WO2016024342A1 - バラスト水の処理方法 - Google Patents

バラスト水の処理方法 Download PDF

Info

Publication number
WO2016024342A1
WO2016024342A1 PCT/JP2014/071345 JP2014071345W WO2016024342A1 WO 2016024342 A1 WO2016024342 A1 WO 2016024342A1 JP 2014071345 W JP2014071345 W JP 2014071345W WO 2016024342 A1 WO2016024342 A1 WO 2016024342A1
Authority
WO
WIPO (PCT)
Prior art keywords
ballast water
active substance
added
chlorine
turbidity
Prior art date
Application number
PCT/JP2014/071345
Other languages
English (en)
French (fr)
Inventor
哲朗 深瀬
林 一樹
石橋 保
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US15/502,841 priority Critical patent/US20170233270A1/en
Priority to PCT/JP2014/071345 priority patent/WO2016024342A1/ja
Priority to CN201480081116.0A priority patent/CN106573802A/zh
Priority to KR1020177004037A priority patent/KR20170041211A/ko
Publication of WO2016024342A1 publication Critical patent/WO2016024342A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a treatment method for controlling ballast water by optimally determining the addition amount of a chlorinated active substance in ballast water treatment.
  • the standard set by the International Maritime Organization (IMO) as a standard for the treatment of ship ballast water is that the number of organisms (mainly zooplankton) of 50 ⁇ m or more contained in the ship ballast water discharged from the ship is less than 10 in 1 m 3 , The number of organisms (mainly phytoplankton) of 10 ⁇ m or more and less than 50 ⁇ m is less than 10 in 1 ml, the number of Vibrio cholerae is less than 1 cfu in 100 ml, the number of E. coli is less than 250 cfu in 100 ml, and the number of enterococci in 100 ml Less than 100 cfu.
  • IMO International Maritime Organization
  • microorganisms can be obtained by adding a disinfectant of chlorinated active substances such as sodium hypochlorite and calcium hypochlorite to ship ballast water to ensure residence time.
  • a disinfectant of chlorinated active substances such as sodium hypochlorite and calcium hypochlorite
  • the ship ballast water processing method which kills etc. is proposed.
  • the addition amount of the chlorinated active substance in this ballast water treatment is determined using the maximum allowable addition amount (MAD) set at the time of basic approval of IMO as an index.
  • MAD maximum allowable addition amount
  • the chlorine attenuation prediction method described in Patent Document 1 often adds a chlorine-based active substance at a high concentration to ballast water for prediction.
  • the initial attenuation rate of the chlorine-based active substance is high. Therefore, the correlation between the initial chlorine consumption rate and the subsequent chlorine consumption rate is reduced, and the chlorine concentration in a few days is expected from a relatively short time after the addition of the active substance, for example, a chlorine consumption of 120 minutes or less. There was a problem that it was difficult.
  • the quality of water in actual ballast water varies depending on many factors such as the contamination status of the sampling site, the depth of the sampling water, the timing of sampling, and the duration of the voyage.
  • This change in water quality depends not only on SS but also on the types and amounts of DOC, POC, ammonia, nitrous acid, inorganic salts, and organic substances.
  • the conventional method has a problem that it cannot follow that the consumption rate of the chlorinated active substance varies with the change in water quality.
  • the present invention aims to solve such problems and provide a ballast water treatment method capable of optimally determining the addition amount of a chlorinated active substance in ballast water treatment.
  • the present invention provides a ballast water treatment method for adding a chlorinated active substance for sterilizing aquatic microorganisms in the ballast water when supplying the ballast water taken to the ballast tank.
  • the turbidity of untreated ballast water to which no chlorinated active substance is added is measured in advance, and a chlorinated active substance determined based on the turbidity is added to neutralize the ballast water.
  • a method for treating ballast water is provided (Invention 1).
  • the total residual oxidizing substance concentration (TRO) of the ballast water is preferably 0.5 to 3 mg / L (asCl 2 ) at the time of discharge (Invention 2).
  • invention 2 if the total residual oxidizing substance concentration (TRO) after neutralization of ballast water is 0.5 mg / L or more, harmful plankton, bacteria, etc. are reduced to a reference value or less. On the other hand, if it is 3 mg / L or less, the environmental load at the time of discharge can also be reduced.
  • the total residual oxidizing substance concentration can be obtained simply by adding a chlorine-based active substance in proportion to turbidity.
  • the chlorine-based active substance when the turbidity value is less than 10 NTU, the chlorine-based active substance is added so as to be 2 to 14 mg / L (asCl 2 ), and more than 10 NTU and less than 50 NTU In this case, the chlorinated active substance is added to 2 to 30 mg / L (asCl 2 ), and in the case of 50 NTU or more, the chlorinated active substance is added to 18 to 30 mg / L (asCl 2 ). It is preferable to add in such a manner (Invention 3).
  • the chlorinated active substance is preferably one or more selected from dichloroisocyanurate, trichloroisocyanurate, and hypochlorite (Invention) 5).
  • these chlorinated active substances are excellent in the bactericidal properties of microorganisms contained in ship ballast water and the like, and are calculated and measured by logarithmic formulas based on the total residual oxidizing substance concentration. Is suitable for determining the amount of addition of the chlorinated active substance.
  • ballast water of the present invention untreated ballast water before actually adding a chlorinated active substance is collected, and the turbidity of this untreated ballast water is measured in advance. Since the addition amount of the chlorinated active substance is determined according to the value of, the excessive addition or insufficient addition of the chlorinated active substance can be prevented. Moreover, the toxicity of discharged water can be lowered and the amount of neutralizing agent added can be reduced.
  • ballast water treatment method of the present invention will be described in detail based on one embodiment.
  • the ballast water treatment method of the present embodiment determines the addition amount of a chlorinated active substance for sterilizing aquatic microorganisms in the ballast water when supplying the ballast water taken from the water intake to the ballast tank. Chlorine-based active substances that have been collected in advance and untreated ballast water to which no chlorinated active substances have been added are collected in advance, the turbidity of this untreated ballast water is measured in advance, and the turbidity determined To neutralize this ballast water during discharge.
  • dichloroisocyanuric acid salt trichloroisocyanuric acid is excellent because it is excellent in bactericidal properties and approximates to some extent the calculation by the logarithmic formula by the total residual oxidizing substance concentration described later and the actual measurement value.
  • One or more selected from salts and hypochlorites can be used, and hypochlorites such as sodium hypochlorite are particularly preferred.
  • the total residual oxidizing substance concentration is TRO (Total Residual Oxidants), and the oxidizing chlorine concentration due to the addition of a chlorine-based active substance and other oxidizing components generated by reaction with this oxidizing chlorine are included. included.
  • This total residual oxidizing substance concentration can be measured at room temperature using a commercially available high precision TRO meter using the DPD absorbance method.
  • the amount of the chlorinated active substance added is turbid so that the total residual oxidizing substance concentration (TRO) after neutralization of the ballast water is 0.5 to 3 mg / L (asCl 2 ) at the time of discharge. Set accordingly. If the total residual oxidizing substance concentration (TRO) is less than 0.5 mg / L, it will be difficult to reduce harmful plankton and bacteria to below the standard value, or regrowth of bacteria and hatching of plankton eggs I invite you. On the other hand, even if it exceeds 3 mg / L, it is not only possible to obtain any more harmful plankton and bacteria killing effects, the amount of neutralizing agent required for neutralization increases, or the environment during discharge Since load increases, it is not preferable.
  • a chlorinated active substance is added to be 2 to 14 mg / L (asCl 2 ), and when the turbidity value is 10 NTU or more and less than 50 NTU, An active substance is added so as to be 2 to 30 mg / L (asCl 2 ), and in the case of 50 NTU or more, the chlorinated active substance is added so as to be 18 to 30 mg / L (asCl 2 ),
  • the total residual oxidizing substance concentration (TRO) at the time of discharge can be 0.5 to 3 mg / L (asCl 2 ).
  • the control based on turbidity as described above may be controlled using a turbidimeter.
  • the turbidity value is 10 NTU or more and less than 50 NTU
  • the following formula (1) C 0.4X + a (1)
  • C is the additive concentration of the chlorine-based active substance
  • X is turbidity
  • a is 2 to 10
  • a chlorine system within the range of 2 to 30 mg / L (asCl 2 )
  • the total residual oxidizing substance concentration (TRO) at the time of discharge can be set to 0.5 to 3 mg / L (asCl 2 ).
  • a reducing agent is supplied to the discharged ballast water to reduce the remaining chlorine, and the residual chlorine concentration is reduced to the target residual chlorine concentration before being discharged to the external environment.
  • sodium sulfite, sodium bisulfite (sodium hydrogen sulfite), sodium thiosulfate, or the like can be used as the reducing agent supplied from this reducing agent supply mechanism.
  • the total residual oxidizing substance concentration is not limited to the measurement using a TRO meter using the DPD absorbance method, and various measuring means can be applied as long as similar measurement values can be obtained. Is possible.
  • Example 1 The seawater (seawater 1 to 10) of 10 ports was sampled, and the turbidity of these seawaters was measured. Sodium hypochlorite was added to these seawaters at the addition concentrations shown in Table 1 (in terms of chlorine).
  • Table 1 shows the results of measuring the total residual oxidizing substance concentration using the DPD method after sealing the seawater and leaving it in a dark room at 25 ° C. for 2 hours.
  • those having a total residual oxidizing substance concentration (TRO) in the range of 0.5 to 3 mg / L (asCl 2 ) were used as examples, and those outside this range were used as comparative examples.
  • TRO total residual oxidizing substance concentration
  • FIG. 1 shows the relationship between the turbidity and the concentration of sodium hypochlorite added (in terms of chlorine) in Examples 1 to 11 and Comparative Examples 1 to 4. In FIG. Examples ( ⁇ ) and out of range are shown as comparative examples ( ⁇ ).
  • turbidity or 50NTU examples of the addition concentration of sodium hypochlorite 18 ⁇ 30 mg / L in the range of (asCl 2) 29.9mg / L ( asCl 2) 11
  • the total residual oxidizing substance concentration after standing for 2 hours is 0.9 mg / L (asCl 2 )
  • the addition concentration of sodium hypochlorite is 12.8 mg / L (asCl 2 ).
  • the total residual oxidizing substance concentration after standing for 2 hours was as low as 0.2 mg / L (asCl 2 ), and it was difficult to bring harmful plankton, bacteria, etc. below the standard value. It was.
  • the concentration of sodium hypochlorite within the range of the thick solid line in FIG. 1, particularly when the turbidity value is less than 10 NTU, the concentration of chlorinated active substance added is 2 to 14 mg / L ( AsCl 2 ), if the turbidity value is 10 NTU or more and less than 50 NTU, the addition concentration of the chlorinated active substance is within the range satisfying C 0.4X + a, and if the turbidity value is 50 NTU or more, the chlorinated active substance It has been found that the amount of chlorinated active substance added in the treatment of ballast water can be set without excessive or insufficient addition by setting the concentration of the additive to within the range of 18 to 30 mg / L (asCl 2 ).
  • ballast water treatment method of the present invention uses the ballast water treatment method of the present invention to collect untreated ballast water before actually adding the chlorinated active substance, and the turbidity of the untreated ballast water not added with the chlorinated active substance is measured in advance. Since the amount of chlorinated active substance added is determined according to this turbidity value, the optimum amount of chlorinated active substance added can be determined. The amount, space, and equipment can be optimized, and as a result, a cost-competitive processing apparatus can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 塩素系活性物質を添加していない未処理のバラスト水をあらかじめ採取し、この未処理のバラスト水の濁度をあらかじめ測定し、該濁度に基づき決定された塩素系活性物質を添加する。塩素系活性物質の添加量は、前記バラスト水の排出時の全残留酸化性物質濃度(TRO)が0.5~3mg/L(asCl)となるように濁度に応じて設定する。具体的には、塩素系活性物質を濁度の値が10NTU未満の場合には2~14mg/Lとなるように添加し、10NTU以上50NTU未満の場合には2~30mg/Lとなるように添加し、50NTU以上の場合には18~30mg/Lとなるように添加する。これにより、バラスト水処理における塩素系活性物質の添加量を最適に決定することができる。

Description

バラスト水の処理方法
 本発明は、バラスト水処理における塩素系活性物質の添加量を最適に決定してバラスト水を制御するための処理方法に関する。
 一般に船舶、特に貨物船は、積載貨物などの重量を含めて設計されているため、空荷または積荷が少ない状態の船舶は、プロペラ没水深度の確保、空荷時における安全航行の確保等の必要性から、出港前に港において海水を取水して船舶のバランスを取るが、このバラストとして用いられる水のことを船舶バラスト水とよぶ。この船舶バラスト水は、無積載で出港するとき、その出港地で港の海水などをバラストタンクに積み込む一方、逆に港内で積荷をするときには、船舶バラスト水の排水を行う。
 ところで、環境の異なる荷積み港と荷下し港との間を往復する船舶によって船舶バラスト水の注排水が行われると、荷積み港と荷下し港における船舶バラスト水に含まれる微生物の差異により沿岸生態系に悪影響を及ぼすことが懸念されている。そこで、船舶の船舶バラスト水管理に関する国際会議において2004年2月に船舶の船舶バラスト水及び沈殿物の規制及び管理のための国際条約が採択され、船舶バラスト水の処理が義務付けられることとなった。
 船舶バラスト水の処理基準として国際海事機構(IMO)が定める基準は、船舶から排出される船舶バラスト水に含まれる50μm以上の生物(主に動物プランクトン)の数が1m中に10個未満、10μm以上50μm未満の生物(主に植物プランクトン)の数が1ml中に10個未満、コレラ菌の数が100ml中に1cfu未満、大腸菌の数が100ml中に250cfu未満、腸球菌の数が100ml中に100cfu未満となっている。
 このようなバラスト水の処理基準を満たすために、船舶バラスト水に次亜塩素酸ナトリウムや次亜塩素酸カルシウムなどの塩素系活性物質の殺菌剤を添加して、滞留時間を確保することにより微生物等を殺滅する船舶バラスト水の処理方法が提案されている。このバラスト水処理における塩素系活性物質の添加量は、IMO基本承認時に設定された最大許容添加量(MAD)を指標として決定される。
 しかしながら、バラスト水に塩素系活性物質を添加した場合、時間とともに塩素が消費されるので、塩素系活性物質の消費速度を算出して、バラスト水の排出時、すなわち航海の終了時までの必要量を添加するのが望ましい。一般的に塩素の消費速度を算出する手法として、特許文献1に記載された下記計算式を用いた塩素減衰予測法が公知である。
C=z・C・e-kt
(式中、Cは塩素注入管出口における塩素濃度であり、Cは時間(t)における塩素濃度であり、kは反応定数であり、tは経過時間であり、zは塩素注入後の塩素残留係数である。)
特開平08-41670号公報
 しかしながら、特許文献1に記載された塩素減衰予測法は、予測に際してはバラスト水に高濃度で塩素系活性物質を添加することが多いが、このような場合には塩素系活性物質の初期減衰速度が大きいため、初期塩素消費速度とそれ以降の塩素消費速度との相関性が小さくなり、活性物質添加後比較的短時間、例えば120分以下の塩素消費量から数日後の塩素濃度を予想することが難しい、という問題点があった。
 さらに、実際のバラスト水は、採取場所の汚染状況、採取水深、採取時期、航海の期間等、多くの要因によって水質が変化する。この水質変化は、単純にSSだけでなくDOC、POC、アンモニア、亜硝酸、無機塩類、有機物の種類や量に依存する。しかしながら、従来の方法では、これらの水質の変化に伴い塩素系活性物質の消費速度が異なることに追従できない、という問題点があった。
 この対応として、数日間経過後でも十分な残留塩素濃度が見込めるだけの過剰量の塩素系活性物質を添加することが考えられるが、最大許容添加量(MAD)より多くの塩素系活性物質を添加することはできない。さらに、清澄な水に対して、塩素系活性物質の添加量を決定した場合、大部分の活性物質が排出時に残留することで排出水の毒性が高くなることや、残留した活性物質を分解するための中和剤の添加量が膨大になる等の不都合が生じる、という問題点がある。このように従来は、バラスト水の排出時までの殺菌性を維持できるだけの全残留酸化性物質濃度(残留塩素濃度)を保持しつつ、かつその添加量を抑制した塩素系活性物質の添加量を最適に決定することの可能なバラスト水を制御する方法はなかった。
 本発明は、かかる課題を解決して、バラスト水処理における塩素系活性物質の添加量を最適に決定するとの可能なバラスト水の処理方法を提供することを目的とする。
 上記課題を解決するために、本発明は、取水されたバラスト水をバラストタンクに供給するに際し、該バラスト水中の水生微生物を殺菌処理するための塩素系活性物質を添加するバラスト水の処理方法であって、塩素系活性物質を添加していない未処理のバラスト水の濁度をあらかじめ測定し、該濁度に基づき決定された塩素系活性物質を添加して、前記バラスト水を中和することを特徴とするバラスト水の処理方法を提供する(発明1)。
 かかる発明(発明1)によれば、実際に塩素系活性物質を添加する前の未処理のバラスト水を採取し、この未処理のバラスト水の濁度をあらかじめ測定しておく。この濁度の値は、有害プランクトン等の量と相関性があるので、この濁度の値から排出時の全残留酸化性物質濃度を所定の範囲内とすることの可能な塩素系活性物質の濃度を規定することができることを本発明者らは見出した。このようにして、濁度の値に応じて塩素系活性物質の添加量を決定することで、有害プランクトン等の量に応じて、塩素系活性物質を添加することができるため、塩素系活性物質の過剰添加や添加不足を防止できる。また、排出水の毒性を低くすることや中和剤の添加量を少なくすることができる、という効果も奏する。
 上記発明(発明1)においては、前記バラスト水の全残留酸化性物質濃度(TRO)が、排出時において0.5~3mg/L(asCl)であるのが好ましい(発明2)。
 かかる発明(発明2)によれば、バラスト水の中和後の全残留酸化性物質濃度(TRO)が0.5mg/L以上であれば、有害なプランクトン、バクテリア等を基準値以下にすることができる一方、3mg/L以下であれば排出時の環境負荷も低減することができる。そして、濁度に比例させて塩素系活性物質を添加するだけで上記全残留酸化性物質濃度とすることができる。
 上記発明(発明1又は2)においては、前記濁度の値が10NTU未満の場合には、前記塩素系活性物質を2~14mg/L(asCl)となるように添加し、10NTU以上50NTU未満の場合には、前記塩素系活性物質を2~30mg/L(asCl)となるように添加し、50NTU以上の場合には、前記塩素系活性物質を18~30mg/L(asCl)となるように添加するのが好ましい(発明3)。
 特に上記発明(発明3)においては、前記濁度の値が10NTU以上50NTU未満の場合には、
 C=0.4X+a  ・・・ (1)
(式中、Cは塩素系活性物質の添加濃度であり、Xは濁度であり、aは2~10である。)を満たす塩素系活性物質の添加濃度を決定するのが好ましい(発明4)。
 かかる発明(発明3,4)によれば、濁度の値に応じて塩素系活性物質の添加量を全残留酸化性物質濃度換算で設定することにより、有害なプランクトン、バクテリア等を効率よく基準値以下にすることができる一方、排出時の環境負荷も低減することができる。
 上記発明(発明1~4)においては、前記塩素系活性物質が、ジクロロイソシアヌル酸塩、トリクロロイソシアヌル酸塩、次亜塩素酸塩から選ばれた1種または2種以上であるのが好ましい(発明5)。
 かかる発明(発明5)によれば、これらの塩素系活性物質は、船舶バラスト水などに含まれる微生物の殺菌性に優れているとともに、全残留酸化性物質濃度による対数式による計算と実測値とがある程度近似するので、塩素系活性物質の添加量を決定するのに好適である。
 本発明のバラスト水の処理方法によれば、実際に塩素系活性物質を添加する前の未処理のバラスト水を採取し、この未処理のバラスト水の濁度をあらかじめ測定して、この濁度の値に応じて塩素系活性物質の添加量を決定しているので、塩素系活性物質の過剰添加や添加不足を防止できる。また、排出水の毒性を低くすることや中和剤の添加量を少なくすることができる。
本発明の一実施形態に係るバラスト水の処理方法における濁度と次亜塩素酸ナトリウム(塩素系活性物質)の添加濃度との関係を示すグラフである。
 以下、本発明のバラスト水の処理方法について、一実施形態に基づき詳細に説明する。
 本実施形態のバラスト水の処理方法は、取水口から取水されたバラスト水をバラストタンクに供給するに際し、該バラスト水中の水生微生物を殺菌処理するための塩素系活性物質の添加量を決定するためのものであり、塩素系活性物質を添加していない未処理のバラスト水をあらかじめ採取し、この未処理のバラスト水の濁度をあらかじめ測定し、該濁度に基づき決定された塩素系活性物質を添加して、排出時にこのバラスト水を中和する。ここで、塩素系活性物質としては、殺菌性に優れているとともに、後述する全残留酸化性物質濃度による対数式による計算と実測値とがある程度近似することから、ジクロロイソシアヌル酸塩、トリクロロイソシアヌル酸塩、次亜塩素酸塩から選ばれた1種または2種以上を用いることができ、特に次亜塩素酸ナトリウムなどの次亜塩素酸塩が好ましい。
 なお、全残留酸化性物質濃度とは、TRO(Total Residual Oxidants)のことであり、塩素系活性物質の添加による酸化性塩素濃度、及びこの酸化性塩素との反応により生じる他の酸化性成分が含まれる。この全残留酸化性物質濃度は、DPD吸光度法を用いた市販の高精度TRO計を用いて常温にて測定することができる。
 上記塩素系活性物質の添加量は、前記バラスト水の中和後の全残留酸化性物質濃度(TRO)が、排出時において0.5~3mg/L(asCl)となるように濁度に応じて設定する。全残留酸化性物質濃度(TRO)が0.5mg/L未満では、有害なプランクトン、バクテリア等を基準値以下にするのが困難となるか、あるいはバクテリア等の再増殖やプランクトンの卵の孵化を招いたりする。一方、3mg/Lを超えても、それ以上の有害なプランクトン、バクテリア等の殺滅効果が得られないばかりか、中和に必要な中和剤の量が多くなるか、あるいは排出時の環境負荷が増大するため好ましくない。
 具体的には、濁度の値が10NTU未満の場合には、塩素系活性物質を2~14mg/L(asCl)となるように添加し、10NTU以上50NTU未満の場合には、前記塩素系活性物質を2~30mg/L(asCl)となるように添加し、50NTU以上の場合には、前記塩素系活性物質を18~30mg/L(asCl)となるように添加することにより、排出時における全残留酸化性物質濃度(TRO)を0.5~3mg/L(asCl)とすることができる。なお、上述したような濁度に基づく制御は、濁度計を用いて制御すればよい。
 特に前記濁度の値が10NTU以上50NTU未満の場合には、下記式(1)
 C=0.4X+a  ・・・ (1)
(式中、Cは塩素系活性物質の添加濃度であり、Xは濁度であり、aは2~10である。)を満たす、2~30mg/L(asCl)の範囲内の塩素系活性物質の添加濃度を決定することにより、排出時における全残留酸化性物質濃度(TRO)を0.5~3mg/L(asCl)とすることができる。
 また、濁度の値が10NTU未満の場合には、上記式(1)におけるaの値の最大値を採用して、下記式(2)
 C=0.4X+10 ・・・ (2)
(式中、Cは塩素系活性物質の添加濃度であり、Xは濁度である。)を満たし、2~14mg/L(asCl)の範囲内の塩素系活性物質の添加濃度を決定することにより、排出時における全残留酸化性物質濃度(TRO)を0.5~3mg/L(asCl)とすることができる。
 なお、バラスト水の排出時は、排バラスト水に還元剤を供給して残存する塩素を還元し、残留塩素濃度を目標残留塩素濃度にまで低減した上で外部環境に排水する。この還元剤供給機構から供給される還元剤としては、亜硫酸ナトリウム、重亜硫酸ナトリウム(亜硫酸水素ナトリウム)、チオ硫酸ナトリウムなどを用いることができる。
 以上、本発明について一実施形態に基づいて説明してきたが、本発明は前記実施形態に限定されず、種々の変形実施が可能である。例えば、全残留酸化性物質濃度は、DPD吸光度法を用いたTRO計を用いて測定することに限定されるものではなく、同様の測定値が得られるものであれば、種々の測定手段が適用可能である。
 以下の具体的実施例により本発明をさらに詳細に説明する。
〔実施例1~11及び比較例1~4〕
 10か所の港湾の海水(海水1~10)をサンプリングして、これらの海水の濁度をそれぞれ測定した。これらの海水に対して表1に示す添加濃度(塩素換算)でそれぞれ次亜塩素酸ナトリウムを添加した。そして、この海水を密栓して25℃の暗室に2時間静置した後の全残留酸化性物質濃度をDPD法を用いてそれぞれ測定した結果を表1に示す。なお、表1において全残留酸化性物質濃度(TRO)が0.5~3mg/L(asCl)の範囲内にあるものを実施例、これを外れるものを比較例とした。図1において太実線の範囲内(○)と範囲外(●)として表記した。また、これら実施例1~11及び比較例1~4における濁度と次亜塩素酸ナトリウムの添加濃度(塩素換算)との関係を図1に示すが、図1において太実線の範囲内を実施例(○)、範囲外を比較例(●)としてそれぞれ表記した。
Figure JPOXMLDOC01-appb-T000001
 表1及び図1より明らかなとおり、濁度の値が10NTU未満で次亜塩素酸ナトリウムの添加濃度が2~14mg/L(asCl)の範囲内の実施例1~7では、2時間静置した後の全残留酸化性物質濃度が0.5~3mg/L(asCl)の範囲内であるのに対し、次亜塩素酸ナトリウムの添加濃度が3mg/L(asCl)の比較例1では、2時間静置した後の全残留酸化性物質濃度が5mg/L(asCl)と高く、多量の中和剤を必要とするレベルであった。
 また、濁度の値が10NTU以上50NTU未満で、次亜塩素酸ナトリウムの添加濃度が前述した式(1)を満たす実施例8~10では、2時間静置した後の全残留酸化性物質濃度が0.5~3mg/L(asCl)の範囲内であるのに対し、次亜塩素酸ナトリウムの添加濃度が10mg/L(asCl)で式(1)を充足しない比較例2では、2時間静置した後の全残留酸化性物質濃度が0.2mg/L(asCl)と低く、有害なプランクトン、バクテリア等を基準値以下にするのが困難なレベルであった。一方、次亜塩素酸ナトリウムの添加濃度が30mg/L(asCl)で式(1)を充足しない比較例3では、2時間静置した後の全残留酸化性物質濃度が4.5mg/L(asCl)と高く、多量の中和剤を必要とするレベルであった。
 さらに、濁度の値が50NTU以上(60NTU)で、次亜塩素酸ナトリウムの添加濃度が18~30mg/L(asCl)の範囲内である29.9mg/L(asCl)の実施例11では、2時間静置した後の全残留酸化性物質濃度が0.9mg/L(asCl)であるのに対し、次亜塩素酸ナトリウムの添加濃度が12.8mg/L(asCl)の比較例1では、2時間静置した後の全残留酸化性物質濃度が0.2mg/L(asCl)と低く、有害なプランクトン、バクテリア等を基準値以下にするのが困難なレベルであった。
 以上の結果から、図1における太実線の範囲内の次亜塩素酸ナトリウムの添加濃度とすること、特に濁度の値が10NTU未満では、塩素系活性物質の添加濃度を2~14mg/L(asCl)とし、濁度の値が10NTU以上50NTU未満では、塩素系活性物質の添加濃度をC=0.4X+aを満たす範囲内とし、さらに、濁度の値が50NTU以上では、塩素系活性物質の添加濃度を18~30mg/L(asCl)の範囲内とすることで、バラスト水の処理における塩素系活性物質の添加量を過剰添加や添加不足なく設定することができることがわかった。
 本発明のバラスト水の処理方法により、実際に塩素系活性物質を添加する前の未処理のバラスト水を採取し、塩素系活性物質を添加していない未処理のバラスト水の濁度をあらかじめ測定して、この濁度の値に応じて塩素系活性物質の添加量を決定しているため、最適な塩素系活性物質の添加量を決定することができ、これにより、薬剤の船への搭載量、スペース、設備を最適化することが可能であり、結果的にコスト競争力のある処理装置を提供することが可能となる。

Claims (5)

  1.  取水されたバラスト水をバラストタンクに供給するに際し、該バラスト水中の水生微生物を殺菌処理するための塩素系活性物質を添加するバラスト水の処理方法であって、
     塩素系活性物質を添加していない未処理のバラスト水の濁度をあらかじめ測定し、該濁度に基づき決定された塩素系活性物質を添加して、前記バラスト水を中和する
     ことを特徴とするバラスト水の処理方法。
  2.  前記バラスト水の全残留酸化性物質濃度(TRO)が、排出時において0.5~3mg/L(asCl)であることを特徴とする請求項1に記載のバラスト水の処理方法。
  3.  前記濁度の値が10NTU未満の場合には、前記塩素系活性物質を2~14mg/L(asCl)となるように添加し、10NTU以上50NTU未満の場合には、前記塩素系活性物質を2~30mg/L(asCl)となるように添加し、50NTU以上の場合には、前記塩素系活性物質を18~30mg/L(asCl)となるように添加することを特徴とする請求項1又は2に記載のバラスト水の処理方法。
  4.  前記濁度の値が10NTU以上50NTU未満の場合には、
     C=0.4X+a  ・・・ (1)
    (式中、Cは塩素系活性物質の添加濃度であり、Xは濁度であり、aは2~10である。)を満たす塩素系活性物質の添加濃度を決定することを特徴とする請求項3に記載のバラスト水の処理方法。
  5.  前記塩素系活性物質が、ジクロロイソシアヌル酸塩、トリクロロイソシアヌル酸塩、次亜塩素酸塩から選ばれた1種または2種以上であることを特徴とする請求項1~4のいずれかに記載のバラスト水の処理方法。
PCT/JP2014/071345 2014-08-12 2014-08-12 バラスト水の処理方法 WO2016024342A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/502,841 US20170233270A1 (en) 2014-08-12 2014-08-12 Method for treating ballast water
PCT/JP2014/071345 WO2016024342A1 (ja) 2014-08-12 2014-08-12 バラスト水の処理方法
CN201480081116.0A CN106573802A (zh) 2014-08-12 2014-08-12 压载水的处理方法
KR1020177004037A KR20170041211A (ko) 2014-08-12 2014-08-12 밸러스트수의 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071345 WO2016024342A1 (ja) 2014-08-12 2014-08-12 バラスト水の処理方法

Publications (1)

Publication Number Publication Date
WO2016024342A1 true WO2016024342A1 (ja) 2016-02-18

Family

ID=55303986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071345 WO2016024342A1 (ja) 2014-08-12 2014-08-12 バラスト水の処理方法

Country Status (4)

Country Link
US (1) US20170233270A1 (ja)
KR (1) KR20170041211A (ja)
CN (1) CN106573802A (ja)
WO (1) WO2016024342A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071282A (zh) * 2016-04-26 2018-12-21 杰富意工程株式会社 压舱水处理装置及压舱水处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144391A (ja) * 2005-06-10 2007-06-14 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2012007969A (ja) * 2010-06-24 2012-01-12 Hokuto Denko Kk バラスト水中の残留オキシダント(tro)濃度の監視方法
JP2013166544A (ja) * 2013-02-25 2013-08-29 Mitsubishi Heavy Ind Ltd バラスト水処理システム
JP2014100673A (ja) * 2012-11-20 2014-06-05 Kurita Water Ind Ltd バラスト水の制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840299B2 (ja) 2000-12-27 2011-12-21 東レ株式会社 塗液の塗布方法、プラズマディスプレイパネル用基材の製造方法
US7595003B2 (en) * 2003-07-18 2009-09-29 Environmental Technologies, Inc. On-board water treatment and management process and apparatus
CN101193824B (zh) * 2005-06-10 2011-11-09 杰富意工程股份有限公司 压载水处理装置和压载水处理方法
SG10201610076SA (en) * 2007-08-15 2017-01-27 Evoqua Water Technologies Llc Method and system for treating ballast water
CN101704573A (zh) * 2009-11-20 2010-05-12 青岛双瑞防腐防污工程有限公司 一种船舶压载水处理的中和方法
CN101786748B (zh) * 2010-03-30 2012-06-13 青岛海德威科技有限公司 一种高效灭活和节能的船舶压载水处理方法和系统
JP5938874B2 (ja) * 2011-11-04 2016-06-22 栗田工業株式会社 船舶バラスト水処理剤及びこれを用いた船舶バラスト水の処理方法
US9873080B2 (en) * 2012-01-09 2018-01-23 ScioTech LLC Processes and methods using chlorine dioxide to remove NOx and SOx from marine exhaust
US20150337350A1 (en) * 2012-06-22 2015-11-26 Wayne State University Automated viability testing system
US10807882B2 (en) * 2015-06-23 2020-10-20 Trojan Technologies Process and device for the treatment of a fluid containing a contaminant
US10033622B2 (en) * 2015-08-07 2018-07-24 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Controller-based dynamic routing in a software defined network environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144391A (ja) * 2005-06-10 2007-06-14 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2012007969A (ja) * 2010-06-24 2012-01-12 Hokuto Denko Kk バラスト水中の残留オキシダント(tro)濃度の監視方法
JP2014100673A (ja) * 2012-11-20 2014-06-05 Kurita Water Ind Ltd バラスト水の制御方法
JP2013166544A (ja) * 2013-02-25 2013-08-29 Mitsubishi Heavy Ind Ltd バラスト水処理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071282A (zh) * 2016-04-26 2018-12-21 杰富意工程株式会社 压舱水处理装置及压舱水处理方法

Also Published As

Publication number Publication date
CN106573802A (zh) 2017-04-19
KR20170041211A (ko) 2017-04-14
US20170233270A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US6773611B2 (en) Methods, apparatus, and compositions for controlling organisms in ballast water
AU2002226987A1 (en) Methods, apparatus, and compositions for controlling organisms in ballast water
US20050016933A1 (en) Methods, apparatus, and compositions for controlling organisms in ballast water
WO2011065434A1 (ja) 船舶のバラスト水の処理方法
JP5942373B2 (ja) 船舶バラスト水の処理システム
US10669173B2 (en) Ballast water treatment device and ballast water treatment method
WO2016024342A1 (ja) バラスト水の処理方法
JP5776367B2 (ja) 船舶バラスト水の処理方法
WO2015075820A1 (ja) バラスト水の制御方法
JP6191255B2 (ja) バラスト水の処理方法
JP6107077B2 (ja) バラスト水の制御方法
JP5874245B2 (ja) 船舶バラスト水の処理方法
US9212073B2 (en) Ballast water treatment agent and method of treating ballast water of ship using the same
US11530144B2 (en) Ballast water treatment method
WO2012124039A1 (ja) バラスト水の殺菌剤及びバラスト水処理装置
JP2013046897A (ja) 船舶バラスト水の処理方法
WO2017110154A1 (ja) バラスト水の制御装置及びバラスト水処理システムの制御方法
EP3290394B1 (en) Ballast water treatment device and ballast water treatment method
JP2015166200A (ja) バラスト水の処理方法
Park et al. Land Based Test of Ballast Water Treatment System by Ozonation
Rodríguez et al. Evaluation of the biocidal potential of hydrogen peroxide and copper sulphate for biofilm removal in drinking water systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177004037

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14899593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP