JP2010085228A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2010085228A
JP2010085228A JP2008254041A JP2008254041A JP2010085228A JP 2010085228 A JP2010085228 A JP 2010085228A JP 2008254041 A JP2008254041 A JP 2008254041A JP 2008254041 A JP2008254041 A JP 2008254041A JP 2010085228 A JP2010085228 A JP 2010085228A
Authority
JP
Japan
Prior art keywords
current path
ring
resistance current
magnetic core
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008254041A
Other languages
Japanese (ja)
Other versions
JP5067574B2 (en
Inventor
Takashi Urano
高志 浦野
Ryuji Yoshida
龍司 吉田
Tsutomu Kotani
勉 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008254041A priority Critical patent/JP5067574B2/en
Publication of JP2010085228A publication Critical patent/JP2010085228A/en
Application granted granted Critical
Publication of JP5067574B2 publication Critical patent/JP5067574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniaturizable current sensor having a constitution for shunting and detecting a current to be measured. <P>SOLUTION: A high-resistance current path 51 is formed so as to have a U-shape on a middle part in the longitudinal direction of a bus bar 10, and bent approximately orthogonally so as to have a shape of eaves along a first bending line 53 close to a low-resistance current path 52 approximately in parallel with a flowing direction of the current I<SB>in</SB>to be measured and a second bending line 54 far from the low-resistance current path 52 in parallel with the first bending line 53 (Fig.1 (B) to (C)). A bottom side (bottom part 55) of the U-shaped high-resistance current path 51 is positioned over the low-resistance current path 52 in the width of the low-resistance current path 52. A ring-shaped magnetic core 15 is arranged so as to enclose a middle part in the longitudinal direction of the bottom side (bottom part 55) of the high-resistance current path 51. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばハイブリットカーや電気自動車のバッテリ電流やモータ駆動電流、工作機械のモータに流れる電流をホール素子等の磁気検出素子を用いて測定する電流センサに関する。   The present invention relates to a current sensor that measures, for example, a battery current, a motor driving current of a hybrid car or an electric vehicle, and a current flowing through a motor of a machine tool using a magnetic detection element such as a Hall element.

ホール素子等の磁気検出素子を用いてバスバーに流れる電流(被測定電流)を非接触状態で検出する電流センサとして、磁気比例式のものが従来から知られている。磁気比例式電流センサは、図12(A)に例示のように、ギャップGを有するリング状の磁気コア820(高透磁率で残留磁気が少ない珪素鋼板やパーマロイコア等)と、ギャップGに配置されたホール素子816(磁気検出素子の例示)とを有する。磁気コア820は、被測定電流Iinの流れるバスバー810が貫通する配置である。したがって、被測定電流IinによってギャップG内に磁界が発生し、これがホール素子816の感磁面に印加される。磁界の強さは被測定電流Iinに比例するので、ホール素子816の出力電圧から被測定電流Iinが求められる。 2. Description of the Related Art Conventionally, a magnetic proportional sensor is known as a current sensor that detects a current (current to be measured) flowing through a bus bar in a non-contact state using a magnetic detection element such as a Hall element. As shown in FIG. 12A, the magnetic proportional current sensor is arranged in the gap G with a ring-shaped magnetic core 820 having a gap G (such as a silicon steel plate or a permalloy core with high permeability and low residual magnetism). Hall element 816 (an example of a magnetic detection element). The magnetic core 820 is arranged so that the bus bar 810 through which the measured current I in flows. Therefore, a magnetic field is generated in the gap G by the current I in to be measured, and this is applied to the magnetosensitive surface of the Hall element 816. Since the intensity of the magnetic field is proportional to the measured current I in, the measured current I in is determined from the output voltage of the Hall element 816.

一方、磁気平衡式電流センサは、図12(B)に例示のように、磁気比例式電流センサの構成に加え、磁気コア820に巻線を設けてなる負帰還用コイルLFBを有する。この構成においては、被測定電流IinによってギャップG内に第1の磁界が発生してこれがホール素子816の感磁面に印加される一方、ホール素子816の感磁面に印加される前記第1の磁界を相殺する(ゼロにする)第2の磁界を発生するように負帰還用コイルLFBに電流が供給される。この供給した電流から被測定電流Iinが求められる。 On the other hand, as illustrated in FIG. 12B, the magnetic balanced current sensor has a negative feedback coil L FB in which a winding is provided on the magnetic core 820 in addition to the configuration of the magnetic proportional current sensor. In this configuration, a first magnetic field is generated in the gap G by the measured current I in and applied to the magnetosensitive surface of the Hall element 816, while being applied to the magnetosensitive surface of the Hall element 816. A current is supplied to the negative feedback coil LFB so as to generate a second magnetic field that cancels (makes zero) the magnetic field of 1. A current to be measured I in is obtained from the supplied current.

ハイブリッドカーやEV(電気自動車)のバッテリに流れる充放電電流をモニタする電流センサや、インバータ用の三相モータ駆動電流をモニタする電流センサ等は、バスバーに流れる電流(被測定電流)が例えば200A〜600Aあるいはそれ以上と非常に大きい。このため、バスバーの形状が必然的に大きくなるとともにバスバーを囲うコアが大型化し、電流センサ本体が大きくなり、コストアップの原因となっていた。さらに、磁気比例式電流センサの場合、下記特許文献1に次の問題が指摘されている。すなわち、「バスバーに流れる電流値とホール素子から出力される電圧値の関係は、図17に示すように、電流値に比例した出力電圧が得られる線形領域と電流値に比例した出力電圧を得ることができない非線形領域に分かれる。これは、磁性体コアの特性に基づくものであり、線形領域では正確な電流検出を行うことができるが、非線形領域では正確な電流検出を行うことができない」(段落[0005])。「図からも明らかなように、バスバーに流れる電流値が大きくなると正確な電流値検出ができないことになる。この結果、この種の電流検出装置では、電流検出の可能範囲が比較的電流値の小さい領域に限られ、電流値が大きくなると検出精度が悪化する」(段落[0006])という問題もある。それらの改善策として、下記特許文献1では、被測定電流を分流し、小電流の方を検出する電流センサが提案されている。
特開平10−73619号公報
A current sensor that monitors charge / discharge current flowing in a battery of a hybrid car or EV (electric vehicle), a current sensor that monitors a three-phase motor drive current for an inverter, etc. has a current (measured current) flowing through the bus bar of, for example, 200 A Very large at ~ 600A or more. For this reason, the shape of the bus bar is inevitably increased, the core surrounding the bus bar is increased in size, the current sensor body is increased, and the cost is increased. Further, in the case of a magnetic proportional current sensor, the following problem is pointed out in Patent Document 1 below. That is, “the relationship between the current value flowing through the bus bar and the voltage value output from the Hall element is such that, as shown in FIG. It is based on the characteristics of the magnetic core, which can not be accurately detected in the linear region, but cannot be accurately detected in the nonlinear region. ” Paragraph [0005]). “As is clear from the figure, when the current value flowing through the bus bar increases, accurate current value detection cannot be performed. As a result, in this type of current detection device, the current detection possible range is relatively low. There is also a problem that it is limited to a small region, and the detection accuracy deteriorates as the current value increases (paragraph [0006]). As a countermeasure for these problems, Patent Document 1 below proposes a current sensor that divides a current to be measured and detects a smaller current.
JP-A-10-73619

特許文献1の電流センサでは「金属板を、電流が流れる方向にほぼ平行でかつ切欠部を通る折り曲げラインに沿ってほぼ直角に折り曲げ、磁性体コアを、前記直角に折り曲げられた部分の電流分流路を覆うように配置」している(段落[0014])が、このような構成であると、2つの分流路が金属板の幅方向に関してずれた位置(異なる位置)に存在することとなり、「直角に折り曲げられた部分の電流分流路を覆うように配置」された磁性体コアが金属板の幅方向に関して大きく横に出っ張るため、電流センサの小型化の妨げとなる。   In the current sensor disclosed in Patent Document 1, “a metal plate is bent substantially at right angles along a bending line that is substantially parallel to the direction of current flow and passes through the notch, and the magnetic core is divided into the current divided portions of the portion bent at the right angle. "Arranged so as to cover the path" (paragraph [0014]), but with such a configuration, the two branch channels are present at different positions (different positions) in the width direction of the metal plate, Since the magnetic core “arranged so as to cover the current-carrying portion of the portion bent at a right angle” protrudes widely in the width direction of the metal plate, it hinders the downsizing of the current sensor.

本発明はこうした状況を認識してなされたものであり、その目的は、被測定電流を分流して検出する構成において小型化を図ることの可能な電流センサを提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a current sensor that can be downsized in a configuration in which a current to be measured is divided and detected.

本発明のある態様は、電流センサである。この電流センサは、
被測定電流を所定の比率で分流するように中間部で部分的に高抵抗電流路と低抵抗電流路とに分岐している、一体形成されたバスバーと、
前記高抵抗電流路を囲む、ギャップ部を有するリング状磁気コアと、
前記ギャップ部に位置する磁気検出素子とを備え、
前記バスバーは、中間部に形成された開口によって前記高抵抗電流路と前記低抵抗電流路とに分岐し、前記高抵抗電流路が少なくとも部分的に前記低抵抗電流路の幅内に存在するように幅方向に湾曲し、ないし折り曲げられていて、
前記高抵抗電流路のうち前記低抵抗電流路の幅内に存在する部分を前記リング状磁気コアが囲んでいるものである。
One embodiment of the present invention is a current sensor. This current sensor
An integrally formed bus bar partially branched into a high-resistance current path and a low-resistance current path at an intermediate portion so as to shunt the current to be measured at a predetermined ratio;
A ring-shaped magnetic core having a gap portion surrounding the high-resistance current path;
A magnetic detection element located in the gap portion,
The bus bar is branched into the high resistance current path and the low resistance current path by an opening formed in an intermediate portion so that the high resistance current path exists at least partially within the width of the low resistance current path. Is bent or bent in the width direction,
The ring-shaped magnetic core surrounds a portion of the high resistance current path that exists within the width of the low resistance current path.

ある態様の電流センサにおいて、前記バスバーは、前記被測定電流の流れる方向に略平行で前記低抵抗電流路に近い第1の折曲げラインと、前記第1の折曲げラインと平行で前記低抵抗電流路から遠い第2の折曲げラインとに沿ってそれぞれ略直角に折り曲げられているとよい。   In the current sensor according to an aspect, the bus bar includes a first folding line that is substantially parallel to a direction in which the current to be measured flows and is close to the low resistance current path, and is parallel to the first folding line and the low resistance. It is good to be bent at substantially right angles along the second folding line far from the current path.

ある態様の電流センサにおいて、前記高抵抗電流路に1つ以上の切欠部が形成されて前記高抵抗電流路の抵抗値が高められているとよい。   In one aspect of the current sensor, it is preferable that one or more notches are formed in the high resistance current path to increase a resistance value of the high resistance current path.

ある態様の電流センサにおいて、前記リング状磁気コアの前記ギャップ部の長さが前記高抵抗電流路の厚み若しくは幅よりも大きいとよい。   In a current sensor according to a certain aspect, it is preferable that a length of the gap portion of the ring-shaped magnetic core is larger than a thickness or a width of the high resistance current path.

ある態様の電流センサにおいて、
この電流センサは、前記リング状磁気コアが内側を貫通する負帰還用コイルをさらに備える磁気平衡式電流センサであり、
前記磁気検出素子が実装されたプリント基板のスルーホールに前記負帰還用コイルの端子ピンが挿通されているとよい。
In an aspect of the current sensor,
This current sensor is a magnetic balance type current sensor further comprising a negative feedback coil through which the ring-shaped magnetic core passes.
The terminal pin of the negative feedback coil may be inserted into a through hole of a printed board on which the magnetic detection element is mounted.

さらに、前記負帰還用コイルは複数存在し、複数の前記負帰還用コイルはそれぞれ、
巻軸方向の長さが少なくとも一部で前記リング状磁気コアの前記ギャップ部の長さよりも短く、内側を前記リング状磁気コアが貫通するボビンと、
前記ボビンに施され、前記ボビンから突き出た前記端子ピンに端末が電気的に接続された巻線とを有するものであり、
各端子ピンは前記プリント基板上の導電パターンと電気的に接続され、
複数の前記負帰還用コイルは、前記リング状磁気コアの周方向に関して磁気的極性が同一となるように、前記プリント基板上の前記導電パターンにより相互に電気的に接続されているとよい。
Furthermore, there are a plurality of negative feedback coils, and each of the plurality of negative feedback coils is
A bobbin whose length in the winding axis direction is at least partly shorter than the length of the gap portion of the ring-shaped magnetic core and through which the ring-shaped magnetic core passes;
A winding that is applied to the bobbin and has a terminal electrically connected to the terminal pin protruding from the bobbin;
Each terminal pin is electrically connected to the conductive pattern on the printed circuit board,
The plurality of negative feedback coils may be electrically connected to each other by the conductive pattern on the printed circuit board so that the magnetic polarities are the same in the circumferential direction of the ring-shaped magnetic core.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明の電流センサによれば、高抵抗電流路のうち低抵抗電流路の幅内に存在する部分をリング状磁気コアが囲む構成であるため、高抵抗電流路が低抵抗電流路の幅内に存在しない場合と比較してリング状磁気コアがバスバーの幅方向に出っ張る量を低減することができ、被測定電流を分流して検出する構成において小型化が可能となる。   According to the current sensor of the present invention, since the ring-shaped magnetic core surrounds the portion of the high resistance current path that is within the width of the low resistance current path, the high resistance current path is within the width of the low resistance current path. Compared to the case where the ring-shaped magnetic core does not exist in the space, the amount of protrusion of the ring-shaped magnetic core in the width direction of the bus bar can be reduced.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る電流センサ100の説明図であり、(A)は正断面図、(B)は同電流センサ100のバスバー10の折曲げ前の斜視図、(C)は同折曲げ後の斜視図である。図2は、同バスバー10の説明図であり、(A)は折曲げ前の平面図、(B)は折曲げ後の正断面図、(C)は折曲げ後の左側面図、(D)は等価回路図である。
(First embodiment)
1A and 1B are explanatory diagrams of a current sensor 100 according to a first embodiment of the present invention, in which FIG. 1A is a front sectional view and FIG. 1B is a perspective view of the current sensor 100 before bending a bus bar 10. , (C) is a perspective view after the bending. 2A and 2B are explanatory views of the bus bar 10, wherein FIG. 2A is a plan view before folding, FIG. 2B is a front sectional view after folding, FIG. 2C is a left side view after folding, and FIG. ) Is an equivalent circuit diagram.

電流センサ100は、被測定電流の経路を成すバスバー10と、リング状磁路を成すリング状磁気コア15と、磁気検出素子としてのホール素子25と、負帰還用コイルLと、電子部品を搭載したプリント基板26と、絶縁板29と、ケース本体80と、蓋85とを備える。   The current sensor 100 includes a bus bar 10 that forms a path of a current to be measured, a ring-shaped magnetic core 15 that forms a ring-shaped magnetic path, a hall element 25 as a magnetic detection element, a negative feedback coil L, and electronic components. The printed circuit board 26, the insulating plate 29, the case main body 80, and the lid 85 are provided.

図1(B)及び図2(A)に示すように、バスバー10は、折曲げ前においては一体形成された平板形状(例えば銅板)であり、長手方向の両端部に位置する取付け孔91,92を介して例えばネジやリベットによって被測定電流の経路を成すように取り付けられる。バスバー10の長手方向の中間部に前記長手方向に沿う所定長の開口57が形成され、開口57によってバスバー10は長手方向の中間部で部分的に高抵抗電流路51と低抵抗電流路52とに分岐している。換言すれば、被測定電流Iinの全てが流れる未分岐電流路(バスバー10の両端部の分岐していない電流路)の間に高抵抗電流路51と低抵抗電流路52とが挟まれている。したがって、被測定電流Iinは所定の比率で高抵抗電流路51と低抵抗電流路52とに分流される。なお、バスバー10は図2(D)に示す回路図で等価的に表され、分流比は高抵抗電流路51と低抵抗電流路52の抵抗の逆数の比に等しい。 As shown in FIGS. 1 (B) and 2 (A), the bus bar 10 has a flat plate shape (for example, a copper plate) integrally formed before bending, and mounting holes 91, which are located at both ends in the longitudinal direction. It is attached through 92 so as to form a path of a current to be measured by, for example, a screw or a rivet. An opening 57 having a predetermined length along the longitudinal direction is formed in an intermediate portion in the longitudinal direction of the bus bar 10, and the bus bar 10 is partially formed in the intermediate portion in the longitudinal direction by the opening 57 so that the high resistance current path 51 and the low resistance current path 52. It is branched to. In other words, a high resistance current path 51 and the low resistance current path 52 is sandwiched between the unbranched current path all flows of current to be measured I in (current path unbranched both ends of the bus bar 10) Yes. Therefore, the measured current I in is shunted into the high resistance current path 51 and the low resistance current path 52 at a predetermined ratio. The bus bar 10 is equivalently represented in the circuit diagram shown in FIG. 2D, and the shunt ratio is equal to the ratio of the reciprocal of the resistance of the high resistance current path 51 and the low resistance current path 52.

高抵抗電流路51は好ましくは、バスバー10の長手方向の中間部にコの字型に形成され、被測定電流Iinの流れる方向に略平行で低抵抗電流路52に近い(コの字型の先端側の)第1の折曲げライン53と、第1の折曲げライン53と平行で低抵抗電流路52から遠い(コの字型の中間部の)第2の折曲げライン54とに沿ってそれぞれ略直角に折り曲げられて庇状になっている(図1(B)→(C))。そしてコの字型の高抵抗電流路51の底辺(底部55)は低抵抗電流路52の幅内(例えば幅方向の中間部)で低抵抗電流路52の上方(又は下方)に位置する。 The high resistance current path 51 is preferably formed in a U-shape in the middle portion of the bus bar 10 in the longitudinal direction, and is substantially parallel to the direction in which the current I in flows and close to the low resistance current path 52 (the U-shape A first fold line 53 (on the tip side) and a second fold line 54 parallel to the first fold line 53 and far from the low resistance current path 52 (in the middle of the U-shape). Each of them is bent at a substantially right angle to form a bowl shape (FIG. 1 (B) → (C)). The bottom (bottom 55) of the U-shaped high resistance current path 51 is located above (or below) the low resistance current path 52 within the width of the low resistance current path 52 (for example, the middle portion in the width direction).

図1(A)に示すように、高抵抗電流路51のうち低抵抗電流路52の幅内に存在する部分(すなわちコの字型の高抵抗電流路51の底辺(底部55))の長手方向の中間部を囲むようにリング状磁気コア15(高透磁率で残留磁気が少ない珪素鋼板やパーマロイコア、アモルファス等からなる)が配置される。リング状磁気コア15は好ましくは分割されていないものとする。ここで、高抵抗電流路51の幅Lwはリング状磁気コア15のギャップ部Gの長さLgよりも短い(Lw<Lg)ため、バスバー10が一体形成されかつリング状磁気コア15が分割されていなくても、高抵抗電流路51をギャップ部Gに通すことで、高抵抗電流路51を囲むようにリング状磁気コア15を配置することができる。   As shown in FIG. 1A, the length of the portion of the high resistance current path 51 that is within the width of the low resistance current path 52 (that is, the bottom side (bottom 55) of the U-shaped high resistance current path 51). A ring-shaped magnetic core 15 (made of a silicon steel plate, a permalloy core, amorphous, or the like) having a high magnetic permeability and little residual magnetism is disposed so as to surround the middle portion of the direction. The ring-shaped magnetic core 15 is preferably not divided. Here, since the width Lw of the high resistance current path 51 is shorter than the length Lg of the gap portion G of the ring-shaped magnetic core 15 (Lw <Lg), the bus bar 10 is integrally formed and the ring-shaped magnetic core 15 is divided. Even if not, the ring-shaped magnetic core 15 can be disposed so as to surround the high-resistance current path 51 by passing the high-resistance current path 51 through the gap portion G.

リング状磁気コア15のギャップ部Gにホール素子25が位置し、リング状磁気コア15が内側を貫通するように負帰還用コイルLが実装される。負帰還用コイルLは、内側をリング状磁気コア15が貫通するように実装されたボビン17(分割ボビン)に巻線18を施したものであり、巻線18の端末はボビン17から突き出た端子ピン19に例えば絡げて半田付けすることで電気的に接続されている。端子ピン19はプリント基板26のスルーホールに挿通されてプリント基板26上の導電パターンと例えば半田付けにより電気的に接続される。ホール素子25の端子ピンも同様にプリント基板26のスルーホールに挿通されて電気的に接続される。リング状磁気コア15は好ましくは図1(A)に示されるような方形リング状(長方形リング状)であり、ギャップ部の存在する部分の反対側(下側)の直線状部が負帰還用コイルLの内側を貫通するとよい。なお、低抵抗電流路52と負帰還用コイルLとの間に絶縁板29が介在し、大電流の流れる低抵抗電流路52から負帰還用コイルLを絶縁している。   The Hall element 25 is positioned in the gap part G of the ring-shaped magnetic core 15, and the negative feedback coil L is mounted so that the ring-shaped magnetic core 15 penetrates the inside. The negative feedback coil L is a bobbin 17 (divided bobbin) mounted so that the ring-shaped magnetic core 15 penetrates the inside thereof, and a winding 18 is provided. The end of the winding 18 protrudes from the bobbin 17. The terminal pins 19 are electrically connected, for example, by being tangled and soldered. The terminal pin 19 is inserted into the through hole of the printed board 26 and is electrically connected to the conductive pattern on the printed board 26 by, for example, soldering. Similarly, the terminal pins of the Hall element 25 are inserted through the through holes of the printed circuit board 26 and are electrically connected. The ring-shaped magnetic core 15 is preferably a rectangular ring shape (rectangular ring shape) as shown in FIG. 1A, and the linear portion on the opposite side (lower side) where the gap portion exists is for negative feedback. It is good to penetrate the inside of the coil L. An insulating plate 29 is interposed between the low resistance current path 52 and the negative feedback coil L to insulate the negative feedback coil L from the low resistance current path 52 through which a large current flows.

樹脂等からなるケース本体80は、上方が開口した例えば直方体形状であり、バスバー10の長手方向の一部と、リング状磁気コア15と、ホール素子25と、負帰還用コイルLと、プリント基板26と、絶縁板29とを内部に収容する。樹脂等からなる蓋85がケース本体80に例えば嵌合して被せられ、ケース本体80及び蓋85からなるケースが構成される。   The case body 80 made of resin or the like has, for example, a rectangular parallelepiped shape with an upper opening, a part in the longitudinal direction of the bus bar 10, the ring-shaped magnetic core 15, the Hall element 25, the negative feedback coil L, and a printed circuit board. 26 and the insulating plate 29 are accommodated inside. A lid 85 made of resin or the like is fitted onto the case main body 80, for example, to form a case made up of the case main body 80 and the lid 85.

図3は、図1に示される電流センサ100の例示的な回路図である。本図において、ホール素子25は等価的に4つの抵抗のブリッジ接続で表され、端子a,c間に一定のホール素子駆動電流を流しておくことにより出力端子b,d間にホール素子25に印加された磁界に比例した(換言すれば被測定電流Iinに比例した)電圧を得る構成としている。なお、抵抗R1及びR2(電流制限用抵抗器)によって電源(電圧Vcc)からホール素子25への供給電流が制限される。ホール素子25の出力端子b,dは、負帰還用差動増幅器35の入力端子にそれぞれ接続される。負帰還用差動増幅器35の出力端子と接地(GND:基準電圧端子)とを接続する経路に負帰還用コイルLと検出抵抗RSとが直列接続される。検出抵抗RSと並列に電圧計37が接続される。 FIG. 3 is an exemplary circuit diagram of the current sensor 100 shown in FIG. In this figure, the Hall element 25 is equivalently represented by a bridge connection of four resistors, and a constant Hall element drive current is allowed to flow between the terminals a and c so that the Hall element 25 is connected between the output terminals b and d. proportional to the applied magnetic field (in other words proportional to the measured current I in) is configured to obtain a voltage. The supply current from the power source (voltage Vcc) to the Hall element 25 is limited by the resistors R 1 and R 2 (current limiting resistors). The output terminals b and d of the Hall element 25 are connected to the input terminals of the negative feedback differential amplifier 35, respectively. A negative feedback coil L and a detection resistor R S are connected in series to a path connecting the output terminal of the negative feedback differential amplifier 35 and the ground (GND: reference voltage terminal). A voltmeter 37 is connected in parallel with the detection resistor R S.

ホール素子25の出力電圧VHは負帰還用差動増幅器35に入力される。負帰還用差動増幅器35は、出力端子から電流を吸い込む又は吐き出すことにより、端子b,d間の電位差が常にゼロとなるように、すなわちホール素子25の感磁面において被測定電流Iinによって発生する第1の磁界と負帰還用コイルLの発生する第2の磁界とが相殺するように、負帰還用コイルLに負帰還電流IFBを供給する。供給された負帰還電流IFBは検出抵抗RSで電圧に変換されて電圧計37によって検出(モニタ)される(又はセンサ出力として外部に取り出される)。なお、高抵抗電流路51に流れる電流は負帰還用コイルLへの供給電流と巻線総和とから「等アンペアターンの原理」により求められ、それに基づいて被測定電流Iinが分流比より算出される。 The output voltage V H of the Hall element 25 is input to the negative feedback differential amplifier 35. Negative feedback differential amplifier 35, by sucking or discharging the current from the output terminal, so that the terminal b, the potential difference between d will always be zero, i.e. the measured current I in the sensitive surface of the Hall element 25 The negative feedback current I FB is supplied to the negative feedback coil L so that the first magnetic field generated and the second magnetic field generated by the negative feedback coil L cancel each other. The supplied negative feedback current I FB is converted into a voltage by the detection resistor R S and detected (monitored) by the voltmeter 37 (or taken out as a sensor output). The current flowing in the high resistance current path 51 is obtained by the “equal ampere-turn principle” from the supply current to the negative feedback coil L and the total winding, and based on this, the measured current I in is calculated from the shunt ratio. Is done.

本実施の形態によれば、下記の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 被測定電流Iinよりも小さな電流が流れる高抵抗電流路51をリング状磁気コア15で囲む構成としているので、被測定電流Iinの全てが流れる電流路を囲む場合と比較して、リング状磁気コア15が小型で済み、負帰還用コイルの巻線数も少なくてよいため、コスト安である。 (1) Since the ring-shaped magnetic core 15 surrounds the high-resistance current path 51 in which a current smaller than the current I in measured is passed, compared to the case in which the current path in which all the current I in measured flows is surrounded. Since the ring-shaped magnetic core 15 is small and the number of windings of the negative feedback coil may be small, the cost is low.

(2) 高抵抗電流路51は折り曲げられて低抵抗電流路52に対して庇状とされ、高抵抗電流路51のうち低抵抗電流路52の上方(又は下方)に位置する部分をリング状磁気コア15が囲むため、高抵抗電流路51が低抵抗電流路52の幅内に存在しない場合と比較してリング状磁気コア15がバスバー10の幅方向に関して出っ張る量(はみ出る量)を低減する(又はゼロにする)ことができ、電流センサを幅狭(小型)に構成できる。この点、例えば三相交流電流を検出する電流センサの場合、リング状磁気コアがバスバーの幅方向に大きく出っ張っているとU相、V相、W相の各相のバスバーをある程度離して配置しなければならず小型化が困難であるところ、本実施の形態によればリング状磁気コアがバスバーの幅方向に出っ張る量を低減(又はゼロ)にできるのでそのような問題が好適に解決される。 (2) The high resistance current path 51 is bent into a bowl shape with respect to the low resistance current path 52, and a portion of the high resistance current path 51 located above (or below) the low resistance current path 52 is a ring shape. Since the magnetic core 15 surrounds, the amount of protrusion (the amount of protrusion) of the ring-shaped magnetic core 15 in the width direction of the bus bar 10 is reduced as compared with the case where the high resistance current path 51 does not exist within the width of the low resistance current path 52. (Or zero), and the current sensor can be made narrow (small). In this respect, for example, in the case of a current sensor that detects a three-phase alternating current, if the ring-shaped magnetic core protrudes greatly in the width direction of the bus bar, the U-phase, V-phase, and W-phase bus bars are spaced apart to some extent. Since it is difficult to reduce the size, according to the present embodiment, the amount of protrusion of the ring-shaped magnetic core in the width direction of the bus bar can be reduced (or zero), so that such a problem is preferably solved. .

(3) バスバー10が一体形成されているため、すなわち高抵抗電流路51と低抵抗電流路52、及びそれらの両側の分岐していない部分がネジやリベット等による結合ではなく一体形成されているため、分岐箇所をネジやリベット等で結合する分離構造のバスバーを用いる場合と比較して、分岐箇所の接触抵抗の変化による分流割合への影響がないので、分流割合の変化による電流検出精度の悪化を防止して高精度に電流検出することが可能となる。 (3) Since the bus bar 10 is integrally formed, that is, the high resistance current path 51 and the low resistance current path 52, and the unbranched portions on both sides of the bus bar 10 are integrally formed instead of being joined by screws, rivets or the like. Therefore, compared to the case of using a bus bar with a separation structure in which the branch points are connected with screws, rivets, etc., there is no effect on the shunt rate due to the change in the contact resistance at the branch point, so the current detection accuracy due to the change in the shunt rate It is possible to detect current with high accuracy while preventing deterioration.

(第2の実施の形態)
図4は、本発明の第2の実施の形態に係る電流センサ200の正断面図(図5のIV-IV'断面図)である。図5は、図4のV-V'矢視図である。図6は、同電流センサ200の概略斜視図である。但し、本図においてケース本体80と蓋85、ホール素子25、プリント基板26、コアホルダ70の図示を省略している。図7は、同電流センサ200の例示的な回路図である。
(Second embodiment)
FIG. 4 is a front sectional view (IV-IV ′ sectional view of FIG. 5) of a current sensor 200 according to a second embodiment of the present invention. FIG. 5 is a VV ′ arrow view of FIG. FIG. 6 is a schematic perspective view of the current sensor 200. However, in this drawing, the case main body 80, the lid 85, the Hall element 25, the printed circuit board 26, and the core holder 70 are not shown. FIG. 7 is an exemplary circuit diagram of the current sensor 200.

本実施の形態の電流センサ200は、第1の実施の形態と比較して、負帰還用コイルが複数に分割されている点と、リング状磁気コア15がコアホルダ70に保持されている点とにおいて主に相違し、その他の点で一致している。以下、相違点を中心に説明する。   In the current sensor 200 of the present embodiment, the negative feedback coil is divided into a plurality of parts, and the ring-shaped magnetic core 15 is held by the core holder 70 as compared with the first embodiment. Are mainly different, and are otherwise the same. Hereinafter, the difference will be mainly described.

ボビン17に巻線18を施してなる負帰還用コイルL1〜L4は、鍔部端面から端子台21(端子ピン19の植設部分)が出っ張っていて軸方向の長さがリング状磁気コア15のギャップ部の長さLgよりも長くなっているが、端子台21を除いた軸方向の長さLcはギャップ部の長さLgよりも短い(Lc<Lg)。したがって、リング状磁気コア15が分割されていなくても、負帰還用コイルL1〜L4をギャップ部Gからリング状磁気コア15に実装することができる。なお、リング状磁気コア15は好ましくは図4に示されるような方形リング状(長方形リング状)であり、ギャップ部Gの存在する直線状部が負帰還用コイルL1〜L4の内側を貫通するとよい。   The negative feedback coils L1 to L4 formed by winding the bobbin 17 on the bobbin 17 have a terminal block 21 (an implanted portion of the terminal pin 19) protruding from the end face of the flange, and the axial length of the ring-shaped magnetic core 15 The length Lc in the axial direction excluding the terminal block 21 is shorter than the length Lg of the gap portion (Lc <Lg). Therefore, even if the ring-shaped magnetic core 15 is not divided, the negative feedback coils L1 to L4 can be mounted on the ring-shaped magnetic core 15 from the gap portion G. The ring-shaped magnetic core 15 is preferably a rectangular ring shape (rectangular ring shape) as shown in FIG. 4, and when the linear portion where the gap portion G exists penetrates the inside of the negative feedback coils L1 to L4. Good.

負帰還用コイルL1〜L4の各ボビン17から突き出た端子ピン19はプリント基板26のスルーホールに挿通されてプリント基板26上の導電パターン(図5参照)と例えば半田付けにより電気的に接続される。またホール素子25の端子ピンもプリント基板26のスルーホールに挿通されて同様に接続される。なお、図5においては、プリント基板26上に負帰還用コイルL1〜L4を接続する導電パターンのみを図示し、その他の回路部品及び接続の図示は省略している。プリント基板26上の前記導電パターンにより負帰還用コイルL1〜L4は、図5及び図7に示されるように、リング状磁気コア15の周方向に関して磁気的極性が同一となるように(同じ向きの磁束を発生するように)直列に接続される。なお、図7に示される回路は、図3に示される第2の実施の形態の回路と比較して、負帰還用コイルLに替えて負帰還用コイルL1〜L4が直列に接続されている点と、単電源駆動となっている点と、検出抵抗RSの端子電圧を差動増幅回路37で増幅している点とにおいて相違し、その他の点で一致している。差動増幅回路37に含まれる抵抗R3〜抵抗R6の抵抗値はR3=R5、R4=R6であり、差動増幅回路37の増幅度はR4/R3である。差動増幅回路37の出力電圧Vout
out=−(R4/R3)VH+2.5[V]
となる。差動増幅回路37の出力電圧Voutは電流センサ100のセンサ出力となる。
The terminal pins 19 protruding from the bobbins 17 of the negative feedback coils L1 to L4 are inserted into the through holes of the printed circuit board 26 and electrically connected to the conductive pattern (see FIG. 5) on the printed circuit board 26 by, for example, soldering. The The terminal pins of the hall element 25 are also inserted through the through holes of the printed board 26 and connected in the same manner. In FIG. 5, only the conductive pattern for connecting the negative feedback coils L1 to L4 on the printed circuit board 26 is shown, and other circuit components and connections are not shown. As shown in FIGS. 5 and 7, the negative feedback coils L1 to L4 have the same magnetic polarity with respect to the circumferential direction of the ring-shaped magnetic core 15 due to the conductive pattern on the printed circuit board 26 (in the same direction). Are connected in series). In the circuit shown in FIG. 7, negative feedback coils L1 to L4 are connected in series in place of the negative feedback coil L, as compared with the circuit of the second embodiment shown in FIG. This is different in that it is driven by a single power source and the terminal voltage of the detection resistor R S is amplified by the differential amplifier circuit 37, and is the same in other points. The resistance values of the resistors R 3 to R 6 included in the differential amplifier circuit 37 are R 3 = R 5 and R 4 = R 6 , and the amplification degree of the differential amplifier circuit 37 is R 4 / R 3 . The output voltage V out of the differential amplifier circuit 37 is V out = − (R 4 / R 3 ) V H +2.5 [V]
It becomes. The output voltage V out of the differential amplifier circuit 37 becomes the sensor output of the current sensor 100.

図4に示されるように、樹脂等からなるコアホルダ70は、コの字型形状の内側にリング状磁気コア15を収容し、コの字型の両脚71,72でリング状磁気コア15を挟み込む。また、コの字型の底部73の外面には2カ所の平行な凸条74,75が形成され、凸条74,75で低抵抗電流路52を幅方向両側から挟み込む。なお、コアホルダ70の底部73の外面に凸条74,75に替えて所定数のボス(凸部)を形成しておき、それらを低抵抗電流路52に形成した所定数の穴に圧入する構成としてもよい。   As shown in FIG. 4, the core holder 70 made of resin or the like accommodates the ring-shaped magnetic core 15 inside the U-shaped shape, and sandwiches the ring-shaped magnetic core 15 with both U-shaped legs 71 and 72. . Further, two parallel protrusions 74 and 75 are formed on the outer surface of the U-shaped bottom portion 73, and the low resistance current path 52 is sandwiched from both sides in the width direction by the protrusions 74 and 75. A configuration in which a predetermined number of bosses (convex portions) are formed on the outer surface of the bottom 73 of the core holder 70 in place of the ridges 74 and 75, and they are press-fitted into a predetermined number of holes formed in the low resistance current path 52. It is good.

本実施の形態によれば、第1の実施の形態の効果に加えてさらに、次の効果を奏することができる。   According to the present embodiment, in addition to the effects of the first embodiment, the following effects can be further achieved.

(1) 負帰還用コイルL1〜L4の端子台21を除いた軸方向の長さLcがリング状磁気コア15のギャップ部の長さLgよりも短い(Lc<Lg)ため、リング状磁気コア15が分割されていなくても、負帰還用コイルL1〜L4をギャップ部からリング状磁気コア15に実装することができる。したがって、トロイダル巻線のための特殊な巻線機の使用を不要としつつ、分割されていないリング状磁気コア15を用いることが可能となり、トロイダル巻線のための特殊な巻線機を使用する場合と比較して巻線スピードを改善するとともに、分割されたコアを組み合わせる場合と比較して電流検出精度の悪化のリスクが少ない。 (1) Since the axial length Lc of the negative feedback coils L1 to L4 excluding the terminal block 21 is shorter than the length Lg of the gap portion of the ring-shaped magnetic core 15 (Lc <Lg), the ring-shaped magnetic core Even if 15 is not divided | segmented, the coils L1-L4 for negative feedback can be mounted in the ring-shaped magnetic core 15 from a gap part. Accordingly, it is possible to use the ring-shaped magnetic core 15 that is not divided while eliminating the need for a special winding machine for toroidal winding, and use a special winding machine for toroidal winding. The winding speed is improved as compared with the case, and the risk of deterioration of the current detection accuracy is less than when the divided cores are combined.

(2) 複数の負帰還用コイルL1〜L4を直列に接続しているので、同じ構成の負帰還用コイルが1つの場合と比較して、被測定電流Iinが大きい場合に適している。 (2) Since a plurality of negative feedback coils L1 to L4 are connected in series, it is suitable when the current to be measured Iin is large compared to the case of one negative feedback coil having the same configuration.

(3) リング状磁気コア15を方形リング状(長方形リング状)とし、ギャップ部の存在する直線状部が負帰還用コイルL1〜L4の内側を貫通しているので、リング状磁気コア15への負帰還用コイルL1〜L4の実装作業が容易である。また、負帰還用コイルL1〜L4とプリント基板26との接続もしやすい。 (3) Since the ring-shaped magnetic core 15 has a rectangular ring shape (rectangular ring shape), and the linear portion where the gap portion exists penetrates the inside of the negative feedback coils L1 to L4, the ring-shaped magnetic core 15 The negative feedback coils L1 to L4 can be easily mounted. Further, the negative feedback coils L1 to L4 and the printed circuit board 26 are easily connected.

(4) 負帰還用コイルL1〜L4は低抵抗電流路52から離れた位置となるようにリング状磁気コア15に実装されている(例えば低抵抗電流路52に対して高抵抗電流路51よりも離れた位置となるようにリング状磁気コア15に実装されている)ため、大電流が流れる低抵抗電流路52からの熱の影響を受けにくく、信頼性が高いといえる。また、負帰還用コイルL1〜L4がリング状磁気コア15の上側部分に実装されているので、各コイルの端子ピン19をそのままプリント基板26のスルーホールに挿通しやすく実装容易である。 (4) The negative feedback coils L1 to L4 are mounted on the ring-shaped magnetic core 15 so as to be located away from the low resistance current path 52 (for example, from the high resistance current path 51 with respect to the low resistance current path 52). Are mounted on the ring-shaped magnetic core 15 so as to be separated from each other), it is difficult to be affected by heat from the low resistance current path 52 through which a large current flows, and it can be said that the reliability is high. Further, since the negative feedback coils L1 to L4 are mounted on the upper portion of the ring-shaped magnetic core 15, the terminal pins 19 of the respective coils are easily inserted into the through holes of the printed circuit board 26 as they are and can be mounted easily.

(5) コアホルダ70によってバスバー10とリング状磁気コア15との位置決めが容易かつ確実となり、組み立てやすい。 (5) The core holder 70 makes positioning of the bus bar 10 and the ring-shaped magnetic core 15 easy and reliable and easy to assemble.

(第3の実施の形態)
図8は、本発明の第3の実施の形態に係る電流センサ300の正断面図である。同電流センサ300は、第2の実施の形態の電流センサ200と比較して、電流検出の方式が磁気平衡式から磁気比例式に変わった点において主に相違し、その他の点で一致している。図9に示される同電流センサ300の回路は、図7に示される第2の実施の形態の電流センサ200の回路と比較して、ホール素子25の出力電圧VHが直接差動増幅回路37で増幅されてセンサ出力Voutとされている点で相違し、その他の点で一致している。本実施の形態も、第1及び第2の実施の形態と同様に、リング状磁気コア15を小型化できるとともに、コスト低減、電流センサの小型化(幅狭化)、高精度な電流検出が可能である。
(Third embodiment)
FIG. 8 is a front sectional view of a current sensor 300 according to the third embodiment of the present invention. The current sensor 300 is mainly different from the current sensor 200 of the second embodiment in that the current detection method is changed from a magnetic balance type to a magnetic proportional type, and is the same in other points. Yes. In the circuit of the current sensor 300 shown in FIG. 9, the output voltage V H of the Hall element 25 is directly different from the circuit of the current sensor 200 of the second embodiment shown in FIG. Are different from each other in that they are amplified as sensor output V out, and other points are the same. In the present embodiment, as in the first and second embodiments, the ring-shaped magnetic core 15 can be reduced in size, cost reduction, downsizing of the current sensor (narrowing), and high-precision current detection. Is possible.

(第4の実施の形態)
図10は、本発明の第4の実施の形態に係る電流センサで用いるバスバー10の概略斜視図である。同バスバー10は、第1〜第3の実施の形態で用いたものと比較して、高抵抗電流路51に所定数(図では6つ)の切欠59が形成されている点で相違し、その他の点で一致している。バスバー10の加工の都合上、高抵抗電流路51を細く形成して断面積を小さくし高抵抗電流路51の抵抗値を高めるには限界があるところ、本実施の形態によれば切欠59を形成することで高抵抗電流路51の抵抗値を高めることを可能としている。これによれば、切欠59を設けない場合と比較して高抵抗電流路51に流れる電流をより小さくすることができ、リング状磁気コアの更なる小型化に有利である。
(Fourth embodiment)
FIG. 10 is a schematic perspective view of the bus bar 10 used in the current sensor according to the fourth embodiment of the present invention. The bus bar 10 differs from the one used in the first to third embodiments in that a predetermined number (six in the drawing) of notches 59 are formed in the high resistance current path 51. It is consistent in other respects. For the convenience of processing the bus bar 10, there is a limit to forming the high resistance current path 51 thin to reduce the cross-sectional area and increase the resistance value of the high resistance current path 51, but according to the present embodiment, the notch 59 is formed. By forming, the resistance value of the high resistance current path 51 can be increased. According to this, compared with the case where the notch 59 is not provided, the current flowing through the high resistance current path 51 can be further reduced, which is advantageous for further miniaturization of the ring-shaped magnetic core.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素には請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it will be understood by those skilled in the art that various modifications can be made to each component of the embodiment within the scope of the claims. Hereinafter, modifications will be described.

各実施の形態ではバスバー10が2箇所で折り曲げられて高抵抗電流路51が部分的に低抵抗電流路52の幅内に存在する場合を説明したが、変形例ではバスバー10が図11に示すように湾曲していることにより高抵抗電流路51が部分的に低抵抗電流路52の幅内に存在してもよい。   In each embodiment, the case where the bus bar 10 is bent at two locations and the high resistance current path 51 partially exists within the width of the low resistance current path 52 has been described. However, in the modification, the bus bar 10 is shown in FIG. Thus, the high resistance current path 51 may partially exist within the width of the low resistance current path 52.

各実施の形態ではリング状磁気コア15のギャップ部Gの長さが高抵抗電流路51の幅よりも大きい場合を説明したが、ギャップ部Gの長さが高抵抗電流路51の厚み又は幅の少なくともいずれかよりも大きければ、高抵抗電流路51をギャップ部Gに通すことで、高抵抗電流路51を囲むようにリング状磁気コア15を配置することができる。   In each embodiment, the case where the length of the gap portion G of the ring-shaped magnetic core 15 is larger than the width of the high resistance current path 51 is described. However, the length of the gap portion G is the thickness or width of the high resistance current path 51. If it is larger than at least one of the above, the ring-shaped magnetic core 15 can be disposed so as to surround the high resistance current path 51 by passing the high resistance current path 51 through the gap portion G.

負帰還用コイルを第2の実施の形態では4個としたが、負帰還用コイルの個数は任意であり、被測定電流Iinの大きさや1個あたりの巻線数によって適宜決定される。 In the second embodiment, the number of negative feedback coils is four, but the number of negative feedback coils is arbitrary, and is determined as appropriate depending on the magnitude of the current I in to be measured and the number of windings per piece.

第2の実施の形態では負帰還用コイルはボビンに巻線を施したものとしたが、変形例ではボビンレス、例えば自己融着導線(セメントワイヤ)をボビンレスで巻回したもの、としてもよい。   In the second embodiment, the negative feedback coil is formed by winding a bobbin. However, in a modified example, a bobbinless, for example, a self-bonding conductive wire (cement wire) wound by a bobbinless may be used.

第2の実施の形態ではプリント基板上の導電パターンにより負帰還用コイル同士を直列に電気的に接続する場合を説明したが、変形例では負帰還用コイル同士の接続にリード線を用いてもよい。   In the second embodiment, the case where the negative feedback coils are electrically connected in series by the conductive pattern on the printed circuit board has been described. However, in the modification, a lead wire may be used to connect the negative feedback coils. Good.

第4の実施の形態では切欠59が6つ形成されている場合を説明したが、切欠の数は任意であり、必要な分流比によって適宜決定される。   Although the case where six notches 59 are formed has been described in the fourth embodiment, the number of notches is arbitrary, and is appropriately determined depending on a necessary diversion ratio.

本発明の第1の実施の形態に係る電流センサの説明図であり、(A)は正断面図、(B)は同電流センサのバスバーの折曲げ前の斜視図、(C)は同折曲げ後の斜視図。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the current sensor which concerns on the 1st Embodiment of this invention, (A) is a front sectional view, (B) is a perspective view before bending of the bus bar of the current sensor, (C) is the same folding The perspective view after bending. 同バスバーの説明図であり、(A)は折曲げ前の平面図、(B)は折曲げ後の正断面図、(C)は折曲げ後の左側面図、(D)は等価回路図。It is explanatory drawing of the bus bar, (A) is a plan view before bending, (B) is a front sectional view after bending, (C) is a left side view after bending, and (D) is an equivalent circuit diagram. . 図1に示される電流センサの例示的な回路図。FIG. 2 is an exemplary circuit diagram of the current sensor shown in FIG. 1. 本発明の第2の実施の形態に係る電流センサの正断面図(図5のIV-IV'断面図)。FIG. 6 is a front sectional view of a current sensor according to a second embodiment of the present invention (IV-IV ′ sectional view of FIG. 5). 図4のV-V'矢視図。FIG. 5 is a VV ′ arrow view of FIG. 4. 同電流センサの概略斜視図。The schematic perspective view of the same current sensor. 同電流センサの例示的な回路図。The example circuit diagram of the same current sensor. 本発明の第3の実施の形態に係る電流センサの正断面図。The front sectional view of the current sensor concerning a 3rd embodiment of the present invention. 同電流センサの例示的な回路図。The example circuit diagram of the same current sensor. 本発明の第4の実施の形態に係る電流センサで用いるバスバーの概略斜視図。The schematic perspective view of the bus-bar used with the current sensor which concerns on the 4th Embodiment of this invention. 変形例に関し、バスバーが湾曲している場合の正断面図。The front sectional view in case a bus bar is curving about a modification. (A)は磁気比例式電流センサの基本的構成を示す概略斜視図。(B)は磁気平衡式電流センサの基本的構成を示す概略斜視図。(A) is a schematic perspective view which shows the basic composition of a magnetic proportional type current sensor. (B) is a schematic perspective view which shows the basic composition of a magnetic balance type current sensor.

符号の説明Explanation of symbols

10 バスバー
15 リング状磁気コア
17 ボビン
18 巻線
19 端子ピン
25 ホール素子
26 プリント基板
29 絶縁板
51 高抵抗電流路
52 低抵抗電流路
70 コアホルダ
80 ケース本体
85 蓋
100,200,300 電流センサ
L,L1〜L4 負帰還用コイル
10 Busbar 15 Ring-shaped magnetic core 17 Bobbin 18 Winding 19 Terminal pin 25 Hall element 26 Printed circuit board 29 Insulating plate 51 High resistance current path 52 Low resistance current path 70 Core holder 80 Case body 85 Lid 100, 200, 300 Current sensor L, L1-L4 Negative feedback coil

Claims (6)

被測定電流を所定の比率で分流するように中間部で部分的に高抵抗電流路と低抵抗電流路とに分岐している、一体形成されたバスバーと、
前記高抵抗電流路を囲む、ギャップ部を有するリング状磁気コアと、
前記ギャップ部に位置する磁気検出素子とを備え、
前記バスバーは、中間部に形成された開口によって前記高抵抗電流路と前記低抵抗電流路とに分岐し、前記高抵抗電流路が少なくとも部分的に前記低抵抗電流路の幅内に存在するように幅方向に湾曲し、ないし折り曲げられていて、
前記高抵抗電流路のうち前記低抵抗電流路の幅内に存在する部分を前記リング状磁気コアが囲んでいる、電流センサ。
An integrally formed bus bar partially branched into a high-resistance current path and a low-resistance current path at an intermediate portion so as to shunt the current to be measured at a predetermined ratio;
A ring-shaped magnetic core having a gap portion surrounding the high-resistance current path;
A magnetic detection element located in the gap portion,
The bus bar is branched into the high resistance current path and the low resistance current path by an opening formed in an intermediate portion so that the high resistance current path exists at least partially within the width of the low resistance current path. Is bent or bent in the width direction,
The current sensor, wherein the ring-shaped magnetic core surrounds a portion of the high resistance current path that is within the width of the low resistance current path.
請求項1に記載の電流センサにおいて、前記バスバーは、前記被測定電流の流れる方向に略平行で前記低抵抗電流路に近い第1の折曲げラインと、前記第1の折曲げラインと平行で前記低抵抗電流路から遠い第2の折曲げラインとに沿ってそれぞれ略直角に折り曲げられている、電流センサ。   2. The current sensor according to claim 1, wherein the bus bar is substantially parallel to a direction in which the current to be measured flows and is close to the low resistance current path, and parallel to the first fold line. A current sensor that is bent substantially at a right angle along a second bending line far from the low-resistance current path. 請求項1又は2に記載の電流センサにおいて、前記高抵抗電流路に1つ以上の切欠部が形成されて前記高抵抗電流路の抵抗値が高められている、電流センサ。   3. The current sensor according to claim 1, wherein one or more notches are formed in the high-resistance current path to increase a resistance value of the high-resistance current path. 請求項1から3のいずれかに記載の電流センサにおいて、前記リング状磁気コアの前記ギャップ部の長さが前記高抵抗電流路の厚み若しくは幅よりも大きい、電流センサ。   4. The current sensor according to claim 1, wherein a length of the gap portion of the ring-shaped magnetic core is larger than a thickness or a width of the high resistance current path. 請求項1から4のいずれかに記載の電流センサにおいて、
この電流センサは、前記リング状磁気コアが内側を貫通する負帰還用コイルをさらに備える磁気平衡式電流センサであり、
前記磁気検出素子が実装されたプリント基板のスルーホールに前記負帰還用コイルの端子ピンが挿通されている、電流センサ。
The current sensor according to any one of claims 1 to 4,
This current sensor is a magnetic balance type current sensor further comprising a negative feedback coil through which the ring-shaped magnetic core passes.
A current sensor, wherein a terminal pin of the negative feedback coil is inserted into a through hole of a printed board on which the magnetic detection element is mounted.
請求項5に記載の電流センサにおいて、
前記負帰還用コイルは複数存在し、複数の前記負帰還用コイルはそれぞれ、
巻軸方向の長さが少なくとも一部で前記リング状磁気コアの前記ギャップ部の長さよりも短く、内側を前記リング状磁気コアが貫通するボビンと、
前記ボビンに施され、前記ボビンから突き出た前記端子ピンに端末が電気的に接続された巻線とを有するものであり、
各端子ピンは前記プリント基板上の導電パターンと電気的に接続され、
複数の前記負帰還用コイルは、前記リング状磁気コアの周方向に関して磁気的極性が同一となるように、前記プリント基板上の前記導電パターンにより相互に電気的に接続されている、電流センサ。
The current sensor according to claim 5,
There are a plurality of negative feedback coils, and each of the plurality of negative feedback coils is
A bobbin whose length in the winding axis direction is at least partly shorter than the length of the gap portion of the ring-shaped magnetic core and through which the ring-shaped magnetic core passes;
A winding that is applied to the bobbin and has a terminal electrically connected to the terminal pin protruding from the bobbin;
Each terminal pin is electrically connected to the conductive pattern on the printed circuit board,
The plurality of negative feedback coils are electrically connected to each other by the conductive pattern on the printed circuit board so that the magnetic polarities are the same in the circumferential direction of the ring-shaped magnetic core.
JP2008254041A 2008-09-30 2008-09-30 Current sensor Active JP5067574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254041A JP5067574B2 (en) 2008-09-30 2008-09-30 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254041A JP5067574B2 (en) 2008-09-30 2008-09-30 Current sensor

Publications (2)

Publication Number Publication Date
JP2010085228A true JP2010085228A (en) 2010-04-15
JP5067574B2 JP5067574B2 (en) 2012-11-07

Family

ID=42249329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254041A Active JP5067574B2 (en) 2008-09-30 2008-09-30 Current sensor

Country Status (1)

Country Link
JP (1) JP5067574B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215065A (en) * 2013-04-23 2014-11-17 日置電機株式会社 Current sensor
CN104426330A (en) * 2013-08-22 2015-03-18 现代摩比斯株式会社 Power conversion device for electric automobile
JP2015152363A (en) * 2014-02-12 2015-08-24 旭化成エレクトロニクス株式会社 current sensor
WO2018159776A1 (en) * 2017-03-02 2018-09-07 Tdk株式会社 Magnetic sensor
JP6471826B1 (en) * 2018-10-22 2019-02-20 Tdk株式会社 Current sensor and method of manufacturing bus bar used therefor
JP2019060646A (en) * 2017-09-25 2019-04-18 矢崎総業株式会社 Current sensor
JP2020067304A (en) * 2018-10-22 2020-04-30 Tdk株式会社 Current sensor and method of manufacturing bus bar used for the same
JP2021081450A (en) * 2017-05-08 2021-05-27 ティディケイ−ミクロナス ゲー・エム・ベー・ハー Magnetic field compensation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512497A (en) * 1978-07-11 1980-01-29 Westinghouse Electric Corp Electric current detection converter
JPS59191673U (en) * 1983-06-07 1984-12-19 本田技研工業株式会社 electrical resistor
JPH1073619A (en) * 1996-08-30 1998-03-17 Yazaki Corp Current detector and electric joint box for vehicle
JP2002318251A (en) * 2002-02-15 2002-10-31 Yazaki Corp Current detector and electric connection box for vehicle
JP2006046922A (en) * 2004-07-30 2006-02-16 Hioki Ee Corp Current sensor
JP2010060397A (en) * 2008-09-03 2010-03-18 Tdk Corp Magnetic balance type current sensor
JP2010071822A (en) * 2008-09-18 2010-04-02 Tdk Corp Current sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512497A (en) * 1978-07-11 1980-01-29 Westinghouse Electric Corp Electric current detection converter
JPS59191673U (en) * 1983-06-07 1984-12-19 本田技研工業株式会社 electrical resistor
JPH1073619A (en) * 1996-08-30 1998-03-17 Yazaki Corp Current detector and electric joint box for vehicle
JP2002318251A (en) * 2002-02-15 2002-10-31 Yazaki Corp Current detector and electric connection box for vehicle
JP2006046922A (en) * 2004-07-30 2006-02-16 Hioki Ee Corp Current sensor
JP2010060397A (en) * 2008-09-03 2010-03-18 Tdk Corp Magnetic balance type current sensor
JP2010071822A (en) * 2008-09-18 2010-04-02 Tdk Corp Current sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215065A (en) * 2013-04-23 2014-11-17 日置電機株式会社 Current sensor
CN104426330A (en) * 2013-08-22 2015-03-18 现代摩比斯株式会社 Power conversion device for electric automobile
JP2015152363A (en) * 2014-02-12 2015-08-24 旭化成エレクトロニクス株式会社 current sensor
WO2018159776A1 (en) * 2017-03-02 2018-09-07 Tdk株式会社 Magnetic sensor
JP2018146303A (en) * 2017-03-02 2018-09-20 Tdk株式会社 Magnetic sensor
JP2021081450A (en) * 2017-05-08 2021-05-27 ティディケイ−ミクロナス ゲー・エム・ベー・ハー Magnetic field compensation device
JP2019060646A (en) * 2017-09-25 2019-04-18 矢崎総業株式会社 Current sensor
JP6471826B1 (en) * 2018-10-22 2019-02-20 Tdk株式会社 Current sensor and method of manufacturing bus bar used therefor
JP2020067304A (en) * 2018-10-22 2020-04-30 Tdk株式会社 Current sensor and method of manufacturing bus bar used for the same
JP2020067305A (en) * 2018-10-22 2020-04-30 Tdk株式会社 Current sensor and method of manufacturing bus bar used for the same

Also Published As

Publication number Publication date
JP5067574B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5067574B2 (en) Current sensor
JP6350785B2 (en) Inverter device
JP2010071822A (en) Current sensor
JP5263494B2 (en) Current sensor
US7626376B2 (en) Electric current detector having magnetic detector
US20130169267A1 (en) Current sensor
JP2008215970A (en) Bus bar integrated current sensor
JP5234459B2 (en) Current sensor
JP2010038750A (en) Magnetic balance type current sensor
JP6384677B2 (en) Current sensor
JP2019045152A (en) Current measuring device
KR100992795B1 (en) Current detecting device of inverter for HEV
JP4623289B2 (en) Current sensor
JP2015132534A (en) Current detection device
JP2010175276A (en) Magnetic proportion system current sensor
JP5203755B2 (en) connector
JP4816980B2 (en) Current sensor
JP2010112767A (en) Current sensor
JP2009156802A (en) Current sensor
JP5678287B2 (en) Current sensor
JP2010101635A (en) Magnetic balance type current sensor
JP2013134076A (en) Current detection apparatus
JP2016200549A (en) Current-voltage sensor
JP5257811B2 (en) Fast response and low current consumption non-contact DC current sensor
JP2010121983A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150