WO2016024408A1 - Iron supplying member for environmental water, iron supplying member maintenance method and method for supplying iron to environmental water - Google Patents

Iron supplying member for environmental water, iron supplying member maintenance method and method for supplying iron to environmental water Download PDF

Info

Publication number
WO2016024408A1
WO2016024408A1 PCT/JP2015/004054 JP2015004054W WO2016024408A1 WO 2016024408 A1 WO2016024408 A1 WO 2016024408A1 JP 2015004054 W JP2015004054 W JP 2015004054W WO 2016024408 A1 WO2016024408 A1 WO 2016024408A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
carbon
environmental water
bar
water
Prior art date
Application number
PCT/JP2015/004054
Other languages
French (fr)
Japanese (ja)
Inventor
小島 昭
昌生 藤重
敏明 石井
Original Assignee
石井商事株式会社
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石井商事株式会社, 独立行政法人国立高等専門学校機構 filed Critical 石井商事株式会社
Priority to JP2016542508A priority Critical patent/JPWO2016024408A1/en
Publication of WO2016024408A1 publication Critical patent/WO2016024408A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Definitions

  • the present invention relates to an iron supply material to environmental water that can always maintain a good contact state between a carbon material and an iron material, a maintenance method thereof, and an iron supply method to environmental water using the same.
  • Patent Document 1 discloses a water reforming apparatus that adds a predetermined function to water by being placed in a water pipe or a water tank or the like in a state of being submerged in water. Corrosion of the higher-potential metal plate 42 having a smaller ionization tendency among the two different-type metal plates is made by providing the two different types of different metals 41 and 42 in a state of being in close contact with each other. The lower potential of the higher potential of ionization due to the sacrificial corrosion action of the lower potential of the metal plate 41 that moves electrons from the lower potential metal plate 41 to the higher metal plate 42 to prevent.
  • a technique is described in which metal ions are permanently eluted from the metal plate 41 and the functions of the metal ions are applied to water and / or water piping, water storage tanks and the like in contact with the water.
  • This technique is described as “a configuration in which two different kinds of different metals having different ionization tendencies (potentials) are provided in close contact with each other”, and it is necessary that the different kinds of metals are in close contact.
  • Patent Document 2 as provision of a water treatment tool capable of sustaining efficient elution of metal ions over a long period of time, a predetermined water treatment is performed by metal ions eluted by immersing in water to be treated. It is a water treatment tool to be performed, and a metal sheet containing carbon and a metal plate having a lower potential (high ionization tendency) than carbon one by one, or in a state where a plurality of sheets are alternately stacked so that the metal becomes an outer surface And a fiber sheet containing carbon on both end faces by being pressed and rolled into a stacking direction by pressing or rolling so that the fiber sheet containing carbon and the metal plate are kept in close contact with each other.
  • the structure by which the contact boundary part with a metal plate is exposed and formed in the state which contacts water is disclosed.
  • This technology is also said to have a structure in which the steel sheet is pressed or rolled in the stacking direction so that the fiber sheet containing carbon and the metal plate are kept in close contact with each other. Is essential.
  • Patent Document 3 a metal ion water production method or water treatment method and metal ion water production tool or water treatment apparatus capable of efficiently performing water treatment for various treatments at low cost.
  • a local battery is formed by immersing a water treatment apparatus having a structure in which two kinds of metals having different ionization tendencies are in close contact with each other in water to be treated, and metal ions eluted from a metal having a large ionization tendency It is said that water treatment (sterilization, algae killing) is performed.
  • This technique is also “a water treatment apparatus having a structure in which two types of metals having different ionization tendencies are in close contact with each other” and is a direct contact type of two types of metals.
  • Patent Document 4 it is important to remove phosphorus in water or to make it insoluble in water in order to prevent the occurrence of aquatic or acacio by phosphorus, and this is insoluble in water by chemical reaction with phosphorus.
  • Flocculants iron compounds, aluminum compounds, etc.
  • the anion component added at the same time accelerates environmental pollution.
  • only iron is put into water. It is described that a method of supplying was found. It provides a phosphorus removal apparatus and a phosphorus removal method that can quickly remove phosphorus in water without adding unnecessary ions and components therein.
  • Patent Document 5 is an apparatus for removing phosphorus dissolved in water to be treated containing phosphorus and selected from the group consisting of magnesium, aluminum, zinc and iron.
  • An anode member made of one or more metals and a high standard electrode potential material having a higher standard electrode potential than the metal, or a cathode member made of a carbon material having electrical conductivity, and at least A phosphorus removal apparatus is disclosed, wherein a part of the anode member and a part of the cathode member are in contact with each other.
  • a phosphorus removal method in which a part of an anode member and a part of a cathode member are brought into contact with each other in water to be treated to precipitate a phosphorus compound.
  • the carbon material needs to have high electrical conductivity.
  • the optimal carbon material is a graphite material, but it cannot be used from an economic viewpoint.
  • the carbon fiber is preferably graphitized carbon fiber, but is difficult to use from the viewpoint of cost. Carbon fiber is an artificial material and cannot be decomposed in nature. Therefore, it is indispensable to collect, but it is often difficult with environmental water.
  • the inventors have heretofore carried out direct adhesion between a carbon material and an iron material in order to generate iron ions that remove phosphorus in water.
  • the present invention has solved such problems.
  • the problems so far are listed.
  • the iron material in the carbon fiber fabric was not completely dissolved, and most of it remained. Then, when we pulled out the iron net from the carbon fiber fabric, a large amount of red matter was attached. Moreover, the peeled red thing was storing in the lower part of the carbon fiber bag. From such a situation, it is considered that the contact between iron and carbon fibers is hindered by the red material, the dissolution of iron is stopped, and the decrease in the phosphorus concentration in water disappears.
  • the red matter adhered to the iron net and the red matter stored at the bottom of the carbon fiber fabric were oxides formed by oxidation of iron or iron phosphate.
  • the present invention has been developed in view of the above-described situation, and a maintenance method for an iron supply material to environmental water that can always maintain a good contact state between a carbon material and an iron material, and an environment using the same. It aims at providing with the iron supply method to water. That is, in the present invention, the carbon material and the iron material are not brought into close contact with each other, but are brought into contact with each other through a conducting wire, or the carbon material having a large surface area is brought into contact with each other through the iron material and the conducting wire.
  • the above-mentioned problems were successfully eliminated by a method in which the carbon material was brought into contact with each other via a conductive wire.
  • the inventors repeated trials and created an indirect contact type iron melting material in which an iron material and a carbon material are brought into contact with each other through a lead wire. Instead of making direct contact between the iron material and the carbon material, we examined whether it is possible to make contact through a conductor having electrical conductivity.
  • seawater was put into a beaker, and a carbon bar and a steel bar were separated from each other, and each end was connected by a single wire fixed with an alligator clip.
  • a reddish brown precipitate at the bottom of the beaker. This indicates that the iron has dissolved. Since the carbon material and the iron material are connected by a conductive wire, it was confirmed that the iron can be dissolved without direct contact.
  • the phenomenon described above is caused by indirect contact between a carbon material and an iron material in water to generate iron ions, which react with phosphate ions, resulting in insoluble phosphorus. It is explained by making it into a compound.
  • the iron ions supplied into the water are generated by generating a chemical cell by indirectly contacting the carbon material and the iron material in the water, generating an electromotive force.
  • the magnitude of the electromotive force can be determined by measuring the voltage and current. If the electromotive force is large, the generated current is large and the amount of iron dissolved is large.
  • the electromotive force varies depending on the surface area of the iron material and carbon material used. In order to increase the amount of iron dissolved, it is necessary to make the surface area of the carbon material larger than that of the iron material.
  • the surface area in this invention is the surface area calculated
  • the gist configuration of the present invention is as follows. 1. An iron material, a carbon material, and a conductive material, wherein the iron material and the carbon material are arranged without being bound to each other, and the volume resistivity of the conductive material is 10 ⁇ 4 ⁇ ⁇ m or less, and the conductive material Is an iron supply material to the environmental water connecting the iron material and the carbon material.
  • the iron supply material for environmental water described in any one of 10 to 12 above is installed in at least one environmental water selected from among rivers, lakes and seas, and iron is eluted into the environmental water as an iron complex. To supply iron to environmental water.
  • a maintenance method for an iron supply material to environmental water in which only the iron material is taken out and replaced from the iron supply material to the environmental water described in any one of 1 to 12 above.
  • a method for maintaining an iron supply material to environmental water by measuring the amount of conduction of the conducting material of the iron supply material to the environmental water according to any one of 1 to 12 above, and determining a replacement time of the iron material.
  • the iron supply material according to the present invention can arbitrarily control the amount of iron dissolved, it is possible to effectively supply iron and iron complexes to the environmental water.
  • the iron supply material to the environmental water of the present invention comprises an iron material, a carbon material, and a conductive material, and the iron material and the carbon material are arranged without being bound to each other, that is, separated from each other. ing.
  • the iron material and the carbon material are connected (indirectly contacted) by a conductive material having a volume resistivity of 10 ⁇ 4 ⁇ ⁇ m or less, preferably 10 ⁇ 7 ⁇ ⁇ m or less.
  • the conductive material is not particularly limited as long as the volume resistivity is 10 ⁇ 4 ⁇ ⁇ m or less, but it needs to be able to withstand use in an environment with environmental water.
  • Specific examples include lead wires, electric wires, enamel wires, vinyl wires, cable wires, tin-plated wires, etc., which have a configuration in which a conductive material such as metal or carbon fiber is covered with an insulating material. is there. It is preferable to set the volume resistivity of the conductive material to 10 ⁇ 7 ⁇ ⁇ m or less because sensitivity at the time of current measurement described below is increased and life (replacement time limit) can be managed more accurately.
  • a connector can be used when connecting a conducting wire from a plurality of carbon materials (or iron materials) and one iron material (or carbon material). Carbon fiber can also be used. When not used in water, the metal may be exposed. However, when used in a natural environment exposed to wind and rain, particularly underwater or in the sea, it is necessary to be covered with an insulating material.
  • the iron material is basically free of harmful impurities.
  • an iron material having a purity of 99% or more is preferable.
  • the country defines a component having a purity of 90% or more and high biotoxicity determined by the country. Any iron material that does not contain more than the standard may be used.
  • what contains iron content partially can also be used, In this case, the elution part of an iron ion may be called an iron material.
  • the shape of the iron material is appropriately selected according to the installation environment, but is preferably at least one selected from a plate, a bar, a net, a cylinder, a sheet, a lump, and the like.
  • the carbon material is preferably one that has high electrical conductivity, low electrical specific resistance, high mechanical strength, and is not easily broken.
  • graphite for crucible graphite material, electrode material, carbon material for motor brush, charcoal, bamboo charcoal and the like. Further, in order to increase the durability and strength of the graphite material, it can be protected by covering the outer periphery with a net or mesh.
  • a high conductivity and high quality graphite material can be selected, and its electrical conductivity is 10 0 ⁇ ⁇ m or less in volume resistivity, preferably 10 ⁇ 4 ⁇ . -It is preferable that it is m or less.
  • the part containing carbon may be called a carbon material.
  • the shape of the carbon material is not particularly limited, but is preferably a plate shape.
  • the above configuration is particularly effective for the treatment of industrial wastewater containing a large amount and high concentration of phosphorus.
  • a large amount of iron ions is required.
  • the structure which the iron material has connected with the carbon material by 2 or more can be taken. This is because by adopting this configuration, it becomes possible to supply stable iron in a wide range.
  • purification can be achieved by installing a number of purification units that connect multiple iron materials to one carbon material, and one iron material and multiple carbon materials, from upstream to downstream. Processing is possible.
  • oysters and shellfish farms under seawater flow require high-concentration iron supply, but one carbon material and several iron materials, one iron material and several iron materials on the squid. By connecting carbon materials, high concentration iron can be supplied.
  • the iron supply material of the present invention When the iron supply material of the present invention is used to proliferate seaweed and aquatic plants, a carbon material and a plurality of iron materials are connected, that is, an iron supply in which one carbon material and a plurality of iron materials are connected by lead wires. Create a unit and float it on the surface of the water. And the iron supply material of this invention can be used in order to proliferate seaweed and aquatic plants by hold
  • a structure of this invention as shown in FIG. 4, it is good also as a communication pipe type.
  • the iron supply material of the present invention is effective for use in lakes and the like having a large area. It is a combination of one carbon material and a plurality of iron materials, covering a wide area, especially in places where a large amount of iron ions are required, using one iron material and a plurality of carbon materials. This is because the environmental water can be efficiently purified.
  • connection between the iron material and the conductive material, and the carbon material and the conductive material is performed by using a method of sandwiching with a crocodile clip, a clamp, an edge, etc., using a conductive adhesive (or paste, tape, sheet, paint, etc.).
  • a method of bonding a method of fixing with a bolt via a metal plate on both sides of a carbon material, a method of drilling a hole in the upper surface or side surface of a carbon material, and inserting (screwing) a metal rod into the conductive material.
  • a publicly known connection method and means for connecting the electrodes can be used.
  • a method used for a carbon brush can be cited as a suitable example for the connection between the carbon material and the conductive material. It is also possible to insert it into a connecting jig (a jig having an insertion hole) made of the same material as the conducting wire.
  • a connecting jig a jig having an insertion hole
  • a connection method that does not cause local battery action at the connection point with the iron material should be adopted. Is required. This is because the connection location may be lost.
  • the above-described iron supply material to the environmental water can be configured such that humus is in contact with at least a part of the iron material, and the arrangement thereof It is preferable to arrange humus on the outer periphery of the iron material.
  • the iron material and the carbon material may be a basic configuration of the iron supply material, and humus may be disposed on the outer periphery of the iron material. preferable.
  • the humus in the present invention is not particularly limited as long as it is a known humus, but specifically, organic matter produced by the above-ground plants in the forest ecosystem becomes deciduous trees, deciduous leaves, and twigs, and accumulates on the surface. Because it is decomposed by biochemical metabolic action by microorganisms such as bacteria and earthworms such as earthworms (deciduous leaf decomposition) and becomes soil, strictly speaking, it is not soil, but generally Use what is called humus or humus.
  • Naturally humus is often biased towards nitrogen, but phosphoric acid and potassium may be supplemented by earthworms, other animal feces and microorganisms.
  • phosphoric acid and potassium may be supplemented by earthworms, other animal feces and microorganisms.
  • the humus produced artificially has the component adjusted artificially, there is no problem in the use to this invention.
  • leaves that tend to become humus are deciduous trees and broad-leaved trees, such as deciduous trees and broad-leaved trees, that are easy to ferment, and leaves that are rich in oil such as cedar and pine are less likely to become humus.
  • humus takes more than a year or two to ferment, but when it is made artificially, it uses rice bran to create an environment that is easy to ferment. Therefore, the period until completion is shortened to about two months.
  • the properties of humus vary depending on the raw materials and the production method, but it is important to select the most suitable humus.
  • the mulch is preferably one that has thick leaf flesh such as cypress, sardine, arakashi, beech, kunugi, konara, chestnut, and deposits fallen leaves of broad-leaved trees and is appropriately fermented.
  • the condition to be used should be fermented to the extent that it can be easily broken by hand, and the ones that use fallen leaves of the beech family such as Japanese oak and chestnut are especially best.
  • what contains iron, potassium, calcium, magnesium etc. which are essential elements for the growth of seaweed as a mineral component is preferable.
  • the content of fulvic acid is small and the effect is small.
  • the present invention can be wrapped from the outside of the mulch with a self-shrinking lashing material. This is because, with such a configuration, the iron material and the humus can always come into contact stably.
  • the lashing material in the present invention is preferably a mesh-shaped rubber material or a nylon net, but for example, it is simply fastened with a rubber string or tyed with a nylon thread or the like. To include.
  • the iron supply material according to the present invention is installed in any place (environmental water) that requires supply of iron, that is, in a river, a lake, or the sea, so that iron can be effectively converted into ions or iron complexes in environmental water. Can be eluted.
  • the surface area and number of carbon materials and / or iron materials in the environmental water are adjusted, and the elution amount of iron as iron or iron complex is adjusted.
  • the iron material and the carbon material are not in direct contact, it is possible to take out and replace only the iron material from the iron supply material to the environmental water. Moreover, recovery of iron oxide and iron hydroxide produced by dissolving iron has not been easy. This is because the iron supply material is plate-like and bulky, and it is difficult to install the collection container.
  • the iron supply material in the present invention since the carbon material and the iron material are separately arranged, the product from the iron material is only the lower part of the iron material, and the lower part of the iron material is covered with a cloth bag or the like. Thus, recovery can be performed easily. Specifically, as shown in FIG. 7, by arranging a container around the iron material, the red product can be collected and the diffusion to the natural environment is prevented.
  • the iron supply material to the environmental water according to the present invention can accurately determine the replacement time of the iron material by measuring the amount of conduction of the conductive material. It is important to create a management standard beforehand, for example, when the initial energization amount is reduced to 80% or 50%. This eliminates the need to go to land many times to check the actual iron content.
  • the energization amount may be at least one selected from current, voltage, and power.
  • Example 1 In salt water, iron and charcoal were in close contact, and iron and charcoal were contacted with a conductive material.
  • the two photographs shown in FIGS. 8 and 9 are the carbon plate and iron plate, carbon rod and iron rod used in the examples. There are carbon plates with and without connection terminals, and the carbon plates in FIG. 9 have metal copper terminals.
  • the terminal portion is also covered with an insulating film.
  • the rotation speed was 180 rpm.
  • Experiment 1-2 (Invention example): A steel bar and a carbon bar were connected with a lead wire, and only the lower part of 4.4 cm was attached to the solution. The aqueous sodium chloride solution was stirred with a stirrer. The rotation speed was 180 rpm. Moreover, the volume resistivity of the lead wire as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m. After elapse of a predetermined time, the iron bar was taken out, washed with water and dried, and the mass was measured. At that time, the sodium chloride aqueous solution was replaced with a new aqueous solution. Table 1 shows the mass of the iron bar after a predetermined time.
  • Experiment 2-1 (Comparative Example): One iron bar was set up vertically in a beaker.
  • Experiment 2-2 Invention Example: An iron bar and a carbon bar were each set up vertically in a beaker. The distance between the carbon bar and the iron bar was about 3.7 cm. The iron bar and the carbon bar were connected by a lead wire which is a conductive material. The length of the lead wire itself was about 34 cm. The volume resistivity of the lead wire was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • Experiment 2-3 (Invention Example): Two iron bars (iron bar 1 and iron bar 2) and one carbon bar were set up vertically in a beaker.
  • the distance between the carbon bar and the iron bar 1 was about 3.7 cm, and the distance between the carbon bar and the iron bar 2 was 7.1 cm.
  • the two iron bars and the carbon bar were connected by lead wires. All salt water was stirred with a stirrer.
  • the volume resistivity of each of the lead wires as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • the dissolution rate of the two iron bars combined was 1.699 mg / H (0.738 mg / cm 2 ⁇ H), which was higher than when only one iron bar was used.
  • it is more effective to use a pair of iron bars and carbon bars.
  • the method of connecting a plurality of iron bars to one carbon bar has the advantage of reducing the number of carbon bars used.
  • Experiment 3-1 (Comparative Example): One iron bar was set up vertically in a beaker.
  • Experiment 3-2 (Invention): Three iron bars (iron bar 1, iron bar 2, and iron bar 3) and one carbon bar were set up vertically in a beaker. The distance between the carbon rod and the iron rod 1 was about 4.0 cm, the distance between the carbon rod and the iron rod 2 was 3.9 cm, and the distance between the iron rod 3 and the carbon rod was 3.9 cm. Each iron bar and carbon bar were connected by lead wires. The brine was stirred with a stirrer. After a predetermined time had elapsed, each iron bar was pulled up, washed with pure water, dried, and then weighed.
  • the volume resistivity of each of the lead wires as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • the beaker containing the iron bar became reddish brown and became opaque due to the formation of precipitates.
  • Table 3 shows the mass of the iron bar over time.
  • Example 4 When one iron was put in salt water alone, one iron and one charcoal were contacted with a conductive material, and the dissolution situation of iron was examined when three charcoal were contacted with one iron with a conductive material. .
  • a 3% aqueous sodium chloride solution was added to a 3 L beaker.
  • the iron bar used in the experiment was 2 mm in diameter and about 10 cm in length.
  • the carbon rod (volume resistivity: 10 ⁇ 4 ⁇ ⁇ m) had a diameter of 5 mm and a length of about 10 cm. Both were set to soak in 4.5 cm in an aqueous sodium chloride solution.
  • Experiment 4-1 (Comparative Example): One pure iron bar was set up vertically in a beaker.
  • Experiment 4-2 Invention Example: One iron bar and one carbon bar were set up vertically in a beaker and connected with lead wires. The distance between the carbon bar and the iron bar was about 3.9 cm. The volume resistivity of the lead wire as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • Experiment 4-3 Invention Example: One iron rod and three carbon rods (carbon rod 1, carbon rod 2, and carbon rod 3) were set up vertically in a beaker. The distance between the iron bar and the carbon bar was about 3.9 cm. The iron bar and each carbon bar were connected with lead wires.
  • the brine was stirred with a stirrer.
  • the volume resistivity of each of the lead wires as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • the iron bar was pulled up, washed with pure water, dried, and then weighed. Over time, the beaker containing the iron bar became reddish brown and became opaque due to the formation of precipitates. Table 4 shows the mass of the iron bar over time.
  • Example 5 We examined how the dissolution of iron was affected by the difference in size and area of iron and charcoal in salt water. There were two types of carbon materials (volume resistivity: 10 ⁇ 4 ⁇ ⁇ m), rod-shaped ( ⁇ 5 mm ⁇ 10 cm) and plate-shaped (12 cm ⁇ 4.2 cm ⁇ 8 mm: with terminal). There were two types of iron materials, rod-shaped ( ⁇ 2 mm ⁇ 10 cm) and plate-shaped (12 cm ⁇ 4.5 cm ⁇ 0.5 mm). The upper end of the iron bar / iron plate and the engaging part of the alligator clip were polished with No. 2000 sandpaper and used.
  • the surface area of each material used was a carbon plate (82.62cm 2), iron (68.7cm 2), carbon rod (10.21cm 2), were iron bar (4.1 cm 2),
  • the carbon plate had a surface area of 82.62 cm 2
  • the iron plate had a surface area of 68.7 cm 2
  • the carbon rod had a surface area of 10.21 cm 2
  • the iron rod had a surface area of 4.1 cm 2 .
  • a 3% aqueous sodium chloride solution was added to a 2 L beaker.
  • the length of the steel bar and the carbon bar immersed in the salt water was 6.5 cm, and the length of the steel plate and the carbon plate immersed in the liquid was 7.3 cm.
  • Experiment 5-1 (Comparative Example): One iron bar was vertically set in salt water.
  • Experiment 5-2 (Invention Example): One iron bar and one carbon bar were connected by a lead wire. Their spacing was 1 cm.
  • Experiment 5-3 (Invention): One iron bar and one carbon plate were connected by a lead wire. Their spacing was 1 cm.
  • Experiment 5-4 (Comparative Example): One iron plate was placed vertically in salt water.
  • Experiment 5-5 (Invention): One iron plate and one carbon plate were connected by a lead wire.
  • the amount of iron dissolved varied depending on the combination of carbon and iron used. It was in Experiment 5-5 with a carbon plate and an iron plate that iron was dissolved most. The dissolution rate of iron was 16.3 mg / H (0.244 mg / cm 2 ⁇ H). Then, in Experiment 5-3 for a carbon plate and a steel bar, the dissolution rate was 6.18 mg / H (1.51 mg / cm 2 ⁇ H). Although the dissolution of iron was slight when the carbon rod was used, the use of the carbon plate significantly promoted the dissolution of iron. When a large amount of iron is dissolved in a short time, a carbon material having a large surface area is used. Further, when iron is dissolved, it is effective to increase the surface area of the iron material. The current and voltage generated between the carbon plate and the iron plate were measured with a tester (Digital Tester M-04, Custom Co., Ltd.), and the results are shown in Table 5-2.
  • Example 6 In fresh water, the state of dissolution of iron was examined when one carbon rod was brought into contact with three steel rods with a conducting material.
  • the aqueous solution used was a solution obtained by adding 6 mL of phosphorus standard solution (phosphorus concentration: 1000 mg / L) to 3 L of pond water. About 100 mL of pond water was added to a 100 mL beaker, and an iron bar and a carbon bar were inserted therein.
  • the iron bar used had a diameter of 2 mm and a length of about 10 cm
  • the carbon bar volume resistivity: 10 ⁇ 4 ⁇ ⁇ m) had a diameter of 5 mm and a length of about 10 cm.
  • the solution was exchanged after measuring the mass of the iron bar after a predetermined time.
  • the following experiment was performed using this aqueous solution.
  • Each beaker was stirred (200 rpm) with a magnetic stirrer.
  • Experiment 6 About 100 mL of pond water was added to a 100 mL beaker, and three iron bars and one carbon bar were set therein, and each was connected with a lead wire.
  • the length of the steel bar in the water was 3.8 cm.
  • the distance between the carbon bar and the three steel bars was 3.4 cm (iron bar 1), 5.3 cm (iron bar 2), and 3.6 cm (iron bar 3), respectively.
  • the volume resistivity of each of the lead wires as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • the dissolution rates of the three iron bars were 0.14 mg / H, 0.13 mg / H and 0.15 mg / H.
  • the total of the three was 0.42 mg / H (0.144 mg / cm 2 ⁇ H).
  • the distance between the carbon bar and the steel bar does not significantly affect the dissolution rate of the steel bar.
  • Experiment 7-1 (Comparative Example): One pure iron bar was set up vertically in a beaker.
  • Experiment 7-2 (Invention Example): One iron bar and one carbon bar were set up vertically in a beaker and connected with lead wires. The distance between the carbon bar and the iron bar was about 3.9 cm. The volume resistivity of the lead wire as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • Experiment 7-3 (Invention): One iron rod and three carbon rods (carbon rod 1, carbon rod 2, and carbon rod 3) were set up vertically in a beaker. The distance between the iron bar and the carbon bar was about 3.9 cm. The iron bar and each carbon bar were connected with lead wires. The volume resistivity of the lead wire as the conductive material was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • the pond water was stirred with a stirrer. After a predetermined time elapsed, the iron bar was pulled up, washed with pure water, dried, and then weighed. Over time, the beaker containing the iron bar became reddish brown and became opaque due to the formation of precipitates. Table 7-1 shows the mass of the iron bar over time.
  • Experiment 7-1 The dissolution rate of iron when the iron rod was immersed in pond water for 136 hours was 0.082 mg / H.
  • Experiment 7-2 The dissolution rate when the carbon rod and the iron rod were connected by the lead wire was 0.332 mg / H. It was about 4 times larger than the case of only a horizontal bar.
  • Experiment 7-3 When three carbon rods are connected to one iron rod with three lead wires, the dissolution rate of iron is 0.543 mg / H, which is about 6.6 times that of the case of only an iron rod. Increased. When a large amount of iron is dissolved, it is effective to connect a plurality of carbon bars to one iron bar.
  • Example 8 The present invention can also be used as a countermeasure against burning.
  • seaweed and seaweed such as kelp and seaweed are depleted
  • iron fulvic acid is necessary for promoting the growth of plants, but fulvic acid is indispensable together with iron ions to produce iron fulvic acid.
  • this invention in order to generate
  • the iron bar and the carbon bar were connected by a lead wire which is a conductive material.
  • the length of the lead wire itself was about 34 cm.
  • the volume resistivity of the lead wire was 2 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • a humus was placed around the horizontal bar. 500 ml of humus (made by Akagi Horticulture) was placed in a cylindrical nylon mesh and formed into a mat having a width of 10 cm, a length of 10 cm, and a thickness of 3 cm. This was wound around a steel bar in a cylindrical shape and fixed from the outside.
  • the weight of the horizontal bar was measured periodically.
  • the initial weight of the iron bar was 2.44 g. After 1 day, it was 2.20 g, after 2 days it was 2.00 g, and after 4 days it was 1.62 g. This indicates that iron fulvic acid is produced.
  • the reason why the dissolution rate of iron is slightly low is that the stirring is not performed using a stirrer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The present invention comprises an iron member, a carbon member and a conduction member, wherein the iron member and the carbon member are arranged without constraining each other; the conduction member has a volume resistivity of 10-4 Ω·m or less; and the conduction member connects the iron member and the carbon member and continually keeps the carbon member and the iron member in a good state of contact, thereby allowing iron to be efficiently supplied to environmental water.

Description

環境水への鉄分供給材、鉄分供給材の保守方法および環境水への鉄分供給方法Iron supply material to environmental water, maintenance method of iron supply material, and iron supply method to environmental water
 本発明は、炭素材と鉄材との接触状態を常に良好に保つことができる環境水への鉄分供給材と、その保守方法と、それを用いた環境水への鉄分供給方法に関する。 The present invention relates to an iron supply material to environmental water that can always maintain a good contact state between a carbon material and an iron material, a maintenance method thereof, and an iron supply method to environmental water using the same.
 「森は海の恋人」という言葉がある。この言葉は、海が森から流れ込む鉄分によって活性化していることを端的に表した言葉である。しかし、現実の日本の海は、世界第6位の海域を保有していながら、貧血状態で磯焼けが起って、コンブが不作となり、魚介類も不漁となっている。これらの要因は、様々であるが、森から流れ込む鉄分不足もその一つである。 There is a word "forest is a lover of the sea". This is a word that expresses the fact that the sea is activated by the iron flowing from the forest. However, the actual Japanese sea has the sixth largest sea area in the world, but it has been burned in anemia, making it difficult to produce kombu, and seafood. These factors vary, but the lack of iron flowing from the forest is one of them.
 一方、海の中に植物が繁茂しない海域が、地球上には存在する。その海域は、窒素やリンが豊富に存在するのに、植物プランクトンが増えないで、クロロフィル濃度が低い傾向にある。これは、微量栄養素の鉄分の不足が要因である。
 従って、鉄分を供給することは、植物プランクトを増やし、それを餌とするエビ、牡蠣、貝類を殖やし、さらには、コンブや海藻も、繁殖させることを可能にする。
On the other hand, there are areas on the earth where plants do not grow in the sea. Although the sea area is rich in nitrogen and phosphorus, phytoplankton does not increase and chlorophyll concentration tends to be low. This is due to the lack of iron in micronutrients.
Therefore, supplying iron can increase the plant plank, grow shrimp, oysters and shellfish that feed on it, and also make it possible to breed kombu and seaweed.
 そして、海水への鉄溶解技術として、様々なものが提案されている。
 それらは、薬剤投与として硫酸鉄が投入されている。しかしながらこれにも限界があり、連続投与は困難である。
 また、炭鉄団子あるいは鉄炭団子として、使い捨てカイロを水等で固めたものを海中に投入する技術もある。しかし、鉄は酸化鉄に変化して効果は少ない、また、鉄と炭とは点接触であり、反応は一瞬にして失活する。
 鉄鋼スラグを海水中に埋設することで、鉄を溶解する技術もある。スラグ自体は、産業廃棄物であり有害な重金属を含む可能性もあり、問題が山積している。
And various things are proposed as an iron melt | dissolution technique to seawater.
They are loaded with iron sulfate for drug administration. However, this is also limited and continuous administration is difficult.
There is also a technology for throwing a disposable body warmer solidified with water or the like into the sea as a charcoal dumpling or a charcoal dumpling. However, iron turns into iron oxide and has little effect, and iron and charcoal are in point contact, and the reaction is deactivated instantly.
There is also a technique for melting iron by embedding steel slag in seawater. Slag itself is an industrial waste and may contain harmful heavy metals, and there are many problems.
 このように海水中に安全な鉄イオンを連続的、任意の濃度で供給する方法は、薬剤投入する方法以外は、提案されていない。
 さらに、高濃度の鉄イオンを供給するには、炭素材と鉄材とに電圧をかけて電気分解することで実現可能となるが、電源設備やそれを維持する作業等を考えると長期間の供給には向かない。
As described above, no method has been proposed for supplying safe iron ions in seawater continuously and at an arbitrary concentration other than a method for introducing a drug.
Furthermore, supplying high-concentration iron ions can be achieved by applying voltage to the carbon material and the iron material to perform electrolysis, but considering the power supply equipment and the work to maintain it, it can be supplied over a long period of time. Not suitable for.
 また、特許文献1には、水改質方法として、水配管や貯水槽等の水中に没した状態で配置させることにより水に所定の機能を付加する水改質装置であって、イオン化傾向(電位)の異なる2種類の異種金属41、42が互いに密着した状態で備えられた構成とすることにより、2種類の異種金属板のうちイオン化傾向の小さい電位の高い方の金属板42の腐蝕を防止しようとして電位の低い方の金属板41から高い方の金属板42へ電子を移動させるイオン化傾向の大きい電位の低い方の金属板41の犠牲腐蝕作用により該イオン化傾向の大きい電位の低い方の金属板41から金属イオンを永続的に溶出させ、この金属イオンが持つ機能を水及び/又は該水が接する水配管や貯水槽等に作用させる技術が記載されている。
 なお、この技術は、「イオン化傾向(電位)の異なる2種類の異種金属が互いに密着した状態で備えられた構成とする」とあり、異種金属が密着していることが必要である。
Further, Patent Document 1 discloses a water reforming apparatus that adds a predetermined function to water by being placed in a water pipe or a water tank or the like in a state of being submerged in water. Corrosion of the higher-potential metal plate 42 having a smaller ionization tendency among the two different-type metal plates is made by providing the two different types of different metals 41 and 42 in a state of being in close contact with each other. The lower potential of the higher potential of ionization due to the sacrificial corrosion action of the lower potential of the metal plate 41 that moves electrons from the lower potential metal plate 41 to the higher metal plate 42 to prevent. A technique is described in which metal ions are permanently eluted from the metal plate 41 and the functions of the metal ions are applied to water and / or water piping, water storage tanks and the like in contact with the water.
This technique is described as “a configuration in which two different kinds of different metals having different ionization tendencies (potentials) are provided in close contact with each other”, and it is necessary that the different kinds of metals are in close contact.
 さらに、特許文献2では、効率的な金属イオンの溶出を長期に亘り持続させることができる水処理具の提供として、処理すべき水中に没することで溶出される金属イオンによって所定の水処理を行う水処理具であって、炭素を含む繊維シートと炭素よりも電位の低い(イオン化傾向が大きい)金属板を1枚ずつ、若しくは複数枚を交互に重ねた状態で前記金属が外面になるように巻回し、これをプレスまたは圧延により重ね方向に押し潰して炭素を含む繊維シートと金属板とを互いに密着させた状態に維持させた構成とすることにより、両端面に炭素を含む繊維シートと金属板との接触境界部分が水と接触する状態で露出形成されている構成が開示されている。この技術も、「鉄材をプレスまたは圧延により重ね方向に押し潰して炭素を含む繊維シートと金属板とを互いに密着させた状態に維持させた構成とする」とあり、鉄材と炭素を密着させることが必須である。 Furthermore, in Patent Document 2, as provision of a water treatment tool capable of sustaining efficient elution of metal ions over a long period of time, a predetermined water treatment is performed by metal ions eluted by immersing in water to be treated. It is a water treatment tool to be performed, and a metal sheet containing carbon and a metal plate having a lower potential (high ionization tendency) than carbon one by one, or in a state where a plurality of sheets are alternately stacked so that the metal becomes an outer surface And a fiber sheet containing carbon on both end faces by being pressed and rolled into a stacking direction by pressing or rolling so that the fiber sheet containing carbon and the metal plate are kept in close contact with each other. The structure by which the contact boundary part with a metal plate is exposed and formed in the state which contacts water is disclosed. This technology is also said to have a structure in which the steel sheet is pressed or rolled in the stacking direction so that the fiber sheet containing carbon and the metal plate are kept in close contact with each other. Is essential.
 他方、特許文献3では、各種の処理を目的とした水処理を、低コストにて効率的に行うことができる金属イオン水の製造方法又は水処理方法及び金属イオン水の製造具又は水処理装置が開示されている。
 すなわち、イオン化傾向の異なる2種類の金属を互いに密着させた構造とした水処理装置を処理すべき水中に没することにより局部電池が形成され、イオン化傾向の大きい金属から溶出する金属イオンで所定の水処理(殺菌、殺藻)が行われるとされている。
 また、この技術も、「イオン化傾向の異なる2種類の金属を互いに密着させた構造とした水処理装置」とあり、2種類の金属の直接接触式である。
On the other hand, in Patent Document 3, a metal ion water production method or water treatment method and metal ion water production tool or water treatment apparatus capable of efficiently performing water treatment for various treatments at low cost. Is disclosed.
That is, a local battery is formed by immersing a water treatment apparatus having a structure in which two kinds of metals having different ionization tendencies are in close contact with each other in water to be treated, and metal ions eluted from a metal having a large ionization tendency It is said that water treatment (sterilization, algae killing) is performed.
This technique is also “a water treatment apparatus having a structure in which two types of metals having different ionization tendencies are in close contact with each other” and is a direct contact type of two types of metals.
 さらに、特許文献4には、リンによるアオコやアカシオの発生を防止するには、水中のリンを除去、あるいは水に不溶性にすることが重要で、それには、リンと化学反応によって水に不溶性のリン化合物にする凝集剤(鉄化合物やアルミニウ化合物など)が必要となってくるが、同時に添加される陰イオン成分は、環境汚染を加速するから、この点を解決するべく、鉄のみを水中に供給する方法を発見したと記載されている。
 それは、不要なイオンや成分を中に添加することなしに、迅速に水中のリンを除去することができるリン除去装置およびリン除去方法を提供するものである。
Further, in Patent Document 4, it is important to remove phosphorus in water or to make it insoluble in water in order to prevent the occurrence of aquatic or acacio by phosphorus, and this is insoluble in water by chemical reaction with phosphorus. Flocculants (iron compounds, aluminum compounds, etc.) that make phosphorus compounds are required, but the anion component added at the same time accelerates environmental pollution. To solve this point, only iron is put into water. It is described that a method of supplying was found.
It provides a phosphorus removal apparatus and a phosphorus removal method that can quickly remove phosphorus in water without adding unnecessary ions and components therein.
 特許文献5には、リンを含有する処理対象水中に設置して当該処理対象水中に溶解しているリンを除去するための装置であって、マグネシウム、アルミニウム、亜鉛および鉄からなる群より選択された1種または2種以上の金属よりなるアノード部材と、前記金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材よりなるカソード部材とからなり、かつ、少なくとも前記アノード部材の一部と前記カソード部材の一部が接触していることを特徴とするリンの除去装置が開示されている。また、アノード部材の一部と、カソード部材の一部とを処理対象水中で接触させてリン化合物を析出させるリンの除去方法が開示されている。 Patent Document 5 is an apparatus for removing phosphorus dissolved in water to be treated containing phosphorus and selected from the group consisting of magnesium, aluminum, zinc and iron. An anode member made of one or more metals and a high standard electrode potential material having a higher standard electrode potential than the metal, or a cathode member made of a carbon material having electrical conductivity, and at least A phosphorus removal apparatus is disclosed, wherein a part of the anode member and a part of the cathode member are in contact with each other. Also disclosed is a phosphorus removal method in which a part of an anode member and a part of a cathode member are brought into contact with each other in water to be treated to precipitate a phosphorus compound.
特開2006-116527号公報JP 2006-116527 A 特開2006-88085号公報JP 2006-88085 A WO2005019116 A1WO2005019116 A1 特許第4556038号公報Japanese Patent No. 4556038 特許第5540434号公報Japanese Patent No. 5540434
 しかしながら、前掲した特許文献に記載された技術をもってしてもなお、以下の問題点が残っていた。
(1)工場排水や畜産排水等、高濃度、大量の排水を短時間で処理する場合には、溶解する鉄量が少ないために、適用することができない。
(2)炭素材と鉄材とを常に接触させておかなければならない。浄化開始直後は、この状態を維持することは可能であるが、鉄材は溶解するために、両者間に空間、隙間が生成し、鉄の溶解速度が低下する。
(3)鉄の溶解によって、酸化鉄やリン酸鉄が生成する。これらの物質は、絶縁体で、炭素材と鉄材の接触点に存在すると、鉄の溶解速度が低下する。速やかに取り除かれることが必要で、水流、曝気、撹拌、振動等が必要である。
(4)炭素材は、高い電気導電性を持つことが必要である。最適の炭素材は、黒鉛材であるが、経済面から使用できない。炭素繊維は、黒鉛化した炭素繊維が好ましいが、価格の点から使用が難しい。また、炭素繊維は人工物で、自然界では分解することができない。そのために、回収することが不可欠であるが、環境水では困難な場合が多い。
(5)鉄から生成したリン酸鉄や酸化鉄を回収することができない。景観を重視する池等では、池底に赤色物が生成し堆積することは許されない。
(6)設置した環境水に流れがある場合には、生成物が除去されやすいが、静水の場合には、鉄と炭の界面に存在し、反応を阻害する。
(7)高濃度の鉄イオンを生成するには、大量の鉄材と炭素材を使用しなければならいので、装置が大型となって経費が増大する。
However, even with the technique described in the above-mentioned patent document, the following problems still remain.
(1) When processing a high concentration and a large amount of wastewater such as factory wastewater and livestock wastewater in a short time, it cannot be applied because the amount of dissolved iron is small.
(2) The carbon material and the iron material must always be in contact with each other. Although it is possible to maintain this state immediately after the start of purification, since the iron material is dissolved, a space and a gap are formed between them, and the dissolution rate of iron is reduced.
(3) Iron oxide and iron phosphate are generated by dissolution of iron. These substances are insulators, and when they are present at the contact point between the carbon material and the iron material, the dissolution rate of iron decreases. It needs to be removed quickly and requires water flow, aeration, agitation, vibration and the like.
(4) The carbon material needs to have high electrical conductivity. The optimal carbon material is a graphite material, but it cannot be used from an economic viewpoint. The carbon fiber is preferably graphitized carbon fiber, but is difficult to use from the viewpoint of cost. Carbon fiber is an artificial material and cannot be decomposed in nature. Therefore, it is indispensable to collect, but it is often difficult with environmental water.
(5) It is impossible to recover iron phosphate and iron oxide generated from iron. In ponds that emphasize landscapes, red matter is not allowed to be generated and deposited on the bottom of the pond.
(6) When there is a flow in the installed environmental water, the product is easily removed, but in the case of static water, it exists at the interface between iron and charcoal and inhibits the reaction.
(7) Since a large amount of iron and carbon materials must be used to generate high-concentration iron ions, the apparatus becomes large and costs increase.
 また、発明者らは、これまで水中のリンを除去する鉄イオンを生成するために、炭素材と鉄材を直接密着させて行ってきた。しかし、以下の場合には、処理できなかった。このような問題点を解決したのが、本発明である。これまでの問題点を列記する。
(1)鉄が溶解することで、密着度が低下し、鉄イオンの生成状況が低下した。
(2)炭素材と鉄材の接触部に生成した鉄酸化物が析出し、鉄イオンの生成状況を低下させた。
(3)赤色の析出物によって、環境水の景観を損なった。
(4)高濃度のリンを含む排水を短時間で大量に処理する場合、生成する鉄量が不足した。
(5)高濃度のリン含有廃水を短時間で処理する場合、生成する鉄量が不足した。
(6)低濃度のリン含有廃水を短時間で大量に処理する場合、生成する鉄量が不足した。
In addition, the inventors have heretofore carried out direct adhesion between a carbon material and an iron material in order to generate iron ions that remove phosphorus in water. However, it could not be processed in the following cases. The present invention has solved such problems. The problems so far are listed.
(1) Since iron melt | dissolved, the adhesiveness fell and the production | generation condition of iron ion fell.
(2) The iron oxide produced | generated in the contact part of a carbon material and an iron material precipitated, and the production | generation condition of the iron ion was reduced.
(3) The landscape of environmental water was damaged by red precipitates.
(4) When wastewater containing high-concentration phosphorus is treated in a large amount in a short time, the amount of iron produced is insufficient.
(5) When processing a high concentration phosphorus containing wastewater in a short time, the amount of iron to produce was insufficient.
(6) When a large amount of low-concentration phosphorus-containing wastewater is treated in a short time, the amount of iron produced is insufficient.
 さらには、鉄棒と炭棒を輪ゴムでしばったような直接接触とした場合には、現実問題として以下のような問題があった。
(1)界面に生成する析出物による接触不良
(2)鉄材の溶解による接触不良
 また、これまでも炭素繊維織物と鉄板、鉄棒で長期間、鉄の溶出を行った場合には、性能が低くなるという現象が認められてきた。これも同様の理由からである。
Furthermore, when direct contact is made such that a steel bar and a charcoal bar are bound with a rubber band, there are the following problems as actual problems.
(1) Contact failure due to precipitates generated at the interface (2) Contact failure due to dissolution of iron material In addition, when carbon elution is performed for a long time with a carbon fiber fabric, iron plate, and iron bar, the performance is low. The phenomenon of becoming has been recognized. This is also for the same reason.
 上記現象を具体的な事例で説明すると、ある池のアオコの発生を抑制するために、炭素繊維織物製の袋(50cm×50cm)の中に鉄網(45cm×45cm)を1枚挿入した。設置2ケ月間は池水中のリンが除去されて、アオコの発生はなかったが、設置3ケ月後辺りから水中にリンが検出され始めた。 Describing the above phenomenon as a specific example, in order to suppress the occurrence of water pups in a certain pond, one piece of iron net (45 cm × 45 cm) was inserted into a bag (50 cm × 50 cm) made of carbon fiber fabric. During the two months of installation, phosphorus in the pond water was removed, and no water was generated. However, phosphorus began to be detected in the water three months after the installation.
 ところが、上記炭素繊維織物中の鉄材は、すべて溶解したわけではなく、大部分が残留していた。そこで、炭素繊維織物の中から鉄網を引きだしてみると、赤色物が大量に付着していた。また、炭素繊維製袋の下部には、剥離した赤色物が貯留していた。このような状況から、赤色物によって鉄と炭素繊維との接触が妨げられ、鉄の溶解が停止して、水中のリン濃度の低下が消失したと考えられる。鉄網に付着した赤色物も、炭素繊維織物の底部に貯留した赤色物も、鉄が酸化され生成した酸化物、あるいはリン酸鉄などであった。 However, the iron material in the carbon fiber fabric was not completely dissolved, and most of it remained. Then, when we pulled out the iron net from the carbon fiber fabric, a large amount of red matter was attached. Moreover, the peeled red thing was storing in the lower part of the carbon fiber bag. From such a situation, it is considered that the contact between iron and carbon fibers is hindered by the red material, the dissolution of iron is stopped, and the decrease in the phosphorus concentration in water disappears. The red matter adhered to the iron net and the red matter stored at the bottom of the carbon fiber fabric were oxides formed by oxidation of iron or iron phosphate.
 また、別の実験であるが、鉄パイプ(直径:6cm、長さ:50cm)に炭素繊維製織物を巻きつけてその上面から結束バンドで固定し、炭素繊維織物と鉄パイプを接触させ、畜産排水の浄化に使用した。
 実験開始1週間は、畜産排水中のリン濃度は低下したものの、それ以降は全リン濃度の減少が少なくなっていった。すなわち、排水浄化ができなくなった。そこで、鉄パイプに巻き付けてあった炭素繊維織物を引きはがして鉄パイプの表面を観察した。鉄パイプの表面上には、赤色物がべったりと付着し、鉄と炭素繊維織物との接触を阻害していた。
In another experiment, we wrap a carbon fiber fabric around an iron pipe (diameter: 6 cm, length: 50 cm) and fix it with a binding band from its upper surface. Used for wastewater purification.
During the first week of the experiment, the phosphorus concentration in the livestock effluent decreased, but thereafter the decrease in the total phosphorus concentration decreased. That is, wastewater purification could not be performed. Therefore, the carbon fiber fabric wound around the iron pipe was peeled off and the surface of the iron pipe was observed. On the surface of the iron pipe, a red object adhered to the surface of the iron pipe, and the contact between the iron and the carbon fiber fabric was obstructed.
 本発明は、上記した現状に鑑み開発されたもので、炭素材と鉄材との接触状態を常に良好に保つことができる環境水への鉄分供給材を、その保守方法と、それを用いた環境水への鉄分供給方法と共に提供することを目的とする。
 すなわち、本発明は、炭素材と鉄材を密着させるのではなく、導線を介して接触させたり、大きな表面積をもつ炭素材を使用して鉄材と導線を介して接触させたり、鉄材に、多数個の炭素材を、導線を介して接触させたりする方法で、上記の問題点を払拭することに成功した。
The present invention has been developed in view of the above-described situation, and a maintenance method for an iron supply material to environmental water that can always maintain a good contact state between a carbon material and an iron material, and an environment using the same. It aims at providing with the iron supply method to water.
That is, in the present invention, the carbon material and the iron material are not brought into close contact with each other, but are brought into contact with each other through a conducting wire, or the carbon material having a large surface area is brought into contact with each other through the iron material and the conducting wire. The above-mentioned problems were successfully eliminated by a method in which the carbon material was brought into contact with each other via a conductive wire.
 上記の問題点を解決するために、発明者らは試行を繰り返し、鉄材と炭素材とをリード線を介して接触させる間接接触式の鉄溶解材を作成した。
 鉄材と炭素材とを直接接触させるのではなく、電気伝導性をもつ導体を介して接触させることが可能か検討したのである。
In order to solve the above problems, the inventors repeated trials and created an indirect contact type iron melting material in which an iron material and a carbon material are brought into contact with each other through a lead wire.
Instead of making direct contact between the iron material and the carbon material, we examined whether it is possible to make contact through a conductor having electrical conductivity.
 まず、海水をビーカーに入れて、その中に炭素棒と鉄棒をそれぞれ分離させ、各端部をワニ口クリップで固定した一本の導線で接続した。一日後、ビーカーの底には赤褐色沈殿があった。これは、鉄が溶解したことを示している。炭素材と鉄材とが導線で接続されているので、直接接触させなくても鉄の溶解が可能であることが確認された。 First, seawater was put into a beaker, and a carbon bar and a steel bar were separated from each other, and each end was connected by a single wire fixed with an alligator clip. One day later, there was a reddish brown precipitate at the bottom of the beaker. This indicates that the iron has dissolved. Since the carbon material and the iron material are connected by a conductive wire, it was confirmed that the iron can be dissolved without direct contact.
 次に、海水ではなく淡水の環境水でも試みたところ、鉄の溶解が認められた。この場合の鉄の溶解量は、海水の場合に比べれば少なかった。
 河川の流れや、波の影響など、水の動きがある場合を想定し、ビーカーの内容物をスターラーで撹拌したところ、鉄の溶解量は増大することがわかった。
 さらに、動物園のサル飼育舎内の池水を使用し、鉄によるリンの除去作用があるかを検討した。鉄の溶解によって、水中のリン濃度は、検出限界以下になった。
Next, when it was tried not with seawater but with fresh environmental water, dissolution of iron was observed. In this case, the amount of iron dissolved was less than that of seawater.
Assuming that there is water movement such as river flow and wave effects, it was found that the amount of iron dissolved increased when the contents of the beaker were stirred with a stirrer.
Furthermore, using the pond water in the zoo's monkey breeding house, we examined whether there was a phosphorus removal action by iron. Due to the dissolution of iron, the phosphorus concentration in the water was below the detection limit.
 上記した現象は、水中に溶解しているリン成分を除去するために、水中で炭素材と鉄材を間接的に接触させて鉄イオンを生成し、それとリン酸イオンが反応して、不溶性のリン化合物にしたことで説明される。また、水中に供給する鉄イオンは、炭素材と鉄材とを水中で間接的に接触することで化学電池が形成され、起電力が発生して生成する。 In order to remove the phosphorus component dissolved in water, the phenomenon described above is caused by indirect contact between a carbon material and an iron material in water to generate iron ions, which react with phosphate ions, resulting in insoluble phosphorus. It is explained by making it into a compound. In addition, the iron ions supplied into the water are generated by generating a chemical cell by indirectly contacting the carbon material and the iron material in the water, generating an electromotive force.
 さらに、起電力の大小は、電圧および電流を測定することでわかる。起電力が大であれば、発生する電流も大、鉄の溶解量も大となる。起電力は、使用する鉄材と炭素材の表面積によって異なる。鉄の溶解量を高めるには、鉄材よりも炭素材の表面積を大とすることが必要である。なお、活性炭の性能を通常評価する場合は、比表面積で表すが、本発明における表面積は、あくまでも外形の大きさから求めた表面積であって、いわば見かけの表面積である。 Furthermore, the magnitude of the electromotive force can be determined by measuring the voltage and current. If the electromotive force is large, the generated current is large and the amount of iron dissolved is large. The electromotive force varies depending on the surface area of the iron material and carbon material used. In order to increase the amount of iron dissolved, it is necessary to make the surface area of the carbon material larger than that of the iron material. In addition, when evaluating the performance of activated carbon normally, it represents with a specific surface area, However, The surface area in this invention is the surface area calculated | required from the magnitude | size of the external shape to the last, and is an apparent surface area.
 そして、以下に示す実施例も含めた種々の実験結果から、下記のことが明らかになった。
(1)鉄単独でも溶解するが、炭素材と接触あるいは導線と接続することで、鉄の溶解速度は大となった。
(2)鉄の溶解状況は、静止状態よりも、撹拌、混合状態の方が、溶解速度は大であった。
(3)炭素と鉄を導線で接続することで、鉄溶解速度は大となった。
(4)炭素材1本に複数個の鉄を使用することで、鉄の溶解量が高められた。
(5)鉄棒1本と複数個の炭素材を接続することで、鉄の溶解速度が大となった。
(6)炭素材の表面積を高めると、鉄の溶解速度が大となった。
(7)短時間に大量の鉄を溶解させる場合には、大きな表面積をもつ炭素材を使用することが有効である。さらに、鉄の溶解量を増大する場合には、鉄材の表面積も大とすることが効果的であった。
 発明者らは、上記した知見を基にさらに検討を重ね、本発明を完成させた。
And the following things became clear from various experimental results including the examples shown below.
(1) Although iron can be dissolved alone, the dissolution rate of iron is increased by contact with a carbon material or connection with a conductive wire.
(2) The dissolution rate of iron was larger in the stirring and mixing state than in the stationary state.
(3) By connecting carbon and iron with a conducting wire, the iron dissolution rate was increased.
(4) The amount of iron dissolved was increased by using a plurality of irons for one carbon material.
(5) By connecting one iron bar and a plurality of carbon materials, the dissolution rate of iron became large.
(6) Increasing the surface area of the carbon material increased the dissolution rate of iron.
(7) When a large amount of iron is dissolved in a short time, it is effective to use a carbon material having a large surface area. Furthermore, in order to increase the amount of iron dissolved, it is effective to increase the surface area of the iron material.
The inventors have further studied based on the above-described findings and completed the present invention.
 すなわち、本発明の要旨構成は次のとおりである。
1.鉄材と炭素材と導通材とからなり、該鉄材と該炭素材とは相互に拘束すること無く配置され、該導通材の体積抵抗率は10-4Ω・m以下であって、該導通材が該鉄材と該炭素材とを接続している環境水への鉄分供給材。
That is, the gist configuration of the present invention is as follows.
1. An iron material, a carbon material, and a conductive material, wherein the iron material and the carbon material are arranged without being bound to each other, and the volume resistivity of the conductive material is 10 −4 Ω · m or less, and the conductive material Is an iron supply material to the environmental water connecting the iron material and the carbon material.
2.前記導通材の体積抵抗率が、10-7Ω・m以下である前記1に記載の環境水への鉄分供給材。 2. 2. The iron supply material to environmental water as described in 1 above, wherein the volume resistivity of the conducting material is 10 −7 Ω · m or less.
3.前記導通材が、金属製あるいは炭素繊維が絶縁材で被覆されているものである前記1または2に記載の環境水への鉄分供給材。 3. The iron supply material for environmental water according to 1 or 2, wherein the conductive material is made of metal or carbon fiber is covered with an insulating material.
4.前記鉄材が、純度90%以上の鉄材である前記1~3のいずれかに記載の環境水への鉄分供給材。 4). 4. The iron supply material to environmental water according to any one of 1 to 3, wherein the iron material is an iron material having a purity of 90% or more.
5.前記鉄材が、板、棒、網、筒、シートあるいは塊のうちから選んだ少なくとも1種である前記1~4のいずれかに記載の環境水への鉄分供給材。 5. 5. The iron supply material to environmental water according to any one of 1 to 4, wherein the iron material is at least one selected from a plate, a rod, a net, a cylinder, a sheet, or a lump.
6.前記炭素材の電気伝導度が体積抵抗率で100Ω・m以下、好ましくは10-4Ω・m以下である前記1~5のいずれかに記載の環境水への鉄分供給材。 6). 6. The iron supply material for environmental water according to any one of 1 to 5, wherein the carbon material has a volume resistivity of 10 0 Ω · m or less, preferably 10 −4 Ω · m or less.
7.前記炭素材が、板状である前記1~6のいずれかに記載の環境水への鉄分供給材。 7). 7. The iron supply material for environmental water according to any one of 1 to 6, wherein the carbon material is plate-shaped.
8.前記炭素材が、前記鉄材に対して2個以上、導通材によって接続している前記1~7のいずれかに記載の環境水への鉄分供給材。 8). 8. The iron supply material to environmental water according to any one of 1 to 7, wherein two or more carbon materials are connected to the iron material by a conductive material.
9.前記鉄材が、前記炭素材に対して2個以上、導通材によって接続している前記1~8のいずれかに記載の環境水への鉄分供給材。 9. 9. The iron supply material to environmental water according to any one of 1 to 8, wherein two or more iron materials are connected to the carbon material by a conductive material.
10.前記環境水への鉄分供給材に、さらに腐葉土が、鉄材の少なくとも一部に接触している前記1~9のいずれかに記載の環境水への鉄分供給材。 10. 10. The iron supply material to environmental water according to any one of 1 to 9, wherein the iron supply material to the environmental water is further in contact with at least a part of the iron material.
11.前記鉄材の外周に前記腐葉土を配置する前記10に記載の環境水への鉄分供給材。 11. The iron supply material to the environmental water as described in 10 above, wherein the humus is disposed on the outer periphery of the iron material.
12.前記腐葉土の外側から、自己収縮性を持つ固縛材で包んだ前記10または11に記載の環境水への鉄分供給材。 12 The iron supply material to the environmental water according to 10 or 11 above, which is wrapped with a self-shrinking binding material from the outside of the humus.
13.前記1~9のいずれかに記載の環境水への鉄分供給材を、河川中、湖沼中および海中のうちから選んだ少なくとも1箇所の環境水中に設置し、鉄分を環境水中に溶出させる環境水への鉄分供給方法。 13. The environmental water that causes the iron supply material to be supplied to the environmental water according to any one of the above 1 to 9 to be installed in at least one environmental water selected from among rivers, lakes, and seas, and to elute iron into the environmental water Iron supply method
14.前記10~12のいずれかに記載の環境水への鉄分供給材を、河川中、湖沼中および海中のうちから選んだ少なくとも1箇所の環境水中に設置し、鉄錯体として鉄分を環境水中に溶出させる環境水への鉄分供給方法。 14 The iron supply material for environmental water described in any one of 10 to 12 above is installed in at least one environmental water selected from among rivers, lakes and seas, and iron is eluted into the environmental water as an iron complex. To supply iron to environmental water.
15.前記13または14に記載の環境水への鉄分供給方法において、炭素材および/または鉄材の環境水中の表面積を調整し、鉄分または鉄錯体として鉄分の溶出量を調整する環境水への鉄分供給方法。 15. The method for supplying iron to the environmental water according to the above 13 or 14, wherein the surface area of the carbon material and / or the iron material in the environmental water is adjusted, and the elution amount of iron as an iron content or iron complex is adjusted. .
16.前記1~12のいずれかに記載の環境水への鉄分供給材から、鉄材だけを取り出して交換する環境水への鉄分供給材の保守方法。 16. A maintenance method for an iron supply material to environmental water, in which only the iron material is taken out and replaced from the iron supply material to the environmental water described in any one of 1 to 12 above.
17.前記1~12のいずれかに記載の環境水への鉄分供給材の導通材の通電量を測定して、鉄材の交換時期を定める環境水への鉄分供給材の保守方法。 17. 13. A method for maintaining an iron supply material to environmental water by measuring the amount of conduction of the conducting material of the iron supply material to the environmental water according to any one of 1 to 12 above, and determining a replacement time of the iron material.
 本発明に従う鉄分供給材は、鉄の溶解量を任意に制御することができるので、環境水への鉄分供給および鉄錯体の供給を効果的に行うことができる。 Since the iron supply material according to the present invention can arbitrarily control the amount of iron dissolved, it is possible to effectively supply iron and iron complexes to the environmental water.
本発明の環境水への鉄分供給材の一例を示す図である。It is a figure which shows an example of the iron content supply material to the environmental water of this invention. 炭素材が、鉄材に対して2本以上、導通材によって接続している構成の一例を示す図である。It is a figure which shows an example of the structure which two or more carbon materials are connected with the electrically conductive material with respect to the iron material. 鉄材が、炭素材に対して2本以上、導通材によって接続している構成の一例を示す図である。It is a figure which shows an example of the structure to which the iron material is connected with the carbon material by 2 or more with the electroconductive material. 本発明の環境水への鉄分供給材を連通管式とした一例を示す図である。It is a figure which shows an example which made the iron content supply material to the environmental water of this invention the communication pipe type. 本発明の環境水への鉄分供給材に、さらに腐葉土を配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned humus soil further to the iron content supply material to the environmental water of this invention. 本発明の環境水への鉄分供給材に、さらに腐葉土を配置した他の一例を示す図である。It is a figure which shows another example which has arrange | positioned humus soil further to the iron supply material to the environmental water of this invention. 本発明の環境水への鉄分供給材における赤色生成物の回収容器の一例を示す図である。It is a figure which shows an example of the collection | recovery container of the red product in the iron supply material to the environmental water of this invention. 本発明の実施例に使用した炭素板と鉄板、炭素棒と鉄棒を示す写真である。It is a photograph which shows the carbon plate and iron plate, carbon rod, and iron rod which were used for the Example of this invention. 本発明の実施例に使用した炭素板と鉄板、炭素棒と鉄棒を示す他の写真である。It is another photograph which shows the carbon plate and iron plate, carbon rod, and iron rod which were used for the Example of this invention.
 以下、本発明を具体的に説明する。
 本発明の環境水への鉄分供給材は、図1に示すように、鉄材と炭素材と導通材とからなり、鉄材と炭素材とは相互に拘束しあうこと無く、すなわち離隔して配置されている。そして、10-4Ω・m以下、好ましくは10-7Ω・m以下となる体積抵抗率を有する導通材によって鉄材と炭素材とは接続(間接的に接触)する構成となっている。
Hereinafter, the present invention will be specifically described.
As shown in FIG. 1, the iron supply material to the environmental water of the present invention comprises an iron material, a carbon material, and a conductive material, and the iron material and the carbon material are arranged without being bound to each other, that is, separated from each other. ing. The iron material and the carbon material are connected (indirectly contacted) by a conductive material having a volume resistivity of 10 −4 Ω · m or less, preferably 10 −7 Ω · m or less.
 前記導通材は、体積抵抗率が10-4Ω・m以下であれば、特に限定はされないが、環境水のある環境下での使用に耐えられるものであることが必要である。具体的な例としては、リード線、電線、エナメル線、ビニル線、ケーブル線、すずめっき線などが挙げられ、金属製あるいは炭素繊維など導通材が絶縁材で被覆されている構成を有するものである。なお、導通材の体積抵抗率を10-7Ω・m以下にすると、以下に述べる電流測定の際の感度が上がり、より正確に寿命(交換期限)管理ができるため、好ましい。 The conductive material is not particularly limited as long as the volume resistivity is 10 −4 Ω · m or less, but it needs to be able to withstand use in an environment with environmental water. Specific examples include lead wires, electric wires, enamel wires, vinyl wires, cable wires, tin-plated wires, etc., which have a configuration in which a conductive material such as metal or carbon fiber is covered with an insulating material. is there. It is preferable to set the volume resistivity of the conductive material to 10 −7 Ω · m or less because sensitivity at the time of current measurement described below is increased and life (replacement time limit) can be managed more accurately.
 また、複数個の炭素材(あるいは鉄材)からの導通線と1個の鉄材(あるいは炭素材)を接続する場合には、コネクターが使用できる。炭素繊維でも使用可能である。
 水中で使用することが無い場合には、金属が露出していてもよい。しかし、風雨に曝される自然環境下、特に水中や海中で使用する場合には、絶縁材で被覆されていることが必要である。
A connector can be used when connecting a conducting wire from a plurality of carbon materials (or iron materials) and one iron material (or carbon material). Carbon fiber can also be used.
When not used in water, the metal may be exposed. However, when used in a natural environment exposed to wind and rain, particularly underwater or in the sea, it is necessary to be covered with an insulating material.
 鉄材は、有害な不純物を含まないことが基本であり、具体的な例としては、純度99%以上の鉄材が好ましいが、純度90%以上で、国が定める生体毒性の高い成分を国の定める基準以上、含まない鉄材であればよい。なお、用途によっては、鉄分を部分的に含むものを用いることもでき、この場合は、鉄イオンの溶出部を鉄材と称してもよい。 The iron material is basically free of harmful impurities. As a specific example, an iron material having a purity of 99% or more is preferable. However, the country defines a component having a purity of 90% or more and high biotoxicity determined by the country. Any iron material that does not contain more than the standard may be used. In addition, depending on a use, what contains iron content partially can also be used, In this case, the elution part of an iron ion may be called an iron material.
 また、鉄材の形状は、設置環境に応じて適宜選択されるが、板、棒、網、筒、シートおよび塊などのうちから選んだ少なくとも1種であることが好ましい。 The shape of the iron material is appropriately selected according to the installation environment, but is preferably at least one selected from a plate, a bar, a net, a cylinder, a sheet, a lump, and the like.
 炭素材は、電気伝導性が大で、電気比抵抗が低く、機械的強度が大きくて、壊れ難いものが好ましい。具体的には、るつぼ用黒鉛、黒鉛材、電極材、モーターブラシ用炭素材、木炭、竹炭等がある。また、黒鉛材の耐久性、強度を高める増すために、外周をネットあるいはメッシュ等でカバーすることで保護することもできる。 The carbon material is preferably one that has high electrical conductivity, low electrical specific resistance, high mechanical strength, and is not easily broken. Specifically, there are graphite for crucible, graphite material, electrode material, carbon material for motor brush, charcoal, bamboo charcoal and the like. Further, in order to increase the durability and strength of the graphite material, it can be protected by covering the outer periphery with a net or mesh.
 さらに、本発明では、鉄材と直接することがないので、高い伝導性、高品質の黒鉛材が選択でき、その電気伝導度は体積抵抗率で100Ω・m以下、好ましくは10-4Ω・m以下、であることが好ましい。なお、用途によっては、炭素を部分的に含むものを用いることもでき、この場合は、炭素を含む部分を炭素材と称してもよい。 Furthermore, in the present invention, since there is no direct contact with the iron material, a high conductivity and high quality graphite material can be selected, and its electrical conductivity is 10 0 Ω · m or less in volume resistivity, preferably 10 −4 Ω. -It is preferable that it is m or less. In addition, depending on a use, what partially contains carbon can also be used, and in this case, the part containing carbon may be called a carbon material.
 本発明では、炭素材と鉄材とが相互に拘束しあうことがないので、炭素材の形状は特に限定されないが、板状であることが好ましい。なお、本発明では、環境水中で、鉄材と炭素材とが定常的に直接接して(拘束し合って)いないことが重要であって、炭素材と鉄材とが水流等で偶発的に接しても問題はない。 In the present invention, since the carbon material and the iron material do not bind each other, the shape of the carbon material is not particularly limited, but is preferably a plate shape. In the present invention, it is important that the iron material and the carbon material are not constantly in direct contact (restrained) in the environmental water, and the carbon material and the iron material are inadvertently in contact with each other by a water flow or the like. There is no problem.
 本発明では、図2に示すように、炭素材が、鉄材に対して2本(2個)以上、導通材によって接続している構成を採ることができる。 In the present invention, as shown in FIG. 2, it is possible to adopt a configuration in which two (two) or more carbon materials are connected by a conductive material to an iron material.
 上記構成は、特に、リンを大量、高濃度に含む産業排水の処理に有効である。リンを大量、高濃度に含む産業排水の処理では、大量の鉄イオンが必要なので、炭素材1本に対し、複数本の鉄材を使用することで、大量の鉄イオンが発生し処理が可能となる。 The above configuration is particularly effective for the treatment of industrial wastewater containing a large amount and high concentration of phosphorus. In the treatment of industrial wastewater containing a large amount of phosphorus and a high concentration, a large amount of iron ions is required. By using multiple iron materials for one carbon material, a large amount of iron ions can be generated and processed. Become.
 また、本発明では、図3に示すように、鉄材が、炭素材に対して2本以上、導通材によって接続している構成を採ることができる。
 この構成を取ることによって、広範囲に安定した鉄分を供給することができるようになるからである。
Moreover, in this invention, as shown in FIG. 3, the structure which the iron material has connected with the carbon material by 2 or more can be taken.
This is because by adopting this configuration, it becomes possible to supply stable iron in a wide range.
 また、河川等の流水の場合でも、炭素材1本に複数本の鉄材、鉄材1本と複数本の炭素材をそれぞれ接続した浄化ユニットを、上流部から下流部まで多数設置することで、浄化処理が可能となる。
 さらに、海水の流れが激しい海水下での牡蠣や貝類の養殖場でも、高濃度の鉄供給が必要であるが、イカダ上に炭素材1本と複数本の鉄材、鉄材1本と複数本の炭素材を接続することで、高濃度の鉄供給が可能となる。
In addition, even in the case of running water such as rivers, purification can be achieved by installing a number of purification units that connect multiple iron materials to one carbon material, and one iron material and multiple carbon materials, from upstream to downstream. Processing is possible.
In addition, oysters and shellfish farms under seawater flow require high-concentration iron supply, but one carbon material and several iron materials, one iron material and several iron materials on the squid. By connecting carbon materials, high concentration iron can be supplied.
 海藻や水草を繁茂させるために本発明の鉄分供給材を用いる場合は、炭素材と複数本の鉄材とを接続、すなわち、炭素材1本と複数本の鉄材をリード線で接続させた鉄供給ユニットを作成し水面に浮遊させる。そして、鉄溶解装置の下部は水中に、上部は水上に保持することで、海藻や水草を繁茂させるために本発明の鉄分供給材を用いることができる。
 なお、本発明の構成としては、図4に示すように、連通管式としても良い。
When the iron supply material of the present invention is used to proliferate seaweed and aquatic plants, a carbon material and a plurality of iron materials are connected, that is, an iron supply in which one carbon material and a plurality of iron materials are connected by lead wires. Create a unit and float it on the surface of the water. And the iron supply material of this invention can be used in order to proliferate seaweed and aquatic plants by hold | maintaining the lower part of an iron dissolution apparatus in water and the upper part on water.
In addition, as a structure of this invention, as shown in FIG. 4, it is good also as a communication pipe type.
 さらに、本発明の鉄分供給材は、広い面積を有する湖沼などに供して効果がある。それは、炭素材1個と複数本の鉄材の組合せで、広いエリアをカバーしつつ、特に鉄イオンが大量に必要とされる場所には、鉄材1本と複数本の炭素材を使用することで、効率的な環境水の浄化が可能となるからである。 Furthermore, the iron supply material of the present invention is effective for use in lakes and the like having a large area. It is a combination of one carbon material and a plurality of iron materials, covering a wide area, especially in places where a large amount of iron ions are required, using one iron material and a plurality of carbon materials. This is because the environmental water can be efficiently purified.
 ここで、鉄材と導通材、および炭素材と導通材との接続は、ワニ口クリップ、クランプ、カンシ等で挟む方法、導電性接着剤(あるいはペースト、テープ、シート、塗料など)を使用しての接着する方法、炭素材の両面に金属板を介してのボルトで固定する方法、炭素材の上面あるいは側面に穴を穿ち、その中に金属棒を挿入する(ねじ込む)方法など、導通材と電極とを接続する公知公用の接続方法、手段を採ることができる。 Here, the connection between the iron material and the conductive material, and the carbon material and the conductive material is performed by using a method of sandwiching with a crocodile clip, a clamp, an edge, etc., using a conductive adhesive (or paste, tape, sheet, paint, etc.). Such as a method of bonding, a method of fixing with a bolt via a metal plate on both sides of a carbon material, a method of drilling a hole in the upper surface or side surface of a carbon material, and inserting (screwing) a metal rod into the conductive material, A publicly known connection method and means for connecting the electrodes can be used.
 また、上記方法中、炭素材と導通材との接続には、カーボンブラシに使用されている方法などが好適例として挙げられる。また、導線と同じ材料で作った接続治具(挿入孔をもつ治具)に挿入することでも可能である。なお、導通材に炭素繊維を用いた場合など、鉄材との接続箇所で局部電池作用が起きる可能性がある際には、鉄材との接続箇所で局部電池作用が起きない接続方法を採用することが求められる。接続箇所が消失するおそれがあるからである。 Also, among the above methods, for example, a method used for a carbon brush can be cited as a suitable example for the connection between the carbon material and the conductive material. It is also possible to insert it into a connecting jig (a jig having an insertion hole) made of the same material as the conducting wire. When there is a possibility that local battery action will occur at the connection point with the iron material, such as when carbon fiber is used as the conductive material, a connection method that does not cause local battery action at the connection point with the iron material should be adopted. Is required. This is because the connection location may be lost.
 加えて、本発明では、図5および6に示すように、前記した環境水への鉄分供給材に、さらに腐葉土が、鉄材の少なくとも一部に接触している構成とすることができ、その配置は、鉄材の外周に腐葉土を配置することが好ましい。 In addition, in the present invention, as shown in FIGS. 5 and 6, the above-described iron supply material to the environmental water can be configured such that humus is in contact with at least a part of the iron material, and the arrangement thereof It is preferable to arrange humus on the outer periphery of the iron material.
 さらに、本発明では、効果的に鉄錯体を溶出させるために、図5および6に示したように、鉄材および炭素材を鉄分供給材の基本構成とし、鉄材の外周に腐葉土を配置することが好ましい。 Furthermore, in the present invention, in order to effectively elute the iron complex, as shown in FIGS. 5 and 6, the iron material and the carbon material may be a basic configuration of the iron supply material, and humus may be disposed on the outer periphery of the iron material. preferable.
 本発明における腐葉土は、公知の腐葉土であれば、特に制限されないが、具体的には、森林生態系において地上部の植物により生産された有機物が朽木や落葉・落枝となり地表部に堆積し、それを資源として利用するバクテリアなどの微生物やミミズなど大小様々な土壌動物による生化学的な代謝作用により分解(落葉分解)されて土状になったものなので、厳密に言うと土ではないが、一般に、腐葉土または腐植土と呼ばれるものを用いる。 The humus in the present invention is not particularly limited as long as it is a known humus, but specifically, organic matter produced by the above-ground plants in the forest ecosystem becomes deciduous trees, deciduous leaves, and twigs, and accumulates on the surface. Because it is decomposed by biochemical metabolic action by microorganisms such as bacteria and earthworms such as earthworms (deciduous leaf decomposition) and becomes soil, strictly speaking, it is not soil, but generally Use what is called humus or humus.
 自然にできた腐葉土は、成分が窒素に偏っていることが多いが、燐酸やカリウムなどはミミズ、その他の動物の糞や微生物などの働きによって補われることがある。なお、人工的に作られた腐葉土は、成分が人工的に調整されているが、本発明への使用に問題はない。 Naturally humus is often biased towards nitrogen, but phosphoric acid and potassium may be supplemented by earthworms, other animal feces and microorganisms. In addition, although the humus produced artificially has the component adjusted artificially, there is no problem in the use to this invention.
 ここで、腐葉土になりやすい葉は、落葉樹や、広葉樹など、油分が少なく発酵しやすい種類で、杉、松などの油分が多い葉は腐葉土になりにくい。
 自然にできた腐葉土は、発酵して出来上がるのに1~2年以上かかるが、人工的に作る場合は、米糠などを使って発酵しやすい環境を作る。そのため出来上がるまでの期間は2ヶ月程まで縮まる。
Here, leaves that tend to become humus are deciduous trees and broad-leaved trees, such as deciduous trees and broad-leaved trees, that are easy to ferment, and leaves that are rich in oil such as cedar and pine are less likely to become humus.
Naturally made humus takes more than a year or two to ferment, but when it is made artificially, it uses rice bran to create an environment that is easy to ferment. Therefore, the period until completion is shortened to about two months.
 このように、腐葉土の性質は、原料、製造方法によって、性状が異なるが、最適な腐葉土を選定することが重要である。
 具体的に、腐葉土は、シイノキ、シラカシ、アラカシ、ブナ、クヌギ、コナラ、クリなど葉肉が厚く広葉樹の落ち葉を堆積し適度に発酵させたものが好ましい。使用する状態は、手でもむと、直ぐにくずれる程度に発酵したものがよく、コナラ、クリなどブナ科の落ち葉を使ったものが特に最良である。さらに、ミネラル成分として、海藻の成長にとって必須元素である、鉄、カリウム、カルシウム、マグネシウムなどを含むものが好ましい。
 発酵が不十分な腐葉土では、フルボ酸の含有量が少なく、効果が少ない。一方で、完熟状態になると、無酸素状態が作りにくくなって、効果が低下する場合がある。
As described above, the properties of humus vary depending on the raw materials and the production method, but it is important to select the most suitable humus.
Specifically, the mulch is preferably one that has thick leaf flesh such as cypress, sardine, arakashi, beech, kunugi, konara, chestnut, and deposits fallen leaves of broad-leaved trees and is appropriately fermented. The condition to be used should be fermented to the extent that it can be easily broken by hand, and the ones that use fallen leaves of the beech family such as Japanese oak and chestnut are especially best. Furthermore, what contains iron, potassium, calcium, magnesium etc. which are essential elements for the growth of seaweed as a mineral component is preferable.
In humic soil with insufficient fermentation, the content of fulvic acid is small and the effect is small. On the other hand, when it reaches a fully matured state, it becomes difficult to produce an oxygen-free state, and the effect may be reduced.
 また、本発明は、前記腐葉土の外側から、自己収縮性を持つ固縛材で包むこともできる。かかる構成とすることにより、鉄材と腐葉土とが安定して常に接触できるからである。なお、本発明における固縛材とは、メッシュ形状をしているゴム材やナイロン製の網であることが好ましいが、例えば、単にゴム紐で留めたり、ナイロン製の糸などで固縛したりすることも含まれる。 In addition, the present invention can be wrapped from the outside of the mulch with a self-shrinking lashing material. This is because, with such a configuration, the iron material and the humus can always come into contact stably. The lashing material in the present invention is preferably a mesh-shaped rubber material or a nylon net, but for example, it is simply fastened with a rubber string or tyed with a nylon thread or the like. To include.
 本発明に従う鉄分供給材は、鉄の供給を必要とする場所(環境水中)、すなわち河川中、湖沼中および海中のいずれかに設置することで、鉄分をイオンまたは鉄錯体として効果的に環境水中に溶出させることができる。 The iron supply material according to the present invention is installed in any place (environmental water) that requires supply of iron, that is, in a river, a lake, or the sea, so that iron can be effectively converted into ions or iron complexes in environmental water. Can be eluted.
 上述した環境水への鉄分供給方法において、炭素材および/または鉄材の環境水中の表面積や個数を調整し、鉄分または鉄錯体として鉄分の溶出量を調整する。 In the above-described method for supplying iron to the environmental water, the surface area and number of carbon materials and / or iron materials in the environmental water are adjusted, and the elution amount of iron as iron or iron complex is adjusted.
 本発明では、鉄材と炭素材が直接接していないので、環境水への鉄分供給材から、鉄材だけを取り出して交換することが可能である。
 また、鉄が溶解して生成する酸化鉄、水酸化鉄の回収は、従来容易ではなかった。それは鉄供給材が板状で、嵩高となることや、回収容器の設置が困難であったことに起因する。しかしながら、本発明での鉄分供給材は、炭素材と鉄材が別々に配置されていることから、鉄材からの生成物は、鉄材の下部だけになり、鉄材の下部を布製の袋などでカバーすることで回収を容易に行うことができる。
 具体的には、図7に示すように、鉄材の周囲に容器を配置することで、赤色生成物の回収ができ、自然環境への拡散を防止する。
In the present invention, since the iron material and the carbon material are not in direct contact, it is possible to take out and replace only the iron material from the iron supply material to the environmental water.
Moreover, recovery of iron oxide and iron hydroxide produced by dissolving iron has not been easy. This is because the iron supply material is plate-like and bulky, and it is difficult to install the collection container. However, in the iron supply material in the present invention, since the carbon material and the iron material are separately arranged, the product from the iron material is only the lower part of the iron material, and the lower part of the iron material is covered with a cloth bag or the like. Thus, recovery can be performed easily.
Specifically, as shown in FIG. 7, by arranging a container around the iron material, the red product can be collected and the diffusion to the natural environment is prevented.
 さらに、本発明の環境水への鉄分供給材は、導通材の通電量を測定することで鉄材の交換時期を的確に定めることができる。これは、初期通電量の80%まで低下した場合とか、50%まで低下した場合とか、予め管理基準を作っておくことが肝要である。これにより、実際の鉄分の大きさを確認するために何度も陸に上げたりする必要がなくなる。なお、上記通電量は、電流、電圧および電力のうちから選んだ少なくともひとつとすれば良い。 Furthermore, the iron supply material to the environmental water according to the present invention can accurately determine the replacement time of the iron material by measuring the amount of conduction of the conductive material. It is important to create a management standard beforehand, for example, when the initial energization amount is reduced to 80% or 50%. This eliminates the need to go to land many times to check the actual iron content. The energization amount may be at least one selected from current, voltage, and power.
〔実施例1〕
 塩水中で、鉄と炭を密着接触、鉄と炭を導通材で接触した場合の、鉄の溶解状況について検討した。
 図8および9として示す2枚の写真は、実施例に使用した炭素板と鉄板、炭素棒と鉄棒である。炭素板は、接続端子が付いているものと、付いていないものがあり、図9の炭素板には、金属銅製の端子がついている。なお、実際の環境水中で使用する場合は、端子部も絶縁膜で被覆されていることが望ましい。
[Example 1]
In salt water, iron and charcoal were in close contact, and iron and charcoal were contacted with a conductive material.
The two photographs shown in FIGS. 8 and 9 are the carbon plate and iron plate, carbon rod and iron rod used in the examples. There are carbon plates with and without connection terminals, and the carbon plates in FIG. 9 have metal copper terminals. In addition, when using it in actual environmental water, it is desirable that the terminal portion is also covered with an insulating film.
 100mLビーカー2個に3%-塩化ナトリウム水溶液をそれぞれ100mLずつ加えた。実験に使用した鉄棒は、φ2mm、長さ約10cm、炭素棒(体積抵抗率:10-4Ω・m)は、φ5mm、長さ約10cmであった。両者とも、塩化ナトリウム水溶液中には、4.5cm浸るようセットした。
 各ビーカーでは、次の実験を行った。
実験1-1(比較例):鉄棒と炭素棒を輪ゴムで固定し、下部約4.4cmのみ溶液中に使った。塩化ナトリウム水溶液は、スターラーで攪拌した。回転数は、180rpmであった。
実験1-2(発明例):鉄棒と炭素棒はリード線で接続し、下部4.4cmのみ溶液中につけた。塩化ナトリウム水溶液は、スターラーで攪拌した。回転数は、180rpmであった。また、導通材であるリード線の体積抵抗率は2×10-7Ω・mであった。
 所定時間経過後、鉄棒を取り出し、水洗、乾燥後質量を測定した。その際、塩化ナトリウム水溶液は、新しい水溶液に交換した。所定時間経過後の鉄棒の質量を表1に示す。
100 mL each of 3% -sodium chloride aqueous solution was added to two 100 mL beakers. The iron bar used in the experiment had a diameter of 2 mm and a length of about 10 cm, and the carbon bar (volume resistivity: 10 −4 Ω · m) had a diameter of 5 mm and a length of about 10 cm. Both were set to soak in 4.5 cm in an aqueous sodium chloride solution.
In each beaker, the following experiment was conducted.
Experiment 1-1 (Comparative Example): An iron bar and a carbon bar were fixed with a rubber band, and only the lower part of about 4.4 cm was used in the solution. The aqueous sodium chloride solution was stirred with a stirrer. The rotation speed was 180 rpm.
Experiment 1-2 (Invention example): A steel bar and a carbon bar were connected with a lead wire, and only the lower part of 4.4 cm was attached to the solution. The aqueous sodium chloride solution was stirred with a stirrer. The rotation speed was 180 rpm. Moreover, the volume resistivity of the lead wire as the conductive material was 2 × 10 −7 Ω · m.
After elapse of a predetermined time, the iron bar was taken out, washed with water and dried, and the mass was measured. At that time, the sodium chloride aqueous solution was replaced with a new aqueous solution. Table 1 shows the mass of the iron bar after a predetermined time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 鉄棒と炭素棒を直接接触させてその周囲を輪ゴムで固定した場合(実験1-1)の溶解速度は、1時間当たり、0.528mgであった(以下単位を(mg/H)と記す)。また、単位面積当たりでは、0.129mg/Hであった(以下単位を(mg/cm2・H)と記す)。
 両者をリード線で接続した場合(実験1-2)の鉄の溶解速度は0.744mg/H(0.181mg/cm2・H)と、溶解速度が一層増大した。これは、両者をリード線で接続した場合の方が、ビーカーの内容物をスターラーで撹拌したことで、沈殿生成物が取り除かれ、鉄と炭との良好な接触が保持されたことを示している。
When a steel bar and a carbon bar were directly contacted and the periphery thereof was fixed with a rubber band (Experiment 1-1), the dissolution rate was 0.528 mg per hour (hereinafter, the unit is described as (mg / H)). . Further, per unit area, it was 0.129 mg / H (hereinafter, the unit is described as (mg / cm 2 · H)).
When both were connected by lead wires (Experiment 1-2), the dissolution rate of iron was 0.744 mg / H (0.181 mg / cm 2 · H), and the dissolution rate further increased. This shows that when both were connected with lead wires, the contents of the beaker were stirred with a stirrer, so that the precipitated product was removed and good contact between iron and charcoal was maintained. Yes.
〔実施例2〕
 塩水中で、鉄、鉄と炭を導通材で接触、炭1本に鉄2本を導通材で接触した場合の、鉄の溶解状況について検討した。
 2Lビーカーに3%-塩化ナトリウム水溶液を加えた。実験に使用した鉄棒は、φ2mm、長さ約10cmであった。炭素棒(体積抵抗率:10-4Ω・m)は、φ5mm、長さ約10cmであった。両者とも、塩化ナトリウム水溶液中には、3.7cm浸るようセットした。塩化ナトリウム中に浸っている鉄棒の表面積は、0.2cm×3.14×3.7cm=2.3cm2である。
実験2-1(比較例):鉄棒1本をビーカー内に垂直に立てた。
実験2-2(発明例):ビーカー内に、鉄棒および炭素棒各1本をそれぞれ垂直に立てた。炭素棒と鉄棒との間隔は、約3.7cmであった。鉄棒と炭素棒は、導通材であるリード線で接続した。リード線自体の長さは約34cmであった。また、リード線の体積抵抗率は2×10-7Ω・mであった。
実験2-3(発明例):ビーカー内に、鉄棒2本(鉄棒1および鉄棒2)および炭素棒1本をそれぞれ垂直に立てた。炭素棒と鉄棒1との間隔は約3.7cm、炭素棒と鉄棒2との間隔は7.1cmであった。2本の鉄棒と炭素棒は、リード線で接続した。
 塩水は、いずれもスターラーで撹拌した。また、導通材である上記リード線の体積抵抗率はいずれも2×10-7Ω・mであった。
 所定時間経過後、鉄棒を引き上げ、純水で洗浄、乾燥後、質量を測定した。
 時間経過とともに、鉄棒の入ったビーカー内は、赤褐色となり、沈殿の生成によって不透明になった。時間経過に伴う、鉄棒の質量を表2に示す。
[Example 2]
In salt water, iron, iron, and charcoal were contacted with a conductive material, and the dissolution state of iron was examined when one iron was contacted with two irons with a conductive material.
A 3% aqueous sodium chloride solution was added to a 2 L beaker. The iron bar used in the experiment was 2 mm in diameter and about 10 cm in length. The carbon rod (volume resistivity: 10 −4 Ω · m) had a diameter of 5 mm and a length of about 10 cm. Both were set to soak in 3.7 cm in an aqueous sodium chloride solution. The surface area of the iron bar immersed in sodium chloride is 0.2 cm × 3.14 × 3.7 cm = 2.3 cm 2 .
Experiment 2-1 (Comparative Example): One iron bar was set up vertically in a beaker.
Experiment 2-2 (Invention Example): An iron bar and a carbon bar were each set up vertically in a beaker. The distance between the carbon bar and the iron bar was about 3.7 cm. The iron bar and the carbon bar were connected by a lead wire which is a conductive material. The length of the lead wire itself was about 34 cm. The volume resistivity of the lead wire was 2 × 10 −7 Ω · m.
Experiment 2-3 (Invention Example): Two iron bars (iron bar 1 and iron bar 2) and one carbon bar were set up vertically in a beaker. The distance between the carbon bar and the iron bar 1 was about 3.7 cm, and the distance between the carbon bar and the iron bar 2 was 7.1 cm. The two iron bars and the carbon bar were connected by lead wires.
All salt water was stirred with a stirrer. In addition, the volume resistivity of each of the lead wires as the conductive material was 2 × 10 −7 Ω · m.
After a predetermined time elapsed, the iron bar was pulled up, washed with pure water, dried, and then weighed.
Over time, the beaker containing the iron bar became reddish brown and became opaque due to the formation of precipitates. Table 2 shows the mass of the iron bar over time.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実験2-1で、鉄棒を塩水に76時間漬けた場合の溶解速度は、0.213mg/H(0.093mg/cm2・H)であった。
 実験2-2で、鉄棒と炭素棒をリード線で接続すると溶解速度は、1.19mg/H(0.517mg/cm2・H)になって、鉄棒を単独で塩水に76時間漬けた場合の5.5倍増加した。
 実験2-3で、炭素棒1本に2本の鉄棒を、2本のリード線でつなげると、それぞれの溶解速度は、0.928mg/H(0.403mg/cm2・H)と0.771mg/H(0.335mg/cm2・H)であった。鉄棒を2本合わせた溶解速度は1.699mg/H(0.738mg/cm2・H)となって、鉄棒が1本の場合よりも、大となった。
 個々の鉄棒から大量の鉄を溶解させるには、鉄棒と炭素棒とを1対にして使用する方が、効果的である。これに対して、炭素棒1本に複数本の鉄棒を接続する方法は、炭素棒の使用本数を少なくする利点がある。
In Experiment 2-1, when the iron bar was immersed in salt water for 76 hours, the dissolution rate was 0.213 mg / H (0.093 mg / cm 2 · H).
In Experiment 2-2, when the iron bar and carbon bar are connected with lead wires, the dissolution rate becomes 1.19 mg / H (0.517 mg / cm 2 · H), and the iron bar is immersed in salt water for 76 hours alone. Increased by a factor of 5.5.
In Experiment 2-3, when two steel bars were connected to one carbon bar with two lead wires, the dissolution rates were 0.928 mg / H (0.403 mg / cm 2 · H) and 0. It was 771 mg / H (0.335 mg / cm 2 · H). The dissolution rate of the two iron bars combined was 1.699 mg / H (0.738 mg / cm 2 · H), which was higher than when only one iron bar was used.
In order to dissolve a large amount of iron from individual iron bars, it is more effective to use a pair of iron bars and carbon bars. On the other hand, the method of connecting a plurality of iron bars to one carbon bar has the advantage of reducing the number of carbon bars used.
〔実施例3〕
 塩水に鉄1本を単独で入れた場合、鉄3本に炭1本を導通材で接触した場合の、鉄の溶解状況についてそれぞれ検討した。
 1Lビーカーに3%-塩化ナトリウム水溶液を加えた。
 実験に使用した鉄棒は、φ2mm、長さ約10cmであった。炭素棒(体積抵抗率:10-4Ω・m)は、φ5mm、長さ約10cmであった。両者とも、塩化ナトリウム水溶液中には、4.5cm浸るようセットした。塩水中に浸っている鉄棒の表面積は、0.2cm×3.14×4.5cm=2.83cm2である。
実験3-1(比較例):鉄棒1本をビーカー内に垂直に立てた。
実験3-2(発明例):ビーカー内に、鉄棒3本(鉄棒1、鉄棒2および鉄棒3)および炭素棒1本をそれぞれ垂直に立てた。炭素棒と鉄棒1との間隔は約4.0cm、炭素棒と鉄棒2との距離は3.9cm、鉄棒3と炭素棒との距離は3.9cmであった。
 各鉄棒と炭素棒は、リード線で接続した。塩水は、スターラーで撹拌した。所定時間経過後、各鉄棒を引き上げ、純水で洗浄、乾燥後、質量を測定した。
 また、導通材である上記リード線の体積抵抗率はいずれも2×10-7Ω・mであった。
 時間経過とともに、鉄棒の入ったビーカー内は、赤褐色となり、沈殿の生成によって不透明になった。時間経過に伴う、鉄棒の質量を表3に示す。
Example 3
When one iron was put in salt water alone, the dissolution state of iron when one charcoal was contacted with three irons with a conductive material was examined.
A 3% sodium chloride aqueous solution was added to a 1 L beaker.
The iron bar used in the experiment was 2 mm in diameter and about 10 cm in length. The carbon rod (volume resistivity: 10 −4 Ω · m) had a diameter of 5 mm and a length of about 10 cm. Both were set to soak in 4.5 cm in an aqueous sodium chloride solution. The surface area of the iron bar immersed in the salt water is 0.2 cm × 3.14 × 4.5 cm = 2.83 cm 2 .
Experiment 3-1 (Comparative Example): One iron bar was set up vertically in a beaker.
Experiment 3-2 (Invention): Three iron bars (iron bar 1, iron bar 2, and iron bar 3) and one carbon bar were set up vertically in a beaker. The distance between the carbon rod and the iron rod 1 was about 4.0 cm, the distance between the carbon rod and the iron rod 2 was 3.9 cm, and the distance between the iron rod 3 and the carbon rod was 3.9 cm.
Each iron bar and carbon bar were connected by lead wires. The brine was stirred with a stirrer. After a predetermined time had elapsed, each iron bar was pulled up, washed with pure water, dried, and then weighed.
In addition, the volume resistivity of each of the lead wires as the conductive material was 2 × 10 −7 Ω · m.
Over time, the beaker containing the iron bar became reddish brown and became opaque due to the formation of precipitates. Table 3 shows the mass of the iron bar over time.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実験3-1の鉄棒を塩水に119時間漬けた場合の溶解速度は、0.23mg/H(0.081mg/cm2・H)であった。
 実験3-2では、炭素棒に3本の鉄棒を、3本のリード線でつなげると溶解速度は、0.78mg/Hと0.80mg/Hと0.81mg/Hであった。鉄棒を3本合わせた溶解速度は2.39mg/H(0.286mg/cm2・H)と大となった。鉄棒を3本使用することで溶解する鉄量は増加した。
When the iron bar in Experiment 3-1 was immersed in salt water for 119 hours, the dissolution rate was 0.23 mg / H (0.081 mg / cm 2 · H).
In Experiment 3-2, when three iron rods were connected to a carbon rod with three lead wires, the dissolution rates were 0.78 mg / H, 0.80 mg / H, and 0.81 mg / H. The dissolution rate of the three iron bars was as high as 2.39 mg / H (0.286 mg / cm 2 · H). The amount of iron dissolved by using three iron bars increased.
〔実施例4〕
 塩水に鉄1本を単独でいれた場合、鉄1本と炭1本を導通材で接触した場合、鉄1本に炭3本を導通材で接触した場合の、鉄の溶解状況について検討した。
 3Lビーカーに3%-塩化ナトリウム水溶液を加えた。実験に使用した鉄棒は、φ2mm、長さ約10cmであった。炭素棒(体積抵抗率:10-4Ω・m)は、φ5mm、長さ約10cmであった。両者とも、塩化ナトリウム水溶液中には、4.5cm浸るようセットした。塩水中に浸っている鉄棒の表面積は、0.2cm×3.14×4.5cm=2.83cm2であった。
実験4-1(比較例):純鉄棒1本をビーカー内に垂直に立てた。
実験4-2(発明例):ビーカー内に、鉄棒1本および炭素棒1本をそれぞれ垂直に立て、リード線で接続した。炭素棒と鉄棒との間隔は、約3.9cmであった。この導通材であるリード線の体積抵抗率は2×10-7Ω・mであった。
実験4-3(発明例):ビーカー内に、鉄棒1本および炭素棒3本(炭素棒1、炭素棒2および炭素棒3)をそれぞれ垂直に立てた。鉄棒と炭素棒との間隔は、いずれも約3.9cmであった。
 鉄棒と各炭素棒は、リード線で接続した。塩水は、スターラーで撹拌した。
 また、導通材である上記リード線の体積抵抗率はいずれも2×10-7Ω・mであった。
 所定時間経過後、鉄棒を引き上げ、純水で洗浄、乾燥後、質量を測定した。時間経過とともに、鉄棒の入ったビーカー内は、赤褐色となり、沈殿の生成によって不透明になった。時間経過に伴う、鉄棒の質量を表4に示す。
Example 4
When one iron was put in salt water alone, one iron and one charcoal were contacted with a conductive material, and the dissolution situation of iron was examined when three charcoal were contacted with one iron with a conductive material. .
A 3% aqueous sodium chloride solution was added to a 3 L beaker. The iron bar used in the experiment was 2 mm in diameter and about 10 cm in length. The carbon rod (volume resistivity: 10 −4 Ω · m) had a diameter of 5 mm and a length of about 10 cm. Both were set to soak in 4.5 cm in an aqueous sodium chloride solution. The surface area of the iron bar immersed in the salt water was 0.2 cm × 3.14 × 4.5 cm = 2.83 cm 2 .
Experiment 4-1 (Comparative Example): One pure iron bar was set up vertically in a beaker.
Experiment 4-2 (Invention Example): One iron bar and one carbon bar were set up vertically in a beaker and connected with lead wires. The distance between the carbon bar and the iron bar was about 3.9 cm. The volume resistivity of the lead wire as the conductive material was 2 × 10 −7 Ω · m.
Experiment 4-3 (Invention Example): One iron rod and three carbon rods (carbon rod 1, carbon rod 2, and carbon rod 3) were set up vertically in a beaker. The distance between the iron bar and the carbon bar was about 3.9 cm.
The iron bar and each carbon bar were connected with lead wires. The brine was stirred with a stirrer.
In addition, the volume resistivity of each of the lead wires as the conductive material was 2 × 10 −7 Ω · m.
After a predetermined time elapsed, the iron bar was pulled up, washed with pure water, dried, and then weighed. Over time, the beaker containing the iron bar became reddish brown and became opaque due to the formation of precipitates. Table 4 shows the mass of the iron bar over time.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実験4-1では、鉄棒を塩水に96時間漬けた場合の鉄の溶解速度は、0.24mg/H(0.085mg/cm2・H)であった。
 実験4-2の炭素棒と鉄棒をリード線で接続した場合の溶解速度は1.20mg/H(0.424mg/cm2・H)であった。
 実験4-3の1本の鉄棒に3本の炭素棒を、3本のリード線でつなげた場合の鉄の溶解速度は、2.95mg/H(1.04mg/cm2・H)と増大した。
 大量の鉄を溶解させる場合には、1本の鉄棒に複数本の炭素棒を接続することが効果的であった。なお、鉄からの溶解物を回収する場合、鉄棒の使用本数の少ない方が回収容器の数量を少なくできる利点がある。
In Experiment 4-1, when the iron rod was immersed in salt water for 96 hours, the dissolution rate of iron was 0.24 mg / H (0.085 mg / cm 2 · H).
When the carbon rod and the iron rod in Experiment 4-2 were connected with lead wires, the dissolution rate was 1.20 mg / H (0.424 mg / cm 2 · H).
The dissolution rate of iron increased by 2.95 mg / H (1.04 mg / cm 2 · H) when three carbon rods were connected to one iron bar in Experiment 4-3 with three lead wires. did.
When a large amount of iron is dissolved, it is effective to connect a plurality of carbon bars to one iron bar. In addition, when collect | recovering the melt | dissolution from iron, there exists an advantage which can reduce the quantity of a collection | recovery container in the direction where the number of iron bars used is small.
〔実施例5〕
 塩水中に鉄および炭の大きさ、面積が異なることによって、鉄の溶解状況はどう影響を受けるか検討した。
 使用した炭素材(体積抵抗率:10-4Ω・m)は、棒状(φ5mm×10cm)および板状(12cm×4.2cm×8mm:ターミナル付)の2種類であった。鉄材は、棒状(φ2mm×10cm)および板状(12cm×4.5cm×0.5mm)の2種類であった。鉄棒・鉄板の上端とワニ口クリップの噛み合わせ部を2000番の紙やすりで研磨して使用した。
 使用した各材料の表面積は、炭素板(82.62cm2)、鉄板(68.7cm2)、炭素棒(10.21cm2)、鉄棒(4.1cm2)であった、
 また、炭素板の表面積は、82.62cm2、鉄板の表面積は、68.7cm2、炭素棒の表面積は、10.21cm2、鉄棒の表面積は、4.1cm2とした。
 2Lビーカーに3%-塩化ナトリウム水溶液を加えた。鉄棒および炭素棒が、塩水中に浸かっている長さは、6.5cm、鉄板および炭素板が液に浸かっている長さは、7.3cmであった。
 また、塩水中に浸っている鉄棒の表面積は、0.2cm×3.14×6.5cm=4.08cm2、鉄板の表面積は、66.9cm2とした。
実験5-1(比較例):鉄棒1本を塩水中に垂直にたてた。
実験5-2(発明例):鉄棒1本と炭素棒1本をリード線で接続した。それらの間隔は1cmであった。
実験5-3(発明例):鉄棒1本と炭素板1枚をリード線で接続した。それらの間隔は1cmであった。
実験5-4(比較例):鉄板1枚を塩水中に垂直にたてた。
実験5-5(発明例):鉄板1枚と炭素板1枚をリード線で接続した。それらの間隔は1cmであった。
実験5-6(発明例):鉄板1枚と炭素棒1本をリード線で接続した。それらの間隔は1cmであった。
 ビーカーの中の塩水は、スターラーを用い回転数200rpmで攪拌した。
 また、導通材である上記リード線の体積抵抗率はいずれも2×10-7Ω・mであった。
 所定時間経過後、鉄材を引き上げて質量を測定し、経過時間ごとの鉄棒あるいは鉄板の質量を表5-1に示す。
Example 5
We examined how the dissolution of iron was affected by the difference in size and area of iron and charcoal in salt water.
There were two types of carbon materials (volume resistivity: 10 −4 Ω · m), rod-shaped (φ5 mm × 10 cm) and plate-shaped (12 cm × 4.2 cm × 8 mm: with terminal). There were two types of iron materials, rod-shaped (φ2 mm × 10 cm) and plate-shaped (12 cm × 4.5 cm × 0.5 mm). The upper end of the iron bar / iron plate and the engaging part of the alligator clip were polished with No. 2000 sandpaper and used.
The surface area of each material used was a carbon plate (82.62cm 2), iron (68.7cm 2), carbon rod (10.21cm 2), were iron bar (4.1 cm 2),
The carbon plate had a surface area of 82.62 cm 2 , the iron plate had a surface area of 68.7 cm 2 , the carbon rod had a surface area of 10.21 cm 2 , and the iron rod had a surface area of 4.1 cm 2 .
A 3% aqueous sodium chloride solution was added to a 2 L beaker. The length of the steel bar and the carbon bar immersed in the salt water was 6.5 cm, and the length of the steel plate and the carbon plate immersed in the liquid was 7.3 cm.
Further, the surface area of the horizontal bar that is immersed in the brine, 0.2cm × 3.14 × 6.5cm = 4.08cm 2, the surface area of the iron plate was a 66.9cm 2.
Experiment 5-1 (Comparative Example): One iron bar was vertically set in salt water.
Experiment 5-2 (Invention Example): One iron bar and one carbon bar were connected by a lead wire. Their spacing was 1 cm.
Experiment 5-3 (Invention): One iron bar and one carbon plate were connected by a lead wire. Their spacing was 1 cm.
Experiment 5-4 (Comparative Example): One iron plate was placed vertically in salt water.
Experiment 5-5 (Invention): One iron plate and one carbon plate were connected by a lead wire. Their spacing was 1 cm.
Experiment 5-6 (Invention): One iron plate and one carbon rod were connected by a lead wire. Their spacing was 1 cm.
The salt water in the beaker was stirred at a rotation speed of 200 rpm using a stirrer.
In addition, the volume resistivity of each of the lead wires as the conductive material was 2 × 10 −7 Ω · m.
After a predetermined time has elapsed, the iron material is pulled up and the mass is measured, and the mass of the iron bar or iron plate for each elapsed time is shown in Table 5-1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 鉄の溶解量は、使用した炭素材と鉄材の組み合わせによって異なった。最も多く鉄が溶解したのは、炭素板と鉄板との実験5-5であった。鉄の溶解速度は、16.3mg/H(0.244mg/cm2・H)であった。ついで、炭素板と鉄棒の実験5-3で、溶解速度は6.18mg/H(1.51mg/cm2・H)であった。炭素棒を用いた場合の鉄の溶解はわずかであったが、炭素板を使用することで、鉄の溶解は顕著に促進された。短時間に大量の鉄を溶解させる場合には、大きな表面積をもつ炭素材を使用することであった。さらに、鉄を溶解する場合には、鉄材の表面積も大とすることが効果的であった。
 炭素板と鉄板との間に発生する電流および電圧をテスター(デジタルテスタ M-04、株式会社カスタム)で測定し、その結果を表5-2に示す。
The amount of iron dissolved varied depending on the combination of carbon and iron used. It was in Experiment 5-5 with a carbon plate and an iron plate that iron was dissolved most. The dissolution rate of iron was 16.3 mg / H (0.244 mg / cm 2 · H). Then, in Experiment 5-3 for a carbon plate and a steel bar, the dissolution rate was 6.18 mg / H (1.51 mg / cm 2 · H). Although the dissolution of iron was slight when the carbon rod was used, the use of the carbon plate significantly promoted the dissolution of iron. When a large amount of iron is dissolved in a short time, a carbon material having a large surface area is used. Further, when iron is dissolved, it is effective to increase the surface area of the iron material.
The current and voltage generated between the carbon plate and the iron plate were measured with a tester (Digital Tester M-04, Custom Co., Ltd.), and the results are shown in Table 5-2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 炭素板を使用した場合(実験5-3および5-5)は、mAオーダーの電流が発生し炭素棒ではμAオーダーであった。電圧は、いずれも場合も数百mVであった。電流が多く発生することで、鉄の溶解は促進された。
 短時間に集中的に鉄材を溶解する場合には、炭素板を使用することが効果的であった。
When a carbon plate was used (Experiments 5-3 and 5-5), a current of the order of mA was generated, and the carbon rod was of the order of μA. In all cases, the voltage was several hundred mV. The generation of a large amount of current promoted the dissolution of iron.
In the case where the iron material is melted intensively in a short time, it is effective to use a carbon plate.
〔実施例6〕
 淡水中、鉄棒3本に炭素棒1本を導通材で接触した場合の鉄の溶解状況について検討した。
 使用した水溶液は、池水:3Lに、リン標準液(リン濃度:1000mg/L):6mLを加えた溶液とした。100mLビーカーに池水約100mLを加え、この中に鉄棒と炭素棒を挿入した。
 使用した鉄棒は、φ2mm、長さ約10cm、炭素棒(体積抵抗率:10-4Ω・m)は、φ5mm、長さ約10cmであった。使用した池水は、所定時間経過後、鉄棒の質量を測定した後、溶液は交換した。
 この水溶液を使用して、次の実験を行った。各ビーカーはマグネシックスターラで撹拌(200rpm)した。
実験6:100mLビーカーに池水を約100mL加え、その中に、鉄棒3本と炭素棒1本をたて、それぞれをリード線で接続した。水中にある鉄棒の長さは、3.8cmであった。水中に浸っている鉄棒の表面積は、0.2cm×3.14×3.8cm=2.39cm2であった。
 炭素棒と3本の鉄棒との距離は、それぞれ3.4cm(鉄棒1)、5.3cm(鉄棒2)、3.6cm(鉄棒3)とした。
 また、導通材である上記リード線の体積抵抗率はいずれも2×10-7Ω・mであった。
 所定時間経過後、鉄棒を引き上げ水洗後乾燥し質量を測定した。鉄棒の質量変化を表6に示す。
Example 6
In fresh water, the state of dissolution of iron was examined when one carbon rod was brought into contact with three steel rods with a conducting material.
The aqueous solution used was a solution obtained by adding 6 mL of phosphorus standard solution (phosphorus concentration: 1000 mg / L) to 3 L of pond water. About 100 mL of pond water was added to a 100 mL beaker, and an iron bar and a carbon bar were inserted therein.
The iron bar used had a diameter of 2 mm and a length of about 10 cm, and the carbon bar (volume resistivity: 10 −4 Ω · m) had a diameter of 5 mm and a length of about 10 cm. As for the used pond water, the solution was exchanged after measuring the mass of the iron bar after a predetermined time.
The following experiment was performed using this aqueous solution. Each beaker was stirred (200 rpm) with a magnetic stirrer.
Experiment 6: About 100 mL of pond water was added to a 100 mL beaker, and three iron bars and one carbon bar were set therein, and each was connected with a lead wire. The length of the steel bar in the water was 3.8 cm. The surface area of the iron bar immersed in water was 0.2 cm × 3.14 × 3.8 cm = 2.39 cm 2 .
The distance between the carbon bar and the three steel bars was 3.4 cm (iron bar 1), 5.3 cm (iron bar 2), and 3.6 cm (iron bar 3), respectively.
In addition, the volume resistivity of each of the lead wires as the conductive material was 2 × 10 −7 Ω · m.
After elapse of a predetermined time, the iron bar was pulled up, washed with water, dried and measured for mass. Table 6 shows the mass change of the iron bar.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 3本の鉄棒の溶解速度は、0.14mg/H、0.13mg/Hおよび0.15mg/Hであった。三本を合せると0.42mg/H(0.144mg/cm2・H)であった。炭素棒と鉄棒との距離は、鉄棒の溶解速度にあまり影響を与えていない。 The dissolution rates of the three iron bars were 0.14 mg / H, 0.13 mg / H and 0.15 mg / H. The total of the three was 0.42 mg / H (0.144 mg / cm 2 · H). The distance between the carbon bar and the steel bar does not significantly affect the dissolution rate of the steel bar.
〔実施例7〕
 淡水中に鉄棒、鉄棒と炭素棒を導通材で接触、鉄棒1本に炭素棒3本を導通材で接触した場合、それぞれの鉄の溶解状況について検討した。
 3Lビーカーに池水を加えた。実験に使用した鉄棒は、φ2mm、長さ約10cmであった。炭素棒は、φ5mm、長さ約10cmであった。両者とも、塩化ナトリウム水溶液中には、4.5cm浸るようセットした。水中に浸っている鉄棒の表面積は、0.2cm×3.14×4.5cm=2.83cm2であった。
実験7-1(比較例):純鉄棒1本をビーカー内に垂直に立てた。
実験7-2(発明例):ビーカー内に、鉄棒1本および炭素棒1本をそれぞれ垂直に立て、リード線で接続した。炭素棒と鉄棒との間隔は、約3.9cmであった。この導通材であるリード線の体積抵抗率は2×10-7Ω・mであった。
実験7-3(発明例):ビーカー内に、鉄棒1本および炭素棒3本(炭素棒1、炭素棒2および炭素棒3)をそれぞれ垂直に立てた。鉄棒と炭素棒との間隔は、いずれも約3.9cmであった。
 鉄棒と各炭素棒は、リード線で接続した。この導通材であるリード線の体積抵抗率はいずれも2×10-7Ω・mであった。
 池水は、スターラーで撹拌した。所定時間経過後、鉄棒を引き上げ、純水で洗浄、乾燥後、質量を測定した。時間経過とともに、鉄棒の入ったビーカー内は、赤褐色となり、沈殿の生成によって不透明になった。時間経過に伴う、鉄棒の質量を表7-1に示す。
Example 7
When fresh steel was contacted with an iron rod, an iron rod and a carbon rod with a conductive material, and three carbon rods were contacted with one iron rod with a conductive material, the dissolution state of each iron was examined.
Pond water was added to a 3L beaker. The iron bar used in the experiment was 2 mm in diameter and about 10 cm in length. The carbon rod had a diameter of 5 mm and a length of about 10 cm. Both were set to soak in 4.5 cm in an aqueous sodium chloride solution. The surface area of the iron bar immersed in water was 0.2 cm × 3.14 × 4.5 cm = 2.83 cm 2 .
Experiment 7-1 (Comparative Example): One pure iron bar was set up vertically in a beaker.
Experiment 7-2 (Invention Example): One iron bar and one carbon bar were set up vertically in a beaker and connected with lead wires. The distance between the carbon bar and the iron bar was about 3.9 cm. The volume resistivity of the lead wire as the conductive material was 2 × 10 −7 Ω · m.
Experiment 7-3 (Invention): One iron rod and three carbon rods (carbon rod 1, carbon rod 2, and carbon rod 3) were set up vertically in a beaker. The distance between the iron bar and the carbon bar was about 3.9 cm.
The iron bar and each carbon bar were connected with lead wires. The volume resistivity of the lead wire as the conductive material was 2 × 10 −7 Ω · m.
The pond water was stirred with a stirrer. After a predetermined time elapsed, the iron bar was pulled up, washed with pure water, dried, and then weighed. Over time, the beaker containing the iron bar became reddish brown and became opaque due to the formation of precipitates. Table 7-1 shows the mass of the iron bar over time.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実験7-1:鉄棒を池水に136時間漬けた場合の鉄の溶解速度は、0.082mg/Hであった。
 実験7-2:炭素棒と鉄棒をリード線で接続した場合の溶解速度は0.332mg/Hであった。鉄棒のみの場合よりも約4倍大となった。
 実験7-3:1本の鉄棒に3本の炭素棒を、3本のリード線でつなげた場合の鉄の溶解速度は、0.543mg/Hで、鉄棒のみの場合より6.6倍程度増大した。
 大量の鉄を溶解させる場合には、1本の鉄棒に複数本の炭素棒を接続することが効果的であった。また、鉄からの溶解物を回収する場合、鉄棒の使用本数の少ない方が回収容器の数量を少なくできる利点がある。
 鉄棒と炭素棒との間に発生する電流と電圧を、テスターで測定した。その結果を表7-2に示す。
Experiment 7-1: The dissolution rate of iron when the iron rod was immersed in pond water for 136 hours was 0.082 mg / H.
Experiment 7-2: The dissolution rate when the carbon rod and the iron rod were connected by the lead wire was 0.332 mg / H. It was about 4 times larger than the case of only a horizontal bar.
Experiment 7-3: When three carbon rods are connected to one iron rod with three lead wires, the dissolution rate of iron is 0.543 mg / H, which is about 6.6 times that of the case of only an iron rod. Increased.
When a large amount of iron is dissolved, it is effective to connect a plurality of carbon bars to one iron bar. Moreover, when collect | recovering the melt | dissolution from iron, there exists an advantage which can reduce the quantity of a collection | recovery container in the direction where the number of iron bars used is small.
The current and voltage generated between the iron bar and the carbon bar were measured with a tester. The results are shown in Table 7-2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 鉄棒と炭素棒をリード線でつないだ実験7-2で発生した電流は156μA、電圧は598mVであった。一方、鉄棒に三本の炭素棒をリード線で接続した実験7-3の場合の電流と電圧は、それぞれ(85μA、345mV)、(75μA、331mV)および(110μA、404mV)であった。三本の炭素棒を合計すると電流は270μA、電圧は1080mVであった。炭素棒1本を使用した実験7-2よりも電流で1.7倍、電圧では1.8倍であった。なお、鉄材と炭素材を直接輪ゴムで止めたものは、上記電流および電圧は測れなかった。 The current generated in Experiment 7-2 in which a steel bar and a carbon bar were connected by a lead wire was 156 μA, and the voltage was 598 mV. On the other hand, the current and voltage in Experiment 7-3 in which three carbon rods were connected to the iron rod with lead wires were (85 μA, 345 mV), (75 μA, 331 mV), and (110 μA, 404 mV), respectively. When the three carbon rods were combined, the current was 270 μA and the voltage was 1080 mV. The current was 1.7 times and the voltage was 1.8 times that of Experiment 7-2 using one carbon rod. In addition, when the steel material and the carbon material were directly stopped with a rubber band, the above current and voltage could not be measured.
〔実施例8〕
 本発明は、磯焼け対策にも活用することができる。すなわち、昆布やワカメなどの海藻や海草が枯渇した海域に設置することで、鉄を供給して植物を繁茂させ、藻場の再生を図ることができる。ここで、植物の成長促進には、フルボ酸鉄が必要であるが、フルボ酸鉄を生成するには、鉄イオンとともに、フルボ酸が不可欠である。そして、本発明では、フルボ酸を発生させるため、鉄材の周囲に腐葉土を配置することで、フルボ酸鉄の生成が可能となる。
Example 8
The present invention can also be used as a countermeasure against burning. In other words, by installing in sea areas where seaweed and seaweed such as kelp and seaweed are depleted, it is possible to supply iron to proliferate plants and to regenerate seaweed beds. Here, iron fulvic acid is necessary for promoting the growth of plants, but fulvic acid is indispensable together with iron ions to produce iron fulvic acid. And in this invention, in order to generate | occur | produce fulvic acid, the production | generation of fulvic acid iron is attained by arrange | positioning humus around an iron material.
 そのことを確認するために、塩水中で、鉄と炭を導通材で接触した場合の、鉄の溶解状況について実験した。
 2Lビーカーに3%-塩化ナトリウム水溶液を加えた。実験に使用した鉄棒は、直径(φ):2mm、長さ:約10cmであった。炭素棒(体積抵抗率:10-4Ω・m)は、直径(φ):5mm、長さ:約10cmであった。両者とも、塩化ナトリウム水溶液中には、6.0cm浸るようセットし、ビーカー内に、垂直に立てた。炭素棒と鉄棒との間隔は、約8cmであった。鉄棒と炭素棒は、導通材であるリード線で接続した。リード線自体の長さは約34cmであった。また、リード線の体積抵抗率は2×10-7Ω・mであった。
 鉄棒の周囲には腐葉土を配置した。腐葉土(アカギ園芸製)500mlを筒状のナイロン製メッシュの中にいれ、幅10cm、長さ10cm、厚さ3cmのマット状にした。これを筒状に鉄棒に巻き付け、外側から固定した。
In order to confirm this, an experiment was conducted on the dissolution state of iron when iron and charcoal were contacted with a conductive material in salt water.
A 3% aqueous sodium chloride solution was added to a 2 L beaker. The iron bar used in the experiment had a diameter (φ): 2 mm and a length: about 10 cm. The carbon rod (volume resistivity: 10 −4 Ω · m) had a diameter (φ): 5 mm and a length: about 10 cm. Both were set so as to be immersed in an aqueous sodium chloride solution by 6.0 cm, and were set up vertically in a beaker. The distance between the carbon bar and the iron bar was about 8 cm. The iron bar and the carbon bar were connected by a lead wire which is a conductive material. The length of the lead wire itself was about 34 cm. The volume resistivity of the lead wire was 2 × 10 −7 Ω · m.
A humus was placed around the horizontal bar. 500 ml of humus (made by Akagi Horticulture) was placed in a cylindrical nylon mesh and formed into a mat having a width of 10 cm, a length of 10 cm, and a thickness of 3 cm. This was wound around a steel bar in a cylindrical shape and fixed from the outside.
 時間経過とともに、腐葉土からの溶出によってビーカー内は、褐色となり、鉄の溶解によって赤褐色となった。1日後、2日後と時間経過とともに、赤褐色の度合いは強くなった。 Over time, the beaker became brown due to elution from humus and reddish brown due to dissolution of iron. The degree of reddish brown became stronger with time after 1 day and 2 days.
 鉄棒の重量は、定期的に測定した。鉄棒の初期重量は、2.44gであった。1日後には2.20g、2日後には2.00g、4日後には1.62gとなった。これは、フルボ酸鉄が生成していることを示している。
 なお、鉄の溶解速度がやや低いのは、スターラーを使用しての撹拌を行わない条件だからである。
The weight of the horizontal bar was measured periodically. The initial weight of the iron bar was 2.44 g. After 1 day, it was 2.20 g, after 2 days it was 2.00 g, and after 4 days it was 1.62 g. This indicates that iron fulvic acid is produced.
The reason why the dissolution rate of iron is slightly low is that the stirring is not performed using a stirrer.
 以上の結果から、腐葉土を鉄の周囲に配置しても、鉄の溶解は可能であり、本発明に従う鉄分供給材は、フルボ酸鉄を効果的に生成して、海の藻場形成に展開可能であることが確認された。 From the above results, it is possible to dissolve iron even if humus is placed around the iron, and the iron supply material according to the present invention effectively generates iron fulvic acid and develops it in the formation of seaweed beds in the sea. It was confirmed that it was possible.

Claims (17)

  1.  鉄材と炭素材と導通材とからなり、該鉄材と該炭素材とは相互に拘束すること無く配置され、該導通材の体積抵抗率は10-4Ω・m以下であって、該導通材が該鉄材と該炭素材とを接続している環境水への鉄分供給材。 An iron material, a carbon material, and a conductive material, wherein the iron material and the carbon material are arranged without being bound to each other, and the volume resistivity of the conductive material is 10 −4 Ω · m or less, and the conductive material Is an iron supply material to the environmental water connecting the iron material and the carbon material.
  2.  前記導通材の体積抵抗率が、10-7Ω・m以下である請求項1に記載の環境水への鉄分供給材。 2. The iron supply material for environmental water according to claim 1, wherein the conductive material has a volume resistivity of 10 −7 Ω · m or less.
  3.  前記導通材が、金属製あるいは炭素繊維が絶縁材で被覆されているものである請求項1または2に記載の環境水への鉄分供給材。 The iron supply material for environmental water according to claim 1 or 2, wherein the conductive material is made of metal or carbon fiber is covered with an insulating material.
  4.  前記鉄材が、純度90%以上の鉄材である請求項1~3のいずれかに記載の環境水への鉄分供給材。 The iron supply material for environmental water according to any one of claims 1 to 3, wherein the iron material is an iron material having a purity of 90% or more.
  5.  前記鉄材が、板、棒、網、筒、シートあるいは塊のうちから選んだ少なくとも1種である請求項1~4のいずれかに記載の環境水への鉄分供給材。 The iron supply material for environmental water according to any one of claims 1 to 4, wherein the iron material is at least one selected from a plate, a rod, a net, a tube, a sheet, or a lump.
  6.  前記炭素材の電気伝導度が体積抵抗率で100Ω・m以下、好ましくは10-4Ω・m以下である請求項1~5のいずれかに記載の環境水への鉄分供給材。 The iron supply material for environmental water according to any one of claims 1 to 5, wherein the carbon material has a volume resistivity of 10 0 Ω · m or less, preferably 10 -4 Ω · m or less.
  7.  前記炭素材が、板状である請求項1~6のいずれかに記載の環境水への鉄分供給材。 The iron supply material for environmental water according to any one of claims 1 to 6, wherein the carbon material is plate-shaped.
  8.  前記炭素材が、前記鉄材に対して2個以上、導通材によって接続している請求項1~7のいずれかに記載の環境水への鉄分供給材。 The iron supply material for environmental water according to any one of claims 1 to 7, wherein two or more carbon materials are connected to the iron material by a conductive material.
  9.  前記鉄材が、前記炭素材に対して2個以上、導通材によって接続している請求項1~8のいずれかに記載の環境水への鉄分供給材。 The iron supply material for environmental water according to any one of claims 1 to 8, wherein two or more iron materials are connected to the carbon material by a conductive material.
  10.  前記環境水への鉄分供給材に、さらに腐葉土が、鉄材の少なくとも一部に接触している請求項1~9のいずれかに記載の環境水への鉄分供給材。 The iron supply material for environmental water according to any one of claims 1 to 9, wherein humus is in contact with at least a part of the iron material in addition to the iron supply material for the environmental water.
  11.  前記鉄材の外周に前記腐葉土を配置する請求項10に記載の環境水への鉄分供給材。 The iron supply material for environmental water according to claim 10, wherein the humus is disposed on the outer periphery of the iron material.
  12.  前記腐葉土の外側から、自己収縮性を持つ固縛材で包んだ請求項10または11に記載の環境水への鉄分供給材。 The iron supply material to the environmental water according to claim 10 or 11, which is wrapped with a self-shrinking lashing material from the outside of the mulch.
  13.  請求項1~9のいずれかに記載の環境水への鉄分供給材を、河川中、湖沼中および海中のうちから選んだ少なくとも1箇所の環境水中に設置し、鉄分を環境水中に溶出させる環境水への鉄分供給方法。 An environment in which the iron supply material for environmental water according to any one of claims 1 to 9 is installed in at least one environmental water selected from among rivers, lakes and seas, and iron is eluted into the environmental water. Supplying iron to water.
  14.  請求項10~12のいずれかに記載の環境水への鉄分供給材を、河川中、湖沼中および海中のうちから選んだ少なくとも1箇所の環境水中に設置し、鉄錯体として鉄分を環境水中に溶出させる環境水への鉄分供給方法。 The iron supply material for environmental water according to any one of claims 10 to 12 is installed in at least one environmental water selected from among rivers, lakes, and seas, and iron is contained in the environmental water as an iron complex. A method of supplying iron to the environmental water to be eluted.
  15.  請求項13または14に記載の環境水への鉄分供給方法において、炭素材および/または鉄材の環境水中の表面積を調整し、鉄分または鉄錯体として鉄分の溶出量を調整する環境水への鉄分供給方法。 The iron supply method to the environmental water according to claim 13 or 14, wherein the surface area of the carbon material and / or the iron material in the environmental water is adjusted, and the elution amount of the iron content is adjusted as iron content or iron complex. Method.
  16.  請求項1~12のいずれかに記載の環境水への鉄分供給材から、鉄材だけを取り出して交換する環境水への鉄分供給材の保守方法。 A method for maintaining an iron supply material for environmental water in which only the iron material is taken out and replaced from the iron supply material for environmental water according to any one of claims 1 to 12.
  17.  請求項1~12のいずれかに記載の環境水への鉄分供給材の導通材の通電量を測定して、鉄材の交換時期を定める環境水への鉄分供給材の保守方法。 A method for maintaining an iron supply material to environmental water by measuring the amount of electricity supplied to the conductive material of the iron supply material to the environmental water according to any one of claims 1 to 12, and determining a replacement time of the iron material.
PCT/JP2015/004054 2014-08-14 2015-08-14 Iron supplying member for environmental water, iron supplying member maintenance method and method for supplying iron to environmental water WO2016024408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016542508A JPWO2016024408A1 (en) 2014-08-14 2015-08-14 Iron supply material to environmental water, maintenance method of iron supply material, and iron supply method to environmental water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-165256 2014-08-14
JP2014165256 2014-08-14

Publications (1)

Publication Number Publication Date
WO2016024408A1 true WO2016024408A1 (en) 2016-02-18

Family

ID=55304043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004054 WO2016024408A1 (en) 2014-08-14 2015-08-14 Iron supplying member for environmental water, iron supplying member maintenance method and method for supplying iron to environmental water

Country Status (2)

Country Link
JP (1) JPWO2016024408A1 (en)
WO (1) WO2016024408A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148776A (en) * 2016-02-26 2017-08-31 パナソニック株式会社 Water treatment equipment
CN108328718A (en) * 2018-04-24 2018-07-27 南京林业大学 A kind of generating means of fulvic acid chelated iron ion
JPWO2021010399A1 (en) * 2019-07-16 2021-12-09 日本特殊陶業株式会社 Aquaculture system
JP7463409B2 (en) 2019-06-12 2024-04-08 ニュークアティック エルエルシー Removal of substances from water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006925A1 (en) * 1986-05-06 1987-11-19 Jack Kenneth Ibbott Method and device for ionizing liquid
JPH1099870A (en) * 1996-09-30 1998-04-21 Japan Vilene Co Ltd Phosphorus removing material and phosphorus removing method using the same
JP2004066223A (en) * 2002-06-10 2004-03-04 Shunji Nishi Electrolyte waste water treatment device, electrode used for the device and power generation device
JP2008148678A (en) * 2006-12-15 2008-07-03 Kuniaki Ogami Generator for divalent-iron ion
WO2010087050A1 (en) * 2009-01-29 2010-08-05 独立行政法人国立高等専門学校機構 Method and apparatus for removing phosphorus dissolved in water
JP2010172829A (en) * 2009-01-29 2010-08-12 Institute Of National Colleges Of Technology Japan Removing method and removing apparatus for phosphorus in human waste drainage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006925A1 (en) * 1986-05-06 1987-11-19 Jack Kenneth Ibbott Method and device for ionizing liquid
JPH1099870A (en) * 1996-09-30 1998-04-21 Japan Vilene Co Ltd Phosphorus removing material and phosphorus removing method using the same
JP2004066223A (en) * 2002-06-10 2004-03-04 Shunji Nishi Electrolyte waste water treatment device, electrode used for the device and power generation device
JP2008148678A (en) * 2006-12-15 2008-07-03 Kuniaki Ogami Generator for divalent-iron ion
WO2010087050A1 (en) * 2009-01-29 2010-08-05 独立行政法人国立高等専門学校機構 Method and apparatus for removing phosphorus dissolved in water
JP2010172829A (en) * 2009-01-29 2010-08-12 Institute Of National Colleges Of Technology Japan Removing method and removing apparatus for phosphorus in human waste drainage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148776A (en) * 2016-02-26 2017-08-31 パナソニック株式会社 Water treatment equipment
CN108328718A (en) * 2018-04-24 2018-07-27 南京林业大学 A kind of generating means of fulvic acid chelated iron ion
JP7463409B2 (en) 2019-06-12 2024-04-08 ニュークアティック エルエルシー Removal of substances from water
JPWO2021010399A1 (en) * 2019-07-16 2021-12-09 日本特殊陶業株式会社 Aquaculture system

Also Published As

Publication number Publication date
JPWO2016024408A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
WO2016024408A1 (en) Iron supplying member for environmental water, iron supplying member maintenance method and method for supplying iron to environmental water
Du et al. Recent advances and prospects in electrochemical coupling technologies for metal recovery from water
US20190380313A1 (en) Physico-chemical process for removal of nitrogen species from recirculated aquaculture systems
JP2012011375A (en) Method and apparatus for treating wastewater
CN104829034B (en) Water body restoration system and restoration method
JP2006218385A (en) Hydrogen recovering electrolysis type water quality improving device and method
JP6173001B2 (en) Iron supply material and iron supply method
US4072798A (en) Bioelectric neutralization of acid waters
WO2013137122A1 (en) Method and system for controlling microbial reactions in benthic soil
KR20110110266A (en) Method and apparatus for removing phosphorus dissolved in water
JP5114612B2 (en) Microbial battery for sludge treatment and sludge purification apparatus using the same
CN106957092B (en) Method for electro-removing ammonia nitrogen by three-dimensional pulse
Liu et al. Performance assessment of constructed wetland-microbial fuel cell for treatment of mariculture wastewater containing heavy metals
JP2007287413A (en) New microorganism battery
JP2010159480A (en) Air cell type reaction apparatus
KR101935714B1 (en) Method and system for removing and recovering iron from groundwater using non-corrosive electrodes
JP3914871B2 (en) Water purifier
JP2013034955A (en) Method and apparatus for separating strontium
Brock et al. Remediation of marine dead zones by enhancing microbial sulfide oxidation using electrodes
CN204752863U (en) Device based on nitrogen phosphorus changed magnesium ammonium phosphate into during sea water battery technology will breed waste water
JP3222255U (en) Seaweed breeding system
JPS62282692A (en) Activated sludge treatment of waste water
US20220259081A1 (en) Electrochemical soil treatment apparatus and method
JP3985247B2 (en) How to kill Aoko
JP4917655B2 (en) Water purification material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831977

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016542508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831977

Country of ref document: EP

Kind code of ref document: A1