
WO2016024421A1 PCT/JP2015/062922 JP2015062922W WO2016024421A1 WO 2016024421 A1 WO2016024421 A1 WO 2016024421A1 JP 2015062922 W JP2015062922 W JP 2015062922W WO 2016024421 A1 WO2016024421 A1 WO 2016024421A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reformer
inner cylinder
grade coal
heating
Prior art date
Application number
PCT/JP2015/062922
Other languages
English (en)
French (fr)
Inventor
慶一 中川
大本 節男
雅一 坂口
新屋 謙治
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2015302809A priority Critical patent/AU2015302809A1/en
Priority to CN201580050248.1A priority patent/CN107075383A/zh
Publication of WO2016024421A1 publication Critical patent/WO2016024421A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B51/00Destructive distillation of solid carbonaceous materials by combined direct and indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining

Definitions

  • the present invention relates to a reformer that reforms by heating a solid organic substance while circulating and continuously dry-distilling it.
  • an external heat kiln described in Patent Document 1 below can be applied.
  • the treated material organic matter
  • the treated material is supplied into the inner cylinder and the treated material is circulated inside the inner cylinder by rotating the inner cylinder.
  • the object to be treated is heated and continuously distilled by the heating gas blown into the outer cylinder covering the outer periphery, while the oxygen-containing gas can be supplied to the inner cylinder to burn the combustible gas generated by the heating of the object to be treated It has become.
  • the oxygen-containing gas is for the purpose of burning the combustible gas, and the burning of the combustible gas is in the gas phase in the inner cylinder or the treated material. Since the heat is generated mainly on the surface of the treatment product layer laminated and heating of the treatment material is mainly performed by the heating gas in the outer cylinder and in contact with the inner cylinder, the treatment material is heated in large amounts. If this is attempted, the external heat kiln itself becomes long, and there is a risk that the entire processed material can not be efficiently heated.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a reformer capable of efficiently heating the entire organic substance.
  • a reformer according to a second invention for solving the above-mentioned problems is the reformer according to the first invention mentioned above, wherein the gas supply means is a gas supply for supplying the gas into the organic layer. It is characterized by having a nozzle.
  • a reformer according to a third invention for solving the above-mentioned problems is the reformer according to the second invention described above, wherein there are a plurality of the gas supply nozzles, and the plurality of gas supply nozzles have the organic substance It is characterized in that it is arranged to supply the gas to the region where the temperature is 250 ° C. or more.
  • a reformer according to a fourth invention for solving the above-mentioned problems is the reformer according to the second or third invention mentioned above, wherein the gas supply nozzle is a vertical line passing through the center of the furnace body. It is characterized in that it extends in the range of repose angle ⁇ repose angle (0 ° to 2 ⁇ repose angle) in the rotational direction of the furnace body.
  • a reformer according to a fifth invention for solving the above-mentioned problems is the reformer according to any one of the second to fourth inventions, wherein the tip portion of the gas supply nozzle is horizontal or It is characterized in that it is bent downward from the horizontal.
  • a reformer according to a sixth aspect of the present invention for solving the above-mentioned problems is the reformer according to the first aspect described above, comprising: an outer cylinder covering the furnace body; and the gas supply means comprises the furnace It has a hole which is provided in the main body and through which heating gas by the indirect heating means can flow, and a heat insulating material which is disposed between the furnace main body and the outer cylinder and covers other than the lower side of the inner cylinder.
  • a reformer according to a seventh invention for solving the above-mentioned problems is the reformer according to any one of the first to the sixth inventions, wherein the number of the furnace main body is one. I assume.
  • a reformer according to an eighth invention for solving the above-mentioned problems is the reformer according to any one of the above-mentioned first to sixth inventions, wherein the number of the furnace main bodies is two, one of them In the furnace main body, the organic substance is heated to the predetermined temperature by the indirect heating means, and in the other furnace main body, the organic substance is further heated and dry-distilled by the gas supplied by the gas supply means. It is characterized by producing a reformed product in the form of a solid in quality.
  • a reformer according to a ninth aspect of the present invention for solving the above-mentioned problems is the reformer according to the eighth aspect described above, wherein one of the furnace main body and the other of the furnace main body are connected. It features.
  • a reformer according to a tenth invention for solving the above-mentioned problems is the reformer according to any one of the first to ninth inventions, wherein the flow velocity of the gas into the furnace main body Is characterized in that it is adjusted to 0.05 m / sec to 3 m / sec.
  • the reformer according to an eleventh aspect of the present invention for solving the above-mentioned problems is the reformer according to any one of the first through tenth aspects described above, wherein the amount of the gas supplied into the organic substance layer is It is characterized in that it is adjusted to be 3 (NL-O 2 / min / kg-organic substance) or more and 30 (NL-O 2 / min / kg-organic substance) or less.
  • a reformer according to a twelfth invention for solving the above-mentioned problems is the reformer according to any one of the first to eleventh inventions, wherein the oxygen concentration of the gas is 1 to 10%. It is characterized by being.
  • the reformer according to a thirteenth invention for solving the above-mentioned problems is the reformer according to any one of the first to twelfth inventions, wherein the organic matter is low grade coal. It features.
  • a furnace main body for circulating solid organic matter inside, an indirect heating means for indirectly heating the organic matter inside the furnace main body, and the indirect heating means in the furnace main body
  • the gas supply means for supplying a gas containing oxygen into the organic substance layer in which the organic substance is stacked, and the organic substance is further heated and dried by the gas, and the solid substance is reformed and reformed.
  • FIG. 2 It is a schematic block diagram of 1st embodiment of the reforming device concerning the present invention. It is explanatory drawing of the gas supply nozzle which the said reformer comprises, Comprising: An example is shown in FIG. 2 (a), another example is shown in FIG.2 (b), and another example is shown in FIG.2 (c). It is a schematic block diagram of 2nd embodiment of the reformer which concerns on this invention. It is a schematic block diagram of 3rd embodiment of the reforming device concerning the present invention. It is a schematic block diagram of the 4th embodiment of the reformer concerning the present invention, and the whole is shown in Drawing 5 (a), and the diameter section of the inner cylinder which it comprises in Drawing 5 (b) is shown. . It is explanatory drawing of the gas supply structure which the said reformer comprises, Comprising: An example is shown to Fig.6 (a), and another example is shown in FIG.6 (b).
  • FIG. 2A, FIG. 2B and FIG. 2C the direction of the arrow indicated by symbol A indicates the rotation direction of the inner cylinder 101.
  • the reformer 100 includes an inner cylinder (furnace main body) 101 rotatably supported, and an outer cylinder 102 covering the outer periphery of the inner cylinder 101 and supported in a fixed manner.
  • a supply feeder 103 for supplying low-grade coal (low-quality coal) 1 such as dried lignite or sub-bituminous coal which is solid organic matter can rotate the inner cylinder 101. It is connected while taking it.
  • a supply hopper 104 into which the low grade coal 1 is put is provided at the base end side of the supply feeder 103.
  • the feed hopper 104 is in communication with the leading end side of the transfer line 105, and is capable of receiving the low-grade coal 1 transferred by the transfer line 105.
  • the transport line 105 is sealed with an inert gas of nitrogen gas, and the inert gas is supplied together with the low grade coal 1 into the inner cylinder 101 through the feed hopper 104 and the feed feeder 103. There is.
  • the low-grade coal 1 is dry-distilled and reformed, and reformed coal (dry-distilled matter) 3 which is a solid reformate (dry-distilled matter) is dropped and delivered downward.
  • a shooter 106 which is a delivery means for delivering, from above, the dry-distilled gas 1a generated along with the dry-distillation of the graded coal 1, the inner cylinder 101 is connected while enabling the rotation of the inner cylinder 101. Above the shooter 106, the base end side of an exhaust pipe 107 for discharging the dry distilled gas 1a is connected.
  • a plate-shaped weir 121 is provided on an inner peripheral portion near the tip end side of the inner cylinder 101.
  • the end 121a of the weir 121 is formed above the tip 115a of the gas supply nozzle 115, which will be described in detail later, when the end 121a of the weir 121 is disposed downward by the rotational movement of the inner cylinder 101.
  • the movement of the inner cylinder 101 to the front end side with the rotation of the inner cylinder 101 is the inner cylinder It is slower than the base end side of 101, and stays longer in the inner cylinder 101, and contacts with the oxygen-containing gas 13 supplied by the gas supply nozzle 115 for a long time.
  • the tip end side of the heating gas supply line 108 for supplying the heating gas 21 (temperature: 900 to 1200 ° C.) into the outer cylinder 102 is connected to the outer cylinder 102, and the heating gas 21 a after heating the inner cylinder 101 is The proximal end side of the heating gas discharge line 109 to be discharged is connected.
  • the above-described reformer 100 further includes a gas supply device 110 for directly supplying the oxygen-containing gas 13 into the low grade coal bed 2 in which the low grade coal 1 is stacked on the tip side in the inner cylinder 101.
  • the gas supply device 110 includes a gas supply pipe 114, a gas supply nozzle 115, and the like.
  • the proximal end side of the gas supply pipe 114 is connected to the distal end side of the oxygen-containing gas supply pipe 113.
  • the proximal end side of the oxygen-containing gas feed pipe 113 is connected to the distal end side of the air feed pipe 111 for feeding the air 11, and the inert gas feed pipe 112 for feeding the inert gas 12 such as nitrogen gas. It is connected with the tip side of.
  • the base end side of the air supply pipe 111 is connected to the gas discharge port of the blower 111a.
  • the proximal end side of the inert gas delivery pipe 112 is connected to an inert gas supply source 112 a such as a tank for storing the inert gas 12.
  • the air supply pipe 111 and the inert gas supply pipe 112 are provided with flow control valves 111b and 112b, respectively. Therefore, the oxygen-containing gas (processing gas) 13 formed by feeding and mixing the air 11 and the inert gas 12 is controlled by the control of the opening of the flow rate adjusting valve 111b and 112b and the operation of the blower 111a.
  • the gas flows through the gas supply pipe 113 to the gas supply pipe 114.
  • the gas supply pipe 114 is disposed to extend in the same direction as the extending direction of the center C1 of the inner cylinder 101, and is disposed such that the center coincides with the center C1 of the inner cylinder 101.
  • the gas supply pipe 114 is fixed at its proximal end to the shooter 106 and supported at its distal end by the support 117 via the fixing tool 116.
  • the support 117 is fixed to the proximal end side of the inner cylinder 101 while enabling the rotation of the inner cylinder 101.
  • the gas supply pipe 114 is provided with a plurality (eight in the illustrated example) of gas supply nozzles 115.
  • the plurality of gas supply nozzles 115 are arranged adjacent to each other in the longitudinal direction (left and right direction in FIG. 1) of the gas supply pipe 114.
  • the plurality of gas supply nozzles 115 extend into the low grade coal bed 2 in which the low grade coal 1 is stacked.
  • the outer cylinder 102 and the heating gas supply line 108 constitute an indirect heating means
  • the gas supply device 110 constitutes a gas supply means
  • the heating gas 21 (temperature: 900 to 1200 ° C.) is supplied into the outer cylinder 102 through the heating gas supply line 108, and the inner cylinder 101 is heated by the heating gas 21 in the outer cylinder 102.
  • the heating gas 21 is supplied into the outer cylinder 102 through the heating gas supply line 108, and the heating gas 21a after heating the inner cylinder 101 is: It is discharged out of the system through the heating gas discharge line 109.
  • an inert gas such as nitrogen gas is supplied by an inert gas supply unit (not shown) or the like provided in the inner cylinder 101.
  • the low-grade coal 1 is conveyed by the conveying line 105 and put into the supply hopper 104.
  • the low grade coal 1 placed in the supply hopper 104 is supplied by the supply feeder 103 to the proximal end side of the inner cylinder 101.
  • the low-grade coal 1 supplied into the inner cylinder 101 flows (moves) while being stirred from the proximal end side to the distal end side of the inner cylinder 101 while being indirectly heated by the heating gas 21 as the inner cylinder 101 rotates. It will be.
  • the low grade coal 1 is indirectly heated by the heating gas 21 in the region L12 on the tip end side of the inner cylinder 101 and becomes a predetermined temperature (for example, 250 ° C., preferably 400 ° C.) or more.
  • the oxygen-containing gas 13 is directly supplied into the low grade coal bed 2 through the gas supply nozzle 115.
  • the oxygen-containing gas 13 is in direct contact with the entire low grade coal bed 2 because it flows through the low grade coal bed 2, and the temperature of the low grade coal 1 raised to a predetermined temperature (for example, 250 ° C.) is further raised. It will be done. This is because when the low grade coal 1 is raised to the predetermined temperature, the reactivity becomes high, and it reacts with oxygen in the oxygen-containing gas 13 to generate heat.
  • the low grade coal 1 supplied into the inner cylinder 101 is indirectly heated by the heating gas 21 supplied into the outer cylinder 102, and the oxygen-containing gas 13 supplied into the low grade coal layer 2.
  • the processing time of the low grade coal 1 can be shortened, and the reforming device 100 itself can be miniaturized.
  • the low grade coal 1 stays longer near the tip of the inner cylinder 101. Thereby, the oxygen-containing gas 13 can be brought into contact with the low grade coal bed 2 efficiently.
  • the low-grade coal 1 is heated, for example, to 500 ° C., and the reformed carbon 3 is reformed and reformed.
  • the low grade coal 1 supplied into the inner cylinder 101 is indirectly heated by the heating gas 21 and becomes a predetermined temperature (for example, 250 ° C., preferably 400 ° C.) or more. Further, by supplying the oxygen-containing gas 13 into the low-grade coal layer 2 in which the low-grade coal 1 is stacked and making direct contact with the low-grade coal 1, oxygen of the oxygen-containing gas 13 reacts with the low-grade coal 1 and generates heat. Since the temperature of the low grade coal 1 is raised, the entire low grade coal bed 2 can be efficiently heated, and the production efficiency of the modified coal 3 can be improved. Thereby, shortening of processing time and size reduction of an apparatus can be achieved.
  • a predetermined temperature for example, 250 ° C., preferably 400 ° C.
  • the inner cylinder 101 is provided with a drive mechanism (not shown) that rotationally drives the inner cylinder 101, and it is preferable to adjust the rotational speed of the inner cylinder 101 to, for example, 1 rpm to 5 rpm.
  • the filling rate of low grade coal 1 in the inner cylinder 101 is preferably 10% to 30%. This is because if the amount is less than 10%, the amount of treatment itself is small, and if it is more than 30%, the entire low-grade coal layer 2 in which low-grade coal 1 is stacked can not be efficiently heated, which may cause a decrease in production efficiency. It is from.
  • gas supply nozzle 115 for example, a straight pipe 115A as shown in FIG. 2 (a), an L-shaped pipe 115B as shown in FIG. 2 (b), and a tip near the tip as shown in FIG.
  • Various shapes such as a tube 115C having a bent portion can be used.
  • the angle X1 of the rotational direction A with respect to the perpendicular L2 through which the extension direction L1 of the straight pipe 115A passes through the center C1 of the inner cylinder 101 is the repose angle X2 (tangent L3 with the surface of the low grade coal layer 2
  • the angle of repose) ⁇ repose angle X 2 that is, 0 ° to twice repose angle X 2 is preferable, and 1/2 repose angle X 2 to 3/2 times repose angle X 2 is more preferable It is even more preferable that the repose angle be X2.
  • the fine powder of the low grade coal 1 easily enters the inside of the gas supply nozzle 115A.
  • the tip 115Aa of the straight pipe 115A is the deepest part in the low grade coal layer 2, and the oxygen-containing gas 13 is efficiently brought into contact with the low grade coal 1. it can.
  • the tip end portion 115Ca extend from the horizontal to the radial direction of the inner cylinder 101.
  • the reason is that if the inner cylinder 101 is inclined to the rotation direction A side with respect to the horizontal or the radial direction of the inner cylinder 101 is opposite to the rotation direction A of the inner cylinder 101, that is, when it is inclined to the counter rotation direction of the inner cylinder 101. This is because the fine powder of the low grade coal 1 easily enters the inside.
  • the gas supply nozzle 115 preferably extends from the surface 2 a of the low grade coal layer 2 to 50% of the low grade coal layer 2, and more preferably extends to 80% of the low grade coal layer 2. This is because the low grade coal 1 and the oxygen-containing gas 13 are brought into direct contact in the low grade coal layer 2 when the gas supply nozzle 115 is shorter than 50% of the low grade coal layer 2 from the surface 2 a of the low grade coal layer 2. It is because there is a possibility that it can not do.
  • a plurality of (four in the illustrated example) lifters are radially adjacent to the inner peripheral surface of the inner cylinder 101. 101a is provided.
  • the supply flow rate of the oxygen-containing gas 13 to the low-grade coal bed 2 is preferably adjusted to, for example, 0.05 m / sec to 3 m / sec, and more preferably adjusted to 0.1 m / sec to 1 m / sec. preferable. This is because if the supply flow rate of the oxygen-containing gas 13 is smaller than 0.05 m / sec, dust (particulate coal) can easily enter the gas supply nozzle 115, and the supply flow rate of the oxygen-containing gas 13 Is larger than 3 m / sec, the oxygen-containing gas 13 flows in the wall surface direction of the inner cylinder 101 by inertia force, and the oxygen-containing gas 13 does not sufficiently flow in the low-grade coal layer 2 and passes. It is because it
  • the supply amount of the oxygen-containing gas 13 into the low grade coal bed 2 is, for example, 3 (NL-O 2 / min / kg-low grade coal 1) or more 30 (NL -O 2 / min / kg-low grade Preferably, it is adjusted to be less than 1) charcoal. This is because if the amount of the oxygen-containing gas 13 supplied into the low grade coal bed 2 is less than 3 (NL / min / kg-the low grade coal 1), sufficient oxygen is supplied into the low grade coal bed 2 If the amount of the oxygen-containing gas 13 supplied to the low grade coal bed 2 is more than 30 (NL / min / kg-the low grade coal 1), the amount of oxygen becomes excessive and reaction occurs. Because there is a possibility that
  • the oxygen concentration of the oxygen-containing gas 13 is preferably 1 to 10%. This is because if the oxygen concentration is lower than 1%, the possibility that the temperature of the low grade coal bed 2 can not be raised sufficiently is increased. If the oxygen concentration is higher than 10%, the oxygen is excessive and the reaction proceeds too much. There is a possibility of
  • Second Embodiment A second embodiment of the reformer according to the present invention will be described based on FIG.
  • the reformer according to the first embodiment described above is configured by two reformer bodies.
  • the same reference numerals are appended to the same devices as those of the first embodiment.
  • the reformer 200 includes a first reformer main body 200A and a second reformer main body 200B, and heats low-grade coal to a predetermined temperature in the first reformer main body 200A.
  • low-grade coal at a predetermined temperature is further heated and dry-distilled to be reformed.
  • the inner cylinder 201 rotatably supported, the outer cylinder 202 covering the outer periphery of the inner cylinder 201 and fixedly supported, and the inner cylinder 201 can be rotated while the inner cylinder 201 can be rotated.
  • It comprises a feed feeder 203 connected and a feed hopper 204 provided on the proximal side of the feed feeder 203.
  • the feed hopper 204 communicates with the leading end side of the transfer line 205 for transferring low-grade coal (low-grade coal) 31 such as dried lignite or sub-bituminous coal which is solid organic matter,
  • the low grade coal 31 can be received.
  • the low grade coal 31 is heated to the tip end side of the inner cylinder 201 and the heated coal 32 having a predetermined temperature (for example, 250 ° C., preferably 400 ° C.) or more is dropped and sent downward.
  • the shooter 206 which is a delivery means for delivering the gas 31a generated from the upper side along with the heating, is connected while enabling the rotation of the inner cylinder 201. Above the shooter 206, the base end side of an exhaust pipe 207 for discharging the gas 31a is connected.
  • the tip end side of a heating gas supply line 208 for supplying the heating gas 41 (temperature: 900 to 1200 ° C.) into the outer cylinder 202 is connected to the outer cylinder 202, and the heating gas 41a after heating the inner cylinder 201 is The proximal end side of the heating gas discharge line 209 to be discharged is connected.
  • the second reformer main body 200B includes the inner cylinder 101, the outer cylinder 102, the supply feeder 103, the supply hopper 104, the shooter 106, the exhaust pipe 107, the heating gas supply line 108, and the heating gas exhaustion.
  • a line 109 and a gas supply device 110 are provided.
  • the feed hopper 104 of the second reformer main body 200B is disposed so as to be able to receive the heated coal 32 dropped and delivered downward by the shooter 206 of the first reformer main body 200A.
  • the space between the shooter 206 of the first reformer body 200A and the supply hopper 104 of the second reformer body 200B is sealed by an inert gas.
  • the first reformer main body 200A and the like constitute one furnace main body
  • the second reformer main body 200B and the like constitute the other furnace main body.
  • the heating gases 41 and 21 (temperature: 900 to 1200 ° C.) are supplied into the outer cylinders 202 and 102 through the heating gas supply lines 208 and 108, respectively.
  • the inner cylinders 201 and 101 are heated by the heating gases 41 and 21 in the cylinders 202 and 102.
  • the heating gases 41 and 21 are supplied into the outer cylinders 202 and 102 through the heating gas supply lines 208 and 108 during the heat treatment of the low grade coal 31 and the heating coal 32, and the inner cylinders
  • the heating gases 41a and 21a after heating 201 and 101 are discharged out of the system via the heating gas discharge lines 209 and 109.
  • an inert gas such as nitrogen gas is supplied by an inert gas supply means (not shown) or the like provided in the inner cylinder 201, 101.
  • the low-grade coal 31 is conveyed by the conveying line 205 and put into the supply hopper 204.
  • the low grade coal 31 placed in the supply hopper 204 is supplied by the supply feeder 203 to the proximal end side of the inner cylinder 201.
  • the low-grade coal 31 supplied into the inner cylinder 201 flows (moves) while being stirred from the proximal end side to the distal end side of the inner cylinder 201 while being indirectly heated by the heating gas 41 as the inner cylinder 201 rotates. It will be.
  • the low grade coal 31 When the low grade coal 31 is on the tip end side of the inner cylinder 201, the low grade coal 31 has a predetermined temperature (for example, 250 ° C., preferably 400 ° C.) or more.
  • the heated coal 32 heated to the predetermined temperature or more is dropped and sent downward from the shooter 206 of the first reformer main body 200A, and is received by the supply hopper 104 of the second reformer main body 200B.
  • the heated coal 32 received by the supply hopper 104 of the second reformer main body 200 ⁇ / b> B is supplied into the inner cylinder 101 by the supply feeder 103.
  • the heated coal 32 supplied into the inner cylinder 101 flows (moves) to the tip side while being stirred while being indirectly heated by the heating gas 21 as the inner cylinder 101 rotates.
  • the oxygen-containing gas 13 is directly supplied into the heating coal layer 33 in which the heating carbon 32 is stacked by the gas supply nozzle 115, and the heating coal 32 is It reacts with the oxygen of the oxygen-containing gas 13 to generate heat.
  • the heating carbon 32 is indirectly heated by the heating gas 21 and is directly heated by the exothermic reaction, so that it is efficiently heated.
  • the processing time of the low grade coal 31 can be shortened and the reformer 200 itself can be miniaturized as compared with the case of only the indirect heating by the heating gases 41 and 21.
  • the second reformer main body 200 ⁇ / b> B includes a weir 121 provided in the vicinity of the tip of the inner cylinder 101 as in the above-mentioned reformer 100, and the shooter 106 until the heated coal bed 33 becomes higher than the weir 121. Since the sideward movement is blocked, the heated coal 32 will stay longer in the inner cylinder 101. Thereby, the oxygen-containing gas 13 can be brought into contact with the heated coal bed 33 efficiently.
  • the reformed coal 34 reformed by heating and heating the heated coal 32 to 500 ° C. and reforming it travels over the weir 121 and drops downward from the shooter 106 for delivery.
  • the low grade coal 31 supplied into the inner cylinder 201 of the first reforming apparatus main body 200A is indirectly heated by the heating gas 41 to a predetermined temperature (for example, 250 ° C., preferably
  • the heated coal 32 having a temperature of 400 ° C. or higher is dropped and delivered by the shooter 206 and received by the feed hopper 104 of the second reformer main body 200B, and the heated charcoal 32 received by the feed hopper 104 is fed by the feed feeder 103 It is supplied into the chamber 101 and moves to the tip side while being agitated as the inner cylinder 101 rotates.
  • the heating carbon 32 is indirectly heated by the heating gas 21 and is directly heated by the exothermic reaction with the directly supplied oxygen-containing gas 13 to be heated. Therefore, the whole low grade coal 31 (heating coal 32) can be efficiently heated, and the manufacturing efficiency of the modified coal 34 can be improved. As a result, the processing time can be shortened and the device can be miniaturized.
  • the reformer 200 includes the first reformer main body 200A, only the reformer main body 200B is newly installed, and the facility cost increase can be suppressed.
  • the inner cylinder 201 is provided with a drive mechanism (not shown) for rotationally driving the inner cylinder 201, and it is preferable to adjust the rotational speed of the inner cylinder 201 to, for example, 1 rpm to 5 rpm.
  • the filling rate of low grade coal 31 in the inner cylinder 201 is preferably 10% to 30%. This is because if the amount is less than 10%, the amount of treatment itself is small, and if it is more than 30%, the entire low-grade coal layer on which low-grade coal 31 is stacked can not be efficiently heated, which may cause a decrease in production efficiency It is.
  • FIG. 1 A third embodiment of the reformer according to the present invention will be described based on FIG.
  • the reforming apparatus according to the first embodiment described above is configured by two apparatus main bodies.
  • the same reference numerals are appended to the same devices as those of the first embodiment.
  • the reformer 300 includes a first reformer main body 300A and a second reformer main body 300B, and the inner cylinder 301 and the second reformer included in the first reformer main body 300A.
  • the inner cylinder 101 of the apparatus main body 300B is connected and can be synchronously rotated.
  • the inner cylinder 301 rotatably supported, the outer cylinder 302 covering the outer periphery of the inner cylinder 301 and fixedly supported, and the inner cylinder 301 can be rotated while the inner cylinder 301 can be rotated.
  • a feed feeder 303 to be connected and a feed hopper 304 provided on the base end side of the feed feeder 303 are provided.
  • the feed hopper 304 is in communication with the leading end side of the transfer line 305 for transferring low-grade coal (low-grade coal) 51 such as dried lignite or sub-bituminous coal which is solid organic matter, and is transferred by the transfer line 305
  • the low grade coal 51 can be received.
  • the tip end side of a heating gas supply line 308 for supplying the heating gas 61 (temperature: 900 to 1200 ° C.) into the outer cylinder 302 is connected to the outer cylinder 302, and the heating gas 61a after heating the inner cylinder 301 is The proximal end side of the heating gas discharge line 309 to be discharged is connected.
  • the tip end side of the inner cylinder 301 is connected to the base end side of the inner cylinder 101 of the second reformer main body 300B, and the low grade coal 51 is heated to a predetermined temperature (for example, 250 ° C., preferably 400 ° C.
  • the heated coal 52 can be delivered to the inner cylinder 101 of the reformer main body 300B.
  • the reformer main body 300B includes an inner cylinder 101, an outer cylinder 102, a shooter 106, an exhaust pipe 107, a heating gas supply line 108, a heating gas exhaust line 109, and a gas supply device 110.
  • one furnace main body such as the first reformer main body 300A is configured, and the other furnace main body such as the second reformer main body 300B is configured.
  • the heating gases 61 and 21 (temperature: 900 to 1200 ° C.) are supplied into the outer cylinders 302 and 102 through the heating gas supply lines 308 and 108, respectively.
  • the inner cylinders 301 and 101 are heated by the heating gases 61 and 21 in the cylinders 302 and 102.
  • the heating gases 61 and 21 are supplied into the outer cylinders 302 and 102 through the heating gas supply lines 308 and 108, and the inner cylinders are heated.
  • the heating gases 41a and 21a after heating 301 and 101 are discharged out of the system via the heating gas discharge lines 309 and 109.
  • an inert gas such as nitrogen gas is supplied by an inert gas supply means (not shown) or the like provided in the inner cylinder 301, 101.
  • the low grade coal 51 is conveyed by the conveying line 305 and put into the supply hopper 304.
  • the low grade coal 51 placed in the feed hopper 304 is fed by the feed feeder 303 to the proximal end side of the inner cylinder 301.
  • the low-grade coal 51 supplied into the inner cylinder 301 flows (moves) while being stirred from the proximal end side to the distal end side of the inner cylinder 301 while being indirectly heated by the heating gas 61 as the inner cylinder 301 rotates. It will be.
  • the low grade coal 51 When the low grade coal 51 is on the tip end side of the inner cylinder 301, the low grade coal 51 has a predetermined temperature (for example, 250 ° C., preferably 400 ° C.) or more.
  • the heated coal 52 heated to the predetermined temperature or more is fed from the tip of the inner cylinder 301 to the inner cylinder 101 of the second reformer main body 300B.
  • the heated coal 52 supplied to the inner cylinder 101 of the second reformer main body 300B is circulated (moved) to the tip side while being stirred while being indirectly heated by the heating gas 21 as the inner cylinder 101 rotates. become.
  • the oxygen-containing gas 13 is directly supplied into the heating coal layer 53 in which the heating coal 52 is stacked by the gas supply nozzle 115, and the heating coal 52 is It reacts with the oxygen of the oxygen-containing gas 13 to generate heat.
  • the heating coal 52 is indirectly heated by the heating gas 21 and is directly heated by the exothermic reaction, so that it is efficiently heated.
  • the processing time of the low grade coal 51 can be shortened as compared with the case of only the indirect heating by the heating gases 61 and 21, and the reforming apparatus 300 itself can be miniaturized.
  • the second reformer main body 300 ⁇ / b> B includes the weir 121 provided in the vicinity of the tip of the inner cylinder 101 as in the above-described reformer 100, and the shooter 106 until the heated coal layer 53 becomes higher than the weir 121. Since the sideward movement is blocked, the heated coal 52 will stay longer in the inner cylinder 101. Thereby, the oxygen-containing gas 13 can be brought into contact with the heated coal bed 53 efficiently.
  • the reformed coal 54 reformed by heating and heating the heated coal 52 to 500 ° C. and reforming it travels over the weir 121 and drops downward from the shooter 106 for delivery.
  • the low grade coal 51 supplied into the inner cylinder 301 of the first reformer main body 300A is indirectly heated by the heating gas 61 to a predetermined temperature (for example, 250 ° C., preferably The heated coal 52 having a temperature of 400 ° C. or more is supplied as it is into the inner cylinder 101 of the second reforming apparatus main body 300 B, and is moved to the tip side while being stirred as the inner cylinder 101 rotates.
  • the heating carbon 52 is indirectly heated by the heating gas 21 and is directly heated by the exothermic reaction with the directly supplied oxygen-containing gas 13. Therefore, the whole low grade coal 51 (heating coal 52) can be efficiently heated, and the manufacturing efficiency of the modified coal 54 can be improved. As a result, the processing time can be shortened and the device can be miniaturized.
  • the reformer 300 includes the first reformer main body 300A, it is only necessary to newly install the reformer main body 300B, and it is possible to suppress an increase in facility cost.
  • the inner cylinder 301,101 is provided with the drive mechanism (not shown) which rotationally drives the said inner cylinder 301,101, and adjusts the rotational speed of the inner cylinder 301,101 so that it may become 1 rpm-5 rpm, for example. Is preferred.
  • the filling rate of low grade coal 51 in the inner cylinder 301 is preferably 10% to 30%. This is because if the amount is less than 10%, the amount of treatment itself is small, and if it is more than 30%, the entire low-grade coal layer on which the low-grade coal 51 is stacked can not be efficiently heated, which may cause a decrease in production efficiency. It is.
  • FIG. 5 is a modification of the gas supply device provided in the reforming device according to the first embodiment described above.
  • the same reference numerals are appended to the same devices as those of the first embodiment.
  • the reformer 400 is provided with an inner cylinder 401 whose outer side is covered by the outer cylinder 102 and which is rotatably provided, and a tip end side of the inner cylinder 401. And a heat insulating material 418 disposed between the inner cylinder 401 and the outer cylinder 102 and fixedly supported.
  • a plate-like weir 121 is provided on the inner circumferential portion near the tip of the inner cylinder 401.
  • the heat insulating material 418 is provided so as to cover areas other than a predetermined area of the inner cylinder 401 (place where the guide mechanisms 415A and 415B described later are installed).
  • the heat insulating material 418 for example, there is no reactivity with the heating gas 21, and a general one can be used.
  • a feed feeder 103 for supplying low-grade coal (low-quality coal) 71 such as dried lignite or sub-bituminous coal which is solid organic matter can rotate the inner cylinder 401. It is connected while taking it.
  • reformed coal (dry cut coal) 73 which is a solid reformate (dry cut) reformed by dry-distilling the low grade coal 71 is dropped and delivered downward, and the low A shooter 106, which is a delivery means for delivering, from above, the dry-distilled gas 71a generated along with the dry-distillation of the graded coal 1, the inner cylinder 401 is connected while enabling the rotation of the inner cylinder 401.
  • the above-described reformer 400 further includes gas supply means for directly supplying the heating gas 21 as an oxygen-containing gas in the low-quality coal layer 72 in which the low-quality coal 71 is stacked in the inner cylinder 401.
  • the gas supply means the heat insulating material 418, for example, as shown in FIG. 6A, a plurality of holes 415Aa provided in a part of the inner cylinder 401, and an L shape provided in the edge of the hole 415Aa It is possible to use a guide mechanism 415A which has a plate 415Ab and a straight plate 415Ac and in which the heating gas 21 flows to flow in the inner cylinder 401.
  • the heat insulating material 418 for example, as shown in FIG.
  • a plurality of holes 415Ba provided in a part of the inner cylinder 401 and U provided at the edge of the holes 415Ba. It is possible to use a guide mechanism 415B which has a U-shaped plate 415Bb and a straight plate 415Bc, and in which the heating gas 21 flows to flow in the inner cylinder 401.
  • the inner cylinder 401 is provided with holes 415Aa and 415Ba through which the heating gas 21 can flow, and the heat insulation is disposed between the inner cylinder 401 and the outer cylinder 102 and covers other than the lower side of the inner cylinder 401.
  • Guide mechanisms 415A and 415B having a material 418 constitute a gas supply means.
  • the heating gas 21 (temperature: 900 to 1200 ° C.) is supplied into the outer cylinder 102 through the heating gas supply line 108, and the inner cylinder 401 is heated by the heating gas 21 in the outer cylinder 102.
  • the heating gas 21 is supplied into the outer cylinder 102 through the heating gas supply line 108, and the heating gas 21a after heating the inner cylinder 101 is: It is discharged out of the system through the heating gas discharge line 109.
  • an inert gas such as nitrogen gas is supplied by an inert gas supply unit (not shown) or the like provided in the inner cylinder 401.
  • the low-grade coal 71 is conveyed by the conveying line 105 and placed in the supply hopper 104.
  • the low grade coal 71 placed in the supply hopper 104 is supplied by the supply feeder 103 to the proximal end side of the inner cylinder 401.
  • the low-grade coal 71 supplied into the inner cylinder 401 flows (moves) while being stirred from the proximal end side to the distal end side of the inner cylinder 401 while being indirectly heated by the heating gas 21 as the inner cylinder 401 rotates. It will be.
  • the low-grade coal 71 is indirectly heated by the heating gas 21 in the region L12 on the tip end side of the inner cylinder 401 and reaches a predetermined temperature (for example, 250 ° C., preferably 400 ° C.) or more.
  • a predetermined temperature for example, 250 ° C., preferably 400 ° C.
  • the heating gas 21 is directly supplied as the oxygen-containing gas into the low grade coal layer 72 in which the low grade coal 71 is stacked by the gas supply means. Since the heating gas 21 circulates in the low grade coal bed 72, it comes into direct contact with the whole low grade coal bed 72, and further raises the temperature of the low grade coal 71 raised to a predetermined temperature (for example, 250 ° C.) It will be.
  • the low grade coal 71 supplied into the inner cylinder 401 is indirectly heated by the heating gas 21 supplied into the outer cylinder 102, and the heating gas 21 supplied into the low grade coal layer 72 Due to the exothermic reaction of (1), it is directly heated and is efficiently heated. As a result, compared with the case of only indirect heating by the heating gas 21, the processing time of the low grade coal 71 can be shortened, and the reforming device 400 itself can be miniaturized.
  • the low grade coal 71 stays longer in the vicinity of the tip of the inner cylinder 401. Thereby, the heating gas 21 can be brought into contact with the low grade coal bed 72 efficiently.
  • the low-grade coal 71 is heated to, for example, 500 ° C. and reformed by distillation to reform, and the reformed coal 73 travels over the weir 121 and is dropped and delivered downward from the shooter 106.
  • the low grade coal 71 supplied into the inner cylinder 401 is indirectly heated by the heating gas 21, and at the same time the temperature is lower than a predetermined temperature (for example, 250.degree. C., preferably 400.degree. C.).
  • a predetermined temperature for example, 250.degree. C., preferably 400.degree. C.
  • the inner cylinder 401 is provided with a drive mechanism (not shown) for rotationally driving the inner cylinder 401, and it is preferable to adjust the rotational speed of the inner cylinder 401 to, for example, 1 rpm to 5 rpm.
  • the filling rate of the low grade coal 71 in the inner cylinder 401 is preferably 10% to 30%. This is because if the amount is less than 10%, the amount of treatment itself is small, and if it is more than 30%, the entire low-grade coal layer 72 on which the low-grade coal 71 is stacked can not be efficiently heated, which may cause a decrease in production efficiency It is from.
  • the supply flow velocity of the heating gas 21 to the low grade coal bed 72 is preferably adjusted to, for example, 0.05 m / sec to 3 m / sec, and more preferably adjusted to 0.1 m / sec to 1 m / sec . This is because if the supply flow rate of the heating gas 21 is smaller than 0.05 m / sec, dust (particulate coal) will easily enter the guide mechanisms 415A and 415B, and the supply flow rate of the heating gas 21 is When it is larger than 3 m / sec, the heating gas 21 flows to the center C1 of the inner cylinder 101 by inertia force, and the heating gas 21 passes through the low grade coal layer 72 without flowing sufficiently. It is.
  • the supply amount of the heating gas 21 into the low-grade coal bed 72 is, for example, 3 (NL-O 2 / min / kg-the low-grade coal 71) or more 30 (NL-O 2 / min / kg-the low-grade coal 71) It is preferable to adjust to be as follows. This is because oxygen can not be sufficiently supplied into the low grade coal bed 72 if the amount of the heating gas 21 supplied to the low grade coal bed 72 is smaller than 3 (NL / min / kg-the low grade coal 71) If the amount of the heating gas 21 supplied to the low grade coal bed 72 is more than 30 (NL / min / kg-the low grade coal 71), the amount of oxygen becomes excessive and the reaction proceeds. It is because there is a possibility of doing too much.
  • the oxygen concentration of the heating gas 21 is preferably 1 to 10%. This is because if the oxygen concentration is lower than 1%, the possibility that the temperature of the low grade coal bed 72 can not be raised sufficiently is increased. If the oxygen concentration is higher than 10%, the oxygen is excessive and the reaction progresses too much. There is a possibility of
  • the reformer according to the present invention can efficiently heat the entire organic matter, and therefore can be used extremely effectively in the power generation industry and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

 有機物全体を効率良く加熱できる改質装置を提供することにある。回転により内部に供給された低品位炭(1)を基端側から先端側へ流通させる内筒(101)と、内筒(101)の外周を覆い内部に加熱ガス(21)が供給される外筒(102)と、内筒(101)の先端側にて、低品位炭(1)が積層した低品位炭層(2)内に酸素含有ガス(13)を直接供給するガス供給手段とを備え、低品位炭(1)を加熱ガス(21)で間接加熱すると共に、所定の温度に加熱された低品位炭(1)にガス供給手段により供給される酸素含有ガス(13)を接触させて生じる発熱反応により当該低品位炭(1)を直接加熱するようにした。

Description

改質装置
 本発明は、固形状の有機物を流通させながら加熱して連続的に乾留することにより改質する改質装置に関する。
 固形状の有機物を流通させながら加熱して連続的に乾留することにより改質する場合、例えば、下記特許文献1に記載された外熱キルンを適用することができる。この特許文献1に記載の外熱キルンは、内筒内に処理物(有機物)を供給して当該内筒を回転させることにより当該内筒の内部で前記処理物を流通させながら、内筒の外周を覆う外筒内に吹き込む加熱ガスにより処理物を加熱して連続的に乾留する一方、内筒内に酸素含有ガスを供給して処理物の加熱により生じる可燃ガスを燃焼することができるようになっている。
特開2004-3738号公報
 しかしながら、前記特許文献1に記載の外熱キルンにおいては、前記酸素含有ガスが前記可燃ガスの燃焼を目的とするものであり、前記可燃ガスの燃焼が前記内筒内の気相や前記処理物が積層した処理物層の表面でしか生じず、前記処理物の加熱が主として前記外筒内の前記加熱ガスによるもので前記内筒と接する箇所で行われることから、前記処理物を大量に加熱しようとすると、外熱キルン自体が長くなってしまい、処理物全体を効率良く加熱できないおそれがあった。
 このようなことから、本発明は、前述した課題を解決するために為されたものであって、有機物全体を効率良く加熱できる改質装置を提供することを目的としている。
 上述した課題を解決する第1の発明に係る改質装置は、固形状の有機物を内部に流通させる炉本体と、前記炉本体の内部の前記有機物を間接的に加熱する間接加熱手段と、前記炉本体の内部にて、前記間接加熱手段により加熱されて所定の温度となり、前記有機物が積層した有機物層内に酸素を含有するガスを供給するガス供給手段と、前記ガスにより前記有機物がさらに加熱され乾留されて改質された固形状の改質物を送出する送出手段と、を備えていることを特徴とする。
 上述した課題を解決する第2の発明に係る改質装置は、前述した第1の発明に係る改質装置であって、前記ガス供給手段は、前記有機物層内に前記ガスを供給するガス供給ノズルを有することを特徴とする。
 上述した課題を解決する第3の発明に係る改質装置は、前述した第2の発明に係る改質装置であって、前記ガス供給ノズルは複数あり、複数のガス供給ノズルは、前記有機物が250℃以上となる領域に前記ガスを供給するように配置されることを特徴とする。
 上述した課題を解決する第4の発明に係る改質装置は、前述した第2または第3の発明に係る改質装置であって、前記ガス供給ノズルは、前記炉本体の中心を通る垂線に対し当該炉本体の回転方向にて安息角±安息角(0°~2×安息角)の範囲で延在することを特徴とする。
 上述した課題を解決する第5の発明に係る改質装置は、前述した第2から第4の何れか一つの発明に係る改質装置であって、前記ガス供給ノズルの先端部は、水平または前記水平よりも下方へ屈曲していることを特徴とする。
 上述した課題を解決する第6の発明に係る改質装置は、前述した第1の発明に係る改質装置であって、前記炉本体を覆う外筒を備え、前記ガス供給手段は、前記炉本体に設けられ、前記間接加熱手段による加熱ガスが流通可能な孔部と、前記炉本体と前記外筒の間に配置され当該内筒の下部側以外を覆う断熱材とを有することを特徴とする。
 上述した課題を解決する第7の発明に係る改質装置は、前述した第1から第6の何れか一つの発明に係る改質装置であって、前記炉本体が1つであることを特徴とする。
 上述した課題を解決する第8の発明に係る改質装置は、前述した第1から第6の何れか一つの発明に係る改質装置であって、前記炉本体が2つであり、一方の前記炉本体にて、前記間接加熱手段により前記有機物を前記所定の温度まで加熱し、他方の前記炉本体にて、前記ガス供給手段が供給する前記ガスにより前記有機物をさらに加熱し乾留して改質した固形状の改質物を生成することを特徴とする。
 上述した課題を解決する第9の発明に係る改質装置は、前述した第8の発明に係る改質装置であって、一方の前記炉本体と他方の前記炉本体が連結していることを特徴とする。
 上述した課題を解決する第10の発明に係る改質装置は、前述した第1から第9の何れか一つの発明に係る改質装置であって、前記ガスの前記炉本体内への供給流速は、0.05m/秒~3m/秒に調整されることを特徴とする。
 上述した課題を解決する第11の発明に係る改質装置は、前述した第1から第10の何れか一つの発明に係る改質装置であって、前記ガスの前記有機物層内への供給量は、3(NL-O2/分/kg-前記有機物)以上30(NL-O2/分/kg-前記有機物)以下となるように調整されることを特徴とする。
 上述した課題を解決する第12の発明に係る改質装置は、前述した第1から第11の何れか一つの発明に係る改質装置であって、前記ガスの酸素濃度は、1~10%であることを特徴とする。
 上述した課題を解決する第13の発明に係る改質装置は、前述した第1から第12の何れか一つの発明に係る改質装置であって、前記有機物は、低品位炭であることを特徴とする。
 本発明によれば、固形状の有機物を内部に流通させる炉本体と、前記炉本体の内部の前記有機物を間接的に加熱する間接加熱手段と、前記炉本体の内部にて、前記間接加熱手段により加熱されて所定の温度となり、前記有機物が積層した有機物層内に酸素を含有するガスを供給するガス供給手段と、前記ガスにより前記有機物がさらに加熱され乾留されて改質された固形状の改質物を送出する送出手段と、を備えていることにより、有機物を間接加熱すると共に、所定の温度に加熱された有機物に酸素を含有するガスを接触させて発熱反応を生じさせて直接加熱することから、前記有機物を間接加熱する場合と比べ、前記有機物を効率良く加熱することができる。これにより、前記有機物の処理時間を短縮でき、装置の小型化を図ることができる。
本発明に係る改質装置の第一番目の実施形態の概略構成図である。 前記改質装置が具備するガス供給ノズルの説明図であって、図2(a)に一例を示し、図2(b)に他例を示し、図2(c)にさらに他例を示す。 本発明に係る改質装置の第二番目の実施形態の概略構成図である。 本発明に係る改質装置の第三番目の実施形態の概略構成図である。 本発明に係る改質装置の第四番目の実施形態の概略構成図であって、図5(a)にその全体を示し、図5(b)にそれが具備する内筒の径断面を示す。 前記改質装置が具備するガス供給構造の説明図であって、図6(a)に一例を示し、図6(b)に他例を示す。
 本発明に係る改質装置の各実施形態を図面に基づいて説明するが、本発明は、図面に基づいて説明する以下の実施形態のみに限定されるものではない。
 [第一番目の実施形態]
 本発明に係る改質装置の第一番目の実施形態を図1~図2に基づいて説明する。なお、図2(a)および図2(b)および図2(c)において、符号Aが示す矢印の向きは、内筒101の回転方向を示している。
 改質装置100は、図1に示すように、回転可能に支持される内筒(炉本体)101と、内筒101の外周を覆い固定支持された外筒102とを備える。内筒101の基端側には、固形状の有機物である乾燥された褐炭や亜瀝青炭等のような低品位炭(低質炭)1を供給する供給フィーダ103が当該内筒101の回転を可能としつつ連結されている。
 供給フィーダ103の基端側には、前記低品位炭1が入れられる供給ホッパ104が設けられている。供給ホッパ104は、搬送ライン105の先端側と連絡しており、搬送ライン105により搬送された前記低品位炭1を受け入れ可能になっている。なお、搬送ライン105は、窒素ガスからなる不活性化ガスでシールされており、当該不活性ガスが前記低品位炭1と共に供給ホッパ104および供給フィーダ103を介して内筒101内に供給されている。
 内筒101の先端側には、前記低品位炭1を乾留して改質した固形状の改質物(乾留物)である改質炭(乾留炭)3を下方へ落下送出すると共に、当該低品位炭1の乾留に伴って生成した乾留ガス1aを上方から送出する送出手段であるシュータ106が当該内筒101の回転を可能としつつ連結されている。シュータ106の上方には、前記乾留ガス1aを排出する排気管107の基端側が連結されている。
 内筒101の先端側近傍の内周部には、板状の堰121が設けられている。堰121の端部121aは、内筒101の回転移動により下方に配置されたときに、詳細につき後述するガス供給ノズル115の先端部115aよりも上方となるように形成されている。これにより、低品位炭1は、内筒101の先端側にあっては、堰121を乗り越えてはじめて移動することから、内筒101の回転に伴う内筒101の先端側への移動が内筒101の基端側と比べて遅く、その分内筒101内に長く留まることになり、ガス供給ノズル115により供給される酸素含有ガス13と長く接触することになる。
 外筒102には、当該外筒102内に加熱ガス21(温度:900~1200℃)を供給する加熱ガス供給ライン108の先端側が連結され、前記内筒101を加熱した後の加熱ガス21aを排出する加熱ガス排出ライン109の基端側が連結される。
 上述した改質装置100は、前記内筒101内における先端側にて前記低品位炭1が積層した低品位炭層2内に酸素含有ガス13を直接供給するガス供給装置110をさらに備える。ガス供給装置110は、ガス供給管114、ガス供給ノズル115などを備える。ガス供給管114の基端側は、酸素含有ガス送給管113の先端側と連結している。酸素含有ガス送給管113の基端側は、空気11を送給する空気送給管111の先端側と連結し、窒素ガスなどの不活性ガス12を送給する不活性ガス送給管112の先端側と連結している。空気送給管111の基端側は、ブロア111aのガス吐出口と連結している。不活性ガス送給管112の基端側は、不活性ガス12を溜めるタンクなどの不活性ガス供給源112aと連結している。空気送給管111および不活性ガス送給管112には、流量調整弁111b,112bがそれぞれ設けられている。よって、前記流量調整弁111b,112bの開度および前記ブロア111aの作動の制御により、前記空気11および前記不活性ガス12を送給し混合してなる酸素含有ガス(処理ガス)13が酸素含有ガス送給管113を介してガス供給管114へ流通することになる。
 ガス供給管114は、内筒101の中心C1の延在方向と同じ方向に延在するように配置されると共に、中心が内筒101の中心C1と一致する様に配置される。ガス供給管114は、基端側がシュータ106に固定され、先端側が固定具116を介して支持具117に支持されている。支持具117は、内筒101の回転を可能としつつ当該内筒101の基端側に固定されている。
 ガス供給管114には、複数(図示例では8本)のガス供給ノズル115が設けられている。複数のガス供給ノズル115は、ガス供給管114の長手方向(図1における左右方向)で隣接して配置される。複数のガス供給ノズル115は、前記低品位炭1が積層した低品位炭層2内まで延在している。
 なお、本実施形態においては、外筒102および加熱ガス供給ライン108などにより間接加熱手段を構成し、ガス供給装置110などによりガス供給手段を構成している。
 ここで、上述した構成の改質装置100の作動を説明する。
 先ず、加熱ガス供給ライン108により外筒102内に加熱ガス21(温度:900~1200℃)を供給し、外筒102内の加熱ガス21により内筒101を加熱する。なお、加熱ガス21は、前記低品位炭1を熱処理している最中は、加熱ガス供給ライン108を介して外筒102内に供給され、内筒101を加熱した後の加熱ガス21aは、加熱ガス排出ライン109を介して系外へ排出される。内筒101内には、内筒101に設けられた不活性ガス供給手段(図示せず)などにより窒素ガスなどの不活性ガスが供給されている。
 前記低品位炭1は、搬送ライン105により搬送されて供給ホッパ104に入れられる。供給ホッパ104に入れられた前記低品位炭1は、供給フィーダ103により前記内筒101の基端側へ供給される。内筒101内に供給された前記低品位炭1は、内筒101の回転に伴い、加熱ガス21により間接加熱されつつ内筒101の基端側から先端側へ撹拌されながら流通(移動)することになる。前記低品位炭1は、内筒101の先端部側の領域L12にあっては、前記加熱ガス21により間接加熱されて所定の温度(例えば、250℃、好ましくは400℃)以上となる。この領域L12において、酸素含有ガス13がガス供給ノズル115を介して前記低品位炭層2内に直接供給される。酸素含有ガス13は、低品位炭層2内を流通することから低品位炭層2全体と直接接触することになり、所定の温度(例えば、250℃)まで高められた低品位炭1をさらに昇温することになる。これは、前記低品位炭1が前記所定の温度まで高められると、反応性が高くなり、酸素含有ガス13中の酸素と反応して発熱するからである。これにより、内筒101内に供給された前記低品位炭1は、外筒102内に供給された加熱ガス21により間接加熱されると共に、当該低品位炭層2内に供給される酸素含有ガス13との発熱反応により直接加熱されることになり、効率良く加熱されることになる。その結果、前記加熱ガス21による間接加熱だけの場合と比べて、前記低品位炭1の処理時間を短くできると共に、改質装置100自体を小型化することができる。
 また、内筒101の先端部近傍に設けられた堰121により、低品位炭層2が堰121よりも高くなるまでシュータ106側への移動が阻止されることから、内筒101の基端側と比べて内筒101の先端近傍にて低品位炭1がより長く留まることになる。これにより、酸素含有ガス13を低品位炭層2と効率良く接触させることができる。
 低品位炭1を例えば500℃まで加熱し乾留して改質した改質炭3は、堰121を乗り越えシュータ106から下方へ落下送出することになる。
 したがって、本実施形態によれば、内筒101内に供給された低品位炭1を加熱ガス21により間接的に加熱すると共に、所定の温度(例えば、250℃、好ましくは400℃)以上となった、低品位炭1が積層した低品位炭層2内に酸素含有ガス13を供給し低品位炭1と直接接触させることにより当該酸素含有ガス13の酸素が低品位炭1と反応し発熱して当該低品位炭1を昇温することから、低品位炭層2全体を効率良く加熱し、改質炭3の製造効率を向上させることができる。これにより、処理時間の短縮や装置の小型化を図ることができる。
 なお、内筒101は当該内筒101を回転駆動する駆動機構(図示せず)を備えており、内筒101の回転速度を例えば1rpm~5rpmとなるように調整することが好ましい。
 内筒101での低品位炭1の充填率は、10%~30%であることが好ましい。これは、10%より少ないと処理量自体が少なく、30%より多いと低品位炭1が積層した低品位炭層2全体を効率良く加熱できず、生産効率の低下を招いてしまう可能性があるからである。
 ガス供給ノズル115として、例えば、図2(a)に示すような直管115A、図2(b)に示すようなL字状の管115B、図2(c)に示すような先端部近傍に屈曲部を有す管115Cなど種々の形状のものを用いることができる。直管115Aを用いる場合には、直管115Aの延在方向L1が内筒101の中心C1を通る垂線L2に対し回転方向Aの角度X1が安息角X2(低品位炭層2の表面と接線L3とがなす角)±安息角X2、すなわち、0°~安息角X2の2倍であることが好ましく、安息角X2の1/2倍~安息角X2の3/2倍であることがより好ましく、安息角X2であることがより一層好ましい。これは、0°よりも小さかったり安息角X2の2倍よりも大きかったりすると、前記低品位炭1のうちの微粉がガス供給ノズル115Aの内部に入り込みやすくなってしまうからである。直管115Aの延在方向L1が安息角X2であると、直管115Aの先端部115Aaが低品位炭層2で最も深い箇所となり、酸素含有ガス13を低品位炭1と効率良く接触させることができる。
 管115Cを用いる場合には、この先端部115Caが水平から内筒101の径方向の間で延在することが好ましい。これは、水平よりも内筒101の回転方向A側へ傾いたり内筒101の径方向よりも内筒101の回転方向Aの反対方向、すなわち、内筒101の反回転方向に傾いたりすると、前記低品位炭1のうちの微粉が内部に入り込みやすくなってしまうからである。
 ガス供給ノズル115は、低品位炭層2の表面2aから低品位炭層2の50%まで延在することが好ましく、低品位炭層2の80%まで延在することがより好ましい。これは、ガス供給ノズル115が低品位炭層2の表面2aから低品位炭層2の50%よりも短いと、前記低品位炭層2内にて低品位炭1と酸素含有ガス13とを直接接触させることができないおそれがあるからである。
 なお、内筒101の内周面には、図2(a)および図2(b)および図2(c)に示すように、径方向にて隣接する複数(図示例では4つ)のリフタ101aが設けられている。
 前記低品位炭層2への前記酸素含有ガス13の供給流速は、例えば、0.05m/秒~3m/秒に調整されると好ましく、0.1m/秒~1m/秒に調整されるとより好ましい。これは、前記酸素含有ガス13の供給流速が0.05m/秒よりも小さいと、粉塵(微粉炭)が前記ガス供給ノズル115内に入り込みやすくなるからであり、前記酸素含有ガス13の供給流速が3m/秒よりも大きいと、前記酸素含有ガス13が慣性力により前記内筒101の壁面方向へ流れてしまい、前記低品位炭層2内を十分に酸素含有ガス13が流通せずに通過してしまうからである。
 酸素含有ガス13の低品位炭層2内への供給量は、例えば、3(NL-O2/分/kg-前記低品位炭1)以上30(NL-O2/分/kg-前記低品位炭1)以下となるように調整されると好ましい。これは、前記酸素含有ガス13の前記低品位炭層2内への供給量が3(NL/分/kg-前記低品位炭1)よりも少ないと、低品位炭層2内に十分に酸素を供給できない可能性があるからであり、前記酸素含有ガス13の前記低品位炭層2内への供給量が30(NL/分/kg-前記低品位炭1)よりも多いと、酸素が過多となり反応が進行しすぎてしまう可能性があるからである。
 酸素含有ガス13の酸素濃度は、1~10%であることが好ましい。これは、酸素濃度が1%より低いと、低品位炭層2を十分に昇温できない可能性を高めてしまうからであり、酸素濃度が10%より高いと、酸素が過多となり反応が進行しすぎてしまう可能性があるからである。
 [第二番目の実施形態]
 本発明に係る改質装置の第二番目の実施形態を図3に基づいて説明する。本実施形態は、上述した第一番目の実施形態に係る改質装置を2つの改質装置本体で構成したものである。本実施形態では、第一番目の実施形態と同一機器には同一符号を付記している。
 改質装置200は、図3に示すように、第一改質装置本体200Aと第二改質装置本体200Bとを備え、第一改質装置本体200Aにて低品位炭を所定の温度まで加熱し、第二改質装置本体200Bにて、所定の温度の低品位炭をさらに加熱し乾留して改質するようになっている。
 第一改質装置本体200Aは、回転可能に支持される内筒201と、内筒201の外周を覆い固定支持された外筒202と、内筒201の回転を可能としつつ当該内筒201に連結される供給フィーダ203と、供給フィーダ203の基端側に設けられる供給ホッパ204とを備える。供給ホッパ204は、固形状の有機物である乾燥された褐炭や亜瀝青炭等のような低品位炭(低質炭)31を搬送する搬送ライン205の先端側と連絡しており、搬送ライン205により搬送された前記低品位炭31を受け入れ可能になっている。
 内筒201の先端側には、前記低品位炭31を加熱して所定の温度(例えば、250℃、好ましくは400℃)以上の加熱炭32を下方へ落下送出すると共に、当該低品位炭31の加熱に伴って生成したガス31aを上方から送出する送出手段であるシュータ206が当該内筒201の回転を可能としつつ連結されている。シュータ206の上方には、前記ガス31aを排出する排気管207の基端側が連結されている。
 外筒202には、当該外筒202内に加熱ガス41(温度:900~1200℃)を供給する加熱ガス供給ライン208の先端側が連結され、前記内筒201を加熱した後の加熱ガス41aを排出する加熱ガス排出ライン209の基端側が連結される。
 第二改質装置本体200Bは、上述した改質装置100と同様、内筒101、外筒102、供給フィーダ103、供給ホッパ104、シュータ106、排気管107、加熱ガス供給ライン108、加熱ガス排気ライン109、ガス供給装置110を備える。第二改質装置本体200Bの供給ホッパ104は、第一改質装置本体200Aのシュータ206により下方に落下送出される加熱炭32を受け入れ可能に配置される。なお、第一改質装置本体200Aのシュータ206と第二改質装置本体200Bの供給ホッパ104の間は、不活性ガスによりシールされている。
 なお、本実施形態においては、第一改質装置本体200Aなどが一方の炉本体を構成し、第二改質装置本体200Bなどが他方の炉本体を構成している。
 ここで、上述した構成の改質装置200の作動を説明する。
 先ず、第一,第二改質装置本体200A,200Bにおいては、加熱ガス供給ライン208,108により外筒202,102内に加熱ガス41,21(温度:900~1200℃)を供給し、外筒202,102内の加熱ガス41,21により内筒201,101を加熱する。なお、加熱ガス41,21は、前記低品位炭31および前記加熱炭32を熱処理している最中は、加熱ガス供給ライン208,108を介して外筒202,102内に供給され、内筒201,101を加熱した後の加熱ガス41a,21aは、加熱ガス排出ライン209,109を介して系外へ排出される。内筒201,101内には、内筒201,101に設けられた不活性ガス供給手段(図示せず)などにより窒素ガスなどの不活性ガスが供給されている。
 前記低品位炭31は、搬送ライン205により搬送されて供給ホッパ204に入れられる。供給ホッパ204に入れられた前記低品位炭31は、供給フィーダ203により前記内筒201の基端側へ供給される。内筒201内に供給された前記低品位炭31は、内筒201の回転に伴い、加熱ガス41により間接加熱されつつ内筒201の基端側から先端側へ撹拌されながら流通(移動)することになる。前記低品位炭31は、内筒201の先端部側にあっては、所定の温度(例えば、250℃、好ましくは400℃)以上となる。
 前記所定の温度以上に加熱された加熱炭32は、第一改質装置本体200Aのシュータ206から下方へ落下送出され、第二改質装置本体200Bの供給ホッパ104に受け入れられる。第二改質装置本体200Bの供給ホッパ104に受け入れられた加熱炭32は、供給フィーダ103により内筒101内に供給される。内筒101内に供給された加熱炭32は、内筒101の回転に伴い、加熱ガス21により間接加熱されつつ、撹拌されながら先端側へ流通(移動)することになる。内筒101にて加熱ガス21により間接加熱される領域にあっては、ガス供給ノズル115により加熱炭32が積層した加熱炭層33内に酸素含有ガス13が直接供給されており、加熱炭32が酸素含有ガス13の酸素と反応して発熱することになる。これにより、加熱炭32は、加熱ガス21によって間接加熱されると共に、前記発熱反応によって直接加熱されることになり、効率良く加熱されることになる。その結果、前記加熱ガス41,21による間接加熱だけの場合と比べて、前記低品位炭31の処理時間を短くできると共に、改質装置200自体を小型化することができる。
 第二改質装置本体200Bは、上述の改質装置100と同様に、内筒101の先端部近傍に設けられた堰121を備えており、加熱炭層33が堰121よりも高くなるまでシュータ106側への移動が阻止されることから、内筒101内にて加熱炭32をより長く留まることになる。これにより、酸素含有ガス13を加熱炭層33と効率良く接触させることができる。
 加熱炭32を例えば500℃まで加熱し乾留して改質した改質炭34は、堰121を乗り越えシュータ106から下方へ落下送出することになる。
 したがって、本実施形態によれば、第一改質装置本体200Aの内筒201内に供給された低品位炭31を加熱ガス41により間接的に加熱し所定の温度(例えば、250℃、好ましくは400℃)以上となった加熱炭32をシュータ206により落下送出して第二改質装置本体200Bの供給ホッパ104で受け入れ、当該供給ホッパ104に受け入れられた加熱炭32を供給フィーダ103により内筒101内に供給し、内筒101の回転に伴い、撹拌されながら先端側へ移動することになる。このとき、加熱炭32は、加熱ガス21により間接加熱されと共に、直接供給される酸素含有ガス13との発熱反応により直接加熱されて昇温することになる。よって、低品位炭31(加熱炭32)全体を効率良く加熱することができ、改質炭34の製造効率を向上させることができる。これにより、処理時間の短縮や装置の小型化を行うことができる。
 改質装置200が第一改質装置本体200Aを有する場合、改質装置本体200Bのみを新たに設置するだけであり、設備コスト増を抑制できる。
 なお、内筒201は当該内筒201を回転駆動する駆動機構(図示せず)を備えており、内筒201の回転速度を例えば1rpm~5rpmとなるように調整することが好ましい。
 内筒201での低品位炭31の充填率は、10%~30%であることが好ましい。これは、10%より少ないと処理量自体が少なく、30%より多いと低品位炭31が積層した低品位炭層全体を効率良く加熱できず、生産効率の低下を招いてしまう可能性があるからである。
 [第三番目の実施形態]
 本発明に係る改質装置の第三番目の実施形態を図4に基づいて説明する。本実施形態は、上述した第一番目の実施形態に係る改質装置を2つの装置本体で構成したものである。本実施形態では、第一番目の実施形態と同一機器には同一符号を付記している。
 改質装置300は、図4に示すように、第一改質装置本体300Aと第二改質装置本体300Bとを備え、第一改質装置本体300Aが具備する内筒301と第二改質装置本体300Bが具備する内筒101とが連結し同期回転可能になっている。
 第一改質装置本体300Aは、回転可能に支持される内筒301と、内筒301の外周を覆い固定支持された外筒302と、内筒301の回転を可能としつつ当該内筒301に連結される供給フィーダ303と、供給フィーダ303の基端側に設けられる供給ホッパ304とを備える。供給ホッパ304は、固形状の有機物である乾燥された褐炭や亜瀝青炭等のような低品位炭(低質炭)51を搬送する搬送ライン305の先端側と連絡しており、搬送ライン305により搬送された前記低品位炭51を受け入れ可能になっている。
 外筒302には、当該外筒302内に加熱ガス61(温度:900~1200℃)を供給する加熱ガス供給ライン308の先端側が連結され、前記内筒301を加熱した後の加熱ガス61aを排出する加熱ガス排出ライン309の基端側が連結される。
 内筒301の先端側は、第二改質装置本体300Bの内筒101の基端側が連結しており、前記低品位炭51を加熱して所定の温度(例えば、250℃、好ましくは400℃)以上の加熱炭52を改質装置本体300Bの内筒101へ送出可能になっている。
 改質装置本体300Bは、上述した改質装置100と同様、内筒101、外筒102、シュータ106、排気管107、加熱ガス供給ライン108、加熱ガス排気ライン109、ガス供給装置110を備える。
 なお、本実施形態においては、第一改質装置本体300Aなど一方の炉本体を構成し、第二改質装置本体300Bなど他方の炉本体を構成している。
 ここで、上述した構成の改質装置300の作動を説明する。
 先ず、第一,第二改質装置本体300A,300Bにおいては、加熱ガス供給ライン308,108により外筒302,102内に加熱ガス61,21(温度:900~1200℃)を供給し、外筒302,102内の加熱ガス61,21により内筒301,101を加熱する。なお、加熱ガス61,21は、前記低品位炭51および前記加熱炭52を熱処理している最中は、加熱ガス供給ライン308,108を介して外筒302,102内に供給され、内筒301,101を加熱した後の加熱ガス41a,21aは、加熱ガス排出ライン309,109を介して系外へ排出される。内筒301,101内には、内筒301,101に設けられた不活性ガス供給手段(図示せず)などにより窒素ガスなどの不活性ガスが供給されている。
 前記低品位炭51は、搬送ライン305により搬送されて供給ホッパ304に入れられる。供給ホッパ304に入れられた前記低品位炭51は、供給フィーダ303により前記内筒301の基端側へ供給される。内筒301内に供給された前記低品位炭51は、内筒301の回転に伴い、加熱ガス61により間接加熱されつつ内筒301の基端側から先端側へ撹拌されながら流通(移動)することになる。前記低品位炭51は、内筒301の先端部側にあっては、所定の温度(例えば、250℃、好ましくは400℃)以上となる。
 前記所定の温度以上に加熱された加熱炭52は、内筒301の先端から第二改質装置本体300Bの内筒101に送給される。第二改質装置本体300Bの内筒101に送給された加熱炭52は、内筒101の回転に伴い、加熱ガス21により間接加熱されつつ、撹拌されながら先端側へ流通(移動)することになる。内筒101にて加熱ガス21により間接加熱される領域にあっては、ガス供給ノズル115により加熱炭52が積層した加熱炭層53内に酸素含有ガス13が直接供給されており、加熱炭52が酸素含有ガス13の酸素と反応して発熱することになる。これにより、加熱炭52は、加熱ガス21によって間接加熱されると共に、前記発熱反応によって直接加熱されることになり、効率良く加熱されることになる。その結果、前記加熱ガス61,21による間接加熱だけの場合と比べて、前記低品位炭51の処理時間を短くできると共に、改質装置300自体を小型化することができる。
 第二改質装置本体300Bは、上述の改質装置100と同様に、内筒101の先端部近傍に設けられた堰121を備えており、加熱炭層53が堰121よりも高くなるまでシュータ106側への移動が阻止されることから、内筒101内にて加熱炭52をより長く留まることになる。これにより、酸素含有ガス13を加熱炭層53と効率良く接触させることができる。
 加熱炭52を例えば500℃まで加熱し乾留して改質した改質炭54は、堰121を乗り越えシュータ106から下方へ落下送出することになる。
 したがって、本実施形態によれば、第一改質装置本体300Aの内筒301内に供給された低品位炭51を加熱ガス61により間接的に加熱し所定の温度(例えば、250℃、好ましくは400℃)以上となった加熱炭52をそのまま第二改質装置本体300Bの内筒101内に供給し、内筒101の回転に伴い、撹拌されながら先端側へ移動することになる。このとき、加熱炭52は、加熱ガス21により間接加熱されと共に、直接供給される酸素含有ガス13との発熱反応により直接加熱されることになる。よって、低品位炭51(加熱炭52)全体を効率良く加熱することができ、改質炭54の製造効率を向上させることができる。これにより、処理時間の短縮や装置の小型化を行うことができる。
 改質装置300が第一改質装置本体300Aを有する場合、改質装置本体300Bを新たに設置するだけであり、設備コスト増を抑制できる。
 なお、内筒301,101は、当該内筒301,101を回転駆動する駆動機構(図示せず)を備えており、内筒301,101の回転速度を例えば1rpm~5rpmとなるように調整することが好ましい。
 内筒301での低品位炭51の充填率は、10%~30%であることが好ましい。これは、10%より少ないと処理量自体が少なく、30%より多いと低品位炭51が積層した低品位炭層全体を効率良く加熱できず、生産効率の低下を招いてしまう可能性があるからである。
 [第四番目の実施形態]
 本発明に係る改質装置の第四番目の実施形態を図5および図6に基づいて説明する。本実施形態は、上述した第一番目の実施形態に係る改質装置が具備するガス供給装置を変更したものである。本実施形態では、第一番目の実施形態と同一機器には同一符号を付記している。
 改質装置400は、図5(a)および図5(b)に示すように、外筒102に外側が覆われ、回転可能に設けられた内筒401と、内筒401の先端側にて、当該内筒401と外筒102との間に配置され、固定支持された断熱材418とを備える。内筒401の先端部近傍の内周部には、板状の堰121が設けられている。断熱材418は、内筒401の所定の領域(後述のガイド機構415A,415Bの設置箇所)以外を覆うように設けられている。なお、断熱材418として、例えば、加熱ガス21との反応性が無く、一般的なものを用いることが可能である。
 内筒401の基端側には、固形状の有機物である乾燥された褐炭や亜瀝青炭等のような低品位炭(低質炭)71を供給する供給フィーダ103が当該内筒401の回転を可能としつつ連結されている。
 内筒401の先端側には、前記低品位炭71を乾留して改質した固形状の改質物(乾留物)である改質炭(乾留炭)73を下方へ落下送出すると共に、当該低品位炭1の乾留に伴って生成した乾留ガス71aを上方から送出する送出手段であるシュータ106が当該内筒401の回転を可能としつつ連結されている。
 上述した改質装置400は、前記内筒401内にて前記低質炭71が積層した低質炭層72内に酸素含有ガスとして加熱ガス21を直接供給するガス供給手段をさらに備える。前記ガス供給手段として、前記断熱材418と、例えば、図6(a)に示すように、内筒401の一部に設けられた複数の孔415Aaと、孔415Aaの縁に設けられたL字板415Abおよび直板415Acとを有し、加熱ガス21が蛇行して内筒401内に流通するガイド機構415Aを用いることが可能である。また、前記ガス供給手段として、前記断熱材418と、例えば、図6(b)に示すように、内筒401の一部に設けられた複数の孔415Baと、孔415Baの縁に設けられるU字板415Bbおよび直板415Bcとを有し、加熱ガス21が蛇行して内筒401内に流通するガイド機構415Bを用いることが可能である。
 なお、本実施形態では、内筒401に設けられ、加熱ガス21が流通可能な孔415Aa,415Baと、内筒401と外筒102の間に配置され当該内筒401の下部側以外を覆う断熱材418とを有するガイド機構415A,415Bなどがガス供給手段を構成している。
 ここで、上述した構成の改質装置400の作動を説明する。
 先ず、加熱ガス供給ライン108により外筒102内に加熱ガス21(温度:900~1200℃)を供給し、外筒102内の加熱ガス21により内筒401を加熱する。なお、加熱ガス21は、前記低品位炭71を熱処理している最中は、加熱ガス供給ライン108を介して外筒102内に供給され、内筒101を加熱した後の加熱ガス21aは、加熱ガス排出ライン109を介して系外へ排出される。内筒401内には、内筒401に設けられた不活性ガス供給手段(図示せず)などにより窒素ガスなどの不活性ガスが供給されている。
 前記低品位炭71は、搬送ライン105により搬送されて供給ホッパ104に入れられる。供給ホッパ104に入れられた前記低品位炭71は、供給フィーダ103により前記内筒401の基端側へ供給される。内筒401内に供給された前記低品位炭71は、内筒401の回転に伴い、加熱ガス21により間接加熱されつつ内筒401の基端側から先端側へ撹拌されながら流通(移動)することになる。前記低品位炭71は、内筒401の先端部側の領域L12にあっては、前記加熱ガス21により間接加熱されて所定の温度(例えば、250℃、好ましくは400℃)以上となる。この領域L12において、酸素含有ガスとして加熱ガス21が前記ガス供給手段により低品位炭71が積層した低品位炭層72内に直接供給される。加熱ガス21は、低品位炭層72内を流通することから低品位炭層72全体と直接接触することになり、所定の温度(例えば、250℃)まで高められた低品位炭71をさらに昇温することになる。これは、前記低品位炭71が前記所定の温度まで高められると、反応性が高くなり、加熱ガス21中の酸素と反応して発熱するからである。これにより、内筒401内に供給された前記低品位炭71は、外筒102内に供給された加熱ガス21により間接加熱されると共に、当該低品位炭層72内に供給される加熱ガス21との発熱反応により直接加熱されることになり、効率良く加熱されることになる。その結果、前記加熱ガス21による間接加熱だけの場合と比べて、前記低品位炭71の処理時間を短くできると共に、改質装置400自体を小型化することができる。
 また、内筒401の先端部近傍に設けられた堰121により、低品位炭層72が堰121よりも高くなるまでシュータ106側への移動が阻止されることから、内筒401の基端側と比べて内筒401の先端近傍にて低品位炭71がより長く留まることになる。これにより、加熱ガス21を低品位炭層72と効率良く接触させることができる。
 低品位炭71を例えば500℃まで加熱し乾留して改質した改質炭73は、堰121を乗り越えシュータ106から下方へ落下送出することになる。
 したがって、本実施形態によれば、内筒401内に供給された低品位炭71を加熱ガス21により間接的に加熱すると共に、所定の温度(例えば、250℃、好ましくは400℃)以上の低品位炭71が積層した低品位炭層72内に酸素含有ガスとして加熱ガス21を供給し低品位炭71と直接接触させることにより当該加熱ガス21の酸素が低品位炭71と反応し発熱して当該低品位炭71を昇温することから、低品位炭層72全体を効率良く加熱することができ、改質炭73の製造効率を向上させることができる。これにより、処理時間の短縮や装置の小型化を行うことができる。
 なお、内筒401は当該内筒401を回転駆動する駆動機構(図示せず)を備えており、内筒401の回転速度を例えば1rpm~5rpmとなるように調整することが好ましい。
 内筒401での低品位炭71の充填率は、10%~30%であることが好ましい。これは、10%より少ないと処理量自体が少なく、30%より多いと低品位炭71が積層した低品位炭層72全体を効率良く加熱できず、生産効率の低下を招いてしまう可能性があるからである。
 前記低品位炭層72への前記加熱ガス21の供給流速は、例えば、0.05m/秒~3m/秒に調整されると好ましく、0.1m/秒~1m/秒に調整されるとより好ましい。これは、前記加熱ガス21の供給流速が0.05m/秒よりも小さいと、粉塵(微粉炭)が前記ガイド機構415A,415B内に入り込みやすくなるからであり、前記加熱ガス21の供給流速が3m/秒よりも大きいと、前記加熱ガス21が慣性力により前記内筒101の中心C1へ流れてしまい、前記低品位炭層72内を十分に加熱ガス21が流通せずに通過してしまうからである。
 加熱ガス21の低品位炭層72内への供給量は、例えば、3(NL-O2/分/kg-前記低品位炭71)以上30(NL-O2/分/kg-前記低品位炭71)以下となるように調整されると好ましい。これは、前記加熱ガス21の前記低品位炭層72内への供給量が3(NL/分/kg-前記低品位炭71)よりも少ないと、低品位炭層72内に十分に酸素を供給できない可能性があるからであり、前記加熱ガス21の前記低品位炭層72内への供給量が30(NL/分/kg-前記低品位炭71)よりも多いと、酸素が過多となり反応が進行しすぎてしまう可能性があるからである。
 加熱ガス21の酸素濃度は、1~10%であることが好ましい。これは、酸素濃度が1%より低いと、低品位炭層72を十分に昇温できない可能性を高めてしまうからであり、酸素濃度が10%より高いと、酸素が過多となり反応が進行しすぎてしまう可能性があるからである。
 [他の実施形態]
 なお、上記では、ガス供給管114の基端に酸素含有ガス送給管113を接続した改質装置を用いて説明したが、ガス供給管114およびガス供給ノズルを二重管とし、一方に不活性ガス供給源112aおよび不活性ガス送給管112を接続し、他方に空気送給管111およびブロア111aを接続した改質装置とすることも可能である。このような場合であっても、上述した改質装置と同様な作用効果を奏する。
 上記では、乾燥された低品位炭1,31,51,71を加熱し乾留して改質する場合について説明したが、本発明はこれに限らず、固形状の有機物を加熱し乾留して改質する場合であれば、上述した実施形態の場合と同様に適用して、前述した実施形態の場合と同様な作用効果を得ることができる。
 本発明に係る改質装置は、有機物全体を効率良く加熱できるので、発電産業などにおいて、極めて有益に利用することができる。
1  低品位炭(低質炭)、1a  乾留ガス、2  低品位炭層、3  改質炭(乾留炭)、11  空気、12  不活性ガス(窒素ガス)、13  酸素含有ガス、21  加熱ガス、31  低品位炭(低質炭)、31a  乾留ガス、32  加熱炭、33  加熱炭層、34  改質炭(乾留炭)、41  加熱ガス、51  低品位炭(低質炭)、51a  乾留ガス、52  加熱炭、53  加熱炭層、54  改質炭(乾留炭)、61  加熱ガス、100  改質装置、101  内筒、102  外筒、103  供給フィーダ、104  供給ホッパ、105  搬送ライン、106  シュータ、107  排気管、108  加熱ガス供給ライン、109  加熱ガス排出ライン、110  ガス供給装置、111  空気送給管、111a  ブロア、111b  流量調整弁、112  不活性ガス送給管、112a  不活性ガス供給源、112b  流量調整弁、113  酸素含有ガス送給管、114  ガス供給管、115  ガス供給ノズル、116  固定具、117  支持具、200  改質装置、200A  第一改質装置本体、200B  第二改質装置本体、300  改質装置、300A  第一改質装置本体、300B  第二改質装置本体、400  改質装置、401  内筒、415A,415B  ガイド機構、418  断熱材、A  内筒の回転方向、C1  内筒の中心軸、L1  ガス供給ノズルの延在方向の補助線、L2  内筒の中心を通る垂線、L3  内筒の接線(補助線)、L11  加熱ガスによる加熱領域、L12  酸素含有ガス(加熱ガス)による加熱領域

Claims (13)

  1.  固形状の有機物を内部に流通させる炉本体と、
     前記炉本体の内部の前記有機物を間接的に加熱する間接加熱手段と、
     前記炉本体の内部にて、前記間接加熱手段により加熱されて所定の温度となり、前記有機物が積層した有機物層内に酸素を含有するガスを供給するガス供給手段と、
     前記ガスにより前記有機物がさらに加熱され乾留されて改質された固形状の改質物を送出する送出手段と、を備えていることを特徴とする改質装置。
  2.  請求項1に記載された改質装置であって、
     前記ガス供給手段は、前記有機物層内に前記ガスを供給するガス供給ノズルを有する
    ことを特徴とする改質装置。
  3.  請求項2に記載された改質装置であって、
     前記ガス供給ノズルは複数あり、複数のガス供給ノズルは、前記有機物が250℃以上となる領域に前記ガスを供給するように配置される
    ことを特徴とする改質装置。
  4.  請求項2または請求項3に記載された改質装置であって、
     前記ガス供給ノズルは、前記炉本体の中心を通る垂線に対し当該炉本体の回転方向にて安息角±安息角(0°~2×安息角)の範囲で延在する
    ことを特徴とする改質装置。
  5.  請求項2から請求項4の何れか一項に記載された改質装置であって、
     前記ガス供給ノズルの先端部は、水平または前記水平よりも下方へ屈曲している
    ことを特徴とする改質装置。
  6.  請求項1に記載された改質装置であって、
     前記炉本体を覆う外筒を備え、
     前記ガス供給手段は、前記炉本体に設けられ、前記間接加熱手段による加熱ガスが流通可能な孔部と、前記炉本体と前記外筒の間に配置され当該内筒の下部側以外を覆う断熱材とを有する
    ことを特徴とする改質装置。
  7.  請求項1から請求項6の何れか一項に記載された改質装置であって、
     前記炉本体が1つである
    ことを特徴とする改質装置。
  8.  請求項1から請求項6の何れか一項に記載された改質装置であって、
     前記炉本体が2つであり、
     一方の前記炉本体にて、前記間接加熱手段により前記有機物を前記所定の温度まで加熱し、
     他方の前記炉本体にて、前記ガス供給手段が供給する前記ガスにより前記有機物をさらに加熱し乾留して改質した固形状の改質物を生成する
    ことを特徴とする改質装置。
  9.  請求項8に記載された改質装置であって、
     一方の前記炉本体と他方の前記炉本体が連結している
    ことを特徴とする改質装置。
  10.  請求項1から請求項9の何れか一項に記載された改質装置であって、
     前記ガスの前記炉本体内への供給流速は、0.05m/秒~3m/秒に調整される
    ことを特徴とする改質装置。
  11.  請求項1から請求項10の何れか一項に記載された改質装置であって、
     前記ガスの前記有機物層内への供給量は、3(NL-O2/分/kg-前記有機物)以上30(NL-O2/分/kg-前記有機物)以下となるように調整される
    ことを特徴とする改質装置。
  12.  請求項1から請求項11の何れか一項に記載された改質装置であって、
     前記ガスの酸素濃度は、1~10%である
    ことを特徴とする改質装置。
  13.  請求項1から請求項12の何れか一項に記載された改質装置であって、
     前記有機物は、低品位炭である
    ことを特徴とする改質装置。
PCT/JP2015/062922 2014-08-11 2015-04-30 改質装置 WO2016024421A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2015302809A AU2015302809A1 (en) 2014-08-11 2015-04-30 Reforming apparatus
CN201580050248.1A CN107075383A (zh) 2014-08-11 2015-04-30 改质装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014163422A JP2016037587A (ja) 2014-08-11 2014-08-11 改質装置
JP2014-163422 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016024421A1 true WO2016024421A1 (ja) 2016-02-18

Family

ID=55304054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062922 WO2016024421A1 (ja) 2014-08-11 2015-04-30 改質装置

Country Status (4)

Country Link
JP (1) JP2016037587A (ja)
CN (1) CN107075383A (ja)
AU (1) AU2015302809A1 (ja)
WO (1) WO2016024421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804446A (zh) * 2019-10-18 2020-02-18 酒泉钢铁(集团)有限责任公司 一种煤炭干馏回转炉提高干馏质量的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510788A (ja) * 1993-08-19 1996-11-12 シーメンス アクチエンゲゼルシヤフト 廃棄物熱処理設備並びにその設備の運転方法
JP2001200266A (ja) * 2000-01-21 2001-07-24 Nkk Design & Engineering Corp 連続式固形廃棄物炭化装置
JP2002130629A (ja) * 2000-10-26 2002-05-09 Chisaki:Kk 可燃原料の横型回転加熱処理装置及び加熱処理方法
JP2013189554A (ja) * 2012-03-12 2013-09-26 Mitsubishi Heavy Ind Ltd 石炭乾留装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510788A (ja) * 1993-08-19 1996-11-12 シーメンス アクチエンゲゼルシヤフト 廃棄物熱処理設備並びにその設備の運転方法
JP2001200266A (ja) * 2000-01-21 2001-07-24 Nkk Design & Engineering Corp 連続式固形廃棄物炭化装置
JP2002130629A (ja) * 2000-10-26 2002-05-09 Chisaki:Kk 可燃原料の横型回転加熱処理装置及び加熱処理方法
JP2013189554A (ja) * 2012-03-12 2013-09-26 Mitsubishi Heavy Ind Ltd 石炭乾留装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804446A (zh) * 2019-10-18 2020-02-18 酒泉钢铁(集团)有限责任公司 一种煤炭干馏回转炉提高干馏质量的装置及方法

Also Published As

Publication number Publication date
AU2015302809A1 (en) 2017-03-23
CN107075383A (zh) 2017-08-18
JP2016037587A (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
AU2015207969B2 (en) Coal dry distillation device
WO2015122068A1 (ja) 不活性化処理装置
JP6456485B2 (ja) 分散性原料の熱処理の方法およびシステム
US9701919B2 (en) Coal inactivation processing apparatus
US20160176760A1 (en) Parallel-flow regenerative lime kilns and processes for burning and cooling carbonate rock in same
WO2016024421A1 (ja) 改質装置
JP6192735B2 (ja) 回転加熱分解リアクタ形装置及び副生成物や廃棄物を熱分解するために構成されたその種のリアクタを動作させる方法
US11034616B2 (en) System having a furnace and method for operating such a system
CN105318681B (zh) 干燥器或热解器
ITTO941078A1 (it) Reattore per il riscaldamento e il trattamento di materiali in atmosfe ra controllata
JP2010197024A (ja) 乾燥装置
JP2009190920A (ja) 石膏再生装置およびロータリキルン炉
WO2016136045A1 (ja) 改質装置
JP5714142B2 (ja) 石炭乾留装置
JP3439059B2 (ja) 還元鉄製造装置
CN220892784U (zh) 一种兰炭干燥装置
WO2015083508A1 (ja) 石炭不活性化処理装置
US2413933A (en) Material handling apparatus
EP2416876A1 (en) Method of processing plastics waste, especially polyolefines and a device for processing plastics waste, especially polyolefines
CN106830718A (zh) 用于回转窑预热器的分料装置
CN106607202A (zh) 摩托车生产零件处理辅助系统
AU2015207970A1 (en) Coal dry distillation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015302809

Country of ref document: AU

Date of ref document: 20150430

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15831496

Country of ref document: EP

Kind code of ref document: A1