WO2016021720A1 - Il-18と分子標的抗体とを併用する癌治療薬 - Google Patents

Il-18と分子標的抗体とを併用する癌治療薬 Download PDF

Info

Publication number
WO2016021720A1
WO2016021720A1 PCT/JP2015/072505 JP2015072505W WO2016021720A1 WO 2016021720 A1 WO2016021720 A1 WO 2016021720A1 JP 2015072505 W JP2015072505 W JP 2015072505W WO 2016021720 A1 WO2016021720 A1 WO 2016021720A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
cells
ctla
therapeutic agent
administered
Prior art date
Application number
PCT/JP2015/072505
Other languages
English (en)
French (fr)
Inventor
春樹 岡村
恭輔 山西
文 李
Original Assignee
学校法人兵庫医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人兵庫医科大学 filed Critical 学校法人兵庫医科大学
Priority to NZ729395A priority Critical patent/NZ729395A/en
Priority to EP15830617.5A priority patent/EP3178484B1/en
Priority to AU2015300006A priority patent/AU2015300006B2/en
Priority to JP2016540759A priority patent/JP6245622B2/ja
Priority to CN201580042424.7A priority patent/CN106687124B/zh
Priority to CA2957387A priority patent/CA2957387A1/en
Priority to KR1020177006235A priority patent/KR101940430B1/ko
Priority to US15/501,760 priority patent/US11219672B2/en
Publication of WO2016021720A1 publication Critical patent/WO2016021720A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6056Antibodies

Definitions

  • the present invention relates to a cancer therapeutic agent using interleukin 18 (hereinafter referred to as “IL-18”) in combination with a molecular target antibody. More specifically, the present invention relates to a therapeutic drug for cancer that can exhibit a synergistic and excellent antitumor effect by containing IL-18 and a molecular target antibody, and has few side effects.
  • IL-18 interleukin 18
  • peritoneal dissemination of tumors occurs with gastric cancer, colon cancer, ovarian cancer, etc., and can occur even when the tumor is removed by surgery, and is very difficult to treat.
  • a chemotherapeutic agent treatment targeting vascular endothelial growth factor (VEGF), sensitization therapy using bisphosphonic acid, and the like have been attempted.
  • VEGF vascular endothelial growth factor
  • lymphocytes regulatory cells
  • CTLA-4 antigens or PD-1 / PD-L1 antigens which are antigens expressed on macrophages
  • Antibodies that reduce (suppressing lymphocytes) have begun to be put into practical use (patent documents 1 and 2).
  • the antibody reduces the inhibitory lymphocytes while enhancing the effector lymphocytes expressing CD28, NKG2D and the like, and eliminates tumor cells and pathogen-infected cells by the effector lymphocytes.
  • lymphocytes also referred to as effector lymphocytes or effector cells
  • the above antibody has been proved to be effective against malignant tumors such as melanoma, which has been difficult to treat with conventional therapies, and has increased efficacy and expanded application to many tumors. Expected.
  • Non-patent Document 1 attempts have been made to confirm the antitumor effect using GM-CSF, IL-15 and anti-CTLA-4 antibody. It has been disclosed that a combination of IL-18 and rituximab or HERCEPTIN (registered trademark) exhibits a therapeutic effect superior to that obtained when a single agent is used (Patent Document 3). Furthermore, it is also disclosed that cancer immunotherapy is performed using a composition comprising a compound represented by a predetermined formula, one or more molecular target antibodies, and an immunostimulatory compound (Patent Document 4).
  • Patent Documents 1 and 2 it is considered that there is still room for improvement in the therapeutic effect when the antibodies disclosed in Patent Documents 1 and 2 are used. Furthermore, as a result of decreasing the inhibitory lymphocytes and enhancing the effector lymphocytes, there is a problem that side effects such as the onset of autoimmune diseases may occur. That is, it can be said that the techniques disclosed in Patent Documents 1 and 2 leave room for improvement from the viewpoint of enhancing the therapeutic effect and reducing side effects.
  • Non-Patent Document 1 has a problem that the dose of a drug is very large and is not a practical method.
  • Patent Document 3 discloses that IL-18 and rituximab or HERCEPTIN (registered trademark) are individually or sequentially administered to a patient, and the combination has a better therapeutic effect than a single agent.
  • Patent Document 4 discloses that an immune response can be increased by adding an immunopotentiator to a specific compound represented by a predetermined formula and one or more molecular target antibodies (such as rituximab and HERCEPTIN (registered trademark)). Is disclosed.
  • “Molecular target antibody” refers to an antibody capable of recognizing surface antigens involved in lymphocyte functions and surface antigens of cancer cells.
  • Patent Documents 3 and 4 do not yet provide sufficient knowledge regarding providing a therapeutic drug for cancer that can enhance the therapeutic effect and reduce side effects.
  • the present invention has been made in view of the above-mentioned conventional problems, and the object thereof is to contain IL-18 and a predetermined antibody, whereby an excellent antitumor effect can be achieved, and side effects are reduced.
  • the object is to provide a novel therapeutic agent for cancer that can be alleviated.
  • IL-18 is selected from the group consisting of anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33 antibody and anti-CD52 antibody.
  • the present inventors have found that the above-mentioned problems can be solved by using in combination with the above antibody, and have completed the present invention.
  • the cancer therapeutic agent according to the present invention includes IL-18, anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, One or more antibodies selected from the group consisting of a CD25 antibody, an anti-CD33 antibody and an anti-CD52 antibody are contained as an active ingredient.
  • the cancer therapeutic agent according to the present invention includes IL-18 and anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33 antibody and anti-CD52 antibody. Since one or more antibodies selected from the group consisting of the above-mentioned antibodies are contained as active ingredients, the antitumor effect of the antibodies can be remarkably improved. As a result, there is an effect that it is possible to provide a cancer therapeutic agent having a high therapeutic effect and few side effects.
  • FIG. 6 is a graph showing the dose effect of anti-CTLA-4 antibody and IL-18 as the survival rate of mice administered intraperitoneally with CT-26 cells, as in Example 1.
  • FIG. 6 is a graph showing the effect of a cancer therapeutic agent containing an anti-PD-L1 antibody and IL-18 as the survival rate of mice in the same manner as in Example 1.
  • B220 (CD45R), NKG2D of PEC induced by intraperitoneal administration of anti-CTLA-4 antibody and anti-PD-L1 antibody or anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 to mice It is a figure which shows the result of having examined the expression intensity of DX5 (CD49b). It is a figure which shows the result of having confirmed that the therapeutic agent which concerns on this invention reduces the number of CD4 positive CD25 positive T cells. It is a figure which shows the influence which the anti-asialo GM1 antibody which destroys and removes a natural killer (NK) cell has on the survival rate of the mouse
  • NK natural killer
  • FIG. 2 is an appearance photograph showing the presence or absence of ascites in each group of mice administered with a control or therapeutic agent 21 days after the day of transplantation of CT-26 cells. It is a figure which shows the change of the abdominal circumference of the mouse
  • FIG. 21 It is a figure which shows the mode of the abdominal cavity 21 days after the day which transplanted CT-26 cell about a control and the mouse
  • FIG. 7 is a view showing the appearance of a portion of the duodenum, small intestine, and large intestine 21 days after the day of transplantation of CT-26 cells for a control and a mouse administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 is there. It is a figure which shows the transplant of CT-26 cell in Example 16, and the administration schedule of a therapeutic agent.
  • albumin concentration in blood FIG. 25 (a)
  • total bilirubin concentration FIG. 25 (b)
  • AST (GOT) concentration FIG. 25 (c)
  • ALT GPT
  • FIG. 26 shows the results of tissue staining of hepatoxylin eosin (HE) in the livers of mice in groups 1 to 4 in Example 16.
  • FIG. 18 shows the results of tissue staining of hematoxylin eosin (HE) in the stomachs of mice in groups 1 to 4 in Example 16.
  • FIG. 18 shows the results of tissue staining of hematoxylin eosin (HE) in the stomachs of mice in groups 1 to 4 in Example 16.
  • FIG. 16 shows the results of tissue staining with hematoxylin and eosin (HE) of the duodenum of mice in groups 1 to 4 in Example 16.
  • FIG. 18 shows the results of tissue staining of hematoxylin eosin (HE) in the small intestine of group 1 to group 4 mice in Example 16.
  • FIG. 14 is a graph showing the result of tissue staining of hematoxylin eosin (HE) in the large intestine of group 1 to group 4 mice in Example 16.
  • FIG. 16 shows the results of tissue staining of hepatoxylin eosin (HE) in the kidneys of mice in groups 1 to 4 in Example 16. It is a figure which shows the transplant of the B16 melanoma cell in Example 17, and the administration schedule of a therapeutic agent. It is a figure which shows the result of having observed the nodule which arose in the lung of the mouse
  • Cancer therapeutic agent according to the present invention (1) Active ingredient
  • the cancer therapeutic agent according to the present invention includes IL-18, anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, and anti-CD33 antibody. And one or more antibodies selected from the group consisting of anti-CD52 antibodies.
  • IL-18 was discovered in 1995 by Okamura et al. As an inducer of IFN- ⁇ (Okamura et al., Nature, 378: 88-91, 1995) and has recently been shown to have various biological effects. It is a growing cytokine.
  • IL-18 is activated by inflammasome (a protein complex containing NLRP3, ASC, caspase-1, etc.) as a result of endoplasmic reticulum stress response due to stress such as nutrient deficiency, oxygen deficiency, and ultraviolet light. Then, caspase-1 is activated by the inflammasome, pro-IL-18 is processed by the caspase-1, and is converted into an active form of IL-18.
  • inflammasome a protein complex containing NLRP3, ASC, caspase-1, etc.
  • IL-18 acts on effector cells such as CD8 positive T cells, natural killer cells (hereinafter referred to as NK cells) and ⁇ T cells activated by antigens and cytokines, and the number of these cells is remarkably increased. And is known to suppress the death of these cells and promote their survival and differentiation (for example, Li Wen et. Lal, J. Leukoc. Biol., 82, 142-151, 2007). .).
  • NK cells natural killer cells
  • ⁇ T cells activated by antigens and cytokines
  • IL-18 is not particularly limited, and human IL-18 polypeptide (SEQ ID NO: 1), mouse IL-18 polypeptide (SEQ ID NO: 2), etc. described in Patent Document 3 are used. Can do. The amino acid sequence homology between human IL-18 and mouse IL-18 is 65%.
  • the human IL-18 polypeptide is disclosed in EP0692536A2, EP0712931A2, EP0767178A1, WO97 / 2441, etc., as described in Patent Document 3.
  • an IL-18 polypeptide is simply referred to as “IL-18”.
  • human IL-18 is a recombinant mature form of human IL-18 expressed in an E. coli non-pathogenic strain.
  • Mouse and human IL-18 cDNAs encode precursor proteins consisting of 192 and 193 amino acids (SEQ ID NOs: 2 and 1, respectively).
  • IL-18 is ammonium sulfate or ethanol precipitation method, acid extraction method, anion or cation exchange chromatography method, phosphocellulose chromatography method, hydrophobic interaction chromatography method, affinity chromatography, hydroxylapatite chromatography, lectin chromatography method And can be recovered and purified from recombinant cell cultures by known methods such as high performance liquid chromatography.
  • IL-18 When IL-18 is denatured during intracellular synthesis, isolation, and / or purification, well-known techniques for protein refolding can be used to regenerate the active conformation.
  • a method for purifying and making active human IL-18 is shown in WO01 / 098455.
  • IL-18 may be a commercially available product.
  • the cancer therapeutic agent according to the present invention comprises, as antibodies, anti-PD-L1 antibody, anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33 antibody and Contains one or more antibodies selected from the group consisting of anti-CD52 antibodies.
  • Patent Document 1 The anti-PD-L1 antibody, anti-PD-1 antibody, and anti-PD-L2 antibody are described in detail in Patent Document 1.
  • human PD-1 cDNA is obtained from EMBL / GenBank Acc. No. MN_005018
  • the mouse PD-1 cDNA is Acc. No. X67914, and its expression is observed in thymocytes upon differentiation from CD4 ⁇ CD8 ⁇ to CD 4+ CD 8+ cells (Int. Immunol., 1996, Vol. 18, Vol. 18). 5, p. 773-780, J. Exp. Med. 2000, Vol. 191, No. 5, p. 891-898).
  • PD-1 expression in the periphery is expressed by T cells or B cells activated by stimulation from antigen receptors (Int. Immunol., 1996, Vol. 18, No. 5, p. 765-772) or activity. It has been reported to be found in bone marrow cells including activated macrophages. PD-1 is also known to transmit a signal that suppresses an antigen receptor (TCR) signal.
  • TCR antigen receptor
  • PD-L1 is a ligand of PD-1, and is expressed in so-called antigen-presenting cells such as activated monocytes and dendritic cells in addition to tumor cells (J. Exp. Med. 2000, 191st). Vol. 7, p. 1027-1034).
  • human PD-L1 cDNA is EMBL / GenBank Acc. No. AF233516
  • mouse PD-L1 cDNA is composed of a base sequence represented by NM_021893.
  • PD-L1 is one of the molecules that induces inhibitory signals by PD-1. .
  • PD-L2 was identified as the second ligand of PD-1, but it has been reported that its expression and function are almost the same as PD-L1.
  • the human PD-L2 cDNA is EMBL / GenBank Acc. No. NM — 025239, mouse PD-L2 cDNA is composed of a base sequence represented by N M — 021896 (Nature Immunology, 2001, Vol. 2, No. 3, p. 261 to 267).
  • Inhibitory signals from coupled inhibitory molecules typified by PD-1 are immune tolerance or self-antigens during lymphocyte development or maturation by mechanisms that appropriately control positive signals by antigen receptors (TCRs) and conjugate stimulating molecules. It is thought to control an abnormal immune response to.
  • TCRs antigen receptors
  • CTLA-4 is cytotoxic T lymphocyte associated antigen 4 (CD152).
  • CD152 cytotoxic T lymphocyte associated antigen 4
  • JP 2007-277242 A when CTLA-4 binds to its natural ligands B7.1 (CD80) and B7.2 (CD86), a negative regulatory signal is transmitted to T cells. When delivered, blocking this negative regulatory signal enhances T cell immune function and antitumor activity in animal models (Thompson and Allison, Immunity, 7, 445-450 (1997); McCoy and LeGros, Immunol. & Cell Biol.77: 1-10 (1999)).
  • CTLA-4 negative regulatory signals using antibodies has been shown to enhance T cell-mediated tumor killing and induce anti-tumor immunity (eg, Leech et al., Science 271: 1734-1736 (1996)).
  • the complete sequence of human CTLA-4 is set forth in GenBank Accession No. L15006.
  • CD25 is a single-chain glycoprotein having a molecular weight of 55 kDa and is known as a surface antigen of adult T-cell leukemia cells.
  • CD33 is known as the surface antigen of acute myeloid leukemia cells, and CD52 is known as the surface antigen of B cell chronic lymphocytic leukemia cells.
  • Anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33 antibody, and anti-CD52 antibody are PD-L1, PD-1, PD-L2 respectively. Any antibody such as a human-derived antibody, a mouse-derived antibody, a rat-derived antibody, a rabbit-derived antibody, or a goat-derived antibody may be used as long as it inhibits an immunosuppressive signal caused by CTLA-4, CD25, CD33, and CD52.
  • antibody fragments antibodies, chimerized antibodies, humanized Either an antibody or a fully human antibody may be used.
  • antibodies should be produced according to known methods for producing antibodies or antisera using PD-L1, PD-1, PD-L2, CTLA-4, CD25, CD33 or CD52 partial proteins in the extracellular region as antigens. Can do.
  • the partial protein in the extracellular region can be prepared by known protein expression and purification methods.
  • Polyclonal antibodies can be produced by known methods. For example, it is produced by immunizing an appropriate animal with an antigen protein or a mixture of an antigen protein and a carrier protein, collecting an antibody-containing substance against the antigen protein from the immunized animal, and performing separation and purification of the antibody. be able to.
  • mice examples of animals used generally include mice, rats, sheep, goats, rabbits, and guinea pigs.
  • complete Freund's adjuvant or incomplete Freund's adjuvant can be administered together with the antigen protein. Administration is generally performed about once every 2 weeks, about 3 to 10 times in total.
  • Polyclonal antibodies can be collected from blood, ascites, etc. of animals immunized by the above method.
  • the polyclonal antibody titer in the antiserum can be measured by ELISA.
  • Separation and purification of polyclonal antibodies include, for example, antigen-binding solid phase, purification method using an active adsorbent such as protein A or protein G, salting-out method, alcohol precipitation method, isoelectric point precipitation method, electrophoresis method, ion exchange It can be carried out in accordance with immunoglobulin separation and purification methods such as body adsorption / desorption, ultracentrifugation, and gel filtration.
  • a monoclonal antibody or a modified form thereof is used as the antibody.
  • an individual having an antibody titer is selected from animals immunized with an antigen, spleen or lymph nodes are collected 2 to 5 days after the final immunization, and antibodies contained therein
  • Monoclonal antibody-producing cells can be produced by fusing the producing cells with myeloma cells from the same or different animals to produce monoclonal antibody-producing hybridomas that can be subcultured.
  • Antigen protein is administered to a site where antibody production is possible alone or with a carrier or diluent. In this case, in order to enhance antibody production ability, it is common to administer complete Freund's adjuvant or incomplete Freund's adjuvant.
  • animals can be immunized by a method called “DNA immunization”.
  • DNA immunization cardiotoxin is treated on the posterior tibialis muscle of the immunized animal, a vector expressing an antigen protein is introduced, and then the vector is taken into muscle cells in the process of tissue repair.
  • a mouse, rat, sheep, goat, rabbit or guinea pig can be used, but a mouse or rat is preferably used.
  • the fusion operation can be carried out by the method of Kohler and Milstein (Nature IV, 1975, Vol. 256, No. 5517, p. 495-497).
  • a fusion accelerator polyethylene glycol (PEG) or Sendai can be used.
  • Viruses are used. Examples of myeloma cells include myeloma cells such as P3U1, NS1, SP2 / 0, and AP1, but usually P3U1 is often used.
  • monoclonal antibody-producing cells are selected by, for example, detecting by ELISA method or the like by adding a hybridoma culture supernatant to a solid phase on which an antigen protein is adsorbed directly or together with a carrier. It can be carried out. Furthermore, the antibody titer of the hybridoma culture supernatant can be measured by ELISA. Separation and purification of the monoclonal antibody can be performed according to the same immunoglobulin separation and purification method as the above-described separation and purification of the polyclonal antibody.
  • the hybridoma As the hybridoma, a known hybridoma usually used for producing the antibody may be used. For example, when producing an anti-PD-L1 antibody or an anti-PD-1 antibody, the hybridoma disclosed in Patent Document 1 can be used.
  • the antibody fragment can be obtained by treating an antibody with a protease enzyme and optionally reducing it.
  • the F (ab ') 2 antibody fragment can be purified by digesting the purified monoclonal antibody completely with pepsin and using any known method of ion exchange chromatography, gel filtration, or affinity chromatography.
  • Fab 'antibody fragments can be produced by partially reducing the prepared F (ab') 2 with 2-mercaptoethylamine.
  • the Fab antibody fragment can be prepared by directly digesting with the digestive enzyme papain in the presence of cysteine and purifying it.
  • the scFv antibody can be prepared, for example, by the method of Jost et al. (J. Biol. Chem., 1994, Vol. 269, No. 42, p. 26267-26273).
  • the above humanized antibody can be prepared by substituting a part of a non-human antibody prepared by immunizing a mammal other than a human with a part of a human antibody.
  • a humanized antibody can be produced by constructing a chimera of a gene encoding the constant region of a human antibody and a gene encoding the variable region of a non-human antibody (Proc. Natl Acad.Sci. (USA), 1987, 84, 3439-3443, J. Immunol., 1987, 139, No. 1, p.3521).
  • the DNA sequence of the constant region of a human antibody is described in the literature, and the gene of the constant region can be easily obtained from a known clone. Subsequently, the DNA sequence encoding the variable region of the antibody is fused to the constant region sequence of the human antibody.
  • the isotype of the constant region of a human antibody can be selected depending on the desired effector function or activity in antibody-dependent cellular cytotoxicity (ie, antibody-dependent cytotoxicity). Preferred isotypes are IgG1, IgG3 and IgG4. In addition, any of human light chain constant regions, ⁇ chains, or ⁇ chains can be used. This humanized chimeric antibody can be expressed by a conventional method.
  • a fully human antibody should be prepared using a mouse into which a constant region gene of human immunoglobulin has been introduced (Xenomouse (Chemical Biology, 2000, Vol. 7, No. 8, p.R185-6)). Furthermore, the antibody-producing lymphocytes isolated from the mouse can be used as a hybridoma to mass-produce the target antibody. A fully human antibody can also be produced by the phage display method (FEBS Letter, 1998, 441, p. 20-24).
  • the cancer therapeutic agent according to the present invention includes (i) IL-18, and (ii) anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33.
  • One or more antibodies selected from the group consisting of antibodies and anti-CD52 antibodies are contained as active ingredients.
  • the “one or more antibodies” may be any number as long as they are antibodies selected from the above group.
  • the cancer therapeutic agent according to the present invention preferably includes an anti-PD-L1 antibody and / or an anti-CTLA-4 antibody that has a proven track record as a cancer therapeutic agent.
  • IL-18 and anti-PD-L1 Most preferably, it contains an antibody and an anti-CTLA-4 antibody.
  • PD-L1 is a ligand for PD-1 as described above
  • PD-L2 is a ligand for PD-1. Therefore, when the anti-PD-1 antibody or the anti-PD-L2 antibody is used instead of the anti-PD-L1 antibody, it is expected that the same effect as that obtained when the anti-PD-L1 antibody is used is obtained.
  • CD33, CD52, and CD25 are surface antigens for acute myeloid leukemia cells, B cell chronic lymphocytic leukemia cells, and surface antigens for adult T cell leukemia cells, respectively.
  • MICA and MICB are surface antigens for acute myeloid leukemia cells, B cell chronic lymphocytic leukemia cells, and surface antigens for adult T cell leukemia cells, respectively.
  • Many of the surface antigens MICA and MICB are found in tumorigenic leukocytes in patients with these cancers.
  • the therapeutic agent for cancer according to the present invention contains IL-18 and one or more antibodies selected from the group consisting of an anti-CD25 antibody, an anti-CD33 antibody and an anti-CD52 antibody, the antibodies are CD25, CD33, CD52, respectively.
  • IL-18 can enhance the induction of NK cells with high NKG2D expression intensity. Then, the NK cell recognizes MICA and MICB by NKG2D, and can melt cells expressing these surface antigens.
  • the therapeutic agent for cancer according to the present invention contains IL-18 and one or more antibodies selected from the group consisting of anti-CD25 antibody, anti-CD33 antibody and anti-CD52 antibody, the therapeutic agent is acute It is believed that it may work effectively for the treatment of myeloid leukemia, B-cell chronic lymphocytic leukemia, and adult T-cell leukemia.
  • the ratio of the use amount of IL-18 to the antibody is such that when one kind of the antibody is used, the mass ratio of IL-18 to the antibody is from 1:10 to 1: It is preferably 200, 1:25 to 1: 200, 1:25 to 1:50, or 1:30 to 1:50, and the living body to be administered (subject, patient)
  • the dose of IL-18 per kg of body weight is 0.1 mg / kg, it is preferable to administer the antibody at the above mass ratio.
  • the ratio of the mass of IL-18 to the sum of the masses of two or more of the antibodies is the above mass ratio, and the mass ratio between the antibodies can be any ratio. And it is sufficient.
  • the ratio to the mass of one or more antibodies is 1:10 to 1: 200, 1:25 to 1: 200, 1:25 to 1:50. Or preferably from 1:30 to 1:50, and the mass ratio of antibodies may be any ratio.
  • the mass ratio of IL-18, the first type of antibody, and the second type of antibody is 1 : 50: 50.
  • the cancer therapeutic agent according to the present invention includes IL-18 and the above-mentioned antibodies (anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33 antibody and anti-CD33 antibody).
  • IL-18 and the above-mentioned antibodies include IL-18 and the above-mentioned antibodies (anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33 antibody and anti-CD33 antibody).
  • One or more antibodies selected from the group consisting of CD52 antibodies may be a composition in which IL-18 and the antibody are mixed.
  • IL-18 and the above-mentioned antibody are not mixed and may exist separately.
  • IL-18 and the above antibody are used as active ingredients, even if IL-18 and the above antibody are not mixed, they are included in the scope of the cancer therapeutic agent according to the present invention.
  • the cancer therapeutic agent according to the present invention also contains IL-18 and the antibody as active ingredients in a form in which IL-18 and the antibody are not mixed. It corresponds to.
  • the order of administration is not limited to this, IL-18 may be administered after the antibody is administered to the patient, or the antibody and IL-18 may be administered to the patient at the same time. Good.
  • the administration form of the antibodies may be a form in which a plurality of types of antibodies are administered simultaneously, but is not limited thereto.
  • IL-18 the first type of antibody, and the second type of antibody may be administered to the patient over time in any order.
  • a form administered to a patient in the order of IL-18, anti-PD-L1 antibody, and anti-CTLA-4 antibody, or IL-18, anti-CTLA-4 antibody, and anti-PD-L1 antibody It may be.
  • the administration interval between IL-18 and the antibody or the administration interval between the antibody and the antibody may be 2 to 5 days. preferable.
  • the administration site may be the same or different for IL-18 and each antibody.
  • it may be a dosage form in which IL-18 and a plurality of types of antibodies are all injected intravenously, or IL-18 is injected intravenously, the first antibody is injected subcutaneously, and the second antibody is peeled.
  • It may be a form of administration such as internal injection.
  • it is preferable to administer IL-18 and the antibody at the same site.
  • the dose of the active ingredient (IL-18 and the above-mentioned antibody) of the therapeutic agent for cancer according to the present invention varies depending on the patient's age, symptoms, etc., and thus cannot be generally stated.
  • IL-18 is preferably 0.1 mg / kg
  • antibody is preferably 1 mg / kg to 20 mg / kg
  • antibody is 2.5 mg / kg to 5.0 mg / kg, or 3.0 mg More preferably, it is / kg to 5.0 mg / kg.
  • the mass ratio of IL-18 to the above-mentioned antibody as the active ingredient is as described above.
  • mice are used as subjects, but there is no significant difference between the dose per mouse body weight and the dose per human body weight.
  • IL-18 is 0.1 mg / kg
  • an administration form in which the antibody is administered 1 mg / kg to 20 mg / kg four times every three weeks is considered as an example.
  • the cancer therapeutic agent according to the present invention is a pharmaceutically acceptable carrier, diluent, or excipient as described in Patent Document 3, for example.
  • a dosage form may further be included.
  • the carrier may be a sterile liquid such as water and peanut oil, soybean oil, mineral oil, sesame oil, or oils containing petroleum, animal, plant, or synthetic oils.
  • water can be used as a carrier.
  • physiological saline and aqueous dextrose and glycerol solutions can also be used as liquid carriers for injection solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, flour, silica gel, magnesium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol , Water, ethanol and the like.
  • the cancer therapeutic agent according to the present invention may also contain a small amount of a humectant or emulsifier, or a pH buffer as necessary.
  • the cancer therapeutic agent according to the present invention can take the form of a solution, suspension, emulsion, tablet, pill, capsule, powder, sustained-release preparation or the like.
  • the cancer therapeutic agent according to the present invention can be formulated as a suppository having a conventional binder such as triglyceride and a carrier.
  • Oral formulations can include standard carriers such as pharmaceutical grade mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, or magnesium carbonate.
  • the cancer therapeutic agent according to the present invention may contain an appropriate amount of a carrier together with the above active ingredient. What is necessary is just to adjust the form of a formulation suitably according to an administration system.
  • the mode of administration of the cancer therapeutic drug according to the present invention to a patient is not particularly limited, but in one embodiment of the present invention, the cancer therapeutic drug is used for intravenous administration to humans according to a conventionally known procedure.
  • Formulated as a compatible pharmaceutical composition are not particularly limited, but in one embodiment of the present invention, the cancer therapeutic drug is used for intravenous administration to humans according to a conventionally known procedure.
  • a composition for intravenous administration is typically a solution in a sterile, isotonic aqueous buffer.
  • the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
  • the ingredients are supplied individually or in batches in unit dose form, for example, as a dry frozen powder or water free concentrate in a sealed container such as an ampoule or sachet indicating the amount of active agent.
  • a dry frozen powder or water free concentrate in a sealed container such as an ampoule or sachet indicating the amount of active agent.
  • IL-18 and the antibody do not necessarily have to be mixed in the cancer therapeutic agent. Therefore, IL-18 and the antibody may be supplied separately.
  • the cancer therapeutic agent When injecting and administering the above-mentioned cancer therapeutic agent, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or physiological saline.
  • sterile water for injection or an ampoule of physiological saline can be supplied to mix the components before administration.
  • the cancer therapeutic agent according to the present invention can be formulated as a solution for parenteral administration or a lyophilized powder.
  • the powder can be reduced prior to use by the addition of a suitable diluent or other pharmaceutically acceptable carrier.
  • the liquid formulation can be a buffered and isotonic aqueous solution. Examples of suitable diluents are 5% standard dextrose in normal isotonic saline, water or sodium acetate buffer or ammonium acetate buffer.
  • the above preparation is suitable for parenteral administration, but can also be used for oral administration and stored in a dose-measuring inhaler or nebulizer for inhalation. It may be desirable to add excipients such as polyvinylpyrrolidone, gelatin, hydroxycellulose, acacia gum, polyethylene glycol, mannitol, sodium chloride, or sodium citrate to the cancer therapeutic.
  • excipients such as polyvinylpyrrolidone, gelatin, hydroxycellulose, acacia gum, polyethylene glycol, mannitol, sodium chloride, or sodium citrate to the cancer therapeutic.
  • the above cancer therapeutic agent can be encapsulated for oral administration, tableted, or prepared as an emulsion or syrup.
  • a pharmaceutically acceptable solid or liquid carrier can be added to enhance or stabilize the cancer therapeutic agent and facilitate the preparation of the cancer therapeutic agent.
  • Solid carriers include starch, lactose, calcium sulfate dihydrate, clay, magnesium stearate or stearic acid, talc, pectin, acacia gum, agar, or gelatin.
  • Liquid carriers include syrup, peanut oil, olive oil, saline, and water.
  • the carrier may also include sustained release materials such as glyceryl monostearate or glyceryl distearate, alone or with a wax.
  • the amount of solid carrier varies, but is about 20 mg to about 1 g per dosage unit.
  • the pharmaceutical formulations are made according to conventional pharmaceutical methods including tableting, if appropriate, milling, mixing, granulating and compressing, and, in the case of hard gelatin capsules, milling, mixing and filling.
  • the formulation is in the form of a syrup, elixir, emulsion, or aqueous or non-aqueous suspension.
  • Such liquid preparations can be administered orally (po) directly or filled into soft gelatin capsules.
  • the cancer therapeutic agent according to the present invention can be used as an aqueous suspension or aqueous solution containing the above-mentioned cancer therapeutic agent buffered at physiological pH in a form prepared for injection.
  • aqueous carrier various aqueous carriers such as 0.4% physiological saline or 0.3% glycine can be used. These solutions are sterile and generally free of particulate matter.
  • the aqueous suspension or aqueous solution can be sterilized by a conventionally known sterilization method (for example, a filtration method).
  • the cancer therapeutic agent according to the present invention may contain a pharmaceutically acceptable auxiliary substance necessary to approximate physiological conditions, such as a pH adjusting agent or a buffering agent.
  • the concentration of the cancer therapeutic agent according to the present invention in such a pharmaceutical preparation containing a carrier, an auxiliary substance, etc. may be selected based on the fluid volume, consistency, etc., according to the specific administration method selected. .
  • Embodiment 2 Administration of a therapeutic drug for cancer according to the present invention
  • the therapeutic agent for cancer according to the present invention can be administered to a patient by any appropriate body route.
  • various conventionally known methods described in Patent Document 3 can be used. That is, encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (eg, Wu et al., J. Biol. Chem., 262, 4429-4432). Page (1987)), various delivery systems such as retroviral vectors or construction of nucleic acids as part of other vectors are known and can be used to administer the cancer therapeutics of the present invention.
  • various delivery systems such as retroviral vectors or construction of nucleic acids as part of other vectors are known and can be used to administer the cancer therapeutics of the present invention.
  • Introduction methods include, but are not limited to, intradermal routes, intramuscular routes, intraperitoneal routes, intravenous routes, subcutaneous routes, intranasal routes, epidural routes, and oral routes.
  • the cancer therapeutics can be administered by any suitable route, such as infusion or bolus injection, absorption through the epithelium or mucocutaneous intima (eg, oral mucosa, rectum and intestinal mucosa, etc.) It can be administered with a bioactive agent.
  • Administration can be systemic or local.
  • Intrapulmonary administration can also be used, for example, by use of a formulation having an inhaler or nebulizer and an aerosol.
  • the dose of the active ingredient is 0.1 mg / kg for IL-18 and 1 mg / kg to 20 mg / kg for the antibody per body weight per administration. It is desirable to carry out so that it becomes kg, more preferably 2.5 mg / kg to 5.0 mg / kg or 3.0 to 5.0 mg / kg.
  • the therapeutic agent for cancer according to the present invention is a combination of IL-18 and a predetermined antibody as active ingredients.
  • the combination and administering the cancer therapeutic agent according to the present invention compared to the case of using IL-18 alone and the case of using the antibody alone, The effect of synergistically improving the survival rate of mice transplanted with colon cancer cells causing peritoneal dissemination was achieved.
  • the effect is that IL-18 and anti-CTLA-4 antibody have a mass ratio of 1:25 to 1:50, IL-18 is 2 ⁇ g / 25 g, and anti-CTLA-4 antibody is 50 to 50%.
  • IL-18 is 2 ⁇ g / 25 g
  • anti-CTLA-4 antibody is 50 to 50%.
  • mice survived 60 days after the transplantation of colon cancer cells, and ascites did not accumulate, no autoimmune-like lesions were observed, and the mice remained healthy. . That is, it was considered that no side effects occurred.
  • the number of intraperitoneal exudate cells could be increased continuously for a long period of time by the above-mentioned combination, and the survival effect of mice due to the intraperitoneal exudate cells was also observed.
  • active NK cells proliferate and exist for a long time and decrease in inflammation-suppressing cells such as CD4-positive CD25-positive T cells. .
  • IL-18 promotes enhancement of effector cells such as NK cells, makes activated effector cells long and persistent, and reduces inflammation-suppressing cells. It is considered that the antitumor effect of the antibody used in combination can be further enhanced.
  • the cancer therapeutic agent according to the present invention has an advantage that there are few such side effects. .
  • the cancer therapeutic agent according to the present invention can be applied to the treatment of various cancers.
  • Applicable cancer types include, for example, squamous cell carcinoma (cervical canal, sputum, conjunctiva, vaginal lung, oral cavity, skin, bladder, tongue, larynx, esophagus), and adenocarcinoma (eg, prostate, small intestine, uterus) Endometrium, cervix, large intestine, lung, pancreas, esophagus, rectum, uterus, stomach, breast, ovary).
  • sarcomas eg, myogenic sarcomas
  • leukemias eg, neuromas, melanomas, lymphomas are also included in the applicable cancer types.
  • the present invention includes the following inventions.
  • the cancer therapeutic agent according to the present invention includes IL-18 and anti-PD-L1 antibody, anti-PD-1 antibody, anti-PD-L2 antibody, anti-CTLA-4 antibody, anti-CD25 antibody, anti-CD33 antibody and anti-CD52 antibody. It contains one or more antibodies selected from the group consisting of as an active ingredient.
  • IL-18 promotes the proliferation, survival, and differentiation of effector cells, and suppresses the proliferation of inhibitory T cells. It is estimated that the effect can be remarkably enhanced.
  • the therapeutic agent for cancer according to the present invention can exhibit a very excellent antitumor effect that is synergistic as compared with the case of using only the above antibody or the case of using only IL-18. Moreover, it is very effective in suppressing peritoneal dissemination that is difficult to treat, while side effects may be reduced.
  • the antibody is preferably an anti-PD-L1 antibody and / or an anti-CTLA-4 antibody.
  • IL-18 since IL-18 is used in combination, a significantly superior antitumor effect can be obtained as compared with the case of using anti-PD-L1 antibody or anti-CTLA-4 antibody alone. Therefore, it is possible to further enhance the antitumor effect of these antibodies that have a proven track record in cancer treatment and to provide better cancer therapeutic agents.
  • the antibody when the antibody is an anti-PD-L1 antibody and an anti-CTLA-4 antibody, as shown in Examples described later, IL-18 and an anti-PD-L1 antibody or an anti-CTLA-4 antibody Compared with a cancer therapeutic agent containing, a synergistic and extremely excellent antitumor effect can be obtained, not just an additive effect.
  • the ratio of the mass of IL-18 to the total mass of the one or more antibodies is preferably 1:25 to 1: 200.
  • the dose of IL-18 and antibody to the living body can be an appropriate amount, the above synergistic and excellent antitumor effect is achieved. It is preferable in obtaining.
  • the cancer therapeutic agent according to the present invention is preferably a therapeutic agent for one or more cancers selected from the group consisting of stomach cancer, colon cancer, ovarian cancer, osteosarcoma, and leukemia.
  • the above cancer is often accompanied by peritoneal dissemination of the tumor, and even when the tumor is excised, peritoneal dissemination may occur.
  • peritoneal dissemination may occur.
  • the high therapeutic effect with respect to peritoneal dissemination can be shown.
  • a cell line of CT-26 mouse colon cancer cells was purchased from the American Type Culture Collection, and at 10 ° C fetal bovine serum (FBS, Bio West) and penicillin / streptomycin (at 37 ° C, 5% CO 2 atmosphere). It was maintained in RPMI1640 medium (Nacalai Tesque) containing Gibco BRL, USA).
  • the cells are Ca 2+ and Mg 2+ free Dulbecco's PBS containing 0.05% trypsin and 0.01% EDTA (pH 7.4, manufactured by Nacalai Tesque, Inc., hereinafter referred to as “trypsin-EDTA”). And recovered.
  • IL-18 Reagents Recombinant mouse IL-18 (manufactured by GlaxoSmithKline, product number SB-528775, hereinafter simply referred to as “IL-18”) was used that was distributed with the enjoyment of GlaxoSmithKline plc.
  • Anti-mouse CD152 / CTLA-4 monoclonal antibody (mAb, clone UC10-4F10-11; hereinafter simply referred to as “anti-CTLA-4 antibody”) and anti-mouse PD-L1 antibody (clone 10F.9G2; hereinafter simply referred to as “anti-PD- “L1 antibody”) was purchased from BioXcell.
  • Rabbit anti-asialo GM1 antibody (catalog number: 014-09801, Wako Pure Chemical Industries, Ltd.), anti-CD8 antibody (catalog number SC-18913, manufactured by Santa Cruz) and rabbit IgG (catalog number: PM035, manufactured by MBL) are all available It is a commercially available antibody.
  • the lymphocytes were in RPMI 1640 medium (Nacalai Tesque) containing 10% fetal bovine serum, L-glutamine (Gibco BRL), penicillin / streptomycin, and 2-mercaptoethanol (Sigma M7154).
  • the cells were cultured at 37 ° C. in an atmosphere containing 5% CO 2 .
  • Adoptive cell transfer PEC for adoptive cell transfer experiment was prepared from the peritoneal cavity of mice transplanted with CT-26 cells. Mice were injected intraperitoneally 3 days after the day of CT-26 cell transplantation with therapeutic combinations of various combinations of anti-CTLA-4 antibody, anti-PD-L1 antibody, and IL-18. PEC was collected 4 days after the intraperitoneal injection of the therapeutic agent. Most of the collected cells were lymphocytes. The lymphocytes were washed and suspended in PBS to a cell density of 2.5 ⁇ 10 7 cells / ml to prepare a cell suspension.
  • 0.2 ml of the cell suspension (about 5 ⁇ 10 6 cells / mouse) was injected into the abdominal cavity of a mouse transplanted with CT-26 cells 3 days and 7 days after the transplantation. , Injected 11 days later.
  • Cell surface markers include FITC-labeled anti-CD4 antibody (manufactured by eBioscience, clone GK1.5), APC-labeled anti-CD8 antibody (manufactured by Biolegend, clone 54-6.7), and biotin-labeled anti-CD8 antibody (manufactured by eBioscience, clone 53-6).
  • the cells were stained with a monoclonal antibody specific for CD4, CD8, CD11c, CD45R / B220, CD49b and labeled with FITC, PE, APC, or biotin, and then analyzed using a FACS Calibur flow cytometer.
  • An anti-mouse CD16 / 32 antibody (manufactured by eBioscience, clone 93) was used as an Fc blocker.
  • Data was analyzed using Cell Quest software (registered trademark, Beckton Dickinson Biosciences).
  • the conditions of flow cytometry are constant, and the flow cytometry was performed according to the conditions described in Becton-Dickinson's immunocytometry systems, 1995.
  • the expression intensity of a cell surface marker means the expression intensity measured by flow cytometry.
  • Example 1 Effect of cancer therapeutic agent containing anti-CTLA-4 antibody and IL-18 on survival rate of mice administered intraperitoneally with CT-26 cells]
  • CT-26 cells described in (1) of the above experimental method 0.25 ml of a suspension having a cell concentration of 5.0 ⁇ 10 4 cells / 0.25 ml was injected into the peritoneal cavity of the BALB / C wild type mouse. And transplanted.
  • mice are administered with 100 ⁇ g of rabbit IgG as a control; a group administered with 2 ⁇ g of IL-18 alone; a group administered with 100 ⁇ g of anti-CTLA-4 antibody only; 100 ⁇ g of anti-CTLA-4 antibody and IL-
  • the group was divided into groups administered with 18 to 2 ⁇ g, and each group consisted of 5 mice.
  • the therapeutic agent was injected intraperitoneally four times in total, 3 days, 7 days, 10 days, and 14 days after the CT-26 cell injection.
  • the experiment was repeated three times.
  • the doses ( ⁇ g) of the above rabbit IgG antibody, anti-CTLA-4 antibody and IL-18 are doses per 25 g body weight of the mouse.
  • FIG. 1 is a graph showing the results of observing the effect of administering a cancer therapeutic agent containing anti-CTLA-4 antibody and IL-18 as the survival rate of mice from 3 days after the transplantation of CT-26 cells. It is.
  • the horizontal axis indicates the number of days from the day of transplantation (intraperitoneal injection) of CT-26 cells, and the vertical axis indicates the survival rate of mice.
  • the survival rate began to decrease 24 days after the day of transplanting CT-26 cells, and all mice died after 27 days.
  • the group administered with IL-18 alone and the group administered with only the anti-CTLA-4 antibody showed a similar decrease in survival rate, and all mice died after 42 days and 49 days, respectively.
  • mice were not weak and kept healthy.
  • Example 2 Dose effect of anti-CTLA-4 antibody and IL-18] Regarding the CT-26 cells described in (1) of [Experimental method], 0.25 ml of a suspension with a cell concentration of 5.0 ⁇ 10 4 cells / 0.25 ml was intraperitoneally injected into the BALB / C wild type mouse. Injected and transplanted.
  • mice are administered with 100 ⁇ g of rabbit IgG as a control; group with 25 ⁇ g of anti-CTLA-4 antibody and 2 ⁇ g of IL-18; group with 50 ⁇ g of anti-CTLA-4 antibody and 2 ⁇ g of IL-18 Divided into a group administered with 100 ⁇ g of anti-CTLA-4 antibody and 2 ⁇ g of IL-18; a group administered with 100 ⁇ g of anti-CTLA-4 antibody and 1 ⁇ g of IL-18-, and each group was composed of 5 mice.
  • the therapeutic agent was injected intraperitoneally four times in total, 3 days, 7 days, 10 days, and 14 days after the CT-26 cell injection.
  • the doses ( ⁇ g) of the above rabbit IgG antibody, anti-CTLA-4 antibody and IL-18 are doses per 25 g body weight of the mouse.
  • FIG. 2 is a graph showing the dose effect of anti-CTLA-4 antibody and IL-18 as the survival rate of mice administered intraperitoneally with CT-26 cells, as in Example 1.
  • the horizontal and vertical axes are the same as in FIG.
  • the survival rate began to decrease 24 days after the day of transplantation of CT-26 cells, and all mice died after 28 days.
  • the survival rate decreased 28 days after the transplantation date of CT-26 cells in the group administered with 25 ⁇ g anti-CTLA-4 antibody and 2 ⁇ g IL-18 ⁇ g. Initially, all mice died after 42 days. However, the survival effect was seen compared with the control.
  • the survival rate decreased to 80% 35 days after the CT-26 cell transplantation day, but the survival rate was maintained after 60 days. Surviving mice were in good health.
  • mice survived even 60 days after the administration date. Was. The mice were in good health.
  • Example 3 Effect of therapeutic agent containing anti-PD-L1 antibody and IL-18 on the survival rate of mice transplanted intraperitoneally with CT-26 cells
  • 0.25 ml of a suspension of CT-26 cells having the same cell concentration as used in Example 1 (5.0 ⁇ 10 4 cells / 0.25 ml) was intraperitoneally injected into the BALB / C wild type mouse. Injected and transplanted.
  • mice were administered with 100 ⁇ g of rabbit IgG as a control; 2 ⁇ g of IL-18 alone; 100 ⁇ g of anti-PD-L1 antibody alone; 100 ⁇ g of anti-PD-L1 antibody and IL-
  • the group was divided into groups administered with 18 to 2 ⁇ g, and each group consisted of 5 mice.
  • the therapeutic agent was injected intraperitoneally four times in total, 3 days, 7 days, 10 days, and 14 days after the CT-26 cell injection. The above dose is the amount per 25 g of mouse body weight.
  • FIG. 3 is a graph showing the effect of a cancer therapeutic agent containing an anti-PD-L1 antibody and IL-18 as the survival rate of mice in the same manner as in Example 1.
  • the horizontal and vertical axes are the same as in FIG.
  • the transition of the survival rate of the group administered with only the control and IL-18 is the same as in Example 1.
  • the group administered with anti-PD-L1 antibody and IL-18 showed the same tendency as the group administered with IL-18 until 35 days after the day of transplantation of CT-26 cells, but after 35 days, In the group administered with IL-18 alone, all mice died after 42 days, whereas the survival rate remained at 60% even after 60 days. The surviving mice were in good health.
  • IL-18 and anti-PD-L1 antibody can be obtained by administering anti-PD-L1 antibody and IL-18, that is, by using anti-PD-L1 antibody and therapeutic agent containing IL-18. It was revealed that a very excellent synergistic anti-tumor effect was exhibited, not just an additive anti-tumor effect.
  • anti-tumor effect of anti-PD-L1 antibody can be remarkably enhanced by using IL-18 together with anti-PD-L1 antibody.
  • anti-PD-L1 antibody is known to have fewer side effects than anti-CTLA-4 antibody, the above synergistic anti-tumor effect provides a therapeutic agent for cancer with high anti-tumor effect and few side effects. Can be provided.
  • Example 4 Effect of cancer therapeutic agent containing anti-PD-L1 antibody, anti-CTLA-4 antibody and IL-18 on the survival rate of mice transplanted intraperitoneally with CT-26 cells (part 1)] 0.25 ml of a suspension of CT-26 cells having the same cell concentration as used in Example 1 (5.0 ⁇ 10 4 cells / 0.25 ml) was intraperitoneally injected into the BALB / C wild type mouse. Injected and transplanted.
  • mice are administered with a group of 100 ⁇ g of rabbit IgG as a control; a group of 2 ⁇ g of IL-18 alone; a group of 100 ⁇ g of anti-CTLA-4 antibody and 2 ⁇ g of IL-18; an anti-PD-L1 antibody Group administered 100 ⁇ g and IL-18 2 ⁇ g; group administered 100 ⁇ g anti-CTLA-4 antibody and 100 ⁇ g anti-PD-L1 antibody; administered 100 ⁇ g anti-CTLA-4 antibody, 100 ⁇ g anti-PD-L1 antibody, and administered IL-18 2 ⁇ g
  • Each group consisted of 5 mice. Seven days after the day of CT-26 cell injection, the therapeutic agent was injected intraperitoneally, and then the therapeutic agent was injected intraperitoneally four times every four days.
  • FIG. 4 shows that 7 days after the transplantation of CT-26 cells, a cancer therapeutic agent containing anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18, etc. was administered, and thereafter every 4 days, It is a figure which shows the effect at the time of administering 4 times as a survival rate of a mouse
  • the horizontal and vertical axes are the same as in FIG.
  • the above dose is the amount per 25 g of mouse body weight.
  • Example 4 unlike Examples 1 to 3, administration of the therapeutic agent was started 7 days after the day when CT-26 cells were transplanted intraperitoneally. That is, administration of the therapeutic agent is started after the tumor has grown than in Examples 1 to 3, but as shown in FIG. 4, rather than the group administered with anti-CTLA-4 antibody and anti-PD-L1 antibody, The group administered with anti-CTLA-4 antibody and IL-18 and the group administered with anti-PD-L1 antibody and IL-18 showed much higher survival rate. In addition, the surviving mice were in good health.
  • FIG. 5 shows the effect of administering a cancer therapeutic agent containing anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18, etc. 14 days after the day of transplantation of CT-26 cells. It is a figure shown as a rate.
  • the horizontal and vertical axes are the same as in FIG.
  • Example 4 As therapeutic agents, 100 ⁇ g of the control used in Example 4; 100 ⁇ g of anti-CTLA-4 antibody and 100 ⁇ g of anti-PD-L1 antibody; 100 ⁇ g of anti-CTLA-4 antibody, 100 ⁇ g of anti-PD-L1 antibody, and 2 ⁇ g of IL-18IL The experiment was carried out in the same manner as in Example 4 except that the therapeutic agent was injected intraperitoneally 14 days after the day of transplantation of CT-26 cells intraperitoneally. The above dose is the amount per 25 g of mouse body weight.
  • anti-CTLA-4 antibody, anti-PD-L1 antibody, and IL-18 were administered as cancer therapeutic agents compared to the case of administering anti-CTLA-4 antibody and anti-PD-L1 antibody. It can be seen that the case shows a higher survival rate.
  • Example 5 since administration of the cancer therapeutic agent was started 14 days after tumor transplantation, when the cancer therapeutic agent was administered, a tumor mass was already formed and ascites retention was also observed. Nevertheless, a clear life-prolonging effect was observed when anti-CTLA-4 antibody, anti-PD-L1 antibody, and IL-18 were used. This is because therapeutic agents containing anti-CTLA-4 antibody, anti-PD-L1 antibody, and IL-18 can obtain a therapeutic effect even when administered after the tumor mass is formed. It suggests that there is.
  • Example 6 Change in the number of peritoneal exudate cells
  • anti-CTLA-4 antibody and IL-18; anti-PD-L1 antibody and IL-18; and anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 transplant CT-26 cells 2 shows that the number of peritoneal exudate cells (PEC) in the isolated mice can be increased.
  • Example 2 0.25 ml of a suspension of CT-26 cells having the same cell concentration as used in Example 1 (5.0 ⁇ 10 4 cells / 0.25 ml) was intraperitoneally injected into the BALB / C wild type mouse. Injected. Three days after the injection, each mouse was injected intraperitoneally with the following therapeutic agent. Prepare 16 mice for each type of therapeutic agent, collect PEC from 4 mice each day 1 to 4 days after the administration of the therapeutic agent, count the number of PECs using a counter, and The average number of PECs was determined.
  • FIG. 6 shows anti-CTLA-4 antibody and IL-18; anti-PD-L1 antibody and IL-18; anti-CTLA-4 antibody, anti-PD-L1 antibody and IL- 3 days after the day of transplantation of CT-26 cells.
  • 18 is a graph showing changes in the number of peritoneal exudate cells (PEC) for 4 days in mice to which 18 was administered. The horizontal axis represents the number of days from the day when the therapeutic agent was administered, and the vertical axis represents the number of PECs per mouse (average value of 4 mice).
  • PEC peritoneal exudate cells
  • FIG. 6 (a) shows a group administered with 100 ⁇ g of rabbit IgG as a control as a therapeutic agent; a group administered with 100 ⁇ g of anti-CTLA-4 antibody only; a group administered with 2 ⁇ g of IL-18 only; 100 ⁇ g of anti-CTLA-4 antibody And changes in the number of PECs in the group administered with IL-18 2 ⁇ g.
  • FIG. 6 (b) shows a group administered with 100 ⁇ g of the above rabbit IgG as a therapeutic agent; a group administered with 100 ⁇ g of anti-PD-L1 antibody only; a group administered with 2 ⁇ g of IL-18 only; 100 ⁇ g of anti-PD-L1 antibody and IL It shows the change in the number of PECs in the group administered with ⁇ 18 to 2 ⁇ g.
  • FIG. 6 (c) shows a group administered with 100 ⁇ g of the above rabbit IgG as a therapeutic agent; a group administered with 100 ⁇ g of anti-CTLA-4 antibody and 100 ⁇ g of anti-PD-L1 antibody; 100 ⁇ g of anti-CTLA-4 antibody, and anti-PD-L1 antibody
  • the change of the number of PECs in the group administered with 100 ⁇ g and IL-18 2 ⁇ g is shown.
  • “NE-PEC” is peritoneal exudate cells of mice administered with rabbit IgG as a control. The above dose is the amount per 25 g of mouse body weight.
  • the dosage of the cancer therapeutic agent is the same as that shown in FIG. 6 for both the first administration and the second administration.
  • FIG. 7 shows the result.
  • (A) of FIG. 7 shows the day when CT-26 cells were transplanted into the abdominal cavity (in the figure, “Shot 1”), with the first administration day of the cancer therapeutic agent as day 0 (shown as “Shot 1” in the figure).
  • “CT-26 cell inoculated”) the day when PEC was collected and analyzed (indicated as 1-8 and AnalysisA1-7 in the figure), and the second day of administration of the above cancer drug (in the figure) , “Shot 2”).
  • (B) in FIG. 7 represents the number of PECs per mouse (average value of 4 mice) on day 0 to day 8 shown in (a) of FIG. Up to the fourth day, the result is the same as that shown in FIG.
  • Example 7 Life prolongation effect by peritoneal exudate cells
  • 0.25 ml of a suspension of CT-26 cells having the same cell concentration as used in Example 1 (5.0 ⁇ 10 4 cells / 0.25 ml) was intraperitoneally injected into the BALB / C wild type mouse. Injected and transplanted. Then, as described in (3) of [Experimental method] above, the cancer therapeutic agent was injected intraperitoneally 3 days after the day of transplantation of CT-26 cells.
  • cancer therapeutic agents include rabbit IgG in the amounts described in FIG. 6 (c) in Example 6; anti-CTLA-4 antibody and anti-PD-L1 antibody; anti-CTLA-4 antibody, anti-PD-L1 Antibody and IL-18 were used.
  • FIG. 8 is a graph showing the survival effect when adoptively transferring PEC induced by anti-CTLA-4 antibody, anti-PD-L1 antibody, and IL-18 to tumor-bearing mice.
  • the horizontal axis represents the number of days from the day when PEC was intraperitoneally administered, and the vertical axis represents the survival rate of mice.
  • control ⁇ PECs is obtained by administering rabbit IgG as a therapeutic agent, and“ ⁇ CTLA-4 + ⁇ PD-L1 induced PECs ”is administered by anti-CTLA-4 antibody and anti-PD-L1 antibody as therapeutic agents.
  • Induced PEC hereinafter referred to as “PEC-1” in this section
  • ⁇ CTLA-4 + ⁇ PD-L1 + IL-18 induced PECs treats anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18.
  • PEC induced by administration as a drug hereinafter referred to as “PEC-2” in this section) represents the results when each was administered.
  • mice administered with PEC-1 As can be seen from FIG. 8, in the control, all mice died 28 days after the intraperitoneal administration of PEC. In mice administered with PEC-1, a life-prolonging effect was seen as compared with the control, but all mice died 35 days after the intraperitoneal administration of PEC-1. On the other hand, mice administered with PEC-2 showed a survival rate of 20% even 58 days after the day of administration, showing a slightly longer life-span effect than when PEC-1 was administered.
  • Example 8 Enhancement of NK cells in peritoneal exudate cells
  • the therapeutic agents used in Example 6 only anti-PD-L1 antibody; IL-18 only; anti-PD-L1 antibody and IL-18; anti-CTLA-4 antibody and anti-PD-L1 antibody;
  • What kind of trait is the intraperitoneal exudate cells induced by intraperitoneal administration of anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 to mice in the same manner as in Example 6?
  • As intraperitoneal exudate cells subjected to flow cytometry 5 mice were used for each therapeutic agent, and cells collected 4 days after the day of administration of the therapeutic agent were used.
  • Flow cytometry was carried out using the APC-labeled anti-CD45R / B220 antibody (manufactured by Biolegend, clone RA3-6B2), anti-NKG2D antibody (BD-pharmingem562347) and PE-labeled anti-CD49b antibody (Beckton) shown in (4) of [Experimental Method] above.
  • the method was carried out by the method shown in (4) of [Experimental method] above.
  • FIG. 9 is a diagram showing the results of examining the expression intensities of B220 (CD45R), NKG2D, and DX5 (CD49b), which are surface markers, respectively.
  • (A) to (j) horizontal axis is DX5 expression intensity
  • (a) to (e) vertical axis is B220 (CD45R) expression intensity
  • (f) to (j) vertical axis is NKG2D expression intensity Represents.
  • the notations such as “day 3.036” in (a) to (j) indicate that PEC collected three days after the day of administration of the therapeutic agent was analyzed.
  • Each of (a) to (e) of FIG. 9 is divided into four areas as shown in the figure, but the cells present in the upper right area have high B220 (CD45R) expression intensity, and It can be said that the expression intensity of DX5 is high.
  • 9 (f) to (j) are also divided into four areas, but the cells present in the upper right area have high expression intensity of NKG2D and high expression intensity of DX5. .
  • Example 9 Maintenance of NK cells induced in mouse abdominal cavity
  • anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 are administered as cancer therapeutic agents, whether or not NK cells induced in the peritoneal cavity can be maintained even after a long period of time has elapsed since administration. We examined whether.
  • Example 2 0.25 ml of a suspension of CT-26 cells having the same cell concentration as used in Example 1 (5.0 ⁇ 10 4 cells / 0.25 ml) was intraperitoneally injected into the BALB / C wild type mouse. Injected. Three days after the injection, the following therapeutic agents were injected intraperitoneally.
  • anti-CTLA-4 antibody and anti-PD-L1 antibody, or anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 are intraperitoneally administered to mice in the same manner as in Example 6.
  • the PEC recovered 11 days after the day of administration was analyzed.
  • Flow cytometry was performed using the above APC-labeled anti-CD45R / B220 antibody (manufactured by Biolegend, clone RA3-6B2), PE-labeled anti-CD49b antibody (manufactured by Beckton Dickinson, clone DX5), and anti-NKG2D antibody (BD Pharmingen562349). It was carried out by the method shown in (4) of [Experiment Method].
  • FIG. 10 is a diagram showing the results of examining the expression intensity of the surface markers B220 (CD45R), NKG2D and DX5 (CD49b) in the PEC. 10A to 10C, the horizontal axis represents the expression intensity of DX5, and the vertical axis represents the expression intensity of B220 (CD45R).
  • FIG. 10 (A) and (d) of FIG. 10 are controls, and represent the data of PEC collected after CT-26 cells were transplanted and not administered with a therapeutic agent.
  • FIGS. 10B and 10E show the cases where anti-CTLA-4 antibody and anti-PD-L1 antibody are used as therapeutic agents.
  • FIGS. 10C and 10F show anti-CTLA-4 antibody The data of PEC when PD-L1 antibody and IL-18 were used are shown, respectively.
  • the region indicated by “R5” indicates PEC that can be said to have high expression intensity of DX5 and B220 (CD45R).
  • the proportion of the PEC in the whole cell was 43.93%, but it was 11 from the day when the anti-CTLA-4 antibody and the anti-PD-L1 antibody were administered.
  • the ratio was not so different as 45.57% ((b) of FIG. 10).
  • the ratio was as high as 59.79% ((c) in FIG. 10).
  • the horizontal axis of (d) to (f) in FIG. 10 represents the expression intensity of NKG2D
  • the vertical axis represents the number of cells. The relationship between the expression intensity of NKG2D and the number of cells did not change much in (d) to (f) of FIG.
  • NK cells cells having high expression intensity of DX5 and B220 (CD45R)
  • the therapeutic agent according to the present invention can enhance effector cells that attack and destroy tumor cells, and can exist for a long time.
  • Example 10 Reduction of CD4-positive CD25-positive T cells
  • changes in the number of CD4-positive CD25-positive T cells in mice administered with the cancer therapeutic agent according to the present invention were examined.
  • Example 2 0.25 ml of a suspension of CT-26 cells having the same cell concentration as used in Example 1 (5.0 ⁇ 10 4 cells / 0.25 ml) was intraperitoneally injected into the BALB / C wild type mouse. Injected and transplanted. Three days after the injection, the following therapeutic agents were injected intraperitoneally.
  • Anti-PD-L1 antibody only; IL-18 only; anti-PD-L1 antibody and IL-18; anti-CTLA-4 antibody and anti-PD-L1 antibody; anti-CTLA-4 antibody, anti-PD-L1 antibody The collected PEC was analyzed 7 days after the administration using IL-18 and IL-18. The dose is the same as in Example 6.
  • FIG. 11 shows the results of confirming that the therapeutic agent according to the present invention reduces the number of CD4-positive CD25-positive T cells.
  • FIG. 11 show anti-PD-L1 antibody, IL-18, anti-PD-L1 antibody and IL-18, anti-CTLA-4 antibody and The results of using anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 are shown.
  • (A) to (e) show the ratio of CD4 positive T cells to the whole PEC. The obtained result is shown.
  • the horizontal axis of (a) to (e) represents the expression intensity of TCR- ⁇ (T cell receptor ⁇ ), and the vertical axis represents the expression intensity of CD4.
  • the encircled region is a region where CD4 positive T cells are present.
  • the numeral “20.35%” in FIG. 11 (a) is the ratio of CD4 positive T cells present in the circled region to the whole PEC.
  • FIGS. 11 (f) to (j) show the detection results of CD4 positive CD25 positive T cells.
  • the horizontal axis represents the expression intensity of CD4 positive CD25 positive T cells, and the vertical axis represents CD4 positive CD25 positive T cells. Each cell number is shown.
  • the numerical values in the figures (f) to (j) indicate the proportion of CD4 positive CD25 positive T cells in the CD4 positive T cells existing in the circled areas in FIGS. 11 (a) to (e). Yes.
  • CD4-positive T cells and CD25-positive T cells are inhibitory lymphocytes (Tregs) that have a function of suppressing immune reactions and inflammatory reactions when cancer cells proliferate. In other words, the increase in the number of cells helps the growth of cancer cells.
  • Tregs inhibitory lymphocytes
  • CD4 positive cells were obtained when anti-PD-L1 antibody and IL-18 were used rather than when only anti-PD-L1 antibody and IL-18 were used. It can be seen that is decreasing.
  • anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 were used rather than the case of using anti-CTLA-4 antibody and anti-PD-L1 antibody. In the case, it can be seen that the number of CD4 positive cells is decreased.
  • the proportion of CD4-positive CD25-positive T cells was also higher than that in the case of using only anti-PD-L1 antibody and IL-18 alone, and anti-PD-L1 antibody and IL- 18 is less, and when using anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 than using anti-CTLA-4 antibody and anti-PD-L1 antibody It can be seen that there are few.
  • the cancer therapeutic agent according to the present invention further suppresses the proliferation of inhibitory lymphocytes compared to the case of using only the antibody. This is presumably because the inhibitory effect of the inhibitory lymphocyte proliferation by the antibody was further enhanced by the combined use of IL-18.
  • the cancer therapeutic agent according to the present invention can promote the enhancement and proliferation of effector cells as described above.
  • the cancer therapeutic agent according to the present invention can suppress the proliferation of inhibitory lymphocytes and can promote the enhancement and proliferation of effector cells, it can exert a very high antitumor effect. It is considered possible.
  • Example 11 Importance of NK cells for antitumor effect
  • an anti-asialo GM1 antibody that is an antibody against NK cells was used to examine the role of NK cells in the antitumor effect of the cancer therapeutic agent according to the present invention.
  • Rabbit anti-asialo GM1 antibody 50 ⁇ l or rabbit IgG 50 ⁇ g was diluted to 250 ⁇ l with PBS and injected intraperitoneally into mice one day before CT-26 cell transplantation.
  • the rabbit anti-asialo GM1 antibody or rabbit IgG was injected again with 250 ⁇ l of the diluted solution again 3 days after the intraperitoneal injection, and then the 250 ⁇ l of diluted solution was injected twice every 4 days.
  • Intraperitoneal injection That is, the intraperitoneal injection was carried out 1 day, 2 days, 6 days, and 10 days after CT-26 cell transplantation.
  • mice are divided into groups that receive 50 ⁇ g of rabbit IgG as a control as a therapeutic agent; groups that receive 100 ⁇ g of anti-CTLA-4 antibody, 100 ⁇ g of anti-PD-L1 antibody, and 2 ⁇ g of IL-18. Of mice.
  • Example 2 One day after the intraperitoneal injection of the anti-asialo GM1 antibody or rabbit IgG, a suspension of CT-26 cells having the same cell concentration (5.0 ⁇ 10 4 cells / 0.25 ml) used in Example 1 was used. The suspension was injected into the peritoneal cavity of 0.25 ml of the BALB / C wild type mouse. Then, 3 days after the injection, the therapeutic agent was injected intraperitoneally, and then every 4 days for a total of 4 times (that is, 3 days, 7 days, 11 days after the transplantation of CT-26 cells). After 15 days, the therapeutic agent was injected intraperitoneally.
  • FIG. 12 is a diagram showing the effect of an anti-asialo GM1 antibody that destroys and removes natural killer (NK) cells on the survival rate of mice administered with a cancer therapeutic agent according to the present invention.
  • FIG. 12 (a) shows the administration schedule of the above-mentioned rabbit anti-asialo GM1 antibody or rabbit IgG and the above therapeutic agent.
  • FIG. 12B shows experimental results.
  • FIG. 12 (a) shows a schedule in which the therapeutic agent is administered 3 days, 7 days, 11 days, and 15 days later, with the day when CT-26 cells are transplanted as zero day, as described above. ing.
  • the lower part of FIG. 12 (a) shows the schedule of administering the rabbit anti-asialo GM1 antibody or rabbit IgG 1 day before, 2 days, 6 days, and 10 days after the CT-26 cell transplantation as described above. .
  • the white circles represent the control (rabbit IgG administered 1 day before CT-26 cell transplantation, 2 days, 6 days, and 10 days after transplantation, and rabbit IgG was also administered as a therapeutic agent as described above. ), Triangles are administered rabbit IgG 1 day prior to CT-26 cell transplantation and 2 days, 6 days and 10 days after transplantation, and anti-CTLA-4 antibody, anti-PD-L1 antibody and A group administered IL-18 (hereinafter referred to as “Group 1”), and a square represents a group administered with an anti-asialo GM1 antibody instead of rabbit IgG in an experiment similar to that indicated by a triangle (hereinafter referred to as “Group 2”). Result).
  • the horizontal axis of FIG. 12 (b) indicates the number of days from the day when CT-26 cells were administered, and the vertical axis indicates the survival rate of the mice.
  • the cancer therapeutic agent according to the present invention promotes the induction of active NK cells into the peritoneal cavity. This is considered to be because IL-18 promotes the induction by the antibody.
  • IL-18 promotes the induction by the antibody.
  • NK cells were decreased by the antibody, and it is considered that the result as shown in FIG. 12 was obtained.
  • activated NK cells induced by antibodies and IL-18 play an important role in the antitumor effect of the cancer therapeutic agent according to the present invention.
  • Example 12 Change in the number of NK cells in mice administered with anti-asialo GM1 antibody
  • the PEC of mice administered with anti-asialo GM1 antibody was analyzed by flow cytometry, and changes in the number of NK cells were examined.
  • Example 11 Prepare 5 mice each of group 1 and group 2 of Example 11, and administer anti-asialo GM1 antibody or rabbit IgG, transplantation of CT-26 cells, and administration of therapeutic agents according to the same schedule as in Example 11.
  • the PEC was collected 4 days after the administration of the therapeutic agent and subjected to flow cytometry.
  • FIG. 13 is a diagram showing the difference in the analysis results of mouse-derived PEC depending on whether or not anti-asialo GM1 antibody was administered.
  • (A) to (d) of FIG. 13 show the analysis results of PEC derived from mice (Group 1) not administered with anti-asialo GM1 antibody, and (e) to (h) show anti-asialo GM1 antibody.
  • the analysis result of PEC derived from the administered mouse (Group 2 above) is shown.
  • the horizontal axis indicates the expression intensity of DX5
  • the vertical axis indicates the expression intensity of B220 (CD45).
  • R4 represents a cell expressing NKG2D
  • R5 represents a T cell
  • R6 represents an NK cell (including Pre-mMK).
  • R4 is 47.91%, R5 is 21.99%, and R6 is 16.96%.
  • R4 is 36.82%, R5 is 48.97%, and R6 is 4.45%.
  • FIG. 13 represent the number of cells expressing NKG2D present in R4 of (a) and (e), respectively, and (c) and (g) of FIG. Each represents the number of T cells present in R5 in (a) and (e), and (d) and (h) in FIG. 13 respectively represent NK cells (in R6 in (a) and (e) ( (Including Pre-mMK).
  • FIG. 13 shows that in the PEC derived from group 2 above, the proportion of NK cells is significantly reduced and the proportion of T cells is increased. Such a decrease in NK cells is thought to have resulted in the results shown in FIG. That is, it is considered that active NK cells induced by antibodies and IL-18 play an important role in the antitumor effect of the cancer therapeutic agent according to the present invention.
  • Example 13 Change in expression of cell surface markers specific to NK cells by administration of anti-asialo GM1 antibody
  • the PEC of mice administered with anti-asialo GM1 antibody was analyzed by flow cytometry, and changes in the expression of cell surface markers specific for NK cells were examined.
  • a PE-labeled anti-CD69 antibody (manufactured by eBiocience, clone H1.2F3) and a PE-labeled anti-CD49b antibody (manufactured by Beckton Dickinson, clone DX5), and the method described in (4) of [Experimental method] above. .
  • FIG. 14 is a diagram showing the difference in analysis results of surface markers in mouse-derived PEC depending on whether or not anti-asialo GM1 antibody is administered.
  • (A) to (d) of FIG. 14 show the results of analysis of the surface marker of PEC derived from mice (Group 1) not administered with anti-asialo GM1 antibody, and (e) to (h) show anti-asialo
  • mouth (the said group 2) which administered GM1 antibody is shown.
  • the horizontal axis shows the expression intensity of DX5, and the vertical axis shows the expression intensity of each surface marker.
  • NK1.1, CD11c, CD62L, and CD69 shown in FIG. 14 are all surface markers specific to NK cells (including Pre-mMK). Comparing (a) to (d) and (e) to (h) in FIG. 14, it can be seen that the cells expressing any surface marker are decreased in the PEC derived from group 2 above. Such a decrease in NK cells is thought to have resulted in the results shown in FIG. That is, it is considered that active NK cells induced by antibodies and IL-18 play an important role in the antitumor effect of the cancer therapeutic agent according to the present invention.
  • Example 14 Increase of CD4-positive CD25-positive T cells by administration of anti-asialo GM1 antibody
  • the PEC of mice administered with anti-asialo GM1 antibody was analyzed by flow cytometry, and changes in the number of CD4-positive CD25-positive T cells were examined.
  • Flow cytometry was carried out using the above-mentioned FITC-labeled anti-CD4 antibody (manufactured by eBioscience, clone GK1.5), APC-labeled anti-CD8 antibody (manufactured by Biolegend, clone 54-6.7), PE-labeled anti-CD25 antibody (manufactured by BD Bioscience, clone PC). -61) and the method shown in (4) of [Experimental method] above.
  • FIG. 15 is a diagram showing the results of confirming the expression intensity of CD4-positive T cells and CD8-positive T cells and the number of CD25-positive T cells in mouse-derived PECs with and without administration of anti-asialo GM1 antibody. .
  • the horizontal axis indicates the expression intensity of TCR- ⁇
  • the vertical axis indicates the expression intensity of CD4.
  • the horizontal axis indicates the expression intensity of CD25
  • the vertical axis indicates the number of CD4-positive CD25-positive T cells.
  • the horizontal axis indicates the expression intensity of TCR- ⁇
  • the vertical axis indicates the expression intensity of CD8.
  • CD4-positive T cells and CD25-positive T cells are inhibitory T lymphocytes, and the increase in the number of cells helps the growth of cancer cells.
  • CD8 positive T cells are cells having an antitumor effect.
  • the ratio of CD4 positive T cells present in the upper right area in the figure to the total PEC is 7.59% to 17 from the comparison between (a) and (c) of FIG. It can be seen that it has greatly increased to 0.02%.
  • mice pre-administered with anti-asialo GM1 antibody even when anti-CTLA-4 antibody, anti-PD-L1 antibody, and IL-18 were administered, inhibitory lymphocytes were increased and CD8 positive T cells were It shows that it will decrease.
  • NK cells are known to activate CD8-positive T cells. When NK cells decrease, CD8-positive T cells also decrease.
  • the therapeutic agent for cancer according to the present invention was superior by activating NK cells, making NK cells active for a long period of time, and consequently activating CD8-positive T cells. It is suggested to show an antitumor effect.
  • Example 15 therapeutic effect on ascites retention
  • the effect of the therapeutic agent for cancer according to the present invention on the accumulation of ascites in mice transplanted with tumor cells was examined.
  • a suspension of CT-26 cells (5.0 ⁇ 10 4 cells / 0.25 ml) was injected into the peritoneal cavity of 0.25 ml of the BALB / C wild type mouse.
  • the mice were divided into groups that received 100 ⁇ g of rabbit IgG as a therapeutic agent; groups that received 100 ⁇ g of anti-CTLA-4 antibody; and groups that received 100 ⁇ g of anti-CTLA-4 antibody and 2 ⁇ g of IL-18. Consisted of 5 mice.
  • the therapeutic agent was injected intraperitoneally, and then the therapeutic agent was injected intraperitoneally four times every four days. Then, the therapeutic effect on the accumulation of ascites was examined 21 days after the day of transplantation of CT-26 cells.
  • FIG. 16 is an appearance photograph showing the presence or absence of ascites for each group of mice 21 days after the day of transplantation of CT-26 cells.
  • FIG. 17 is a diagram showing changes in the abdominal circumference of the mice in each group.
  • the horizontal axis represents the number of days from the day when CT-26 cells were transplanted, and the vertical axis represents the abdominal circumference (mm).
  • the abdominal circumference was measured for the mice constituting each group, and the average value was obtained.
  • FIG. 18 is a diagram showing changes in the body weight of the mice in each group.
  • the horizontal axis is the same as in FIG. 17, and the vertical axis represents body weight (g).
  • the body weight was measured for the mice constituting each group, and the average value was determined.
  • the control showed a significant increase due to the accumulation of ascites, and even in mice administered with anti-CTLA-4 antibody, the body weight increased to the same weight as the control after 42 days after transplantation of CT-26 cells. .
  • mice administered with the anti-CTLA-4 antibody and IL-18 did not show ascites retention, and as shown in FIG. 18, the body weight was clearly suppressed to be low and maintained in a low state.
  • FIG. 19 shows the abdominal cavity of the above-mentioned control (FIG. 19 (a)) and the mouse administered with the anti-CTLA-4 antibody (FIG. 19 (b)) 21 days after the day of transplantation of CT-26 cells. It is a figure which shows a mode. As shown in FIG. 19, in both cases, many tumor masses were observed, and organ adhesions were also observed.
  • FIG. 20 shows the control (FIG. 20 (a) and its enlarged view (b)) and a mouse administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 (FIG. 20 (c)).
  • FIG. 20 (c) shows the control
  • FIG. 20 (c) shows the control
  • FIG. 20 (c) shows the control
  • FIG. 20 (c) shows the mouse administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18
  • FIG. 20 (c) shows the control
  • FIG. 20 (c) and its enlarged view (b) a mouse administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18
  • FIG. 21 is a view showing the appearance of the small intestine 21 days after the day of transplanting CT-26 cells, which is the control.
  • FIG. 22 is a view showing the appearance of the small intestine 21 days after the day of transplantation of CT-26 cells in a mouse administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18. As is clear from the comparison between the two, many tumor masses were formed in the control, whereas almost no tumor mass was observed in the mice administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18. Was not.
  • FIG. 23 shows the control (FIGS. 23 (a) to (c)) and mice administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 (FIG. 23 (d) to (f)). ) And a portion of the duodenum ((a), (d)), small intestine ((b), (e)), large intestine ((c), (f)) 21 days after the day of transplantation of CT-26 cells It is a figure which shows the external appearance.
  • FIG. 23 shows that there is not much difference between the control in the large intestine and the mouse administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18, but in the duodenum and small intestine, a tumor mass is formed in the control. In contrast, mice administered with anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 remained clean.
  • mice administered with anti-CTLA-4 antibody and / or anti-PD-L1 antibody and IL-18 were healthy as far as observed, and no decrease in body weight was observed.
  • Example 16 Study on side effects of cancer therapeutic agent according to the present invention
  • Example 15 since no strong autoimmune-like lesions were observed in mice administered with the cancer therapeutic agent according to the present invention, and weight loss was not confirmed, the cancer therapeutic agent according to the present invention had reduced side effects. It was suggested that Therefore, in this example, a more detailed study was conducted on the side effects of the cancer therapeutic agent according to the present invention. Specifically, the possibility that IL-18 abolishes the side effects of antibodies that are active ingredients of the above-mentioned cancer therapeutic agents was examined.
  • Example 2 As in Example 1, 0.25 ml of a suspension of CT-26 cells (cell concentration: 5.0 ⁇ 10 4 cells / 0.25 ml) was injected into the peritoneal cavity of BALB / C wild type mice and transplanted. .
  • mice were treated with 0.25 ml of PBS as a therapeutic group (group 1); 100 ⁇ g of anti-CTLA-4 antibody and 200 ⁇ g of anti-PD-L1 antibody (group 2); anti-CTLA-4 Group administered with 100 ⁇ g of antibody, 200 ⁇ g of anti-PD-L1 antibody and IL-18 (2 ⁇ g) (group 3); Group administered with 100 ⁇ g of anti-CTLA-4 antibody, 200 ⁇ g of anti-PD-L1 antibody and IL-18 (10 ⁇ g) (group 3) Divided into groups 4), each group consisted of 5 mice.
  • the doses ( ⁇ g) of PBS, anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 are doses per 25 g of mouse body weight.
  • the above therapeutic agent was intraperitoneally injected into the mouse four times in total, every 4 days from 3 days after the CT-26 cell injection. Blood and tissue were collected 18 days after the CT-26 cell injection and examined for liver and kidney functions as well as tissue lesions such as intestine, liver and kidney. The experiment was repeated three times.
  • FIG. 24 is a diagram showing the above-described CT-26 cell transplantation and therapeutic drug administration schedule.
  • the day on which CT-26 cells were transplanted was designated as “Day 0”, and 3 days later, 7 days later, 11 days later. This shows that the therapeutic agent is intraperitoneally administered 15 days later, and the mice are sacrificed 18 days later.
  • FIG. 25 shows the albumin concentration in the blood (FIG. 25 (a)), total bilirubin concentration (FIG. 25 (b)), AST (GOT) concentration (FIG. 25 (c)), and ALT (GPT) concentration. It is a figure which shows the result of having measured ((d) of FIG. 25).
  • FIG. 26 shows LD (LDH) concentration in the blood (FIG. 26 (a)), creatinine concentration (FIG. 26 (b)), ALP concentration (FIG. 26 (c)), and uric acid concentration (FIG. 26). It is a figure which shows the result of having measured (d)).
  • FIG. 27 is a diagram showing the results of measuring the urea nitrogen concentration in the blood.
  • the “Negative Control” in the figure is the result of using blood of a healthy mouse (hereinafter referred to as “healthy control group”) in which CT-26 cell transplantation and therapeutic drug administration are not performed.
  • FIG. 28 are diagrams showing the results of tissue staining of hepatoxylin eosin (HE) in the livers of the mice of groups 1 to 4 described above, and the magnification is 200 times.
  • HE hepatoxylin eosin
  • FIG. 28 shows the observation result of the liver tissue of group 2 above. In all mice of this group, a large number of cell division images were observed as in FIG. 28 (b).
  • the results shown in (a) of FIG. 25 and (b) of FIG. 28 indicate the possibility that the anti-CTLA-4 antibody and the anti-PD-L1 antibody have side effects such as liver tissue damage.
  • blood creatinine tends to be high in group 2 above, and it may be possible that mild damage was caused to the kidney. .
  • the values of blood ALP and blood ALT are the values of the group not treated with only cancer cell transplantation (“PBS” in the figure).
  • PBS cancer cell transplantation
  • group 1 the value was remarkably reduced, but in groups 3 and 4, values close to those of the healthy control group were shown.
  • group 2 blood ALP was almost the same as group 1, and blood ALT (GPT) was significantly lower than group 1.
  • the results of (c) in FIG. 26 and (d) in FIG. 25 suggested that in groups 3 and 4, the values of blood ALP and blood ALT (GPT) were improved by IL-18.
  • the blood concentrations of albumin, ALT (GPT), and ALP were significantly lower than those in the healthy control group, and the blood concentrations of creatinine were significantly increased compared to the healthy control group.
  • the above groups 3 and 4 show a tendency for AST (GOT) to increase in group 4 from the healthy control group (FIG. 25 (c)), and in group 3, urea nitrogen is suppressed from the healthy control group. A trend was shown (FIG. 27).
  • uric acid was increased in group 3 and group 4 from the healthy control group ((d) in FIG. 26).
  • FIGS. 29 and 30 show the results of tissue staining with hematoxylin eosin (HE) in the stomach, FIG. 31 in the duodenum, FIG. 32 in the small intestine, FIG. 33 in the large intestine, and FIG. 34 in FIGS. )
  • HE hematoxylin eosin
  • FIGS. 29 to 34 show the results of observing the tissues of the mice in groups 1 to 4 respectively.
  • the tissues of the stomach, duodenum, small intestine, large intestine and kidney showed almost no difference between groups 1 to 4.
  • B16 melanoma cells (melanoma) are often used as a cancer metastasis model.
  • B16 melanoma cells (2 ⁇ 10 5 cells) were transferred from the tail vein of mice (C57BL / 6, Japan SLC), and the number of black nodules formed in the lungs after several weeks was counted. The degree of metastasis was measured.
  • a cell line of B16 melanoma cells was purchased from ATCC, and a suspension with a cell concentration of 2 ⁇ 10 5 cells / 0.25 ml was prepared by the same method as described in Example 1. 0.25 ml of the suspension was injected into the tail vein of the C57BL / 6 mice.
  • mice were treated with 0.25 ml of PBS as a therapeutic group (group 1); 100 ⁇ g of anti-CTLA-4 antibody and 200 ⁇ g of anti-PD-L1 antibody (group 2); anti-CTLA-4 It was divided into a group (group 3) to which 100 ⁇ g of antibody, 200 ⁇ g of anti-PD-L1 antibody and IL-18 (2 ⁇ g) were administered, and each group was composed of 4 mice.
  • the doses ( ⁇ g) of PBS, anti-CTLA-4 antibody, anti-PD-L1 antibody and IL-18 are doses per 25 g of mouse body weight.
  • FIG. 35 is a diagram showing the transplantation of B16 melanoma cells and the administration schedule of the therapeutic agent.
  • the day on which the B16 melanoma cells were transplanted was designated as “Day 0”, 3 days later, 7 days later, 11 days later, It shows that the therapeutic agent is administered intraperitoneally after 15 days and the mice are sacrificed after 28 days.
  • FIGS. 36 to 38 are diagrams showing the results of observation of nodules formed in the lungs of the mice of groups 1 to 3, respectively. (A) to (d) in each figure show the 4 animals tested Results for mice are shown.
  • the average number of nodules on the lung surface in the control group (Group 1 above) was 233 +/ ⁇ 22.6, but anti-CTLA4 antibody and anti-PD-L1 antibody were administered every 4 days from 3 days after transplantation of B16 melanoma cells. 179 +/ ⁇ 14.0 in the group administered 4 times in total (above group 2), 121 +/ ⁇ 42.7 in the group administered anti-CTLA4 antibody, anti-PD-L1 antibody and IL-18 (above group 3) there were.
  • mice were tested in this example, but the mice from the day when B16 melanoma cells were transplanted, as in Example 1, were increased. It is considered that there is a sufficient possibility that the above-mentioned significant difference is shown by obtaining the survival rate over time.
  • the cancer therapeutic agent according to the present invention can be used in a cancer peritoneal dissemination model by combining IL-18 with a molecular target antibody such as an anti-CTLA-4 antibody or an anti-PD-L1 antibody. It was revealed that the antitumor effect was excellent. In addition, the lung metastasis model and the solid cancer model also showed a strong antitumor effect. This is thought to be due to IL-18 significantly enhancing the therapeutic effect of molecular target antibodies.
  • IL-18 enhances the therapeutic effect of the molecular target antibody by activating effector cells such as CD8-positive T cells and NK cells and promoting proliferation in the peritoneal cavity of mice transfected with tumor cells. It is possible.
  • IKDC B-18 positive, DX5 positive, CD11c positive NK-like cells
  • IKDC is an abbreviation for Interferon introducing killer dendritic cells
  • the above combination since the proliferation of CD4-positive T cells is suppressed by the above combination, it is considered that the above combination does not promote the proliferation of lymphocytes having an immune / inflammation suppressing effect such as Treg.
  • mice administered with anti-CTLA-4 antibody and / or anti-PD-L1 antibody and IL-18 are healthy, do not show weight loss, and have strong autoimmune-like lesions in the intestine and the like I could't see it. Moreover, as a result of examining liver function, kidney function, and tissue lesion, it was confirmed that the side effect of the cancer therapeutic agent according to the present invention is considered to be small.
  • the cancer therapeutic agent according to the present invention is a useful therapeutic agent exhibiting an excellent antitumor effect, and is particularly effective for the treatment of cancer accompanied by peritoneal dissemination.
  • the present invention can be effectively used for the treatment of cancer, particularly the treatment of cancer accompanied by peritoneal dissemination. It can be widely used in medicine and related fields.

Abstract

 本発明に係る癌治療薬は、IL-18と、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と、を有効成分として含有する。

Description

IL-18と分子標的抗体とを併用する癌治療薬
 本発明はインターロイキン18(以下、「IL-18」と称する)と分子標的抗体とを併用する癌治療薬に関する。より詳細には、IL-18と分子標的抗体とを含有することにより、相乗的な優れた抗腫瘍効果を奏することができ、かつ、副作用が少ない癌治療薬に関する。
 腫瘍の腹膜播種は、胃癌、大腸癌、卵巣癌などに伴って生じ、手術によって腫瘍を切除した場合でも発症することがあり、治療が非常に困難であることが知られている。腹膜播種の治療には、従来、化学療法剤による治療、血管内皮細胞増殖因子(VEGF)を標的とする治療、ビスホスホン酸を用いる増感作療法などが試みられている。
 また、近年、免疫反応および/または炎症反応を抑制するリンパ球(regulatory cells)並びにマクロファージに発現される抗原であるCTLA-4抗原またはPD-1/PD-L1抗原を標的として、上記リンパ球(抑制性リンパ球)を減少させる抗体が臨床において実用化され始めている(特許文献1,2)。
 上記抗体は、上記抑制性リンパ球を減少させる一方で、CD28やNKG2D等を発現するエフェクターリンパ球を増強し、エフェクターリンパ球による腫瘍細胞の排除や病原体感染細胞の排除を行う。
 このように、上記抗体を用いた治療は、自然免疫および獲得免疫を活性化し、腫瘍細胞を破壊するリンパ球(エフェクターリンパ球、または、エフェクター細胞ともいう)を持続的に増やし、腫瘍への遊走性を高めることによって腫瘍の退縮や消滅を目指すものである。そして、上記抗体は、従来の治療法では治療困難であった黒色腫などの悪性腫瘍に対して有効であることが証明され、その有効性の増大と、多くの腫瘍への適用の拡大とが期待されている。
 また、GM-CSF、IL-15および抗CTLA-4抗体を用いて抗腫瘍効果を確認する試みも行われている(非特許文献1)。そして、IL-18と、リツキシマブまたはHERCEPTIN(登録商標)との組み合わせが、単剤を用いた場合よりも優れた治療効果を示すことが開示されている(特許文献3)。さらに、所定の式で表される化合物、1つ以上の分子標的抗体、および免疫刺激化合物を組み合わせた組成物を用いて癌免疫治療を行うことも開示されている(特許文献4)。
国際公開公報「WO2004/004771号(2004年1月15日公開)」 日本国公表特許公報「特表2004-512005号(2004年4月22日公表)」 日本国公表特許公報「特表2010-52239号(2010年7月1日公表)」 日本国公表特許公報「特表2008-539249号(2008年11月13日公表)」
Fong L. et. al.,Cancer Res, 2009, 69:609-615.
 しかしながら、上記特許文献1,2に開示の抗体を用いた場合の治療効果はまだ改良の余地があるものと考えられる。さらには、上記抑制性リンパ球を減少させ、エフェクターリンパ球を増強する結果、自己免疫疾患の発症などの副作用が生じうるという問題もある。つまり、特許文献1,2に開示の技術には、治療効果を高め、かつ、副作用を軽減するという観点から改良の余地が残されていると言える。
 また、上記非特許文献1に開示の方法は、薬剤の投与量が非常に多く、現実的な方法ではないという問題がある。
 特許文献3は、IL-18と、リツキシマブまたはHERCEPTIN(登録商標)とを同時または逐次に患者に個別投与し、単剤よりも組み合わせの方が治療効果が優れていたことを開示する。また、特許文献4は、所定の式で表される特定の化合物および1つ以上の分子標的抗体(リツキシマブ、HERCEPTIN(登録商標)など)に免疫増強剤を加えることによって免疫反応が増大し得ることを開示する。なお、「分子標的抗体」とは、リンパ球の機能に関与する表面抗原や癌細胞の表面抗原を認識し得る抗体をいう。
 しかし、特許文献3,4で用いられている抗体以外の他の抗体を用いた場合にどのような効果が得られるかということ、および副作用の程度については明らかではない。したがって、治療効果を高め、かつ、副作用を軽減することができる癌治療薬を提供することに関し、特許文献3および4は、未だ十分な知見を提供するものではないと言える。
 本発明は、上記従来の問題点に鑑みてなされたものであって、その目的は、IL-18と所定の抗体とを含有することにより、優れた抗腫瘍効果を奏することができ、副作用を軽減しうる新規な癌治療薬を提供することにある。
 本発明者は、治療効果を高め、かつ、副作用を軽減することができる癌治療薬について鋭意検討した。その結果、IL-18を、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と併用することによって上記課題を解決することができることを見出し、本発明を完成するに至った。
 すなわち、上記の課題を解決するために、本発明に係る癌治療薬は、IL-18と、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と、を有効成分として含有することを特徴としている。
 本発明に係る癌治療薬は、IL-18と、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と、を有効成分として含有するため、上記抗体による抗腫瘍効果を著しく向上させることができる。その結果、治療効果が高く、かつ、副作用が少ない癌治療薬を提供することができるという効果を奏する。
CT-26細胞を移植した日の3日後から抗CTLA-4抗体およびIL-18を含有する癌治療薬を投与したときの効果を、マウスの生存率として観察した結果を示す図である。 抗CTLA-4抗体およびIL-18の用量効果を、実施例1と同様に、CT-26細胞を腹腔内投与したマウスの生存率として示す図である。 抗PD-L1抗体およびIL-18を含有する癌治療薬の効果を、実施例1と同様に、マウスの生存率として示す図である。 CT-26細胞を移植した日から7日後に、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を含有する癌治療薬等を投与し、その後、4日ごとに計4回投与した場合の効果を、マウスの生存率として示す図である。 CT-26細胞を移植した日から14日後に、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を含有する癌治療薬等を投与した場合の効果を、マウスの生存率として示す図である。 CT-26細胞を移植した日の3日後に抗CTLA-4抗体およびIL-18;抗PD-L1抗体およびIL-18;抗CTLA-4抗体、抗PD-L1抗体およびIL-18、をそれぞれ投与したマウスの4日間の腹腔滲出細胞(PEC)数の変化を示す図である。 抗CTLA-4抗体および抗PD-L1抗体;抗CTLA-4抗体およびIL-18;抗PD-L1抗体およびIL-18;抗CTLA-4抗体、抗PD-L1抗体およびIL-18、をそれぞれ癌治療薬として投与した4日後に、再度これらの癌治療薬をそれぞれ投与したマウスのPEC数の変化を示す図である。 腫瘍を有するマウスに抗CTLA-4抗体、抗PD-L1抗体、およびIL-18によって誘導されたPECを養子細胞移入した場合の延命効果を示す図である。 抗PD-L1抗体のみ;IL-18のみ;抗PD-L1抗体およびIL-18;抗CTLA-4抗体および抗PD-L1抗体;抗CTLA-4抗体、抗PD-L1抗体およびIL-18、をマウスに腹腔内投与することによって誘導されたPECの、B220(CD45R)、NKG2D、およびDX5(CD49b)の発現強度を検討した結果を示す図である。 抗CTLA-4抗体および抗PD-L1抗体、または、抗CTLA-4抗体、抗PD-L1抗体およびIL-18をマウスに腹腔内投与することによって誘導されたPECの、B220(CD45R)、NKG2DおよびDX5(CD49b)の発現強度を検討した結果を示す図である。 本発明に係る治療薬が、CD4陽性CD25陽性T細胞の数を減少させることを確認した結果を示す図である。 ナチュラルキラー(NK)細胞を破壊し除去する抗アシアロGM1抗体が、本発明に係る治療薬を投与したマウスの生存率に与える影響を示す図である。 抗アシアロGM1抗体の投与の有無による、マウス由来のPECの解析結果の違いを示す図である。 抗アシアロGM1抗体の投与の有無による、マウス由来のPECにおける表面マーカーの解析結果の違いを示す図である。 抗アシアロGM1抗体の投与の有無による、マウス由来のPECにおけるCD4陽性T細胞およびCD8陽性T細胞の発現強度、並びに、CD25陽性T細胞の細胞数を確認した結果を示す図である。 CT-26細胞を移植した日から21日後における、対照または治療薬を投与した各群のマウスについて、腹水の有無を示す外観写真である。 対照または治療薬を投与した各群のマウスの腹囲の変化を示す図である。 対照または治療薬を投与した各群のマウスの体重の変化を示す図である。 対照と、抗CTLA-4抗体を投与したマウスとにつき、CT-26細胞を移植した日から21日後の腹腔の様子を示す図である。 対照と、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスとについて、CT-26細胞を移植した日から21日後の腹腔の様子を示す図である。 対照のマウスの、CT-26細胞を移植した日から21日後の小腸の外観を示す図である。 抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスの、CT-26細胞を移植した日から21日後の小腸の外観を示す図である。 対照と、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスとについて、CT-26細胞を移植した日から21日後の十二指腸、小腸、大腸の一部分の外観を示す図である。 実施例16におけるCT-26細胞の移植と、治療薬の投与スケジュールとを示す図である。 実施例16において血液中のアルブミン濃度(図25の(a))、総ビリルビン濃度(図25の(b))、AST(GOT)濃度(図25の(c))およびALT(GPT)濃度(図25の(d))を測定した結果を示す図である。 実施例16において血液中のLD(LDH)濃度(図26の(a))、クレアチニン濃度(図26の(b))、ALP濃度(図26の(c))、および尿酸濃度(図26の(d))を測定した結果を示す図である。 実施例16において血液中の尿素窒素濃度を測定した結果を示す図である。 実施例16における群1~群4のマウスの肝臓の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図である。 実施例16における群1~群4のマウスの胃の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図である。 実施例16における群1~群4のマウスの胃の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図である。 実施例16における群1~群4のマウスの十二指腸の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図である。 実施例16における群1~群4のマウスの小腸の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図である。 実施例16における群1~群4のマウスの大腸の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図である。 実施例16における群1~群4のマウスの腎臓の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図である。 実施例17におけるB16黒色腫細胞の移植と、治療薬の投与スケジュールとを示す図である。 実施例17における群1のマウスの肺に生じた小結節を観察した結果を示す図である。 実施例17における群2のマウスの肺に生じた小結節を観察した結果を示す図である。 実施例17における群3のマウスの肺に生じた小結節を観察した結果を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。範囲を示す、例えば「A~B」のような記載は、A以上B以下であることを示す。なお、本明細書中に記載された特許文献および非特許文献の全てが、本明細書中において参考として援用される。
 〔実施の形態1:本発明に係る癌治療薬〕
 (1)有効成分
 本発明に係る癌治療薬は、IL-18と、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と、を有効成分として含有する。
 IL-18は、IFN-γの誘導因子として岡村らによって1995年に発見され(Okamura et.al、Nature,378:88‐91,1995)、近年様々な生物学的作用を有することが明らかになってきているサイトカインである。
 IL-18は、栄養欠乏、酸素不足、紫外線などのストレスによる小胞体ストレス応答の結果、インフラマゾーム(タンパク質の複合体であって、NLRP3,ASC,カスパーゼ‐1などを含有する)が活性化され、当該インフラマゾームによってカスパーゼ‐1が活性化し、当該カスパーゼ‐1によってpro-IL-18がプロセシングされ、活性型のIL-18に変化することによって生成される。
 そして、IL-18は、抗原やサイトカインによって活性化されたCD8陽性T細胞、ナチュラルキラー細胞(以下、NK細胞と称する)、γδT細胞などのエフェクター細胞に作用し、これらの細胞の数を著しく増加させることができると共に、これらの細胞の死を抑制し、生存、分化を促進することが知られている(例えば、Li Wen et. al、J.Leukoc. Biol., 82、142‐151、2007.)。
 IL-18としては、特に限定されるものではないが、特許文献3に記載されているヒトIL-18ポリペプチド(配列番号1)、マウスIL-18ポリペプチド(配列番号2)などを用いることができる。ヒトIL-18とマウスIL-18との間のアミノ酸配列の相同性は65%である。ヒトIL-18ポリペプチドについては、特許文献3に記載されているように、EP0692536A2、EP0712931A2、EP0767178A1およびWO97/2441等に開示されている。なお、以下、本明細書では、IL-18ポリペプチドを単に「IL-18」と称する。
 特許文献3に記載されているように、上記ヒトIL-18は、大腸菌非病原性株において発現されるヒトIL-18の組み換え成熟形態である。マウスおよびヒトのIL-18 cDNAは、192アミノ酸および193アミノ酸からなる前駆体タンパク質(それぞれ、配列番号2および1)をコードする。
 IL-18は、硫酸アンモニウムまたはエタノール沈殿法、酸抽出法、アニオンまたはカチオン交換クロマトグラフィー法、ホスホセルロースクロマトグラフィー法、疎水性相互作用クロマトグラフィー法、アフィニティークロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィー、レクチンクロマトグラフィー法、および高速液体クロマトグラフィーなどの公知の方法により、組み換え細胞培養物から回収および精製することができる。
 細胞内の合成、単離、および/または精製時にIL-18が変性される場合は、タンパク質のリフォールディングについてのよく知られた技法を用いて、活性な立体配座を再生することができる。活性型のヒトIL-18を精製および作製する方法は、WO01/098455に示されている。IL-18は市販品を用いても構わない。
 本願発明に係る癌治療薬は、抗体として、抗PD-L1抗体、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体を含有する。
 抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体については、特許文献1に詳述されている。特許文献1に記載されているように、ヒトPD-1cDNAは、EMBL/GenBank Acc.No.NM_005018に示される塩基配列で構成され、マウスPD-1cDNAは、Acc.No.X67914に示される塩基配列で構成され、それらの発現は、胸腺細胞においてはCD4CD8からCD4+CD8+細胞に分化する際に認められる(Int.Immunol.,1996年,第18巻,第5号,p.773~780、J.Exp.Med.2000年、第191巻、第5号、p.891~898)。
 また、末梢におけるPD-1の発現は、抗原レセプターからの刺激により活性化したT細胞、B細胞(Int.Immunol.,1996年,第18巻,第5号,p.765~772)または活性化マクロファージを含む骨髄細胞に認められることが報告されている。また、PD-1は、抗原レセプター(TCR)シグナルを抑制するシグナルを伝達していることも知られている。
 PD-L1は、PD-1のリガンドであり、腫瘍細胞の他、活性化した単球や樹状細胞などのいわゆる抗原提示細胞に発現している(J.Exp.Med.2000年、第191巻、第7号,p.1027~1034)。特許文献1に記載されているように、ヒトPD-L1cDNAは、EMBL/GenBank Acc.No.AF233516、マウスPD-L1cDNAはNM_021893で示される塩基配列で構成される。
 これらの細胞は、Tリンパ球細胞に対して、さまざまな免疫誘導シグナルを誘導する相互作用分子を提示しており、PD-L1は、PD-1による抑制シグナルを誘導する分子の1つである。
 特許文献1に記載されているように、PD-L2は、PD-1の2番目のリガンドとして同定されたが、その発現および機能はPD-L1とほぼ同じであることが報告されている。なお、ヒトPD-L2cDNAはEMBL/GenBank Acc.No.NM_025239、マウスPD-L2cDNAはN M_021896で示される塩基配列で構成される(Nature Immunology,2001年,第2巻,第3号,p.261~267)。
 PD-1に代表される共役抑制分子からの抑制シグナルは、抗原レセプター(TCR)および共役刺激分子によるポジティブなシグナルを適性に制御するメカニズムによって、リンパ球発生または成熟過程での免疫寛容または自己抗原に対する異常な免疫反応を制御していると考えられている。
 抗CTLA-4抗体については、例えば特開2007-277242号公報に記載されている。CTLA-4とは、細胞傷害性Tリンパ球関連抗原4(CD152)のことである。特開2007-277242号公報に記載されているように、CTLA-4がその天然のリガンドであるB7.1(CD80)およびB7.2(CD86)と結合すると、負の制御シグナルがT細胞に送達され、この負の制御シグナルを遮断すると動物モデルでT細胞の免疫機能および抗腫瘍活性が亢進する(ThompsonおよびAllison、Immunity、7、445~450頁(1997);McCoyおよびLeGros、Immunol.&Cell Biol.77:1~10頁(1999))。
 抗体を使用してCTLA-4の負の制御シグナルを遮断すると、T細胞が媒介する腫瘍の死滅が亢進し、抗腫瘍性免疫を誘導できることが示されている(例えば、Leachら、Science 271:1734~1736頁(1996)など)。ヒトCTLA-4の完全な配列はGenBankアクセッション番号L15006に記載されている。
 CD25は、分子量55kDaの単鎖糖タンパクで、成人T細胞性白血病細胞の表面抗原として知られている。CD33は、急性骨髄性白血病細胞の表面抗原として知られており、CD52は、B細胞性慢性リンパ性白血病細胞の表面抗原として知られている。
 抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体、抗CD52抗体は、それぞれ、PD-L1、PD-1、PD-L2、CTLA-4、CD25、CD33、CD52による免疫抑制シグナルを阻害するものであれば、ヒト由来抗体、マウス由来抗体、ラット由来抗体、ウサギ由来抗体またはヤギ由来抗体などのいずれの抗体でもよく、さらにそれらのポリクローナル若しくはモノクローナル抗体、完全型若しくは短縮型(例えば、F(ab’)2、Fab’、FabまたはFv断片。これらを以下、「抗体断片」ともいう。)抗体、キメラ化抗体、ヒト化抗体または完全ヒト型抗体のいずれのものでもよい。
 これらの抗体は、PD-L1、PD-1、PD-L2、CTLA-4、CD25、CD33またはCD52の細胞外領域の部分タンパク質を抗原として、公知の抗体または抗血清の製造法に従って製造することができる。細胞外領域の部分タンパク質は、公知のタンパク質発現ならびに精製法によって調製することができる。
 ポリクローナル抗体は、公知の方法によって製造することができる。例えば、抗原タンパク質、あるいは、抗原タンパク質とキャリアータンパク質との混合物で、適当な動物に免疫を行ない、その免疫動物から抗原タンパク質に対する抗体含有物を採取して、抗体の分離精製を行うことにより製造することができる。
 用いられる動物としては、マウス、ラット、ヒツジ、ヤギ、ウサギ、および、モルモットが一般的に挙げられる。抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを抗原タンパク質と共に投与することができる。投与は、通常約2週毎に1回ずつ、計約3~10回程度行うのが一般的である。
 ポリクローナル抗体は、上記の方法で免疫された動物の血液、腹水などから採取することができる。抗血清中のポリクローナル抗体価は、ELISA法によって測定することができる。
 ポリクローナル抗体の分離精製は、例えば、抗原結合固相、プロテインAあるいはプロテインGなどの活性吸着剤を用いた精製法、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体による吸脱着法、超遠心法、ゲルろ過法などの免疫グロブリンの分離精製法に従って行うことができる。
 上記抗体としては、モノクローナル抗体あるいはその修飾体を用いることがより好ましい。特許文献1に記載されているように、抗原で免疫された動物から抗体価の認められた個体を選択し、最終免疫の2~5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を同種または異種動物の骨髄腫細胞と融合させ、継代培養可能なモノクローナル抗体産生ハイブリドーマを作製することにより、モノクローナル抗体産生細胞を作製することができる。
 抗原タンパク質は、抗体産生が可能な部位にそれ自体を単独で、あるいは担体、希釈剤と共に投与する。この際、抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与するのが一般的である。
 また、「DNA免疫」と呼ばれる方法によっても、動物を免疫することができる。この方法は、免疫動物の後足前脛骨筋にカルジオトキシン(Cardiotoxin)を処置し、さらに抗原タンパク質を発現するベクターを導入した後、組織修復の過程でベクターが筋細胞に取りこまれ、タンパク質を発現する現象を利用した方法である(Nature Immunology,2001年,第2巻,第3号,p.261~267)。
 免疫される動物としては、マウス、ラット、ヒツジ、ヤギ、ウサギまたはモルモットを用いることが可能であるが、好ましくはマウスまたはラットが用いられる。融合操作は、コーラーとミルシュタインの方法(Nature ,1975年,第256巻,第5517号,p.495~497)で実施することができ、融合促進剤としては、ポリエチレングリコール(PEG)やセンダイウィルスなどが用いられる。骨髄腫細胞としては、P3U1、NS1、SP2/0、および、AP1などの骨髄腫細胞が挙げられるが、通常P3U1がよく利用される。
 モノクローナル抗体産生細胞の選別は、特許文献1に記載されているように、例えば、抗原タンパク質を直接あるいは担体と共に吸着させた固相にハイブリドーマ培養上清を添加することによるELISA法などにより検出して行うことができる。さらに、ハイブリドーマ培養上清の抗体価は、ELISA法によって測定できる。モノクローナル抗体の分離精製は、上記のポリクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行うことができる。
 上記ハイブリドーマとしては、上記抗体を製造するために通常用いられる公知のハイブリドーマを用いればよい。例えば、抗PD-L1抗体または抗PD-1抗体を製造する場合であれば、特許文献1に開示のハイブリドーマを用いることができる。
 上記抗体断片は、プロテアーゼ酵素により抗体を処理し、場合により還元して得ることができる。F(ab’)2抗体フラグメントは、精製されたモノクローナル抗体をペプシンで完全に消化し、イオン交換クロマトグラフィー、ゲルろ過、アフィニティークロマトグラフィーのいずれかの公知の方法により精製することができる。Fab’抗体フラグメントは、調製したF(ab’)2を2-メルカプトエチルアミンで部分還元することによって作製することができる。また、Fab抗体フラグメントは、システイン存在下で消化酵素パパインによって直接消化し、精製して作製することができる。
 scFv抗体は、例えばジョストらの方法(J.Biol.Chem.,1994年, 第269巻,第42号,p.26267~26273)によって調製することができる。
 ヒト以外の哺乳動物に免疫して作製された非ヒト抗体の一部をヒト抗体の一部に置換することによって、上記ヒト化抗体を作製することができる。具体的には、ヒト抗体の定常領域をコードする遺伝子と、非ヒト抗体の可変領域をコードする遺伝子とのキメラを構築することによって、ヒト化抗体を作製できることが知られている(Proc.Natl.Acad.Sci.(USA),1987年,第84巻,p.3439~3443、J.Immunol.,1987年,第139巻,第1号,p.3521)。
 ヒト抗体の定常領域のDNA配列は文献に記載されており、当該定常領域の遺伝子は既知のクローンから容易に入手できる。続いて、抗体の可変領域をコードするDNA配列をヒト抗体の定常領域の配列に融合させる。ヒト抗体の定常領域のアイソタイプは所望のエフェクター機能または抗体依存性細胞性細胞毒性(すなわち抗体依存性細胞傷害)における活性によって選択できる。好ましいアイソタイプはIgG1、IgG3およびIgG4である。また、ヒト軽鎖定常領域、κ鎖またはλ鎖のいずれも用いることができる。このヒト化キメラ抗体は通常の方法によって発現させることができる。
 完全ヒト型抗体は、ヒト免疫グロブリンの定常領域遺伝子が導入されたマウス(ゼノマウス(Chemical Biology,2000年,第7巻,第8号,p.R185-6))等を利用して作製することができ、さらに上記マウスから単離した抗体産生リンパ球をハイブリドーマにして、目的の抗体を量産させることができる。また、完全ヒト型抗体は、ファージ・ディスプレー法(FEBS Letter,1998年,第441巻,p.20-24)によっても作製することができる。
 本発明に係る癌治療薬は、(i)IL-18と、(ii)抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と、を有効成分として含有する。上記「1以上の抗体」は、上記群より選ばれる抗体であれば、いくつ用いてもよい。
 中でも、本発明に係る癌治療薬には、癌治療薬として実績を有する抗PD-L1抗体および/または抗CTLA-4抗体が含まれていることが好ましく、IL-18と、抗PD-L1抗体と、抗CTLA-4抗体とを含有することが最も好ましい。
 一方、PD-L1は上述のようにPD-1のリガンドであり、PD-L2はPD-1のリガンドである。そのため、抗PD-1抗体または抗PD-L2抗体を、抗PD-L1抗体の代わりに用いた場合も抗PD-L1抗体を用いた場合と同様の効果が得られることが期待される。
 また、CD33、CD52、および、CD25は、上述のように、それぞれ急性骨髄性白血病細胞の表面抗原、B細胞性慢性リンパ性白血病細胞の表面抗原、および、成人T細胞性白血病細胞の表面抗原として知られている。これらの癌の患者における腫瘍化した白血球には、MICAおよびMICBという表面抗原が多く見られる。
 本発明に係る癌の治療薬がIL-18と、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体とを含有する場合、上記抗体がそれぞれCD25、CD33、CD52を標的とする。また、後述する実施例に示すように、IL-18は、NKG2Dの発現強度が高いNK細胞の誘導を強化することができる。そして、当該NK細胞はNKG2DによってMICAおよびMICBを認識し、これらの表面抗原を発現した細胞を融解させることができる。
 それゆえ、本発明に係る癌の治療薬がIL-18と、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体とを含有する場合、当該治療薬は、急性骨髄性白血病、B細胞性慢性リンパ性白血病、および、成人T細胞性白血病の治療のために有効に作用する可能性があると考えられる。
 本発明に係る癌治療薬において、IL-18と上記抗体との使用量の比としては、上記抗体を1種類用いる場合、IL-18と上記抗体との質量比が、1:10~1:200であること、1:25~1:200であること、1:25~1:50であること、または、1:30~1:50であることが好ましく、投与する生体(被検体、患者)の体重1kgあたりのIL-18の投与量を0.1mg/kgとしたときに、上記質量比で抗体を投与することが好ましい。
 また、上記抗体を2種類以上用いる場合、IL-18の質量と、2種類以上の抗体の質量を合計した値との比が上記質量比になるようにし、抗体同士の質量比は任意の比とすればよい。
 つまり、IL-18の質量と、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体の質量(用いる抗体の質量の合計)との比が、1:10~1:200であること、1:25~1:200であること、1:25~1:50であること、または、1:30~1:50であることが好ましく、抗体同士の質量比は任意の比とすればよい。
 例えば、抗体を2種類用いる場合、IL-18の上記投与量を0.1mg/kgとしたときに、IL-18と、1種類目の抗体と、2種類目の抗体とを、質量比1:50:50で用いることができる。
 本発明に係る癌治療薬は、IL-18と、上記抗体(抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体)とを有効成分とする。上記癌治療薬は、IL-18と上記抗体とを混合した組成物であってもよい。また、IL-18と、上記抗体とは混合されておらず別々に存在していてもよい。
 つまり、有効成分としてIL-18と、上記抗体とが用いられる限り、IL-18と、上記抗体とが混合されていなくても、本発明に係る癌治療薬の範囲に含まれる。
 例えば、IL-18と、上記抗体とを、患者に対し、IL-18を先に投与した後に上記抗体を投与する、というように、別々に投与する場合であっても、IL-18と、上記抗体とを有効成分として併用しているため、IL-18と、上記抗体とが混合されていない形態も、IL-18と、上記抗体とを有効成分として含有する本発明に係る癌治療薬に該当する。ただし、投与の順序はこれに限られるものではなく、上記抗体を患者に投与した後にIL-18を投与してもよいし、あるいは、上記抗体とIL-18とを同時に患者に投与してもよい。
 上記抗体が複数種の抗体である場合、当該抗体の投与形態は、複数種の抗体を同時に投与する形態であってよいが、これに限定されない。例えば抗体を2種類用いる場合、IL-18と、1種類目の抗体と、2種類目の抗体とを、患者に対して、任意の順序でそれぞれ経時的に投与してもよい。例えば、IL-18、抗PD-L1抗体、および、抗CTLA-4抗体という順序、または、IL-18、抗CTLA-4抗体、および、抗PD-L1抗体という順序で患者に投与する形態等であってよい。IL-18と、1種類または複数種の抗体とを経時的に投与する場合、IL-18と抗体との投与間隔、または、抗体と抗体との投与間隔は、2~5日であることが好ましい。
 また、投与箇所は、IL-18とそれぞれの抗体とで同じであってもよいし、異なっていてもよい。例えば、IL-18と複数種の抗体とを全て静脈注射する投与形態であってもよいし、IL-18を静脈注射し、1種類目の抗体を皮下注射し、2種類目の抗体を皮内注射するというような投与形態であってもよい。通常は、投与の簡便性に鑑みると、IL-18と抗体とを同じ箇所に投与することが好ましい。
 本発明に係る癌治療薬の有効成分(IL-18および上記抗体)の用量は、患者の年齢、症状等により異なるため一概には言えないが、1回の投与では通常、患者の体重あたり、有効成分として、IL-18は0.1mg/kg、抗体は1mg/kg~20mg/kgであることが好ましく、抗体は2.5mg/kg~5.0mg/kgであること、または3.0mg/kg~5.0mg/kgであることがより好ましい。なお、有効成分に占めるIL-18と上記抗体との質量比は上述したとおりである。
 また、後述する実施例では被検体としてマウスを用いているが、マウスの体重あたりの投与量と、ヒトの体重あたりの投与量とに大きな差はない。ヒトに投与する場合、IL-18を0.1mg/kgとしたときに、抗体を1mg/kg~20mg/kgとして3週間ごとに4回投与する投与形態が一例として考えられる。
 (2)その他の成分
 本発明に係る癌治療薬は、上記有効成分以外に、必要に応じて、例えば特許文献3に記載されているような、医薬上許容される担体、希釈剤、または賦形剤をさらに含みうる。
 上記担体は、水およびピーナッツ油、大豆油、鉱油、または、ゴマ油など、あるいは、石油、動物、植物、または合成由来の油を含む油など、無菌の液体でありうる。
 本発明に係る癌治療薬が静脈内投与される場合は、水を担体として用いることができる。例えば、注射溶液用の液体担体としては、生理食塩液ならびにデキストロースおよびグリセロールの水溶液もまた用いることができる。
 適切な医薬賦形剤としては、デンプン、グルコース、ラクトース、スクロース、ゼラチン、麦芽、コメ、小麦粉、胡粉、シリカゲル、ステアリン酸マグネシウム、モノステアリン酸グリセロール、滑石、塩化ナトリウム、乾燥スキムミルク、グリセロール、プロピレングリコール、水、および、エタノールなどが挙げられる。
 本発明に係る癌治療薬は、必要に応じて、少量の保湿剤もしくは乳化剤、またはpH緩衝剤をも含有しうる。本発明に係る癌治療薬は、溶液、懸濁液、乳剤、錠剤、丸薬、カプセル、粉末、または、徐放製剤などの形態を取り得る。
 本発明に係る癌治療薬は、トリグリセリドなど従来の結合剤および担体を有する坐剤として調合することができる。経口製剤は、医薬グレードのマンニトール、ラクトース、デンプン、ステアリン酸マグネシウム、サッカリンナトリウム、セルロース、または、炭酸マグネシウムなど、標準的な担体を含みうる。本発明に係る癌治療薬は、上記有効成分と共に、適量の担体を含有していてもよい。製剤の形式は、投与方式に合わせて適宜調整すればよい。
 本発明に係る癌治療薬の患者への投与形態は特に限定されるものではないが、本発明の一実施形態において、上記癌治療薬は、従来公知の手順に従い、ヒトへの静脈内投与に適合した医薬組成物として処方される。
 特許文献3に記載されているように、典型的に、静脈内投与用の組成物は、無菌で等張性の水性緩衝液中の溶液である。適切な場合、上記組成物は、可溶化剤および注射部位における疼痛を和らげるリグノカインなどの局所麻酔剤も含みうる。
 一般に、成分は、例えば、活性剤の量を表示するアンプルまたは小袋などの密封容器内における乾燥凍結粉末または水を含まない濃縮物として、単位用量形態で個別にまたは一括混合されて供給される。なお、上記癌治療薬は、上述したように、IL-18と上記抗体とは必ずしも混合されていなくてもよい。したがって、IL-18と上記抗体とが個別に供給されてもよい。
 上記癌治療薬を注入投与する場合、無菌の医薬グレードの水または生理食塩液を格納する注入ボトルにより分注することができる。上記癌治療薬を注射投与する場合、無菌の注射用水または生理食塩液のアンプルを供給して、投与前に成分を混合することができる。
 本発明に係る癌治療薬は、非経口投与用の溶液または凍結乾燥粉末として調合することができる。粉末は、使用前に、適切な希釈剤または他の医薬上許容される担体の添加により還元することができる。液体製剤は、緩衝済みで等張性の水溶液でありうる。適切な希釈剤の例は、通常の等張性生理食塩液、水または酢酸ナトリウム緩衝液もしくは酢酸アンモニウム緩衝液中に5%の標準的なデキストロースである。
 上記製剤は、非経口投与に好適であるが、経口投与に用いることもでき、吸入用の用量計量型吸入器または噴霧器中に格納することもできる。上記癌治療薬には、ポリビニルピロリドン、ゼラチン、ヒドロキシセルロース、アカシアガム、ポリエチレングリコール、マンニトール、塩化ナトリウム、またはクエン酸ナトリウムなどの賦形剤を添加することが望ましい場合がある。
 上記癌治療薬は、経口投与用にカプセル化することも、錠剤化することも、乳剤またはシロップに調製することもできる。医薬上許容される固体または液体の担体を添加して、上記癌治療薬を増強または安定化することもでき、上記癌治療薬の調製を容易化することもできる。
 固体の担体は、デンプン、ラクトース、硫酸カルシウム二水和物、白土、ステアリン酸マグネシウムもしくはステアリン酸、滑石、ペクチン、アカシアガム、寒天、またはゼラチンを含む。
 液体の担体は、シロップ、ピーナッツ油、オリーブ油、生理食塩液、および水を含む。担体はまた、単独またはロウを伴うモノステアリン酸グリセリルまたはジステアリン酸グリセリルなどの徐放用材料も含みうる。
 固体担体の量は様々であるが、用量単位当たり約20mg~約1gである。医薬製剤は、錠剤形態の場合、適切ならば、粉砕、混合、造粒、および圧縮、硬質ゼラチンカプセル形態の場合、粉砕、混合、および充填を含む従来の製薬法に従い作製される。
 液体の担体を用いる場合、製剤は、シロップ、エリキシル剤、乳剤、または水性もしくは非水性の懸濁液の形態である。こうした液体製剤は、経口(p.o.)で直接にまたは軟質ゼラチンカプセル中に充填して投与することができる。
 本発明に係る癌治療薬は、注射用に用意された形態における、生理的pHで緩衝済みの上記癌治療薬を含有する水性懸濁液または水溶液として用いることができる。水性担体としては、例えば、0.4%生理食塩液または0.3%グリシンなど、各種の水性担体を用いることができる。これらの溶液は無菌であり、一般に粒状物質を含まない。
 上記水性懸濁液または水溶液は、従来公知の滅菌法(例えば、濾過法)により滅菌することができる。本発明に係る癌治療薬は、pH調整剤または緩衝剤など、生理的条件を近似するのに必要な医薬上許容される補助物質を含有しうる。
 このような、担体、補助物質等を含有する医薬製剤中における本発明に係る癌治療薬の濃度は、選択される具体的な投与方式に従い、流体容量、粘稠度などに基づき選択すればよい。
 〔実施の形態2:本発明に係る癌治療薬の投与〕
 本発明に係る癌治療薬は、いずれかの適切な体内経路により患者に投与することができる。
 投与の方法としては、例えば特許文献3に記載の従来公知の各種方法を用いることができる。すなわち、リポソーム中への封入、微粒子、マイクロカプセル、化合物を発現する能力を有する組み換え細胞、受容体を介するエンドサイトーシス(例えば、Wuら、J.Biol.Chem.、第262巻、4429~4432頁(1987)を参照)、レトロウイルスベクターまたは他のベクターの一部としての核酸の構築など、各種のデリバリーシステムが知られており、本発明に係る癌治療薬の投与に用いることができる。
 導入法は、皮内経路、筋肉内経路、腹腔内経路、静脈内経路、皮下経路、鼻腔内経路、硬膜外経路、および経口経路を含むがこれらに限定されない。上記癌治療薬は、任意の好適な経路、例えば、注入またはボーラス注射、上皮または粘膜皮膚による内膜(例えば、口腔粘膜、直腸および腸粘膜など)を介する吸収により投与することができ、他の生物活性剤と共に投与することができる。
 投与は、全身投与または局所投与でありうる。加えて、本発明に係る癌治療薬は、脳室内注射、および、くも膜下注射を含む任意の適切な経路により中枢神経系に導入することが望ましい場合があり、脳室内注射は、例えば、オンマヤリザーバーなどの容器に取り付けた脳室内カテーテルにより容易化することができる。例えば、吸入器または噴霧器およびエアゾール剤を有する製剤の使用により、肺内投与もまた用いることができる。
 投与は、上述したように、有効成分(IL-18および上記抗体)の用量が、投与1回あたり、患者の体重あたり、IL-18は0.1mg/kg、抗体は1mg/kg~20mg/kg、より好ましくは2.5mg/kg~5.0mg/kgまたは3.0~5.0mg/kgとなるように行うことが望ましい。
 〔実施の形態3:本発明に係る癌治療薬の抗腫瘍効果〕
 本発明に係る癌治療薬は、上述したように、IL-18と所定の抗体とを有効成分として併用したものである。後述する実施例に示すように、当該併用を行い、本発明に係る癌治療薬を投与することによって、IL-18を単独で用いた場合、および抗体を単独で用いた場合と比較して、腹膜播種を起こす大腸癌細胞を移植したマウスの生存率を相乗的に、著しく向上させることができるという効果が奏された。
 この効果は、実施例では、IL-18と、抗CTLA-4抗体とを質量比1:25~1:50となるようにし、IL-18が2μg/25g、抗CTLA-4抗体が50~100μg/25gとなるようにマウスに腹腔内投与したとき(後述する図2)、および、IL-18、抗PD-L1抗体、および抗CTLA-4抗体をマウスに腹腔内投与したとき(後述する図4)に非常に強く奏された。
 すなわち、大腸癌細胞の移植後60日を経ても供試したマウスの全てが生存し、かつ、腹水の貯留も見られず、自己免疫様の病変も見られずに健康な状態を保っていた。すなわち、副作用が生じていないと考えられた。
 また、後述する実施例に示すように、上記併用によって、腹腔内滲出細胞の数を長期間持続的に増加させることができ、上記腹腔内滲出細胞によるマウスの延命効果も観察された。そして、上記腹腔内滲出細胞中では、活性型のNK細胞が増殖し、長く持続的に存在すると共に、CD4陽性CD25陽性T細胞のような、炎症抑制性の細胞が減少することが観察された。
 つまり、本発明に係る癌治療薬は、IL-18がNK細胞等のエフェクター細胞の増強を促進し、活性化されたエフェクター細胞を長く持続的に存在させ、かつ、炎症抑制性の細胞を減少させることにより、併用する抗体の抗腫瘍効果をより一層増強することができると考えられる。
 また、上記抗体の単独使用においては、上述したように、自己免疫疾患の発症などの副作用が生じうるという問題があるが、本発明に係る癌治療薬ではそのような副作用が少ないという利点がある。
 本発明に係る癌治療薬の優れた抗腫瘍効果に鑑みれば、本発明に係る癌治療薬は、各種の癌の治療に適用することが可能である。適用可能な癌種としては、例えば、扁平上皮癌(子宮頚管、瞼、結膜、膣肺、口腔、皮膚、膀胱、舌、喉頭、食道)、および、腺癌(例えば、前立腺、小腸、子宮内膜、子宮頚管、大腸、肺、膵、食道、直腸、子宮、胃、乳房、卵巣)が挙げられる。さらに、肉腫(例えば、筋原性肉腫)、白血病、神経腫、メラノーマ、リンパ腫も適用可能な癌種に含まれる。
 本願発明は、以下の発明を包含する。
 本発明に係る癌治療薬は、IL-18と、抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と、を有効成分として含有することを特徴としている。
 上記構成によれば、後述する実施例に示す結果から、IL-18がエフェクター細胞の増殖、生存、分化を促進し、かつ、抑制性T細胞の増殖を抑制することにより、上記抗体の抗腫瘍効果を著しく高めることができると推測される。その結果、本発明に係る癌治療薬は、上記抗体のみを用いる場合、またはIL-18のみを用いる場合と比べて相乗的な、非常に優れた抗腫瘍効果を示すことができる。しかも、治療が困難である腹膜播種の抑制に非常に効果的である一方、副作用は軽減される可能性がある。
 したがって、治療効果の非常に高い癌治療薬を提供することができるとともに、副作用が患者に与える苦痛を大きく低減することができる。
 また、本発明に係る癌治療薬は、上記抗体が、抗PD-L1抗体および/または抗CTLA-4抗体であることが好ましい。
 上記構成によれば、IL-18を併用するため、抗PD-L1抗体または抗CTLA-4抗体を単独で用いる場合と比較して著しく優れた抗腫瘍効果を得ることができる。したがって、癌治療に実績のあるこれらの抗体の抗腫瘍効果をさらに高め、より優れた癌治療薬を提供することができる。
 さらに、上記構成のうち、上記抗体が抗PD-L1抗体および抗CTLA-4抗体である場合、後述する実施例に示すように、IL-18と、抗PD-L1抗体または抗CTLA-4抗体とを含有する癌治療薬と比較しても、単に相加的な効果ではなく、相乗的な、非常に優れた抗腫瘍効果を得ることができる。
 したがって、より一層抗腫瘍効果に優れ、かつ副作用の少ない癌治療薬を提供することができる。
 本発明に係る癌治療薬は、IL-18の質量と、上記1以上の抗体の質量の合計との比が1:25~1:200であることが好ましい。
 上記構成によれば、後述する実施例に示すように、IL-18と抗体との生体への投与量を的確な量とすることができるため、上記相乗的な、非常に優れた抗腫瘍効果を得る上で好ましい。
 そして、本発明に係る癌治療薬は、胃癌、大腸癌、卵巣癌、骨肉腫、および白血病からなる群より選ばれる1以上の癌の治療薬であることが好ましい。
 上記の癌は、腫瘍の腹膜播種を伴うことが多く、腫瘍を切除した場合でも腹膜播種が発症することがある。上記構成によれば、後述する実施例に示すように、腹膜播種に対する高い治療効果を示すことができる。
 したがって、腹膜播種を伴う上記の癌に対して特に好適で、かつ、副作用が少ない癌治療薬を提供することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 以下、実施例により、本発明をさらに詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。
 まず、実施例において用いた材料および実験方法について説明する。
 〔材料〕
 (1)マウスおよびセルライン
 マウスとしては、日本SLC(浜松市)から購入したBALB/C野生型マウス(6~8週齢、オス)を用いた。上記マウスを、25℃で、12時間明所、12時間暗所となるサイクルで照明を制御した条件下で、病原体フリーの状態で飼育した。マウスは、水およびペレット状のエサを自由に摂取できる状態にした。
 CT-26マウス結腸癌細胞のセルラインは、American Type Culture Collectionから購入し、37℃、5%CO含有大気雰囲気下にて、10%ウシ胎児血清(FBS、Bio West)およびペニシリン/ストレプトマイシン(Gibco BRL, USA)を含有するRPMI1640培地(ナカライテスク(株)製)中で維持した。
 上記細胞は、0.05%トリプシンおよび0.01%EDTAを含有する、Ca2+およびMg2+フリーのダルベッコPBS(pH7.4、ナカライテスク(株)製。以下、「トリプシン‐EDTA」と称する)を用いて処理し、回収した。
 (2)試薬
 組み換えマウスIL-18(グラクソ・スミスクライン製、品番SB-528775、以下単に「IL-18」と称する)は、グラクソ・スミスクラインplcの厚意により分与されたものを用いた。
 抗マウスCD152/CTLA-4モノクローナル抗体(mAb、クローンUC10-4F10-11。以下単に「抗CTLA-4抗体」と称する)および抗マウスPD-L1抗体(クローン10F.9G2。以下単に「抗PD-L1抗体」と称する)はBioXcellから購入したものを用いた。ウサギ抗アシアロGM1抗体(カタログ番号:014-09801、和光純薬(株)製)、抗CD8抗体(カタログ番号SC-18913、サンタクルーズ製)およびウサギIgG(カタログ番号:PM035、MBL製)は全て市販の抗体である。
 〔実験方法〕
 (1)In vivoにおける処置
 トリプシン‐EDTAを用いて培養容器からサブコンフルエントの状態にあるCT-26細胞を、剥離することによって回収し、PBSを用いて二度洗浄した。生細胞の数はトリパンブルー色素排除試験によって計数し、種々の細胞濃度で生細胞をPBS中に懸濁させ、懸濁液を調製した。上記細胞濃度は、5.0×10個/0.25mlである。
 上記懸濁液0.25mlを、上記BALB/C野生型マウスの腹腔内に注射した。CT-26細胞の移植後適当な日に、種々の量(25~100μg)の抗CTLA-4抗体または抗PD-L1抗体を、IL-18(1~2μg)と共に、または、IL-18を用いずに上記マウスに腹腔内注射した。in vivoにおけるNK細胞またはT細胞の関与を検討するために、抗NK細胞抗体または抗T細胞抗体も投与した。各実施例で用いた抗体およびIL-18の具体的な量、投与間隔は、各実施例に記載する。
 (2)細胞の調製および培養
 マウスの腹腔滲出細胞(PEC)は、5mlのPBSで3回洗浄することによって腹腔から回収し、ACK溶解バッファー(自家製)によって赤血球を3回除去し、PBSによって3回洗浄した。
 リンパ球は、10%ウシ胎児血清、L-グルタミン(Gibco BRL製)、ペニシリン/ストレプトマイシン、および2-メルカプトエタノール(シグマ社製M7154)を含有するRPMI1640培地(ナカライテスク(株)製)中で、37℃、5%CO含有大気雰囲気下にて培養した。
 (3)養子細胞移入
 養子細胞移入実験用のPECは、CT-26細胞を移植したマウスの腹腔から調製した。マウスには、抗CTLA-4抗体、抗PD-L1抗体、およびIL-18について、種々の組み合わせとした治療薬を、CT-26細胞を移植した日の3日後に腹腔内に注射した。PECは、上記治療薬を腹腔内注射した日の4日後に回収した。回収した細胞のほとんどはリンパ球であった。当該リンパ球を洗浄し、2.5×10cells/mlの細胞密度となるようにPBS中に懸濁させ、細胞懸濁液を調製した。養子細胞移入のために、CT-26細胞を移植したマウスの腹腔内に対し、上記細胞懸濁液0.2ml(約5×10cells/マウス)を、移植した日の3日後,7日後,11日後に注射した。
 (4)フローサイトメトリー
 PECの細胞表面マーカーおよび脾細胞の細胞表面マーカーの解析はフローサイトメトリーを用いて行った。細胞表面マーカーは、FITC標識抗CD4抗体(eBioscience製、クローンGK1.5)、APC標識抗CD8抗体(Biolegend製、クローン54-6.7)、ビオチン標識抗CD8抗体(eBioscience製、クローン53-6.7)、ビオチン標識抗CD11c抗体(Beckton Dickinson製、クローンHL3)、APC標識抗CD45R/B220抗体(Biolegend 製、クローンRA3-6B2)、PE標識抗CD49b抗体(Beckton Dickinson製、クローンDX5)を用いて染色した。フローサイトメトリーによる解析は、FACS Calibur flow cytometer(Beckton Dickinson Biosciences製)を用いて行った。
 すなわち、細胞を、CD4、CD8、CD11c、CD45R/B220、CD49bに特異的な、FITC、PE、APCもしくはビオチンで標識したモノクローナル抗体で染色し、次に、FACS Calibur flow cytometerを用いて解析した。また、抗マウスCD16/32抗体(eBioscience製、クローン93)をFcブロッカーとして用いた。データは、Cell Quest ソフトウェア(登録商標、Beckton Dickinson Biosciences製)を用いて解析した。
 本明細書においてフローサイトメトリーの条件は一定であり、Becton-Dickinson immunocytometry systems, 1995.に記載されている条件に従って行った。なお、本明細書において、細胞表面マーカーの発現強度は、全てフローサイトメトリーによって測定した発現強度を意味する。
 〔実施例1:CT-26細胞を腹腔内投与したマウスの生存率に対する、抗CTLA-4抗体およびIL-18を含有する癌治療薬の効果〕
 上記実験方法の(1)に記載したCT-26細胞について、細胞濃度5.0×10個/0.25mlの懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射し、移植した。
 上記マウスは、治療薬として、対照としてのウサギIgG 100μgを投与する群;IL-18のみ2μgを投与する群;抗CTLA-4抗体のみ100μgを投与する群;抗CTLA-4抗体100μgおよびIL-18 2μgを投与する群、とに分け、各群は5匹のマウスから構成した。上記CT-26細胞を注射した日の3日後、7日後、10日後、14日後に、計4回、上記治療薬を腹腔内注射した。以下、全ての実施例において、実験は3回繰り返して行った。
 なお、上記ウサギIgG抗体、抗CTLA-4抗体およびIL-18の投与量(μg)は、マウスの体重25gあたりの投与量である。
 図1は、CT-26細胞を移植した日の3日後から抗CTLA-4抗体およびIL-18を含有する癌治療薬を投与したときの効果を、マウスの生存率として観察した結果を示す図である。図1において、横軸はCT-26細胞を移植(腹腔内注射)した日からの日数を示し、縦軸はマウスの生存率を示している。
 図1に示すように、対照はCT-26細胞を移植した日から24日後に生存率が低下し始め、27日後には全てのマウスが死亡した。また、IL-18のみを投与した群と、抗CTLA-4抗体のみを投与した群とは、類似した生存率の低下傾向を示し、それぞれ42日後、49日後に全てのマウスが死亡した。
 一方、抗CTLA-4抗体およびIL-18を投与した群では、腹水の貯留もなく、全くマウスの死亡が見られず、CT-26細胞を移植した日から60日後でも全てのマウスが生存していた。しかも、マウスに衰弱は見られず、健康な状態を保っていた。
 以上の結果から、抗CTLA-4抗体およびIL-18を投与した群では、IL-18と、抗CTLA-4抗体とによる単なる相加的な抗腫瘍効果ではなく、非常に優れた相乗的な抗腫瘍効果が示されることが明らかとなった。つまり、IL-18を抗CTLA-4抗体と併用することにより、抗CTLA-4抗体の抗腫瘍効果を飛躍的に高めることができることが明らかとなった。
 〔実施例2:抗CTLA-4抗体およびIL-18の用量効果〕
 上記〔実験方法〕の(1)に記載したCT-26細胞について、細胞濃度5.0×10個/0.25mlの懸濁液0.25mlを上記BALB/C野生型マウスの腹腔内に注射し、移植した。
 上記マウスは、治療薬として、対照としてのウサギIgG 100μgを投与する群;抗CTLA-4抗体25μgおよびIL-18 2μgを投与する群;抗CTLA-4抗体50μgおよびIL-18 2μgを投与する群;抗CTLA-4抗体100μgおよびIL-18 2μgを投与する群;抗CTLA-4抗体100μgおよびIL-18 1μgを投与する群、とに分け、各群は5匹のマウスから構成した。上記CT-26細胞を注射した日の3日後、7日後、10日後、14日後に、計4回、上記治療薬を腹腔内注射した。
 なお、上記ウサギIgG抗体、抗CTLA-4抗体およびIL-18の投与量(μg)は、マウスの体重25gあたりの投与量である。
 図2は、抗CTLA-4抗体およびIL-18の用量効果を、実施例1と同様に、CT-26細胞を腹腔内投与したマウスの生存率として示す図である。横軸および縦軸は図1と同じである。
 図2に示すように、対照はCT-26細胞を移植した日から24日後に生存率が低下し始め、28日後には全てのマウスが死亡した。
 一方、抗CTLA-4抗体およびIL-18を投与した群では、抗CTLA-4抗体25μgおよびIL-18 2μgを投与した群において、CT-26細胞の移植日から28日後に生存率が低下し始め、42日後に全てのマウスが死亡した。しかしながら、対照と比較すると延命効果が見られた。
 抗CTLA-4抗体100μgおよびIL-18 1μgを投与した群では、CT-26細胞の移植日から35日後に生存率が80%に低下したものの、その後は60日後でも生存率は維持された。生存しているマウスの健康状態は良好であった。
 抗CTLA-4抗体50μgおよびIL-18 2μgを投与した群、並びに、抗CTLA-4抗体100μgおよびIL-18 2μgを投与した群では、上記投与日から60日後であっても全てのマウスが生存していた。マウスの健康状態は良好であった。
 以上のように、抗CTLA-4抗体をIL-18と併用した場合、4つの投与群のうち3つの投与群で非常に優れた抗腫瘍効果が得られ、高い治療効果が得られた。また、抗CTLA-4抗体25μgおよびIL-18 2μgを投与した群でも、延命効果が示されることが確認された。
 〔実施例3:CT-26細胞を腹腔内へ移植したマウスの生存率に対する、抗PD-L1抗体およびIL-18を含有する治療薬の効果〕
 実施例1で用いたのと同じ細胞濃度(5.0×10個/0.25ml)を有するCT-26細胞の懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射し、移植した。
 上記マウスは、治療薬として、対照としてのウサギIgG 100μgを投与する群;IL-18のみ2μgを投与する群;抗PD-L1抗体のみ100μgを投与する群;抗PD-L1抗体100μgおよびIL-18 2μgを投与する群、とに分け、各群は5匹のマウスから構成した。上記CT-26細胞を注射した日の3日後、7日後、10日後、14日後に、計4回、上記治療薬を腹腔内注射した。なお、上記投与量は、マウスの体重25gあたりの量である。
 図3は、抗PD-L1抗体およびIL-18を含有する癌治療薬の効果を、実施例1と同様に、マウスの生存率として示す図である。横軸および縦軸は図1と同じである。
 図3に示すように、対照およびIL-18のみを投与した群の生存率の推移は実施例1と同じである。抗PD-L1抗体とIL-18とを投与した群では、CT-26細胞を移植した日の35日後まではIL-18のみを投与した群と同じ傾向を示したが、35日後以降は、IL-18のみを投与した群で42日後に全てのマウスが死亡したのに対し、60日後であっても生存率が60%のまま維持された。また、生存しているマウスの健康状態は良好であった。
 抗PD-L1抗体のみを投与した群の生存率は、IL-18のみを投与した群よりも劣っていた。この結果から、抗PD-L1抗体とIL-18とを投与したこと、すなわち抗PD-L1抗体およびIL-18を含有する治療薬を用いたことによって、IL-18と、抗PD-L1抗体とによる単なる相加的な抗腫瘍効果ではなく、非常に優れた相乗的な抗腫瘍効果が示されることが明らかとなった。
 つまり、IL-18を抗PD-L1抗体と併用することにより、抗PD-L1抗体の抗腫瘍効果を飛躍的に高めることができることが明らかとなった。また、抗PD-L1抗体は抗CTLA-4抗体よりも副作用が少ないことが知られているため、上記相乗的な抗腫瘍効果により、抗腫瘍効果が高く、かつ副作用が少ない癌の治療薬を提供することができる。
 〔実施例4:CT-26細胞を腹腔内へ移植したマウスの生存率に対する、抗PD-L1抗体、抗CTLA-4抗体およびIL-18を含有する癌治療薬の効果(その1)〕
 実施例1で用いたのと同じ細胞濃度(5.0×10個/0.25ml)を有するCT-26細胞の懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射し、移植した。
 上記マウスは、治療薬として、対照としてのウサギIgG 100μgを投与する群;IL-18のみ2μgを投与する群;抗CTLA-4抗体100μgおよびIL-18 2μgを投与する群;抗PD-L1抗体100μgおよびIL-18 2μgを投与する群;抗CTLA-4抗体100μgおよび抗PD-L1抗体100μgを投与する群;抗CTLA-4抗体100μg、抗PD-L1抗体100μg、およびIL-18 2μgを投与する群、とに分け、各群は5匹のマウスから構成した。CT-26細胞を注射した日から7日後に、上記治療薬を腹腔内注射し、その後、4日ごとに計4回、上記治療薬を腹腔内注射した。
 図4は、CT-26細胞を移植した日から7日後に、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を含有する癌治療薬等を投与し、その後、4日ごとに計4回投与した場合の効果を、マウスの生存率として示す図である。横軸および縦軸は図1と同じである。なお、上記投与量は、マウスの体重25gあたりの量である。
 実施例4では、実施例1~3とは異なり、CT-26細胞を腹腔内に移植した日の7日後に治療薬の投与を開始している。すなわち、実施例1~3よりも腫瘍が成長した後に治療薬の投与を開始しているが、図4に示すように、抗CTLA-4抗体および抗PD-L1抗体を投与した群よりも、抗CTLA-4抗体およびIL-18を投与した群、および、抗PD-L1抗体およびIL-18を投与した群の方が非常に高い生存率を示した。また、生存していたマウスの健康状態は良好であった。
 さらに、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与した群では、CT-26細胞の腹腔内への移植(腫瘍移植)から7日後に投与を開始しているにもかかわらず、投与から60日後であっても全てのマウスが生存していたという特筆すべき結果が得られた。しかも、当該マウスの健康状態は非常に良好であった。
 〔実施例5:CT-26細胞を腹腔内へ移植したマウスの生存率に対する、抗PD-L1抗体、抗CTLA-4抗体およびIL-18を含有する癌治療薬の効果(その2)〕
 図5は、CT-26細胞を移植した日から14日後に、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を含有する癌治療薬等を投与した場合の効果を、マウスの生存率として示す図である。横軸および縦軸は図1と同じである。
 治療薬としては、実施例4で用いた上記対照100μg;抗CTLA-4抗体100μgおよび抗PD-L1抗体100μg;抗CTLA-4抗体100μg、抗PD-L1抗体100μg、およびIL-18 2μg、を用い、CT-26細胞を腹腔内へ移植した日の14日後に上記治療薬を腹腔内注射したこと以外は、実施例4と同様にして実験を行った。なお、上記投与量は、マウスの体重25gあたりの量である。
 図5に示すように、抗CTLA-4抗体および抗PD-L1抗体を投与した場合と比べて、癌治療薬として、抗CTLA-4抗体、抗PD-L1抗体、およびIL-18を投与した場合の方が高い生存率を示すことが分かる。
 実施例5では、腫瘍移植の14日後に癌治療薬の投与を開始しているため、癌治療薬を投与したときには既に腫瘍塊が形成され、腹水の貯留も観察されていた。それにも関わらず、抗CTLA-4抗体、抗PD-L1抗体、およびIL-18を用いた場合は、明確な延命効果が観察された。このことは、抗CTLA-4抗体、抗PD-L1抗体、およびIL-18を含有する治療薬は、腫瘍塊が形成された後から投与した場合であっても治療効果を得ることが可能であることを示唆している。
 〔実施例6:腹腔滲出細胞数の変化〕
 実施例6では、抗CTLA-4抗体およびIL-18;抗PD-L1抗体およびIL-18;並びに、抗CTLA-4抗体、抗PD-L1抗体およびIL-18が、CT-26細胞を移植したマウスの腹腔滲出細胞(PEC)の数を増加させることができることを示す。
 実施例1で用いたのと同じ細胞濃度(5.0×10個/0.25ml)を有するCT-26細胞の懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射した。上記注射を行った日の3日後に、下記の治療薬を各マウスに腹腔内注射した。マウスは、治療薬の種類ごとに16匹用意し、治療薬を投与した日の1日後~4日後に各日4匹ずつからPECを回収し、計数盤を用いてPEC数を計数し、4匹のPEC数の平均値を求めた。
 図6は、CT-26細胞を移植した日の3日後に抗CTLA-4抗体およびIL-18;抗PD-L1抗体およびIL-18;抗CTLA-4抗体、抗PD-L1抗体およびIL-18、をそれぞれ投与したマウスの4日間の腹腔滲出細胞(PEC)数の変化を示す図である。横軸は上記治療薬を投与した日からの日数を表し、縦軸は、マウス1匹あたりのPEC数(4匹の平均値)を表す。
 図6の(a)は、治療薬として、対照としてのウサギIgG100μgを投与した群;抗CTLA-4抗体のみ100μgを投与した群;IL-18のみ2μgを投与した群;抗CTLA-4抗体100μgおよびIL-18 2μgを投与した群、におけるPEC数の変化を示すものである。
 図6の(b)は、治療薬として、上記ウサギIgG100μgを投与した群;抗PD-L1抗体のみ100μgを投与した群;IL-18のみ2μgを投与した群;抗PD-L1抗体100μgおよびIL-18 2μgを投与した群、におけるPEC数の変化を示すものである。
 図6の(c)は、治療薬として、上記ウサギIgG100μgを投与した群;抗CTLA-4抗体100μgおよび抗PD-L1抗体100μgを投与した群;抗CTLA-4抗体100μg、抗PD-L1抗体100μgおよびIL-18 2μgを投与した群、におけるPEC数の変化を示すものである。図中、「NE-PEC」とは、対照としてのウサギIgGを投与したマウスの腹腔滲出細胞である。なお、上記投与量は、マウスの体重25gあたりの量である。
 図6の(a)~(c)のいずれにおいても、抗体のみを投与した場合と比べて、抗体とIL-18とを併用した場合の方がPECの数を大幅に増加させることができたことが分かる。
 また、抗CTLA-4抗体および抗PD-L1抗体;抗CTLA-4抗体およびIL-18;抗PD-L1抗体およびIL-18;抗CTLA-4抗体、抗PD-L1抗体およびIL-18、をそれぞれ投与した4日後に、再度これらの癌治療薬をそれぞれ投与したマウスのPEC数の変化も観察した。上記癌治療薬の投与量は、1回目の投与、2回目の投与ともに、図6に示したものと同じである。
 図7はその結果を示すものである。図7の(a)は、上記癌治療薬の1回目の投与日を0日目として(図中、「Shot 1」と表示)、CT-26細胞を腹腔内へ移植した日(図中、「CT-26 cell inoculated」と表示)、PECの回収および解析を行った日(図中、1~8およびAnalysis 1~7と表示)、並びに上記癌治療薬の2回目の投与日(図中、「Shot 2」と表示)を示している。
 図7の(b)は、図7の(a)に示す0日目~8日目におけるマウス1匹あたりのPEC数(4匹の平均値)を表す。4日目までは、図6に示す結果と同じである。
 図7の(b)より、上記癌治療薬を投与した日の4日後に低下し始めたPECの数が、同日に再度上記癌治療薬を投与することによって再び上昇傾向を示したことが分かる。また、PECの数は、抗CTLA-4抗体および抗PD-L1抗体を用いた場合よりも、IL-18を抗体と併用した場合の方が多くなり、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合に最も多くなっていた。
 〔実施例7:腹腔滲出細胞による延命効果〕
 実施例1で用いたのと同じ細胞濃度(5.0×10個/0.25ml)を有するCT-26細胞の懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射し、移植した。そして、上記〔実験方法〕の(3)に記載したように、CT-26細胞を移植した日の3日後に癌治療薬を腹腔内に注射した。癌治療薬としては、実施例6の図6の(c)について言及した箇所に記載した量のウサギIgG;抗CTLA-4抗体および抗PD-L1抗体;抗CTLA-4抗体、抗PD-L1抗体およびIL-18、を用いた。
 上記〔実験方法〕の(3)に記載したように、上記治療薬を腹腔内注射した日の4日後にPECを回収し、PECの細胞懸濁液を調製し、当該細胞懸濁液0.2ml(約5×10cells/マウス)を、CT-26細胞を移植したマウスの腹腔内に、移植した日の3日後,7日後,11日後に注射した。
 図8は、腫瘍を有するマウスに抗CTLA-4抗体、抗PD-L1抗体、およびIL-18によって誘導されたPECを養子細胞移入した場合の延命効果を示す図である。横軸はPECを腹腔内投与した日からの日数を示し、縦軸はマウスの生存率を示している。
 また、凡例の「control PECs」はウサギIgGを治療薬として投与して得たPECを、「αCTLA-4+αPD-L1 induced PECs」は抗CTLA-4抗体および抗PD-L1抗体を治療薬として投与して誘導したPEC(以下、本項にて「PEC-1」と称する)を、「αCTLA-4+αPD-L1+IL-18 induced PECs」は抗CTLA-4抗体、抗PD-L1抗体およびIL-18を治療薬として投与して誘導したPEC(以下、本項にて「PEC-2」と称する)を、それぞれ投与した場合の結果を表している。
 図8から分かるように、対照ではPECを腹腔内投与した日から28日後には全てのマウスが死亡した。PEC-1を投与したマウスでは、対照と比較して延命効果が見られたが、PEC-1を腹腔内投与した日から35日後には全てのマウスが死亡した。一方、PEC-2を投与したマウスでは、投与した日から58日後であっても20%の生存率を示し、PEC-1を投与した場合よりも若干の延命効果が示された。
 すなわち、抗CTLA-4抗体および抗PD-L1抗体にIL-18を併用することによって、より抗腫瘍効果に優れたPECを誘導することができ、その結果、抗CTLA-4および抗PD-L1抗体を用いた場合よりも優れた延命効果を奏することができたと考えられる。
 〔実施例8:腹腔内滲出細胞におけるNK細胞の増強〕
 本実施例では、実施例6で用いた治療薬のうち、抗PD-L1抗体のみ;IL-18のみ;抗PD-L1抗体およびIL-18;抗CTLA-4抗体および抗PD-L1抗体;抗CTLA-4抗体、抗PD-L1抗体およびIL-18、を実施例6と同様の方法でマウスに腹腔内投与することによって誘導された腹腔内滲出細胞がどのような形質の細胞であるのかを、フローサイトメトリーによって調べた。フローサイトメトリーに供した腹腔内滲出細胞としては、各治療薬あたり5匹のマウスを用い、上記治療薬を投与した日から4日後に回収した細胞を用いた。
 フローサイトメトリーは、上記〔実験方法〕の(4)に示したAPC標識抗CD45R/B220抗体(Biolegend 製、クローンRA3-6B2)、抗NKG2D抗体(BD-pharmingem562347)およびPE標識抗CD49b抗体(Beckton Dickinson製、クローンDX5)を用いて、上記〔実験方法〕の(4)に示した方法で行った。
 図9は、それぞれ表面マーカーであるB220(CD45R)、NKG2D、およびDX5(CD49b)の発現強度を検討した結果を示す図である。(a)~(j)の横軸はDX5の発現強度、(a)~(e)の縦軸はB220(CD45R)の発現強度、(f)~(j)の縦軸はNKG2Dの発現強度を表す。(a)~(j)の「day 3.036」等の表記は、上記治療薬を投与した日の3日後に回収したPECを解析したことを示している。
 図9の(a)~(e)はそれぞれ、図中に示すように4つのエリアに分割されているが、右上のエリアに存在する細胞が、B220(CD45R)の発現強度が高く、かつ、DX5の発現強度が高いと言える。そして、図9の(f)~(j)もそれぞれ4つのエリアに分割されているが、右上のエリアに存在する細胞が、NKG2Dの発現強度が高く、かつ、DX5の発現強度が高いと言える。
 図9の(a)および(b)と(c)とを比較すると、(c)に示す抗PD-L1抗体およびIL-18を用いた場合の方が、右上のエリアに存在する細胞が多くなっている。また、(d)と(e)とを比較すると、(e)に示す抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合の方が、右上のエリアに存在する細胞が多くなっている。
 そして、図9の(h)に示すように、抗PD-L1抗体およびIL-18を用いた場合、(g)に示すIL-18のみを用いた場合よりも右上のエリアに存在する細胞の割合が少なくなっている。しかしながら、図9の(i)と(j)とを比較して分かるように、抗CTLA-4抗体および抗PD-L1抗体を用いた場合よりも、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合の方が右上のエリアの細胞の割合が多くなっている。よって、抗体とIL-18とを併用することによって、抗体によるNK細胞の腹腔内への誘導がさらに強化されることが分かる。
 このように、図9の(a)~(j)に示す結果から、NK細胞の中でもB220(CD45R)、NKG2D、およびDX5の発現強度が高いNK細胞、つまり活性型のNK細胞の腹腔内への誘導が、抗体とIL-18とを併用することによって強化されることが明らかとなった。このことが、本発明に係る治療薬が高い抗腫瘍効果を示す一因であると考えられる。
 〔実施例9:マウス腹腔内に誘導されたNK細胞の維持〕
 本実施例では、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を癌治療薬として投与した場合に、投与から長期間経過後も腹腔内に誘導されたNK細胞を維持できるか否かについて検討した。
 実施例1で用いたのと同じ細胞濃度(5.0×10個/0.25ml)を有するCT-26細胞の懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射した。上記注射を行った日の3日後に、下記の治療薬を腹腔内注射した。
 治療薬としては、抗CTLA-4抗体および抗PD-L1抗体、または、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を、実施例6と同様の方法でマウスに腹腔内投与し、投与した日から11日後に回収したPECを解析した。
 フローサイトメトリーは、上記APC標識抗CD45R/B220抗体(Biolegend 製、クローンRA3-6B2)、PE標識抗CD49b抗体(Beckton Dickinson製、クローンDX5)、抗NKG2D抗体(BD Pharmingen562349)を用いて、上記〔実験方法〕の(4)に示した方法で行った。
 図10は、それぞれ表面マーカーであるB220(CD45R)、NKG2DおよびDX5(CD49b)の、上記PECにおける発現強度を検討した結果を示す図である。図10の(a)~(c)の横軸はDX5の発現強度、縦軸はB220(CD45R)の発現強度をそれぞれ表している。
 図10の(a),(d)は対照であり、CT-26細胞を移植後、治療薬を投与せずに回収したPECのデータを表す。図10の(b),(e)は治療薬として抗CTLA-4抗体および抗PD-L1抗体を用いた場合、図の(c)、(f)は治療薬として抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合のPECのデータをそれぞれ表す。
 図10の(a)~(c)において枠囲みし「R5」と記載した領域は、DX5の発現強度とB220(CD45R)の発現強度とが共に高いと言えるPECを示しており、治療薬を投与しなかった対照(図10の(a))では当該PECが細胞全体に占める割合が43.93%であったが、上記抗CTLA-4抗体および抗PD-L1抗体を投与した日から11日後に回収したPECでは上記割合が45.57%とあまり変わらなかった(図10の(b))。これに対し、上記抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与した日から11日後に回収したPECでは上記割合が59.79%と高かった(図10の(c))。
 また、図10の(d)~(f)の横軸はNKG2Dの発現強度を表し、縦軸は細胞の数を表している。NKG2Dの発現強度と細胞数との関係は、図10の(d)~(f)においてあまり変化がなかった。
 以上の結果から、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を治療薬として投与した場合、投与から11日という長期間が経過した後も、腹腔内に誘導された活性型のNK細胞(DX5の発現強度とB220(CD45R)の発現強度とが共に高い細胞)を維持できていることが明らかとなった。
 つまり、本発明に係る治療薬は、腫瘍細胞を攻撃、破壊するようなエフェクター細胞を増強し、長く持続的に存在させることができることが明らかとなった。
 〔実施例10:CD4陽性CD25陽性T細胞の減少〕
 本実施例では、本発明に係る癌治療薬を投与したマウスにおけるCD4陽性CD25陽性T細胞の数の変化について検討した。
 実施例1で用いたのと同じ細胞濃度(5.0×10個/0.25ml)を有するCT-26細胞の懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射し、移植した。上記注射を行った日の3日後に、下記の治療薬を腹腔内注射した。
 治療薬としては、抗PD-L1抗体のみ;IL-18のみ;抗PD-L1抗体およびIL-18;抗CTLA-4抗体および抗PD-L1抗体;抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用い、投与した日から7日後に回収したPECを解析した。投与量は、実施例6と同じである。
 図11は、本発明に係る治療薬が、CD4陽性CD25陽性T細胞の数を減少させることを確認した結果を示す図である。
 図11の(a)~(e)、(f)~(j)は、治療薬としてそれぞれ抗PD-L1抗体、IL-18、抗PD-L1抗体およびIL-18、抗CTLA-4抗体および抗PD-L1抗体、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合の結果を示し、(a)~(e)はCD4陽性T細胞が上記PEC全体に占める割合を求めた結果を示す。
 (a)~(e)の横軸はTCR-β(T細胞レセプターβ)の発現強度を表し、縦軸はCD4の発現強度を表す。図11の(a)~(e)中、丸囲みした領域は、CD4陽性T細胞の存在する領域であり、例えば図11の(a)の「20.35%」と記載した数字は、図11の(a)の丸囲みした領域に存在するCD4陽性T細胞が上記PEC全体に占める割合である。
 また、図11の(f)~(j)は、CD4陽性CD25陽性T細胞の検出結果を示しており、横軸はCD4陽性CD25陽性T細胞の発現強度を、縦軸はCD4陽性CD25陽性T細胞の細胞数をそれぞれ表している。(f)~(j)の図中の数値は、図11の(a)~(e)に丸囲みした領域に存在するCD4陽性T細胞に占める、CD4陽性CD25陽性T細胞の割合を示している。
 CD4陽性T細胞、CD25陽性T細胞は、癌細胞が増殖する際、免疫反応、炎症反応を抑制する働きを有する抑制性リンパ球(Treg)である。つまり、上記細胞の増加は癌細胞の増殖を助けることになる。
 図11の(a)~(c)より、抗PD-L1抗体のみ、IL-18のみを用いた場合よりも、抗PD-L1抗体およびIL-18を用いた場合の方が、CD4陽性細胞が減少していることが分かる。また、図11の(d)、(e)より、抗CTLA-4抗体および抗PD-L1抗体を用いた場合よりも、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合の方が、CD4陽性細胞が減少していることが分かる。
 また、図11の(f)~(j)から、CD4陽性CD25陽性T細胞の割合も、抗PD-L1抗体のみ、IL-18のみを用いた場合よりも、抗PD-L1抗体およびIL-18を用いた場合の方が少ないこと、抗CTLA-4抗体および抗PD-L1抗体を用いた場合よりも、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合の方が少ないことが分かる。
 以上の結果から、本発明に係る癌治療薬は、抗体のみを用いる場合よりも、抑制性リンパ球の増殖をより一層抑制することが分かる。これは、IL-18を併用することにより、抗体による抑制性リンパ球の増殖抑制効果が一層高められたことによると考えられる。
 また、本発明に係る癌治療薬は、上述したようにエフェクター細胞の増強、増殖を促進することができる。このように、本発明に係る癌治療薬は、抑制性リンパ球の増殖を抑制し、かつ、エフェクター細胞の増強、増殖を促進することができるため、非常に高い抗腫瘍効果を発揮することができるものと考えられる。
 〔実施例11:抗腫瘍効果に対するNK細胞の重要性について〕
 本実施例では、NK細胞に対する抗体である抗アシアロGM1抗体を用い、本発明に係る癌治療薬の抗腫瘍効果にNK細胞が果たす役割について検討した。
 ウサギ抗アシアロGM1抗体50μlまたはウサギIgG 50μgをPBSによって250μlに希釈して、CT-26細胞移植の1日前にマウスに腹腔内注射した。上記ウサギ抗アシアロGM1抗体またはウサギIgGは、上記腹腔内注射を行った日の3日後に再度上記250μlの希釈液を腹腔内注射し、その後、4日ごとに2回、上記250μlの希釈液を腹腔内注射した。つまり、CT-26細胞移植の1日前、2日後、6日後、10日後に上記腹腔内注射を行った。
 マウスは、治療薬として、対照としてのウサギIgG50μgを投与する群;抗CTLA-4抗体100μg、抗PD-L1抗体100μg、およびIL-18 2μgを投与する群、とに分け、各群は5匹のマウスから構成した。
 上記抗アシアロGM1抗体またはウサギIgGを腹腔内注射した日の1日後、実施例1で用いたのと同じ細胞濃度(5.0×10個/0.25ml)を有するCT-26細胞の懸濁液を0.25ml、上記BALB/C野生型マウスの腹腔内に注射した。そして、上記注射を行った日の3日後に、上記治療薬を腹腔内注射し、その後、4日ごとに計4回(つまり、CT-26細胞を移植した日の3日後、7日後、11日後、15日後)、上記治療薬を腹腔内注射した。
 図12は、ナチュラルキラー(NK)細胞を破壊し除去する抗アシアロGM1抗体が、本発明に係る癌治療薬を投与したマウスの生存率に与える影響を示す図である。図12の(a)は、上述したウサギ抗アシアロGM1抗体またはウサギIgG、並びに上記治療薬の投与スケジュールを示すものである。図12の(b)は実験結果を示すものである。
 図12の(a)の上段はCT-26細胞を移植した日をゼロ日として、上述のように、その3日後、7日後、11日後、15日後に上記治療薬を投与するというスケジュールを示している。図12の(a)の下段は、上述のように、CT-26細胞移植の1日前、2日後、6日後、10日後にウサギ抗アシアロGM1抗体またはウサギIgGを投与するというスケジュールを示している。
 図12の(b)中、白丸は対照(CT-26細胞移植の1日前および移植の2日後、6日後、10日後にウサギIgGを投与し、治療薬としても上述のようにウサギIgGを投与)、三角形は、CT-26細胞移植の1日前および移植の2日後、6日後、10日後にウサギIgGを投与し、治療薬として上述のように抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与した群(以下、「群1」と称する)、四角形は、三角形で示すものと同様な実験でウサギIgGの代わりに抗アシアロGM1抗体を投与した群(以下、「群2」と称する)の結果を示す。図12の(b)の横軸はCT-26細胞を投与した日からの日数を示し、縦軸はマウスの生存率を示している。
 上記群1では、例えば実施例4で示されたのと同様に、全てのマウスがCT-26細胞を移植した日から60日経過後でも生存し、健康状態も良好であった。一方、群2では、対照より延命効果は見られているが、抗CTLA-4抗体、抗PD-L1抗体、およびIL-18を用いているにも関わらず群1よりも効果は大きく劣り、CT-26細胞を移植した日から35日後には全てのマウスが死亡した。
 実施例8に示したように、本発明に係る癌治療薬は、活性型のNK細胞の腹腔内への誘導を促進する。これは、抗体による上記誘導をIL-18が促進することによると考えられる。しかし、抗アシアロGM1抗体を投与した群2では、当該抗体によってNK細胞が減少してしまうため、図12のような結果が得られたと考えられる。このように、本発明に係る癌治療薬による抗腫瘍効果には、抗体とIL-18とによって誘導された活性型NK細胞が重要な役割を果たしていることが示唆された。
 〔実施例12:抗アシアロGM1抗体を投与したマウスにおけるNK細胞数の変化〕
 本実施例では、抗アシアロGM1抗体を投与したマウスのPECをフローサイトメトリーによって解析し、NK細胞数の変化について検討した。
 実施例11の群1および群2のマウスをそれぞれ5匹用意し、実施例11と同様のスケジュールで抗アシアロGM1抗体またはウサギIgGの投与、CT-26細胞の移植、および治療薬の投与を行い、治療薬を投与した日の4日後にPECを回収し、フローサイトメトリーに供した。
 フローサイトメトリーは、上記APC標識抗CD45R/B220抗体(Biolegend 製、クローンRA3-6B2)、PE標識抗CD49b抗体(Beckton Dickinson製、クローンDX5)を用いて、上記〔実験方法〕の(4)に示した方法で行った。
 図13は、抗アシアロGM1抗体の投与の有無による、マウス由来のPECの解析結果の違いを示す図である。図13の(a)~(d)は、抗アシアロGM1抗体を投与しなかったマウス(上記群1)由来のPECの解析結果を示し、(e)~(h)は、抗アシアロGM1抗体を投与したマウス(上記群2)由来のPECの解析結果を示す。
 図13の(a)および(e)において横軸はDX5の発現強度を示し、縦軸はB220(CD45)の発現強度を示している。R4はNKG2Dを発現している細胞、R5はT細胞、R6はNK細胞(Pre-mMKを含む)を示している。
 図13の(a)において、R4が47.91%、R5が21.99%、R6が16.96%である。また、図13の(e)において、R4が36.82%、R5が48.97%、R6が4.45%である。
 図13の(b)および(f)は、それぞれ、(a),(e)のR4に存在するNKG2Dを発現している細胞の数を表し、図13の(c)および(g)は、それぞれ、(a),(e)のR5に存在するT細胞の数を表し、図13の(d)および(h)は、それぞれ、(a),(e)のR6に存在するNK細胞(Pre-mMKを含む)の数を表している。
 図13から、上記群2由来のPECでは、NK細胞の割合が大幅に減少し、T細胞の割合が増加していることが分かる。このようなNK細胞の減少によって、図12に示す結果がもたらされたものと考えられる。つまり、本発明に係る癌治療薬による抗腫瘍効果には、抗体およびIL-18によって誘導された活性型のNK細胞が重要な役割を果たしていると考えられる。
 〔実施例13:抗アシアロGM1抗体の投与による、NK細胞に特異的な細胞表面マーカーの発現の変化〕
 本実施例では、抗アシアロGM1抗体を投与したマウスのPECをフローサイトメトリーによって解析し、NK細胞に特異的な細胞表面マーカーの発現の変化について検討した。
 実施例12と同様に、上記群1および群2のマウスについてPECを回収し、フローサイトメトリーに供した。フローサイトメトリーは、上記ビオチン標識抗CD11c抗体(Beckton Dickinson製、クローンHL3)、PE標識抗NK1.1抗体(BD Bioscience製、クローンPK136)、APC標識抗CD62L抗体(BD Bioscience製、クローンMEL-14)、PE標識抗CD69抗体(eBiocience製、クローンH1.2F3)、PE標識抗CD49b抗体(Beckton Dickinson製、クローンDX5)を用いて、上記〔実験方法〕の(4)に示した方法で行った。
 図14は、抗アシアロGM1抗体の投与の有無による、マウス由来のPECにおける表面マーカーの解析結果の違いを示す図である。図14の(a)~(d)は、抗アシアロGM1抗体を投与しなかったマウス(上記群1)由来のPECの表面マーカーの解析結果を示し、(e)~(h)は、抗アシアロGM1抗体を投与したマウス(上記群2)由来のPECの表面マーカーの解析結果を示す。横軸はDX5の発現強度を示し、縦軸は各表面マーカーの発現強度を示す。
 図14に示すNK1.1、CD11c、CD62L、CD69は、いずれもNK細胞(Pre-mMKを含む)に特有の表面マーカーである。図14の(a)~(d)と、(e)~(h)とをそれぞれ対比すると、上記群2由来のPECでは何れの表面マーカーを発現する細胞も減少していることが分かる。このようなNK細胞の減少によって、図12に示す結果がもたらされたものと考えられる。つまり、本発明に係る癌治療薬による抗腫瘍効果には、抗体およびIL-18によって誘導された活性型のNK細胞が重要な役割を果たしていると考えられる。
 〔実施例14:抗アシアロGM1抗体の投与による、CD4陽性CD25陽性T細胞の増加〕
 本実施例では、抗アシアロGM1抗体を投与したマウスのPECをフローサイトメトリーによって解析し、CD4陽性CD25陽性T細胞の細胞数の変化について検討した。
 実施例12と同様に、上記群1および群2のマウスについてPECを回収し、フローサイトメトリーに供した。
 フローサイトメトリーは、上記FITC標識抗CD4抗体(eBioscience製、クローンGK1.5)、APC標識抗CD8抗体(Biolegend製、クローン54-6.7)、PE標識抗CD25抗体(BD Bioscience製、クローンPC-61)を用いて、上記〔実験方法〕の(4)に示した方法で行った。
 図15は、抗アシアロGM1抗体の投与の有無による、マウス由来のPECにおけるCD4陽性T細胞およびCD8陽性T細胞の発現強度、並びに、CD25陽性T細胞の細胞数を確認した結果を示す図である。
 図15の(a)、(c)において横軸はTCR-βの発現強度を示し、縦軸はCD4の発現強度を示す。図15の(b)、(d)において横軸はCD25の発現強度を示し、縦軸は、CD4陽性CD25陽性T細胞の数を示す。図15の(e)、(f)において横軸はTCR-βの発現強度を示し、縦軸はCD8の発現強度を示す。
 CD4陽性T細胞、CD25陽性T細胞は、上述したとおり、抑制性のTリンパ球であり、上記細胞の増加は癌細胞の増殖を助けることになる。一方、CD8陽性T細胞は抗腫瘍効果を有する細胞である。
 抗アシアロGM1抗体を投与した場合、図15の(a)と(c)との対比から、図中の右上のエリアに存在するCD4陽性T細胞が全PECに占める割合は7.59%から17.02%に大きく増加していることが分かる。
 また、図15の(b)と(d)との対比から、CD4陽性CD25陽性細胞が全PECに占める割合も2.34%から7.87%に大きく増加していた。一方、図15の(e)と(f)との対比から、CD8陽性T細胞が全PECに占める割合は2.26%から1.22%にほぼ半減していることが分かった。
 この結果は、抗アシアロGM1抗体を予め投与したマウスでは、抗CTLA-4抗体、抗PD-L1抗体、およびIL-18を投与しても、抑制性リンパ球を増加させ、CD8陽性T細胞が減少してしまうことを示している。NK細胞は、CD8陽性T細胞を活性化することが知られており、NK細胞が減少するとCD8陽性T細胞も減少してしまう。
 したがって、本実施例の結果から、本発明に係る癌治療薬は、NK細胞を活性化させ、NK細胞を活性型として長期間持続させ、その結果CD8陽性T細胞を活性化することによって優れた抗腫瘍効果を示すことが示唆される。
 〔実施例15:腹水の貯留に対する治療効果〕
 本実施例では、腫瘍細胞を移植したマウスにおける腹水の貯留に対する、本発明に係る癌治療薬の効果を検討した。
 CT-26細胞の懸濁液(5.0×10個/0.25ml)を0.25ml、上記BALB/C野生型マウスの腹腔内に注射した。マウスは、治療薬として、対照としてのウサギIgG100μgを投与する群;抗CTLA-4抗体100μgを投与する群;抗CTLA-4抗体100μgおよびIL-18 2μgを投与する群、とに分け、各群は5匹のマウスから構成した。CT-26細胞を移植した日から3日後に、上記治療薬を腹腔内注射し、その後、4日ごとに計4回、上記治療薬を腹腔内注射した。そして、CT-26細胞を移植した日から21日後に腹水の貯留に対する治療効果を検討した。
 図16は、CT-26細胞を移植した日から21日後における上記各群マウスについて、腹水の有無を示す外観写真である。
 図17は、上記各群のマウスの腹囲の変化を示す図である。横軸はCT-26細胞を移植した日からの日数を表し、縦軸は腹囲(mm)を表す。腹囲は、各群を構成するマウスについて測定し、その平均値を求めた。
 図17に示すように、対照は、CT-26細胞の移植後26日目には腹水の貯留に伴い腹囲が著しく増加して115mmに達し、以後維持された。一方、抗CTLA-4抗体およびIL-18を投与したマウスは、腹囲が80mm前後という低いレベルに留まり、CT-26細胞の移植後56日目であっても、移植後1日目とあまり変化していなかった。また、抗CTLA-4抗体およびIL-18を投与したマウスは、抗CTLA-4抗体のみを投与したマウスと比較しても腹囲が大きく抑制されており、腹水の貯留が認められなかった。
 図18は、上記各群のマウスの体重の変化を示す図である。横軸は図17と同じであり、縦軸は体重(g)を表す。体重は、各群を構成するマウスについて測定し、その平均値を求めた。
 体重についても、対照は腹水の貯留により著しい上昇が見られ、抗CTLA-4抗体のみを投与したマウスでも、CT-26細胞の移植後42日目以降は、対照と大差ない体重にまで増加した。
 一方、抗CTLA-4抗体およびIL-18を投与したマウスは、腹水の貯留が認められず、図18に示すように明らかに体重が低く抑制され、低い状態で維持されていた。
 図19は、上記対照(図19の(a))と、抗CTLA-4抗体を投与したマウス(図19の(b))とにつき、CT-26細胞を移植した日から21日後の腹腔の様子を示す図である。図19に示すように、両者とも、多くの腫瘍塊が見られ、臓器の癒着も見られていた。
 図20は、上記対照(図20の(a)およびその拡大図である(b))と、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウス(図20の(c)およびその拡大図である(d))とについて、CT-26細胞を移植した日から21日後の腹腔の様子を示す図である。抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスでは、腫瘍塊および臓器の癒着は見られず、臓器の状態が非常に良好に保たれていた。
 図21は、上記対照の、CT-26細胞を移植した日から21日後の小腸の外観を示す図である。図22は、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスの、CT-26細胞を移植した日から21日後の小腸の外観を示す図である。両者の対比から明らかなように、対照では多数の腫瘍塊が形成されているのに対し、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスでは、ほとんど腫瘍塊は観察されなかった。
 図23は、上記対照(図23の(a)~(c))と、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウス(図23の(d)~(f))とについて、CT-26細胞を移植した日から21日後の十二指腸((a)、(d))、小腸((b)、(e))、大腸((c)、(f))の一部分の外観を示す図である。
 図23より、大腸では対照と、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスとであまり差は見られていないが、十二指腸および小腸では、対照において腫瘍塊が形成されているのに対し、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を投与したマウスではきれいな状態が保たれていた。
 図20の(c)、(d)、図22、図23の(d)~(f)に示すように、腸などで強い自己免疫様の病変があるようには見えなかった。また、抗CTLA-4抗体および/または抗PD-L1抗体、並びにIL-18を投与したマウスは、観察した限り健康であり、体重の減少なども見られなかった。
 以上の結果から、抗CTLA-4抗体、抗PD-L1抗体およびIL-18を用いた場合、マウス大腸癌細胞であるCT-26細胞を移植したことによる腹膜播種が十分に抑制されていることが分かる。胃癌、大腸癌、卵巣癌、骨肉腫、および白血病等は、腹膜播種して治療困難を起こすことが知られているが、本発明に係る癌治療薬は、腹膜播種を有効に抑制できるため、これらの癌の治療に非常に有効な治療薬であると言える。
 〔実施例16:本発明に係る癌治療薬の副作用に関する検討〕
 実施例15では、本発明に係る癌治療薬を投与したマウスにおいて、強い自己免疫様の病変は見られず、体重の減少等も確認されなかったため、本発明に係る癌治療薬は副作用が軽減されたものであることが示唆された。そこで本実施例では、本発明に係る癌治療薬の副作用についてより詳細な検討を行った。具体的には、IL-18が上記癌治療薬の有効成分である抗体の副作用を憎悪させる可能性について検討した。
 実施例1と同様に、CT-26細胞(細胞濃度5.0×10個/0.25ml)の懸濁液を0.25ml、BALB/C野生型マウスの腹腔内に注射し、移植した。
 上記マウスは、治療薬として、対照としてのPBSを0.25ml投与する群(群1);抗CTLA-4抗体100μgおよび抗PD-L1抗体200μgを投与する群(群2);抗CTLA-4抗体100μg、抗PD-L1抗体200μgおよびIL-18(2μg)を投与する群(群3);抗CTLA-4抗体100μg、抗PD-L1抗体200μgおよびIL-18(10μg)を投与する群(群4)とに分け、各群は5匹のマウスから構成した。なお、PBS、抗CTLA-4抗体、抗PD-L1抗体およびIL-18の投与量(μg)は、マウスの体重25gあたりの投与量である。
 上記CT-26細胞を注射した日の3日後から4日おきに、計4回、上記治療薬を上記マウスに腹腔内注射した。上記CT-26細胞を注射した日の18日後に血液および組織を採取し、肝機能、腎機能のほか、腸、肝臓、腎臓などの組織病変について調べた。なお、実験は3回繰り返して行った。
 図24は、上述したCT-26細胞の移植と、治療薬の投与スケジュールとを示す図であり、CT-26細胞を移植した日を「Day 0」とし、その日の3日後、7日後、11日後、15日後に上記治療薬の腹腔内投与を行い、18日後にマウスを屠殺することを示している。
 図25は、上記血液中のアルブミン濃度(図25の(a))、総ビリルビン濃度(図25の(b))、AST(GOT)濃度(図25の(c))およびALT(GPT)濃度(図25の(d))を測定した結果を示す図である。図26は、上記血液中のLD(LDH)濃度(図26の(a))、クレアチニン濃度(図26の(b))、ALP濃度(図26の(c))、および尿酸濃度(図26の(d))を測定した結果を示す図である。図27は、上記血液中の尿素窒素濃度を測定した結果を示す図である。なお、図中の「Negative Control」は、CT-26細胞の移植および治療薬の投与を行っていない健常なマウス(以下「健常コントロール群」と称する)の血液を用いた場合の結果である。
 図25の(a)の「αCTLA-4+αPD-L1」に示すように、抗CTLA-4抗体100μgおよび抗PD-L1抗体200μgを投与した上記群2では、血中アルブミン濃度が、健常コントロール群と比べて有意に低下していた。図28の(a)~(d)は、上記群1~群4のマウスの肝臓の、ヘマトキシリンエオジン(HE)による組織染色結果を示す図であり、倍率は200倍である。
 上記群2の肝臓の組織の観察結果を図28の(b)に示す。この群のすべてのマウスにおいて、図28の(b)と同様に、多数の細胞分裂像が見られた。図25の(a)および図28の(b)に示す結果は、抗CTLA-4抗体および抗PD-L1抗体が、肝組織障害などの副作用を持っている可能性を示している。
 また、図26の(b)の「αCTLA-4+αPD-L1」に示すように、上記群2では血中クレアチニンが高い傾向にあり、腎臓に対しても軽度の障害を引き起こした可能性が考えられる。
 一方、抗CTLA-4抗体および抗PD-L1抗体と、IL-18とを組み合わせて投与した群(群3、群4)では、図25の(a)に示すように血中アルブミン濃度は健常マウスのものとほとんど同じであった。また、図28の(c)、(d)に示すように、肝臓組織における細胞分裂像も見られなかった。さらに、図26の(b)に示すように、血中クレアチニンについても、群3、群4では健常コントロール群のものとほぼ同じであった。血中の尿素窒素は、図27に示すように、群3において抑制傾向が見られた。
 図26の(c)、図25の(d)に示すように、血中ALPおよび血中ALT(GPT)の値は、癌細胞移植のみで治療を施さなかった群(図中「PBS」で示した上記群1)では著しく低下しているが、群3および群4では健常コントロール群の値に近い値を示していた。一方、群2については、血中ALPは群1とほとんど変わりがなく、血中ALT(GPT)は群1よりも著しく低下していた。図26の(c)、図25の(d)の結果から、群3および群4では、IL-18によって血中ALPおよび血中ALT(GPT)の値が改善されたことが示唆された。
 本実施例の結果は、抗CTLA-4抗体と抗PD-L1抗体との組み合わせが、副作用として肝臓、腎臓などに障害を起こす可能性を示しており、IL-18は上記副作用を抑制するか、障害からの修復を促進することを示唆している。抗CTLA-4抗体と抗PD-L1抗体のうち、どちらが組織障害に関わっているのかということ等については、今後さらなる検討を行うことが必要である。
 上述のように、上記群2では、アルブミン、ALT(GPT)、およびALPの血中濃度が健常コントロール群よりも大きく低下し、クレアチニンの血中濃度が健常コントロール群よりも大きく増加した。一方、上記群3および群4については、群4でAST(GOT)が健常コントロール群より増加する傾向を示し(図25の(c))、群3で尿素窒素が健常コントロール群より抑制される傾向を示した(図27)。また、尿酸については群3および群4で健常コントロール群より増加していた(図26の(d))。
 しかしながら、図25~27に示す9項目のうち、群2では4項目が健常コントロール群より大きく外れる結果となったこと;群3と群4とが共に健常コントロール群より劣る結果を示したのは尿酸についてのみであったこと;を踏まえると、総合的に見て、上記群3および群4で用いた治療薬は、群2で用いた治療薬よりも副作用が少ないと考えられる。
 図29および30は胃、図31は十二指腸、図32は小腸、図33は大腸、図34は腎臓の、ヘマトキシリンエオジン(HE)による組織染色結果を示しており、図29~34において、(a)~(d)はそれぞれ上記群1~群4のマウスの組織を観察した結果を示している。図29~34から分かるように、胃、十二指腸、小腸、大腸および腎臓の組織は、群1~群4の間で殆ど相違が見られなかった。
 〔実施例17:B16黒色腫細胞の転移に対する癌治療薬の効果〕
 B16黒色腫細胞(メラノーマ)はがんの転移モデルとしてしばしば用いられる。本実施例では、B16黒色腫細胞(2×10個)をマウス(C57BL/6、日本SLC)の尾静脈から移入し、数週間後に肺にできる黒い小結節(ノデュール)の数を数えて転移の多少を測定した。
 B16黒色腫細胞のセルラインは、ATCCから購入したものを用い、実施例1に記載したのと同様の方法によって、細胞濃度が2×10個/0.25mlである懸濁液を調製し、当該懸濁液0.25mlを、上記C57BL/6マウスの尾静脈に注射した。
 上記マウスは、治療薬として、対照としてのPBSを0.25ml投与する群(群1);抗CTLA-4抗体100μgおよび抗PD-L1抗体200μgを投与する群(群2);抗CTLA-4抗体100μg、抗PD-L1抗体200μgおよびIL-18(2μg)を投与する群(群3);とに分け、各群は4匹のマウスから構成した。なお、PBS、抗CTLA-4抗体、抗PD-L1抗体およびIL-18の投与量(μg)は、マウスの体重25gあたりの投与量である。
 図35は、B16黒色腫細胞の移植と、治療薬の投与スケジュールとを示す図であり、B16黒色腫細胞を移植した日を「Day 0」とし、その日の3日後、7日後、11日後、15日後に上記治療薬の腹腔内投与を行い、28日後にマウスを屠殺することを示している。
 屠殺したマウスから肺を摘出し、肺に生じた黒い小結節(ノデュール)の数を数えて転移の多少を測定した。図36~38は、それぞれ、上記群1~群3のマウスの肺に生じた小結節を観察した結果を示す図であり、各図の(a)~(d)は、供試した4匹のマウスの結果を示している。
 コントロール群(上記群1)における肺表面の小結節の数は平均233+/-22.6であったが、抗CTLA4抗体および抗PD-L1抗体をB16黒色腫細胞の移植3日後から4日おきに計4回投与した群(上記群2)では179+/-14.0、抗CTLA4抗体、抗PD-L1抗体およびIL-18を投与した群(上記群3)では121+/-42.7であった。
 上記群3の結果は、上記群2の結果に対して統計学的な有意差は示さなかったが、図37と図38との対比から分かるように、臓器への転移は群3の方が群2より抑制されている。この結果から、本実施例では4匹のマウスを供試したが、供試するマウスの数をより多くすること、あるいは、実施例1のように、B16黒色腫細胞を移植した日からのマウスの生存率を経時的に求めることによって、上記有意差が示される可能性は十分にあると考えられる。
 なお、抗CTLA4抗体および抗PD-L1抗体を腹腔内へ投与し、IL-18を皮下に投与した場合も、上記群3の治療効果は、上記抗体およびIL-18を共に腹腔内投与した場合と違いはなかった。これは、上記抗体およびIL-18が共に血中へ移行するため、投与経路に関わらず同じ効果を示したものと考えられる。
 〔まとめ〕
 実施例に示したように、本発明に係る癌治療薬は、抗CTLA-4抗体、抗PD-L1抗体等の分子標的抗体と、IL-18とを併用することにより、癌腹膜播種モデルにおいて非常に優れた抗腫瘍効果を示すことが明らかとなった。この他、肺転移モデルや固形癌モデルにおいても同様に強い抗腫瘍効果を示した。これは、IL-18が分子標的抗体の治療効果を著しく高めることによると考えられる。
 つまり、IL-18が、腫瘍細胞を移入されたマウスの腹腔でCD8陽性T細胞、NK細胞等のエフェクター細胞の活性化や増殖の促進を行うことによって分子標的抗体の治療効果が高められていることが考えられる。
 特に、B220陽性、DX5陽性、CD11c陽性のNK様細胞(IKDCと呼ばれる。IKDCとはInterferon introducing killer dendritic cellsの略称)が、IL-18によって増えることが、上記併用による抗腫瘍効果の増大に関わっていることが示唆される。
 一方、上記併用によってCD4陽性T細胞の増殖は抑制されるため、上記併用によってTregなどの免疫/炎症抑制作用を持つリンパ球の増殖を促進することはないと思われる。
 また、抗CTLA-4抗体および/または抗PD-L1抗体、並びにIL-18を投与したマウスは、健康であり、体重減少等は見られず、腸などに強い自己免疫様の病変があるようには見えなかった。また、肝機能、腎機能、および組織病変について検討した結果、本発明に係る癌治療薬の副作用が少ないと考えられることが確認された。
 以上のことから、本発明に係る癌治療薬は優れた抗腫瘍効果を示す有用な治療薬であると言え、特に、腹膜播種を伴う癌の治療に有効であると言える。
 本発明は、癌の治療、特に、腹膜播種を伴う癌の治療に有効に利用することができる。医薬およびこれに関連する分野において広く利用することができる。

Claims (4)

  1.  IL-18と、
     抗PD-L1抗体、抗PD-1抗体、抗PD-L2抗体、抗CTLA-4抗体、抗CD25抗体、抗CD33抗体および抗CD52抗体からなる群より選ばれる1以上の抗体と、を有効成分として含有することを特徴とする癌治療薬。
  2.  上記抗体が、抗PD-L1抗体および/または抗CTLA-4抗体であることを特徴とする請求項1に記載の癌治療薬。
  3.  IL-18の質量と、上記1以上の抗体の質量の合計との比が1:25~1:200であることを特徴とする請求項1または2に記載の癌治療薬。
  4.  上記癌治療薬が、胃癌、大腸癌、卵巣癌、骨肉腫、白血病およびメラノーマからなる群より選ばれる1以上の癌の治療薬であることを特徴とする請求項1から3のいずれか1項に記載の癌治療薬。
PCT/JP2015/072505 2014-08-07 2015-08-07 Il-18と分子標的抗体とを併用する癌治療薬 WO2016021720A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NZ729395A NZ729395A (en) 2014-08-07 2015-08-07 Therapeutic agent for cancer which comprises combination of il-18 and molecule-targeting antibody
EP15830617.5A EP3178484B1 (en) 2014-08-07 2015-08-07 Therapeutic agent for cancer which comprises combination of il-18 and molecule-targeting antibody
AU2015300006A AU2015300006B2 (en) 2014-08-07 2015-08-07 Therapeutic agent for cancer which comprises combination of IL-18 and molecule-targeting antibody
JP2016540759A JP6245622B2 (ja) 2014-08-07 2015-08-07 Il−18と分子標的抗体とを併用する癌治療薬
CN201580042424.7A CN106687124B (zh) 2014-08-07 2015-08-07 并用il-18与分子靶向抗体的癌治疗药
CA2957387A CA2957387A1 (en) 2014-08-07 2015-08-07 Therapeutic agent for cancer which comprises combination of il-18 and molecule-targeting antibody
KR1020177006235A KR101940430B1 (ko) 2014-08-07 2015-08-07 Il-18과 분자 표적 항체를 병용하는 암 치료약
US15/501,760 US11219672B2 (en) 2014-08-07 2015-08-07 Therapeutic agent for cancer which comprises combination of IL-18 and molecule-targeting antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-161799 2014-08-07
JP2014161799 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016021720A1 true WO2016021720A1 (ja) 2016-02-11

Family

ID=55263977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072505 WO2016021720A1 (ja) 2014-08-07 2015-08-07 Il-18と分子標的抗体とを併用する癌治療薬

Country Status (9)

Country Link
US (1) US11219672B2 (ja)
EP (1) EP3178484B1 (ja)
JP (1) JP6245622B2 (ja)
KR (1) KR101940430B1 (ja)
CN (1) CN106687124B (ja)
AU (1) AU2015300006B2 (ja)
CA (1) CA2957387A1 (ja)
NZ (1) NZ729395A (ja)
WO (1) WO2016021720A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123507A1 (ja) * 2016-12-26 2018-07-05 国立大学法人神戸大学 経口腫瘍ワクチンと免疫抑制阻害剤との併用によるがん治療
US10738125B2 (en) 2018-03-13 2020-08-11 Tusk Therapeutics Ltd. Anti-CD25 antibody agents
WO2021228218A1 (zh) 2020-05-14 2021-11-18 江苏恒瑞医药股份有限公司 抗cd25抗体、其抗原结合片段及其医药用途
US11371066B2 (en) 2015-07-13 2022-06-28 Modular Genetics, Inc. Generation of acyl alcohols
WO2022172944A1 (ja) 2021-02-10 2022-08-18 国立大学法人 長崎大学 新規ヒトインターロイキン-18変異体及びその用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2978942A1 (en) 2015-03-13 2016-09-22 Cytomx Therapeutics, Inc. Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof
WO2018222949A1 (en) 2017-06-01 2018-12-06 Cytomx Therapeutics, Inc. Activatable anti-pdl1 antibodies, and methods of use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004771A1 (ja) * 2002-07-03 2004-01-15 Ono Pharmaceutical Co., Ltd. 免疫賦活組成物
JP2006528627A (ja) * 2003-07-24 2006-12-21 ウニヴェルシタ・デッリ・ストゥーディ・ディ・ペルージャ アロ反応性ナチュラルキラー細胞を使用する治療用抗体の有効性を増加するための方法および組成物
JP2007277242A (ja) * 2006-04-05 2007-10-25 Pfizer Prod Inc Ctla4抗体併用療法
JP2009544582A (ja) * 2006-07-13 2009-12-17 アンセルム γδT細胞活性化物質を使用して治療用抗体の効率を増大させる方法および組成物
JP2010522239A (ja) * 2007-03-23 2010-07-01 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー ヒトil−18の組み合わせ投与により癌を治療する方法
JP2013525373A (ja) * 2010-04-21 2013-06-20 ベンティアールエックス ファーマシューティカルズ, インコーポレイテッド 抗体依存性細胞性細胞傷害を増強する方法
WO2013173223A1 (en) * 2012-05-15 2013-11-21 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting pd-1/pd-l1 signaling

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692536B1 (en) 1994-07-14 2000-11-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo IFN-Y production inducing protein and monoclonal antibody of the same
JP4004088B2 (ja) 1995-09-26 2007-11-07 株式会社林原生物化学研究所 免疫担当細胞においてインターフェロン−γの産生を誘導する蛋白質
TW581771B (en) 1994-11-15 2004-04-01 Hayashibara Biochem Lab Recombinant production of a polypeptide for inducing interferon-gamma production, and monoclonal antibody against the polypeptide
US5680795A (en) 1995-07-05 1997-10-28 Norco Inc. Mechanical drive assembly incorporating counter-spring biassed radially-adjustable rollers
EP1212422B1 (en) 1999-08-24 2007-02-21 Medarex, Inc. Human ctla-4 antibodies and their uses
AU2001280442B2 (en) 2000-06-15 2005-10-27 Smithkline Beecham Corporation Method for preparing a physiologically active il-18 polypeptide
MX2007011767A (es) * 2005-03-23 2007-10-18 Pfizer Prod Inc Terapia de combinacion de anticuerpo anti-ctla4 e indolinona para el tratamiento del cancer.
EP1874342B1 (en) 2005-04-26 2018-06-06 Eisai R&D Management Co., Ltd. Compositions and methods for cancer immunotherapy
WO2007053189A2 (en) * 2005-06-01 2007-05-10 Northwestern University Compositions and methods for altering immune function
CN101641116A (zh) * 2007-03-23 2010-02-03 史密丝克莱恩比彻姆公司 通过施用人il-18组合来治疗癌症的方法
CA2596204C (en) * 2007-08-07 2019-02-26 Historx, Inc. Method and system for determining an optimal dilution of a reagent
KR20110074850A (ko) 2008-08-25 2011-07-04 앰플리뮨, 인크. Pd-1 길항제 및 그의 사용 방법
WO2010027423A2 (en) 2008-08-25 2010-03-11 Amplimmune, Inc. Compositions of pd-1 antagonists and methods of use
JP2010052239A (ja) 2008-08-27 2010-03-11 Pentel Corp 塗布具
RU2624027C2 (ru) * 2010-04-23 2017-06-30 Дженентек, Инк. Получение гетеромультимерных белков
WO2013190555A1 (en) * 2012-06-21 2013-12-27 Compugen Ltd. Lsr antibodies, and uses thereof for treatment of cancer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004771A1 (ja) * 2002-07-03 2004-01-15 Ono Pharmaceutical Co., Ltd. 免疫賦活組成物
JP2006528627A (ja) * 2003-07-24 2006-12-21 ウニヴェルシタ・デッリ・ストゥーディ・ディ・ペルージャ アロ反応性ナチュラルキラー細胞を使用する治療用抗体の有効性を増加するための方法および組成物
JP2007277242A (ja) * 2006-04-05 2007-10-25 Pfizer Prod Inc Ctla4抗体併用療法
JP2009544582A (ja) * 2006-07-13 2009-12-17 アンセルム γδT細胞活性化物質を使用して治療用抗体の効率を増大させる方法および組成物
JP2010522239A (ja) * 2007-03-23 2010-07-01 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー ヒトil−18の組み合わせ投与により癌を治療する方法
JP2013525373A (ja) * 2010-04-21 2013-06-20 ベンティアールエックス ファーマシューティカルズ, インコーポレイテッド 抗体依存性細胞性細胞傷害を増強する方法
WO2013173223A1 (en) * 2012-05-15 2013-11-21 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting pd-1/pd-l1 signaling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3178484A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371066B2 (en) 2015-07-13 2022-06-28 Modular Genetics, Inc. Generation of acyl alcohols
CN110214028A (zh) * 2016-12-26 2019-09-06 国立大学法人神户大学 联合使用口服肿瘤疫苗和免疫抑制阻滞剂的癌症治疗
JPWO2018123507A1 (ja) * 2016-12-26 2020-01-16 国立大学法人神戸大学 経口腫瘍ワクチンと免疫抑制阻害剤との併用によるがん治療
WO2018123507A1 (ja) * 2016-12-26 2018-07-05 国立大学法人神戸大学 経口腫瘍ワクチンと免疫抑制阻害剤との併用によるがん治療
US11802161B2 (en) 2018-03-13 2023-10-31 Tusk Therapeutics Ltd. Anti-CD25 for tumour specific cell depletion
US10752691B2 (en) 2018-03-13 2020-08-25 Tusk Therapeutics Ltd. Anti-CD25 antibody agents
US10745485B2 (en) 2018-03-13 2020-08-18 Tusk Therapeutics Ltd. Anti-CD25 antibody agents
US11697688B2 (en) 2018-03-13 2023-07-11 Tusk Therapeutics Ltd. Anti-CD25 for tumour specific cell depletion
US11787866B2 (en) 2018-03-13 2023-10-17 Tusk Therapeutics Ltd. Anti-CD25 antibody agents
US11802160B2 (en) 2018-03-13 2023-10-31 Tusk Therapeutics Ltd. Anti-CD25 antibody agents
US10738125B2 (en) 2018-03-13 2020-08-11 Tusk Therapeutics Ltd. Anti-CD25 antibody agents
US11814434B2 (en) 2018-03-13 2023-11-14 Tusk Therapeutics Ltd. Anti-CD25 for tumour specific cell depletion
US11851494B2 (en) 2018-03-13 2023-12-26 Tusk Therapeutics Ltd. Anti-CD25 for tumour specific cell depletion
US11873341B2 (en) 2018-03-13 2024-01-16 Tusk Therapeutics Ltd. Anti-CD25 for tumour specific cell depletion
US11919960B2 (en) 2018-03-13 2024-03-05 Tusk Therapeutics Ltd. Anti-CD25 antibody agents
WO2021228218A1 (zh) 2020-05-14 2021-11-18 江苏恒瑞医药股份有限公司 抗cd25抗体、其抗原结合片段及其医药用途
WO2022172944A1 (ja) 2021-02-10 2022-08-18 国立大学法人 長崎大学 新規ヒトインターロイキン-18変異体及びその用途

Also Published As

Publication number Publication date
EP3178484A1 (en) 2017-06-14
JP6245622B2 (ja) 2017-12-13
EP3178484A4 (en) 2017-08-30
KR20170038923A (ko) 2017-04-07
CA2957387A1 (en) 2016-02-11
AU2015300006B2 (en) 2018-08-30
US20170224791A1 (en) 2017-08-10
AU2015300006A1 (en) 2017-03-09
EP3178484B1 (en) 2019-07-24
KR101940430B1 (ko) 2019-01-18
US11219672B2 (en) 2022-01-11
CN106687124B (zh) 2022-03-15
JPWO2016021720A1 (ja) 2017-05-25
CN106687124A (zh) 2017-05-17
NZ729395A (en) 2018-04-27

Similar Documents

Publication Publication Date Title
JP6245622B2 (ja) Il−18と分子標的抗体とを併用する癌治療薬
US20210324028A1 (en) IL-15 Variants and Uses Thereof
US20210214436A1 (en) Multi-specific binding proteins and improvements thereon
US20190002586A1 (en) Methods and compositions relating to anti-chi3l1 antibody reagents
JP2013126990A (ja) 抗IL−1α抗体による癌の処置方法
US20220251191A1 (en) Therapeutic compositions and methods for treating cancer in combination with analogs of interleukin proteins
CN113474004A (zh) 用于治疗肿瘤的包含抗cd19抗体和自然杀伤细胞的药物组合
KR20210013167A (ko) Cd3에 특이적인 항체 및 이의 용도
RU2770432C2 (ru) Комбинации для лечения рака, включающие abx196
TW202200191A (zh) 包含含有il-2蛋白與cd80蛋白之融合蛋白及抗癌藥物的用於治療癌症的藥學組成物
TW202019962A (zh) 標靶CD38及TGF-β的組合療法
US20240009275A1 (en) Combination immunotherapy of il-15 and cd40 agonist in cancer treatment
US20220305082A1 (en) Chimeric antigen receptor specifically binding to cd 300c antigen or receptor thereof
EP4349858A1 (en) Chimeric antigen receptor specifically binding to cd300c antigen or receptor thereof
US20240010740A1 (en) Combination immunotherapy of il-15 and cd40 agonist in cancer treatment
RU2780537C2 (ru) Cd3-специфические антитела и их применение
RU2812481C2 (ru) Вовлекающие nk молекулы и способы их применения
AU2022281461A1 (en) C-x-c motif chemokine receptor 6 (cxcr6) binding molecules, and methods of using the same
CA3154771A1 (en) Compositions and methods for treating cytotoxic t cell resistant tumors
CN116744924A (zh) 用于治疗癌症的方法、疗法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830617

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2957387

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016540759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006235

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015830617

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015830617

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015300006

Country of ref document: AU

Date of ref document: 20150807

Kind code of ref document: A