WO2016021383A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2016021383A1
WO2016021383A1 PCT/JP2015/070331 JP2015070331W WO2016021383A1 WO 2016021383 A1 WO2016021383 A1 WO 2016021383A1 JP 2015070331 W JP2015070331 W JP 2015070331W WO 2016021383 A1 WO2016021383 A1 WO 2016021383A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
current sensor
current
bus bar
linear
Prior art date
Application number
PCT/JP2015/070331
Other languages
French (fr)
Japanese (ja)
Inventor
希 木全
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2016021383A1 publication Critical patent/WO2016021383A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a current sensor.
  • the first magnetic body has a low magnetic flux saturation value with respect to an increase in the magnetomotive force, and the first magnetic body has a low magnetic flux saturation value but a high magnetic flux saturation value.
  • the magnetic core for current sensor disclosed in Patent Document 1 the first magnetic body is a permalloy having a high nickel content, and the second magnetic body is a permalloy having a low nickel content. Therefore, the magnetic core for current sensors has a high saturation magnetic flux density and a good linearity.
  • the magnetic core for current sensors disclosed in Patent Document 1 is formed by superimposing a plurality of high-cost magnetic bodies, when a current sensor is manufactured using the magnetic core for current sensors, a single magnetic There is a problem that the manufacturing cost is higher than that of a current sensor using a core manufactured from a body. On the other hand, in a current sensor using a magnetic core, there is a demand for downsizing the entire current sensor by downsizing the magnetic core.
  • An object of the present invention is to provide a current sensor that can be reduced in cost and reduced in size.
  • a current sensor includes a bus bar through which a current to be detected flows, a core that surrounds the bus bar and has a notch formed in a part thereof, and a current that flows through the bus bar.
  • a magnetic detection element that detects the magnetic flux generated by the cutout and outputs a non-linear detection signal in a region where the magnetic flux in the core is magnetically saturated, and a linear conversion signal from the non-linear detection signal output from the magnetic detection element
  • FIG. 1A is a perspective view showing a current sensor according to an embodiment.
  • FIG. 1B is a block diagram showing the configuration of the current sensor.
  • FIG. 2A is a graph showing the relationship between the current value of the current flowing through the bus bar of the current sensor according to the embodiment and the magnetic flux density in the core gap.
  • FIG. 2B is a graph showing the relationship between the amplification factor for linearizing the detection signal and the magnetic flux density of the gap.
  • FIG. 2C is a graph showing a converted signal output from a Hall IC (Integrated Circuit).
  • FIG. 3 is a flowchart showing the operation of the current sensor according to the embodiment.
  • the current sensor according to the embodiment includes a bus bar through which a current to be detected flows, a core that surrounds the bus bar and has a notch formed in a part thereof, and is disposed in the notch of the core.
  • a magnetic detection element that outputs a non-linear detection signal and a non-linear detection signal output from the magnetic detection element are converted into a linear conversion signal A conversion unit.
  • the nonlinear detection signal output from the magnetic detection element when the core is magnetically saturated is converted into a linear conversion signal by the conversion unit. Therefore, in order to obtain a linear detection signal, the core is prevented from being magnetically saturated. Compared with the case of increasing the size, the core can be made smaller, the cost can be reduced and the size can be reduced.
  • FIG. 1A is a perspective view of a current sensor according to an embodiment
  • FIG. 1B is a block diagram showing a configuration of the current sensor.
  • the ratio between figures may be different from the actual ratio.
  • the main signal flow is indicated by arrows.
  • the current sensor 1 indirectly measures the current value of the battery of the vehicle by detecting the magnetic flux generated by the current flowing in the bus bar described later.
  • the current sensor 1 is disposed in the vicinity of the negative electrode of the battery.
  • the current sensor 1 can be used for, for example, a purpose of measuring a direct current.
  • the current sensor 1 includes a bus bar 3 through which a current 2 to be detected flows, a core 4 surrounding the bus bar 3 and having a gap 40 formed as a notch in a part thereof,
  • the magnetic flux 25 in the gap 40 that is disposed in the gap 40 of the core 4 and is generated along with the current 2 flowing through the bus bar 3 is detected, and a non-linear detection signal S 1 is output in a region where the magnetic flux 25 in the core 4 is magnetically saturated.
  • It has a magnetic sensor, a control unit 55 as converter for converting a nonlinear detection signal S 1 output from the magnetic detecting element in a linear conversion signal S 2, a.
  • the magnetic detection element is, for example, the Hall element 54, but is not limited thereto, and may be a magnetoresistive element that detects the magnetic field 20 formed by the current 2 flowing through the bus bar 3.
  • the Hall element 54 is chipped as a Hall IC 5 together with the control unit 55.
  • the bus bar 3 is electrically connected to, for example, a negative electrode of a vehicle battery.
  • the bus bar 3 is formed in a cylindrical shape using a conductive metal material such as copper, a copper alloy, or brass.
  • the shape of the bus bar 3 is not limited to a cylindrical shape, and may be a plate shape formed in an elongated shape.
  • a current 2 flows through the bus bar 3 from the right to the left in FIG. 1A. Due to this current 2, a counterclockwise magnetic field 20 is generated around the bus bar 3 on the paper surface of FIG. 1A. When the current 2 flows from the left to the right in FIG. 1A, the magnetic field 20 is generated clockwise around the bus bar 3.
  • the direction in which the current 2 flows from the right to the left in FIG. 1A is referred to as a first direction
  • the direction in which the current 2 flows from the left to the right is referred to as a second direction.
  • the core 4 is formed, for example, by stacking a plurality of plate-shaped annular cores.
  • the core 4 is formed using a soft magnetic material such as permalloy, an electromagnetic steel plate, and ferrite, for example.
  • the core 4 has an annular shape, and a gap 40 that is a notch is provided in part.
  • the end surface 41 and the end surface 42 are parallel to each other and face each other, and the magnetic flux 25 springs out from one end surface and is sucked into the other end surface.
  • the core 4 has a through hole 43, and the bus bar 3 is inserted into the through hole 43.
  • the shape of the core 4 is not limited to an annular shape, and may be a horseshoe shape or the like.
  • a magnetic flux 25 is generated inside the core 4 based on the magnetic field 20 generated by the current 2 flowing through the bus bar 3.
  • the direction of the magnetic flux 25 is counterclockwise on the paper surface of FIG. 1A. Accordingly, the magnetic flux 25 springs out from the end face 41 of the core 4 and is sucked into the end face 42.
  • the Hall IC 5 is disposed in the gap 40 so that the magnetic flux 25 penetrates the detection surface of the Hall element 54 from the vertical direction.
  • the direction of the magnetic flux 25 is clockwise on the paper surface of FIG. 1A, springs from the end face 42, and is sucked into the end face 41.
  • FIG. 2A is a graph showing the relationship between the current value of the current flowing through the bus bar of the current sensor according to the embodiment and the magnetic flux density in the core gap
  • FIG. 2B shows the amplification factor for linearizing the detection signal. It is a graph which shows the relationship with the magnetic flux density of a gap
  • FIG. 2C is a graph which shows the conversion signal output from Hall IC.
  • the vertical axis is the current value of the current 2 flowing through the bus bar 3
  • the horizontal axis is the magnetic flux density of the gap 40.
  • 2A is the characteristic curve 6 before conversion
  • the solid curve is the characteristic curve 7 after conversion.
  • the vertical axis is the amplification factor
  • the horizontal axis is the magnetic flux density.
  • FIG. 2C the vertical axis represents the output voltage
  • the horizontal axis represents the current value of the current 2 flowing through the bus bar 3.
  • the Hall IC 5 includes a main body 50, a terminal group 52, a Hall element 54, and a control unit 55.
  • the main body 50 is formed by sealing a part of the terminal group 52, the Hall element 54, the control unit 55, and the like with resin.
  • the sealing with the resin is performed using, for example, a thermosetting molding material in which an epoxy resin is a main component and a silica filler is added.
  • Terminal group 52 has, for example, a terminal for outputting terminal terminal connected to GND and electrically, the voltage V required for the current sensor 1 is operated is supplied, and the converted signal S 2.
  • the terminal group 52 is formed using, for example, a conductive metal material such as gold or copper, or an alloy material thereof.
  • the terminal group 52 has, for example, an elongated plate shape, but is not limited thereto, and may be a cylindrical shape or the like.
  • Hall element 54 outputs a detection signals S 1 corresponding to the magnetic flux 25 of the gap 40 by utilizing the Hall effect. Since the magnetic flux 25 in the gap 40 penetrates the detection surface of the Hall element 54 substantially vertically, the Hall element 54 outputs a detection signal S 1 corresponding to the magnetic flux density of the gap 40.
  • the control unit 55 is a microcomputer composed of, for example, a CPU (Central Processing Unit) that performs calculations, processing, etc. according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. is there.
  • a program for operating the control unit 55 is stored.
  • the RAM is used as a storage area for temporarily storing calculation results and the like.
  • the control unit 55 is configured to amplify the non-linear detection signal S 1 and convert it into a linear conversion signal S 2 .
  • the control unit 55 includes a nonlinear detection signals S 1, has a gain for converting the nonlinear detection signals S 1 to the linear conversion signal S 2, a conversion table 550 that associates.
  • the relationship between the current value of the current 2 flowing through the bus bar 3 and the magnetic flux density of the gap 40 of the core 4 is linear, as shown as a linear region 46 in FIG.
  • the measurable current value is the current value in the linear region 46. Therefore, when it is desired to measure a current value equal to or greater than the current value, it is necessary to change the material or enlarge the core so that the core is not magnetically saturated.
  • control unit 55 amplifies the characteristic curve 6 of the magnetic saturation region 47 in accordance with the amplification factor curve 8 shown in FIG. 2B in order to make the characteristic curve 6 that is nonlinear in the magnetic saturation region 47 a linear characteristic curve 7.
  • the amplification factor curve 8 does not need to be amplified in the linear region 46, and thus the amplification factor is 1.
  • the amplification factor curve 8 has a slower increase rate than the increase rate of the current value in the linear region 46. It is a curve that amplifies so as to cancel the loosened part.
  • Figure 2C the relationship between the output voltage output from the current value and the hole IC5 current 2 flowing through the bus bar 3 is a linear, converts the signal S 2 becomes linear.
  • the conversion table 550 stores the gain in the linear region 46 as 1, and the magnetic flux density and the gain in the magnetic saturation region 47 in association with each other.
  • This magnetic flux density is the magnetic flux density detected by the Hall element 54, and the amplification factor is determined by the magnetic flux density and the amplification factor curve 8.
  • Control unit 55 is configured to output a converted signal S 2 to the vehicle control unit of the vehicle.
  • the control unit 55 of the current sensor 1 acquires a detection signals S 1 from the Hall element 54 (S1).
  • Control unit 55 compares the detection signals S 1 and the conversion table 550 acquired, the core 4 is determined to be magnetically saturated (S2: Yes), and amplified with an amplification factor based on the conversion table 550 converts generating a signal S 2 (S3).
  • Control unit 55 outputs the converted converted signal S 2 to the vehicle control unit of the vehicle (S4).
  • the control unit 55, the core 4 is determined not to be magnetically saturated (S2: No), the amplification factor is 1, so the vehicle control unit of the vehicle detection signals S 1 as a conversion signal S 2 Output (S5).
  • the current sensor 1 according to the present embodiment can be reduced in size while reducing cost.
  • the current sensor 1 can convert a non-linear detection signal S 1 output from the Hall element 54 when the core 4 is magnetically saturated into a linear conversion signal S 2 by the control unit 55. Therefore, since the current sensor 1 obtains a linear detection signal, the core 4 can be made smaller as compared with the case where the core is made larger so as not to cause magnetic saturation, thereby reducing the cost and reducing the size.
  • the current sensor 1 may use the magnetic saturation region 47 to reduce the detection accuracy due to the disturbance magnetic field, the magnetic flux density due to the disturbance magnetic field is smaller than the magnetic flux density of the gap 40 in the magnetic saturation region 47. A decrease in detection accuracy of the Hall element 54 is suppressed.
  • a part of the current sensor 1 according to the above-described embodiment is realized by, for example, a program executed by a computer, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), or the like depending on applications. Also good.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the ASIC is an application specific integrated circuit
  • the FPGA is an LSI (Large Scale Integration) that can be programmed.
  • the present invention can be applied to a drive motor used in a hybrid vehicle or an electric vehicle, and a current sensor having a magnetic detection element for detecting a current flowing in a battery.

Abstract

Provided is a current sensor wherein cost is suppressed and size is reduced. A current sensor (1) has: a bus bar (3) in which a current (2) to be detected flows; a core (4), which surrounds the bus bar (3), and has a gap (40) formed in a part thereof; a Hall element (54), which is disposed in the gap (40) in the core (4), detects a magnetic flux (25) in the gap (40), said magnetic flux being generated due to the current (2) flowing in the bus bar (3), and outputs a non-linear detection signal (S1) in a region where the magnetic flux (25) in the core (4) is magnetically saturated; and a control unit (55) that converts the non-linear detection signal (S1) into a linear conversion signal (S2), said non-linear detection signal having been outputted from the Hall element (54).

Description

電流センサCurrent sensor
本発明は、電流センサに関する。 The present invention relates to a current sensor.
被測定電流線を流れる電流が起こす起磁界の変化に対する線形性は高いが、起磁界の増加に対する磁束の飽和値が小さい第1の磁性体と、線形性は低いが磁束の飽和値が大きい第2の磁性体と、が重ね合わされて構成された電流センサ用磁気コアが知られている(例えば、特許文献1参照。)。 The first magnetic body has a low magnetic flux saturation value with respect to an increase in the magnetomotive force, and the first magnetic body has a low magnetic flux saturation value but a high magnetic flux saturation value. 2. Description of the Related Art A magnetic core for a current sensor configured by overlapping two magnetic bodies is known (see, for example, Patent Document 1).
特許文献1に開示された電流センサ用磁気コアは、第1の磁性体が、ニッケル含有量が多いパーマロイであり、第2の磁性体が、ニッケル含有量が少ないパーマロイである。従って電流センサ用磁気コアは、飽和磁束密度が大きく、かつ線形性の良い性質を呈する。 In the magnetic core for current sensor disclosed in Patent Document 1, the first magnetic body is a permalloy having a high nickel content, and the second magnetic body is a permalloy having a low nickel content. Therefore, the magnetic core for current sensors has a high saturation magnetic flux density and a good linearity.
特開2009-58451号公報JP 2009-58451 A
特許文献1に開示された電流センサ用磁気コアは、コストが高い複数の磁性体を重ね合わせて形成されるので、この電流センサ用磁気コアを用いて電流センサを製造した場合、単一の磁性体から製造されたコアを用いた電流センサよりも製造コストが増加する問題がある。一方、磁気コアを使用する電流センサにおいて、磁気コアを小型化することにより電流センサ全体を小型化することが要望されている。 Since the magnetic core for current sensors disclosed in Patent Document 1 is formed by superimposing a plurality of high-cost magnetic bodies, when a current sensor is manufactured using the magnetic core for current sensors, a single magnetic There is a problem that the manufacturing cost is higher than that of a current sensor using a core manufactured from a body. On the other hand, in a current sensor using a magnetic core, there is a demand for downsizing the entire current sensor by downsizing the magnetic core.
本発明の目的は、コストを抑制すると共に小型化することができる電流センサを提供することにある。 An object of the present invention is to provide a current sensor that can be reduced in cost and reduced in size.
本発明の一実施形態による電流センサは、検出対象の電流が流れるバスバと、バスバを包囲すると共に一部に切り欠きが形成されたコアと、コアの切り欠きに配置され、バスバに流れる電流に伴って発生する切り欠きの磁束を検出すると共にコア内の磁束が磁気飽和する領域では非線形な検出信号を出力する磁気検出素子と、磁気検出素子から出力される非線形な検出信号を線形な変換信号に変換する変換部と、を有する。 A current sensor according to an embodiment of the present invention includes a bus bar through which a current to be detected flows, a core that surrounds the bus bar and has a notch formed in a part thereof, and a current that flows through the bus bar. A magnetic detection element that detects the magnetic flux generated by the cutout and outputs a non-linear detection signal in a region where the magnetic flux in the core is magnetically saturated, and a linear conversion signal from the non-linear detection signal output from the magnetic detection element A conversion unit for converting to
本発明の一実施形態によれば、検出精度の低下を回避しつつ製造コストの低下を可能にする電流センサを提供することができる。 According to an embodiment of the present invention, it is possible to provide a current sensor that can reduce the manufacturing cost while avoiding a decrease in detection accuracy.
図1Aは、実施の形態に係る電流センサを示す斜視図である。FIG. 1A is a perspective view showing a current sensor according to an embodiment. 図1Bは、電流センサの構成を示すブロック図である。FIG. 1B is a block diagram showing the configuration of the current sensor. 図2Aは、実施の形態に係る電流センサのバスバに流れる電流の電流値とコアのギャップにおける磁束密度との関係を示すグラフである。FIG. 2A is a graph showing the relationship between the current value of the current flowing through the bus bar of the current sensor according to the embodiment and the magnetic flux density in the core gap. 図2Bは、検出信号を線形化するための増幅率とギャップの磁束密度との関係を示すグラフである、FIG. 2B is a graph showing the relationship between the amplification factor for linearizing the detection signal and the magnetic flux density of the gap. 図2Cは、ホールIC(Integrated Circuit)から出力される変換信号を示すグラフである。FIG. 2C is a graph showing a converted signal output from a Hall IC (Integrated Circuit). 図3は、実施の形態に係る電流センサの動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the current sensor according to the embodiment.
(実施の形態の要約)
実施の形態に係る電流センサは、検出対象の電流が流れるバスバと、バスバを包囲すると共に一部に切り欠きが形成されたコアと、コアの切り欠きに配置され、バスバに流れる電流に伴って発生する切り欠きの磁束を検出すると共にコア内の磁束が磁気飽和する領域では非線形な検出信号を出力する磁気検出素子と、磁気検出素子から出力される非線形な検出信号を線形な変換信号に変換する変換部と、を有する。
(Summary of embodiment)
The current sensor according to the embodiment includes a bus bar through which a current to be detected flows, a core that surrounds the bus bar and has a notch formed in a part thereof, and is disposed in the notch of the core. In the region where the magnetic flux in the core is detected and the magnetic flux in the core is magnetically saturated, a magnetic detection element that outputs a non-linear detection signal and a non-linear detection signal output from the magnetic detection element are converted into a linear conversion signal A conversion unit.
この電流センサは、コアが磁気飽和して磁気検出素子から出力される非線形な検出信号を変換部により線形な変換信号に変換するので、線形な検出信号を得るため、磁気飽和しないようにコアを大きくする場合と比べて、コアを小さくすることができてコストを抑制すると共に小型化することができる。 In this current sensor, the nonlinear detection signal output from the magnetic detection element when the core is magnetically saturated is converted into a linear conversion signal by the conversion unit. Therefore, in order to obtain a linear detection signal, the core is prevented from being magnetically saturated. Compared with the case of increasing the size, the core can be made smaller, the cost can be reduced and the size can be reduced.
[実施の形態]
(電流センサ1の構成)
図1Aは、実施の形態に係る電流センサの斜視図であり、図1Bは、電流センサの構成を示すブロック図である。なお、以下に記載される実施の形態に係る各図において、図形間の比率は、実際の比率とは異なる場合がある。また図1Bにおいて、主な信号の流れは矢印で示される。
[Embodiment]
(Configuration of current sensor 1)
FIG. 1A is a perspective view of a current sensor according to an embodiment, and FIG. 1B is a block diagram showing a configuration of the current sensor. In each figure according to the embodiments described below, the ratio between figures may be different from the actual ratio. In FIG. 1B, the main signal flow is indicated by arrows.
電流センサ1は、例えば、車両のバッテリの電流値を、後述するバスバに流れる電流により発生する磁場の磁束を検出することで間接的に測定するものである。この電流センサ1は、バッテリの負電極の近傍に配置される。なお電流センサ1は、例えば、直流電流を測定する用途に使用可能である。 For example, the current sensor 1 indirectly measures the current value of the battery of the vehicle by detecting the magnetic flux generated by the current flowing in the bus bar described later. The current sensor 1 is disposed in the vicinity of the negative electrode of the battery. The current sensor 1 can be used for, for example, a purpose of measuring a direct current.
この電流センサ1は、図1A及び1Bに示されるように、検出対象の電流2が流れるバスバ3と、バスバ3を包囲すると共に一部に切り欠きとしてのギャップ40が形成されたコア4と、コア4のギャップ40に配置され、バスバ3に流れる電流2に伴って発生するギャップ40の磁束25を検出すると共にコア4内の磁束25が磁気飽和する領域では非線形な検出信号Sを出力する磁気検出素子と、磁気検出素子から出力される非線形な検出信号Sを線形な変換信号Sに変換する変換部としての制御部55と、を有する。 As shown in FIGS. 1A and 1B, the current sensor 1 includes a bus bar 3 through which a current 2 to be detected flows, a core 4 surrounding the bus bar 3 and having a gap 40 formed as a notch in a part thereof, The magnetic flux 25 in the gap 40 that is disposed in the gap 40 of the core 4 and is generated along with the current 2 flowing through the bus bar 3 is detected, and a non-linear detection signal S 1 is output in a region where the magnetic flux 25 in the core 4 is magnetically saturated. It has a magnetic sensor, a control unit 55 as converter for converting a nonlinear detection signal S 1 output from the magnetic detecting element in a linear conversion signal S 2, a.
磁気検出素子は、一例として、ホール素子54であるが、これに限定されず、バスバ3を流れる電流2が形成する磁場20を検出する磁気抵抗素子等であっても良い。このホール素子54は、制御部55と共にホールIC5としてチップ化されている。 The magnetic detection element is, for example, the Hall element 54, but is not limited thereto, and may be a magnetoresistive element that detects the magnetic field 20 formed by the current 2 flowing through the bus bar 3. The Hall element 54 is chipped as a Hall IC 5 together with the control unit 55.
(バスバ3の構成)
バスバ3は、例えば、車両のバッテリの負電極に電気的に接続される。このバスバ3は、例えば、図1Aに示されるように、銅、銅合金又は黄銅等の導電性を有する金属材料を用いて円柱形状に形成されたものである。なおバスバ3の形状は、円柱形状に限定されず、細長く形成された板形状等であっても良い。
(Configuration of bus bar 3)
The bus bar 3 is electrically connected to, for example, a negative electrode of a vehicle battery. For example, as shown in FIG. 1A, the bus bar 3 is formed in a cylindrical shape using a conductive metal material such as copper, a copper alloy, or brass. The shape of the bus bar 3 is not limited to a cylindrical shape, and may be a plate shape formed in an elongated shape.
このバスバ3には、図1Aの紙面右から左に向かって電流2が流れている。この電流2により、バスバ3の周りには、図1Aの紙面において反時計回りの磁場20が発生している。なお電流2が図1Aの紙面左から右に向かって流れる場合、磁場20がバスバ3を中心に時計回りに発生する。以下では、電流2が図1Aの紙面右から左に流れる方向を第1の方向、電流2が左から右に流れる方向を第2の方向と記載する。 A current 2 flows through the bus bar 3 from the right to the left in FIG. 1A. Due to this current 2, a counterclockwise magnetic field 20 is generated around the bus bar 3 on the paper surface of FIG. 1A. When the current 2 flows from the left to the right in FIG. 1A, the magnetic field 20 is generated clockwise around the bus bar 3. Hereinafter, the direction in which the current 2 flows from the right to the left in FIG. 1A is referred to as a first direction, and the direction in which the current 2 flows from the left to the right is referred to as a second direction.
(コア4の構成)
コア4は、例えば、板状の複数の環状コアが重ねられて形成されている。コア4は、例えば、パーマロイ、電磁鋼板、フェライト等の軟磁性体材料を用いて形成される。
(Configuration of core 4)
The core 4 is formed, for example, by stacking a plurality of plate-shaped annular cores. The core 4 is formed using a soft magnetic material such as permalloy, an electromagnetic steel plate, and ferrite, for example.
このコア4は、環形状を有し、一部に切り欠きであるギャップ40が設けられている。このギャップ40は、端面41と端面42とが平行になると共に対向しており、一方の端面から磁束25が湧き出し、他方の端面に吸い込まれている。 The core 4 has an annular shape, and a gap 40 that is a notch is provided in part. In the gap 40, the end surface 41 and the end surface 42 are parallel to each other and face each other, and the magnetic flux 25 springs out from one end surface and is sucked into the other end surface.
またコア4は、貫通孔43を有し、貫通孔43には、バスバ3が挿入されている。なおコア4の形状は、環状に限定されず、馬蹄型等であっても良い。 The core 4 has a through hole 43, and the bus bar 3 is inserted into the through hole 43. The shape of the core 4 is not limited to an annular shape, and may be a horseshoe shape or the like.
コア4の内部には、バスバ3に流れる電流2が生成する磁場20に基づいて磁束25が発生している。この磁束25の向きは、図1Aの紙面において反時計回りである。従って磁束25は、コア4の端面41から湧き出し、端面42に吸い込まれる。 A magnetic flux 25 is generated inside the core 4 based on the magnetic field 20 generated by the current 2 flowing through the bus bar 3. The direction of the magnetic flux 25 is counterclockwise on the paper surface of FIG. 1A. Accordingly, the magnetic flux 25 springs out from the end face 41 of the core 4 and is sucked into the end face 42.
ホールIC5は、磁束25がホール素子54の検出面を垂直方向から貫通するようにギャップ40に配置される。なお電流2が第2の方向に流れる場合、磁束25の方向は、図1Aの紙面において時計回りであり、端面42から湧き出し、端面41に吸い込まれる。 The Hall IC 5 is disposed in the gap 40 so that the magnetic flux 25 penetrates the detection surface of the Hall element 54 from the vertical direction. When the current 2 flows in the second direction, the direction of the magnetic flux 25 is clockwise on the paper surface of FIG. 1A, springs from the end face 42, and is sucked into the end face 41.
(ホールIC5の構成)
図2Aは、実施の形態に係る電流センサのバスバに流れる電流の電流値とコアのギャップにおける磁束密度との関係を示すグラフであり、図2Bは、検出信号を線形化するための増幅率とギャップの磁束密度との関係を示すグラフであり、図2Cは、ホールICから出力される変換信号を示すグラフである。図2Aにおいて、縦軸がバスバ3を流れる電流2の電流値であり、横軸がギャップ40の磁束密度である。また図2Aに示される点線の曲線は、変換前の特性曲線6であり、実線の曲線は、変換後の特性曲線7である。図2Bにおいて、縦軸が増幅率であり、横軸が磁束密度である。図2Cにおいて、縦軸が出力電圧であり、横軸がバスバ3に流れる電流2の電流値である。
(Configuration of Hall IC5)
FIG. 2A is a graph showing the relationship between the current value of the current flowing through the bus bar of the current sensor according to the embodiment and the magnetic flux density in the core gap, and FIG. 2B shows the amplification factor for linearizing the detection signal. It is a graph which shows the relationship with the magnetic flux density of a gap, and FIG. 2C is a graph which shows the conversion signal output from Hall IC. In FIG. 2A, the vertical axis is the current value of the current 2 flowing through the bus bar 3, and the horizontal axis is the magnetic flux density of the gap 40. 2A is the characteristic curve 6 before conversion, and the solid curve is the characteristic curve 7 after conversion. In FIG. 2B, the vertical axis is the amplification factor, and the horizontal axis is the magnetic flux density. In FIG. 2C, the vertical axis represents the output voltage, and the horizontal axis represents the current value of the current 2 flowing through the bus bar 3.
ホールIC5は、図1A及び1Bに示されるように、本体50と、端子群52と、ホール素子54と、制御部55と、を有する。本体50は、端子群52の一部とホール素子54、及び制御部55等が樹脂によって封止されることで形成されている。この樹脂による封止は、例えば、エポキシ樹脂を主成分に、シリカ充填材等を加えた熱硬化性成形材料を用いて行われる。 As shown in FIGS. 1A and 1B, the Hall IC 5 includes a main body 50, a terminal group 52, a Hall element 54, and a control unit 55. The main body 50 is formed by sealing a part of the terminal group 52, the Hall element 54, the control unit 55, and the like with resin. The sealing with the resin is performed using, for example, a thermosetting molding material in which an epoxy resin is a main component and a silica filler is added.
端子群52は、例えば、GNDと電気的に接続される端子、電流センサ1が動作するのに必要な電圧Vが供給される端子、及び変換信号Sを出力する端子を備えている。この端子群52は、例えば、金、銅等の導電性を有する金属材料、又はその合金材料を用いて形成される。端子群52は、例えば、細長い板形状を有するが、これに限定されず、円柱形状等であっても良い。 Terminal group 52 has, for example, a terminal for outputting terminal terminal connected to GND and electrically, the voltage V required for the current sensor 1 is operated is supplied, and the converted signal S 2. The terminal group 52 is formed using, for example, a conductive metal material such as gold or copper, or an alloy material thereof. The terminal group 52 has, for example, an elongated plate shape, but is not limited thereto, and may be a cylindrical shape or the like.
ホール素子54は、ホール効果を利用してギャップ40の磁束25に応じた検出信号Sを出力する。このギャップ40における磁束25は、ほぼ垂直にホール素子54の検出面を貫通するので、ホール素子54は、ギャップ40の磁束密度に応じた検出信号Sを出力する。 Hall element 54 outputs a detection signals S 1 corresponding to the magnetic flux 25 of the gap 40 by utilizing the Hall effect. Since the magnetic flux 25 in the gap 40 penetrates the detection surface of the Hall element 54 substantially vertically, the Hall element 54 outputs a detection signal S 1 corresponding to the magnetic flux density of the gap 40.
制御部55は、例えば、記憶されたプログラムに従って演算、加工等を行うCPU(Central Processing Unit)、半導体メモリであるRAM(Random Access Memory)及びROM(Read Only Memory)等から構成されるマイクロコンピュータである。このROMには、例えば、制御部55が動作するためのプログラムが格納されている。RAMは、例えば、一時的に演算結果等を格納する記憶領域として用いられる。 The control unit 55 is a microcomputer composed of, for example, a CPU (Central Processing Unit) that performs calculations, processing, etc. according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. is there. In this ROM, for example, a program for operating the control unit 55 is stored. For example, the RAM is used as a storage area for temporarily storing calculation results and the like.
制御部55は、非線形な検出信号Sを増幅することにより線形な変換信号Sに変換するように構成されている。また制御部55は、非線形な検出信号Sと、非線形な検出信号Sを線形な変換信号Sに変換するための増幅率と、を対応付けた変換テーブル550を有している。 The control unit 55 is configured to amplify the non-linear detection signal S 1 and convert it into a linear conversion signal S 2 . The control unit 55 includes a nonlinear detection signals S 1, has a gain for converting the nonlinear detection signals S 1 to the linear conversion signal S 2, a conversion table 550 that associates.
ここでコア4が磁気飽和するような大きな電流2がバスバ3に流れると、図2Aに示されるように、電流値が増加するに従って特性曲線6が非線形となる磁気飽和領域47が発生する。なお電流2が第1の方向に流れる場合、図2Aの電流値が正であり、電流2が第2の方向に流れる場合、電流値が負となっている。つまり、図2Aにおいて、右側と左側とでは、バスバ3を流れる電流2の向きが逆向きとなっている。 Here, when a large current 2 that magnetically saturates the core 4 flows to the bus bar 3, as shown in FIG. 2A, a magnetic saturation region 47 in which the characteristic curve 6 becomes nonlinear as the current value increases is generated. When the current 2 flows in the first direction, the current value in FIG. 2A is positive, and when the current 2 flows in the second direction, the current value is negative. That is, in FIG. 2A, the direction of the current 2 flowing through the bus bar 3 is opposite between the right side and the left side.
コア4が磁気飽和していない場合、バスバ3を流れる電流2の電流値とコア4のギャップ40の磁束密度との関係は、図2Aに線形領域46として示されるように、線形となる。この線形領域46を利用して電流センサを構成する場合、測定可能な電流値は、線形領域46内の電流値である。従って当該電流値以上の電流値を測定したい場合は、コアが磁気飽和しないように材料を変更したり、コアを大きくしたりする必要がある。 When the core 4 is not magnetically saturated, the relationship between the current value of the current 2 flowing through the bus bar 3 and the magnetic flux density of the gap 40 of the core 4 is linear, as shown as a linear region 46 in FIG. When a current sensor is configured using this linear region 46, the measurable current value is the current value in the linear region 46. Therefore, when it is desired to measure a current value equal to or greater than the current value, it is necessary to change the material or enlarge the core so that the core is not magnetically saturated.
しかし、制御部55は、磁気飽和領域47の非線形となる特性曲線6を線形の特性曲線7とするため、磁気飽和領域47の特性曲線6を図2Bに示される増幅率曲線8に従って増幅する。 However, the control unit 55 amplifies the characteristic curve 6 of the magnetic saturation region 47 in accordance with the amplification factor curve 8 shown in FIG. 2B in order to make the characteristic curve 6 that is nonlinear in the magnetic saturation region 47 a linear characteristic curve 7.
具体的には、増幅率曲線8は、図2Bに示されるように、線形領域46においては、増幅する必要がないので増幅率が1となっている。また増幅率曲線8は、磁気飽和領域47においては、図2Aに示されるように、線形領域46の電流値の増加率と比べて増加率が緩やかとなっているので、電流値の増加率が緩やかになった分を打ち消すように増幅する曲線となっている。その結果、図2Cに示されるように、バスバ3に流れる電流2の電流値とホールIC5から出力される出力電圧との関係が線形となり、変換信号Sが線形となる。 Specifically, as shown in FIG. 2B, the amplification factor curve 8 does not need to be amplified in the linear region 46, and thus the amplification factor is 1. In the magnetic saturation region 47, as shown in FIG. 2A, the amplification factor curve 8 has a slower increase rate than the increase rate of the current value in the linear region 46. It is a curve that amplifies so as to cancel the loosened part. As a result, as shown in Figure 2C, the relationship between the output voltage output from the current value and the hole IC5 current 2 flowing through the bus bar 3 is a linear, converts the signal S 2 becomes linear.
変換テーブル550は、線形領域46における増幅率を1とすると共に、磁気飽和領域47における磁束密度と増幅率とを対応させて格納している。この磁束密度は、ホール素子54が検出した磁束密度であり、増幅率は、当該磁束密度と増幅率曲線8によって定まる。 The conversion table 550 stores the gain in the linear region 46 as 1, and the magnetic flux density and the gain in the magnetic saturation region 47 in association with each other. This magnetic flux density is the magnetic flux density detected by the Hall element 54, and the amplification factor is determined by the magnetic flux density and the amplification factor curve 8.
制御部55は、一例として、変換信号Sを車両の車両制御部に出力するように構成されている。 Control unit 55, as an example, and is configured to output a converted signal S 2 to the vehicle control unit of the vehicle.
以下に、本実施の形態に係る電流センサ1の動作について、図3のフローチャートを参照して説明する。 Below, operation | movement of the current sensor 1 which concerns on this Embodiment is demonstrated with reference to the flowchart of FIG.
車両の電源が投入されると、電流センサ1の制御部55は、ホール素子54から検出信号Sを取得する(S1)。 When the power of the vehicle is turned on, the control unit 55 of the current sensor 1 acquires a detection signals S 1 from the Hall element 54 (S1).
制御部55は、取得した検出信号Sと変換テーブル550とを比較し、コア4が磁気飽和していると判定すると(S2:Yes)、変換テーブル550に基づいた増幅率で増幅して変換信号Sを生成する(S3)。 Control unit 55 compares the detection signals S 1 and the conversion table 550 acquired, the core 4 is determined to be magnetically saturated (S2: Yes), and amplified with an amplification factor based on the conversion table 550 converts generating a signal S 2 (S3).
制御部55は、変換した変換信号Sを車両の車両制御部に出力する(S4)。 Control unit 55 outputs the converted converted signal S 2 to the vehicle control unit of the vehicle (S4).
ここでステップS2において、制御部55は、コア4が磁気飽和していないと判定すると(S2:No)、増幅率が1なので、検出信号Sを変換信号Sとして車両の車両制御部に出力する(S5)。 Here at the step S2, the control unit 55, the core 4 is determined not to be magnetically saturated (S2: No), the amplification factor is 1, so the vehicle control unit of the vehicle detection signals S 1 as a conversion signal S 2 Output (S5).
(実施の形態の効果)
本実施の形態に係る電流センサ1は、コストを抑制すると共に小型化することができる。具体的には、電流センサ1は、コア4が磁気飽和してホール素子54から出力される非線形な検出信号Sを制御部55により線形な変換信号Sに変換することができる。従って電流センサ1は、線形な検出信号を得るため、磁気飽和しないようにコアを大きくする場合と比べて、コア4を小さくすることができてコストを抑制すると共に小型化することができる。
(Effect of embodiment)
The current sensor 1 according to the present embodiment can be reduced in size while reducing cost. Specifically, the current sensor 1 can convert a non-linear detection signal S 1 output from the Hall element 54 when the core 4 is magnetically saturated into a linear conversion signal S 2 by the control unit 55. Therefore, since the current sensor 1 obtains a linear detection signal, the core 4 can be made smaller as compared with the case where the core is made larger so as not to cause magnetic saturation, thereby reducing the cost and reducing the size.
電流センサ1は、磁気飽和領域47を利用することで、外乱磁場による検出精度の低下が考えられるが、磁気飽和領域47におけるギャップ40の磁束密度よりも外乱磁場による磁束密度の方が小さいので、ホール素子54の検出精度の低下が抑制される。 Although the current sensor 1 may use the magnetic saturation region 47 to reduce the detection accuracy due to the disturbance magnetic field, the magnetic flux density due to the disturbance magnetic field is smaller than the magnetic flux density of the gap 40 in the magnetic saturation region 47. A decrease in detection accuracy of the Hall element 54 is suppressed.
上述の実施の形態に係る電流センサ1は、例えば、用途に応じて、その一部が、コンピュータが実行するプログラム、ASIC(Application Specific Integrated Circuit)及びFPGA(Field Programmable Gate Array)等によって実現されても良い。 A part of the current sensor 1 according to the above-described embodiment is realized by, for example, a program executed by a computer, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), or the like depending on applications. Also good.
なお、ASICとは、特定用途向け集積回路であり、FPGAとは、プログラミングすることができるLSI(大規模集積回路:Large Scale Integration)である。 The ASIC is an application specific integrated circuit, and the FPGA is an LSI (Large Scale Integration) that can be programmed.
以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、一例に過ぎず、特許請求の範囲に係る発明を限定するものではない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更等を行うことができる。また、これら実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない。さらに、これら実施の形態は、発明の範囲及び要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although some embodiment of this invention was described, these embodiment is only an example and does not limit the invention which concerns on a claim. These novel embodiments can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the scope of the present invention. In addition, not all the combinations of features described in these embodiments are essential to the means for solving the problems of the invention. Furthermore, these embodiments are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
本発明は、ハイブリッド車や電気自動車で使用される駆動モータ、バッテリーに流れる電流を検出するための磁気検出素子を有する電流センサに適用できる。 The present invention can be applied to a drive motor used in a hybrid vehicle or an electric vehicle, and a current sensor having a magnetic detection element for detecting a current flowing in a battery.
1 電流センサ
2 電流
3 バスバ
4 コア
5 ホールIC
40 ギャップ(切り欠き)
550 変換テーブル
1 Current sensor 2 Current 3 Bus bar 4 Core 5 Hall IC
40 Gap (notch)
550 conversion table

Claims (5)

  1. 検出対象の電流が流れるバスバと、
    前記バスバを包囲すると共に一部に切り欠きが形成されたコアと、
    前記コアの前記切り欠きに配置され、前記バスバに流れる前記電流に伴って発生する前記切り欠きの磁束を検出すると共に前記コア内の磁束が磁気飽和する領域では非線形な検出信号を出力する磁気検出素子と、
    前記磁気検出素子から出力される前記非線形な検出信号を線形な変換信号に変換する変換部と、を備えた電流センサ。
    A bus bar through which the current to be detected flows,
    A core surrounding the bus bar and having a notch formed in part;
    Magnetic detection that is arranged in the notch of the core and detects a magnetic flux of the notch generated with the current flowing through the bus bar and outputs a non-linear detection signal in a region where the magnetic flux in the core is magnetically saturated Elements,
    A current sensor comprising: a conversion unit that converts the nonlinear detection signal output from the magnetic detection element into a linear conversion signal.
  2. 前記変換部は、前記非線形な検出信号を増幅することにより前記線形な変換信号に変換する、請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the conversion unit converts the nonlinear detection signal into the linear conversion signal by amplifying the nonlinear detection signal.
  3. 前記変換部は、前記非線形な検出信号と、前記非線形な検出信号を前記線形な変換信号に変換するための増幅率と、を対応付けたテーブルを有する、請求項1又は2に記載の電流センサ。 The current sensor according to claim 1, wherein the conversion unit includes a table in which the non-linear detection signal and an amplification factor for converting the non-linear detection signal into the linear conversion signal are associated with each other. .
  4. 前記変換部は、前記次記検出素子から出力された前記検出信号と前記テーブルとを比較し、前記コアが磁気飽和していると判定すると、前記テーブルに基づいた増幅率で増幅して前記変換信号を生成する、請求項3に記載の電流センサ。 The conversion unit compares the detection signal output from the detection element and the table, and determines that the core is magnetically saturated. When the core is magnetically saturated, the conversion unit performs amplification with an amplification factor based on the table. The current sensor of claim 3, wherein the current sensor generates a signal.
  5. 前記変換部は、前記次記検出素子から出力された前記検出信号と前記テーブルとを比較し、前記コアが磁気飽和していないと判定すると、前記増幅率を1として前記変換信号を生成する、請求項3に記載の電流センサ。
     
    The conversion unit compares the detection signal output from the detection element and the table, and determines that the core is not magnetically saturated, generates the conversion signal with the amplification factor of 1, The current sensor according to claim 3.
PCT/JP2015/070331 2014-08-06 2015-07-15 Current sensor WO2016021383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-160093 2014-08-06
JP2014160093A JP2016038229A (en) 2014-08-06 2014-08-06 Current sensor

Publications (1)

Publication Number Publication Date
WO2016021383A1 true WO2016021383A1 (en) 2016-02-11

Family

ID=55263656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070331 WO2016021383A1 (en) 2014-08-06 2015-07-15 Current sensor

Country Status (2)

Country Link
JP (1) JP2016038229A (en)
WO (1) WO2016021383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454997B2 (en) * 2019-11-01 2022-09-27 Realtek Semiconductor Corp. Dynamic voltage compensation circuit and method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313198B2 (en) * 2018-08-31 2023-07-24 旭化成エレクトロニクス株式会社 CURRENT SENSOR, DETECTION DEVICE, DETECTION METHOD, AND PROGRAM
JP2021021604A (en) * 2019-07-26 2021-02-18 株式会社アイエイアイ Current detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119853A (en) * 1995-10-25 1997-05-06 Denshi Giken:Kk Method and apparatus for correction of output value of sensor
JPH10267687A (en) * 1997-03-26 1998-10-09 Tokyo Seimitsu Co Ltd Linearizing circuit for sensor output
JP2002116227A (en) * 2000-10-10 2002-04-19 Yazaki Corp Current detecting device and writing device for the same
JP2005351701A (en) * 2004-06-09 2005-12-22 Auto Network Gijutsu Kenkyusho:Kk Current detecting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119853A (en) * 1995-10-25 1997-05-06 Denshi Giken:Kk Method and apparatus for correction of output value of sensor
JPH10267687A (en) * 1997-03-26 1998-10-09 Tokyo Seimitsu Co Ltd Linearizing circuit for sensor output
JP2002116227A (en) * 2000-10-10 2002-04-19 Yazaki Corp Current detecting device and writing device for the same
JP2005351701A (en) * 2004-06-09 2005-12-22 Auto Network Gijutsu Kenkyusho:Kk Current detecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454997B2 (en) * 2019-11-01 2022-09-27 Realtek Semiconductor Corp. Dynamic voltage compensation circuit and method thereof

Also Published As

Publication number Publication date
JP2016038229A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6119296B2 (en) Current sensor
US20130169267A1 (en) Current sensor
JP5604652B2 (en) Current sensor
WO2016021383A1 (en) Current sensor
JP5606941B2 (en) Fluxgate sensor
CN102809682A (en) Current sensing circuit, printed circuit board component and current sensor device
JP2008215970A (en) Bus bar integrated current sensor
JP5234459B2 (en) Current sensor
JP2009058451A (en) Current sensor-use magnetic core and current sensor employing the same
JP5516947B2 (en) Current sensor
JP2010085228A (en) Current sensor
JP2013242301A (en) Current sensor
JP2011112559A (en) Current sensor
JP6251967B2 (en) Current sensor
US10823764B2 (en) Hall effect current sensor
US20170205447A1 (en) Current sensor
JP2009271044A (en) Current sensor
JP2014106101A (en) Current sensor
JP2007033222A (en) Current sensor
JP5086169B2 (en) Current sensor and method of manufacturing current sensor
KR102458745B1 (en) stress detection device
JP5458319B2 (en) Current sensor
JP2013079862A (en) Current sensor
JP6370620B2 (en) Magnetic sensor
WO2010032825A1 (en) Magnetic coupling-type isolator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829528

Country of ref document: EP

Kind code of ref document: A1