WO2016021281A1 - リニアモータ及びそれを用いた遮断器 - Google Patents

リニアモータ及びそれを用いた遮断器 Download PDF

Info

Publication number
WO2016021281A1
WO2016021281A1 PCT/JP2015/065093 JP2015065093W WO2016021281A1 WO 2016021281 A1 WO2016021281 A1 WO 2016021281A1 JP 2015065093 W JP2015065093 W JP 2015065093W WO 2016021281 A1 WO2016021281 A1 WO 2016021281A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
linear motor
magnetic pole
permanent magnets
pole teeth
Prior art date
Application number
PCT/JP2015/065093
Other languages
English (en)
French (fr)
Inventor
祐 長谷川
康明 青山
佐々木 正貴
大輔 海老澤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016021281A1 publication Critical patent/WO2016021281A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/38Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a linear motor and a circuit breaker using the linear motor, and more particularly to a linear motor that generates a thrust for relatively horizontal movement between a permanent magnet of a mover and an armature, and to open / close the circuit breaker.
  • the present invention relates to a circuit breaker used as an operating device for performing an operation.
  • a linear motor is used in many various applications.
  • a linear motor having a primary part and a secondary part magnetically coupled to the primary part that can move upward is disclosed in Patent Document 1. It is described in.
  • the secondary part is at least a first part and a second part in the moving direction of the primary part so that the output range of the linear motor can be more appropriately adapted to a special application.
  • the secondary part is shaped differently in the first part than in the second part and / or formed from another material, so that the primary part can be It is described that the secondary part part is useful for passive braking, since different speeds of the primary part can be achieved in some cases, and in some cases a short-circuit winding can be inserted into one secondary part part. Yes.
  • Patent Document 1 uses the induction phenomenon generated in the short-circuit winding inserted in the secondary part portion for passive braking, the braking is mainly used for deceleration of the primary part. Active braking is necessary for the stop position after deceleration. That is, since Patent Document 1 does not have a function necessary for holding the position of the mover and correcting the shift, the mover stops at a position shifted from an arbitrary position, or when the mover is subjected to an external force such as vibration. If this happens, the problem is that this cannot be prevented by only passive braking, and the mover cannot be held at an arbitrary position.
  • the present invention has been made in view of the above points, and the object of the present invention is when the mover stops at a position deviated from an arbitrary position, or when the mover is moved unexpectedly by an external force.
  • a linear motor includes a mover having permanent magnets in which poles are alternately arranged in the drive direction, and magnetic pole teeth arranged to face the permanent magnet of the mover.
  • a first armature comprising a magnetic body connecting a plurality of magnetic pole teeth to form a magnetic flux path and a winding disposed on the magnetic pole teeth, and a second armature having the same configuration as the first armature.
  • the first armature and the second armature are coaxially arranged adjacent to each other, and the mover has at least two partition portions having different intervals between the permanent magnets.
  • the permanent magnets are arranged at equal intervals with the magnetic pole teeth of the first armature and the second armature, and the other partitioning part is different from the one partitioning part in the first armature and The permanent magnets are arranged at intervals of magnetic pole teeth of the second armature.
  • the linear motor of the present invention is disposed so as to face a mover having a permanent magnet in which poles are alternately arranged in the driving direction, with the permanent magnet of the mover interposed therebetween.
  • the first armature unit and the second armature unit are arranged adjacent to each other on the same axis, and the mover has at least two compartments having different intervals between the permanent magnets, and one of the compartments
  • the first armature unit and the second armature unit is disposed so as to face a mover having a permanent magnet in which poles are alternately arranged in the driving direction, with the permanent magnet
  • the permanent magnets are arranged at an equal interval to the first magnetic pole teeth and the second magnetic pole teeth of the first arm, and the other partition portions are different from the one partition portion, the first armature unit and the second
  • the permanent magnet is arranged at an interval between the first magnetic pole teeth and the second magnetic pole teeth of the armature unit.
  • the circuit breaker of the present invention is a circuit breaker using the linear motor having the above-described configuration as an operating device for performing an opening / closing operation of the circuit breaker, wherein the linear motor has the one partition portion of the mover, It arrange
  • the mover even when the mover stops at a position deviated from an arbitrary position or the mover is moved unexpectedly by an external force, the mover is moved to an arbitrary position by a passive braking force. Can be held in.
  • FIG. 2 is a cross-sectional view illustrating a state in which the linear motor of FIG. 1 is cross-sectioned along a YZ plane.
  • FIG. 2 is a cross-sectional view showing a state in which the linear motor of FIG. 1 is cut in the XY plane. It is a figure for demonstrating the magnetization direction of the permanent magnet in Example 1 shown in FIG. It is an expansion of the magnetic pole tooth part which omitted winding in Example 1 of the present invention, and is a figure for explaining the direction of the attractive force which acts between one permanent magnet and each magnetic pole tooth.
  • FIG. 9 is a cross-sectional view illustrating a state in which the linear motor of FIG. 8 is cross-sectioned along a YZ plane. It is a perspective view which shows Example 3 of the linear motor of this invention.
  • FIG. 11 is a cross-sectional view showing a state in which the linear motor of FIG. 10 is cross-sectioned along the XY plane.
  • Example 11 is a cross-sectional view showing a state in which the linear motor of FIG.
  • Example 4 of this invention it is a figure which shows the circuit breaker which mounted the linear motor in any one of Example 1 thru
  • 1 to 4 show a linear motor according to a first embodiment of the present invention.
  • a linear motor 100A of the present embodiment includes a mover 11 having a plurality of permanent magnets 1 arranged with magnet intervals P and R with poles alternately arranged in the driving direction, and a permanent movement of the mover 11.
  • Magnetic pole teeth 5 arranged side by side with an armature interval Q so as to face the magnet 1, and a plurality of these magnetic pole teeth 5 are connected to the armature core 4 and magnetic pole teeth 5 which are magnetic bodies forming a magnetic flux path.
  • a second armature 8 having the same configuration as the first armature 6, and the first armature 6 and the second armature 8 are coaxial. Arranged adjacently on the top, it is schematically configured.
  • the linear motor 100A of the present embodiment is an example in which a three-phase motor is configured, and the first armature 6, the second armature 8 and the mover 11 are relatively linearly moved.
  • the driving direction of the motor 100A is the Z direction.
  • the three-phase linear motor 100A is configured by arranging the magnetic pole teeth 5 of the first armature 6 and the second armature 8 so that the phases are electrically shifted by 120 ° each. Yes.
  • a m-phase driven linear motor can be configured by shifting the phase of 360 magnetic pole teeth by 360 ° / m.
  • the mover 11 has at least two partition portions having different intervals (magnet intervals P and R) between the permanent magnets 1, and one of the partition portions 12 includes the first armature 6.
  • the permanent magnets 1 are arranged at equal intervals with the magnetic pole teeth 5 of the second armature 8 (the axial centers of the permanent magnet 1 and the magnetic pole teeth 5 are also aligned).
  • the permanent magnets 1 are arranged at intervals of the magnetic pole teeth 5 of the first armature 6 and the second armature 8 different from the part 12.
  • FIG. 4 shows the magnetization direction of the permanent magnet 1 in the first embodiment.
  • the permanent magnet 1 has a surface facing the magnetic pole teeth 5 as a magnetization direction. Further, as described above, the mover 11 has at least two partition portions having different magnet intervals P and R. One of the rows of the partition portions 12 is formed by arranging a plurality of permanent magnets 1 at intervals of a magnet interval R in the driving direction. The magnet interval R is arranged equal to the armature interval Q. On the other hand, the rows of the other partition portions 13 are configured by arranging a plurality of permanent magnets 1 in the driving direction at intervals of the magnet interval P (R ⁇ P) wider than the magnet interval R.
  • the interval between the permanent magnets 1 is the same between the partition portions, and the dimension width in the driving direction of the permanent magnet 1 arranged in the one partition portion 12. And the dimension width of the drive direction of the magnetic pole tooth 5 is formed equally.
  • the mover 11 includes a plurality of permanent magnets 1 and a mover plate 2 in which holes for disposing the permanent magnets 1 are formed in a non-magnetic plate.
  • the mover 11 extends in the vertical direction with respect to the magnetic pole teeth 5.
  • the first armature 6 and the second armature 8 are arranged to face each other with the gap 7A therebetween.
  • the magnetization direction of the adjacent permanent magnet 1 is arrange
  • FIG. 5 shows an enlargement of the magnetic pole tooth 5 portion in which the winding 3 in the first embodiment shown in FIGS. 1 to 4 is omitted, and acts between one permanent magnet 1 and each magnetic pole tooth 5. It shows the direction of the suction force.
  • the distance E is the distance in the Y direction between the permanent magnet 1 and the magnetic pole teeth 5 and is the same distance as the gap 7A.
  • the suction force in the Z direction is a cogging force.
  • the permanent magnets 1 of the one partition 12 and the other partition 13 have the first armature 6 and the second armature 8.
  • the cogging force of one partition 12 and the other partition 13 generated by the suction is periodically changed with respect to the driving direction.
  • the cogging force in the linear motor 100A is a combination of two types of cogging forces shown in FIG. 6, and the magnitude of the cogging force in the linear motor 100A is determined by the permanent magnets 1 in one partition 12 and the other partition 13. It changes in the ratio of the area which opposes the 1st armature 6 and the 2nd armature 8.
  • the cogging force generated in one permanent magnet 1 is minimum when the magnetic pole teeth 5 and the center of the permanent magnet 1 are aligned, and is maximum when the angle between the direction of the attractive force and the Z axis is 45 °. For this reason, in the some permanent magnet 1 arrange
  • the position of the mover 11 where the plurality of magnetic pole teeth 5 are most opposed to the permanent magnet 1 of one partitioning portion 12 is set as the holding position, and the mover 11 is held by the external force. Therefore, it is possible to passively brake the movement of the movable element 11 and prevent the position of the movable element 11 from deviating from the holding position.
  • mover 11 it can change according to an application by designing the space
  • the braking by the cogging force uses a non-contact magnetic attraction force, the performance does not deteriorate depending on the number of times of use. That is, the braking force of the present embodiment is a permanently sustainable function, which is advantageous for improving the reliability of the device.
  • FIG. 7 shows the analysis result of the cogging force that demonstrates the effect of this embodiment.
  • one partition 13 and the second armature 8 face each other at a position where the electrical angle is 0 °.
  • the electrical angle is 0 °
  • thrust in the direction opposite to the moving direction of the mover 11 is generated, and a larger cogging force is obtained than in the state of facing only the other partition part 13. That is, a braking force with an electrical angle of 0 ° as a holding position is obtained.
  • the present embodiment shown in the figure has substantially the same configuration as the linear motor 100A shown in the first embodiment, but the first armature 6 and the second armature 8 shown in FIG.
  • a third armature 9 and a fourth armature 10 having the same configuration as the armature 6 and the second armature 8 are respectively arranged so as to sandwich both surfaces of the mover 11, and magnetic fluxes are formed on both surfaces of the mover 11. The path is formed.
  • the magnetic flux path is formed on both surfaces of the mover 11 so that the magnetic flux attracting force acting on the permanent magnet 1 is increased.
  • the present embodiment as described above, the same effect as in the first embodiment can be obtained, and the improvement of the braking force proportional to the suction force can be realized. Further, the Y-direction component of the suction force is generated in the opposite directions in the first armature 6 and the third armature 9 and in the second armature 8 and the fourth armature 10, respectively. The forces are offset and become smaller. For this reason, the present embodiment can design the support in the Y direction of the movable element 11 to be smaller than the first embodiment (for example, the support roller that supports the movable element 11 can be made smaller).
  • one armature 14 includes a first magnetic pole tooth 15 and a second magnetic pole tooth 15 facing each other with a gap 7B interposed therebetween.
  • the first armature unit 18 and the second armature unit 19 arranged adjacent to each other on the same axis align three armatures 14 in the driving direction (Z direction) at intervals of the armature interval Q. It is formed and has the same configuration.
  • the mover 11 has at least two partition portions having different intervals between the permanent magnets 1, and one of the partition portions (a portion corresponding to the second armature unit 19) 12 is a first armature.
  • the permanent magnet 1 is arranged at the same interval as the first magnetic pole teeth 15 and the second magnetic pole teeth 16 of the unit 18 and the second armature unit 19, and other partition portions (corresponding to the first armature unit 18). 13), the permanent magnets 1 are arranged at intervals between the first magnetic pole teeth 15 and the second magnetic pole teeth 16 of the first armature unit 18 and the second armature unit 19 different from the one partitioning portion 12. ing.
  • FIG. 11 shows a path of magnetic flux of the armature core 17 included in the armature 14 of the present embodiment.
  • the magnetic flux path is first magnetic pole tooth 15 ⁇ armature iron core 17 ⁇ second magnetic pole tooth 16, and is independent of the magnetic flux paths of other armatures. Therefore, there is no magnetic interference.
  • the same effect as in the first embodiment can be obtained, and a braking force larger than that in the first embodiment can be obtained because the attractive force acts on both surfaces of the permanent magnet 1. Further, since the magnetic flux paths are independent, a stable braking force can be obtained without being affected by the leakage magnetic flux from other phases.
  • At least two movable elements 11 having the same configuration as described above are connected in the width direction (X direction) to form a movable element unit. Even when the linear motors have different intervals between the permanent magnets 1 in the other partition portions 13, the same effects as those of the first embodiment can be obtained.
  • FIG. 13 shows a circuit breaker in which the linear motor having the structure of any one of the first to third embodiments described above is mounted as an operation device for opening / closing the circuit breaker as the fourth embodiment of the present invention.
  • the circuit breaker 21 uses the linear motors 100A, 100B, and 100C having any of the configurations described in the first to third embodiments as an operating device for the circuit breaker 21.
  • the movable element 11 is directly or indirectly connected to a movable part (not shown) such as a movable electrode.
  • one of the linear motors 100A, 100B, and 100C is arranged so that one section 12 of the mover 11 is positioned on the circuit breaker 21 side.
  • the direction of the closing operation of the circuit breaker 21 is the direction indicated by reference numeral 22, and the driving force in the closing operation direction 22 is generated in the other section 13 during the closing operation.
  • Reference numeral 20 denotes an armature.
  • the same effects as in the first to third embodiments can be obtained, and since the movable element 11 is in the same position before the start of charging, the energy required for each charging varies. The number of circuit breakers is reduced and the operation reliability is high.
  • FIG. 14 shows a modification of the circuit breaker described in the fourth embodiment as the fifth embodiment.
  • the movable element 11 is fixed at the closing start position, and only the armature 20 on the anti-blocking part side is energized and operated at the start of the closing operation.
  • a latch 23 is provided in the mover 11 on the side opposite to the circuit breaker 21.
  • Other configurations are the same as those of the first embodiment.
  • the mechanical latch 23 can be made more effective by passively attenuating the operation energy such as vibration caused by the disturbance. It is possible to design with a small dimension, and the safety and device reliability of the circuit breaker 21 can be improved.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is possible to add, delete, and replace the configuration of a part of the configuration of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

 本発明のリニアモータは、任意の位置からずれた位置に可動子が停止したり、或いは可動子が外力によって意に反して変移した場合であっても、受動的制動力によって可動子を任意の位置に保持するために、駆動方向へ極を交互に並べた永久磁石を有する可動子と、該可動子の永久磁石に対向するように配置された磁極歯、この磁極歯を複数つなぎ磁束の経路を形成する磁性体及び前記磁極歯に配置された巻線からなる第1の電機子と、該第1の電機子と同じ構成の第2の電機子とを備え、前記第1の電機子と前記第2の電機子が同軸上に隣接して配置され、前記可動子は前記永久磁石の間隔が異なる少なくとも2つの区画部を有し、この内の一の区画部は、前記第1の電機子及び前記第2の電機子の磁極歯と等しい間隔で前記永久磁石が配置され、他の区画部は、前記一の区画部と異なる前記第1の電機子及び前記第2の電機子の磁極歯の間隔で前記永久磁石が配置されていることを特徴とする。

Description

リニアモータ及びそれを用いた遮断器
 本発明はリニアモータ及びそれを用いた遮断器に係り、特に、可動子の永久磁石と電機子との間に相対的に水平移動するための推力を発生させるリニアモータ及びそれを遮断部の開閉操作を行う操作器として用いる遮断器に関する。
 リニアモータは、多くの種々の用途に利用されるが、その一例として、一次部品と、上方を移動可能な上記一次部品と磁気的に結合された二次部品とを有するリニアモータが特許文献1に記載されている。
 この特許文献1に記載のリニアモータは、リニアモータの出力範囲を、特別な応用に一層良好に適合可能とすべく、二次部品が一次部品の移動方向で少なくとも第1部分と第2部分とに区分され、二次部品が第1部分内では第2部分内とは異なるように成形され及び/又は別の材料から形成されており、これにより、一次部品の駆動に係りなく、移動区間上で一次部品の異なる速度を実現でき、場合によっては、1つの二次部品部分内に短絡巻線を嵌挿することができるため、二次部品部分は、受動的制動に役立つことが記載されている。
特表2009-532003号公報
 しかしながら、上述した特許文献1は、二次部品部分内に嵌挿した短絡巻線に発生する誘導現象を受動的制動に利用しているため、制動は主に一次部品の減速に用いられるが、減速後の停止位置に関しては、能動的制動が必要である。即ち、特許文献1では、可動子位置の保持やずれの補正に必要な機能を有していないため、任意の位置からずれた位置に可動子が停止した場合、或いは可動子が振動等の外力によって意に反して変移した場合には、受動的制動のみでこれを防止し、任意の位置に可動子を保持することができないという課題がある。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、任意の位置からずれた位置に可動子が停止したり、或いは可動子が外力によって意に反して変移した場合であっても、受動的制動力によって可動子を任意の位置に保持することができるリニアモータ及びそれを用いた遮断器を提供することにある。
 本発明のリニアモータは、上記目的を達成するために、駆動方向へ極を交互に並べた永久磁石を有する可動子と、該可動子の永久磁石に対向するように配置された磁極歯、この磁極歯を複数つなぎ磁束の経路を形成する磁性体及び前記磁極歯に配置された巻線からなる第1の電機子と、該第1の電機子と同じ構成の第2の電機子とを備え、前記第1の電機子と前記第2の電機子が同軸上に隣接して配置され、前記可動子は前記永久磁石の間隔が異なる少なくとも2つの区画部を有し、この内の一の区画部は、前記第1の電機子及び前記第2の電機子の磁極歯と等しい間隔で前記永久磁石が配置され、他の区画部は、前記一の区画部と異なる前記第1の電機子及び前記第2の電機子の磁極歯の間隔で前記永久磁石が配置されていることを特徴とする。
 また、本発明のリニアモータは、上記目的を達成するために、駆動方向へ極を交互に並べた永久磁石を有する可動子と、該可動子の永久磁石を挟んで対向するように配置された第1の磁極歯及び第2の磁極歯、この第1の磁極歯及び第2の磁極歯をつなぐ電機子鉄心及び前記第1の磁極歯及び第2の磁極歯にそれぞれ配置された巻線とから成る電機子が、所定間隔を以って駆動方向に複数個配置される第1の電機子ユニットと、該第1の電機子ユニットと同じ構成の第2の電機子ユニットとを備え、前記第1の電機子ユニットと前記第2の電機子ユニットが同軸上に隣接して配置され、前記可動子は前記永久磁石の間隔が異なる少なくとも2つの区画部を有し、この内の一の区画部は、前記第1の電機子ユニット及び前記第2の電機子ユニットの前記第1の磁極歯及び第2の磁極歯と等しい間隔で前記永久磁石が配置され、他の区画部は、前記一の区画部と異なる前記第1の電機子ユニット及び前記第2の電機子ユニットの前記第1の磁極歯及び第2の磁極歯の間隔で前記永久磁石が配置されていることを特徴とする。
 また、本発明の遮断器は、上記構成のリニアモータを、遮断部の開閉操作を行う操作器として用いる遮断器であって、前記リニアモータは、前記可動子の前記一の区画部が、前記遮断部側に位置するように配置されていることを特徴とする。
 本発明によれば、任意の位置からずれた位置に可動子が停止したり、或いは可動子が外力によって意に反して変移した場合であっても、受動的制動力によって可動子を任意の位置に保持することができる。
本発明のリニアモータの実施例1を示す斜視図である。 図1のリニアモータをY-Z平面で断面した状態を示す断面図である。 図1のリニアモータをX-Y平面で断面した状態を示す断面図である。 図2に示す実施例1における永久磁石の磁化方向を説明するための図である。 本発明の実施例1における巻線を省略した磁極歯部の拡大であり、一つの永久磁石と各磁極歯との間に作用する吸引力の方向を説明するための図である。 本発明の実施例1における制動力を得る各区画部のコギング力を説明するための図である。 本発明の実施例1における効果を確認するためのコギング力の解析結果を説明するための図である。 本発明のリニアモータの実施例2を示す斜視図である。 図8のリニアモータをY-Z平面で断面した状態を示す断面図である。 本発明のリニアモータの実施例3を示す斜視図である。 図10のリニアモータをX-Y平面で断面した状態を示す断面図である。 図10のリニアモータをY-Z平面で断面した状態を示す断面図である。 本発明の実施例4として、実施例1乃至3のいずれかのリニアモータを遮断部開閉操作を行う操作器として搭載した遮断器を示す図である。 本発明の実施例5として、実施例4で説明した遮断器の変形例を示す図である。
 以下、図示した実施例に基づいて本発明のリニアモータ及びそれを用いた遮断器を説明する。なお、各実施例において、同一構成部品には同符号を使用する。
 図1乃至図4に、本発明のリニアモータの実施例1を示す。
 該図に示す如く、本実施例のリニアモータ100Aは、駆動方向へ極を交互に並べて磁石間隔P及びRで配置された複数の永久磁石1を有する可動子11と、この可動子11の永久磁石1に対向するように電機子間隔Qで並設された磁極歯5、この磁極歯5を複数つなぎ磁束の経路を形成する磁性体である電機子鉄心4及び磁極歯5に巻回配置された巻線3からなる第1の電機子6と、この第1の電機子6と同じ構成の第2の電機子8とを備え、第1の電機子6と第2の電機子8が同軸上に隣接して配置されて概略構成されている。
 本実施例のリニアモータ100Aは、3相のモータを構成した例であり、第1の電機子6と第2の電機子8及び可動子11が相対的に直線運動するものであり、このリニアモータ100Aの駆動方向はZ方向である。
 なお、本実施例では、第1の電機子6と第2の電機子8の磁極歯5を電気的に位相が各120°ずれるように配置して、3相のリニアモータ100Aを構成している。同様にm個の磁極歯において、位相を360°/mずらすことにより、m相駆動のリニアモータを構成できる。
 そして、本実施例では、可動子11が永久磁石1の間隔(磁石間隔P及びR)が異なる少なくとも2つの区画部を有し、この内の一の区画部12は、第1の電機子6及び第2の電機子8の磁極歯5と等しい間隔で永久磁石1が配置され(永久磁石1と磁極歯5の軸中心が揃った状態でもある)、他の区画部13は、一の区画部12と異なる第1の電機子6及び第2の電機子8の磁極歯5の間隔で永久磁石1が配置されているものである。
 以下、これについて、図4を用いて説明する。図4は、実施例1における永久磁石1の磁化方向を示すものである。
 該図において、永久磁石1は、磁極歯5に対向する面を磁化方向としている。また、上述した如く、可動子11は、磁石間隔P及びRが異なる少なくとも2つの区画部を有している。その内の一の区画部12の列は、複数の永久磁石1を駆動方向に磁石間隔Rの間隔で並べて構成されている。磁石間隔Rは、電機子間隔Qと等しく配置されている。一方、他の区画部13の列は、複数の永久磁石1を駆動方向に、磁石間隔Rよりは広い磁石間隔Pの間隔(R<P)で並べて構成されている。
 しかも、一の区画部12と他の区画部13は、それぞれの区画部間では永久磁石1の間隔が同じであると共に、一の区画部12に配置される永久磁石1の駆動方向の寸法幅と、磁極歯5の駆動方向の寸法幅が等しく形成されている。他の区画部13の磁石間隔Pは、一般にP=3Q/2であるが、本実施例はこれに限らない。また、図4に示す第1の電機子6及び第2の電機子8の磁束の経路は、隣接した永久磁石1の間で発生し、電機子内の最短経路で構成されている。
 また、可動子11は、複数の永久磁石1と、非磁性体の板に永久磁石1を配置する穴が空いた可動子プレート2で構成され、可動子11は、磁極歯5との上下方向の空隙7Aを挟んで第1の電機子6と第2の電機子8に対面して配置されている。また、一の区画部12及び他の区画部13では、隣り合う永久磁石1の磁化方向が交互に配置されている。
 以上の構成のリニアモータ100Aにおいて、可動子11を駆動方向(Z方向)へ移動すると、複数の永久磁石1は、それぞれ磁石磁束の作用で電機子に吸引される。
 図5は、図1乃至図4に記載の実施例1における巻線3を省略した磁極歯5部の拡大を示すものであり、一つの永久磁石1と各磁極歯5との間に作用する吸引力の方向について示している。該図において、距離Eは、永久磁石1と磁極歯5との間のY方向の距離で、空隙7Aと同じ距離である。図5において、Z方向の吸引力はコギング力である。
 本実施例において、永久磁石1を連続的にZ方向へ進行させた場合、一の区画部12及び他の区画部13の永久磁石1が、第1の電機子6と第2の電機子8に吸引されて発生する一の区画部12及び他の区画部13のコギング力は、図6に示すように、駆動方向に対して周期的に変化する。
 リニアモータ100Aにおけるコギング力は、図6に示す2種類のコギング力の合成であり、リニアモータ100Aにおけるコギング力の大きさは、一の区画部12及び他の区画部13の永久磁石1が、第1の電機子6と第2の電機子8と対向する面積の割合で変化する。
 一つの永久磁石1に発生するコギング力は、磁極歯5と永久磁石1の中心が揃った状態で最小となり、吸引力の方向とZ軸のなす角が45°になるとき最大となる。このため、一の区画部12に配置された複数の永久磁石1では、磁極歯5に対し、それぞれ等しく方向の揃った吸引力が発生する。一の区画部12では、同一方向に吸引力を発生できるため、一の区画部12において発生するコギング力は、他の区画部13において発生するコギング力に比べて大きくできる。
 このため、本実施例のリニアモータ100Aでは、複数の磁極歯5が一の区画部12の永久磁石1と最も多く対向する可動子11の位置を保持位置とし、外力によって可動子11が保持位置から変移することを受動的に制動し、保持位置から可動子11の位置がずれることを防止できる。可動子11の保持位置については、一の区画部12と他の区画部13の駆動方向の区画部間の間隔を、任意の寸法に設計することで応用に合わせて変更できる。
 また、このコギング力による制動は、非接触な磁気吸引力を利用しているため、使用回数によって性能が劣化することがない。即ち、本実施例の制動力は、恒久的に持続可能な機能であるため、機器の信頼性向上に有利である。
 更に、第1の電機子6と第2の電機子8では、可動子11を駆動方向へ動作させる場合に、他の区画部13と対向しているときに、駆動方向の推力を個別に発生させる機能を有するため、保持位置からの駆動も任意に可能である。
 図7は、本実施例の効果を実証するコギング力の解析結果を示すものである。該図において、電気角0°の位置では、一の区画部13と第2の電機子8が対向している。電気角0°の位置では、可動子11の移動方向と逆方向の推力が発生しており、他の区画部13のみと対向している状態よりも大きなコギング力が得られている。即ち、電気角0°を保持位置とした制動力が得られている。
 このような本実施例の構成とすることにより、任意の位置からずれた位置に可動子11が停止したり、或いは可動子11が外力によって意に反して変移した場合であっても、受動的制動力によって可動子11を任意の位置に保持することができる効果がある。
 なお、上述した実施例では、一の区画部12と他の区画部13を一つずつ配置した例を説明したが、一の区画部12と他の区画部13を交互に複数個配置しても構わない。また、リニアモータ100Aの駆動方向をZ方向としたが、これとは全く逆方向に駆動しても構わない。
 図8及び図9に、本発明のリニアモータの実施例2を示す。該図に示す本実施例のリニアモータ100Bは、その構成は、実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例では、実施例1に示したリニアモータ100Aと略同様な構成であるが、図1に示した第1の電機子6及び第2の電機子8と、第1の電機子6及び第2の電機子8と同じ構成の第3の電機子9及び第4の電機子10と、が可動子11の両面を挟み込むようにそれぞれ配置され、可動子11の両面に磁束の経路が形成されるようにしたものである。
 即ち、可動子11の両面で磁束の経路を構成することにより、永久磁石1に作用する磁束の吸引力を増加するようにしたものである。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、吸引力に比例した制動力の向上が実現できる。また、吸引力のY方向成分は、第1の電機子6及び第3の電機子9と、第2の電機子8及び第4の電機子10とにおいて、それぞれ逆方向に発生するため、吸引力は相殺され小さくなる。このため、本実施例は実施例1に比べて、可動子11のY方向の支持を、より小型に設計できる(例えば、可動子11を支持する支持ローラを小さくできる)。
 図10乃至図12に、本発明のリニアモータの実施例3を示す。該図に示す本実施例のリニアモータ100Cは、その構成は、実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例では、実施例1に示したリニアモータ100Aと略同様な構成であるが、一つの電機子14は、空隙7Bを挟んで対向する第1の磁極歯15と第2の磁極歯16及び第1の磁極歯15と第2の磁極歯16をつなぐ電機子鉄心17と、第1の磁極歯15と第2の磁極歯16にそれぞれ配置された巻線3で構成されている。更に、同軸上に隣接して配置されている第1の電機子ユニット18及び第2の電機子ユニット19が、駆動方向(Z方向)に3つの電機子14を電機子間隔Qの間隔で並設されて形成され、全く同じ構成となっている。
 そして、可動子11は永久磁石1の間隔が異なる少なくとも2つの区画部を有し、この内の一の区画部(第2の電機子ユニット19に相当する部分)12は、第1の電機子ユニット18及び第2の電機子ユニット19の第1の磁極歯15及び第2の磁極歯16と等しい間隔で永久磁石1が配置され、他の区画部(第1の電機子ユニット18に相当する分)13は、一の区画部12と異なる第1の電機子ユニット18及び第2の電機子ユニット19の第1の磁極歯15及び第2の磁極歯16の間隔で永久磁石1が配置されている。
 本実施例の電機子14が有する電機子鉄心17の磁束の経路を図11に示す。該図に示す如く、一つの電機子14では、磁束の経路が、第1の磁極歯15→電機子鉄心17→第2の磁極歯16となり、他の電機子の磁束の経路とは独立しているため、磁気的な干渉がない。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、永久磁石1の両面に吸引力が働くため、実施例1よりも大きな制動力が得られる。更に、磁束の経路が独立しているため、他相からの漏れ磁束に影響されず、安定した制動力が得られる。
 なお、特に図示しないが、同一構成の少なくとも2枚の上述した構成の可動子11を幅方向(X方向)に連結して可動子ユニットとし、この可動子ユニットの上述した一の区画部12と他の区画部13における永久磁石1の間隔が、それぞれ異なるリニアモータとしても、実施例1と同様な効果を得ることができる。
 図13に、本発明の実施例4として、上述した実施例1乃至3のいずれかの構成のリニアモータを、遮断部の開閉操作を行う操作器として搭載した遮断器を示す。
 該図に示す如く、本実施例の遮断器21は、実施例1乃至3で説明したいずれかの構成のリニアモータ100A、100B、100Cを、遮断器21の操作器として用いるため、遮断器21の可動電極等の可動部(図示せず)に可動子11が直接或いは間接的に連結されている。
 そして、本実施例では、リニアモータ100A、100B、100Cのいずれかは、可動子11の一の区画12が遮断器21側に位置するように配置されている。
 本実施例では、遮断器21の投入動作の方向は符号22で示す方向であり、投入動作時には、他の区画13に投入動作方向22の駆動力が発生する。なお、20は、電機子である。
 このような本実施例によれば、実施例1乃至3と同様な効果が得られることは勿論、投入開始以前に可動子11は同じ位置にあるため、毎回の投入に必要なエネルギーにばらつきが少なくなり、動作信頼性の高い遮断器が構成できる。
 図14に、実施例5として、実施例4で説明した遮断器の変形例を示す。該図に示す本実施例では、実施例4の構成に加え、可動子11を投入開始位置で固定し、投入動作の開始時に反遮断部側の電機子20にのみ通電して動作させる機械式ラッチ23を、遮断器21とは反対側の可動子11に備えている。他の構成は、実施例1と同様である。
 このような本実施例によれば、実施例4と同様な効果が得られることは勿論、可動子11が外乱による振動等の動作エネルギーを受動的に減衰することにより、機械式ラッチ23をより小さな寸法で設計することが可能であり、遮断器21の安全性と機器信頼性を向上させることができる。
 なお、本発明は上記した実施例に限定されるものではなく、さまざまな変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。実施例の構成の一部について、構成の追加・削除・置換をすることが可能である。
 1…永久磁石、2…可動子プレート、3…巻線、4、17…電機子鉄心、5…磁極歯、6…第1の電機子、7A、7B…空隙、8…第2の電機子、9…第3の電機子、10…第4の電機子、11…可動子、12…一の区画部、13…他の区画部、14、20…電機子、15…第1の磁極歯、16…第2の磁極歯、18…第1の電機子ユニット、19…第2の電機子ユニット、21…遮断器、22…投入動作方向、23…機械式ラッチ、100A、100B、100C…リニアモータ、P、R…磁石間隔、Q…電機子間隔。

Claims (14)

  1.  駆動方向へ極を交互に並べた永久磁石を有する可動子と、該可動子の永久磁石に対向するように配置された磁極歯、この磁極歯を複数つなぎ磁束の経路を形成する磁性体及び前記磁極歯に配置された巻線からなる第1の電機子と、該第1の電機子と同じ構成の第2の電機子とを備え、前記第1の電機子と前記第2の電機子が同軸上に隣接して配置され、
     前記可動子は前記永久磁石の間隔が異なる少なくとも2つの区画部を有し、この内の一の区画部は、前記第1の電機子及び前記第2の電機子の磁極歯と等しい間隔で前記永久磁石が配置され、他の区画部は、前記一の区画部と異なる前記第1の電機子及び前記第2の電機子の磁極歯の間隔で前記永久磁石が配置されていることを特徴とするリニアモータ。
  2.  請求項1に記載のリニアモータにおいて、
     前記一の区画部と前記他の区画部は、それぞれの区画部間では前記永久磁石の間隔が同じであることを特徴とするリニアモータ。
  3.  請求項2に記載のリニアモータにおいて、
     前記一の区画部の前記永久磁石の間隔が、前記他の区画部の前記永久磁石の間隔よりも狭いことを特徴とするリニアモータ。
  4.  請求項1乃至3のいずれか1項に記載のリニアモータにおいて、
     前記一の区画部に配置される前記永久磁石の駆動方向の寸法幅と、前記磁極歯の駆動方向の寸法幅が等しいことを特徴とするリニアモータ。
  5.  請求項1乃至4のいずれか1項に記載のリニアモータにおいて、
     前記第1の電機子及び前記第2の電機子と、前記第1の電機子及び前記第2の電機子と同じ構成の第3の電機子及び第4の電機子とが、前記可動子の両面を挟み込むようにそれぞれ配置されていることを特徴とするリニアモータ。
  6.  請求項5に記載のリニアモータにおいて、
     前記可動子の両面に磁束の経路が形成されていることを特徴とするリニアモータ。
  7.  請求項1乃至6のいずれか1項に記載のリニアモータにおいて、
     同一構成の少なくとも2枚の前記可動子を高さ方向に連結した可動子ユニットを備え、該可動子ユニットの前記一の区画部と前記他の区画部における前記永久磁石の間隔が、それぞれ異なることを特徴とするリニアモータ。
  8.  駆動方向へ極を交互に並べた永久磁石を有する可動子と、該可動子の永久磁石を挟んで対向するように配置された第1の磁極歯及び第2の磁極歯、この第1の磁極歯及び第2の磁極歯をつなぐ電機子鉄心及び前記第1の磁極歯及び第2の磁極歯にそれぞれ配置された巻線とから成る電機子が、所定間隔を以って駆動方向に複数個配置される第1の電機子ユニットと、該第1の電機子ユニットと同じ構成の第2の電機子ユニットとを備え、前記第1の電機子ユニットと前記第2の電機子ユニットが同軸上に隣接して配置され、
     前記可動子は前記永久磁石の間隔が異なる少なくとも2つの区画部を有し、この内の一の区画部は、前記第1の電機子ユニット及び前記第2の電機子ユニットの前記第1の磁極歯及び第2の磁極歯と等しい間隔で前記永久磁石が配置され、他の区画部は、前記一の区画部と異なる前記第1の電機子ユニット及び前記第2の電機子ユニットの前記第1の磁極歯及び第2の磁極歯の間隔で前記永久磁石が配置されていることを特徴とするリニアモータ。
  9.  請求項8に記載のリニアモータにおいて、
     前記一の区画部と前記他の区画部は、それぞれの区画部間では前記永久磁石の間隔が同じであることを特徴とするリニアモータ。
  10.  請求項9に記載のリニアモータにおいて、
     前記一の区画部の前記永久磁石の間隔が、前記他の区画部の前記永久磁石の間隔よりも狭いことを特徴とするリニアモータ。
  11.  請求項8乃至10のいずれか1項に記載のリニアモータにおいて、
     前記一の区画部に配置される前記永久磁石の駆動方向の寸法幅と、前記第1の磁極歯及び前記第2の磁極歯の駆動方向の寸法幅が等しいことを特徴とするリニアモータ。
  12.  請求項8乃至11のいずれか1項に記載のリニアモータにおいて、
     前記電機子の磁束の経路が、他の電機子の磁束の経路とは独立していることを特徴とするリニアモータ。
  13.  請求項1乃至12のいずれか1項に記載のリニアモータを、遮断部の開閉操作を行う操作器として用いる遮断器であって、
     前記リニアモータは、前記可動子の前記一の区画部が、前記遮断部側に位置するように配置されていることを特徴とする遮断器。
  14.  請求項13に記載の遮断器において、
     前記可動子を投入開始位置で固定し、投入動作の開始時に反遮断部側の電機子にのみ通電して動作させる機械式ラッチを備えていることを特徴とする遮断器。
PCT/JP2015/065093 2014-08-08 2015-05-26 リニアモータ及びそれを用いた遮断器 WO2016021281A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014162102A JP6389690B2 (ja) 2014-08-08 2014-08-08 リニアモータ及びそれを用いた遮断器
JP2014-162102 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016021281A1 true WO2016021281A1 (ja) 2016-02-11

Family

ID=55263560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065093 WO2016021281A1 (ja) 2014-08-08 2015-05-26 リニアモータ及びそれを用いた遮断器

Country Status (2)

Country Link
JP (1) JP6389690B2 (ja)
WO (1) WO2016021281A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532003A (ja) * 2006-03-29 2009-09-03 シーメンス アクチエンゲゼルシヤフト リニアモータ
JP2010514402A (ja) * 2006-12-22 2010-04-30 シーメンス アクチエンゲゼルシヤフト ショートストロークリニアモータ
WO2013150929A1 (ja) * 2012-04-06 2013-10-10 株式会社 日立製作所 ガス遮断器
JP2014107180A (ja) * 2012-11-29 2014-06-09 Hitachi Ltd ガス遮断器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532003A (ja) * 2006-03-29 2009-09-03 シーメンス アクチエンゲゼルシヤフト リニアモータ
JP2010514402A (ja) * 2006-12-22 2010-04-30 シーメンス アクチエンゲゼルシヤフト ショートストロークリニアモータ
WO2013150929A1 (ja) * 2012-04-06 2013-10-10 株式会社 日立製作所 ガス遮断器
JP2014107180A (ja) * 2012-11-29 2014-06-09 Hitachi Ltd ガス遮断器

Also Published As

Publication number Publication date
JP2016039713A (ja) 2016-03-22
JP6389690B2 (ja) 2018-09-12

Similar Documents

Publication Publication Date Title
JP5477126B2 (ja) リニアモータ
JP5387570B2 (ja) 多自由度アクチュエータおよびステージ装置
EP3076531A1 (en) Flat voice coil motor
KR20100029609A (ko) 전자 선형 조작기
JP5648873B2 (ja) リニアモータ
WO2011154995A1 (ja) リニアモータおよびそれを用いた位置決め装置
JP2010141978A (ja) 推力発生機構
CN102577054A (zh) 线性马达
CN105075081A (zh) 直线电机
JP2006304438A (ja) リニアモータ
JP5678025B2 (ja) 推力発生機構
KR101798548B1 (ko) 선형 전동기
EP3326276B1 (en) Transverse flux linear motor
KR20120068356A (ko) 선형 전동기
JP5589507B2 (ja) リニア駆動装置の可動子及び固定子
JP6389690B2 (ja) リニアモータ及びそれを用いた遮断器
JPWO2007116508A1 (ja) リニアモータ
JP2008312405A (ja) リニアモータ駆動の軸送り装置
KR20120036286A (ko) 리니어 모터 및 스테이지 장치
WO2014141887A1 (ja) リニアモータ
US10811950B2 (en) Linear motor and device provided with linear motor
JP2018148760A (ja) リニアモータ
JP7124981B1 (ja) 界磁装置、リニアモータ
JP2015089189A (ja) リニアモータ
JP6586027B2 (ja) リニアモータおよび遮断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830037

Country of ref document: EP

Kind code of ref document: A1