WO2016023196A1 - 光信噪比的确定方法及装置 - Google Patents

光信噪比的确定方法及装置 Download PDF

Info

Publication number
WO2016023196A1
WO2016023196A1 PCT/CN2014/084291 CN2014084291W WO2016023196A1 WO 2016023196 A1 WO2016023196 A1 WO 2016023196A1 CN 2014084291 W CN2014084291 W CN 2014084291W WO 2016023196 A1 WO2016023196 A1 WO 2016023196A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency component
optical signal
signal
power
optical
Prior art date
Application number
PCT/CN2014/084291
Other languages
English (en)
French (fr)
Inventor
董振华
刘伯涛
吕超
卢彦兆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480081050.5A priority Critical patent/CN106575997B/zh
Priority to PCT/CN2014/084291 priority patent/WO2016023196A1/zh
Priority to EP14899709.1A priority patent/EP3174223B1/en
Publication of WO2016023196A1 publication Critical patent/WO2016023196A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q

Definitions

  • Embodiments of the present invention relate to the field of optical communication technologies, and in particular, to a method and an apparatus for determining an optical signal to noise ratio. Background technique
  • OSNR Optical Signal-to-Noise Ratio
  • the prior art method for determining the OSNR is to use the relationship between the power at each frequency of the pure signal in the channel to be tested and the power at the center frequency of the pure signal, and use the optical filter to separately obtain the included signal and noise in the channel bandwidth. The power at different frequencies, and then the OSNR is calculated.
  • the optical filter is used to determine the accuracy of the OSNR of the optical signal.
  • Embodiments of the present invention provide a method and an apparatus for determining an optical signal-to-noise ratio, which are used to solve the problem of poor accuracy of a method for determining an OSNR using an optical filter in the prior art.
  • a first aspect of the embodiments of the present invention provides a method for determining an optical signal to noise ratio, including: acquiring a first optical signal in a channel to be tested;
  • the converting the first optical signal into an electrical signal to obtain different frequency components in the electrical signal includes: generating for coherent detection At least one local oscillator;
  • Each of the electrical signals is filtered to obtain different frequency components.
  • the second optical signal includes two signals
  • Performing photodetection on each of the second optical signals to obtain each of the electrical signals corresponding to each of the second optical signals including:
  • Balance detection is performed on two signals of each of the second optical signals, and each of the electrical signals corresponding to each of the second optical signals is obtained.
  • filtering the respective electrical signals to obtain different frequency components including: filtering, by using a low-pass filtering manner, each of the electrical signals to obtain different frequency components, wherein one of the frequency components corresponds to one of the electric signal.
  • a frequency of one of the local oscillators corresponds to a target frequency component, and each of the target frequency components Different
  • each of the frequency components being different, including:
  • Each of the electrical signals is filtered by means of band pass filtering to obtain each of the target frequency components; wherein one of the frequency components corresponds to one of the electrical signals.
  • filtering the respective electrical signals to obtain the different frequency components including: performing multi-filtering on the electrical signals by using band pass filtering to obtain each of the target frequency components; wherein, each of the The filtering range used for filtering is different.
  • the power and the roll according to the different frequency components Determining a coefficient, determining an optical signal to noise ratio of the channel to be tested, specifically:
  • the different frequency components include at least a first frequency component and a second frequency component, where the different frequency components are
  • the roll-off factor includes at least a roll-off factor of the first frequency component and the second frequency component of the optical signal;
  • Determining the first ratio according to the power and the roll-off coefficient of the different frequency components including:
  • the O NRc is a first ratio
  • the sum P 2 is a power of a first frequency component and a second frequency component in the electrical signal, respectively, and the sum is the first in the first optical signal respectively
  • P ⁇ -c is the power of the center frequency component of the pure signal in the electrical signal, and is the power of the center frequency component of the noise in the electrical signal.
  • the optical fiber communication link that determines the channel to be tested includes an optical filter;
  • the different frequency components include at least a first frequency component, a second frequency component, and a third frequency component
  • the roll-off factor of the different frequency components includes at least a first frequency component, a second frequency component, and a third frequency component of the first optical signal a roll-off factor and a roll-off factor of a first frequency component, a second frequency component, and a third frequency component of the optical signal passing through the optical filter;
  • Determining the first ratio according to the power and the roll-off coefficient of the different frequency components including:
  • R3 is a roll-off coefficient of a first frequency component, a second frequency component, and a third frequency component of the first optical signal, respectively, which is a power of a center frequency component of the pure signal in the electrical signal, and P ASE0 is the electrical signal
  • the power of the center frequency component of the noise, the n is the number of optical filters, and the sum is the roll of the first frequency component, the second frequency component, and the third frequency component of the optical signal when passing through the optical filter Drop factor.
  • the first ratio and a center frequency of the first optical signal a calibration factor of the power of the component, determining an optical signal to noise ratio of the channel to be tested, specifically comprising:
  • the o NR is an optical signal to noise ratio of the channel to be tested, the OSNR e is the first ratio, and the A is a calibration factor.
  • a second aspect of the embodiments of the present invention provides an apparatus for determining an optical signal to noise ratio, including: a beam splitter, configured to acquire a first optical signal in a channel to be tested;
  • a photoelectric conversion and extractor configured to convert the first optical signal into an electrical signal, extract different frequency components in the electrical signal, and roll-off coefficients of the different frequency components in the electrical signal and the first
  • the roll-off coefficient of the corresponding frequency component in the optical signal is the same, and the roll-off coefficient is a ratio of the power of the non-central frequency component of the pure signal in the channel to the power of the center frequency component; a measurer for measuring power of the different frequency components;
  • an operator configured to determine an optical signal to noise ratio of the channel to be tested according to power and roll-off coefficients of the different frequency components.
  • the converting the first optical signal into an electrical signal where the photoelectric conversion and extractor comprises:
  • a laser for generating at least one local oscillator for coherent detection
  • An optical coupler configured to coherently couple the first optical signal with each of the local oscillators to obtain respective second optical signals that are in one-to-one correspondence with each of the local oscillators;
  • a photodetector for performing photodetection on each of the second optical signals to obtain respective electrical signals corresponding to each of the second optical signals
  • An electrical filter for filtering the electrical signal to obtain different frequency components in the electrical signal.
  • the second optical signal output by the optical coupler is two signals
  • the photodetector is a balanced detector, and the two signals of the second optical signal are balancedly detected, and each of the electrical signals corresponding to each of the second optical signals is obtained.
  • the photoelectric conversion and extractor further includes a first controller, configured to send an instruction to the laser, The command is used to indicate that the local oscillators generated by the laser are at least two and the frequencies of the respective local oscillators are different, so that the photodetectors obtain different frequency ranges of the respective electrical signals;
  • the laser is a tunable laser for generating local oscillators having different frequencies according to instructions of the first controller
  • the electrical filter is a low pass filter for filtering each of the electrical signals by means of low pass filtering to obtain different frequency components, wherein one of the frequency components corresponds to one of the electrical signals.
  • the photoelectric conversion and extractor further includes a first controller, configured to: Sending an instruction to the laser, the instruction is used to indicate that the local oscillator light generated by the laser is at least two and each of the local oscillator lights has a different frequency, so that the photodetector Obtaining a frequency range of each of the electrical signals, wherein, in at least two of the local oscillators, a frequency of one of the local oscillators corresponds to a target frequency component, and each of the target frequency components is different;
  • the laser is a tunable laser for generating local oscillators having different frequencies according to instructions of the first controller
  • the electrical filter is a band pass filter for filtering each of the electrical signals by using band pass filtering to obtain each of the target frequency components; wherein one of the frequency components corresponds to one of the electrical signals .
  • each The target frequency component is different, and the frequency range of the local oscillator corresponds to a minimum target frequency component or a maximum target frequency component of each of the target frequency components;
  • the photoelectric conversion and extractor includes a second controller, configured to send a band pass filter setting instruction to the electric filter, where the instruction is used to instruct the electrical filter to perform multiple filtering on the electrical signal to Having the electrical filter obtain each of the target frequency components;
  • the electric filter is an adjustable band pass filter, configured to adjust a band pass filter setting according to an instruction of the second controller, and perform multiple filtering on the electric signal to obtain each of the target frequency components, where The filtering range used by each of the filters is different.
  • the computing device includes:
  • a first ratio calculator configured to determine a first ratio according to a power and a roll-off factor of the different frequency components
  • a calibrator configured to determine an optical signal to noise ratio of the channel to be tested according to a first ratio and a calibration factor of a power of a center frequency component of the first optical signal, a power of a center frequency component of the first optical signal
  • the calibration factor is determined according to the bandwidth of the channel to be tested, the bandwidth of the different frequency components, and the bandwidth of the noise.
  • the different frequency components include at least a first frequency component and a second frequency component
  • a first ratio calculator specifically for acquiring a first frequency component and a second frequency of the optical signal Roll-off factor
  • the O NRc is a first ratio
  • the sum ⁇ 2 is a power of a first frequency component and a second frequency component of the electrical signal, respectively, and the sum is the first of the first optical signals respectively
  • the roll-off factor of the frequency component and the second frequency component is the power of the center frequency component of the pure signal in the electrical signal, and is the power of the center frequency component of the noise in the electrical signal.
  • An optical filter determiner configured to: if the optical fiber communication link of the channel to be tested is determined to include an optical filter, indicating that the different frequency components obtained by the photoelectric conversion and the extractor include at least a first frequency component, and a second Frequency component and third frequency component;
  • the first ratio calculator is specifically configured to:
  • R3 is a roll-off coefficient of a first frequency component, a second frequency component, and a third frequency component of the first optical signal, respectively, which is a power of a center frequency component of the pure signal in the electrical signal, and P ASE0 is the electrical signal
  • the power of the center frequency component of the noise, the n is the number of optical filters, and the sum is the roll of the first frequency component, the second frequency component, and the third frequency component of the optical signal when passing through the optical filter Drop factor.
  • the O NR is an optical signal to noise ratio of the channel to be tested, and the OSNR e is the first ratio, where the calibration factor is.
  • the first optical signal is converted into an electrical signal by acquiring the first optical signal in the channel to be tested, and the roll-off coefficient of the corresponding frequency component is kept unchanged during the conversion process, and different frequency components are extracted and measured.
  • the power of the different frequency components in the electrical signal and then determining the optical signal to noise ratio of the channel to be tested according to the power of the different frequency components. Since there may be measurement errors in the process of measuring the power of different frequency components, the smaller the roll-off factor, the smaller the influence of this measurement error on the calculation of 0SNR.
  • the roll-off factor at the same frequency point is related to the bandwidth of the filter used. The narrower the filter bandwidth, the smaller the roll-off factor.
  • the bandwidth of the electrical filter used to measure the optical signal into an electrical signal is much smaller than the bandwidth of the optical filter used for direct measurement of the optical signal, then measured by optical power conversion at the same frequency point.
  • the roll-off factor is smaller than the roll-off factor measured directly on the optical signal, and the smaller roll-off factor makes the calculated OSNR more accurate.
  • the optional bandwidth of the electrical filter of the different frequency components of the measured electrical signal is much smaller than the optional bandwidth of the optical filter, the accuracy of the power and roll-off factor of the different frequency components of the measured electrical signal is The accuracy of the optical signal-to-noise ratio determined by the method for determining the optical signal-to-noise ratio provided by the embodiment of the present invention is significantly improved.
  • 1A is a schematic diagram of a spectral shape of a pure signal and a noise signal in an optical signal
  • 1B is a schematic diagram of power of pure signal and power of noise for determining an optical signal to noise ratio of a channel to be measured;
  • Figure 1C is a schematic representation of the power of the center frequency component of the pure signal and the power of the non-central frequency component.
  • Embodiment 1 is a flow chart of Embodiment 1 of a method for determining an optical signal to noise ratio according to an embodiment of the present invention
  • 2B is a schematic diagram of pure signal and noise power of different frequency components
  • 2C is a schematic diagram of determining the power of a center frequency component of a pure signal and noise according to different frequency components
  • Figure 2D is a schematic diagram showing the relationship between the power of the center frequency component of the pure signal and the power of the non-central frequency component;
  • FIG. 3A is a schematic diagram of a first possible spectral shape of an electrical signal obtained by S202;
  • FIG. 3B is a second possible spectral shape of an electrical signal obtained by S202;
  • FIG. 3C is a third possible electrical signal obtained by S202.
  • FIG. 3D is a schematic diagram of a fourth possible spectral shape of an electrical signal obtained by S202;
  • FIG. 4A is a schematic diagram of a frequency component obtained by using a low-pass filtering method in S202;
  • FIG. 4B is a partially enlarged schematic view of FIG.
  • FIG. 4C is a schematic diagram of an edge frequency component obtained by using a low-pass filtering method in S202
  • FIG. 4D is a schematic diagram of an edge frequency component obtained by using a low-pass filtering method in S202
  • FIG. 5A is a frequency component obtained by using a band-pass filtering method in S202.
  • Figure 5B is another schematic diagram of different frequency components obtained by bandpass filtering in S202;
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a method for determining an optical signal to noise ratio according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart diagram of Embodiment 3 of a method for determining an optical signal to noise ratio according to an embodiment of the present disclosure
  • FIG. 7B is a schematic diagram showing the original spectral change of a pure signal when the optical transmission link includes an optical filter
  • FIG. 7C is a schematic diagram showing the original spectral change of the pure signal when the optical transmission link includes more than one optical filter
  • Figure 7D is a diagram showing the relationship between the center frequency component of pure signal and noise and the power of the non-central frequency component when the optical transmission link includes an optical filter;
  • FIG. 8 is a structural diagram of Embodiment 1 of an apparatus for determining an optical signal to noise ratio according to an embodiment of the present disclosure
  • Figure 8B is an alternative structural schematic view of the measuring device
  • Figure 8C is a schematic view of still another alternative structure of the measuring device.
  • FIG. 9 is a structural diagram of Embodiment 2 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention
  • FIG. 10A is a structural diagram of Embodiment 3 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention
  • FIG. 10B is a structural diagram of Embodiment 4 of an apparatus for determining an optical signal to noise ratio according to an embodiment of the present invention.
  • Embodiment 5 is a structural diagram of Embodiment 5 of an apparatus for determining an optical signal to noise ratio according to an embodiment of the present invention
  • FIG. 11 is a structural diagram of Embodiment 6 of an apparatus for determining an optical signal to noise ratio according to an embodiment of the present invention
  • FIG. 12 is a structural diagram of Embodiment 7 of an apparatus for determining an optical signal to noise ratio according to an embodiment of the present invention.
  • the optical signal in the channel has a certain spectral width, and noise is usually evenly distributed in this spectral width. Therefore, the power measured at any frequency of the spectral width of the optical signal includes pure The power of the signal at this frequency and the power of the noise at that frequency.
  • FIG. 1A a schematic diagram of a spectral shape of a pure signal and a noise signal in an optical signal is shown.
  • the optical signal-to-noise ratio is an important indicator to measure the transmission performance of a channel.
  • the optical signal-to-noise ratio is defined as the ratio of the power of the pure signal in the channel to be tested to the noise power in the O.lnm bandwidth at the center wavelength of the channel to be measured.
  • the optical signal in the channel to be tested is converted into an electrical signal, and the electrical signal carries power information corresponding to the optical signal, and then the power at different frequencies is measured, and the noise in the channel to be tested is usually Gaussian white.
  • the noise characteristic that is, the power at each frequency of the noise signal is substantially unchanged in the channel to be measured, and the power at each frequency of the pure signal in the channel is at the frequency of the optical signal.
  • There is a corresponding relationship between the roll-off coefficients at the rate, and the ratio of the power of the center frequency component of the pure signal in the electrical signal to the center frequency component of the noise can be determined, and then the power of the center frequency component of the pure signal is used and the bandwidth of the entire channel to be tested is pure.
  • the relationship of the power of the noise within the O.lnm bandwidth can determine the optical signal to noise ratio of the channel to be tested.
  • the roll-off coefficient at a certain frequency refers to the power ratio of the power of the pure signal in the channel to the center frequency component, and the roll-off coefficient can be measured in advance.
  • the frequency component of a certain frequency of any of the signals mentioned in the embodiment of the present invention refers to a segment of the signal, wherein the frequency is a center frequency, and the bandwidth is a preset bandwidth, and the preset bandwidth is, for example, It can be 500MHz or 1000MHz.
  • Figure 1C is a schematic illustration of the power of the center frequency component of the pure signal and the power of the non-central frequency component.
  • FIG. 2A is a flowchart of Embodiment 1 of a method for determining an optical signal to noise ratio according to an embodiment of the present invention.
  • a section of an optical fiber communication link in an optical communication system can be used as a channel to be tested, as shown in FIG. 2A. Show that the method includes:
  • part of the optical signal can be separated from the channel to be tested by installing a beam splitter on the fiber communication link.
  • the partial optical signal may be referred to as a first optical signal.
  • the first optical signal can select 1%-5% of the total optical signal power of the channel to be tested, so as to achieve the accuracy of the optical signal-to-noise ratio determination result. Balanced with the stability of the original optical communication transmission in the channel to be tested.
  • the roll-off factor is the same, and the roll-off factor is the ratio of the power of the non-central frequency component of the pure signal in the channel to the power of the center frequency component.
  • the first optical signal can be converted into electricity by using a coherent detection principle.
  • the signal optionally, the converting the first optical signal into an electrical signal may include: generating at least one local oscillator for coherent detection;
  • Each of the electrical signals is filtered to obtain different frequency components.
  • the local oscillator light used for coherent detection may be a laser.
  • the coherent coupling can be implemented by an optical coupler, for example, a 3dB optical coupler having two inlets and two outlets, each of the at least one local oscillator light and the first An optical signal is input to the two entrances of the optical coupler, and a second optical signal corresponding to the local oscillator is obtained, and the second optical signal is output from the two outlets of the optical coupler.
  • the photodetection can be implemented by using a photodetector, for example, a photodetector having a photodiode, and any one of the second optical signals output from the two outlets of the optocoupler can be input to the photodetector to obtain corresponding to the local oscillator. An electrical signal.
  • the photodetection can also be implemented by using a photodetector having two photodiodes, that is, a balanced detector, and inputting two second optical signals output from two outlets of the optical coupler into the balance detector can be obtained.
  • the power of the alternating current signal obtained by using the balance detector for photoelectric detection is twice as high as the power of the alternating current signal obtained by the photodetector using a single photodiode. Therefore, a balanced detector is used. The accuracy of the determined optical signal to noise ratio can be improved.
  • the filtering of each of the electrical signals to obtain different frequency components may be implemented by using an electrical filter, a low pass filter, a band pass filter, and a high pass filter, wherein a high pass filter and a band pass filter are used.
  • the way of the device is the same, and will not be described here.
  • the photodetection needs to be implemented by using a balanced detector, so that the received electrical signal does not include the first optical signal.
  • a direct current component optionally, when each of the electrical signals is filtered by a band pass filter to obtain different frequency components, the photodetection may be implemented by a photodetector or a balanced detector of a single photodiode, the band pass The filter can filter out the first optical signal to be converted into a direct current component of the electrical signal.
  • the measuring the power of the different frequency components may measure the power of the different frequency components by using an electric power meter or other electrical signal power measuring device, for example, using an analog to digital converter (ADC) to simulate The quantity is converted into a digital quantity, and then the average power value corresponding to the digital quantity is obtained by sampling, which is not limited by the present invention.
  • ADC analog to digital converter
  • Figure 2B is a schematic diagram of pure signal and noise power for different frequency components.
  • S204 Determine an optical signal to noise ratio of the channel to be tested according to power of the different frequency components.
  • Fig. 2C is a schematic diagram of determining the power of the center frequency component of the pure signal and noise based on different frequency components.
  • the power measured at any frequency of the bandwidth of the electrical signal in the channel under test includes the power of the pure signal at that frequency and the power of the noise at that frequency, and the noise is at any frequency within the bandwidth of the channel under test.
  • the power is basically the same, ie
  • Power measured at any frequency power of the center frequency component of the pure signal X Roll-off factor at this frequency + power of the center frequency component of the noise
  • FIG. 2D is a graphical representation of the relationship between the power of the center frequency component of a pure signal and the power of a non-central frequency component.
  • the ratio of the power of the center frequency component of the pure signal to the power of the center frequency component of the noise can be calculated, which is recorded as the first ratio;
  • a ratio of the ratio and a calibration factor of the power of the center frequency component of the first optical signal may determine an optical signal to noise ratio of the channel to be tested.
  • the correction factor is used to convert the ratio of the power of the center frequency component of the pure signal to the power of the center frequency component of the noise to be the power of the pure signal within the bandwidth of the channel to be tested and within the bandwidth of 0.1 nm.
  • the ratio of the power of the noise Referring to FIG. 1B, the calibration factor of the power of the center frequency component of the first optical signal is determined according to the bandwidth of the channel to be tested, the bandwidth of the different frequency components, and the bandwidth of the noise.
  • the bandwidth of the channel to be tested may be greater than or equal to or less than the bandwidth of the first optical signal, and the reference noise bandwidth is usually a bandwidth of 0.1 nm in the definition of OSNR, and the bandwidth of the filter is the bandwidth of the different frequency components.
  • the actual signal of the channel to be tested in the actual fiber optic communication link is determined.
  • the calibration factor can be back-to-back
  • the method for example, directly connecting the transmitting end of the optical transmission link to the measuring device, measuring the center frequency component of the first optical signal and the power of the first optical signal within the channel bandwidth, and then combining the bandwidth of the frequency component of the noise with The relationship between the O.lnm bandwidth is calculated to obtain the calibration factor.
  • one of the different frequencies may be selected as close as possible to or equal to the center frequency of the electrical signal, and further, other frequencies in the different frequencies may be selected as close as possible to the edge frequency of the electrical signal, so that the determined to be tested
  • the optical signal to noise ratio of the channel can be more accurate.
  • the roll-off coefficient of the different frequency components may be measured in advance.
  • the roll-off coefficient is related to the rate, modulation format, and pulse shape of the optical signal in the channel to be tested, and may be back-to-back measurement, that is, a method of directly connecting the measurement device to the transmitting end of the optical fiber communication device without any transmission equipment, and measuring
  • the center frequency component of the first optical signal and the power of the electrical signal corresponding to the different frequency components respectively record the power ratio of the power of the non-central frequency component to the center frequency component as the roll-off coefficient of the different frequency.
  • the first optical signal is converted into an electrical signal by acquiring the first optical signal in the channel to be tested, and the roll-off coefficient of the corresponding frequency component is kept unchanged during the conversion process, and different frequency components are extracted and measured.
  • the power of the different frequency components in the electrical signal and then determining the optical signal to noise ratio of the channel to be tested according to the power of the different frequency components. Since there may be measurement errors in the process of measuring the power of different frequency components, the smaller the roll-off factor, the smaller the influence of this measurement error on the calculation of OSNR.
  • the roll-off factor at the same frequency point is related to the bandwidth of the filter used. The narrower the filter bandwidth, the smaller the roll-off factor.
  • the bandwidth of the electrical filter used to measure the optical signal into an electrical signal is much smaller than the bandwidth of the optical filter used for direct measurement of the optical signal, then measured by optical power conversion at the same frequency point.
  • the roll-off factor is smaller than the roll-off factor measured directly on the optical signal, and the smaller roll-off factor makes the calculated OSNR more accurate.
  • the optional bandwidth of the electrical filter of the different frequency components of the measured electrical signal is much smaller than the optional bandwidth of the optical filter, the accuracy of the power and roll-off factor of the different frequency components of the measured electrical signal is The accuracy of the optical signal-to-noise ratio determined by the method for determining the optical signal-to-noise ratio provided by the embodiment of the present invention is significantly improved.
  • the optical signal is converted into an electrical signal by a low-cost optical coupler and a photodetector, so that the power of components of different frequencies can be obtained by using a low-cost electrical filter and an electric power measuring device to determine the optical signal-to-noise ratio.
  • the embodiment of the present invention provides a high accuracy and economical determination of optical signal noise.
  • the method of comparison it should be noted that, in S202, at least one electrical signal may be obtained according to the at least one local oscillator, and a frequency range of each electrical signal corresponds to a frequency of a corresponding local oscillator for coherent detection, according to different frequencies.
  • the at least one local oscillator has a plurality of possible spectral shapes of the corresponding electrical signals.
  • FIG. 3A is a schematic diagram of a first possible spectral shape of an electrical signal obtained by S202;
  • FIG. 3B is a second possible spectral shape of an electrical signal obtained by S202;
  • FIG. 3C is a third possible electrical signal obtained by S202.
  • FIG. 3D is a fourth possible spectrum shape diagram of the electrical signal obtained by S202, wherein the ordinate P is power, and the unit is milliwatt decibel.
  • a spectral shape of the electrical signal is as shown in FIG. 3A.
  • the center frequency of the electrical signal is equal to the difference between the center frequency of the first optical signal and the frequency of the local oscillator, and is equivalent to shifting the spectrum of the first optical signal to the local oscillator in a zero-frequency direction
  • the distance of the frequency, the spectral shape of the output electrical signal is substantially the same as the spectral shape of the first optical signal.
  • a spectrum of the electrical signal The shape is as shown in FIG. 3B.
  • the value of the first optical signal lower than the frequency of the local oscillator light minus the frequency of the local oscillator light is a negative value, according to The principle of coherent detection, the power of this part is mirrored and superimposed on the portion of the first optical signal higher than the frequency of the local oscillator, and the spectral shape of the first optical signal is shifted to the frequency of the local oscillator in the zero-frequency direction.
  • a portion of the first optical signal that is lower than the frequency of the local oscillator is superimposed to a portion of the first optical signal that is higher than the frequency of the local oscillator.
  • the spectral shape of the electrical signal is as shown in FIG. 3C; when the frequency of the local oscillator is greater than the first When the center frequency of the optical signal is half of the bandwidth of the first optical signal, the spectral shape of the electrical signal is as shown in FIG. 3D; similarly, the frequency of the local oscillator is greater than the center of the first optical signal. a frequency that is less than a center frequency of the first optical signal plus half the bandwidth of the first optical signal Case.
  • the filter frequency setting and the frequency range of the local oscillator are selected for different filtering modes. It is also different. The following is a specific description of determining the specific filter frequency setting and the frequency range of the local oscillator in different filtering modes in S202:
  • the respective electrical signals are filtered to obtain different frequency components, and a low pass filtering method, a band pass filtering method, or the like may be used.
  • Fig. 4A is a schematic diagram showing the frequency components obtained by the low-pass filtering method in S202
  • Fig. 4B is a partially enlarged schematic view of Fig. 4A.
  • the low-pass filtering method is usually implemented by a low-pass filter.
  • the filtering condition can be set to: Specify a preset frequency, an electrical signal lower than the preset frequency can pass, and an electrical signal higher than the preset frequency is removed, which is equivalent to low
  • the pass filter can retain a frequency range of zero frequency to a predetermined frequency.
  • the preset frequency of the low-pass filtering mode may be set to determine different frequency components of the channel to be tested. Half the bandwidth of the power.
  • the frequency range filtered by the low-pass filtering is actually zero frequency to half of the bandwidth of one frequency component, and the power of the partial frequency includes the frequency of the first optical signal higher than the local oscillator.
  • the superimposed part that is, the power represented by DE plus the power of noise is equal to the sum of the power AC and the power of the power AB and the noise, which is equivalent to the power of a complete frequency component, that is, the power of the pure signal BF and the power of the noise, and this frequency
  • the roll-off factor of the component is the same as the roll-off factor of the corresponding frequency component in the first optical signal.
  • the frequencies of the at least two local oscillators should be equal to each of the different frequencies
  • the rate component is the center frequency of the corresponding frequency component in the first optical signal.
  • FIG. 4C is a schematic diagram of an edge frequency component obtained by using a low-pass filtering method in S202
  • FIG. 4D is a schematic diagram of an edge frequency component obtained by using a low-pass filtering method in S202.
  • Fig. 5A is a schematic diagram showing the frequency components obtained by bandpass filtering in S202.
  • the bandpass filtering method is usually implemented by a bandpass filter.
  • the filtering condition can be set to: Specify a preset frequency range, and remove the electrical signal above or below the preset frequency range, which is equivalent to the bandpass filter can be retained.
  • the frequency range is a preset frequency range.
  • the bandwidth of the preset frequency range of the band pass filtering mode may be set to determine the channel to be tested. The bandwidth of the power of the different frequency components.
  • the frequency range of the bandpass filtering is not adjusted, in order to obtain different frequency components, at least two local oscillators need to be generated and the frequencies of the local oscillators are not the same.
  • the frequency ranges of the respective electrical signals obtained by coherent coupling and photodetection are also Different, filtering each electrical signal can get different frequency components.
  • a frequency of the local oscillator corresponds to a target frequency component, and the frequencies of the local oscillator are respectively equal to a center frequency of different target frequency components minus a center frequency of a preset frequency range of the band pass filtering mode.
  • the electrical signal obtained by the coherent detection method includes a partial image superimposed power of the first optical signal lower than the frequency of the local oscillator
  • the electrical signal including the superimposed portion obtained by the band pass filtering method is used.
  • the power of the frequency component is different from the roll-off coefficient of the corresponding frequency component in the first optical signal. Therefore, when the electrical signal is filtered by the band pass filtering method, the frequency of the local oscillator should avoid the frequency of the different frequency components.
  • the interval contains the power of the mirror overlay.
  • FIG. 5B is another schematic diagram of different frequency components obtained by using band pass filtering in S202.
  • the frequency range contains the power of the mirror overlay.
  • the center frequency of the first optical signal is “, the bandwidth of the first optical signal is b, and the bandwidth of the different frequency components is C. If the center frequency of the corresponding frequency component in the first optical signal is X, That is, the frequency component is [ ⁇ -, ⁇ +, the frequency of the local oscillator is /, and the filtering range of the bandpass filter is [d- ⁇ +], where ⁇ , b, c, d, /, X are all greater than 0, And dd ⁇ ,
  • the frequency of the local oscillator should meet the following conditions:
  • the frequency range of the band pass filtering is adjustable, at least one local oscillator may be generated to obtain different frequency components, and at least one electrical signal may be obtained through coherent coupling and photodetection, and at least one electrical signal is filtered multiple times. , you can get different frequency components.
  • the center frequency of the preset frequency range of the band pass filtering may be equal to the center frequency of the different target frequency components, respectively, minus the frequency of the at least one local oscillator.
  • the frequency of the at least one local oscillator may be selected to satisfy the following conditions:
  • the center frequency of the first optical signal is “, the bandwidth of the first optical signal is b, the bandwidth of the different frequency components is c, and the center frequency of the corresponding minimum frequency component of the different frequency components in the first optical signal is , that is, the center frequency of the maximum frequency component corresponding to the minimum frequency component [ ⁇ - ⁇ , ⁇ + ⁇ ] is [X 2 - ⁇ , X 2 + ], the frequency of the local oscillator is /, and the filtering range of the bandpass filter is [d--,d+-] , where a, b, c, d, f, Xj, X 2 are all greater than 0, ⁇ >-, d> -, Then, the frequency of the local oscillator should satisfy the following conditions: — (“— /) or — [(X 2 + ) _ /] ⁇ — [ ⁇ ( « — /)]
  • the above formula can be obtained to obtain the at least An optional frequency range for a local oscillator is
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a method for determining an optical signal-to-noise ratio according to an embodiment of the present invention.
  • optical filter or other optical transmission device When an optical filter or other optical transmission device does not exist in a fiber-optic communication link of a channel to be tested, The power of each frequency component in the signal is not affected by the optical filter or other optical transmission device, and the optical signal to noise ratio of the channel to be tested can be determined as follows.
  • S104 can be implemented by using S603.
  • the steps of the embodiment of the present invention include:
  • the S601-S602 can be implemented by using the S201-S203 of the method shown in Figure 2-5B.
  • the roll-off coefficients of the different frequencies acquired in advance include at least a roll-off coefficient of the optical signals at the first frequency and the second frequency, respectively.
  • the first frequency component may be a frequency component of an electrical signal converted from a center frequency component of the first optical signal, and correspondingly, a roll-off factor of the first frequency component is 1.
  • this method of determining the optical signal-to-noise ratio of a frequency at the center frequency can simplify the computational workload.
  • the second frequency component may be a frequency component of an electrical signal converted from an edge frequency component of the first optical signal, the selection being converted by the central frequency component and the edge frequency component of the first optical signal.
  • the roll-off factor of the first frequency component and the second frequency component in the signal is the power of the center frequency component of the pure signal in the electrical signal, and is the power of the center frequency component of the noise in the electrical signal.
  • the O NR is an optical signal to noise ratio of the channel to be tested
  • the OSNR e is a power of a center frequency component of the pure signal in the electrical signal and a power of a center frequency component of the noise in the electrical signal.
  • the ratio, the first ratio, is the calibration factor.
  • FIG. 7 is a schematic flowchart of a third embodiment of a method for determining an optical signal to noise ratio according to an embodiment of the present invention.
  • one or more optical filters or other optical transmission devices exist in an optical fiber communication link of a channel to be tested.
  • the waveforms of the optical filter devices are substantially the same, the power of each frequency component in the signal to be tested is also affected by the optical filter or other optical transmission device, and the optical signal to noise ratio of the channel to be tested can be determined as follows.
  • S104 can be implemented by using S703.
  • the steps of the embodiment of the present invention include:
  • the component includes at least a first frequency component, a second frequency component, and a third frequency component, and measures power of the different frequency components;
  • the roll-off coefficient obtained in advance includes at least a roll-off coefficient of the optical signal at the first frequency, the second frequency, and the third frequency, and an optical signal passing through the optical filter respectively in the A roll-off factor of a frequency component, a second frequency component, and the third frequency component.
  • the S701-S702 can be implemented by using the S201-S203 of the method shown in Figure 2-5B.
  • the roll-off coefficient of the optical signal in the first frequency component, the second frequency component, and the third frequency component may also be measured by a back-to-back method, for example, the optical transmission chain.
  • the transmitting end of the path is directly connected to the optical filter device, and the optical filter is directly connected to the measuring device, and measures the power of the electrical signal corresponding to the central frequency component of the first optical signal and the at least three frequency components, respectively
  • the power ratio of the power of these non-central frequency components to the center frequency component is recorded as the roll-off factor of the different frequencies.
  • the first frequency component may be a frequency component of an electrical signal converted by a center frequency component of the first optical signal, and correspondingly, a roll-off factor of the first frequency component.
  • this method of determining the optical signal-to-noise ratio of a frequency at the center frequency can simplify the computational workload.
  • the second frequency component may be a frequency component of an electrical signal converted from an edge frequency component of the first optical signal, the selection being converted by the central frequency component and the edge frequency component of the first optical signal.
  • R3 is a roll-off coefficient of a first frequency component, a second frequency component, and a third frequency component of the first optical signal, respectively, which is a power of a center frequency component of the pure signal in the electrical signal, and P ASE0 is the electrical signal The power of the center frequency component of the noise, the n is the number of optical filters And, the sum and the roll-off coefficients of the first frequency component, the second frequency component, and the third frequency component of the optical signal when passing through the optical filter, respectively.
  • the O NR is an optical signal to noise ratio of the channel to be tested
  • the OSNR e is a power of a center frequency component of the pure signal in the electrical signal and a power of a center frequency component of the noise in the electrical signal.
  • the ratio, the first ratio, is the calibration factor.
  • an optical filter device exists in the middle of the link, for example, a wavelength-selective switch (wss), at this time, the pure signal original spectrum, conversion The post-electrical signal spectrum and the power of the filtered individual frequency components change.
  • wss wavelength-selective switch
  • FIG. 7B is a schematic diagram showing the original spectral change of the pure signal when the optical transmission link includes the optical filter.
  • the center frequency of the original spectrum is on both sides.
  • the power at the non-signal center frequency drops faster.
  • the power at each frequency of the first optical signal acquired from S201 is actually the power of the first optical signal at the frequency component multiplied by the optical signal passing through the optical filter.
  • the power of the different frequency components of the electrical signal measured in S202 is actually the power of the first optical signal at the frequency component multiplied by the optical signal passing through the optical filter. Drop factor.
  • Fig. 7D is a diagram showing the relationship between the center frequency component of the pure signal and the noise and the power of the non-central frequency component when the optical transmission link includes the optical filter.
  • FIG. 7C is a schematic diagram of the original spectral change of the pure signal when the optical transmission link includes more than one optical filter.
  • the original spectral shape is compressed one by one, if the optical transmission
  • the optical filter device in the link has the same model, and the waveforms of the signals passing through the respective optical filters are substantially the same, that is, the variation of the power of each frequency component of the first optical signal as it passes through the optical filter devices.
  • the power at each frequency of the first optical signal acquired from S201 is actually the power of the first optical signal at the frequency component multiplied by the light.
  • determining to measure power of different frequency components includes at least a first frequency component, a second frequency component, and a third frequency.
  • the reduction coefficient determines the optical signal-to-noise ratio of the channel to be measured, so that when determining the optical signal-to-noise ratio of the channel to be measured, the influence of the optical signal on the power when passing through the optical filter device is also taken into account, so that different frequency components according to the measurement are obtained.
  • the power of the pure signal calculates the power of the pure signal of the channel to be tested and the power of the noise signal is more accurate, and the power of the optical signal of different frequencies of the optical filter is passed, thereby improving the accuracy of the optical signal-to-noise ratio of the final channel to be tested.
  • Embodiments of the present invention provide an accurate method for determining an optical signal to noise ratio that can be applied to a fiber communication networking scenario.
  • the method for determining the optical signal to noise ratio provided by the embodiment of the present invention further includes an optional implementation manner.
  • the first optical signal may not be converted into an electrical signal, and the optical signal to noise ratio may be directly determined according to multiple frequency components in the first optical signal.
  • the steps of the embodiment of the present invention include:
  • Determining a first ratio according to a power and a roll-off factor of the at least three frequency components determining a channel to be tested according to a calibration factor of the first ratio and a power of a center frequency component of the first optical signal
  • the optical signal to noise ratio, the calibration factor of the power of the center frequency component of the first optical signal is determined according to the bandwidth of the channel to be tested, the bandwidth of the different frequency components, and the bandwidth of the noise.
  • the at least three frequency components may include at least a first frequency component, a second frequency component, and a third frequency component; and the roll-off coefficient of the different frequency component may include at least a first frequency component of the first optical signal, Roll-off factor of two frequency components and third frequency components a roll-off coefficient of a first frequency component, a second frequency component, and a third frequency component of the optical signal when the optical filter passes; a roll-off coefficient of each frequency component in the first optical signal is a respective non-center of the pure signal in the channel a ratio of the power of the frequency component to the power of the center frequency component; the roll-off factor of each frequency component of the optical signal when passing the optical filter may also be measured by a back-to-back method, for example, transmitting the transmitting end of the optical transmission link
  • the optical filter device is directly connected, and the optical filter is directly connected to the measuring device, and measures the power of the electrical signal corresponding to the central frequency component of the first optical signal and the at least three frequency components, and separately records the non-central frequency
  • the calibration factor of the power of the center frequency component of the first optical signal is determined according to the bandwidth of the channel to be tested, the bandwidth of the different frequency components, and the bandwidth of the noise.
  • the calibration factor may first adopt a back-to-back method, for example, directly connecting a transmitting end of the optical transmission link to the optical filter device, and the optical filter is directly connected to the measuring device to measure a center frequency component of the first optical signal. And calculating the calibration factor by the power of the first optical signal within the channel bandwidth and then combining the bandwidth of the frequency component of the noise with the bandwidth of 0.1 nm.
  • determining the first ratio according to the power and the roll-off coefficient of the at least three frequency components may specifically include:
  • the O NRc is a first ratio
  • the ⁇ , P 2 and ⁇ are respectively the first frequency component of the first optical signal
  • the power of the second frequency component and the third frequency component wherein ⁇ , ⁇ are respectively a roll-off coefficient of the first frequency component, the second frequency component, and the third frequency component of the first optical signal, which is the first light
  • the power of the center frequency component of the pure signal in the signal is the power of the center frequency component of the noise in the first optical signal
  • the ⁇ is the number of optical filters, and the ", and respectively pass through the optical filter
  • the roll-off factor of the first frequency component, the second frequency component, and the third frequency component of the optical signal are the number of optical filters
  • Embodiments of the present invention consider an optical filter device that may be included in an optical fiber communication link.
  • determining to measure power of different frequency components includes at least a first frequency.
  • the power of the second frequency component and the third frequency component, according to the roll-off coefficient of the first frequency component, the second frequency component, and the third frequency component, and the optical signal passing through the optical filter are respectively at the first frequency component and the second frequency
  • the roll-off coefficient of the component and the third frequency component determines an optical signal-to-noise ratio of the channel to be measured, so that when determining the optical signal-to-noise ratio of the channel to be measured, the influence of the optical signal on the power when passing the optical filter device is also considered.
  • FIG. 8A is a structural diagram of Embodiment 1 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention.
  • the apparatus 1 of the embodiment of the present invention may include: a spectroscope 11, a photoelectric conversion and an extractor. 12. The measuring unit 13 and the arithmetic unit 14.
  • the optical splitter 11 is configured to acquire a first optical signal in a channel to be tested.
  • the photoelectric conversion and extractor 12 is configured to convert the first optical signal into an electrical signal, and extract different frequency components in the electrical signal, and roll-off coefficients of the different frequency components in the electrical signal
  • the roll-off coefficient is the same as the roll-off coefficient of the corresponding frequency component in the first optical signal, and the roll-off coefficient is a ratio of the power of the non-central frequency component of the pure signal in the channel to the power of the center frequency component;
  • the measurer 13 is configured to measure power of the different frequency components; the operator
  • the measurer 13 may measure the power of the different frequency components by using an electric power meter or other electrical signal power measuring device, for example, using an analog to digital converter.
  • ADC Analog to Digital Converter
  • FIG. 8B is an optional structural diagram of the measuring device.
  • the measuring device is an electric power meter 13
  • FIG. 8C is another optional structural schematic diagram of the measuring device.
  • the measurer 13 includes an analog to digital converter 131 and a power calculator 132, which are not limited in the present invention.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2-7, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 9 is a structural diagram of Embodiment 2 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention.
  • the photoelectric conversion and extractor 12 can include:
  • a laser 121 configured to generate at least one local oscillator for coherent detection
  • the optical coupler 122 is configured to coherently couple the first optical signal with each of the local oscillators to obtain respective second optical signals that are in one-to-one correspondence with the respective local oscillators;
  • the photodetector 123 is configured to perform photodetection on each of the second optical signals to obtain respective electrical signals corresponding to each of the second optical signals.
  • An electrical filter 124 is configured to filter the electrical signal to obtain different frequency components in the electrical signal.
  • the photodetector 123 may be a photodetector having a photodiode, and any one of the second optical signals output from the two outlets of the optical coupler may be input to the photodetector to obtain a corresponding to the local oscillator.
  • An electrical signal may be included in the photodetector 123 .
  • the photodetector 123 can also be implemented by a photodetector having two photodiodes, that is, a balanced detector. The two second optical signals output from the two outlets of the optical coupler can be input to the balance detector.
  • the balance is adopted.
  • the detector can improve the accuracy of the determined optical signal to noise ratio.
  • 10A is a structural diagram of Embodiment 3 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention. On the basis of the apparatus shown in FIG. 9, as shown in FIG.
  • the photoelectric conversion and extractor 12 may include: a first controller 126, configured to send an instruction to the laser, the instruction is used to indicate that the local oscillator light generated by the laser is at least two and each of the local oscillators The frequencies are different, so that the photodetector obtains different frequency ranges of the respective electrical signals;
  • the laser is a tunable laser 121, and is configured to generate local oscillators having different frequencies according to instructions of the first controller 126;
  • the electrical filter is a low pass filter 124 for filtering each of the electrical signals by means of low pass filtering to obtain different frequency components, wherein one of the frequency components corresponds to one of the electrical signals.
  • 10B is a structural diagram of Embodiment 4 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention.
  • the photoelectric conversion and extractor 12 can include:
  • a first controller 126 configured to send an instruction to the laser, where the instruction is used to indicate that the local oscillator light generated by the laser is at least two and each of the local oscillator lights has a different frequency, so that the photoelectric
  • the detector 123 obtains different frequency ranges of the respective electrical signals, wherein, among at least two of the local oscillators, a frequency of one of the local oscillators corresponds to a target frequency component, and each of the target frequency components is different ;
  • the laser is a tunable laser 121, and is configured to generate local oscillators having different frequencies according to instructions of the first controller;
  • the electrical filter is a band pass filter 124 for filtering each of the electrical signals by using band pass filtering to obtain each of the target frequency components; wherein one of the frequency components corresponds to one of the electrical components signal.
  • the photodetector 123 can be a photodetector having two photodiodes, that is, a balance detector.
  • 10C is a structural diagram of Embodiment 5 of an apparatus for determining an optical signal to noise ratio according to an embodiment of the present invention. On the basis of the apparatus shown in FIG. 9, as shown in FIG.
  • the local oscillator light generated by the laser 121 is one, each of the target frequency components is different, and the frequency range of the local oscillator light and the minimum target frequency of each of the target frequency components
  • the component or the maximum target frequency component corresponds to;
  • the photoelectric conversion and extractor 12 may include: a second controller 127, configured to send a band pass filter setting instruction to the electrical filter, where the instruction is used to indicate the electrical filter And filtering the electrical signal a plurality of times, so that the electrical filter obtains each of the target frequency components;
  • the electrical filter is a tunable bandpass filter 124, configured to adjust a bandpass filter setting according to an instruction of the second controller 127, and perform multiple filtering on the electrical signal to obtain each of the target frequency components.
  • the filtering range used by each of the filtering is different.
  • the photodetector 123 can be a photodetector having two photodiodes, that is, a balance detector.
  • FIG. 11 is a structural diagram of Embodiment 6 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention.
  • the operator 14 can include:
  • a first ratio calculator 141 configured to determine a first ratio according to a power and a roll-off coefficient of the different frequency components
  • the calibrator 142 is configured to determine an optical signal to noise ratio of the channel to be tested according to a first ratio and a calibration factor of a power of a center frequency component of the first optical signal, where a center frequency component of the first optical signal is The calibration factor of the power is determined according to the bandwidth of the channel to be tested, the bandwidth of the different frequency components, and the bandwidth of the noise.
  • calibrator 142 can be specifically used to:
  • the O NR is an optical signal to noise ratio of the channel to be tested
  • the OSNR e is the first ratio
  • the A is a calibration factor.
  • the calibration factor of the power of the center frequency component of the first optical signal is determined according to the bandwidth of the channel to be tested, the bandwidth of the different frequency components, and the bandwidth of the noise.
  • the bandwidth of the channel to be tested may be greater than or equal to or less than or equal to the bandwidth of the first optical signal
  • the reference noise bandwidth is usually a bandwidth of 0.1 nm in the definition of 0 SNR
  • the bandwidth of the filter is the bandwidth of the different frequency components.
  • the actual signal of the channel to be tested in the actual fiber optic communication link is determined.
  • the first ratio calculator 141 may be specifically configured to acquire a roll-off coefficient of the first frequency component and the two-frequency component of the optical signal;
  • XP SIG _ C + P
  • corpse 2 R 2 XP SIG .c + P
  • the OSNR c is a first ratio
  • the P and the P 2 are respectively a power of a frequency component and a second frequency component of the electrical signal, and the sum is the first of the first optical signals respectively
  • the roll-off factor of the frequency component and the second frequency component is the power of the center frequency component of the pure signal in the electrical signal, and is the power of the center frequency component of the noise in the electrical signal.
  • FIG. 12 is a structural diagram of Embodiment 7 of an apparatus for determining an optical signal-to-noise ratio according to an embodiment of the present invention.
  • the device 1 may further include:
  • the optical filter determiner 15 is configured to: if the optical fiber communication link of the channel to be tested is determined to include an optical filter, indicating that the different frequency components obtained by the photoelectric conversion and the extractor include at least a first frequency component, a second frequency component and a third frequency component;
  • the first ratio calculator 141 may be specifically configured to:
  • 2 and R3 is a roll-off coefficient of a first frequency component, a second frequency component, and a third frequency component of the first optical signal, respectively, which is a power of a center frequency component of the pure signal in the electrical signal, and P ASE0 is the electrical signal
  • the power of the center frequency component of the noise, the n is the number of optical filters, and the sum is the roll of the first frequency component, the second frequency component, and the third frequency component of the optical signal when passing through the optical filter Drop factor.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2-7, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be implemented by hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, when executed, The foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种光信噪比的确定方法及装置,该方法包括:获取待测信道中的第一光信号;将所述第一光信号转换为电信号,提取所述电信号中的不同频率成分,所述电信号中所述不同频率成分的滚降系数与所述第一光信号中对应频率成分的滚降系数相同,所述滚降系数为信道中纯信号的非中心频率成分的功率与中心频率成分的功率的比值;测量所述不同频率成分的功率;根据所述不同频率成分的功率和滚降系数,确定所述待测信道的光信噪比。该方法能够高准确度的确定待测信道的光信噪比。

Description

光信噪比的确定方法及装置
技术领域
本发明实施例涉及光通信技术领域, 尤其涉及一种光信噪比的确定方法 及装置。 背景技术
在光通信技术领域中, 光信噪比 (Optical Signal-to-Noise Ratio , 简称 OSNR)是衡量光通信系统传输性能的关键参数,通常定义为通道带宽内的信 号的功率与该通道中心波长处 0.1 纳米带宽内的噪声的功率 (Amplified Spontaneous Emission, 简称 ASE)的比值。
现有技术确定 OSNR的方法是利用待测通道内纯信号的各个频率处的功 率与纯信号的中心频率处的功率之比存在的关系, 采用光滤波器分别获取通 道带宽内的包含信号和噪声的不同频率处的功率, 进而计算出 OSNR。
但是, 由于目前的商用的光滤波器的最小滤波带宽较宽, 因此, 采用光 滤波器的方式, 确定光信号的 OSNR的准确性差。 发明内容
本发明实施例提供一种光信噪比的确定方法及装置, 用以解决现有技术 采用光滤波器的确定 OSNR的方法准确性差的问题。
本发明实施例第一方面提供一种的光信噪比的确定方法, 包括: 获取待测信道中的第一光信号;
将所述第一光信号转换为电信号, 提取所述电信号中的不同频率成 分, 所述电信号中所述不同频率成分的滚降系数与所述第一光信号中对应 频率成分的滚降系数相同, 所述滚降系数为信道中纯信号的非中心频率成 分的功率与中心频率成分的功率的比值;
测量所述不同频率成分的功率;
根据所述不同频率成分的功率和滚降系数, 确定所述待测信道的光 信噪比。 结合第一方面, 在第一方面的第一种可能的实现方式中, 所述将所述 第一光信号转换为电信号, 获得所述电信号中不同频率成分, 包括: 产生用于相干检测的至少一个本振光;
将所述第一光信号与每一个所述本振光进行相干耦合, 得到与各个所 述本振光一一对应的各个第二光信号;
对各个所述第二光信号进行光电探测, 得到与各个所述第二光信号一 一对应的各个所述电信号;
对各个所述电信号进行滤波, 得到不同频率成分。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的 实现方式中, 所述第二光信号包括两路信号;
所述对各个所述第二光信号进行光电探测, 得到与各个所述第二光信 号一一对应的各个所述电信号, 包括:
对各个所述第二光信号的两路信号进行平衡探测, 得到与各个所述第 二光信号一一对应的各个所述电信号。
结合第一方面的第二种可能的实现方式, 在第一方面的第三种可能的 实现方式中, 当所述本振光为至少两个且各个所述本振光的频率不相同 时, 各个所述电信号的频率范围不相同;
所述对各个所述电信号进行滤波, 得到不同频率成分, 包括: 采用低通滤波的方式, 对各个所述电信号进行滤波, 得到不同频率成 分, 其中, 一个所述频率成分对应一个所述电信号。
结合第一方面的第一种至第二种任一种可能的实现方式, 在第一方面 的第四种可能的实现方式中, 当所述本振光为至少两个且各个所述本振 光的频率不相同时, 各个所述电信号的频率范围不相同, 在至少两个所述 本振光中, 一个所述本振光的频率与一个目标频率成分对应, 各个所述目 标频率成分不同;
所述对各个所述电信号进行滤波, 得到不同频率成分, 各个所述频率 成分不同, 包括:
采用带通滤波的方式, 对各个所述电信号进行滤波, 得到各个所述目 标频率成分; 其中, 一个所述频率成分对应一个所述电信号。
结合第一方面的第一种至第二种任一种可能的实现方式, 在第一方面 的第五种可能的实现方式中, 当所述本振光为一个, 各个所述目标频率成 分不同, 所述本振光的频率的取值范围与各个所述目标频率成分的最小目 标频率成分或者最大目标频率成分对应;
所述对各个所述电信号进行滤波, 得到所述不同频率成分, 包括: 采用带通滤波的方式, 对所述电信号进行多次滤波, 得到各个所述目 标频率成分; 其中, 各个所述滤波所采用的滤波范围不相同。
结合第一方面、 第一方面的第一种至第五种任一种可能的实现方式, 在第一方面的第六种可能的实现方式中, 所述根据所述不同频率成分的 功率和滚降系数, 确定所述待测信道的光信噪比, 具体包括:
根据所述不同频率成分的功率和滚降系数, 确定第一比值;
根据第一比值和所述第一光信号的中心频率成分的功率的校准因 子, 确定所述待测信道的光信噪比, 所述第一光信号的中心频率成分的 功率的校准因子是根据所述待测信道的带宽、所述不同频率成分的带宽和 噪声的带宽确定的。
结合第一方面的第六种可能的实现方式, 在第一方面的第七种可能的 实现方式中, 所述不同频率成分至少包括第一频率成分和第二频率成 分, 所述不同频率成分的滚降系数至少包括光信号的第一频率成分和第 二频率成分的滚降系数;
所述根据所述不同频率成分的功率和滚降系数, 确定第一比值, 具 体包括:
根据 ? 1 = ^_。 + p _ p P
ASE0 1 2— "2 J SIG—C 1 ASEO解出
OSNR SIG-C 尸 2) / (Α— R2)
P ASEO
2 所述 O NRc为第一比值, 所述 和所述 P2分别为所述电信号中的第 一频率成分和第二频率成分的功率, 所述 和 ^分别为第一光信号中第 一频率成分和第二频率成分的滚降系数, P^-c为所述电信号中的纯信号 的中心频率成分的功率, 为所述电信号中的噪声的中心频率成分的 功率。
结合第一方面的第六种可能的实现方式, 在第一方面的第八种可能的 实现方式中, 确定所述待测信道的光纤通信链路中包括光滤波器; 所述 不同频率成分至少包括第一频率成分、 第二频率成分和第三频率成分, 所述不同频率成分的滚降系数至少包括第一光信号中第一频率成分、 第 二频率成分和第三频率成分的滚降系数以及通过光滤波器时光信号的第 一频率成分、 第二频率成分和第三频率成分的滚降系数;
所述根据所述不同频率成分的功率和滚降系数, 确定第一比值, 具 体包括:
根据 Λ = Ri X X PSIG_C + P 、 R2 = R2 X " X PSIG_C + P
R3 = R3 X X PSIG_C + P 解出 OSNRC = ; 其中, 所述 O NRc为第一比值, 所述 ^、 Ρ2和 Λ分别为所述电信号 中第一频率成分、 第二频率成分和第三频率成分的功率, 所述 、 ?2
R3分别为第一光信号的第一频率成分、 第二频率成分和第三频率成分的 滚降系数, 为所述电信号中的纯信号的中心频率成分的功率, PASE0 为所述电信号中的噪声的中心频率成分的功率, 所述 n为光滤波器的个 数, 所述 、 和 分别为通过光滤波器时光信号的第一频率成分、 第二 频率成分和第三频率成分的滚降系数。
结合第一方面的第六种至第八种任一种可能的实现方式, 在第一方面 的第九种可能的实现方式中, 所述根据第一比值以及所述第一光信号的 中心频率成分的功率的校准因子, 确定所述待测信道的光信噪比, 具体 包括:
根据 0SNR = AxOSNR e确定所述光信噪比 ·'
其中, 所述 o NR为待测通道的光信噪比, 所述 OSNRe为所述第一比 值, 所述 A为校准因子。
本发明实施例第二方面提供一种的光信噪比的确定装置, 包括: 分光器, 用于获取待测信道中的第一光信号;
光电转换与提取器, 用于将所述第一光信号转换为电信号, 提取所述 电信号中的不同频率成分, 所述电信号中所述不同频率成分的滚降系数与 所述第一光信号中对应频率成分的滚降系数相同, 所述滚降系数为信道中 纯信号的非中心频率成分的功率与中心频率成分的功率的比值; 测量器, 用于测量所述不同频率成分的功率;
运算器, 用于根据所述不同频率成分的功率和滚降系数, 确定所述 待测信道的光信噪比。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述将所述 第一光信号转换为电信号, 所述光电转换与提取器包括:
激光器, 用于产生用于相干检测的至少一个本振光;
光耦合器, 用于将所述第一光信号与每一个所述本振光进行相干耦 合, 得到与各个所述本振光一一对应的各个第二光信号;
光电探测器, 用于对各个所述第二光信号进行光电探测, 得到与各个 所述第二光信号一一对应的各个所述电信号;
电滤波器, 用于对所述电信号进行滤波, 得到所述电信号中的不同频 率成分。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的 实现方式中, 所述光耦合器输出的第二光信号为两路信号;
所述光电探测器为平衡探测器, 对所述第二光信号的两路信号进行 平衡探测, 得到与各个所述第二光信号一一对应的各个所述电信号。
结合第二方面的第二种可能的实现方式, 在第二方面的第三种可能的 实现方式中, 所述光电转换与提取器还包括第一控制器, 用于向所述激 光器发送指令, 所述指令用于指示所述激光器产生的本振光为至少两个 且各个所述本振光的频率不相同, 以使所述光电探测器得到各个所述电信 号的频率范围不相同;
所述激光器为可调激光器, 用于根据所述第一控制器的指令产生频 率不相同的本振光;
所述电滤波器为低通滤波器, 用于采用低通滤波的方式, 对各个所述 电信号进行滤波, 得到不同频率成分, 其中, 一个所述频率成分对应一个 所述电信号。
结合第二方面的第一种至第二种任一种可能的实现方式, 在第二方面 的第四种可能的实现方式中, 所述光电转换与提取器还包括第一控制 器, 用于向所述激光器发送指令, 所述指令用于指示所述激光器产生的 本振光为至少两个且各个所述本振光的频率不相同, 以使所述光电探测器 得到各个所述电信号的频率范围不相同,其中,在至少两个所述本振光中, 一个所述本振光的频率与一个目标频率成分对应, 各个所述目标频率成分 不同;
所述激光器为可调激光器, 用于根据所述第一控制器的指令产生频 率不相同的本振光;
所述电滤波器为带通滤波器, 用于采用带通滤波的方式, 对各个所述 电信号进行滤波, 得到各个所述目标频率成分; 其中, 一个所述频率成分 对应一个所述电信号。
结合第二方面的第一种至第二种任一种可能的实现方式, 在第二方面 的第五种可能的实现方式中, 若所述激光器产生的所述本振光为一个, 各 个所述目标频率成分不同, 所述本振光的频率取值范围与各个所述目标频 率成分中的最小目标频率成分或者最大目标频率成分对应;
所述光电转换与提取器包括第二控制器, 用于向所述电滤波器发送 带通滤波设置指令, 所述指令用于指示所述电滤波器对所述电信号进行 多次滤波, 以使所述电滤波器得到各个所述目标频率成分;
所述电滤波器为可调带通滤波器, 用于根据所述第二控制器的指令 调节带通滤波设置, 对所述电信号进行多次滤波, 得到各个所述目标频率 成分, 其中, 各个所述滤波所采用的滤波范围不相同。
结合第二方面、 第二方面的第一种至第五种任一种可能的实现方式, 在第二方面的第六种可能的实现方式中, 所述运算器, 包括:
第一比值计算器, 用于根据所述不同频率成分的功率和滚降系数, 确 定第一比值;
校准器, 用于根据第一比值和所述第一光信号的中心频率成分的功率 的校准因子, 确定所述待测信道的光信噪比, 所述第一光信号的中心频 率成分的功率的校准因子是根据所述待测信道的带宽、 所述不同频率成分 的带宽和噪声的带宽确定的。
结合第二方面的第六种可能的实现方式, 在第二方面的第七种可能的 实现方式中, 所述不同频率成分至少包括第一频率成分和第二频率成 分,
第一比值计算器, 具体用于获取光信号的第一频率成分和第二频率成 分的滚降系数;
根据 ? 1 = ^_。 + ^| 、 尸2 = ^_。+ ^£。解出
OSNRr C '
Figure imgf000008_0001
2 所述 O NRc为第一比值, 所述 和所述 Ρ2分别为所述电信号中的第 —频率成分和第二频率成分的功率, 所述 和 ^分别为第一光信号中第 一频率成分和第二频率成分的滚降系数, 为所述电信号中的纯信号 的中心频率成分的功率, 为所述电信号中的噪声的中心频率成分的 功率。
结合第二方面的第六种可能的实现方式, 在第二方面的第八种可能的 实现方式中, 所述装置, 还包括:
光滤波器确定器, 用于若确定所述待测信道的光纤通信链路中包括光 滤波器, 指示所述光电转换与提取器得到的所述不同频率成分至少包括第 一频率成分、 第二频率成分和第三频率成分;
所述第一比值计算器, 具体用于:
获取光信号的第一频率成分、 第二频率成分和第三频率成分的滚降 系数以及通过光滤波器时光信号的第一频率成分、 第二频率成分和第三 频率成分的滚降系数;
根据 Λ = Ri X X PSIG_C + P 、 R2 = R2 X " X PSIG_C + P
R3 = R3 X X PSIG_C + P 解出 OSNRC = ; 其中, 所述 O NRC为第一比值, 所述 、 和 ^分别为所述电信号 中第一频率成分、 第二频率成分和第三频率成分的功率, 所述 、 ?2
R3分别为第一光信号的第一频率成分、 第二频率成分和第三频率成分的 滚降系数, 为所述电信号中的纯信号的中心频率成分的功率, PASE0 为所述电信号中的噪声的中心频率成分的功率, 所述 n为光滤波器的个 数, 所述 、 和 分别为通过光滤波器时光信号的第一频率成分、 第二 频率成分和第三频率成分的滚降系数。 结合第二方面的第六种至第八种任一种可能的实现方式, 在第二方面 的第九种可能的实现方式中, 所述校准器, 具体用于:
根据 OSNR = AxOSNRe确定所述光信噪比 ·'
其中, 所述 O NR为待测通道的光信噪比, 所述 OSNRe为所述第一比 值, 所述 为校准因子。
本发明实施例通过获取待测信道中的第一光信号, 将第一光信号转换 为电信号, 并在转换过程中保持对应频率成分的滚降系数不变, 提取不同 频率成分并测量所述电信号中不同频率成分功率, 然后根据所述不同频 率成分的功率, 确定所述待测信道的光信噪比。 由于在测量不同频率成分 功率的过程中可能存在测量误差,滚降系数越小,这个测量误差对计算 0SNR 产生的影响也就越小。而相同频率点处的滚降系数与所用滤波器的带宽有关, 滤波器带宽越窄所得滚降系数就会越小。 通过将光信号转为电信号的方式进 行测量所使用的电滤波器带宽远远小于对光信号直接测量所用的光滤波器的 带宽, 那么在相同频率点上通过光转电的方式测得的滚降系数要小于对光信 号直接测量得到的滚降系数, 更小的滚降系数使计算得到的 OSNR更准确。 不仅如此, 由于测量的电信号的不同频率成分的电滤波器的可选带宽远远小 于光滤波器的可选带宽, 测量的电信号的不同频率成分的功率和滚降系数的 准确度比采用光滤波器的方式测量得到的功率和滚降系数的准确度高,因此, 本发明实施例提供的光信噪比的确定方法确定的待测信道的光信噪比的 准确度显著提高。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A为光信号中纯信号与噪声信号的谱形示意图;
图 1B为用于确定待测信道的光信噪比的纯信号的功率和噪声的功率的 示意图;
图 1C 为纯信号的中心频率成分的功率和非中心频率成分的功率的示意 图;
图 2A为本发明实施例提供的一种光信噪比的确定方法实施例一的流程 图;
图 2B为不同频率成分的纯信号和噪声的的功率的示意图;
图 2C为根据不同频率成分确定纯信号和噪声的中心频率成分的功率 的示意图;
图 2D 为纯信号的中心频率成分的功率与非中心频率成分的功率之间关 系的示意图;
图 3A为 S202得到的电信号的第一种可能的频谱形状示意图; 图 3B为 S202得到的电信号的第二种可能的频谱形状示意图; 图 3C为 S202得到的电信号的第三种可能的频谱形状示意图; 图 3D为 S202得到的电信号的第四种可能的频谱形状示意图; 图 4A为 S202中采用低通滤波方式得到的频率成分的示意图; 图 4B为图 4A的局部放大示意图;
图 4C为 S202中采用低通滤波方式得到的边缘频率成分的示意图; 图 4D为 S202中采用低通滤波方式得到的边缘频率成分的示意图; 图 5A为 S202中采用带通滤波方式得到的频率成分的示意图; 图 5B为 S202中采用带通滤波方式得到的不同频率成分的另一种示意 图;
图 6为本发明实施例提供的一种光信噪比的确定方法实施例二的流程图 示意图;
图 7A为本发明实施例提供的一种光信噪比的确定方法实施例三的流程 图示意图;
图 7B为当光传输链路包含光滤波器时纯信号原始光谱变化示意图; 图 7C 为当光传输链路包含一个以上光滤波器时纯信号原始光谱变化示 意图;
图 7D 为当光传输链路包含光滤波器时纯信号和噪声的中心频率成分和 非中心频率成分的功率的关系的示意图;
图 8A为本发明实施例提供的一种光信噪比的确定装置实施例一的结构 图; 图 8B为测量器的一种可选的结构示意图;
图 8C为测量器的又一种可选的结构示意图;
图 9本发明实施例提供的一种光信噪比的确定装置实施例二的结构图; 图 10A本发明实施例提供的一种光信噪比的确定装置实施例三的结构 图;
图 10B 本发明实施例提供的一种光信噪比的确定装置实施例四的结构 图;
图 10C 本发明实施例提供的一种光信噪比的确定装置实施例五的结构 图;
图 11本发明实施例提供的一种光信噪比的确定装置实施例六的结构; 图 12本发明实施例提供的一种光信噪比的确定装置实施例七的结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
在光纤通信系统的光传输链路中,信道中的光信号具有一定的光谱宽度, 在这个光谱宽度通常也均匀分布着噪声, 因此, 在光信号的光谱宽度的任意 频率处测量的功率包含纯信号在该频率处的功率和噪声在该频率处的功 率。 可参考图 1A为光信号中纯信号与噪声信号的谱形示意图。
光信噪比是衡量信道的传输性能的重要指标,光信噪比的定义为待测信 道内纯信号的功率与待测信道的中心波长处 O.lnm 带宽内噪声功率的比 值。 可参考图 1B为用于确定待测信道的光信噪比的纯信号的功率和噪声的 功率的示意图。
本发明实施例将待测信道中的光信号转换为电信号, 并使电信号携带 与光信号对应的功率信息, 然后测量不同频率处的功率, 并利用待测信道 中的噪声通常呈现高斯白噪声特性, 即噪声信号的各个频率处的功率在待 测信道内基本不变, 而信道中的纯信号的各个频率处的功率与该光信号在频 率处的滚降系数存在对应关系, 可以确定电信号中纯信号的中心频率成分的 功率与噪声的中心频率成分的比值, 然后利用纯信号的中心频率成分的功率 与整个待测信道带宽内纯信号的功率的关系、 噪声的中心频率成分的功率与
O.lnm带宽内噪声的功率的关系可以确定待测信道的光信噪比。
其中, 某一频率处的滚降系数是指信道中纯信号在该频率成分的功率 与中心频率成分的功率比值, 滚降系数可以预先测量得到。
需要说明的是, 由于对于信号的各个频率处的功率进行测量时, 仅在一 个频率点上是无法测量功率的, 因此需要在一定的带宽上测量该频率处的功 率, 即测量一个频率成分的功率。 本发明实施例中提及的任一信号的某个频 率的频率成分是指, 在该信号中, 以该频率为中心频率, 带宽为一预设带宽 截取的一段信号, 所述预设带宽例如可以为 500MHz或 1000MHz。 可参考图 1C, 图 1C为纯信号的中心频率成分的功率和非中心频率成分的功率的示意 图。 图 2A为本发明实施例提供的一种光信噪比的确定方法实施例一的流程 图, 本发明实施例可以在光通信系统中的一段光纤通信链路作为待测信道, 如图 2A所示, 该方法包括:
5201、 获取待测信道中的第一光信号。
其中, 可以通过在光纤通信链路上安装分光器的方式, 从待测信道中分 出部分光信号。 所述部分光信号可以称为第一光信号。
可选的, 由于分出的这部分第一光信号占所述待测信道的总的光信 号的比例越大, 对待测信道中原有光通信传输的影响越大, 所占比例越 小, 确定的光信噪比的准确度越低, 因此, 所述第一光信号可以选择所 述待测信道的总的光信号功率的 1%-5%, 以达到光信噪比确定结果的准 确性和待测信道中原有光通信传输的稳定性的平衡。
5202、 将所述第一光信号转换为电信号, 提取所述电信号中不同频 率成分, 所述电信号中所述不同频率成分的滚降系数与所述第一光信号中 对应频率成分的滚降系数相同, 所述滚降系数为信道中纯信号的非中心频 率成分的功率与中心频率成分的功率的比值。
举例来说, 可以利用相干检测原理, 将所述第一光信号信号转换为电 信号, 可选的, 所述将所述第一光信号转换为电信号, 可以包括: 产生用于相干检测的至少一个本振光;
将所述第一光信号与每一个所述本振光进行相干耦合, 得到与各个所 述本振光一一对应的各个第二光信号;
对各个所述第二光信号进行光电探测, 得到与各个所述第二光信号一 一对应的各个所述电信号;
对各个所述电信号进行滤波, 得到不同频率成分。
其中, 所述用于相干探测的本振光可以为激光。 所述相干耦合可以采 用光耦合器实现, 例如, 3dB光耦合器, 这种光耦合器具有两个入口和两 个出口, 将所述至少一个本振光中的每一个本振光分别与第一光信号输入 光耦合器的两个入口, 可以得到与该本振光对应的一个第二光信号, 所述 第二光信号从光耦合器的两个出口输出。
所述光电探测可以采用光电探测器实现, 例如, 具有一个光电二极管 的光电探测器, 将光耦合器的两个出口输出的任意一路第二光信号输入光 电探测器可以得到与该本振光对应的一个电信号。 可选的, 所述光电探测 也可以采用具有两个光电二极管的光电探测器, 即平衡探测器实现, 将光 耦合器的两个出口输出的两路第二光信号输入平衡探测器可以得到与该 本振光对应的一个电信号, 采用平衡探测器进行光电探测得到的交流电信 号的功率比采用单个光电二极管的光电探测器得到的交流电信号的功率 高一倍, 因此, 采用平衡探测器可以提高所确定的光信噪比的准确度。
所述对各个所述电信号进行滤波, 得到不同频率成分, 可以采用电滤波 器、 低通滤波器、 带通滤波器、 高通滤波器实现, 其中, 采用高通滤波器 的方式与采用带通滤波器的方式相同, 此处不再赘述。
可选的, 对于采用低通滤波器对各个电信号进行滤波, 得到不同频率 成分时, 所述光电探测需要采用平衡探测器实现, 以使得到的电信号中不 包含所述第一光信号中的直流分量; 可选的, 对于采用带通滤波器对各个 电信号进行滤波, 得到不同频率成分时, 所述光电探测可以采用单个光电 二极管的光电探测器或者平衡探测器实现, 所述带通滤波器可以滤除所述 第一光信号转换为电信号中直流分量。
S203、 测量所述不同频率成分的功率。 其中, 所述测量所述不同频率成分的功率可以采用电功率计或者其他 电信号功率测量设备测量所述不同频率成分的功率, 例如, 利用模数转换 器 (Analog to Digital Converter, 简称 ADC)将模拟量转换成数字量, 然 后通过采样计算得到数字量对应的平均功率数值,本发明不做限制。图 2B 为不同频率成分的纯信号和噪声的的功率的示意图。
S204、 根据所述不同频率成分的功率, 确定所述待测信道的光信噪 比。
可参考图 2C, 图 2C为根据不同频率成分确定纯信号和噪声的中心频 率成分的功率的示意图。
由于在待测信道中的电信号的带宽的任意频率处测量的功率包含纯信 号在该频率处的功率和噪声在该频率处的功率, 且噪声在待测信道所述带 宽内任意频率处的功率基本不变, 即
任意频率处测量的功率=纯信号的中心频率成分的功率 X该频率处的 滚降系数 +噪声的中心频率成分的功率
由滚降系数的定义可知, 中心频率成分的滚降系数为 1, 非中心频率 成分的滚降系数等于该非中心频率成分的功率与中心频率的比值。 图 2D 为纯信号的中心频率成分的功率与非中心频率成分的功率之间关系的示意 图。
因此, 根据最少两个不同频率成分的功率和滚降系数, 就可以计算出 纯信号的中心频率成分的功率和噪声的中心频率成分的功率的比值, 记为 第一比值; 然后, 根据第一比值和所述第一光信号的中心频率成分的功率 的校准因子, 可以确定所述待测信道的光信噪比。
其中, 所述校正因子用于将所述纯信号的中心频率成分的功率与所述 噪声的中心频率成分的功率的比值, 转换为待测信道的带宽内纯信号的功 率与 O.lnm带宽内噪声的功率的比值。 可参考图 1B, 所述第一光信号的 中心频率成分的功率的校准因子是根据所述待测信道的带宽、 所述不同频 率成分的带宽和噪声的带宽确定的。 所述待测信道的带宽可以大于、 小于 或等于第一光信号的带宽,参考噪声带宽通常为 OSNR定义中的 O.lnm的 带宽, 所述滤波带宽即所述不同频率成分的带宽, 可以根据实际光纤通信 链路的中的待测信道的实际信号确定。 所述校准因子可以先采用背靠背的 方法, 例如, 将光传输链路的发送端与测量设备直接相连, 测量第一光信 号的中心频率成分和通道带宽内的第一光信号的功率, 然后结合所述噪 声的频率成分的带宽与 O. lnm带宽的关系计算得到所述校准因子。
优选的, 所述不同频率中的其中一个可以选择尽量接近或等于电信 号的中心频率, 进一歩地, 所述不同频率中的其他频率可以选择尽量接 近电信号的边缘频率, 这样确定的待测信道的光信噪比可以更准确。
可选的, 所述不同频率成分的滚降系数, 可以预先测量得到。 所述滚 降系数与待测信道中光信号的速率、 调制格式、 脉冲形状有关, 可以采 用背靠背测量, 即不经过任何传输设备, 直接在光纤通信设备的发送端 连接测量设备的方式, 测量与第一光信号的中心频率成分和所述不同频 率成分对应的电信号的功率, 分别记录这些非中心频率成分的功率与中 心频率成分的功率比值, 作为所述不同频率的滚降系数。
本发明实施例通过获取待测信道中的第一光信号, 将第一光信号转换 为电信号, 并在转换过程中保持对应频率成分的滚降系数不变, 提取不同 频率成分并测量所述电信号中不同频率成分功率, 然后根据所述不同频 率成分的功率, 确定所述待测信道的光信噪比。 由于在测量不同频率成分 功率的过程中可能存在测量误差,滚降系数越小,这个测量误差对计算 OSNR 产生的影响也就越小。而相同频率点处的滚降系数与所用滤波器的带宽有关, 滤波器带宽越窄所得滚降系数就会越小。 通过将光信号转为电信号的方式进 行测量所使用的电滤波器带宽远远小于对光信号直接测量所用的光滤波器的 带宽, 那么在相同频率点上通过光转电的方式测得的滚降系数要小于对光信 号直接测量得到的滚降系数, 更小的滚降系数使计算得到的 OSNR更准确。 不仅如此, 由于测量的电信号的不同频率成分的电滤波器的可选带宽远远小 于光滤波器的可选带宽, 测量的电信号的不同频率成分的功率和滚降系数的 准确度比采用光滤波器的方式测量得到的功率和滚降系数的准确度高,因此, 本发明实施例提供的光信噪比的确定方法确定的待测信道的光信噪比的 准确度显著提高。 进一歩地, 采用成本低廉的光耦合器、 光电探测器将光 信号转换为电信号, 使得可以采用低成本的电滤波器和电功率测量设备得 到不同频率的成分的功率, 以确定光信噪比, 不需要使用价格昂贵的光滤 波器器件, 因此, 本发明实施例提供了一种高准确度且经济的确定光信噪 比的方法。 需要说明的是, S202中, 根据所述至少一个本振光, 可以得到至少一 个电信号, 每一个电信号的频率范围与对应的用于相干检测的本振光的频 率对应, 根据不同频率的所述至少一个本振光, 得到的对应的电信号的频 谱形状有多种可能。
图 3A为 S202得到的电信号的第一种可能的频谱形状示意图; 图 3B 为 S202得到的电信号的第二种可能的频谱形状示意图; 图 3C为 S202得 到的电信号的第三种可能的频谱形状示意图,图 3D为 S202得到的电信号 的第四种可能的频谱形状示意图, 其中, 纵坐标 P为功率, 单位为毫瓦分 贝。
可参考图 3A, 当所述本振光的频率小于所述第一光信号的中心频率 减去第一光信号的带宽的一半时, 所述电信号的频谱形状如图 3A所示, 所述电信号的中心频率等于所述第一光信号的中心频率减去所述本振光 的频率的差值, 相当于将所述第一光信号的光谱向零频方向平移了所述本 振光的频率的距离, 输出的电信号的频谱形状与第一光信号的光谱形状大 致相同。
但是, 当所述本振光的频率大于所述第一光信号的中心频率减去第一 光信号的带宽的一半, 且小于所述第一光信号的中心频率时, 所述电信号 的频谱形状如图 3B所示, 这是因为, 经过相干检测方法得到的电信号的 频谱中, 第一光信号低于本振光的频率的部分减去本振光的频率的数值为 负值, 根据相干检测的原理, 这部分的功率会镜像叠加到了第一光信号高 于本振光的频率的部分, 相当于, 第一光信号的光谱形状向零频方向平移 所述本振光的频率的距离, 然后, 第一光信号低于本振光的频率的部分镜 像叠加到了第一光信号高于本振光的频率的部分。
同理可知, 当所述本振光的频率等于所述第一光信号的中心频率时, 所述电信号的频谱形状如图 3C所示; 当所述本振光的频率大于所述第一 光信号的中心频率加所述第一光信号的带宽的一半时时, 所述电信号的频 谱形状如图 3D所示; 同理可知所述本振光的频率大于所述第一光信号的 中心频率, 且小于第一光信号的中心频率加所述第一光信号的带宽的一半 的情况。
因此, 为了保证提取的不同频率成分的滚降系数与所述第一光信号的 对应频率成分的滚降系数相同, 对于不同的滤波方式可选的滤波频率设置 和所述本振光的频率范围也有所不同。 下面针对 S202中采用不同滤波方式下, 确定具体的滤波频率设置和 本振光的频率取值范围进行具体说明:
所述对各个所述电信号进行滤波, 得到不同频率成分, 可以采用低通 滤波方式、 带通滤波方式等。
图 4A为 S202中采用低通滤波方式得到的频率成分的示意图, 图 4B 为图 4A的局部放大示意图。
低通滤波的方式通常采用低通滤波器实现, 其滤波条件可以设置为: 指定一个预设频率, 低于预设频率的电信号可以通过, 高于预设频率的电 信号去除, 相当于低通滤波器可以保留的频率范围为零频至一预设频率。
为了保证测量的每一个不同频率成分的功率都对应第一光信号中相 等带宽的对应频率成分的功率, 所述低通滤波方式的预设频率可以设置为 用于确定待测信道的不同频率成分的功率的带宽的一半。
可参考图 4B , 这是因为, 采用低通滤波的方式滤出的频率范围实际 为零频至一个频率成分的带宽的一半, 这部分频率的功率包括第一光信号 高于本振光的频率的部分转换的电信号部分 A-F及对应频率范围的噪声 的功率和第一光信号低于本振光的频率的部分转换的电信号部分 A-B镜 像叠加的部分 A-C及对应频率范围的噪声的功率镜像叠加的部分, 即 D-E 所代表的功率加上噪声的功率等于功率 A-C与功率 A-B及噪声的功率的 和, 相当于一个完整频率成分功率, 即纯信号的功率 B-F和噪声的功率, 且这个频率成分的滚降系数与第一光信号中对应频率成分的滚降系数相 同。
若不改变低通滤波的频率范围, 为了得到不同频率成分, 需要产生至 少两个本振光且本振光的频率不相同, 这样, 经过相干耦合和光电探测得 到各个电信号的频率范围也各不相同, 对各个电信号进行滤波可以得到不 同频率成分。 并且, 所述至少两个本振光的频率应分别等于每一个不同频 率成分在第一光信号中对应的频率成分的中心频率。
图 4C为 S202中采用低通滤波方式得到的边缘频率成分的示意图, 图 4D为 S202中采用低通滤波方式得到的边缘频率成分的示意图。
可选的, 如图 4C所示, 若所述不同频率成分中的一个频率成分为所 述电信号的最小频率成分, 则所述本振光的频率应等于所述第一光信号的 中心频率与所述不同频率成分的带宽的和。 类似的, 如图 4D所示, 若所 述不同频率成分中的一个频率成分为所述电信号的中心频率成分, 则所述 本振光的频率应等于所述第一光信号的中心频率。 图 5A为 S202中采用带通滤波方式得到的频率成分的示意图。
带通滤波的方式通常采用带通滤波器实现, 其滤波条件可以设置为: 指定一个预设频率范围, 高于或低于预设频率范围的电信号去除, 相当于 带通滤波器可以保留的频率范围为一预设的频率范围。
为了保证测量的每一个不同频率成分的功率都对应第一光信号中相 等带宽的对应频率成分的功率, 所述带通滤波方式的预设的频率范围的带 宽可以设置为用于确定待测信道的不同频率成分的功率的带宽。
若不调节带通滤波的频率范围, 为了得到不同频率成分, 需要产生至 少两个本振光且本振光的频率不相同, 这样, 经过相干耦合和光电探测得 到各个电信号的频率范围也各不相同, 对各个电信号进行滤波可以得到不 同频率成分。 一个所述本振光的频率与一个目标频率成分对应, 所述本振 光的频率分别等于不同目标频率成分的中心频率减去所述带通滤波方式 的预设频率范围的中心频率。
如果经过相干检测方法得到的电信号包括第一光信号低于本振光的 频率的部分镜像叠加的功率, 可参考图 3B-3D , 那么通过带通滤波方式得 到的包含叠加部分的电信号的频率成分的功率与第一光信号中对应频率 成分的滚降系数不同,因此,采用带通滤波方式对各个电信号进行滤波时, 所述本振光的频率应避免所述不同频率成分的频率区间包含镜像叠加的 功率。 可参考图 5B , 图 5B为 S202中采用带通滤波方式得到的不同频率 成分的另一种示意图, 同理可知, 当所述本振光的频率足够大时, 也可以 避免所述不同频率成分的频率区间包含镜像叠加的功率。 设第一光信号的中心频率为《, 第一光信号的带宽为 b, 所述不同频 率成分的带宽为 C, 若目标频率成分在第一光信号中对应的频率成分的中 心频率为 X, 即频率成分为 [Χ- ,Χ+ , 本振光的频率为/, 带通滤波的 滤波范围为 [d- ^ + ] ,其中, α、 b、 c、 d、/、 X均大于 0,且 d d〉 ,
2 2 2 2 则所述本振光的频率应满足如下条件:
X— — — ("— /)或者— /]〉 — [— ("— /)] 整理上面的式子可得所述本振光的可选的频率范围为 f <-{X---- + a)^ f >-{X+--- + a)
2 2 2 2 2 2
可选的, 若带通滤波的频率范围可调节, 为了得到不同频率成分, 可 以产生至少一个本振光, 经过相干耦合和光电探测可以得到至少一个电信 号, 对至少一个电信号进行多次滤波, 可以得到不同频率成分。 所述带通 滤波方式的预设的频率范围的中心频率可以分别等于不同的目标频率成 分的中心频率减去所述至少一个本振光的频率。
与上述产生至少两个本振光并采用带通滤波方式时本振光的频率的 约束条件类似, 所述至少一个本振光的频率可以选择满足如下条件的频 率:
设第一光信号的中心频率为《, 第一光信号的带宽为 b, 所述不同频 率成分的带宽为 c, 所述不同频率成分在第一光信号中对应的最小频率成 分的中心频率为 ,即最小频率成分为 [^-^,^+^]对应的最大频率成分 的中心频率为 [X2-^,X2+ ], 本振光的频率为/, 带通滤波的滤波范围为 [d--,d+-] , 其中, a、 b、 c、 d、 f、 Xj, X2均大于 0, Άα>-, d> -, 则所述本振光的频率应满足如下条件: — (《— /)或者— [(X2 + ) _ /]〉 — [― («— /)] 整理上面的式子可以得到所述至少一个本振光的可选的频率范围为
/ < (^— — + 或者/〉 (X2 + — + «)。 这种方法可以在带通滤波器不支持调节时使用。
通过上述的低通滤波的方式和带通滤波的方式, 均可以获得与所述第 一光信号中对应频率成分的滚降系数相同的不同频率成分。
本发明实施例通过产生至少两个本振光进行相干耦合和光电探测, 并 采用低通滤波的方式或者带通滤波的方式, 可以实现不需调节电滤波器滤 波频率设置得到不同频率成分, 确定光信噪比, 可以减少操作电滤波器带 来的误差, 本发明实施例提供了一种经济而准确的确定光信噪比的方 法。 图 6为本发明实施例提供的一种光信噪比的确定方法实施例二的流程图 示意图, 当待测信道的光纤通信链路中不存在光滤波器或者其他光传输器件 时, 待测信号中各个频率成分的功率不受光滤波器或者其他光传输器件的影 响, 可以采用如下方式确定待测信道的光信噪比。
在图 2-图 5B所示方法的基础上, S104可以采用 S603的歩骤实现, 如图 6所示, 本发明实施例的歩骤包括:
S601、 获取待测信道中的第一光信号。
S602、 提取所述第一光信号中不同频率成分的功率, 所述不同频率 成分至少包括第一频率成分和第二频率成分, 测量所述不同频率成分的功 率。
其中, S601-S602可以采用图 2-5B所示方法的 S201-S203的歩骤实现。 相应的, 预先获取的所述不同频率的滚降系数至少包括光信号分别 在所述第一频率和第二频率的滚降系数。
优选的, 所述第一频率成分可以为由第一光信号的中心频率成分转 换得到的电信号的频率成分, 相应的, 所述第一频率成分的滚降系数 1。 显然地, 这种选择一个频率为中心频率的光信噪比的确定方法可以 简化计算的工作量。
进一歩地, 所述第二频率成分可以为由第一光信号的边缘频率成分 转换得到的电信号的频率成分, 这种选择由第一光信号的中心频率成分 和边缘频率成分转换得到的电信号的对应频率成分的确定光信噪比的方 法确定的 OSNR更准确。
S603、 根据尸1 = ^ + ^。、 R2 = R2 x Rae_c + RAffi。解出第一比值
Figure imgf000021_0001
2 其中, 所述 O NRc为所述第一比值, 所述 ^和所述 Ρ2为所述电信号 中的第一频率成分和第二频率成分的功率, 所述 和 ^分别为第一光信 号中第一频率成分和第二频率成分的滚降系数, 为所述电信号中的 纯信号的中心频率成分的功率, 为所述电信号中的噪声的中心频率 成分的功率。
S604、 根据 OSNR = /lx OSNR e确定所述待测信道的光信噪比。
其中, 所述 O NR为待测通道的光信噪比, 所述 OSNRe为所述电信号 中的纯信号的中心频率成分的功率与所述电信号中的噪声的中心频率成 分的功率的比值, 即第一比值, 所述 为校准因子。
本发明实施例的其他歩骤可以采用与图 2-5B所示方法的实施方式以 及技术效果相同, 此处不再赘述。 图 7A为本发明实施例提供的一种光信噪比的确定方法实施例三的流程 图示意图, 当待测信道的光纤通信链路中存在一个或多个光滤波器或者其他 光传输器件, 且光滤波器器件的波形大致相同时, 待测信号中各个频率成分 的功率还受光滤波器或者其他光传输器件的影响, 可以采用如下方式确定待 测信道的光信噪比。
在图 2-图 6所示方法的基础上, S 104可以采用 S703的歩骤实现, 如图 7A所示, 本发明实施例的歩骤包括:
5701、 获取待测信道中的第一光信号。
5702、 提取所述第一光信号中不同频率成分的功率, 所述不同频率 成分至少包括第一频率成分、 第二频率成分和第三频率成分, 测量所述不 同频率成分的功率;
相应的, 预先获取的所述滚降系数至少包括光信号分别在所述第一 频率、 所述第二频率和所述第三频率的滚降系数以及通过光滤波器时光 信号分别在所述第一频率成分、 第二频率成分和所述第三频率成分的滚 降系数。
其中, S701-S702可以采用图 2-5B所示方法的 S201-S203的歩骤实现。 需要说的是, 所述通过光滤波器时光信号分别在所述第一频率成分、 第二频率成分和所述第三频率成分的滚降系数也可以采用背靠背方法测 量, 例如, 将光传输链路的发送端与所述光滤波器器件直接连接, 光滤波 器再与测量设备直接相连, 测量与第一光信号的中心频率成分和所述至少 三个频率成分对应的电信号的功率, 分别记录这些非中心频率成分的功 率与中心频率成分的功率比值, 作为所述不同频率的滚降系数。
优选的, 所述第一频率成分可以为由第一光信号的中心频率成分转 换得到的电信号的频率成分, 相应的, 所述第一频率成分的滚降系数 1。
显然地, 这种选择一个频率为中心频率的光信噪比的确定方法可以 简化计算的工作量。
进一歩地, 所述第二频率成分可以为由第一光信号的边缘频率成分 转换得到的电信号的频率成分, 这种选择由第一光信号的中心频率成分 和边缘频率成分转换得到的电信号的对应频率成分的确定光信噪比的方 法确定的 OSNR更准确。
S703、 根据 = " ^_。+ ;。、 P2 = R2 x^" x PSIG_c + PASE0 , p3 = R3 x rn x pSIG_c + p 解出 OSNRC = ; 其中, 所述 O NRc为第一比值, 所述 ^、 Ρ2和 Λ分别为所述电信号 中第一频率成分、 第二频率成分和第三频率成分的功率, 所述 、 ?2
R3分别为第一光信号的第一频率成分、 第二频率成分和第三频率成分的 滚降系数, 为所述电信号中的纯信号的中心频率成分的功率, PASE0 为所述电信号中的噪声的中心频率成分的功率, 所述 n为光滤波器的个 数, 所述《、 和 分别为通过光滤波器时光信号的第一频率成分、 第二 频率成分和第三频率成分的滚降系数。
S704、 根据 OSNR = /lx OSNR e确定所述待测信道的光信噪比。
其中, 所述 O NR为待测通道的光信噪比, 所述 OSNRe为所述电信号 中的纯信号的中心频率成分的功率与所述电信号中的噪声的中心频率成 分的功率的比值, 即第一比值, 所述 为校准因子。
需要说明的是, 当光传输链路呈现网络结构非点对点通信时, 链路中间 存在光滤波器器件, 例如波长选择开关 (wavelength-selective switch , 简称 wss) , 此时, 纯信号原始光谱、 转换后的电信号频谱以及滤波后的各个频 率成分的功率会发生变化。
可参考图 7B , 图 7B为当光传输链路包含光滤波器时纯信号原始光谱变 化示意图, 如图 7B 所示, 当链路中有一个光滤波器的时候, 原始光谱的中 心频率两侧的非信号中心频率处的功率下降的更快。 在光传输链路中包含光 滤波器的情况下,从 S201获取的第一光信号的各频率处的功率实际上是第一 光信号在该频率成分的功率乘以光信号通过光滤波器时在该频率成分的滚降 系数,则 S202中测量的电信号的不同频率成分的功率实际上是第一光信号在 该频率成分的功率乘以光信号通过光滤波器时在该频率成分的滚降系数。 但 是, 对于噪声来说, S201获取的经过光滤波器的第一光信号中的噪声的功率 与光传输链路中不包含光滤波器时的功率基本相同。 可参考图 7D, 图 7D为 当光传输链路包含光滤波器时纯信号和噪声的中心频率成分和非中心频率成 分的功率的关系的示意图。
类似地,图 7C为当光传输链路包含一个以上光滤波器时纯信号原始光谱 变化示意图, 当链路中有两个光滤波器的时候, 原始光谱形状会进一歩被压 缩, 若光传输链路中的光滤波器器件器件的型号相同, 则经过各个光滤波器 的信号的波形大致相同, 也就是说第一光信号经过这些光滤波器器件时的其 中各个频率成分的功率的变化规律和程度大致相同, 则在光传输链路中包含 n个光滤波器时, 从 S201获取的第一光信号的各频率处的功率实际上是第一 光信号在该频率成分的功率乘以光信号通过光滤波器时在该频率成分的滚降 系数的 n次方。 若无法确定光传输链路中包含的光滤波器的数量, 则需要根 据至少三个不同频率成分的功率确定待测信道的第一比值。 本发明实施例的其他歩骤可以采用与图 2-6所示方法的实施方式。 本发明实施例考虑到光纤通信链路中可能包含的光滤波器器件, 在 确定光信噪比时, 确定测量不同频率成分的功率时至少包括第一频率成 分、 第二频率成分和第三频率成分的功率, 根据第一频率成分、 第二频 率成分和第三频率成分的滚降系数以及通过光滤波器时光信号分别在第 一频率成分、 第二频率成分和所述第三频率成分的滚降系数确定待测信 道的光信噪比, 使得确定待测信道的光信噪比时, 将光信号经过光滤波 器器件时对功率的影响也考虑在内, 使得根据测量得到的不同频率成分 的功率计算待测信道的纯信号的功率和噪声信号的功率更准确, 并通过 光滤波器的不同频率的光信号的功率, 进而提升了最终的待测信道的光 信噪比的准确性, 本发明实施例提供了一种可应用于光纤通信组网场景 的准确的确定光信噪比的方法。
可选的, 当待测信道的光纤通信链路中存在一个或多个光滤波器或者其 他光传输器件, 且光滤波器器件的波形大致相同时, 待测信号中各个频率成 分的功率还受光滤波器或者其他光传输器件的影响, 本发明实施例提供的光 信噪比的确定方法还包括一种可选的实施方式。
与图 2-图 7A所示方法不同的是, 本发明实施例中可以不需要将所述第 一光信号转换为电信号, 直接根据第一光信号中的多个频率成分确定光信噪 比, 本发明实施例的歩骤包括:
获取待测信道中的第一光信号;
提取所述第一光信号的至少三个频率成分的功率;
测量所述至少三个频率成分的功率;
根据所述至少三个频率成分的功率和滚降系数, 确定第一比值; 根据所述第一比值和所述第一光信号的中心频率成分的功率的校准 因子, 确定所述待测信道的光信噪比, 所述第一光信号的中心频率成分 的功率的校准因子是根据所述待测信道的带宽、所述不同频率成分的带宽 和噪声的带宽确定的。
其中, 所述至少三个频率成分可以至少包括第一频率成分、 第二频率 成分和第三频率成分; 所述不同频率成分的滚降系数可以至少包括第一光 信号中第一频率成分、 第二频率成分和第三频率成分的滚降系数以及通 过光滤波器时光信号的第一频率成分、 第二频率成分和第三频率成分的 滚降系数; 所述第一光信号中的各频率成分的滚降系数为信道中纯信号 的各个非中心频率成分的功率与中心频率成分的功率的比值; 所述通过光 滤波器时光信号时光信号的各个频率成分的滚降系数也可以采用背靠背 方法测量, 例如, 将光传输链路的发送端与所述光滤波器器件直接连接, 光滤波器再与测量设备直接相连, 测量与第一光信号的中心频率成分和所 述至少三个频率成分对应的电信号的功率, 分别记录这些非中心频率成 分的功率与中心频率成分的功率比值, 作为所述不同频率的滚降系数。
需要说明的是, 所述第一光信号的中心频率成分的功率的校准因子是 根据所述待测信道的带宽、 所述不同频率成分的带宽和噪声的带宽确定 的。 所述校准因子可以先采用背靠背的方法, 例如, 将光传输链路的发送 端与所述光滤波器器件直接连接, 光滤波器再与测量设备直接相连, 测量 第一光信号的中心频率成分和通道带宽内的第一光信号的功率, 然后结 合所述噪声的频率成分的带宽与 O . lnm带宽的关系计算得到所述校准因 子。
进一歩地, 所述根据所述至少三个频率成分的功率和滚降系数, 确定 第一比值, 可以具体包括:
根据 Λ = Ri X X PSIG_C + P 、 R2 = R2 X " X PSIG_C + P
R3 = R3 X X PSIG_C + P 解出 OSNRC = ; 其中, 所述 O NRc为第一比值, 所述 ^、 P2和 Λ分别为所述第一光 信号中第一频率成分、 第二频率成分和第三频率成分的功率, 所述 、 ^和^分别为第一光信号的第一频率成分、 第二频率成分和第三频率成 分的滚降系数, 为所述第一光信号中的纯信号的中心频率成分的功 率, 为所述第一光信号中的噪声的中心频率成分的功率, 所述 η为 光滤波器的个数, 所述"、 和 分别为通过光滤波器时光信号的第一频 率成分、 第二频率成分和第三频率成分的滚降系数。
本发明实施例考虑到光纤通信链路中可能包含的光滤波器器件, 在 确定光信噪比时, 确定测量不同频率成分的功率时至少包括第一频率成 分、 第二频率成分和第三频率成分的功率, 根据第一频率成分、 第二频 率成分和第三频率成分的滚降系数以及通过光滤波器时光信号分别在第 一频率成分、 第二频率成分和所述第三频率成分的滚降系数确定待测信 道的光信噪比, 使得确定待测信道的光信噪比时, 将光信号经过光滤波 器器件时对功率的影响也考虑在内, 使得根据测量得到的不同频率成分 的功率计算待测信道的纯信号的功率和噪声信号的功率更准确, 并通过 光滤波器的不同频率的光信号的功率, 进而提升了最终的待测信道的光 信噪比的准确性, 本发明实施例提供了一种可应用于光纤通信组网场景 的准确的确定光信噪比的方法。 图 8A为本发明实施例提供的一种光信噪比的确定装置实施例一的结构 图, 如图 8A所示, 本发明实施例的装置 1可以包括: 分光器 11、 光电转换 与提取器 12, 测量器 13、 运算器 14。
其中, 所述分光器 11, 用于获取待测信道中的第一光信号;
所述光电转换与提取器 12, 用于用于将所述第一光信号转换为电信 号, 提取所述电信号中的不同频率成分, 所述电信号中所述不同频率成分 的滚降系数与所述第一光信号中对应频率成分的滚降系数相同, 所述滚降 系数为信道中纯信号的非中心频率成分的功率与中心频率成分的功率的 比值;
所述测量器 13, 用于测量所述不同频率成分的功率; 所述运算器
14, 用于根据所述不同频率成分的功率, 确定所述待测信道的光信噪 比。
可选的, 所述测量器 13可以采用电功率计或者其他电信号功率测量 设备测量所述不同频率成分的功率, 例如, 利用模数转换器
(Analog to Digital Converter, 简称 ADC)将模拟量转换成数字量, 然后通 过采样计算得到数字量对应的平均功率数值。
可参考图 8B-8C, 图 8B为测量器的一种可选的结构示意图, 如图 8B 所示, 所述测量器为电功率计 13, 图 8C为测量器的又一种可选的结构示 意图, 如图 8C所示, 所述测量器 13包括模数转换器 131和功率计算器 132, 本发明不做限制。 本实施例的装置, 可以用于执行图 2-7所示方法实施例的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。 图 9为本发明实施例提供的一种光信噪比的确定装置实施例二的结构 图, 在图 8A-8C所示装置的基础上, 如图 9所示, 本发明实施例的装置中, 所述光电转换与提取器 12可以包括:
激光器 121, 用于产生用于相干检测的至少一个本振光;
光耦合器 122, 用于将所述第一光信号与每一个所述本振光进行相干 耦合, 得到与各个所述本振光一一对应的各个第二光信号;
光电探测器 123, 用于对各个所述第二光信号进行光电探测, 得到与 各个所述第二光信号一一对应的各个所述电信号;
电滤波器 124, 用于对所述电信号进行滤波, 得到所述电信号中的不 同频率成分。
可选的, 所述光电探测器 123可以采用具有一个光电二极管的光电探 测器, 将光耦合器的两个出口输出的任意一路第二光信号输入光电探测器 可以得到与该本振光对应的一个电信号。 可选的, 所述光电探测器 123也 可以采用具有两个光电二极管的光电探测器, 即平衡探测器实现, 将光耦 合器的两个出口输出的两路第二光信号输入平衡探测器可以得到与该本 振光对应的一个电信号, 采用平衡探测器进行光电探测得到的交流电信号 的功率比采用单个光电二极管的光电探测器得到的交流电信号的功率高 一倍, 因此, 采用平衡探测器可以提高所确定的光信噪比的准确度。
本实施例的装置, 可以用于执行图 2-7所示方法实施例的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。 图 10A为本发明实施例提供的一种光信噪比的确定装置实施例三的结 构图, 在图 9所示装置的基础上, 如图 10A所示, 本发明实施例的装置中, 所述光电转换与提取器 12可以包括: 第一控制器 126, 用于向所述激光 器发送指令, 所述指令用于指示所述激光器产生的本振光为至少两个且 各个所述本振光的频率不相同, 以使所述光电探测器得到各个所述电信号 的频率范围不相同; 所述激光器为可调激光器 121, 用于根据所述第一控制器 126的指令 产生频率不相同的本振光;
所述电滤波器为低通滤波器 124, 用于采用低通滤波的方式, 对各个 所述电信号进行滤波, 得到不同频率成分, 其中, 一个所述频率成分对应 一个所述电信号。
本实施例的装置, 可以用于执行图 2-7所示方法实施例的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。 图 10B为本发明实施例提供的一种光信噪比的确定装置实施例四的结 构图, 在图 9所示装置的基础上, 如图 10B所示, 本发明实施例的装置中, 所述光电转换与提取器 12可以包括:
第一控制器 126, 用于向所述激光器发送指令, 所述指令用于指示所 述激光器产生的本振光为至少两个且各个所述本振光的频率不相同, 以使 所述光电探测器 123得到各个所述电信号的频率范围不相同, 其中, 在至 少两个所述本振光中, 一个所述本振光的频率与一个目标频率成分对应, 各个所述目标频率成分不同;
所述激光器为可调激光器 121, 用于根据所述第一控制器的指令产生 频率不相同的本振光;
所述电滤波器为带通滤波器 124, 用于采用带通滤波的方式, 对各个 所述电信号进行滤波, 得到各个所述目标频率成分; 其中, 一个所述频率 成分对应一个所述电信号。
可选的, 所述光电探测器 123可以为具有两个光电二极管的光电探测 器, 即平衡探测器。
本实施例的装置, 可以用于执行图 2-7所示方法实施例的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。 图 10C为本发明实施例提供的一种光信噪比的确定装置实施例五的结 构图, 在图 9所示装置的基础上, 如图 10C所示, 本发明实施例的装置中, 若所述激光器 121产生的所述本振光为一个,各个所述目标频率成分不同, 所述本振光的频率取值范围与各个所述目标频率成分中的最小目标频率 成分或者最大目标频率成分对应; 所述光电转换与提取器 12可以包括: 第二控制器 127, 用于向所述电滤波器发送带通滤波设置指令, 所述 指令用于指示所述电滤波器对所述电信号进行多次滤波, 以使所述电滤波 器得到各个所述目标频率成分;
所述电滤波器为可调带通滤波器 124, 用于根据所述第二控制器 127 的指令调节带通滤波设置, 对所述电信号进行多次滤波, 得到各个所述目 标频率成分, 其中, 各个所述滤波所采用的滤波范围不相同。
可选的, 所述光电探测器 123可以为具有两个光电二极管的光电探测 器, 即平衡探测器。
本实施例的装置, 可以用于执行图 2-7所示方法实施例的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。 图 11为本发明实施例提供的一种光信噪比的确定装置实施例六的结构 图, 在图 8A-10C所示装置的基础上, 如图 11所示, 本发明实施例的装置 中, 所述运算器 14可以包括:
第一比值计算器 141,用于根据所述不同频率成分的功率和滚降系数, 确定第一比值;
校准器 142, 用于根据第一比值和所述第一光信号的中心频率成分的 功率的校准因子, 确定所述待测信道的光信噪比, 所述第一光信号的中 心频率成分的功率的校准因子是根据所述待测信道的带宽、所述不同频率 成分的带宽和噪声的带宽确定的。
进一歩地, 所述校准器 142, 可以具体用于:
根据 OSNR = Ax OSNR e确定所述光信噪比 ·'
其中, 所述 O NR为待测通道的光信噪比, 所述 OSNRe为所述第一比 值, 所述 A为校准因子。 所述第一光信号的中心频率成分的功率的校准因 子是根据所述待测信道的带宽、所述不同频率成分的带宽和噪声的带宽确 定的。 所述待测信道的带宽可以大于、 小于或等于第一光信号的带宽, 参 考噪声带宽通常为 0SNR定义中的 O. lnm的带宽,所述滤波带宽即所述不 同频率成分的带宽, 可以根据实际光纤通信链路的中的待测信道的实际 信号确定。 可选的, 当所述不同频率成分至少包括第一频率成分和第二频率成 分, 第一比值计算器 141, 可以具体用于获取光信号的第一频率成分和 二频率成分的滚降系数;
根据 Λ = X PSIG_C + P 、 尸2 = R2 X PSIG.c + P 解出
Figure imgf000030_0001
' 所述 OSNRc为第一比值, 所述 P 和所述 P2分别为所述电信号中的 一频率成分和第二频率成分的功率, 所述 和 ^分别为第一光信号中第 一频率成分和第二频率成分的滚降系数, 为所述电信号中的纯信号 的中心频率成分的功率, 为所述电信号中的噪声的中心频率成分的 功率。
本实施例的装置, 可以用于执行图 2-7所示方法实施例的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。 图 12为本发明实施例提供的一种光信噪比的确定装置实施例七的结构 图, 在图 8A-10C所示装置的基础上, 如图 12所示, 本发明实施例的装置 中, 所述装置 1, 还可以包括:
光滤波器确定器 15,用于若确定所述待测信道的光纤通信链路中包括 光滤波器, 指示所述光电转换与提取器得到的所述不同频率成分至少包括 第一频率成分、 第二频率成分和第三频率成分;
所述第一比值计算器 141, 可以具体用于:
获取光信号的第一频率成分、 第二频率成分和第三频率成分的滚降 系数以及通过光滤波器时光信号的第一频率成分、 第二频率成分和第三 频率成分的滚降系数;
根据 Λ = Ri X X PSIG_C + P 、 R2 = R2 X " X PSIG_C + P
P3 = R3 x 7 n x PSIG_C + P 解出 OSNRC = ; 其中, 所述 O NRc为第一比值, 所述 ^、 Ρ2和 Λ分别为所述电信号 中第一频率成分、 第二频率成分和第三频率成分的功率, 所述 ^、 ?2和 R3分别为第一光信号的第一频率成分、 第二频率成分和第三频率成分的 滚降系数, 为所述电信号中的纯信号的中心频率成分的功率, PASE0 为所述电信号中的噪声的中心频率成分的功率, 所述 n为光滤波器的个 数, 所述 、 和 分别为通过光滤波器时光信号的第一频率成分、 第二 频率成分和第三频率成分的滚降系数。
本实施例的装置, 可以用于执行图 2-7所示方法实施例的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的 介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种光信噪比的确定方法, 其特征在于, 包括:
获取待测信道中的第一光信号;
将所述第一光信号转换为电信号, 提取所述电信号中的不同频率成 分, 所述电信号中所述不同频率成分的滚降系数与所述第一光信号中对应 频率成分的滚降系数相同, 所述滚降系数为信道中纯信号的非中心频率成 分的功率与中心频率成分的功率的比值;
测量所述不同频率成分的功率;
根据所述不同频率成分的功率和滚降系数, 确定所述待测信道的光 信噪比。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将所述第一光信 号转换为电信号, 获得所述电信号中不同频率成分, 包括:
产生用于相干检测的至少一个本振光;
将所述第一光信号与每一个所述本振光进行相干耦合, 得到与各个所 述本振光一一对应的各个第二光信号;
对各个所述第二光信号进行光电探测, 得到与各个所述第二光信号一 一对应的各个所述电信号;
对各个所述电信号进行滤波, 得到不同频率成分。
3、 根据权利要求 2所述的方法, 其特征在于, 所述第二光信号包括 两路信号;
所述对各个所述第二光信号进行光电探测, 得到与各个所述第二光信 号一一对应的各个所述电信号, 包括:
对各个所述第二光信号的两路信号进行平衡探测, 得到与各个所述第 二光信号一一对应的各个所述电信号。
4、 根据权利要求 3所述的方法, 其特征在于, 当所述本振光为至少 两个且各个所述本振光的频率不相同时, 各个所述电信号的频率范围不相 同;
所述对各个所述电信号进行滤波, 得到不同频率成分, 包括: 采用低通滤波的方式, 对各个所述电信号进行滤波, 得到不同频率成 分, 其中, 一个所述频率成分对应一个所述电信号。
5、 根据权利要求 2或 3所述的方法, 其特征在于, 当所述本振光为 至少两个且各个所述本振光的频率不相同时, 各个所述电信号的频率范围 不相同, 在至少两个所述本振光中, 一个所述本振光的频率与一个目标频 率成分对应, 各个所述目标频率成分不同;
所述对各个所述电信号进行滤波, 得到不同频率成分, 各个所述频率 成分不同, 包括:
采用带通滤波的方式, 对各个所述电信号进行滤波, 得到各个所述目 标频率成分; 其中, 一个所述频率成分对应一个所述电信号。
6、 根据权利要求 2或 3所述的方法, 其特征在于, 当所述本振光为 一个, 各个所述目标频率成分不同, 所述本振光的频率的取值范围与各个 所述目标频率成分的最小目标频率成分或者最大目标频率成分对应; 所述对各个所述电信号进行滤波, 得到所述不同频率成分, 包括: 采用带通滤波的方式, 对所述电信号进行多次滤波, 得到各个所述目 标频率成分; 其中, 各个所述滤波所采用的滤波范围不相同。
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述根据所述 不同频率成分的功率和滚降系数, 确定所述待测信道的光信噪比, 具体 包括:
根据所述不同频率成分的功率和滚降系数, 确定第一比值;
根据第一比值和所述第一光信号的中心频率成分的功率的校准因 子, 确定所述待测信道的光信噪比, 所述第一光信号的中心频率成分的 功率的校准因子是根据所述待测信道的带宽、所述不同频率成分的带宽和 噪声的带宽确定的。
8、 根据权利要求 7所述的方法, 其特征在于, 所述不同频率成分至 少包括第一频率成分和第二频率成分, 所述不同频率成分的滚降系数至 少包括光信号的第一频率成分和第二频率成分的滚降系数;
所述根据所述不同频率成分的功率和滚降系数, 确定第一比值, 具 体包括:
根据 Λ = Ri X PSIG_C + P 、 P2 = R2 x PSIG_C + P 解出 所述 O NRc为第一比值, 所述 和所述 Ρ2分别为所述电信号中的第 一频率成分和第二频率成分的功率, 所述 和 ^分别为第一光信号中第 一频率成分和第二频率成分的滚降系数, 为所述电信号中的纯信号 的中心频率成分的功率, 为所述电信号中的噪声的中心频率成分的 功率。
9、 根据权利要求 7所述的方法, 其特征在于, 确定所述待测信道的 光纤通信链路中包括光滤波器; 所述不同频率成分至少包括第一频率成 分、 第二频率成分和第三频率成分, 所述不同频率成分的滚降系数至少 包括第一光信号中第一频率成分、 第二频率成分和第三频率成分的滚降 系数以及通过光滤波器时光信号的第一频率成分、 第二频率成分和第三 频率成分的滚降系数;
所述根据所述不同频率成分的功率和滚降系数, 确定第一比值, 具 体包括:
根据 Λ = Ri X X PSIG_C + P 、 R2 = R2 X " X PSIG_C + P
P3 = R3 x 7" x PSIG_C + PASE0解出 OSNRC = ; 其中, 所述 O NRc为第一比值, 所述 ^、 Ρ2和 Λ分别为所述电信号 中第一频率成分、 第二频率成分和第三频率成分的功率, 所述 ^、 ?2和 分别为第一光信号的第一频率成分、 第二频率成分和第三频率成分的 滚降系数, 为所述电信号中的纯信号的中心频率成分的功率, PASE0 为所述电信号中的噪声的中心频率成分的功率, 所述 n为光滤波器的个 数, 所述 、 和 分别为通过光滤波器时光信号的第一频率成分、 第二 频率成分和第三频率成分的滚降系数。
10、 根据权利要求 7-9任一项所述的方法, 其特征在于, 所述根据第 一比值以及所述第一光信号的中心频率成分的功率的校准因子, 确定所 述待测信道的光信噪比, 具体包括:
根据 0SNR = AxOSNRe确定所述光信噪比 ·'
其中, 所述 O NR为待测通道的光信噪比, 所述 OSNRe为所述第一比 值, 所述 为校准因子。
11、 一种光信噪比的确定装置, 其特征在于, 包括:
分光器, 用于获取待测信道中的第一光信号;
光电转换与提取器, 用于将所述第一光信号转换为电信号, 提取所述 电信号中的不同频率成分, 所述电信号中所述不同频率成分的滚降系数与 所述第一光信号中对应频率成分的滚降系数相同, 所述滚降系数为信道中 纯信号的非中心频率成分的功率与中心频率成分的功率的比值;
测量器, 用于测量所述不同频率成分的功率;
运算器, 用于根据所述不同频率成分的功率和滚降系数, 确定所述 待测信道的光信噪比。
12、 根据权利要求 11所述的装置, 其特征在于, 所述光电转换与提 取器包括:
激光器, 用于产生用于相干检测的至少一个本振光;
光耦合器, 用于将所述第一光信号与每一个所述本振光进行相干耦 合, 得到与各个所述本振光一一对应的各个第二光信号;
光电探测器, 用于对各个所述第二光信号进行光电探测, 得到与各个 所述第二光信号一一对应的各个所述电信号;
电滤波器, 用于对所述电信号进行滤波, 得到所述电信号中的不同频 率成分。
13、 根据权利要求 12所述的装置, 其特征在于, 所述光耦合器输出 的第二光信号为两路信号;
所述光电探测器为平衡探测器, 对所述第二光信号的两路信号进行 平衡探测, 得到与各个所述第二光信号一一对应的各个所述电信号。
14、 根据权利要求 13所述的装置, 其特征在于, 所述光电转换与提 取器还包括第一控制器, 用于向所述激光器发送指令, 所述指令用于指 示所述激光器产生的本振光为至少两个且各个所述本振光的频率不相同, 以使所述光电探测器得到各个所述电信号的频率范围不相同;
所述激光器为可调激光器, 用于根据所述第一控制器的指令产生频 率不相同的本振光;
所述电滤波器为低通滤波器, 用于采用低通滤波的方式, 对各个所述 电信号进行滤波, 得到不同频率成分, 其中, 一个所述频率成分对应一个 所述电信号。
15、 根据权利要求 12或 13所述的装置, 其特征在于, 所述光电转换 与提取器还包括第一控制器, 用于向所述激光器发送指令, 所述指令用 于指示所述激光器产生的本振光为至少两个且各个所述本振光的频率不 相同, 以使所述光电探测器得到各个所述电信号的频率范围不相同,其中, 在至少两个所述本振光中, 一个所述本振光的频率与一个目标频率成分对 应, 各个所述目标频率成分不同;
所述激光器为可调激光器, 用于根据所述第一控制器的指令产生频 率不相同的本振光;
所述电滤波器为带通滤波器, 用于采用带通滤波的方式, 对各个所述 电信号进行滤波, 得到各个所述目标频率成分; 其中, 一个所述频率成分 对应一个所述电信号。
16、 根据权利要求 12或 13所述的装置, 其特征在于, 若所述激光器 产生的所述本振光为一个, 各个所述目标频率成分不同, 所述本振光的频 率取值范围与各个所述目标频率成分中的最小目标频率成分或者最大目 标频率成分对应;
所述光电转换与提取器包括第二控制器, 用于向所述电滤波器发送 带通滤波设置指令, 所述指令用于指示所述电滤波器对所述电信号进行 多次滤波, 以使所述电滤波器得到各个所述目标频率成分;
所述电滤波器为可调带通滤波器, 用于根据所述第二控制器的指令 调节带通滤波设置, 对所述电信号进行多次滤波, 得到各个所述目标频率 成分, 其中, 各个所述滤波所采用的滤波范围不相同。
17、 根据权利要求 11-16任一项所述的装置, 所述运算器, 包括: 第一比值计算器, 用于根据所述不同频率成分的功率和滚降系数, 确 定第一比值;
校准器, 用于根据第一比值和所述第一光信号的中心频率成分的功率 的校准因子, 确定所述待测信道的光信噪比, 所述第一光信号的中心频 率成分的功率的校准因子是根据所述待测信道的带宽、 所述不同频率成分 的带宽和噪声的带宽确定的。
18、 根据权利要求 17所述的装置, 其特征在于, 所述不同频率成分 至少包括第一频率成分和第二频率成分,
第一比值计算器, 具体用于获取光信号的第一频率成分和第二频率成 分的滚降系数;
根据 Λ = A X PSIG_C + P 、 P2 = R2x PSIG_C + P 解出
R'
0SNRc=^^
P Pi +P2_(Ri+R2)(Pi_P2)/(Ri
所述 O NRc为第一比值, 所述 和所述 P2分别为所述电信号中的第 一频率成分和第二频率成分的功率, 所述 和 ^分别为第一光信号中第 一频率成分和第二频率成分的滚降系数, 为所述电信号中的纯信号 的中心频率成分的功率, 为所述电信号中的噪声的中心频率成分的 功率。
19、 根据权利要求 17所述的装置, 其特征在于, 所述装置, 还包括: 光滤波器确定器, 用于若确定所述待测信道的光纤通信链路中包括光 滤波器, 指示所述光电转换与提取器得到的所述不同频率成分至少包括第 一频率成分、 第二频率成分和第三频率成分;
所述第一比值计算器, 具体用于:
获取光信号的第一频率成分、 第二频率成分和第三频率成分的滚降 系数以及通过光滤波器时光信号的第一频率成分、 第二频率成分和第三 频率成分的滚降系数;
根据 Λ = Ri X X PSIG_C + P 、 R2 = R2 X " X PSIG_C + P P3=R3x7"x PSIG_C + P 解出 OSNRC = ;
P 其中, 所述 ONRc为第一比值, 所述 ^、 Ρ2和 Λ分别为所述电信号 中第一频率成分、 第二频率成分和第三频率成分的功率, 所述 、 ?2和 分别为第一光信号的第一频率成分、 第二频率成分和第三频率成分的 滚降系数, 为所述电信号中的纯信号的中心频率成分的功率, PASE0 为所述电信号中的噪声的中心频率成分的功率, 所述 n为光滤波器的个 数, 所述 、 和 分别为通过光滤波器时光信号的第一频率成分、 第二 频率成分和第三频率成分的滚降系数。
20、 根据权利要求 17-19任一项所述的装置, 其特征在于, 所 器, 具体用于:
根据 OSNR = AxOSNRe确定所述光信噪比 ·'
其中, 所述 O NR为待测通道的光信噪比, 所述 OSNRe为所述 值, 所述 A为校准因子。
PCT/CN2014/084291 2014-08-13 2014-08-13 光信噪比的确定方法及装置 WO2016023196A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480081050.5A CN106575997B (zh) 2014-08-13 2014-08-13 光信噪比的确定方法及装置
PCT/CN2014/084291 WO2016023196A1 (zh) 2014-08-13 2014-08-13 光信噪比的确定方法及装置
EP14899709.1A EP3174223B1 (en) 2014-08-13 2014-08-13 Method and apparatus for determining optical signal-to-noise ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084291 WO2016023196A1 (zh) 2014-08-13 2014-08-13 光信噪比的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2016023196A1 true WO2016023196A1 (zh) 2016-02-18

Family

ID=55303798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084291 WO2016023196A1 (zh) 2014-08-13 2014-08-13 光信噪比的确定方法及装置

Country Status (3)

Country Link
EP (1) EP3174223B1 (zh)
CN (1) CN106575997B (zh)
WO (1) WO2016023196A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134022A (zh) * 2022-06-20 2022-09-30 展讯通信(上海)有限公司 一种信噪比计算的方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090755A1 (en) * 2001-11-09 2003-05-15 Yun-Chur Chung Osnr montoring method and apparatus for the optical networks
CN1720680A (zh) * 2002-12-16 2006-01-11 特瑞林克通讯有限公司 利用可调光带通滤波器和偏振致零方法的光信噪比监测方法和设备
CN1731707A (zh) * 2005-08-04 2006-02-08 上海交通大学 光传输系统中光信号监测的装置
CN101119174A (zh) * 2006-07-31 2008-02-06 中兴通讯股份有限公司 波分复用系统光信噪比的测试方法
US20120106951A1 (en) * 2010-10-29 2012-05-03 Alcatel Lucent Canada, Inc In-band optical signal-to-noise ratio measurement
CN102687426A (zh) * 2009-08-31 2012-09-19 华为技术有限公司 带内光信噪比的检测方法及装置
CN102946275A (zh) * 2012-10-29 2013-02-27 中兴通讯股份有限公司 一种实现高速dwdm系统中osnr监测的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366209B1 (ko) * 1999-07-30 2002-12-31 한국과학기술원 파장분할다중 광전송시스템에서 광신호 대 잡음비 측정장치
CN101552752B (zh) * 2009-04-30 2011-10-26 上海大学 一种基带通信信号的信噪比估计方法
EP2569879B1 (en) * 2011-07-27 2018-11-28 Huawei Technologies Co., Ltd. Method and apparatus for determining an optical signal-to-noise ratio (osnr) penalty

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090755A1 (en) * 2001-11-09 2003-05-15 Yun-Chur Chung Osnr montoring method and apparatus for the optical networks
CN1720680A (zh) * 2002-12-16 2006-01-11 特瑞林克通讯有限公司 利用可调光带通滤波器和偏振致零方法的光信噪比监测方法和设备
CN1731707A (zh) * 2005-08-04 2006-02-08 上海交通大学 光传输系统中光信号监测的装置
CN101119174A (zh) * 2006-07-31 2008-02-06 中兴通讯股份有限公司 波分复用系统光信噪比的测试方法
CN102687426A (zh) * 2009-08-31 2012-09-19 华为技术有限公司 带内光信噪比的检测方法及装置
US20120106951A1 (en) * 2010-10-29 2012-05-03 Alcatel Lucent Canada, Inc In-band optical signal-to-noise ratio measurement
CN102946275A (zh) * 2012-10-29 2013-02-27 中兴通讯股份有限公司 一种实现高速dwdm系统中osnr监测的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ODA, S. ET AL.: "In-band OSNR Monitor Using an Optical Bandpass Filter and Optical Power Measurements for Superchannel Signals", 39 TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATION (ECOC 2013, 31 December 2013 (2013-12-31), XP055357864 *

Also Published As

Publication number Publication date
EP3174223B1 (en) 2018-11-28
CN106575997B (zh) 2019-07-12
CN106575997A (zh) 2017-04-19
EP3174223A1 (en) 2017-05-31
EP3174223A4 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6273806B2 (ja) 光信号対雑音比モニタのための校正係数を生成する装置および方法
CN111279631B (zh) 利用导频音监测光网络设备的性能
US9425894B2 (en) In-band optical signal-to-noise ratio measurement
US10103807B2 (en) Optical signal to noise ratio detection circuit, apparatus and method
US9887774B2 (en) Device and method for monitoring transmission characteristics
EP3616336B1 (en) Noise-free measurement of the spectral shape of a modulated signal using spectral correlation
JP5637358B2 (ja) スペクトル測定装置及び測定方法
US9638574B2 (en) Measurement apparatus and method of measuring signal light quality
JP6597404B2 (ja) スペクトルオフセット軽減方法、スキャニング光フィルタ及びosnrモニタ
JP2014179936A (ja) 測定装置、測定方法および伝送装置
JP2020518146A5 (zh)
JP2018195997A (ja) 光信号対雑音比を測定する装置および方法
US9917639B2 (en) Optical signal quality monitoring apparatus, optical signal quality monitoring method and optical repeater
WO2016023196A1 (zh) 光信噪比的确定方法及装置
CN103856262B (zh) 基于一码元延时干涉和平衡探测的带内光信噪比测量系统
CN110048770B (zh) 一种基于roadm网络的带内光信噪比监测方法及模块
CN106559133B (zh) 光信号检测的方法及其网络设备
JP2018133720A (ja) 光伝送装置および波長ずれ検出方法
JP2009244163A (ja) 光信号対雑音比を測定する装置および方法
JP6566361B2 (ja) コヒーレントレシーバの試験方法
KR102102766B1 (ko) 광 네트워크의 대역내 광신호대잡음비 감시 장치 및 방법
JP2006042234A (ja) Osnr測定方法及び装置
KR100339663B1 (ko) 광전송 시스템에 있어서 광신호 성능 감시 장치
Isaeva et al. Measuring of Optical Signal to Noise Ratio in High-Speed Coherent Channels of Optical Transmission Systems
KR100325685B1 (ko) 광신호파장및광전력감시장치,감시방법및그기록매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014899709

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014899709

Country of ref document: EP