WO2016021322A1 - 中空糸膜束の製造方法 - Google Patents

中空糸膜束の製造方法 Download PDF

Info

Publication number
WO2016021322A1
WO2016021322A1 PCT/JP2015/068204 JP2015068204W WO2016021322A1 WO 2016021322 A1 WO2016021322 A1 WO 2016021322A1 JP 2015068204 W JP2015068204 W JP 2015068204W WO 2016021322 A1 WO2016021322 A1 WO 2016021322A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber membrane
hollow fiber
winding
tension
membrane bundle
Prior art date
Application number
PCT/JP2015/068204
Other languages
English (en)
French (fr)
Inventor
瑛祐 佐々木
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2016540108A priority Critical patent/JP6602302B2/ja
Publication of WO2016021322A1 publication Critical patent/WO2016021322A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules

Definitions

  • the present invention relates to a method for producing a hollow fiber membrane bundle.
  • Patent Document 1 an artificial lung having a hollow fiber membrane bundle composed of a large number of hollow fiber membranes is known (for example, Patent Document 1).
  • the hollow fiber membrane bundle described in Patent Document 1 is obtained by arranging a large number of hollow fiber membranes almost in parallel to form weft yarns, which are connected by warp yarns to form a hook shape. Then, such a saddle-shaped hollow fiber sheet can be folded to form a hollow fiber membrane bundle whose outer shape is a prismatic shape or a cylindrical shape.
  • gas exchange or heat exchange may be insufficient in a portion where the weft yarn (hollow fiber membrane) and the warp yarn (warp) overlap.
  • blood tends to stay in the portion where the weft and warp overlap, and there is a risk of blood clots.
  • each hollow fiber membrane is wound around the circumference of a round bar body, for example, around the central axis thereof to form a hollow hollow fiber membrane bundle.
  • the applied tension of the hollow fiber membrane may differ depending on the position where the round bar is wound.
  • a hollow fiber membrane wound in an excessively tensioned state may change the shape of the pores formed in the wall portion.
  • plasma may flow into the pores or the gas exchange function may be insufficient.
  • An object of the present invention is to provide a method for producing a hollow fiber membrane bundle that can wind up a hollow fiber membrane with an appropriate tension and prevent or suppress deformation of the hollow fiber membrane.
  • a hollow fiber membrane bundle manufacturing method in which the tension is adjusted by moving the hollow fiber membrane in a direction crossing the longitudinal direction according to the magnitude relationship of the tension.
  • the tension applied to the hollow fiber membrane can be wound while maintaining an appropriate magnitude.
  • the shape of the hollow fiber membrane due to excessive tension, in particular, deformation of the pores formed in the hollow fiber membrane can be prevented. Therefore, it is possible to prevent the gas exchange function from being lowered due to the fluid such as plasma flowing into the pores due to the deformation of the pore shape.
  • FIG. 1 is a plan view of an artificial lung to which a hollow fiber membrane bundle manufactured by the method for manufacturing a hollow fiber membrane bundle of the present invention (first embodiment) is applied.
  • FIG. 2 is a view of the oxygenator shown in FIG. 1 as viewed from the direction of arrow A.
  • 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 is a view as seen from the direction of arrow C in FIG.
  • FIG. 7 is a view showing a hollow fiber membrane bundle production apparatus used in the method for producing a hollow fiber membrane bundle of the present invention.
  • FIG. 1 is a plan view of an artificial lung to which a hollow fiber membrane bundle manufactured by the method for manufacturing a hollow fiber membrane bundle of the present invention (first embodiment) is applied.
  • FIG. 2 is a view of the oxygenator shown in FIG. 1 as viewed from the direction of
  • FIG. 8 is a schematic configuration diagram viewed from the direction of arrow F in FIG.
  • FIG. 9 is a block diagram showing the hollow fiber membrane bundle manufacturing apparatus shown in FIG.
  • FIG. 10 (a) is a graph showing the relationship between the winding speed and the elapsed time when the hollow fiber membrane is wound with the rotational speed of the winding section and the rotational speed of the feeding section being constant. (B) is a graph which shows the relationship between the correction amount of the rotational speed of a drawing
  • FIG. 11 is a flowchart for explaining a control program of the hollow fiber membrane bundle manufacturing apparatus.
  • FIG. 12 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus used in the method for manufacturing a hollow fiber membrane bundle of the present invention (second embodiment).
  • FIG. 13 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus used in the method for manufacturing a hollow fiber membrane bundle of the present invention (third embodiment).
  • FIG. 1 is a plan view of an artificial lung to which a hollow fiber membrane bundle manufactured by the method for manufacturing a hollow fiber membrane bundle of the present invention (first embodiment) is applied.
  • FIG. 2 is a view of the oxygenator shown in FIG. 1 as viewed from the direction of arrow A.
  • 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 is a view as seen from the direction of arrow C in FIG.
  • FIG. 7 is a view showing a hollow fiber membrane bundle production apparatus used in the method for producing a hollow fiber membrane bundle of the present invention.
  • FIG. 1 is a plan view of an artificial lung to which a hollow fiber membrane bundle manufactured by the method for manufacturing a hollow fiber membrane bundle of the present invention (first embodiment) is applied.
  • FIG. 2 is a view of the oxygenator shown in FIG. 1 as viewed from the direction of
  • FIG. 8 is a schematic configuration diagram viewed from the direction of arrow F in FIG.
  • FIG. 9 is a block diagram showing the hollow fiber membrane bundle manufacturing apparatus shown in FIG.
  • FIG. 10 (a) is a graph showing the relationship between the winding speed and the elapsed time when the hollow fiber membrane is wound with the rotational speed of the winding section and the rotational speed of the feeding section being constant. (B) is a graph which shows the relationship between the correction amount of the rotational speed of a drawing
  • FIG. 11 is a flowchart for explaining a control program of the hollow fiber membrane bundle manufacturing apparatus.
  • FIGS. 1, 3, 4, and 7, the left side is referred to as “left” or “left (one)”, and the right side is referred to as “right” or “right (the other)”.
  • 1 to 6 the inside of the oxygenator will be described as “blood inflow side” or “upstream side”, and the outside will be described as “blood outflow side” or “downstream side”.
  • FIG. 8 the same applies to FIGS. 12 and 13
  • the X axis, the Y axis, and the Z axis are illustrated as three axes orthogonal to each other.
  • the artificial lung 10 shown in FIGS. 1 to 5 has an almost cylindrical shape as a whole.
  • the oxygenator 10 is provided on the inner side, and a heat exchanger 10B that exchanges heat with blood, and an oxygenator that is provided on the outer periphery of the heat exchanger 10B and serves as a gas exchanger that exchanges gas with blood. It is an artificial lung with a heat exchanger provided with 10A.
  • the artificial lung 10 is used by being installed in a blood extracorporeal circuit, for example.
  • the oxygenator 10 has a housing 2A, and an oxygenator 10A and a heat exchanger 10B are accommodated in the housing 2A.
  • the housing 2A includes a cylindrical housing body 21A, a dish-shaped first lid 22A that seals the left end opening of the cylindrical housing body 21A, and a dish-shaped first lid that seals the right end opening of the cylindrical housing body 21A. 2 lids 23A.
  • the cylindrical housing body 21A, the first lid body 22A, and the second lid body 23A are made of a resin material.
  • the first lid body 22A and the second lid body 23A are fixed to the cylindrical housing body 21A by a method such as fusion or bonding with an adhesive.
  • a tubular blood outlet port 28 is formed on the outer peripheral portion of the cylindrical housing body 21A.
  • the blood outflow port 28 protrudes in a substantially tangential direction of the outer peripheral surface of the cylindrical housing body 21A (see FIG. 5).
  • a tubular purge port 205 is formed to project from the outer peripheral portion of the cylindrical housing body 21A.
  • the purge port 205 is formed on the outer peripheral portion of the cylindrical housing main body 21A so that the central axis thereof intersects the central axis of the cylindrical housing main body 21A.
  • a tubular gas outflow port 27 protrudes from the first lid 22A.
  • the blood inflow port 201 protrudes from the end surface of the first lid 22A so that the central axis thereof is eccentric with respect to the center of the first lid 22A.
  • the gas outflow port 27 is formed on the outer periphery of the first lid 22A so that the central axis thereof intersects the center of the first lid 22A (see FIG. 2).
  • the gas inflow port 26 is formed at the edge of the end surface of the second lid 23A.
  • the heat medium inflow port 202 and the heat medium outflow port 203 are each formed at substantially the center of the end surface of the second lid 23A.
  • the center lines of the heat medium inflow port 202 and the heat medium outflow port 203 are slightly inclined with respect to the center line of the second lid body 23A.
  • the entire shape of the housing 2A does not necessarily have a complete columnar shape, and may be, for example, a partially missing shape or a shape with a deformed portion added.
  • a cylindrical lung 10 ⁇ / b> A is housed inside the housing 2 ⁇ / b> A along the inner peripheral surface thereof.
  • the artificial lung portion 10A includes a cylindrical hollow fiber membrane bundle 3A and a filter member 41A as bubble removing means 4A provided on the outer peripheral side of the hollow fiber membrane bundle 3A.
  • the hollow fiber membrane bundle 3A and the filter member 41A are arranged in the order of the hollow fiber membrane bundle 3A and the filter member 41A from the blood inflow side.
  • a heat exchanging portion 10B having a cylindrical shape along the inner peripheral surface is installed inside the artificial lung portion 10A.
  • the heat exchange unit 10B has a hollow fiber membrane bundle 3B.
  • each of the hollow fiber membrane bundles 3A and 3B is composed of a large number of hollow fiber membranes 31, and these hollow fiber membranes 31 are integrated and laminated in a layered manner.
  • the number of stacked layers is not particularly limited, but for example, 3 to 40 layers are preferable.
  • Each hollow fiber membrane 31 of the hollow fiber membrane bundle 3A has a gas exchange function.
  • each hollow fiber membrane 31 of the hollow fiber membrane bundle 3B has a function of performing heat exchange.
  • the hollow fiber membrane bundles 3A and 3B are fixed to the inner surface of the cylindrical housing main body 21A at one end by partition walls 8 and 9, respectively.
  • the partition walls 8 and 9 are made of, for example, a potting material such as polyurethane or silicone rubber, an adhesive, or the like.
  • the hollow fiber membrane bundle 3 ⁇ / b> B has an inner peripheral portion engaged with an uneven portion 244 formed on the outer peripheral portion of the first cylindrical member 241.
  • the hollow fiber membrane bundle 3B is securely fixed to the cylindrical housing main body 21A, and therefore the positional deviation of the hollow fiber membrane bundle 3B occurs during use of the artificial lung 10. It can be surely prevented.
  • grooved part 244 functions also as a flow path for circulating the blood B to the whole hollow fiber membrane bundle 3B.
  • the maximum outer diameter ⁇ D1 max of the hollow fiber membrane bundle 3A is preferably 20 mm to 200 mm, and more preferably 40 mm to 150 mm.
  • the maximum outer diameter ⁇ D2 max of the hollow fiber membrane bundle 3B is preferably 10 mm to 150 mm, and more preferably 20 mm to 100 mm.
  • the length L along the central axis direction of the hollow fiber membrane bundles 3A and 3A is preferably 30 mm to 250 mm, and more preferably 50 mm to 200 mm.
  • a blood flow in which blood B flows from the upper side to the lower side in FIG. 6 is outside the hollow fiber membranes 31 between the partition walls 8 and 9 in the housing 2A, that is, in the gaps between the hollow fiber membranes 31.
  • a path 33 is formed.
  • a blood inflow side space 24A communicating with the blood inflow port 201 is formed as a blood inflow portion of the blood B flowing in from the blood inflow port 201 (see FIGS. 3 and 5). .
  • the blood inflow side space 24A includes a first cylindrical member 241 having a cylindrical shape, and a plate piece 242 that is disposed inside the first cylindrical member 241 and is opposed to a part of the inner peripheral portion thereof. It is a defined space.
  • the blood B that has flowed into the blood inflow side space 24 ⁇ / b> A can flow down over the entire blood flow path 33 through the plurality of side holes 243 formed in the first cylindrical member 241.
  • a second cylindrical member 245 disposed concentrically with the first cylindrical member 241 is disposed inside the first cylindrical member 241.
  • the heat medium H such as water flowing from the heat medium inflow port 202 flows through each hollow fiber membrane 31 of the hollow fiber membrane bundle 3 ⁇ / b> B on the outer peripheral side of the first cylindrical member 241. It passes through the path (hollow part) 32 and the inside of the second cylindrical member 245 in this order, and is discharged from the heat medium outlet port 203.
  • heat exchange heat exchange (heating or cooling) is performed between the blood flow path 33 and the blood B in contact with the hollow fiber membrane 31. Done.
  • a filter member 41A having a function of capturing bubbles present in the blood B flowing through the blood flow path 33 is disposed.
  • the filter member 41A is configured by a substantially rectangular sheet-like member (hereinafter also simply referred to as “sheet”), and is formed by winding the sheet along the outer periphery of the hollow fiber membrane bundle 3A. Both ends of the filter member 41A are also fixed by partition walls 8 and 9, respectively, thereby being fixed to the housing 2A (see FIG. 3).
  • the filter member 41A preferably has an inner peripheral surface provided in contact with the outer peripheral surface of the hollow fiber membrane bundle 3A and covers almost the entire outer peripheral surface.
  • the filter member 41A can capture the air bubbles (see FIG. 6). Further, the air bubbles captured by the filter member 41A are pushed into the hollow fiber membranes 31 in the vicinity of the filter member 41A by the blood flow and are removed from the blood flow path 33 as a result.
  • a cylindrical gap is formed between the outer peripheral surface of the filter member 41A and the inner peripheral surface of the cylindrical housing body 21A, and this gap forms a blood outflow side space 25A.
  • the blood outflow portion is constituted by the blood outflow side space 25A and the blood outflow port 28 communicating with the blood outflow side space 25A. Since the blood outflow part has the blood outflow side space 25A, a space where the blood B that has passed through the filter member 41A flows toward the blood outflow port 28 is secured, and the blood B can be discharged smoothly.
  • an annular rib 291 is formed to protrude inside the first lid 22 ⁇ / b> A.
  • a first chamber 221a is defined by the first lid 22A, the rib 291 and the partition wall 8.
  • the first chamber 221a is a gas outflow chamber from which the gas G flows out.
  • the left end opening of each hollow fiber membrane 31 of the hollow fiber membrane bundle 3A opens to and communicates with the first chamber 221a.
  • a gas outflow portion is configured by the gas outflow port 27 and the first chamber 221a.
  • an annular rib 292 is formed so as to protrude inside the second lid body 23A.
  • a second chamber 231 a is defined by the second lid body 23 ⁇ / b> A, the rib 292, and the partition wall 9.
  • the second chamber 231a is a gas inflow chamber into which the gas G flows.
  • the right end opening of each hollow fiber membrane 31 of the hollow fiber membrane bundle 3A opens to and communicates with the second chamber 231a.
  • a gas inflow portion is constituted by the gas inflow port 26 and the second chamber 231a.
  • the blood flow in the oxygenator 10 of this embodiment will be described.
  • the blood B that has flowed in from the blood inflow port 201 sequentially passes through the blood inflow side space 24A and the side hole 243, and flows into the heat exchange unit 10B.
  • the blood B flows through the blood flow path 33 in the downstream direction, and contacts the surface of each hollow fiber membrane 31 of the heat exchange unit 10B to exchange heat (warming or cooling). .
  • the blood B thus heat-exchanged flows into the artificial lung 10A.
  • the blood B flows further in the downstream direction through the blood channel 33.
  • the gas (gas containing oxygen) supplied from the gas inflow port 26 is distributed from the second chamber 231a to the flow channels 32 of the hollow fiber membranes 31 of the oxygenator 10A and flows through the flow channels 32. Thereafter, the gas is accumulated in the first chamber 221 a and discharged from the gas outflow port 27.
  • the blood B flowing through the blood flow path 33 contacts the surface of each hollow fiber membrane 31 of the oxygenator 10A, and is exchanged with the gas G flowing through the flow path 32, that is, oxygenated and decarboxylated.
  • each of the hollow fiber membrane bundles 3A and 3B is composed of a large number of hollow fiber membranes 31. Since the hollow fiber membrane bundle 3A and the hollow fiber membrane bundle 3B have substantially the same hollow fiber membrane 31 except that their uses are different, the hollow fiber membrane bundle 3A will be representatively described below.
  • the hollow fiber membrane 31 of the hollow fiber membrane bundle 3A has pores formed on the tube wall, and the hollow fiber membrane 31 of the hollow fiber membrane bundle 3B omits the pores.
  • the hollow fiber membrane 31 of the hollow fiber membrane bundle 3A and the hollow fiber membrane 31 of the hollow fiber membrane bundle 3B have substantially the same configuration.
  • the hollow fiber membrane 31 is composed of a porous gas exchange membrane, and the inner diameter ⁇ d 1 is preferably 50 ⁇ m to 700 ⁇ m, and more preferably 70 ⁇ m to 600 ⁇ m (see FIG. 6).
  • the outer diameter ⁇ d 2 of the hollow fiber membrane 31 is preferably 100 ⁇ m to 1000 ⁇ m, and more preferably 120 ⁇ m to 800 ⁇ m (see FIG. 6).
  • the inner diameter .phi.d 1 and the ratio ⁇ d 1 / ⁇ d 2 of the outer diameter .phi.d 2 is preferably there 0.5-0.9, more preferably 0.6-0.8.
  • the pressure loss when the gas G is allowed to flow through the flow path 32 that is the hollow portion of the hollow fiber membrane 31 can be made relatively small while maintaining its own strength. In addition, it contributes to maintaining the wound state of the hollow fiber membrane 31.
  • the inner diameter ⁇ d 1 is larger than the upper limit value, the thickness of the hollow fiber membrane 31 becomes thin, and the strength is lowered depending on other conditions. If the inner diameter ⁇ d 1 is smaller than the lower limit value, pressure loss when the gas G flows through the hollow fiber membrane 31 increases depending on other conditions.
  • the pore diameter of the hollow fiber membrane 31 is preferably 0.01 ⁇ m to 5 ⁇ m, and more preferably 0.01 ⁇ m to 1 ⁇ m.
  • the distance of the hollow fiber membranes 31 and adjacent and more preferably of 1/10 ⁇ 1/1 ⁇ d 2.
  • a hydrophobic polymer material such as polypropylene, polyethylene, polysulfone, polyacrylonitrile, polytetrafluoroethylene, cellulose acetate or the like is used.
  • Polyolefin resins are preferred, and polypropylene is particularly preferred.
  • the micropores of the hollow fiber membrane 31 can be formed by, for example, a stretching method or a solid-liquid phase separation method.
  • winding device (hollow fiber membrane bundle production device) 60 for producing the hollow fiber membrane bundle 3A will be described.
  • the winding device 60 executes the method for manufacturing a hollow fiber membrane bundle of the present invention, and includes a cylindrical core rotating means (winding portion) 601 and a winder device (feeding-out). Part) 602, a fixing device 600, a roller group 90, and a control unit (tension adjusting mechanism) 100 that controls driving thereof.
  • the winding device 60 is realized while synchronizing the feeding process, the winding process, and the tension adjusting process in the manufacturing method of the hollow fiber membrane bundle.
  • the cylindrical core rotating means 601 is responsible for executing the winding process
  • the winder device 602 is responsible for executing the feeding process
  • the control unit 100 is responsible for executing the tension adjusting process. .
  • the cylindrical core rotating means 601 includes a motor 603, a motor shaft 604, and a core attachment member 605 fixed to the motor shaft 604.
  • the first cylindrical member 241 that is a part of the housing 2 ⁇ / b> A of the oxygenator 10 is attached to the core attachment member 605 and rotated by the motor 603.
  • the motor 603 is electrically connected to the control unit 100, and driving is controlled by the control unit 100.
  • the winder device 602 includes a main body 606 provided with a storage portion for storing the hollow fiber membrane 31 therein, and a discharge unit that discharges the hollow fiber membrane 31 and moves in the axial direction of the main body 606 (the left-right direction in FIG. 7). 705. Further, the main body 606 is fixed to a linear table 608 and a ball nut member 704 that move on the linear rail 607. The ball nut member 704 is movable in parallel with the axial direction of the main body 606 by rotating the ball screw shaft 609 by driving the motor 703. The motor 703 can rotate forward and backward, and the drive is controlled by the control unit 100.
  • the fixing device 600 includes a main body 706 including a storage unit that stores a fixing thread (linear body) 11 that fixes the hollow fiber membrane 31 wound around the first cylindrical member 241, and the first cylindrical member 241. And a discharge portion 707 that discharges the fixing yarn 11 toward both end portions.
  • a fixing thread 11 linear body
  • the fixing yarn 11 discharged from the discharge portion 707 is wound around the hollow fiber membrane 31 on the rotating first cylindrical member 241. Is fixed.
  • the fixing thread 11 provided for the fixing is cut from the fixing device 600 by a cutter (not shown).
  • the hollow fiber membrane 31 discharged and discharged from the discharge unit 705 is wound around the first cylindrical member 241 that rotates by the operation of the motor 603 (a feeding step and a winding step).
  • a feeding step and a winding step By discharging the hollow fiber membrane 31 while the discharge part 705 is moving, for example, the winding of the hollow fiber membrane 31 is started from one end of the first cylindrical member 241 and when the hollow fiber membrane 31 is wound to the other end, it is folded.
  • the hollow fiber membrane 31 can be wound toward one end.
  • a base material of the hollow fiber membrane bundle 3A having a cylindrical shape can be obtained.
  • the base material of the hollow fiber membrane bundle 3A is used as the hollow fiber membrane bundle 3A by cutting the portion where the hollow fiber membrane 31 is fixed by the fixing yarns 11 at both ends.
  • the roller group 90 is movable in the Z-axis direction with three fixed rollers 91, 92, 93 provided between the cylindrical core rotating means 601 and the winder device 602. And a movable roller (detection unit) 94.
  • the fixed roller 91 is provided on the + Z axis side of the winder device 602.
  • the fixed roller 92 is provided on the ⁇ X axis side of the fixed roller 91.
  • the fixed roller 93 is provided on the ⁇ X axis side of the fixed roller 92.
  • the hollow fiber membrane 31 is wound around fixed rollers 91, 92, 93.
  • the movable roller 94 is positioned between the fixed rollers 92 and 93 and on the ⁇ Z axis side of the fixed rollers 92 and 93. Both ends of the movable roller 94 are free ends, and are supported by the hollow fiber membrane 31 between the fixed rollers 92 and 93. For this reason, in the winding device 60, the movable roller 94 is in a state in which a tension T is applied to the hollow fiber membrane 31 by its own weight.
  • the tension T is such a magnitude that the hollow fiber membrane bundle 3A obtained by winding the hollow fiber membrane 31 can sufficiently exhibit its original function (hereinafter also referred to as “appropriate size”). ).
  • the tension T can be adjusted, for example, by adjusting the weight of the movable roller 94 or by urging the movable roller 94 to the + Z-axis side or the ⁇ Z-axis side with an urging member or the like.
  • the movable roller 94 is movable in the Z-axis direction according to the magnitude relationship of the tension T.
  • the tension T becomes larger than the illustrated configuration, the hollow fiber membrane 31 moves to the + Z-axis side (in the direction of arrow G in FIG. 8).
  • the tension T becomes smaller than the illustrated configuration, the hollow fiber membrane 31 moves to the ⁇ Z axis side (in the direction of arrow H in FIG. 8).
  • the movable roller 94 is electrically connected to the control unit 100 and is provided with a position detection unit 941 for detecting the position (height).
  • the control unit 100 can detect the position of the movable roller 94 based on the signal from the position detection unit 941 and calculate the magnitude of the tension T of the hollow fiber membrane 31 according to the position.
  • a hollow fiber membrane bundle 3 ⁇ / b> A wound with an appropriate tension is obtained by preliminarily applying an appropriate magnitude of tension T to the hollow fiber membrane 31 and winding the hollow fiber membrane 31 in that state. Can be obtained.
  • an upper limit value Tmax and a lower limit value Tmin are set as an allowable range of the tension T having an appropriate magnitude. If the lower limit value T min ⁇ the tension T ⁇ the upper limit value T max is satisfied, the tension T is determined to be an appropriate magnitude.
  • the upper limit value T max is, for example, 10 gf when the outer diameter of the hollow fiber membrane 31 made of polypropylene is 170 ⁇ m and the inner diameter is 120 ⁇ m, and 24 gf when the outer diameter is 300 ⁇ m and the inner diameter is 200 ⁇ m.
  • the lower limit value T min can be set to, for example, 1 gf as a size that does not cause the hollow fiber membrane 31 to be loose.
  • the allowable range of the tension often depends on the material of the hollow fiber membrane, and this is not limited depending on the selection of the material.
  • control unit 100 is electrically connected to the motor 603 of the cylindrical core rotating means 601, the motor 703 of the winder device 602, and the position detection unit 941 of the movable roller 94. It has a function to control the operation.
  • the control unit 100 includes a CPU (Central Processing Unit) 101 and a storage unit 102.
  • CPU Central Processing Unit
  • the CPU 101 executes various processing programs.
  • the storage unit 102 includes, for example, an EEPROM (Electrically Erasable Programmable Read-Only Memory) which is a kind of nonvolatile semiconductor memory, and can store various programs.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • FIG. 10A is a graph showing the relationship between the elapsed time t from the start of winding and the winding speed v of the hollow fiber membrane 31.
  • Winding speed v refers to the length of the hollow fiber membrane 31 actually wound up per unit time. This graph, with the rotation speed V b of the rotational speed V a and the motor 703 of the motor 603 fixed respectively, is obtained by measuring in advance experimentally.
  • the storage unit 102 stores a calibration curve for canceling the change in the winding speed v based on the relationship between the winding speed v and the elapsed time t shown in FIG.
  • This calibration curve is stored as an arithmetic expression or a table, for example.
  • FIG. 10B is a graph in which the calibration curve is represented by the correction amount U of the rotational speed Vb of the motor 703 on the vertical axis and the elapsed time t on the horizontal axis.
  • the correction amount U of the rotation speed V b is the elapsed time t 1 ⁇ t 2, with a decrease in the winding speed v
  • the linear graph shown in FIG. 10 (a) It is changing like a mountain that is reversed.
  • control program of the control unit 100 (a tension adjusting step in the method for manufacturing a hollow fiber membrane bundle of the present invention) will be described based on the flowchart of FIG.
  • the hollow fiber membrane 31 is wound around the fixed rollers 91, 92, 93 and the movable roller 94 from the winder device 602, and the motor 603 and the first cylindrical member 241 are fixed.
  • the motor 703 is rotated (step S101). Thereby, winding of the hollow fiber membrane 31 is started.
  • the rotation speed V a of the motor 603 is the speed V a1
  • the rotation speed V b of the motor 703 is the speed V b1 .
  • the rotational speed V a of the motor 603, regardless of the elapsed time t, is constant.
  • step S102 the tension T of the hollow fiber membrane 31 between the cylindrical core rotating means 601 and the winder device 602 is detected based on the signal from the position detecting unit 941 of the movable roller 94.
  • the timer is operated to measure the elapsed time t from the start of winding (step S103).
  • step S115 When the winding of the hollow fiber membrane 31 is determined not to be completed in step S115, to change the rotational speed V b of the motor 703 to V b1 (step S116), the flow returns to step S103.
  • step S115 The above control is repeated until it is determined in step S115 that the winding of the hollow fiber membrane 31 is completed.
  • the rotational speed Vb of the motor 703 is adjusted as needed based on the calibration curve of the elapsed time t and the winding speed v. Thereby, it can wind, maintaining the tension
  • the tension T is detected as needed while the lower limit value T min ⁇ the tension T ⁇ the upper limit value T max is detected.
  • the winding can be performed while the tension T of the hollow fiber membrane 31 is effectively effectively maintained at an appropriate magnitude.
  • the hollow fiber membrane bundles 3A and 3B obtained by winding while adjusting the tension T of the hollow fiber membrane 31 surely have excellent original gas exchange function and heat exchange function. It can be demonstrated.
  • the present invention is more effective when winding a relatively thin hollow fiber membrane (for example, an inner diameter ⁇ d 1 of 90 ⁇ m to 150 ⁇ m) that can be influenced by a change in tension.
  • a relatively thin hollow fiber membrane for example, an inner diameter ⁇ d 1 of 90 ⁇ m to 150 ⁇ m
  • the present invention can cope with finer changes in tension than in the past, so the hollow fiber membrane bundle as described above (for example, the twill angle is 30 °). Even in the manufacturing of up to 60 °, it has the effect of suppressing the change in shape.
  • the twill angle here refers to the central axis of the hollow fiber membrane when the hollow fiber membrane bundle is produced by winding the hollow fiber membrane many times around the central axis along the central axis direction of the first cylindrical member 241. The inclination angle with respect to.
  • the lower limit value Tmin and the upper limit value Tmax are set as appropriate magnitudes of the tension T of the hollow fiber membrane 31, but the value of the lower limit value Tmin is actually It is preferable to set the upper limit value Tmax slightly lower than the upper limit value of the actual tension T, and it is preferable to set the upper limit value Tmax to be slightly lower than the lower limit value. As a result, the hollow fiber membrane 31 can be wound while maintaining the tension T at an appropriate magnitude more reliably.
  • FIG. 12 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus used in the method for manufacturing a hollow fiber membrane bundle of the present invention (second embodiment).
  • the present embodiment is the same as the first embodiment except that an engaging portion is provided.
  • a tension adjusting roller (engaging portion) 95 as a tension adjusting mechanism is provided between the cylindrical core rotating means 601 and the fixed roller 93.
  • the tension adjusting roller 95 is provided with a roller main body 951 that comes into contact with the hollow fiber membrane 31 and a biasing portion 952 that biases the roller main body 951 in the X-axis direction.
  • the urging portion 952 is constituted by, for example, a coil spring, and the hollow fiber membrane 31 is wound around in a tension state in which the urging portion 952 is pulled more than a natural state. For this reason, the hollow fiber membrane 31 is pulled by the roller body 951 toward the ⁇ X axis side (direction intersecting the longitudinal direction of the hollow fiber membrane 31).
  • the hollow fiber membrane 31 moves the roller body 951 to the + X-axis side (position indicated by the roller body 951a in the figure) against the urging force of the urging portion 952.
  • the hollow fiber membrane 31 between the fixed roller 93 and the cylindrical core rotating means 601 approaches a linear shape as compared with the state indicated by the solid line in the figure, and can suppress or prevent the tension T from increasing. .
  • the tension adjusting roller 95 adjusts the tension closer to the winding unit than the movable roller 94, so that the tension is higher than that in the first embodiment. Since it is possible to cope with changes more quickly, it is possible to reliably prevent or suppress the tension of the hollow fiber membrane 31 from changing.
  • FIG. 13 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus used in the method for manufacturing a hollow fiber membrane bundle of the present invention (third embodiment).
  • This embodiment is the same as the first embodiment except that the position of the cylindrical core rotating means is different.
  • the cylindrical core rotating means 601 is located on the ⁇ Z-axis side with respect to the position in each of the above embodiments. For this reason, the length L1 of the hollow fiber membrane 31 between the fixed roller 93 and the cylindrical core rotating means 601 is the hollow fiber membrane between the fixed roller 93 and the cylindrical core rotating means 601 in the first embodiment. It is longer than 31 length.
  • This length L1 is preferably 500 mm to 5000 mm, and more preferably 1000 mm to 3000 mm.
  • the length L is preferably 10 to 200 times the outer diameter ⁇ d 3 of the first cylindrical member 241 and more preferably 15 to 150 times.
  • the manufacturing method of the hollow fiber membrane bundle of this invention was demonstrated about embodiment of illustration, this invention is not limited to this, The manufacturing method of a hollow fiber membrane bundle adds arbitrary processes. It may be. Moreover, each part which comprises a hollow fiber membrane bundle manufacturing apparatus can be substituted with the thing of the arbitrary structures which can exhibit the same function. Moreover, arbitrary components may be added.
  • the method for producing a hollow fiber membrane bundle of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
  • the method for producing a hollow fiber membrane bundle for an artificial lung part has been shown as a representative.
  • the present invention is not limited to this, for example, as a method for producing a hollow fiber membrane bundle for a heat exchange part.
  • the oxygenator and the heat exchanger are arranged inside and the oxygenator is arranged outside.
  • the present invention is not limited to this, and the oxygenator is arranged inside.
  • the heat exchange part may be arranged outside. In this case, blood flows down from the outside toward the inside.
  • the tension of the wound hollow fiber membrane is adjusted by keeping the rotation speed of the winding part constant and adjusting the rotation speed of the feeding part.
  • the present invention is not limited to this, and the rotation speed of the feeding section may be constant and the rotation speed of the winding section may be adjusted. Moreover, you may adjust the rotational speed of both a winding-up part and a delivery part.
  • the engaging portion (contact portion) is configured to be movable by the urging portion.
  • the present invention is not limited to this, and the urging portion is omitted and the control portion is omitted.
  • the engaging portion may be configured to be movable by the control.
  • whether or not the winding of the hollow fiber membrane has been completed may be determined at any time or may be performed at regular intervals. Further, when it is determined that the winding of the hollow fiber membrane is completed, the winding may be stopped immediately, or the winding may be stopped after winding to the end of the first cylindrical member.
  • the urging unit may be provided in the detection unit.
  • the detection unit can exhibit the same function as the engagement unit.
  • the tension adjusting mechanism is preferably configured to move in different directions when having a plurality of engaging portions. Thereby, it can prevent that the tension
  • the urging portion is configured by a coil spring.
  • the present invention is not limited to this, and any member having an urging force such as a leaf spring or a disc spring may be used.
  • the urging portion functions as a tension spring in which the hollow fiber membrane is wound in a tension state in which the urging portion is tensioned more than in a natural state, but is not limited to this in the present invention.
  • the hollow fiber membrane may be wound around in a compressed state compressed more than a natural state.
  • the coil spring functions as a pressing spring.
  • the method for producing a hollow fiber membrane bundle of the present invention is a method for producing a cylindrical hollow fiber membrane bundle by winding a hollow fiber membrane having a hollow portion through which a fluid passes, used for an artificial lung, It has a drawing process for feeding out the hollow fiber membrane, a winding process for winding up the hollow fiber membrane fed out by the feeding process, and a tension adjusting process for adjusting the tension at the time of winding the hollow fiber membrane. And Therefore, the hollow fiber membrane can be wound with an appropriate tension, and deformation of the hollow fiber membrane can be prevented or suppressed.

Abstract

 中空糸膜束の製造方法は、人工肺10に用いられ、流体が通過する中空部を有する中空糸膜31を巻き取って円筒状の中空糸膜束を製造する製造方法である。また、本発明の中空糸膜束の製造方法は、中空糸膜31を繰り出す繰り出し工程と、繰り出し工程によって繰り出された中空糸膜31を巻取る巻き取り工程と、中空糸膜31の巻き取り時の張力を調節する張力調節工程とを有している。

Description

中空糸膜束の製造方法
 本発明は、中空糸膜束の製造方法に関する。
 従来から、多数本の中空糸膜で構成された中空糸膜束を有する人工肺が知られている(例えば、特許文献1)。特許文献1に記載の中空糸膜束は、多数本の中空糸膜をほぼ平行に配置して横糸とし、これらを縦糸でつなぎ合わせて簾状にしたものである。そして、このような簾状の中空糸シートを折りたたんで、外形形状が角柱状の中空糸膜束としたり、円柱状にすることができる。
 このような構成の中空糸膜束では、横糸(中空糸膜)と縦糸(経糸)とが重なっている部分において、ガス交換または熱交換が不十分となるおそれがある。また、横糸と縦糸とが重なっている部分には、血液が滞留しやすく、血栓が生じるおそれもある。
 上記を解決するためには、各中空糸膜を例えば丸棒体の外周に、その中心軸回りに多重に巻回して、円筒体形状の中空糸膜束にするのが好ましい。
 ところで、中空糸膜を丸棒体に巻回しているとき、中空糸膜は、丸棒体の巻回される位置等によって、加わっている張力が異なる場合がある。例えば、過度に張力が加わっている状態で巻回された中空糸膜は、壁部に形成された細孔の形状が変化するおそれがある。細孔の形状の変化の程度によっては、その部分において、血漿が細孔に流入したり、ガス交換機能が不十分になったりするおそれがある。
米国特許第4911846号明細書
 本発明の目的は、中空糸膜を適切な張力で巻き取ることができ、中空糸膜の変形を防止または抑制することができる中空糸膜束の製造方法を提供することにある。
 このような目的は、下記(1)~(6)の本発明により達成される。
 (1) 人工肺に用いられ、流体が通過する中空部を有する中空糸膜を巻き取って円筒状の中空糸膜束を製造する製造方法であって、
 前記中空糸膜を繰り出す繰り出し工程と、
 前記繰り出し工程によって繰り出された前記中空糸膜を巻取る巻き取り工程と、
 前記中空糸膜の巻き取り時の張力を調節する張力調節工程とを有することを特徴とする中空糸膜束の製造方法。
 (2) 上記(1)に記載の中空糸膜束の製造方法において、
 前記張力調節工程では、前記中空糸膜を巻き取る巻き取り部の回転速度と、前記中空糸膜を繰り出す繰り出し部の回転速度とを相対的に変化させることにより前記張力を調節する中空糸膜束の製造方法。
 (3) 上記(2)に記載の中空糸膜束の製造方法において、
 前記張力調節工程では、前記巻き取り部の回転速度と、前記中空糸膜の巻き取りを開始してからの経過時間との関係を予め検出して得られた検量線に基づいて、前記巻き取り部の回転速度と、前記繰り出し部の回転速度とを相対的に変化させる中空糸膜束の製造方法。
 (4) 上記(2)または(3)に記載の中空糸膜束の製造方法において、
 前記張力調節工程では、前記張力を検出しつつ、その検出結果に基づいて、前記巻取り部の回転速度と、前記繰り出し部の回転速度とを随時相対的に変化させる中空糸膜束の製造方法。
 (5) 上記(2)ないし(4)のいずれかに記載の中空糸膜束の製造方法において、
 前記張力調節工程では、前記巻き取り部の回転速度を一定とし、前記繰り出し部の回転速度を変化させる中空糸膜束の製造方法。
 (6)上記(1)ないし(5)のいずれかに記載の中空糸膜束の製造方法において、
 前記張力調節工程では、前記張力の大小関係に応じて、前記中空糸膜を、その長手方向と交わる方向に移動させることにより前記張力を調節する中空糸膜束の製造方法。
 本発明によれば、中空糸膜を巻き取って中空糸膜束とする際、中空糸膜に加わる張力を適切な大きさに保ちつつ巻き取ることができる。これにより、例えば、過度な張力による中空糸膜の形状、特に、中空糸膜に形成された細孔の変形等を防止することができる。よって、細孔の形状の変形によって血漿などの流体が細孔内に流入することによるガス交換機能の低下を防止することができる。
図1は、本発明の中空糸膜束の製造方法(第1実施形態)によって製造された中空糸膜束を適用した人工肺の平面図である。 図2は、図1に示す人工肺を矢印A方向から見た図である。 図3は、図2中のB-B線断面図である。 図4は、図2中の矢印C方向から見た図である。 図5は、図1中のD-D線断面図である。 図6は、図5中のE-E線断面図である。 図7は、本発明の中空糸膜束の製造方法に用いる中空糸膜束製造装置を示す図である。 図8は、図7中の矢印F方向から見た概略構成図である。 図9は、図7に示す中空糸膜束製造装置を示すブロック図である。 図10は、(a)が、巻き取り部の回転速度と繰り出し部の回転速度とをそれぞれ一定の状態で中空糸膜を巻回した場合の、巻き取り速度と経過時間との関係を示すグラフ、(b)が、繰り出し部の回転速度の補正量と経過時間との関係を示すグラフである。 図11は、中空糸膜束製造装置の制御プログラムを説明するためのフローチャートである。 図12は、本発明の中空糸膜束の製造方法(第2実施形態)に用いる中空糸膜束製造装置を示す概略構成図である。 図13は、本発明の中空糸膜束の製造方法(第3実施形態)に用いる中空糸膜束製造装置を示す概略構成図である。
 以下、本発明の中空糸膜束の製造方法を添付図面に示す好適な実施形態に基づいて詳細に説明する。
 <第1実施形態>
 図1は、本発明の中空糸膜束の製造方法(第1実施形態)によって製造された中空糸膜束を適用した人工肺の平面図である。図2は、図1に示す人工肺を矢印A方向から見た図である。図3は、図2中のB-B線断面図である。図4は、図2中の矢印C方向から見た図である。図5は、図1中のD-D線断面図である。図6は、図5中のE-E線断面図である。図7は、本発明の中空糸膜束の製造方法に用いる中空糸膜束製造装置を示す図である。図8は、図7中の矢印F方向から見た概略構成図である。図9は、図7に示す中空糸膜束製造装置を示すブロック図である。図10は、(a)が、巻き取り部の回転速度と繰り出し部の回転速度とをそれぞれ一定の状態で中空糸膜を巻回した場合の、巻き取り速度と経過時間との関係を示すグラフ、(b)が、繰り出し部の回転速度の補正量と経過時間との関係を示すグラフである。図11は、中空糸膜束製造装置の制御プログラムを説明するためのフローチャートである。
 なお、図1、図3、図4および図7中の左側を「左」または「左方(一方)」、右側を「右」または「右方(他方)」という。また、図1~図6中、人工肺の内側を「血液流入側」または「上流側」、外側を「血液流出側」または「下流側」として説明する。また、説明の便宜上、図8(図12、図13についても同様)中には、互いに直交する3軸として、X軸、Y軸およびZ軸を図示している。
 まず、本発明の中空糸膜束の製造方法によって製造される中空糸膜束を適用した人工肺について説明する。
 図1~図5に示す人工肺10は、全体形状がほぼ円柱状をなしている。この人工肺10は、内側に設けられ、血液に対し熱交換を行う熱交換部10Bと、熱交換部10Bの外周側に設けられ、血液に対しガス交換を行うガス交換部としての人工肺部10Aと備える熱交換器付き人工肺である。人工肺10は、例えば血液体外循環回路中に設置して用いられる。
 人工肺10は、ハウジング2Aを有しており、このハウジング2A内に人工肺部10Aと熱交換部10Bとが収納されている。
 ハウジング2Aは、円筒状ハウジング本体21Aと、円筒状ハウジング本体21Aの左端開口を封止する皿状の第1の蓋体22Aと、円筒状ハウジング本体21Aの右端開口を封止する皿状の第2の蓋体23Aとで構成されている。
 円筒状ハウジング本体21A、第1の蓋体22Aおよび第2の蓋体23Aは、樹脂材料で構成されている。円筒状ハウジング本体21Aに対し、第1の蓋体22Aおよび第2の蓋体23Aは、融着や接着剤による接着等の方法により固着されている。
 円筒状ハウジング本体21Aの外周部には、管状の血液流出ポート28が形成されている。この血液流出ポート28は、円筒状ハウジング本体21Aの外周面のほぼ接線方向に向かって突出している(図5参照)。
 また、図1~3に示すように、円筒状ハウジング本体21Aの外周部には、管状のパージポート205が突出形成されている。パージポート205は、その中心軸が円筒状ハウジング本体21Aの中心軸と交差するように、円筒状ハウジング本体21Aの外周部に形成されている。
 第1の蓋体22Aには、管状のガス流出ポート27が突出形成されている。
 また、血液流入ポート201は、その中心軸が第1の蓋体22Aの中心に対し偏心するように、第1の蓋体22Aの端面から突出している。
 ガス流出ポート27は、その中心軸が第1の蓋体22Aの中心と交差するように、第1の蓋体22Aの外周部に形成されている(図2参照)。
 第2の蓋体23Aには、管状のガス流入ポート26、熱媒体流入ポート202および熱媒体流出ポート203が突出形成されている。ガス流入ポート26は、第2の蓋体23Aの端面の縁部に形成されている。熱媒体流入ポート202および熱媒体流出ポート203は、それぞれ、第2の蓋体23Aの端面のほぼ中央部に形成されている。また、熱媒体流入ポート202および熱媒体流出ポート203の中心線は、それぞれ、第2の蓋体23Aの中心線に対してやや傾斜している。
 なお、本発明において、ハウジング2Aの全体形状は、必ずしも完全な円柱状をなしている必要はなく、例えば一部が欠損している形状、異形部分が付加された形状などでもよい。
 図3、図5に示すように、ハウジング2Aの内部には、その内周面に沿った円筒状をなす人工肺部10Aが収納されている。人工肺部10Aは、円筒状の中空糸膜束3Aと、中空糸膜束3Aの外周側に設けられた気泡除去手段4Aとしてのフィルタ部材41Aとで構成されている。中空糸膜束3Aとフィルタ部材41Aとは、血液流入側から、中空糸膜束3A、フィルタ部材41Aの順に配置されている。
 また、人工肺部10Aの内側には、その内周面に沿った円筒状をなす熱交換部10Bが設置されている。熱交換部10Bは、中空糸膜束3Bを有している。
 図6に示すように、中空糸膜束3Aおよび3Bは、それぞれ、多数本の中空糸膜31で構成され、これらの中空糸膜31を層状に集積して積層させてなるものである。積層数は、特に限定されないが、例えば、3~40層が好ましい。なお、中空糸膜束3Aの各中空糸膜31は、それぞれ、ガス交換機能を有するものである。一方、中空糸膜束3Bの各中空糸膜31は、それぞれ、熱交換を行なう機能を有するものである。
 図3に示すように、中空糸膜束3Aおよび3Bは、それぞれ、その両端部が隔壁8および9により円筒状ハウジング本体21Aの内面に対し一括して固定されている。隔壁8、9は、例えば、ポリウレタン、シリコーンゴム等のポッティング材や接着剤等により構成されている。さらに、中空糸膜束3Bは、その内周部が、第1の円筒部材241の外周部に形成された凹凸部244に係合している。この係合と隔壁8および9による固定により、中空糸膜束3Bが円筒状ハウジング本体21Aに確実に固定され、よって、人工肺10の使用中に中空糸膜束3Bの位置ズレが生じるのを確実に防止することができる。また、凹凸部244は、中空糸膜束3B全体に血液Bを巡らせるための流路としても機能する。
 なお、図5に示すように、中空糸膜束3Aの最大外径φD1maxは、20mm~200mmであるのが好ましく、40mm~150mmであるのがより好ましい。中空糸膜束3Bの最大外径φD2maxは、10mm~150mmであるのが好ましく、20mm~100mmであるのがより好ましい。また、図3に示すように、中空糸膜束3Aおよび3Aの中心軸方向に沿った長さLは、30mm~250mmであるのが好ましく、50mm~200mmであるのがより好ましい。このような条件を有することにより、中空糸膜束3Aは、ガス交換機能に優れたものとなり、中空糸膜束3Bは、熱交換機能に優れたものとなる。
 ハウジング2A内の隔壁8と隔壁9との間における各中空糸膜31の外側、すなわち、中空糸膜31同士の隙間には、血液Bが図6中の上側から下側に向かって流れる血液流路33が形成されている。
 血液流路33の上流側には、血液流入ポート201から流入した血液Bの血液流入部として、血液流入ポート201に連通する血液流入側空間24Aが形成されている(図3、図5参照)。
 血液流入側空間24Aは、円筒状をなす第1の円筒部材241と、第1の円筒部材241の内側に配置され、その内周部の一部に対向して配置された板片242とで画成された空間である。そして、血液流入側空間24Aに流入した血液Bは、第1の円筒部材241に形成された複数の側孔243を介して、血液流路33全体にわたって流下することができる。
 また、第1の円筒部材241の内側には、当該第1の円筒部材241と同心的に配置された第2の円筒部材245が配置されている。そして、図3に示すように、熱媒体流入ポート202から流入した例えば水等の熱媒体Hは、第1の円筒部材241の外周側にある中空糸膜束3Bの各中空糸膜31の流路(中空部)32、第2の円筒部材245の内側を順に通過して、熱媒体流出ポート203から排出される。また、熱媒体Hが各中空糸膜31の流路32を通過する際に、血液流路33内で、当該中空糸膜31に接する血液Bとの間で熱交換(加温または冷却)が行われる。
 血液流路33の下流側においては、血液流路33を流れる血液B中に存在する気泡を捕捉する機能を有するフィルタ部材41Aが配置されている。
 フィルタ部材41Aは、ほぼ長方形をなすシート状の部材(以下単に「シート」とも言う)で構成され、そのシートを中空糸膜束3Aの外周に沿って巻回して形成したものである。フィルタ部材41Aも、両端部がそれぞれ隔壁8、9で固着されており、これにより、ハウジング2Aに対し固定されている(図3参照)。なお、このフィルタ部材41Aは、その内周面が中空糸膜束3Aの外周面に接して設けられ、該外周面のほぼ全面を覆っているのが好ましい。
 また、フィルタ部材41Aは、血液流路33を流れる血液中に気泡が存在していたとしても、その気泡を捕捉することができる(図6参照)。また、フィルタ部材41Aにより捕捉された気泡は、血流によって、フィルタ部材41A近傍の各中空糸膜31内に押し込まれて入り込み、その結果、血液流路33から除去される。
 また、フィルタ部材41Aの外周面と円筒状ハウジング本体21Aの内周面との間には、円筒状の隙間が形成され、この隙間は、血液流出側空間25Aを形成している。この血液流出側空間25Aと、血液流出側空間25Aに連通する血液流出ポート28とで、血液流出部が構成される。血液流出部は、血液流出側空間25Aを有することにより、フィルタ部材41Aを透過した血液Bが血液流出ポート28に向かって流れる空間が確保され、血液Bを円滑に排出することができる。
 図3に示すように、第1の蓋体22Aの内側には、円環状をなすリブ291が突出形成されている。そして、第1の蓋体22Aとリブ291と隔壁8により、第1の部屋221aが画成されている。この第1の部屋221aは、ガスGが流出するガス流出室である。中空糸膜束3Aの各中空糸膜31の左端開口は、第1の部屋221aに開放し、連通している。人工肺10では、ガス流出ポート27および第1の部屋221aによりガス流出部が構成される。一方、第2の蓋体23Aの内側にも、円環状をなすリブ292が突出形成されている。そして、第2の蓋体23Aとリブ292と隔壁9とにより、第2の部屋231aが画成されている。この第2の部屋231aは、ガスGが流入してくるガス流入室である。中空糸膜束3Aの各中空糸膜31の右端開口は、第2の部屋231aに開放し、連通している。人工肺10では、ガス流入ポート26および第2の部屋231aによりガス流入部が構成される。
 ここで、本実施形態の人工肺10における血液の流れについて説明する。
 この人工肺10では、血液流入ポート201から流入した血液Bは、血液流入側空間24A、側孔243を順に通過して、熱交換部10Bに流れ込む。熱交換部10Bでは、血液Bは、血液流路33を下流方向に向かって流れつつ、熱交換部10Bの各中空糸膜31の表面と接触して熱交換(加温または冷却)がなされる。このようにして熱交換がなされた血液Bは、人工肺部10Aに流入する。
 そして、人工肺部10Aでは、血液Bは、血液流路33をさらに下流方向に向かって流れる。一方、ガス流入ポート26から供給されたガス(酸素を含む気体)は、第2の部屋231aから人工肺部10Aの各中空糸膜31の流路32に分配され、該流路32を流れた後、第1の部屋221aに集積され、ガス流出ポート27より排出される。血液流路33を流れる血液Bは、人工肺部10Aの各中空糸膜31の表面に接触し、流路32を流れるガスGとの間でガス交換、すなわち、酸素加、脱炭酸ガスがなされる。
 ガス交換がなされた血液B中に気泡が混入している場合、この気泡は、フィルタ部材41Aにより捕捉され、フィルタ部材41Aの下流側に流出するのが防止される。
 以上のようにして熱交換、ガス交換が順になされ、さらに気泡が除去された血液Bは、血液流出ポート28より流出する。
 前述したように、中空糸膜束3Aおよび3Bは、いずれも、多数本の中空糸膜31で構成されたものである。中空糸膜束3Aと中空糸膜束3Bとは、用途が異なること以外は、略同じ中空糸膜31を有するため、以下、中空糸膜束3Aについて代表的に説明する。なお、中空糸膜束3Aの中空糸膜31には、管壁に細孔が形成されており、中空糸膜束3Bの中空糸膜31では、細孔が省略されているが、そのこと以外は、中空糸膜束3Aの中空糸膜31と、中空糸膜束3Bの中空糸膜31とは、略同様の構成となっている。
 中空糸膜31は、多孔質ガス交換膜で構成され、内径φdは、50μm~700μmであるのが好ましく、70μm~600μmであるのがより好ましい(図6参照)。中空糸膜31の外径φdは、100μm~1000μmであるのが好ましく、120μm~800μmであるのがより好ましい(図6参照)。さらに、内径φdと外径φdとの比φd/φdは、0.5~0.9あるのが好ましく、0.6~0.8であるのがより好ましい。このような条件を有する各中空糸膜31では、自身の強度を保ちつつ、当該中空糸膜31の中空部である流路32にガスGを流すときの圧力損失を比較的小さくすることができるとともに、その他、中空糸膜31の巻回状態を維持するのに寄与する。例えば、内径φdが前記上限値よりも大きいと、中空糸膜31の厚さが薄くなり、他の条件によっては、強度が低下する。また、内径φdが前記下限値よりも小さいと、他の条件によっては、中空糸膜31にガスGを流すときの圧力損失が大きくなる。
 また、中空糸膜31の細孔径は、0.01μm~5μmであるのが好ましく、0.01μm~1μmであるのがより好ましい。
 また、隣り合う中空糸膜31同士の距離は、φdの1/10~1/1であるのがより好ましい。
 このような中空糸膜31としては、ポリプロピレン、ポリエチレン、ポリスルホン、ポリアクリロニトリル、ポリテトラフルオロエチレン、セルロースアセテート等の疎水性高分子材料が用いられる。好ましくは、ポリオレフィン系樹脂であり、特に好ましくは、ポリプロピレンである。また、中空糸膜31の微細孔は、例えば、延伸法または固液相分離法により形成することができる。
 次に、上記の中空糸膜束3Aを製造する巻回装置(中空糸膜束製造装置)60について説明する。
 図7~図9に示すように、巻回装置60は、本発明の中空糸膜束の製造方法を実行するものであり、筒状コア回転手段(巻き取り部)601と、ワインダ装置(繰り出し部)602と、固定装置600と、ローラ群90と、これらの駆動を制御する制御部(張力調節機構)100とを備える。巻回装置60は、以上の構成により、本中空糸膜束の製造方法における繰り出し工程、巻き取り工程および張力調節工程の各工程を同期させながら実現している。
 なお、筒状コア回転手段601は、巻き取り工程を実行するのを担い、ワインダ装置602は、繰り出し工程を実行するのを担い、制御部100は、張力調節工程を実行するのを担っている。
 図7に示すように、筒状コア回転手段601は、モータ603と、モータシャフト604と、モータシャフト604に固定されたコア取付部材605を備える。人工肺10のハウジング2Aの一部である第1の円筒部材241は、コア取付部材605に取り付けられ、モータ603により回転される。このモータ603は、制御部100と電気的に接続されており、制御部100によって、駆動が制御される。
 ワインダ装置602は、内部に中空糸膜31を収納する収納部を備える本体部606と、中空糸膜31を吐出するとともに本体部606の軸方向(図7中の左右方向)に移動する吐出部705を備えている。さらに、本体部606は、リニアレール607上を移動するリニアテーブル608およびボールナット部材704に固定されている。ボールナット部材704は、モータ703の駆動により、ボールネジシャフト609が回転することにより、本体部606の軸方向と平行に移動可能となっている。モータ703は、正逆回転可能であり制御部100によって、駆動が制御される。
 固定装置600は、第1の円筒部材241に巻回された中空糸膜31を固定する固定用糸(線状体)11を収納する収納部を備える本体部706と、第1の円筒部材241の両端部に向かって固定用糸11を吐出する吐出部707とを備えている。そして、中空糸膜31に対して固定用糸11による固定を行なうときには、吐出部707から吐出された固定用糸11が、回転中の第1の円筒部材241上にある中空糸膜31に巻き付けられ、その固定がなされる。固定後は、その固定に供された固定用糸11が、カッター(図示せず)によって固定装置600から切断される。
 吐出部705から吐出して繰り出された中空糸膜31は、モータ603の作動により回転する第1の円筒部材241に巻回される(繰り出し工程および巻き取り工程)。吐出部705が移動しつつ中空糸膜31を繰り出すことにより、例えば、第1の円筒部材241の一端部から中空糸膜31の巻回を開始し、他端部まで巻回されたら、折り返して一端部に向って中空糸膜31を巻回することができる。このような巻回を多数回繰り返すことにより、円筒形状をなす中空糸膜束3Aの母材を得ることができる。この中空糸膜束3Aの母材は、両端部の固定用糸11によって中空糸膜31が固定されている部分が切断されて中空糸膜束3Aとして用いられる。
 図7および図8に示すように、ローラ群90は、筒状コア回転手段601とワインダ装置602との間に設けられた3つの固定ローラ91、92、93と、Z軸方向に移動可能な可動ローラ(検出部)94とを有している。
 図8に示すように、固定ローラ91は、ワインダ装置602の+Z軸側に設けられている。固定ローラ92は、固定ローラ91の-X軸側に設けられている。固定ローラ93は、固定ローラ92の-X軸側に設けられている。巻回装置60では、中空糸膜31が固定ローラ91、92、93に掛け回されている。
 可動ローラ94は、固定ローラ92、93との間で、かつ、固定ローラ92、93よりも-Z軸側に位置している。この可動ローラ94は、両端が自由端となっており、固定ローラ92、93の間の中空糸膜31によって支持されている。このため、巻回装置60では、可動ローラ94が、自身の重さによって中空糸膜31に張力Tを付与している状態となっている。
 なお、この張力Tは、中空糸膜31を巻回して得られた中空糸膜束3Aが本来の機能を十分に発揮することができる程度の大きさ(以下、「適切な大きさ」とも言う)とされる。また、張力Tは、例えば、可動ローラ94の重さを調節したり、可動ローラ94を付勢部材等で+Z軸側または-Z軸側に付勢したりすることで調節することができる。
 また、可動ローラ94は、張力Tの大小関係に応じてZ軸方向に移動可能になっている。張力Tが図示の構成よりも大きくなると、中空糸膜31によって+Z軸側(図8中矢印G方向)に移動する。一方、張力Tが図示の構成よりも小さくなると、中空糸膜31によって-Z軸側(図8中矢印H方向)に移動する。
 また、図8に示すように、可動ローラ94は、制御部100と電気的に接続され、位置(高さ)を検出する位置検出部941が設けられている。制御部100は、位置検出部941からの信号に基づいて、可動ローラ94の位置を検出し、その位置に応じて中空糸膜31の張力Tの大きさを算出することができる。
 巻回装置60では、中空糸膜31に予め適切な大きさの張力Tを付与し、その状態で、中空糸膜31を巻き取ることにより、適切な張力で巻回された中空糸膜束3Aを得ることができる。本実施形態では、適切な大きさの張力Tの許容範囲として、上限値Tmaxおよび下限値Tminが設定されている。下限値Tmin≦張力T≦上限値Tmaxを満足していれば、張力Tは、適切な大きさであるとされる。
 上限値Tmaxは、例えば、ポリプロピレン製の中空糸膜31の外径が170μmかつ内径が120μmの場合、10gf、外径が300μmかつ内径が200μmの場合、24gfである。下限値Tminは中空糸膜31が弛まない程度の大きさとして、例えば1gfと設定できる。
 ただし、上記張力の許容範囲は、中空糸膜の材質に依存するところが多く、材質の選定によっては、この限りではない。
 図9に示すように、制御部100は、筒状コア回転手段601のモータ603と、ワインダ装置602のモータ703と、可動ローラ94の位置検出部941と電気的に接続されており、これらの作動を制御する機能を有している。この制御部100は、CPU(Central Processing Unit)101と、記憶部102とを有している。
 CPU101は、各種処理用のプログラムを実行する。
 記憶部102は、例えば不揮発性半導体メモリーの一種であるEEPROM(Electrically Erasable Programmable Read-Only Memory)等を有し、各種プログラム等を記憶することができる。
 また、記憶部102には、前述した中空糸膜31の張力Tの適切な大きさの上限値Tmaxおよび下限値Tmin等の情報が記憶されている。
 ここで、図10(a)は、巻き取りを開始してからの経過時間tと、中空糸膜31の巻き取り速度vとの関係を示すグラフである。「巻き取り速度v」は、単位時間あたりに中空糸膜31が実際に巻き取られた長さのことを言う。このグラフは、モータ603の回転速度Vおよびモータ703の回転速度Vをそれぞれ一定にして、予め実験的に測定して得られたものである。
 図10(a)に示すように、経過時間t~tまでの間、巻き取り速度vが変化(低下)しているのが分かる。そして、経過時間tから、さらに一定時間が経過すると、再度、同様の挙動を示す。これらの挙動は、中空糸膜31を巻き取る際、中空糸膜31が第1の円筒部材241の端部に位置しているとき、すなわち、端部に巻回されているときに現れる。
 そこで、記憶部102には、図10(a)に示す巻き取り速度vと経過時間tとの関係に基づいて、巻き取り速度vの変化をキャンセルするための検量線が記憶されている。この検量線は、例えば、演算式またはテーブルとして記憶されている。
 図10(b)は、この検量線を、縦軸がモータ703の回転速度Vの補正量U、横軸が経過時間tで表したグラフである。図10(b)に示すように、回転速度Vの補正量Uは、経過時間t~tにおいて、巻き取り速度vの低下に伴って、図10(a)に示すグラフの線形を反転したような山なりに変化している。
 次に、制御部100の制御プログラム(本発明の中空糸膜束の製造方法における張力調節工程)を、図11のフローチャートに基づいて説明する。
 まず、図8に示すように、ワインダ装置602から中空糸膜31を固定ローラ91、92、93および可動ローラ94に掛け回し、先端を第1の円筒部材241に固定した状態で、モータ603およびモータ703を回転させる(ステップS101)。これにより、中空糸膜31の巻き取りが開始される。
 このとき、モータ603の回転速度Vは速度Va1であり、モータ703の回転速度Vは速度Vb1である。なお、本実施形態では、モータ603の回転速度Vは、経過時間tによらず、一定とする。
 また、モータ603、703の駆動と同時に、可動ローラ94の位置検出部941からの信号に基づいて、筒状コア回転手段601とワインダ装置602との間の中空糸膜31の張力Tの検出を開始する(ステップS102)。
 さらに、モータ603、703の駆動と同時に、タイマーを作動させ、巻き取り開始時からの経過時間tを測定する(ステップS103)。
 そして、ステップS104において、経過時間t=tとなったか否かを判断する。
 ステップS104において、未だ経過時間t=tとなっていないと判断した場合には、張力T≧Tminであるか否かを判断する(ステップS105)。ステップS105において、張力T≧Tminであると判断した場合には、次に、張力T≦Tmaxであるか否かを判断する(ステップS106)。ステップS106において、張力T≦Tmaxであると判断した場合、張力Tが適切な大きさであるため、再度、ステップS104に戻る。
 ここで、ステップS105において、張力T<下限値Tminであると判断した場合には、モータ703の回転速度VをVb1よりも低下させて、張力T≧Tminとする(ステップS107)。また、ステップS106において、張力T>Tmaxであると判断した場合には、モータ703の回転速度VをVb1よりも上昇させて、張力T≦Tmaxとする(ステップS108)。
 上記ステップS105~S108は、経過時間t=tになるまで繰り返される。
 そして、ステップS104において、経過時間t=tになったと判断した場合、モータ703の回転速度Vを低下(変化)させる(ステップS109)。このとき、図10(b)に示す検量線に基づいて、回転速度Vを変化させる。これにより、巻き取り速度vが低下することに起因する張力Tの変化を効果的に防止または抑制することができる。よって、中空糸膜31の張力Tをできるだけ適切な大きさに保ちつつ巻回することができる。
 そして、ステップS110において、経過時間t=tとなったか否かを判断する。ステップS110において、未だ経過時間t=tではないと判断した場合には、ステップS111~S114を行う。これらのステップS111~S114は、前述したステップS105~S108と同様であるため、説明を省略する。
 ステップS110において、経過時間t=tであると判断した場合には、中空糸膜31の巻回が完了したか否かを判断する(ステップS115)。なお、この判断は、例えば、モータ603、703の総回転数や、経過時間tや、中空糸膜31の残量等に基づいて行われる。
 ステップS115において中空糸膜31の巻回が完了していないと判断した場合には、モータ703の回転速度VをVb1に変更し(ステップS116)、ステップS103に戻る。
 上記の制御は、ステップS115で中空糸膜31の巻回が完了したと判断されるまで繰り返される。
 このように、本実施形態の張力調節工程では、経過時間tおよび巻き取り速度vの検量線に基づいて、モータ703の回転速度Vを随時調節する。これにより、中空糸膜31の張力Tを適切な大きさに保ちつつ、巻回を行うことができる。
 さらに、本実施形態の張力調節工程では、張力Tを検出しつつ、下限値Tmin≦張力T≦上限値Tmaxから外れたときに随時調節する。これにより、より確実に中空糸膜31の張力Tを効果的に適切な大きさに保ちつつ、巻回を行うことができる。
 以上、本発明では、中空糸膜31の張力Tを調節しつつ巻回することで、得られた中空糸膜束3A、3Bは、確実に、優れた本来のガス交換機能および熱交換機能を発揮することができる。特に、張力の変化により影響されうる、比較的細い中空糸膜(例えば、内径φdが90μm~150μm)を巻回する際に本発明はより効果的である。また、上記のように細い中空糸膜を人工肺に適用するにあたっては、中空糸膜内を通過する流体の圧力損失の増大を回避する為、綾角(不図示)を低減することが考えられる。この時、綾角の低減により巻回中における張力変化量が大きくなるが、本発明は、従来より細かな張力変化へ対応出来る為、以上のような中空糸膜束(例えば綾角が30°~60°)の製造においても形状の変化を抑制する効果を有する。ここでいう綾角とは、中空糸膜を第1の円筒部材241の中心軸方向に沿って中心軸回りに多数回巻回して中空糸膜束を製する時の、中空糸膜の中心軸に対する傾斜角度を意味する。
 なお、本実施形態の張力調節工程では、中空糸膜31の張力Tの適切な大きさとして、下限値Tminおよび上限値Tmaxを設定しているが、下限値Tminの値は、実際の張力Tの適切な大きさの下限値よりも若干高く設定しておくのが好ましく、上限値Tmaxの値は、実際の張力Tの上限値よりも若干低く設定しておくのが好ましい。これにより、より確実に張力Tを適切な大きさに保ちつつ中空糸膜31を巻回することができる。
 <第2実施形態>
 図12は、本発明の中空糸膜束の製造方法(第2実施形態)に用いる中空糸膜束製造装置を示す概略構成図である。
 以下、この図を参照して本発明の中空糸膜束の製造方法の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、係合部が設けられていること以外は前記第1実施形態と同様である。
 図12に示すように、筒状コア回転手段601と固定ローラ93との間には、張力調節機構としての張力調節ローラ(係合部)95が設けられている。また、この張力調節ローラ95は、中空糸膜31と当接するローラ本体951と、ローラ本体951をX軸方向に付勢する付勢部952が設けられている。
 また、付勢部952は、例えばコイルバネで構成されており、自然状態よりも引っ張られている引張状態で中空糸膜31が掛け回されている。このため、中空糸膜31は、ローラ本体951によって、-X軸側(中空糸膜31の長手方向と交わる方向)に引っ張られている。
 張力Tが上昇した場合、中空糸膜31は、付勢部952の付勢力に抗してローラ本体951を+X軸側(図中、ローラ本体951aで示す位置)に移動させる。このとき、固定ローラ93と筒状コア回転手段601との間の中空糸膜31は、図中実線で示す状態よりも直線形状に近づき、張力Tが上昇するのを抑制または防止することができる。
 一方、張力Tが低下した場合、中空糸膜31は、付勢部952によってローラ本体951ごと-X軸側(図中、ローラ本体951bで示す位置)に引っ張られて移動する。これにより、固定ローラ93と筒状コア回転手段601との間の中空糸膜31は、図中実線で示す状態よりも付勢部952によって引っ張られる。よって、張力Tが低下するのを抑制または防止することができる。
 このように、前記第1実施形態における制御部の他に、張力調節ローラ95が可動ローラ94に比べ巻き取り部に対して近位において張力調節することで、前記第1実施形態よりも、張力変化に対してより早く対応が可能である為、確実に中空糸膜31の張力が変化するのを防止または抑制することができる。
 <第3実施形態>
  図13は、本発明の中空糸膜束の製造方法(第3実施形態)に用いる中空糸膜束製造装置を示す概略構成図である。
 以下、この図を参照して本発明の中空糸膜束の製造方法の第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、筒状コア回転手段の位置が異なること以外は前記第1実施形態と同様である。
 図13に示すように、筒状コア回転手段601は、前記各実施形態での位置よりも-Z軸側に位置している。このため、固定ローラ93と筒状コア回転手段601との間の中空糸膜31の長さL1は、第1実施形態での固定ローラ93と筒状コア回転手段601との間の中空糸膜31の長さよりも長くなっている。
 この長さL1は、500mm~5000mmであるのが好ましく、1000mm~3000mmであるのが好ましい。また、長さLは、第1の円筒部材241の外径φdの10倍~200倍であるのが好ましく、15倍~150倍であるのがより好ましい。
 このような本実施形態によれば、張力Tが変化して、中空糸膜31の長さが若干変化したとしても、その変化量を十分に無視することができる程度の長さを確保することができる。よって、前記各実施形態と同様の効果を得ることができる。
 以上、本発明の中空糸膜束の製造方法を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、中空糸膜束の製造方法は、任意の工程を付加させていてもよい。また、中空糸膜束製造装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
 また、本発明の中空糸膜束の製造方法は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
 なお、前記各実施形態においては、代表として人工肺部の中空糸膜束の製造方法を示したが、本発明はこれに限定されず、例えば、熱交換部の中空糸膜束の製造方法としても利用可能であり、その効果として、熱交換部に用いる中空糸膜の形状の変化(延伸等)を抑制または防止することが可能である。また、人工肺部と熱交換部とは、前記実施形態では熱交換部が内側に配置され、人工肺部が外側に配置されていたが、これに限定されず、人工肺部が内側に配置され、熱交換部が外側に配置されていてもよい。この場合、血液は、外側から内側に向かって流下する。
 また、前記各実施形態では、巻回している中空糸膜の張力の調節は、巻き取り部の回転速度を一定とし、繰り出し部の回転速度を調節することにより行われているが、本発明ではこれに限定されず、繰り出し部の回転速度を一定とし、巻き取り部の回転速度を調節することにより行われてもよい。また、巻き取り部および繰り出し部の双方の回転速度を調節してもよい。
 また、前記第2実施形態では、係合部(当接部)は、付勢部によって移動可能に構成されているが、本発明ではこれに限定されず、付勢部を省略して制御部の制御によって係合部を移動可能に構成してもよい。
 また、前記各実施形態において、中空糸膜の巻回が完了したか否かの判断は、随時行ってもよく、一定時間毎に行ってもよい。また、中空糸膜の巻回が完了したと判断した場合、即座に巻回を停止してもよく、第1の円筒部材の端部まで巻回してから巻回を停止してもよい。
 また、前記各実施形態では、検出部に付勢部を設けてもよい。この場合、検出部は、係合部と同様の機能を発揮することができる。
 また、上記のように、張力調節機構は、係合部を複数有していた場合、互いに異なる方向に移動するよう構成されているのが好ましい。これにより、より効果的に中空糸膜の張力が変化するのを防止することができる。
 また、前記第2実施形態では、付勢部は、コイルバネで構成されているが、本発明ではこれに限定されず、例えば、板バネや皿バネ等、付勢力を有するものであればよい。
 また、前記第2実施形態では、付勢部は、自然状態よりも引っ張られている引張状態で中空糸膜が掛け回され、引張りバネとして機能しているが、本発明ではこれに限定されず、例えば、自然状態よりも圧縮された圧縮状態で中空糸膜が掛け回されていてもよい。この場合、コイルバネは、押圧バネとして機能する。
 また、前記各実施形態では、一本の中空糸膜のみを図示しているが、本発明では、多数本の中空糸膜を同時に、同じ円筒部材に巻回してもよいのは言うまでもない。
 本発明の中空糸膜束の製造方法は、人工肺に用いられ、流体が通過する中空部を有する中空糸膜を巻き取って円筒状の中空糸膜束を製造する製造方法であって、前記中空糸膜を繰り出す繰り出し工程と、前記繰り出し工程によって繰り出された前記中空糸膜を巻取る巻き取り工程と、前記中空糸膜の巻き取り時の張力を調節する張力調節工程とを有することを特徴とする。そのため、中空糸膜を適切な張力で巻き取ることができ、中空糸膜の変形を防止または抑制することができる。
10       人工肺
10A      人工肺部
10B      熱交換部
2A       ハウジング
21A      円筒状ハウジング本体
22A      第1の蓋体
221a     第1の部屋
23A      第2の蓋体
231a     第2の部屋
24A      血液流入側空間
241      第1の円筒部材
242      板片
243      側孔
244      凹凸部
245      第2の円筒部材
25A      血液流出側空間
26       ガス流入ポート
27       ガス流出ポート
28       血液流出ポート
291      リブ
292      リブ
3A、3B    中空糸膜束
4A       気泡除去手段
8        隔壁
9        隔壁
11       固定用糸
31       中空糸膜
32       流路
33       血液流路
41A      フィルタ部材
60       巻回装置
90       ローラ群
91       固定ローラ
92       固定ローラ
93       固定ローラ
94       可動ローラ
941      位置検出部
95       張力調節ローラ
951      ローラ本体
951a     ローラ本体
951b     ローラ本体
952      付勢部
100      制御部
101      CPU
102      記憶部
201      血液流入ポート
202      熱媒体流入ポート
203      熱媒体流出ポート
205      パージポート
600      固定装置
601      筒状コア回転手段
602      ワインダ装置
603      モータ
604      モータシャフト
605      コア取付部材
606      本体部
607      リニアレール
608      リニアテーブル
609      ボールネジシャフト
703      モータ
704      ボールナット部材
705      吐出部
706      本体部
707      吐出部
B        血液
G        ガス
H        熱媒体
S101、S102、S103、S104、S105、S106、S107、S108、S109、S110、S111、S112、S113、S114、S115、S116 ステップ
T        張力
max     上限値
min     下限値
U        補正量
       回転速度
a1      速度
       回転速度
b1      速度
t、t、t  経過時間
v        巻き取り速度
φD1max   最大外径
φD2max   最大外径
φd      内径
φd      外径
φd      外径
L        長さ
L1       長さ

Claims (6)

  1.  人工肺に用いられ、流体が通過する中空部を有する中空糸膜を巻き取って円筒状の中空糸膜束を製造する製造方法であって、
     前記中空糸膜を繰り出す繰り出し工程と、
     前記繰り出し工程によって繰り出された前記中空糸膜を巻取る巻き取り工程と、
     前記中空糸膜の巻き取り時の張力を調節する張力調節工程とを有することを特徴とする中空糸膜束の製造方法。
  2.  請求項1に記載の中空糸膜束の製造方法において、
     前記張力調節工程では、前記中空糸膜を巻き取る巻き取り部の回転速度と、前記中空糸膜を繰り出す繰り出し部の回転速度とを相対的に変化させることにより前記張力を調節する中空糸膜束の製造方法。
  3.  請求項2に記載の中空糸膜束の製造方法において、
     前記張力調節工程では、前記巻き取り部の回転速度と、前記中空糸膜の巻き取りを開始してからの経過時間との関係を予め検出して得られた検量線に基づいて、前記巻き取り部の回転速度と、前記繰り出し部の回転速度とを相対的に変化させる中空糸膜束の製造方法。
  4.  請求項2または3に記載の中空糸膜束の製造方法において、
     前記張力調節工程では、前記張力を検出しつつ、その検出結果に基づいて、前記巻取り部の回転速度と、前記繰り出し部の回転速度とを随時相対的に変化させる中空糸膜束の製造方法。
  5.  請求項2ないし4のいずれか1項に記載の中空糸膜束の製造方法において、
     前記張力調節工程では、前記巻き取り部の回転速度を一定とし、前記繰り出し部の回転速度を変化させる中空糸膜束の製造方法。
  6.  請求項1ないし5のいずれか1項に記載の中空糸膜束の製造方法において、
     前記張力調節工程では、前記張力の大小関係に応じて、前記中空糸膜を、その長手方向と交わる方向に移動させることにより前記張力を調節する中空糸膜束の製造方法。
PCT/JP2015/068204 2014-08-06 2015-06-24 中空糸膜束の製造方法 WO2016021322A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016540108A JP6602302B2 (ja) 2014-08-06 2015-06-24 中空糸膜束の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-160829 2014-08-06
JP2014160829 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021322A1 true WO2016021322A1 (ja) 2016-02-11

Family

ID=55263600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068204 WO2016021322A1 (ja) 2014-08-06 2015-06-24 中空糸膜束の製造方法

Country Status (2)

Country Link
JP (1) JP6602302B2 (ja)
WO (1) WO2016021322A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509172A (ja) * 1993-05-19 1995-10-12 アヴェコー・カーディオバスキュラー・インコーポレーテッド 中空ファイバの束を有する物質移し変え装置
US6638479B1 (en) * 1999-10-11 2003-10-28 Medtronic, Inc. Variable packing density in hollow fiber device
WO2013146321A1 (ja) * 2012-03-26 2013-10-03 テルモ株式会社 医療器具の製造方法および医療器具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509172A (ja) * 1993-05-19 1995-10-12 アヴェコー・カーディオバスキュラー・インコーポレーテッド 中空ファイバの束を有する物質移し変え装置
US6638479B1 (en) * 1999-10-11 2003-10-28 Medtronic, Inc. Variable packing density in hollow fiber device
WO2013146321A1 (ja) * 2012-03-26 2013-10-03 テルモ株式会社 医療器具の製造方法および医療器具

Also Published As

Publication number Publication date
JP6602302B2 (ja) 2019-11-06
JPWO2016021322A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
WO2015115138A1 (ja) 熱交換器の製造方法および熱交換器
KR100846647B1 (ko) 스파이럴형 분리막 엘리먼트
JP2009533212A (ja) 改良された逆洗能力を有する強化管状ポリマー膜及びその製造方法
KR20200013803A (ko) 바이오필름 지지용 맴브레인 조립체
JP7061581B2 (ja) 熱交換器および人工肺
WO2013146321A1 (ja) 医療器具の製造方法および医療器具
WO2016009780A1 (ja) 中空糸膜束の製造方法および人工肺の製造方法
JP4936435B2 (ja) スパイラル型膜エレメント及びその製造方法
WO2016021321A1 (ja) 中空糸膜束、人工肺および中空糸膜束の製造方法
JP2009195871A (ja) スパイラル型膜エレメント
JP6602302B2 (ja) 中空糸膜束の製造方法
JP6599897B2 (ja) 統合された透過物流動制御器を有するスパイラル巻きモジュール
JP7134866B2 (ja) 中空糸膜層積層体
WO2021039846A1 (ja) 分離膜エレメント
JP6944458B2 (ja) 熱交換器、人工肺および熱交換器の製造方法
JPH04219126A (ja) 中空糸ステープル及び中空糸パッケージの製法、及び流体からのガスの分離法並びに濾過法
JP2018034089A (ja) 分離膜エレメント
US20220143557A1 (en) Method of filtration, method of desalinating sea water, method of producing fresh water, hollow fiber membrane module, and sea water desalination system
JP2016026865A (ja) 分離膜エレメント
JP2017104851A (ja) 分離膜および分離膜エレメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830317

Country of ref document: EP

Kind code of ref document: A1