JP2006218385A - Hydrogen recovering electrolysis type water quality improving device and method - Google Patents

Hydrogen recovering electrolysis type water quality improving device and method Download PDF

Info

Publication number
JP2006218385A
JP2006218385A JP2005033723A JP2005033723A JP2006218385A JP 2006218385 A JP2006218385 A JP 2006218385A JP 2005033723 A JP2005033723 A JP 2005033723A JP 2005033723 A JP2005033723 A JP 2005033723A JP 2006218385 A JP2006218385 A JP 2006218385A
Authority
JP
Japan
Prior art keywords
water
hydrogen
cathode
electrolytic cell
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005033723A
Other languages
Japanese (ja)
Other versions
JP4600924B2 (en
Inventor
Yasuhiko Ito
靖彦 伊藤
Michio Kumagai
道夫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiga Prefectural Government.
Doshisha Co Ltd
Original Assignee
Shiga Prefectural Government.
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiga Prefectural Government. , Doshisha Co Ltd filed Critical Shiga Prefectural Government.
Priority to JP2005033723A priority Critical patent/JP4600924B2/en
Publication of JP2006218385A publication Critical patent/JP2006218385A/en
Application granted granted Critical
Publication of JP4600924B2 publication Critical patent/JP4600924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use oxygen generated on an anode for quality improvement of water in a low oxygen state by supplying natural energy, such as sunlight and wind force, with a low environmental load to a water electrolysis device; to recover hydrogen generated on a cathode without waste. <P>SOLUTION: A hydrogen recovering electrolysis type water quality improving device comprises: a barge arranged on the water; an electrolytic cell arranged under the water and having an anode and a cathode; a power source arranged on the barge and supplying electric power to the electrolytic cell; a hydrogen storage tank arranged on the barge; and a hydrogen collecting pipe connected to the bottom of the hydrogen storage tank and arranged above the cathode of the electrolytic cell. Water is electrolyzed between the anode and cathode of the electrolytic cell. This low-oxygen water quality improving device supplies direct-current power to the electrolytic cell disposed at the deep part or on the bottom part from above the water surface to electrolyze water, thereby generating oxygen on the anode, and generating hydrogen gas on the cathode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は湖沼、河川、海洋などの水質を改善する方法および装置に係り、詳しくは酸素を供給することにより溶存酸素を増加させて水環境の改善を図ると共に、電力源として自然エネルギーを利用しながら同時に水素エネルギーを回収する水質改善方法および装置に関する。   The present invention relates to a method and apparatus for improving water quality in lakes, rivers, oceans, and the like, and more specifically, by improving the water environment by increasing dissolved oxygen by supplying oxygen and using natural energy as a power source. The present invention also relates to a water quality improvement method and apparatus for simultaneously collecting hydrogen energy.

近年、河川や湖沼などの淡水域では流入する汚濁物質が増加して水中溶存酸素濃度が低下し、生物の棲めない低酸素状態が生じている。家庭や事業所、農地、市街地、森林などから流入する汚濁物質や直接湖沼上に降り注ぐ降雨などが環境負荷を高めている。また、港湾などの閉鎖系海水域でも汚泥や堆積物の影響を受けて海底付近が低酸素状態となりやすい。   In recent years, inflowing pollutants in freshwater areas such as rivers and lakes have led to a decrease in dissolved oxygen concentration in the water, resulting in hypoxic conditions that do not give up organisms. Contaminants flowing in from homes, business establishments, farmland, urban areas, forests, and rain that falls directly on lakes are increasing the environmental burden. Moreover, even in closed seawater areas such as harbors, the vicinity of the seabed tends to be in a low oxygen state due to the influence of sludge and sediment.

溶存酸素が低下した水質を改善する従来の試みとしては、空気を強制的に供給するエアレーションが一般的であり、また深層部と表層部の水をポンプで強制置換させる水流循環方法も行われている。しかし、溶存酸素が低下する深層部または水底の状態は水に近い比重の汚泥に覆われており、従来のように空気や水を循環する手法では堆積汚泥を巻き上げて二次的な汚濁拡大を引き起こす事態も生まれた。   As a conventional attempt to improve water quality in which dissolved oxygen is lowered, aeration forcing air is generally used, and a water flow circulation method in which water in the deep layer portion and the surface layer portion is forcibly replaced by a pump is also performed. Yes. However, the state of the deep layer where the dissolved oxygen decreases or the bottom of the water is covered with sludge with a specific gravity close to that of water, and the conventional method of circulating air and water raises the secondary sludge by rolling up the deposited sludge. Something that caused it was born.

更に、改善を実施すべき場所には湖沼や港湾などの電源の無いケースが多く、遠隔距離のケーブルを架線・埋設するか、或いは自家発電機などの電源設備を設置して運転管理する必要があった。   In addition, there are many cases where there is no power source such as lakes and harbors where improvements should be made, and it is necessary to operate and manage remote cables by installing overhead cables or burying them or installing power supply equipment such as private power generators. there were.

このように従来の水質改善方法は、消費電力や維持管理費用が大きい割に改善効果が乏しかった。   As described above, the conventional water quality improvement methods have a poor improvement effect despite the large power consumption and maintenance cost.

一方、水質改善の目的とは異なり、地球環境保全や負荷軽減、温暖化防止の観点から、太陽光や風力、水力、波力、潮力、温度差などから得られる自然エネルギーを水電解装置で一旦水素エネルギーに変換し、これを燃料電池に供給して電力に変換したり、直接、電気自動車を走行させたりする試みなどが提案されている。   On the other hand, unlike the purpose of improving water quality, water electrolysis equipment uses natural energy obtained from sunlight, wind power, hydropower, wave power, tidal power, temperature differences, etc., from the viewpoint of global environment conservation, load reduction, and prevention of global warming. There have been proposed attempts to convert it into hydrogen energy and supply it to a fuel cell to convert it into electric power or to directly drive an electric vehicle.

例えば、特許文献1は太陽電池とコンバータを用いて水電解する装置を、特許文献2は風力を利用して高分子電解質型水電解装置によって電力を得る方法を、特許文献3は種々の自然エネルギーから電気分解で得た水素を水素自動車へ供給するシステムをそれぞれ開示している。
特開平7−233493号公報 特開平11−228101号公報 特開平10−299576号公報 特開平9−291385号公報
For example, Patent Document 1 describes a device for water electrolysis using a solar cell and a converter, Patent Document 2 describes a method for obtaining electric power using a polymer electrolyte type water electrolysis device using wind power, and Patent Document 3 describes various natural energies. Discloses a system for supplying hydrogen obtained from electrolysis to hydrogen vehicles.
JP-A-7-233493 Japanese Patent Laid-Open No. 11-228101 Japanese Patent Laid-Open No. 10-299576 JP-A-9-291385

本発明の目的は、太陽光や風力などの環境負荷の少ない自然エネルギーを水電解装置に供給して、陽極で生成する酸素を低酸素状態の水質改善に役立たせると共に、陰極で発生する水素をエネルギー源として無駄なく回収することにあり、上記二つの目的を達成することは何れも環境負荷の軽減につながる。   The purpose of the present invention is to supply natural energy, such as sunlight and wind power, with low environmental impact to the water electrolysis device, to make oxygen generated at the anode useful for improving the water quality in a low oxygen state, and to generate hydrogen generated at the cathode. Recovering energy as a wasteless source, and achieving the above two objectives both lead to a reduction in environmental impact.

本発明の別の目的は、低酸素状態の発生場所に装置を設置して水電解する方法と装置を提供することにある。酸素溶解に好都合な低温高水圧下の深層中で電解するに際し、陽極表面積を陰極より大きくして電流密度を下げ、酸素ガスを極力気泡として発生させずに速やかに溶存酸素に転換させることを可能ならしめ、一方、陰極で発生する水素は高圧状態を保ちながら大気圧下の水面上まで捕集と輸送を行う。
Another object of the present invention is to provide a method and an apparatus for water electrolysis by installing an apparatus at a location where hypoxia occurs. When electrolyzing in a deep layer under low temperature and high water pressure, which is convenient for oxygen dissolution, the anode surface area can be made larger than the cathode to reduce the current density, and oxygen gas can be quickly converted to dissolved oxygen without generating bubbles. On the other hand, hydrogen generated at the cathode is collected and transported to the surface of water under atmospheric pressure while maintaining a high pressure state.

本発明の水素回収型電解式水質改善装置は、水上に配設したバージと、水中に配設した、陽極と陰極とを有する電解槽と、前記バージ上に配設した、前記電解槽に電力を供給する電源と、前記バージ上に配設した、水素貯蔵タンクと、前記水素貯蔵タンクの底部に連結して、前記電解槽の陰極上方に配設した水素捕集管と、を備え、前記電解槽の陽極と陰極間で水を電気分解する。本発明の低酸素水質の改善装置は、深層部または底層部に配置した電解槽へ水面上から直流電力を供給して水電解し、陽極で酸素を、陰極で水素ガスを発生させる。   The hydrogen recovery type electrolytic water quality improvement device of the present invention includes a barge disposed on the water, an electrolyzer having an anode and a cathode disposed on the water, and power supplied to the electrolyzer disposed on the barge. A hydrogen storage tank disposed on the barge, and a hydrogen collecting tube connected to the bottom of the hydrogen storage tank and disposed above the cathode of the electrolytic cell, Water is electrolyzed between the anode and cathode of the electrolytic cell. The apparatus for improving low oxygen water quality of the present invention supplies DC power from the water surface to an electrolytic cell disposed in a deep layer portion or a bottom layer portion for water electrolysis, and generates oxygen at the anode and hydrogen gas at the cathode.

陰極で発生した水素を高圧状態で回収する手段としては、水面上に設けた水素貯蔵用の気液分離タンクと水中の電解槽との間を、配管や可塑性チューブ等の水素捕集管で連結し水面上で捕集する方法がある。棒・円筒・平板状などの陰極の上部で水素気泡を捕集し、水面上につながる水素捕集管を通じてタンクまで導入移動させる。上記タンクを電解槽と同じ深層部に設置すれば、タンクの耐圧や安全面では有利であるが、高水圧下でのバルブ制御や保守管理はかなり煩雑となる。   As a means of recovering hydrogen generated at the cathode in a high pressure state, a hydrogen storage pipe such as a pipe or a plastic tube is connected between the hydrogen storage gas-liquid separation tank on the water surface and the electrolyzer in water. There is a method of collecting on the water surface. Hydrogen bubbles are collected at the upper part of the cathode such as a rod, cylinder, or plate, and introduced and moved to the tank through a hydrogen collection tube connected to the water surface. If the tank is installed in the same deep layer as the electrolytic cell, it is advantageous in terms of pressure resistance and safety of the tank, but valve control and maintenance management under high water pressure are considerably complicated.

本発明の水素回収型電解式水質改善装置は、前記電解槽の陰極に比べて陽極の表面積を大きくしたことを特徴とする。即ち本発明の水電解装置は、陽極表面積を陰極表面積より大きくすることで極力酸素ガスを発生させないことを特徴とする。電流密度の比較的高い陰極では水素ガスは泡状となって上部に浮上する。一方、表面積の大きい陽極では、生成酸素は溶存酸素として水中に拡散されるが、電極表面あるいは電極近傍に蓄積された酸素分子は広い電極表面に小さな気泡となって付着する。   The hydrogen recovery type electrolytic water quality improvement apparatus of the present invention is characterized in that the surface area of the anode is made larger than that of the cathode of the electrolytic cell. That is, the water electrolysis apparatus of the present invention is characterized in that oxygen gas is not generated as much as possible by making the anode surface area larger than the cathode surface area. At the cathode with a relatively high current density, the hydrogen gas is bubbled and floats to the top. On the other hand, in the anode having a large surface area, the generated oxygen is diffused into the water as dissolved oxygen, but oxygen molecules accumulated on the electrode surface or in the vicinity of the electrode adhere to the wide electrode surface as small bubbles.

本発明の水素回収型電解式水質改善装置は、前記電解槽は、前記陰極の上方を覆って水素捕集傘を備えてもよい。   In the hydrogen recovery type electrolytic water quality improvement apparatus of the present invention, the electrolytic cell may include a hydrogen collecting umbrella so as to cover an upper side of the cathode.

本発明の水素回収型電解式水質改善装置は、前記電解槽の陽極を、前記陰極の周囲を金属ワイヤ等で網状に囲むように前記水素捕集傘と一体成形してもよく、または、前記水素捕集傘に取り付けてもよい。   In the hydrogen recovery type electrolytic water quality improvement apparatus of the present invention, the anode of the electrolytic cell may be integrally formed with the hydrogen collecting umbrella so as to surround the cathode in a net shape with a metal wire or the like, or You may attach to a hydrogen collection umbrella.

本発明の水素回収型電解式水質改善装置は、前記電解槽の陰極を前記水素導入管の下端部に連結してもよい。   In the hydrogen recovery type electrolytic water quality improvement apparatus of the present invention, the cathode of the electrolytic cell may be connected to the lower end of the hydrogen introduction pipe.

本発明の水素回収型電解式水質改善装置は、前記電解槽を、水面より10m以上の深層水中に配設するのが好ましい。深層部の環境は高水圧と低水温状態にあるため、溶解量は常温常圧下での電解よりもヘンリー則に従って増大される。また、陽極近傍の水が低速流動の状態で陽極酸化が行われるので通常の酸素ガス曝気よりも過飽和に溶存できる。さらに、琵琶湖などの大きな湖沼の湖底付近に存在する自然の振動流などを利用すれば溶存酸素の拡散に都合がよい。   In the hydrogen recovery type electrolytic water quality improvement apparatus of the present invention, the electrolytic cell is preferably disposed in deep water of 10 m or more from the water surface. Since the environment in the deep layer is in a high water pressure and low water temperature state, the amount of dissolution is increased according to the Henry's law rather than electrolysis at room temperature and normal pressure. Further, since the anodic oxidation is performed in a state where the water in the vicinity of the anode is in a low-speed flow state, it can be dissolved in a supersaturated state as compared with normal oxygen gas aeration. Furthermore, it is convenient for the diffusion of dissolved oxygen by utilizing the natural oscillating flow that exists near the bottom of large lakes such as Lake Biwa.

本発明の水素回収型電解式水質改善方法は、深層水中に設置した電解槽に水面上から電力を供給して水を電気分解して陽極で生成する酸素を水中に溶存させると同時に、陰極で生成する水素ガスを水上で回収することを特徴とする。   The hydrogen recovery type electrolytic water quality improvement method of the present invention is a method of supplying electricity from above the water surface to an electrolytic cell installed in deep water to electrolyze water to dissolve oxygen generated in the anode at the same time as the cathode. The produced hydrogen gas is recovered on water.

本発明の水素回収型電解式水質改善方法は、前記水の電気分解は、イオン交換樹脂膜法で行なってもよい。
In the hydrogen recovery type electrolytic water quality improvement method of the present invention, the electrolysis of the water may be performed by an ion exchange resin membrane method.

本発明の水質改善方法および装置を用いれば、湖沼や港湾などの深層中で発生して問題となっている低酸素状態の改善が可能であり、底層の堆積汚泥を巻き上げることなく改善に必要な酸素を効率良く溶存できる。深層部の低酸素状態を改善すれば底生生物の多様性とそれらの食物連鎖が維持されて水質富栄養化が防止され、赤潮やアオコなどの発生も抑制できて飲料水としての水質保全に役立つ。また、底生生物の多様性は魚介類の生息や増殖にも必要であり漁業資源の確保・増大の効果も合わせ持つ。   By using the water quality improvement method and apparatus of the present invention, it is possible to improve the low oxygen state that occurs in deep layers such as lakes and harbors and is necessary for improvement without rolling up sediment sludge in the bottom layer. Oxygen can be dissolved efficiently. Improving the hypoxic state in the deep layer maintains the diversity of benthic organisms and their food chain, prevents water eutrophication, and suppresses the occurrence of red tides and sea cucumbers, thereby conserving water quality as drinking water Useful. Diversity of benthic organisms is also necessary for the habitat and growth of seafood and has the effect of securing and increasing fishery resources.

本発明の電解槽に供給する電力としては、太陽光以外にも風力、水力、波力、潮力、温度差などの自然エネルギー発電との組み合わせや、商用電源が取れない自然環境下でも使用可能な分散型発電システムとの組み合わせが可能である。本発明によれば、環境負荷の少ない自然エネルギーを利用することによって水質改善と同時に工業的に有用な高純度水素が得られる。水電解で得られる水素には一酸化炭素が含まれないので燃料電池への利用に最適である。   As electric power supplied to the electrolytic cell of the present invention, in addition to sunlight, it can be used in combination with natural energy power generation such as wind, hydropower, wave power, tidal power, temperature difference, etc., or even in a natural environment where commercial power cannot be obtained Can be combined with other distributed generation systems. According to the present invention, industrially useful high-purity hydrogen can be obtained at the same time as improving water quality by utilizing natural energy with low environmental impact. Since hydrogen obtained by water electrolysis does not contain carbon monoxide, it is optimal for use in fuel cells.

本発明による電解槽を深層中に設置して自然エネルギーからの電力を供給して、低溶存酸素中に存在する水を直接電解することによって深層中の水質を改善しながら、エネルギーを無駄なく再生することができる水素回収型水電解式水質改善方法および装置の利用価値は極めて大きい。
The electrolytic cell according to the present invention is installed in the deep layer to supply electric power from natural energy, and the water in the low-dissolved oxygen is directly electrolyzed to improve the water quality in the deep layer, while regenerating energy without waste. The utility value of the hydrogen recovery type water electrolysis type water quality improvement method and apparatus that can be used is extremely high.

以下に本発明の実施形態を、図1を用いて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.

図1は本発明による水素回収を可能にした水素回収型電解式水質改善装置の一例を示す概略断面図である。主要な機能を有する構造物としては、電解槽1、水素捕集管2、水素貯蔵タンク3、太陽光パネル4、バージ(平底船)5から成っている。   FIG. 1 is a schematic cross-sectional view showing an example of a hydrogen recovery type electrolytic water quality improvement device that enables hydrogen recovery according to the present invention. The structure having main functions includes an electrolytic cell 1, a hydrogen collection pipe 2, a hydrogen storage tank 3, a solar panel 4, and a barge (flat bottom ship) 5.

本実施形態において、電解槽1は陽極6と陰極7、および水素捕集傘8からなり、該水素捕集傘8の上部は、気液導入口9を下部に備えた水素捕集管2によって水面上の水素貯蔵タンク3に連結されている。水素貯蔵タンク3は水素ガス10の圧力保持と気液分離の両機能を兼ね備えた耐圧容器であり、下部には水還流バルブ11を備えた水出口12と、上部には水素放出バルブ13を備えた水素出口14が取り付けられる。   In the present embodiment, the electrolytic cell 1 includes an anode 6 and a cathode 7 and a hydrogen collecting umbrella 8, and the upper part of the hydrogen collecting umbrella 8 is formed by a hydrogen collecting tube 2 having a gas-liquid inlet 9 at the lower part. It is connected to a hydrogen storage tank 3 on the surface of the water. The hydrogen storage tank 3 is a pressure-resistant container that has both functions of maintaining the pressure of the hydrogen gas 10 and gas-liquid separation. The water storage tank 3 has a water outlet 12 having a water reflux valve 11 at a lower portion and a hydrogen discharge valve 13 at an upper portion. A hydrogen outlet 14 is attached.

図1で示される水電解式水質改善装置の固定方法は、陰極7、水素捕集管2、水素貯蔵タンク3が垂直方向に一体化されて水面上のバージ5に固定され、該バージ5は係留索15とアンカー16で任意の場所に固定されている。これとは別に、電解槽1の下方へ突出する形に陰極7と結合された固定部材17は底層地盤18の深くに固定される。図1は両者の併用を示すが深度や環境に応じてどちらか一方を採用してもよいし、バージ5に替えて橋梁や観測基地、堤防、岸壁などの構造物を利用してもよい。   The fixing method of the water electrolysis type water quality improvement apparatus shown in FIG. 1 is that the cathode 7, the hydrogen collecting pipe 2, and the hydrogen storage tank 3 are integrated in the vertical direction and fixed to the barge 5 on the water surface. The mooring line 15 and the anchor 16 are fixed at an arbitrary place. Separately, the fixing member 17 coupled to the cathode 7 so as to protrude downward from the electrolytic cell 1 is fixed deeply in the bottom layer ground 18. FIG. 1 shows a combination of both, but either one may be adopted according to the depth or environment, or a structure such as a bridge, an observation base, a dike, a quay may be used instead of the barge 5.

本発明の電解槽1に使用する陽極6、陰極7、水素捕集傘8などは円柱、円筒または円錐状であれば容易に配置構成できる。しかし、水素が捕集できる形状であれば平板電極を水平に配置することも可能であり、本発明は電極形状や電解槽の配置方法を詳細に限定するものではない。   The anode 6, cathode 7, hydrogen collector umbrella 8, etc. used in the electrolytic cell 1 of the present invention can be easily arranged and configured as long as they are cylindrical, cylindrical or conical. However, it is also possible to arrange the plate electrodes horizontally as long as hydrogen can be collected, and the present invention does not specifically limit the electrode shape or the method of arranging the electrolytic cell.

次に各部材に関して述べる。陽極6の材質としては炭素繊維板やフェライト、ステンレスなどの安価な電極材が候補に上げられるが、寿命・導電性・電極耐食性などが十分とは言えない。特に重金属が環境に溶出する恐れのあるステンレスなどは陽極に使用できない。通常、白金やタンタルなどの貴金属をメッキしたチタン材が用いられる。チタンに陽極電位をかけると酸化チタン皮膜が形成して不働態化するので、白金メッキなどで導電性を付与した不溶解性電極が適当である。チタン電極を網状やエキスパンド状にすれば湖底の湖水流の妨げもなく酸素拡散が促進される。また、白金は塩素過電圧が高く水中に塩素イオンが存在しても酸化されないので、生態系に有毒な遊離塩素を発生させる恐れもなく安全な酸素だけが生成する。   Next, each member will be described. As materials for the anode 6, inexpensive electrode materials such as carbon fiber plate, ferrite, and stainless steel can be cited as candidates, but it cannot be said that the life, conductivity, and electrode corrosion resistance are sufficient. In particular, stainless steel or the like that may cause heavy metals to elute into the environment cannot be used for the anode. Usually, a titanium material plated with a noble metal such as platinum or tantalum is used. When an anodic potential is applied to titanium, a titanium oxide film is formed and passivated, so an insoluble electrode imparted with conductivity by platinum plating or the like is suitable. If the titanium electrode is made net-like or expanded, oxygen diffusion is promoted without hindering the lake water flow at the bottom of the lake. In addition, platinum has a high chlorine overvoltage and is not oxidized even if chlorine ions are present in the water, so only safe oxygen is produced without fear of generating free chlorine that is toxic to the ecosystem.

陰極7の材質は安価な鋼材やステンレスが普通だが、水素過電圧を下げて消費電力を削減する目的で、スズを表面処理したニッケル(ラネーニッケル)が使用できる。陽極と同じく貴金属メッキの不溶解性チタン電極でもよい。通常、淡水を長期間の電解するとアルカリ土類金属(Ca、Mgなど)の水酸化物が陰極表面に付着して通電を妨げるが、防止策として陽陰極を短時間転極させて陰極を回復させる公知の手段を採用する場合には両極とも不溶解性電極を用いる。   The material of the cathode 7 is usually inexpensive steel or stainless steel, but nickel (Raney nickel) whose surface is treated with tin can be used for the purpose of reducing hydrogen overvoltage and reducing power consumption. Similar to the anode, an insoluble titanium electrode plated with noble metal may be used. Normally, when fresh water is electrolyzed for a long period of time, alkaline earth metal (Ca, Mg, etc.) hydroxide adheres to the cathode surface, preventing current flow. However, as a preventive measure, the cathode is reverted for a short time to recover the cathode. In the case of adopting known means, an insoluble electrode is used for both electrodes.

本実施形態において水素捕集傘8は水素捕集管2に固定されており、傘の下部に設ける陽極6の支持固定を兼ねている。水素捕集傘8には非導電性のプラスチックを使用できるが高強度の金属材料を使用するなら、陽極6と陽極7との絶縁が必要となる。また、水素捕集管2の材質としてチタン・ステンレス・鋼材などの金属を使用すると、陰極への給電導体を兼ねるので好都合である。長い部材が必要な深層中電解において安価なプラスチックパイプやチューブを使用するなら陰極用の導線(図示せず)が別途必要となる。   In this embodiment, the hydrogen collection umbrella 8 is fixed to the hydrogen collection tube 2 and also serves as a support and fixing of the anode 6 provided at the lower part of the umbrella. A non-conductive plastic can be used for the hydrogen collecting umbrella 8, but if a high-strength metal material is used, insulation between the anode 6 and the anode 7 is required. Moreover, it is convenient to use a metal such as titanium, stainless steel, or steel as the material of the hydrogen collecting tube 2 because it also serves as a power supply conductor to the cathode. If inexpensive plastic pipes or tubes are used in deep layer electrolysis that requires long members, a cathode conductor (not shown) is required separately.

次に、水素ガスの捕集方法について説明すると、陰極7は導電性の水素捕集管2の下部で機械的電気的に連結されており、陰極で発生する水素気泡19は水素捕集傘8の上部に集められ、水を伴って気液導入口9を通って浮上していく。水相20と水素ガス相21の混合状態を形成しながらガス浮力を駆動力にして両相は水素貯蔵タンク3へと上昇して行く。該タンクの水出口12と水素出口14が閉じられた状態ではタンクの内圧は、およそ電解槽1が設置された個所での深層水圧に近い圧力まで高めることが可能である。   Next, a method for collecting hydrogen gas will be described. The cathode 7 is mechanically and electrically connected to the lower part of the conductive hydrogen collecting tube 2, and the hydrogen bubbles 19 generated at the cathode are the hydrogen collecting umbrella 8. Collected at the top of the water and floats through the gas-liquid inlet 9 with water. While forming a mixed state of the water phase 20 and the hydrogen gas phase 21, both phases rise to the hydrogen storage tank 3 with gas buoyancy as the driving force. When the water outlet 12 and the hydrogen outlet 14 of the tank are closed, the internal pressure of the tank can be increased to a pressure close to the deep water pressure at the location where the electrolytic cell 1 is installed.

ただし、タンク内圧と深層部が同じ圧力になると圧力差の駆動力が無くなるから、気液混合相20、21は水素捕集管2を速やかに上昇できない。実際には各バルブ11、13を開閉しつつ水素貯蔵タンク3の液面を一定に保ちながら、タンク3内の圧力を深層部圧力より少し下げて電解すると気液混合相20、21を安定に移動できる。このように高水圧下で水電解すれば高圧の水素が安定して得られるし、昇圧ポンプがなくても遠くに水素を輸送できる利点がある。   However, when the tank internal pressure and the deep layer are the same pressure, the driving force of the pressure difference disappears, so that the gas-liquid mixed phases 20 and 21 cannot rise up the hydrogen collecting pipe 2 quickly. Actually, the gas-liquid mixed phases 20 and 21 can be stabilized by electrolysis with the pressure in the tank 3 slightly lower than the deep layer pressure while keeping the liquid level of the hydrogen storage tank 3 constant while opening and closing the valves 11 and 13. I can move. Thus, if water electrolysis is performed under high water pressure, high-pressure hydrogen can be stably obtained, and there is an advantage that hydrogen can be transported far away without a booster pump.

上記の気液混合状態を形成する条件は、ガス発生量(電流量)や水素捕集管2の内径、高低差、気液分離速度など多くの要因を加味して装置の規模に応じて実験的に決定される。このような気液リフトアップ現象の原理や利用方法については、上記特許文献4などでも述べられている。   The conditions for forming the above gas-liquid mixed state are experiments according to the scale of the apparatus, taking into account many factors such as the amount of gas generated (current amount), the inner diameter of the hydrogen collection tube 2, the height difference, and the gas-liquid separation speed. To be determined. The principle and utilization method of such a gas-liquid lift-up phenomenon is also described in Patent Document 4 and the like.

電力を供給する装置として、バージ5の上面および内部には太陽光発電システムが設置される。このシステムは太陽光パネル4と入出力マッチングを行う電力制御システム22から構成される。発電と水電解を効率良く行い夜間でも運転を可能にするためのDC−DCコンバータや蓄電池などが制御システムに組み込まれる。太陽電池で得られた電力は、陽極6につながる陽極導線23と、金属製水素捕集管2を通じて陰極7につながる陰極導線24の間に、電力制御システムを通して直流電圧が印加される。電力源として太陽光パネル4を図示したが種々の自然エネルギーが利用できる。   As a device for supplying electric power, a photovoltaic power generation system is installed on the upper surface and inside of the barge 5. This system includes a power control system 22 that performs input / output matching with the solar panel 4. A DC-DC converter, a storage battery, and the like for efficiently generating power and electrolyzing water and enabling operation at night are incorporated in the control system. The electric power obtained by the solar cell is applied with a DC voltage through the power control system between the anode conductor 23 connected to the anode 6 and the cathode conductor 24 connected to the cathode 7 through the metal hydrogen collecting tube 2. Although the solar panel 4 is illustrated as a power source, various natural energies can be used.

水電解の作動原理の一例を図3に示す。陰極でOH− イオンが生成して陽極で酸素ができる。図3は操業時における電流密度と電位のモデルを示す。電流密度ゼロにおける陽陰極電位の差、すなわち水の標準理論分解電圧は常温では1.23Vであるが、実際に電流を通じるとそれぞれに過電圧が加算される。両極に流れる電流は当然同じであるが電極表面積を変えると電流密度が変わる。本発明による図3の作動方法は陰極の電流密度を高くし(下直線の右寄り)陽極の電流密度を小さくする(上直線の左寄り)ことが特徴である。   An example of the operation principle of water electrolysis is shown in FIG. OH- ions are produced at the cathode and oxygen is produced at the anode. FIG. 3 shows a model of current density and potential during operation. The difference between positive and negative cathode potentials at zero current density, that is, the standard theoretical decomposition voltage of water is 1.23 V at room temperature, but overvoltage is added to each when current is actually passed. The currents flowing in both poles are naturally the same, but the current density changes when the electrode surface area is changed. 3 according to the present invention is characterized in that the cathode current density is increased (to the right of the lower straight line) and the anode current density is decreased (to the left of the upper straight line).

次に本発明の別の実施形態を、図2を用いて説明する。   Next, another embodiment of the present invention will be described with reference to FIG.

本第2の実施形態においても本発明の主眼、すなわち、高水圧環境に電解槽を設置することに変わりはないが、上記実施形態と異なる点は水電解の作動原理、および、電解槽1の構造にある。電解槽1以外の構造物は図1と同じなので説明を省く。   Even in the second embodiment, the main point of the present invention, that is, the electrolytic cell is installed in a high water pressure environment, but the point different from the above embodiment is the operation principle of water electrolysis and the electrolytic cell 1. In the structure. Since the structures other than the electrolytic cell 1 are the same as those in FIG.

図2で示される電解槽1は平板状の各部材が緊密に圧迫された積層構造となっている。すなわち、イオン交換樹脂膜25の裏表両側に陽極給電体6aと陰極給電体7aを介して陽極6と陰極7が形成され、これらによってイオン交換樹脂膜25を圧接せしめた構造となっている。   The electrolytic cell 1 shown in FIG. 2 has a laminated structure in which flat plate-like members are tightly pressed. That is, the anode 6 and the cathode 7 are formed on both sides of the ion exchange resin film 25 via the anode power supply 6a and the cathode power supply 7a, and the ion exchange resin film 25 is pressed into contact therewith.

陽極給電体6aと陰極給電体7aに用いる材料が有すべき機能は、導電性、多孔性、弾力性、電極耐食性、経済性などがあり、一般的には白金メッキしたチタンの網やエキスパンドメタルを複数枚積層させて弾力性を持たせた給電体を実用できる。また、繊維状、粒子状のチタンを焼結したものや繊維状カーボン、あるいはこれらの複合材料も利用できる。このような機能材料を活用することによって、各部を弾力的に圧着して導通を保ちながら水の供給とガスの放出を同時に行うことが可能となる。   The functions that the materials used for the anode power supply 6a and the cathode power supply 7a should have are conductivity, porosity, elasticity, electrode corrosion resistance, economic efficiency, etc., and generally a platinum-plated titanium net or expanded metal It is possible to practically use a power feeding body in which a plurality of sheets are laminated to give elasticity. In addition, a material obtained by sintering fibrous or particulate titanium, fibrous carbon, or a composite material thereof can also be used. By utilizing such a functional material, it becomes possible to simultaneously supply water and release gas while maintaining the electrical connection by elastically pressing each part.

陽極6と陰極7は電極耐食性の金属板であり全面もしくは一部に細孔が開けられる。これら両電極材には白金メッキチタン製の不溶解性電極が使用できるが、陰極7ではステンレスや低炭素鋼を使用しても問題ない。   The anode 6 and the cathode 7 are electrode corrosion-resistant metal plates, and pores are opened on the entire surface or a part thereof. For these two electrode materials, an insoluble electrode made of platinum-plated titanium can be used, but for the cathode 7, there is no problem even if stainless steel or low carbon steel is used.

図2の電解槽1はイオン交換樹脂膜25を使用しているので、一般的には純水を原料水として供給する。イオン交換樹脂の官能基にCa2+やMg2+(水中溶存不純物)が吸着蓄積されると電気抵抗が増大して電解できなくなる。湖沼水などの淡水をイオン交換法で精製してから原料水とする手段として、図2に、陽極6の背面(右側)に細孔を有する陽極室壁26を設けて、その空間にイオン交換樹脂粒子27を充填する方法を示した。 Since the electrolytic cell 1 in FIG. 2 uses the ion exchange resin membrane 25, pure water is generally supplied as raw material water. When Ca 2+ and Mg 2+ (impurities dissolved in water) are adsorbed and accumulated on the functional groups of the ion exchange resin, the electrical resistance increases and electrolysis cannot be performed. As a means for refining fresh water such as lake water by ion exchange and using it as raw material water, an anode chamber wall 26 having pores is provided on the back (right side) of the anode 6 in FIG. A method of filling the resin particles 27 was shown.

もちろん、電解槽1とは個別に設置した純水製造装置(図示せず)から陽極室に純水を直接供給することも可能であり、そうすればイオン交換樹脂粒子27の組み込みは不要となる。電解槽1を深層下に設置することが重要であり、純水の供給手段には種々の方法が適用できる。   Of course, it is also possible to supply pure water directly to the anode chamber from a pure water production apparatus (not shown) installed separately from the electrolytic cell 1, so that it is not necessary to incorporate the ion exchange resin particles 27. . It is important to install the electrolytic cell 1 under the deep layer, and various methods can be applied to the pure water supply means.

図2において、陽極6の向きは自然水流に対向させてあるので、自然水は陽極室壁26の細孔とイオン交換樹脂粒子27の層を浸透して脱イオン化によって純水となる。この原料水は、陽極6の細孔と陽極給電体6aの中をも通過して電極反応サイトであるイオン交換樹脂膜25の表面に到達する。ここで水が電解されて酸素ガスと水素イオンが生成される。陽極給電体6aの近傍では細かい発生期の酸素ガスが気液接触表面積を大きくさせた状態で水と混在しており、効率よく水に溶解して過飽和状態の溶存酸素に変化する。   In FIG. 2, since the direction of the anode 6 is opposed to the natural water flow, the natural water permeates the pores of the anode chamber wall 26 and the layer of the ion exchange resin particles 27 and becomes pure water by deionization. This raw material water also passes through the pores of the anode 6 and the anode power supply 6a and reaches the surface of the ion exchange resin film 25, which is an electrode reaction site. Here, water is electrolyzed to generate oxygen gas and hydrogen ions. In the vicinity of the anode power supply 6a, oxygen gas in a fine generation period is mixed with water in a state where the gas-liquid contact surface area is increased, and efficiently dissolves in water and changes to supersaturated dissolved oxygen.

陽極付近で溶存できなかった過剰酸素は、水が供給されるのとは逆の方向に向かって陽極給電体6aと陽極6、およびイオン交換樹脂粒子27、陽極室壁26を気泡状で通過する。この時、さらなる水との気液接触によって溶解された溶存酸素は矢印に示すように電解槽1の系外に放出される。高濃度の溶存酸素を含んだ水は自然水流と合わさって下流に拡散される。   Excess oxygen that could not be dissolved in the vicinity of the anode passes through the anode feeder 6a and the anode 6, the ion exchange resin particles 27, and the anode chamber wall 26 in the form of bubbles in a direction opposite to the direction in which water is supplied. . At this time, dissolved oxygen dissolved by gas-liquid contact with further water is released out of the system of the electrolytic cell 1 as indicated by an arrow. Water containing a high concentration of dissolved oxygen is diffused downstream with the natural water stream.

一方の陰極反応であるが、イオン交換樹脂膜25の陽極側で生成した水素イオンは陰極側に移動して陰極給電体との接触サイトで水素ガスとなり、陰極給電体7aと陰極7を通過して電極背面から気泡19となって水素捕集管2を上昇していく。   In one cathode reaction, the hydrogen ions generated on the anode side of the ion exchange resin film 25 move to the cathode side and become hydrogen gas at the contact site with the cathode power supply, and pass through the cathode power supply 7a and the cathode 7. As a result, bubbles 19 are lifted from the back surface of the electrode.

イオン交換膜式水電解で起きる電極副反応について言えば、膜内を移動する水素イオンは電解電流に比例した量の結合水和水を伴って対極へ移動し、陰極側で水素ガスになると同時に水和水が浸出される。従って、陰極7の背面から陰極室28へ放出されるのは気泡19だけでなく水和水を伴う。深層下に設置する陰極室28に任意の耐圧性を持たせ、バルブ11、13を閉じて水素貯蔵タンク3を密閉状態で運転すれば、タンク内圧は深層水圧に加算された分だけ容易に昇圧できる。   Speaking of electrode side reactions that occur in ion-exchange membrane water electrolysis, hydrogen ions moving in the membrane move to the counter electrode with an amount of bound hydrated water proportional to the electrolysis current, and simultaneously become hydrogen gas on the cathode side. Hydration water is leached. Therefore, not only the bubbles 19 but also hydrated water are discharged from the back surface of the cathode 7 to the cathode chamber 28. If the cathode chamber 28 installed under the deep layer has an arbitrary pressure resistance and the valves 11 and 13 are closed and the hydrogen storage tank 3 is operated in a sealed state, the internal pressure of the tank is easily increased by the amount added to the deep water pressure. it can.

上述のように、本実施形態においては、上記実施形態と異なり水電解方法としてイオン交換樹脂膜法を用いるが、その電極反応を図4で示す。上記実施形態においては、陰極前面(極間)の水が電解されるが(図3の場合)、本実施形態においては陽極背面から供給される水が電解される(図4の場合)。また、上記実施形態では生成されるOH− イオンが水中を陽極へ移動するのに対して、本実施形態においては生成されるH+ イオンが膜中を陰極に向かって移動する。このように電解反応にあずかるイオン種が異なるため原料水をどのように供給すべきかに工夫を要するが、何れの実施形態においても水を電解することに変わりはなく、標準理論分解電圧は常温では同じ1.23Vである。   As described above, in this embodiment, unlike the above embodiment, the ion exchange resin membrane method is used as the water electrolysis method. The electrode reaction is shown in FIG. In the above embodiment, water on the cathode front surface (between the electrodes) is electrolyzed (in the case of FIG. 3), but in this embodiment, water supplied from the anode back surface is electrolyzed (in the case of FIG. 4). In the above embodiment, the generated OH− ions move in water to the anode, whereas in the present embodiment, the generated H + ions move in the film toward the cathode. Thus, it is necessary to devise how to supply the raw water because the ionic species involved in the electrolytic reaction are different, but in any embodiment, water is electrolyzed, and the standard theoretical decomposition voltage is normal temperature. Same 1.23V.

なお、前実施形態の図1で述べたごとく、酸素の溶存を促進するために陽陰極の電流密度を変える手法を図2に適用するためには、イオン交換樹脂膜25の片側のみ全面を多孔性金属でメッキした接合体電極と呼ばれる材料が活用できる。イオン交換樹脂膜25の陽極側全面が反応に関与するのに対して、陰極側表面は無垢なので陰極給電体が接した表面積(多孔率で決まる)だけが反応面となり、両極の電流密度バランスを変えることが可能となる。また、図1でも述べたのと同様に、図2に示すごとく電極配置は縦方向だけでなく水平配置も可能なことは容易に想像できる。ただし、電解槽周辺に水路などを設けて水流が出入りしやすい構造にすることで、深層部で発生させた溶存酸素を速やかに拡散させることが重要である。   As described with reference to FIG. 1 of the previous embodiment, in order to apply the method of changing the current density of the cathode to promote the dissolution of oxygen in FIG. 2, the entire surface of only one side of the ion exchange resin film 25 is made porous. A material called a bonded electrode plated with a conductive metal can be used. The entire surface on the anode side of the ion exchange resin film 25 is involved in the reaction, whereas the surface on the cathode side is innocuous, so only the surface area (determined by the porosity) in contact with the cathode power supply becomes the reaction surface, and the current density balance between the two electrodes is balanced. It can be changed. In addition, as described in FIG. 1, it can be easily imagined that the electrodes can be arranged not only vertically but also horizontally as shown in FIG. However, it is important to quickly diffuse the dissolved oxygen generated in the deep layer by providing a water channel or the like around the electrolytic cell so that the water flow can easily enter and exit.

上記2つの実施形態間の大きな相違点は陽陰極間の材料・構造に起因する。第1の実施形態を表す図1においては、両電極の間に酸素と水素のガスが生成するため電気抵抗が大きくなり電力ロスを生じる。しかし、部品点数が少ないので安価な装置で目的が達成できる。   The major difference between the above two embodiments is due to the material and structure between the cathode and cathode. In FIG. 1 representing the first embodiment, oxygen and hydrogen gases are generated between the two electrodes, so that the electrical resistance increases and a power loss occurs. However, since the number of parts is small, the object can be achieved with an inexpensive device.

2番目の別の実施形態を表す図2においては、電極間にフリーの水は存在せず陽極背面から水が消費されて酸素を生成し、同様に水素も陰極の背面から放出される。図2のタイプの装置は、高価なイオン交換樹脂膜やその他の部材を必要とするが電流密度を大きくできるので電解槽はコンパクトであり電力ロスは少ない。   In FIG. 2, which represents the second alternative embodiment, there is no free water between the electrodes and water is consumed from the back of the anode to produce oxygen, as well as hydrogen is released from the back of the cathode. The apparatus of the type shown in FIG. 2 requires an expensive ion exchange resin membrane and other members, but since the current density can be increased, the electrolytic cell is compact and power loss is small.

以上、本発明の水素回収型電解式水質改善方法および装置について説明したが、本発明は上記実施形態及び以下に説明する実施例に限定されるものではない。何れの電解槽を採用するにしても、これら実施例等によって電解条件を詳細に限定するものではなく、水質改善すべき環境や規模に応じて複数個の電解槽が種々の電解電流で使用できる。本発明の最大の特徴は、電解槽を深層下に配置して水電解することにより、酸素を溶存させつつ水質を改善しながら同時に発生水素を巧みに回収して有効エネルギーとして活用することである。   As mentioned above, although the hydrogen recovery type | formula electrolytic water quality improvement method and apparatus of this invention were demonstrated, this invention is not limited to the said embodiment and the Example demonstrated below. Regardless of which electrolytic cell is employed, the electrolysis conditions are not limited in detail by these examples, and a plurality of electrolytic cells can be used at various electrolytic currents depending on the environment and scale to be improved in water quality. . The greatest feature of the present invention is that the electrolytic cell is placed under the deep layer and electrolyzed with water to improve the water quality while dissolving oxygen and at the same time skillfully recover the generated hydrogen and use it as effective energy. .

その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

以下、上記実施形態において説明した、本発明の水素回収型電解式水質改善方法および装置を用いた実施例について説明する。
Examples using the hydrogen recovery type electrolytic water quality improvement method and apparatus of the present invention described in the above embodiment will be described below.

本発明の実施例として、琵琶湖北湖深度90mより深い湖水(容積 約1億m3)の低酸素状態を回復させる場合を想定する。100m×100mの太陽光パネルを使用すればエネルギー収支・規模および水質改善効果はおよそ次のように試算できる。 As an example of the present invention, it is assumed that the hypoxic state of the lake water (volume: about 100 million m 3 ) deeper than the depth of 90m of Lake Biwa is assumed. If solar panels of 100m x 100m are used, the energy balance, scale, and water quality improvement effect can be estimated as follows.

年平均日射量をエネルギーで表せば、琵琶湖北湖地方における過去10年間の平均値は3.5kWh/m2/dayであった。太陽光パネルの発電効率は、本来20%位だが汚れを考慮して12%とする。年間当りの利用可能量は1.533×106 kWh/年、送電に伴う電圧降下(約91%)を考慮して実質利用可能量を1.4×106 kWh/年とする。一般的に水電解で生じる酸素の理論生成量は 0.2089×10-33/Ahであり、酸素を電解電圧1.4Vで発生させれば0.15m3/kWhの酸素が生成する。この太陽光パネルの電力を用いると年間に0.21×1063の酸素が供給できる。1億m3の水塊にこの酸素を供給すると 2.1ml/L(約3.0mg/L)の酸素が増える。現在の琵琶湖での最低酸素濃度の実測値1.0mg/Lを加算すると、溶存酸素濃度は約4.0mg/Lに回復することになる。 Expressing the annual average solar radiation in terms of energy, the average value over the past 10 years in the North Lake District of Lake Biwa was 3.5kWh / m 2 / day. The power generation efficiency of solar panels is originally about 20%, but it is set to 12% considering dirt. The annual usable amount is 1.533 × 10 6 kWh / year, and the actual usable amount is 1.4 × 106 kWh / year in consideration of the voltage drop (about 91%) due to power transmission. In general, the theoretical amount of oxygen generated by water electrolysis is 0.2089 × 10 −3 m 3 / Ah. If oxygen is generated at an electrolysis voltage of 1.4 V, oxygen of 0.15 m 3 / kWh is generated. Using this solar panel power, 0.21 × 10 6 m 3 of oxygen can be supplied annually. 100 million Supplying oxygen to water mass of m 3 2.1ml / L (approximately 3.0 mg / L) oxygen increases the. When the actual measured value of 1.0mg / L of the minimum oxygen concentration in Lake Biwa is added, the dissolved oxygen concentration will recover to about 4.0mg / L.

電解槽から回収される水素は年間で0.42×1063 であり、これは約470台の燃料電池自動車を1年間走行させるエネルギー回収に相当する。 The amount of hydrogen recovered from the electrolyzer is 0.42 × 10 6 m 3 per year, which is equivalent to the energy recovery that runs about 470 fuel cell vehicles for one year.

以上は琵琶湖への適用を想定した実用規模の構想であるが、日射量エネルギーや太陽電池のデータ、および電解槽エネルギー計算には基礎実験で確認した数値を用いており、電解装置がスケール拡大によって生じる試算誤差は小さいと考える。
The above is a concept on a practical scale that is assumed to be applied to Lake Biwa, but the solar radiation energy, solar cell data, and electrolytic cell energy calculation are based on numerical values confirmed in basic experiments. The estimated calculation error is considered to be small.

本発明の方法および装置によって、湖沼環境を改善することができる。湖沼の動植物を食物連鎖とする鳥類や哺乳類などの繁殖を阻害しないで、様々な魚貝類の漁獲や養殖を行ったりする漁業や捕獲等の関連業にとっては、湖沼の水質改善は必須とも言える。
また、湖底を水質改善すれば、深水層の生態系を守ることができるだけでなく、水中の窒素やリン成分の増加が抑制できる。これらの増加に起因する藻類の増殖もおさえられるので、湖沼水は清浄に保たれ、飲料水や農業・工業用水などにも有効に利用でき、また、観光資源としても役立つ。
近年、琵琶湖を初めとする比較的水深の深い湖沼において、国内だけでなく世界的な規模で深層湖底の溶存酸素が欠乏する傾向が見られる。その原因としては水質の富栄養化だけでなく、地球温暖化の進行によって冬季の厳寒や降雪量が減って、溶存酸素の多い湖面と欠乏する湖底との対流混合効果が無くなったことが指摘されている。すなわち,本発明は、地球的規模で温暖化の影響を受けている海外の湖沼でも十分利用できるものである。
本発明は、自然エネルギーから水素が回収できるので、エネルギーや自動車産業にも関連するし、直接的には環境保全機器や環境関連産業に利用できる。そして、自然を保護することによって極めて広範囲な産業や地域に大きな影響を及ぼす可能性があると考える。
The lake environment can be improved by the method and apparatus of the present invention. It is essential to improve the water quality of the lake for fisheries and related industries such as fishing and aquaculture of various fish and shellfish without obstructing the breeding of birds and mammals that use the flora and fauna of the lake as their food chain.
Moreover, if the water quality of the lake bottom is improved, not only can the ecosystem of deep water layers be protected, but also the increase of nitrogen and phosphorus components in the water can be suppressed. The growth of algae caused by these increases can be suppressed, so that the lake water can be kept clean and can be used effectively for drinking water, agricultural and industrial water, and also useful as a tourism resource.
In recent years, in deep lakes such as Lake Biwa, there is a tendency for the dissolved oxygen at the bottom of deep lakes to be deficient not only in Japan but also on a global scale. It is pointed out that not only the eutrophication of the water quality but also the severe cold and snowfall in winter decreased due to the progress of global warming, and the convective mixing effect between the lake surface with high dissolved oxygen and the deficient lake bottom was lost. ing. That is, the present invention can be sufficiently used even in overseas lakes that are affected by global warming on a global scale.
Since hydrogen can be recovered from natural energy, the present invention is related to energy and the automobile industry, and can be directly used for environmental conservation equipment and environment-related industries. And we believe that protecting nature can have a huge impact on a very wide range of industries and regions.

本発明の水素回収型水電解式水質改善装置の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the hydrogen recovery type water electrolysis type water quality improvement apparatus of this invention. 本発明の水素回収型水電解式水質改善装置の他の実施例を示す概略断面図である。It is a schematic sectional drawing which shows the other Example of the hydrogen recovery type water electrolysis-type water quality improvement apparatus of this invention. 本発明を可能ならしめるために陽極の表面積を陰極より大きくして水素発生と酸素の溶存効率を高める手法を説明する原理図である。In order to make the present invention possible, it is a principle diagram for explaining a method of increasing the surface area of an anode larger than that of a cathode and increasing the efficiency of hydrogen generation and oxygen dissolution. 本発明に使用するイオン交換樹脂膜を用いた場合の電解反応を説明する原理図である。It is a principle figure explaining the electrolytic reaction at the time of using the ion exchange resin membrane used for this invention.

符号の説明Explanation of symbols

1:電解槽
2:水素捕集管
3:水素貯蔵タンク
4:太陽光パネル
5:バージ
6:陽極
6a:陽極給電体
7:陰極
7a:陰極給電体
8:水素捕集傘
9:気液導入口
10:水素ガス
11:水還流バルブ
12:水出口
13:水素放出バルブ
14:水素出口
15:係留索
16:アンカー
17:固定部材
18:湖底
19:水素気泡
20:水相
21:水素ガス相
22:電力制御システム
23:陽極導線
24:陰極導線
25:イオン交換樹脂膜
26:陽極室壁
27:イオン交換樹脂粒子
28:陰極室
51、52:水素回収型電解式水質改善装置

1: Electrolytic cell 2: Hydrogen collection tube 3: Hydrogen storage tank 4: Solar panel 5: Barge 6: Anode 6a: Anode feeder 7: Cathode 7a: Cathode feeder 8: Hydrogen collector 9: Gas-liquid introduction Port 10: Hydrogen gas 11: Water reflux valve 12: Water outlet 13: Hydrogen outlet valve 14: Hydrogen outlet 15: Mooring line 16: Anchor 17: Fixed member 18: Lake bottom 19: Hydrogen bubble 20: Water phase 21: Hydrogen gas phase 22: Power control system 23: Anode lead 24: Cathode lead 25: Ion exchange resin film 26: Anode chamber wall 27: Ion exchange resin particle 28: Cathode chamber 51, 52: Hydrogen recovery type electrolytic water quality improvement device

Claims (8)

水上に配設したバージと、
水中に配設した、陽極と陰極とを有する電解槽と、
前記電解槽に電力を供給する電源と、
前記バージ上に配設した、水素貯蔵タンクと、
前記水素貯蔵タンクの底部に連結して、前記電解槽の陰極上方に配設した水素捕集管と、
を備え、
前記電解槽の陽極と陰極間で水を電気分解する、
水素回収型電解式水質改善装置。
A barge on the water,
An electrolytic cell having an anode and a cathode disposed in water;
A power source for supplying power to the electrolytic cell;
A hydrogen storage tank disposed on the barge;
A hydrogen collecting tube connected to the bottom of the hydrogen storage tank and disposed above the cathode of the electrolytic cell;
With
Electrolyzing water between the anode and cathode of the electrolytic cell;
Hydrogen recovery type electrolytic water quality improvement device.
前記電解槽の陰極に比べて陽極の表面積を大きくしたことを特徴とする、請求項1に記載の水素回収型電解式水質改善装置。 The hydrogen recovery type electrolytic water quality improvement apparatus according to claim 1, wherein the surface area of the anode is made larger than that of the cathode of the electrolytic cell. 前記電解槽は、前記陰極の上方を覆って水素捕集傘を備えた、請求項1または請求項2に記載の水素回収型電解式水質改善装置。 3. The hydrogen recovery type electrolytic water quality improvement apparatus according to claim 1, wherein the electrolytic cell is provided with a hydrogen collecting umbrella so as to cover an upper side of the cathode. 前記電解槽の陽極を網状に形成し、前記陰極の周囲を覆って前記水素捕集傘に取り付けた、請求項3に記載の水素回収型電解式水質改善装置。 The hydrogen recovery type electrolytic water quality improvement apparatus according to claim 3, wherein the anode of the electrolytic cell is formed in a net shape, and is attached to the hydrogen collecting umbrella so as to cover the periphery of the cathode. 前記電解槽の陰極を前記水素導入管の下端部に連結した、請求項1乃至請求項4に記載の水素回収型電解式水質改善装置。 The hydrogen recovery type electrolytic water quality improvement apparatus according to claim 1, wherein a cathode of the electrolytic cell is connected to a lower end portion of the hydrogen introduction pipe. 前記電解槽を、水面より10m以上の深層水中に配設した、請求項1乃至請求項5に記載の水素回収型電解式水質改善装置。 The hydrogen recovery type electrolytic water quality improvement device according to claim 1, wherein the electrolytic cell is disposed in deep water of 10 m or more from a water surface. 深層水中に設置した電解槽に水面上から電力を供給して水を電気分解して陽極で生成する酸素を水中に溶存させると同時に、陰極で生成する水素ガスを水上で回収することを特徴とする水素回収型電解式水質改善方法。 It is characterized by supplying electricity from above the water surface to the electrolytic cell installed in the deep water to electrolyze the water to dissolve the oxygen generated at the anode in the water and at the same time recover the hydrogen gas generated at the cathode on the water Hydrogen recovery type electrolytic water quality improvement method. 前記水を電気分解は、イオン交換樹脂膜法で行なう請求項7に記載の水素回収型電解式水質改善方法。
The hydrogen recovery type electrolytic water quality improvement method according to claim 7, wherein the water is electrolyzed by an ion exchange resin membrane method.
JP2005033723A 2005-02-10 2005-02-10 Hydrogen recovery type electrolytic water quality improvement device Expired - Fee Related JP4600924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033723A JP4600924B2 (en) 2005-02-10 2005-02-10 Hydrogen recovery type electrolytic water quality improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033723A JP4600924B2 (en) 2005-02-10 2005-02-10 Hydrogen recovery type electrolytic water quality improvement device

Publications (2)

Publication Number Publication Date
JP2006218385A true JP2006218385A (en) 2006-08-24
JP4600924B2 JP4600924B2 (en) 2010-12-22

Family

ID=36981044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033723A Expired - Fee Related JP4600924B2 (en) 2005-02-10 2005-02-10 Hydrogen recovery type electrolytic water quality improvement device

Country Status (1)

Country Link
JP (1) JP4600924B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158657A (en) * 2009-01-09 2010-07-22 Think Tank 21 Kk Eco Tank Method of controlling water bloom using vibration-wave generator and oxygen/ozone generator
JP2011526965A (en) * 2008-07-02 2011-10-20 モレキュラー パワー システムズ エルエルシー Sonochemical hydrogen generation system with cavitation assistance
US20120222953A1 (en) * 2011-03-02 2012-09-06 Anderson Kenneth W Systems and Methods for Producing Pressurized Gases from Polar Molecular Liquids at Depth
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
JP2017119274A (en) * 2016-12-28 2017-07-06 株式会社日省エンジニアリング Portable electrolysis device
CN107304478A (en) * 2016-04-25 2017-10-31 株式会社日省工程 Pocket electrolysis unit
WO2017187246A1 (en) * 2016-04-29 2017-11-02 游俊义 Seawater electrolysis-based hydrogen recovery and power generation system
JP2020007187A (en) * 2018-07-09 2020-01-16 トヨタ自動車株式会社 System and method for producing hydrogen gas
CN111410272A (en) * 2020-04-30 2020-07-14 中国水产科学研究院淡水渔业研究中心 Water quality improving device for bottom of culture pond
KR20210026449A (en) * 2019-08-30 2021-03-10 최천기 Deep Water Based Hydrogen Production System
WO2022010104A1 (en) * 2020-07-09 2022-01-13 고려대학교 산학협력단 Water electrolysis apparatus and water electrolysis method
WO2024030542A3 (en) * 2022-08-04 2024-04-11 Astron Aerospace Llc Systems and methods for production of hydrogen and oxygen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012921A (en) * 1983-07-01 1985-01-23 三井造船株式会社 Red tide exterminating apparatus
JPH02277592A (en) * 1989-04-18 1990-11-14 Mitsubishi Electric Corp Water quality improving device
JPH04298285A (en) * 1991-03-27 1992-10-22 Daiwabo Create Kk Algaproofing device
JPH04300694A (en) * 1991-03-28 1992-10-23 Penta Ocean Constr Co Ltd Water purifying apparatus due to electrolytic treatment
JPH08312596A (en) * 1995-05-17 1996-11-26 Agency Of Ind Science & Technol Bubble pump
JP2001252669A (en) * 2000-03-14 2001-09-18 Mitsui Eng & Shipbuild Co Ltd Sediment cleaning device and its cleaning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012921A (en) * 1983-07-01 1985-01-23 三井造船株式会社 Red tide exterminating apparatus
JPH02277592A (en) * 1989-04-18 1990-11-14 Mitsubishi Electric Corp Water quality improving device
JPH04298285A (en) * 1991-03-27 1992-10-22 Daiwabo Create Kk Algaproofing device
JPH04300694A (en) * 1991-03-28 1992-10-23 Penta Ocean Constr Co Ltd Water purifying apparatus due to electrolytic treatment
JPH08312596A (en) * 1995-05-17 1996-11-26 Agency Of Ind Science & Technol Bubble pump
JP2001252669A (en) * 2000-03-14 2001-09-18 Mitsui Eng & Shipbuild Co Ltd Sediment cleaning device and its cleaning method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526965A (en) * 2008-07-02 2011-10-20 モレキュラー パワー システムズ エルエルシー Sonochemical hydrogen generation system with cavitation assistance
JP2010158657A (en) * 2009-01-09 2010-07-22 Think Tank 21 Kk Eco Tank Method of controlling water bloom using vibration-wave generator and oxygen/ozone generator
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
US20120222953A1 (en) * 2011-03-02 2012-09-06 Anderson Kenneth W Systems and Methods for Producing Pressurized Gases from Polar Molecular Liquids at Depth
WO2012119121A2 (en) * 2011-03-02 2012-09-07 Anderson Kenneth W Systems and methods for producing pressurized gases from polar molecular liquids at depth or pressure
WO2012119121A3 (en) * 2011-03-02 2012-12-27 Anderson Kenneth W Systems and methods for producing pressurized gases from polar molecular liquids at depth or pressure
CN107304478A (en) * 2016-04-25 2017-10-31 株式会社日省工程 Pocket electrolysis unit
CN107304478B (en) * 2016-04-25 2020-05-19 株式会社日省工程 Portable electrolysis device
WO2017187246A1 (en) * 2016-04-29 2017-11-02 游俊义 Seawater electrolysis-based hydrogen recovery and power generation system
JP2017119274A (en) * 2016-12-28 2017-07-06 株式会社日省エンジニアリング Portable electrolysis device
CN110699699A (en) * 2018-07-09 2020-01-17 丰田自动车株式会社 Hydrogen generation system and method for generating hydrogen
JP2020007187A (en) * 2018-07-09 2020-01-16 トヨタ自動車株式会社 System and method for producing hydrogen gas
JP7067325B2 (en) 2018-07-09 2022-05-16 トヨタ自動車株式会社 Hydrogen gas generation system and hydrogen gas generation method
KR20210026449A (en) * 2019-08-30 2021-03-10 최천기 Deep Water Based Hydrogen Production System
KR102259360B1 (en) 2019-08-30 2021-06-01 최천기 Deep Water Based Hydrogen Production System
CN111410272A (en) * 2020-04-30 2020-07-14 中国水产科学研究院淡水渔业研究中心 Water quality improving device for bottom of culture pond
WO2022010104A1 (en) * 2020-07-09 2022-01-13 고려대학교 산학협력단 Water electrolysis apparatus and water electrolysis method
KR20220007746A (en) * 2020-07-09 2022-01-19 고려대학교 산학협력단 Apparatus and method for electrolyzing water
KR102433996B1 (en) * 2020-07-09 2022-08-19 고려대학교 산학협력단 Apparatus and method for electrolyzing water
WO2024030542A3 (en) * 2022-08-04 2024-04-11 Astron Aerospace Llc Systems and methods for production of hydrogen and oxygen

Also Published As

Publication number Publication date
JP4600924B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4600924B2 (en) Hydrogen recovery type electrolytic water quality improvement device
CN107117690B (en) Device and method for treating refractory pollutants through electrocatalytic oxidation
CN202474102U (en) Power generating device utilizing salinity electric potential potential difference energy for reverse electroosmosis
US20020155330A1 (en) Fuel cell system and hydrogen-generating system therefor
WO2011159772A1 (en) Microbial desalination cells
CN207645868U (en) A kind of electro-chemical water processing equipment with gradient electrolysis strength
CN101956206B (en) Electrolytic device and technology for preparing hydrogen and oxygen through seawater electrolysis
KR20160059438A (en) Hybridization systme of new and renewable energy technologies on the basis of salinity gradient power generation
AU2011299918B2 (en) Magnesium recovery method and magnesium recovery apparatus
CN201971667U (en) High-voltage pulsed electric coagulation equipment for treating organic wastewater
CN102610835A (en) Generating set of utilizing salinity energy reverse electro dialysis
CN102010037A (en) Design scheme of standardized electric flocculation equipment
JP5114612B2 (en) Microbial battery for sludge treatment and sludge purification apparatus using the same
JP4885641B2 (en) Marine electrolysis factory
Sandbank et al. Improved electroflotation for the removal of suspended solids from algal pond effluents
JP2007287413A (en) New microorganism battery
JP2007044640A (en) Water electrolyzer for purifying lake water and also for producing hydrogen
CN109912105A (en) A kind of nitrogenous organic wastewater electrochemical treatments reactor and method for making electric flocculation sludge obtain Magneto separate performance
KR102433995B1 (en) Seawater electrolytic apparatus and a system interworiking between the apparatus and fuel cell
Sur et al. Hybrid Alkali–Salt–Acid Electrochemical Device for Electricity-Efficient Desalination and H2 Generation
CN214299655U (en) Device for recycling nitrogen and phosphorus in rural sewage by electrochemical sacrificial anode
WO2013017901A1 (en) System and method for producing electrical energy
CN210855619U (en) Contain salt organic waste water electrocatalytic oxidation coupling preprocessing device
CN102642898B (en) Sewage three-dimensionally flowing electrolysis treatment device
CN214654275U (en) Micro-electrolysis catalytic oxidation system for difficult-degradation chemical organic wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees