WO2016020598A1 - Systeme d'aide a la conduite et procede mis en oeuvre dans un tel systeme - Google Patents

Systeme d'aide a la conduite et procede mis en oeuvre dans un tel systeme Download PDF

Info

Publication number
WO2016020598A1
WO2016020598A1 PCT/FR2015/052028 FR2015052028W WO2016020598A1 WO 2016020598 A1 WO2016020598 A1 WO 2016020598A1 FR 2015052028 W FR2015052028 W FR 2015052028W WO 2016020598 A1 WO2016020598 A1 WO 2016020598A1
Authority
WO
WIPO (PCT)
Prior art keywords
assistance system
data
ontology
basis
driving assistance
Prior art date
Application number
PCT/FR2015/052028
Other languages
English (en)
Inventor
Alexandre ARMAND
Javier IBANEZ-GUZMAN
David FILLIAT
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to US15/501,324 priority Critical patent/US10346690B2/en
Priority to JP2017506713A priority patent/JP6978313B2/ja
Priority to EP15759515.8A priority patent/EP3177497A1/fr
Publication of WO2016020598A1 publication Critical patent/WO2016020598A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices
    • B60Q5/005Arrangement or adaptation of acoustic signal devices automatically actuated
    • B60Q5/006Arrangement or adaptation of acoustic signal devices automatically actuated indicating risk of collision between vehicles or with pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • B60K2031/0016Identification of obstacles; Selection of a target vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/307Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing virtually distinguishing relevant parts of a scene from the background of the scene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8093Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for obstacle warning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data

Definitions

  • the present invention generally relates to assistance in driving motor vehicles.
  • It relates more particularly to a driver assistance system and a method implemented in such a system.
  • the invention applies particularly advantageously in the case where different modules deliver perception data of the environment of the vehicle.
  • Driving assistance systems comprising at least one receiving module designed to receive perception data of a road environment and a control module designed to control an on-board system, for example a visual or audible warning device, or an actuator (such as a cruise control or an emergency automatic braking system).
  • a control module designed to control an on-board system, for example a visual or audible warning device, or an actuator (such as a cruise control or an emergency automatic braking system).
  • the control module acts on the onboard system according to received perception data, generated for example by a sensor such as a video camera.
  • the present invention proposes a driving assistance system comprising at least one receiving module designed to receive perception data of a road environment and a control module designed to control an onboard system, characterized by a conversion module adapted to generate, from the perception data, a plurality of class instances of an ontology stored by the driver assistance system and defining class relationships, and a reasoning tool adapted to derive , on the basis of the ontology, at least one property of a an instance of said plurality, wherein the control module is adapted to control the onboard system based on the derived property.
  • the conversion module comprises a building block of a digital world comprising objects determined on the basis of the perception data and a creation block of said instances on the basis of the determined objects;
  • the perception data comprise proprioceptive data transmitted by an on-board computer and / or location data generated by a location system and / or measurement data generated by a sensor and / or external knowledge data received from a communication system;
  • the building block comprises a digital horizon generation sub-block designed to determine at least one of said objects based on the location data and a digital map;
  • the on-board system is an alarm or an actuator.
  • the invention also proposes a method implemented in a driving assistance system comprising the following steps:
  • FIG. 1 represents an exemplary architecture that can be envisaged for a driving assistance system in accordance with the teachings of the invention
  • FIG. 2 represents, in the form of functional modules, the processing performed by the processor of the system of FIG. 1;
  • FIG. 3 shows in detail one of the modules of FIG. 2;
  • FIG. 4 shows schematically an example of context in which the driver assistance system can be used.
  • FIG. 1 represents an exemplary architecture conceivable for a driving assistance system according to the teachings of the invention.
  • Such a driver assistance system is embedded in a V1 motor vehicle to assist the driver in his driving in a road environment, such as that shown schematically by way of example in Figure 4.
  • a processor PROC implements certain functionalities, such as those presented below with reference to FIGS. 2 and 3, because of the execution by this processor of computer programs stored in a computer.
  • memory MEM associated with the processor PROC.
  • the processor PROC is for example a microprocessor and the memory MEM may comprise a random access memory and / or a hard disk.
  • the memory MEM may comprise a random access memory and / or a hard disk.
  • the processor PROC receives, at the level of a reception module REC (for example a communication interface), perception data delivered by various modules equipping the vehicle, in particular:
  • a reception module REC for example a communication interface
  • V EH proprioceptive data D V EH (OR vehicle data - available on board the vehicle - for example, speed, acceleration) delivered for example by a VEH onboard computer,
  • a navigation system here a GNSS satellite navigation system, alternatively this could be a GPS system, a tracking system by SLAM using cameras or lasers .
  • measurement data D M ES delivered by a sensor here a CAM video camera, alternatively a radar or laser system
  • a sensor here a CAM video camera, alternatively a radar or laser system
  • COMM vehicle-vehicle or vehicle-architecture wireless communication system, sometimes called V2X.
  • these different modules are shown linked at different points to the processor PROC.
  • the different modules communicate with the processor PROC by means of a common mechanism, for example by means of a communication bus linking the processor PROC (i.e. its communication interface REC) and the different modules.
  • the driving assistance system of FIG. 1 comprises an alarm (visual and / or audible) ATT, for example a distance warning device (in English "Distance Warning”), and an actuator ACT, for example a cruise control device. (or ACC for "Automatic Cruise Controt") or an emergency braking system (or AEB for "Automatic Emergency Braking").
  • alarm visual and / or audible
  • ATT for example a distance warning device (in English "Distance Warning”
  • ACT for example a cruise control device.
  • ACC for "Automatic Cruise Controt”
  • AEB Automatic Emergency Braking
  • the processor PROC generates CMDATT and CMDACT control signals intended respectively for the horn ATT and the ACT actuator on the basis in particular of the received perception data, according to the mechanisms described below with reference to FIGS. 2 and 3.
  • FIG. 2 represents, in the form of functional modules, the processes carried out by the processor of FIG. 1.
  • the navigation aid system thus comprises a conversion module 10 designed to generate, from the above-mentioned perception data, class instances defined within an ontology stored in the navigation aid system, for example in the memory MEM.
  • the ontology is for example edited in OWL format for "Ontology Web Language”.
  • Classes are representations of the different types of objects likely to be encountered in the road environment in which the vehicle operates, for example vehicles, vulnerable people (pedestrians, animals, cycles, etc.) and road infrastructures (intersections, stop, pedestrian crossing, etc.).
  • each class can be characterized by at least one property (possibly several) that describes an action or behavior of the object concerned, for example the "slow down” property for the class associated with the "vehicle” object or the “traverse” property for the class associated with the object "pedestrian”.
  • the ontology defines relations between the different classes, for example by means of rules which define such relations when certain conditions are respected. For example, a vehicle brakes when approaching a stop and stops at the stop, or a pedestrian near a pedestrian crossing is likely to cross the road, or a vehicle slows down when a pedestrian is likely to cross pavement.
  • basic ontology denotes the definition of classes and relations between classes; this definition gives a conceptual description of the road environment (objects and events that can be found in such a road environment), without application to a particular road context.
  • the conversion module 1 0 comprises for example a building block 1 2 of a digital world from the perception data D V EH, DLOC, DMES, DEXT described above.
  • the digital world is a data structure that represents the set of objects OBJ, perceived by the vehicle on the basis of perception data D V EH, D L OC, DM ES, D E XT-
  • the digital world For example, it is defined by a list of objects perceived OBJ, and by the characteristics of these objects (for example their situation in space).
  • these objects are for example a pedestrian P (detected for example by the measurement data D M ES coming from the CAM camera), a pedestrian crossing C (known thanks to the location data D L oc and to a digital card 1 20 stored, as explained below with reference to Figure 3) and a vehicle V2 (located in front of the vehicle V1 equipped with the driver assistance system and known thanks to the measurement data DMES and / or to external knowledge data D E XT received for example from the vehicle V2).
  • a pedestrian P detected for example by the measurement data D M ES coming from the CAM camera
  • a pedestrian crossing C known thanks to the location data D L oc and to a digital card 1 20 stored, as explained below with reference to Figure 3
  • a vehicle V2 located in front of the vehicle V1 equipped with the driver assistance system and known thanks to the measurement data DMES and / or to external knowledge data D E XT received for example from the vehicle V2).
  • the conversion module 1 0 also comprises a creation block 1 4 of INST instances, corresponding to OBJ objects, respectively, of the world digital.
  • the creation block 14 creates an instance INST, of the class associated (in the ontology) with the type of the object concerned.
  • the instance of INST class, thus created has properties defined according to the characteristics of the OBJ object, in the digital world (for example properties of position, speed, etc.).
  • the inst instances, generated at the output of the conversion module 10, are associated with the basic ontology 20 (stored for example in the memory MEM) by means of an association module 30, which can thus deliver a ontology completed ONT modeling.
  • ontology completed ONT may further include information on the ST state of the vehicle V1 equipped with the driver assistance system (information produced by a sub-block 1 for generating the vehicle 1). state of the vehicle described below with reference to Figure 3).
  • a reasoning tool 40 is then applied to the ontology completed ONT in order to deduce implicit properties of certain instances of class INST, which also makes it possible to predict some of these properties PRED.
  • a Pellet type of reasoner or Fact ++, or Racer, or Hermit.
  • the reasoner applies the rules mentioned above ("a pedestrian close to a pedestrian crossing is likely to cross the road” and "a vehicle slows down when a pedestrian is likely to cross the road") to Instances created INST P , INST C , INST V2 and deduces that the vehicle V2 will (probably) slow down.
  • a control module 50 receives the properties deduced (in particular the predicted properties) PRED by the reasoning tool 40 and generates the control information CM DATT, CMDACT taking into account these deduced properties PRED.
  • control module 50 can use mechanisms conventionally used in driving assistance systems for Generate the CMDATT, CMDACT commands, adding the taking into account of the information deduced PRED.
  • control module has more information on the state of objects than the list of class instances in the ontology.
  • the speed of the vehicle V1 equipped with the speed regulator is for example regulated according to a conventional mechanism as a function of the speed of the vehicle V2 as detected by means of a sensor, for example the CAM camera.
  • the control module 50 receives the predicted property PRED indicating that the vehicle V2 will slow down, the control module 50 sends a command CMDACT to the speed regulator in order to adapt the speed of the vehicle V1 (equipped with the cruise control ) the expected slowdown of the vehicle V2, even before the actual slowdown of the vehicle V2.
  • the triggering threshold of the alarm ATT (speed above which a light or sound signal is emitted by the alarm ATT) can be set according to a conventional mechanism according to the speed of the vehicle V2 as detected by means of a sensor, for example the CAM camera.
  • the control module 50 receives the predicted property PRED indicating that the vehicle V2 will slow down, the control module 50 sends a command CMDATT to the alarm ATT so as to reduce the triggering threshold of the alarm ATT.
  • FIG. 3 represents an exemplary embodiment conceivable for the building block 12.
  • the building block 12 comprises the sub-block 1 10 for generating the ST state of the vehicle V1 (already mentioned above).
  • This generation sub-block 100 receives as input the proprioceptive data D V EH (for example the speed of the vehicle V1) and the location data D L oc, which makes it possible to determine at the output different state variables ST of the vehicle V1 .
  • the building block 12 also comprises a sub-block 1 for generating the electronic horizon H, which uses the ST state of the vehicle V1 received from the generation sub-block 1 and a digital map 120 (stored for example in the memory MEM) to generate the electronic horizon H of the vehicle V1.
  • the electronic horizon H is formed of a set of information extracted from the digital map 120 and relating to the environment (including roads) in which the vehicle V1 is likely to evolve in the near future, that is, that is to say in practice the information of the digital map 120 at a distance less than a determined threshold (possibly adjustable), for example 500 m.
  • the electronic horizon H thus contains objects OBJ, (for example the pedestrian crossing C) which will be part of the digital world produced by the building block 12, as explained above.
  • objects OBJ for example the pedestrian crossing C
  • the building block 12 comprises a sub-block 140 for processing the measurement data D M ES which detects objects OBJ, (for example the pedestrian P) by interpretation of these measurement data D M ES (issues in the case of the pedestrian P of CAM camera already mentioned).
  • objects OBJ for example the pedestrian P
  • the building block 12 comprises a sub-block 150 for analyzing the external knowledge data D E XT which determines the existence and the characteristics (in particular the location) of certain objects OBJ, (for example the vehicle V2) by analysis of these external knowledge data D E XT (the vehicle V2 communicating for example its position via the communication system COMM).
  • the building block 12 finally comprises an association sub-block 160 which groups OBJ objects, indicated by the sub-blocks 1 30, 140, 150 (for example, as already indicated above, in the form of a list) to constitute the digital world provided at the output of the building block 12.
  • association sub-block 160 which groups OBJ objects, indicated by the sub-blocks 1 30, 140, 150 (for example, as already indicated above, in the form of a list) to constitute the digital world provided at the output of the building block 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)

Abstract

L'invention concerne un système d'aide à la conduite comprenant au moins un module de réception conçu pour recevoir des données de perception (DVEH, DLOC, DMES, DEXT) d'un environnement routier et un module de commande (50) conçu pour commander un système embarqué. Le système d'aide à la conduite comprend un module de conversion (10) conçu pour générer, à partir des données de perception (DVEH, DLOC, DMES, DEXT), une pluralité d'instances (INSTi) de classes d'une ontologie (20) mémorisée par le système d'aide à la conduite et définissant des relations entre classes, ainsi qu'un outil de raisonnement (40) conçu pour déduire, sur la base de l'ontologie (20, ONT), au moins une propriété (PRED) d'une instance (INSTi) de ladite pluralité, Le module de commande (50) est conçu pour commander le système embarqué sur la base de la propriété déduite (PRED). Un procédé mis en œuvre dans un tel système est également proposé.

Description

SYSTEME D'AIDE A LA CONDUITE ET PROCEDE MIS EN ŒUVRE DANS UN
TEL SYSTEME
DOMAIN E TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION La présente invention concerne de manière générale l'aide à la conduite des véhicules automobiles.
Elle concerne plus particulièrement un système d'aide à la conduite et un procédé mis en œuvre dans un tel système.
L'invention s'applique particulièrement avantageusement dans le cas où différents modules délivrent des données de perception de l'environnement du véhicule.
ARRIERE-PLAN TECHNOLOG IQUE
On connaît les systèmes d'aide à la conduite comprenant au moins un module de réception conçu pour recevoir des données de perception d'un environnement routier et un module de commande conçu pour commander un système embarqué, par exemple un avertisseur visuel ou sonore, ou un actionneur (tel qu'un régulateur de vitesse ou un système de freinage automatique d'urgence).
Le module de commande agit sur le système embarqué en fonction des données de perception reçues, générées par exemple par un capteur tel qu'une caméra vidéo.
On prévoit en général à cet égard de surveiller, à l'aide des données de perception, un élément précis de l'environnement rencontré par le véhicule : par exemple, dans le cas des systèmes de freinage automatique d'urgence, on surveille la distance du prochain obstacle rencontré par le véhicule.
OBJET DE L'INVENTION
Dans ce contexte, la présente invention propose un système d'aide à la conduite comprenant au moins un module de réception conçu pour recevoir des données de perception d'un environnement routier et un module de commande conçu pour commander un système embarqué, caractérisé par un module de conversion conçu pour générer, à partir des données de perception, une pluralité d'instances de classes d'une ontologie mémorisée par le système d'aide à la conduite et définissant des relations entre classes, et un outil de raisonnement conçu pour déduire, sur la base de l'ontologie, au moins une propriété d'une instance de ladite pluralité, dans lequel le module de commande est conçu pour commander le système embarqué sur la base de la propriété déduite.
L'utilisation de l'ontologie et des relations entre classes définies dans l'ontologie permet de tenir compte des interactions susceptibles de se produire entre les différents objets de l'environnement routier et d'en déduire (voire de prédire) des informations qui ne ressortent pas de l'observation séparée des différents objets.
D'autres caractéristiques avantageuses et non limitatives du système d'aide à la conduite conforme à l'invention sont les suivantes :
- le module de conversion comprend un bloc de construction d'un monde numérique comprenant des objets déterminés sur la base des données de perception et un bloc de création desdites instances sur la base des objets déterminés ;
- les données de perception comprennent des données proprioceptives émises par un ordinateur de bord et/ou des données de localisation générées par un système de localisation et/ou des données de mesure générées par un capteur et/ou des données de connaissance externe reçues d'un système de communication ;
- le bloc de construction comprend un sous-bloc de génération d'un horizon numérique conçu pour déterminer au moins un desdits objets sur la base des données de localisation et d'une carte numérique ;
- le système embarqué est un avertisseur ou un actionneur.
L'invention propose également un procédé mis en œuvre dans un système d'aide à la conduite comprenant les étapes suivantes :
- réception de données de perception d'un environnement routier ;
- génération, à partir des données de perception, d'une pluralité d'instances de classes d'une ontologie mémorisée par le système d'aide à la conduite et définissant des relations entre classes ;
- déduction, par un outil de raisonnement et sur la base de l'ontologie, d'au moins une propriété d'une instance de ladite pluralité,
- commande d'un système embarqué sur la base de la propriété déduite. DESCRI PTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
Sur les dessins annexés :
- la figure 1 représente un exemple d'architecture envisageable pour un système d'aide à la conduite conforme aux enseignements de l'invention ;
- la figure 2 représente, sous forme de modules fonctionnels, les traitements effectués par le processeur du système de la figure 1 ;
- la figure 3 représente en détail l'un des modules de la figure 2 ;
- la figure 4 représente schématiquement un exemple de contexte dans lequel le système d'aide à la conduite peut être utilisé.
La figure 1 représente un exemple d'architecture envisageable pour un système d'aide à la conduite conforme aux enseignements de l'invention.
Un tel système d'aide à la conduite est embarqué dans un véhicule automobile V1 afin d'assister le conducteur dans sa conduite dans un environnement routier, tel que celui représenté schématiquement à titre d'exemple en figure 4.
Dans l'exemple de la figure 1 , un processeur PROC met en œuvre certaines fonctionnalités, telles que celles présentées ci-dessous en référence aux figures 2 et 3, du fait de l'exécution par ce processeur de programmes d'ordinateur mémorisés dans une mémoire MEM associée au processeur PROC.
En pratique, le processeur PROC est par exemple un microprocesseur et la mémoire MEM peut comprendre une mémoire vive et/ou un disque dur. En variante, on pourrait prévoir d'utiliser un circuit intégré à application spécifique (ou ASIC pour "Application Spécifie Integrated Circuit').
Le processeur PROC reçoit, au niveau d'un module de réception REC (par exemple une interface de communication), des données de perception délivrées par différents modules équipant le véhicule, notamment :
- des données proprioceptives DVEH (OU données véhicule - disponibles à bord du véhicule - par exemple, la vitesse, l'accélération) délivrées par exemple par un ordinateur de bord VEH,
- des données de localisation DLoc délivrées par un système de navigation (ici un système de navigation par satellite GNSS, en variante ce pourrait être un système GPS, un système de localisation par SLAM utilisant des caméras ou lasers...),
- des données de mesure DMES délivrées par un capteur (ici une caméra vidéo CAM ; en variante, un système radar ou laser) et
- des données de connaissance externe DEXT délivrées par un système de communication COMM (par exemple un système de communication sans fil véhicule-véhicule ou véhicule-architecture, parfois dénommé V2X).
Sur la figure 1 , ces différents modules sont représentés liés en différents points au processeur PROC. On peut toutefois prévoir en pratique que les différents modules communiquent avec le processeur PROC au moyen d'un mécanisme commun, par exemple au moyen d'un bus de communication reliant le processeur PROC (i.e. son interface de communication REC) et les différents modules.
Le système d'aide à la conduite de la figure 1 comprend un avertisseur (visuel et/ou sonore) ATT, par exemple un avertisseur de distance (en anglais "Distance Warning"), et un actionneur ACT, par exemple un régulateur de vitesse (ou ACC pour "Automatic Cruise Controt') ou un système de freinage d'urgence (ou AEB pour "Automatic Emergency Braking").
Le processeur PROC génère des signaux de commande CMDATT et CMDACT destinés respectivement à l'avertisseur ATT et à l'actionneur ACT sur la base notamment des données de perception reçues, selon les mécanismes décrits ci-dessous en référence aux figures 2 et 3.
La figure 2 représente, sous forme de modules fonctionnels, les traitements effectués par le processeur de la figure 1 .
Le système d'aide à la navigation comprend ainsi un module de conversion 1 0 conçu pour générer, à partir des données de perception précitées, des instances de classes définies au sein d'une ontologie mémorisée dans le système d'aide à la navigation, par exemple dans la mémoire MEM. L'ontologie est par exemple éditée au format OWL pour "Ontology Web Language".
Les classes sont des représentations des différents types d'objets susceptibles d'être rencontrés dans l'environnement routier où évolue le véhicule, par exemple des véhicules, des vulnérables (piétons, animaux, cycles, etc.) et des infrastructures routières (intersections, stop, passage piéton, etc.).
Dans l'ontologie, chaque classe peut être caractérisée par au moins une propriété (éventuellement plusieurs) qui décrit une action ou un comportement de l'objet concerné, par exemple la propriété "ralentir" pour la classe associée à l'objet "véhicule" ou la propriété "traverser" pour la classe associée à l'objet "piéton".
L'ontologie définit des relations entre les différentes classes, par exemple au moyen de règles qui définissent de telles relations lorsque certaines conditions sont respectées. Par exemple, un véhicule freine à l'approche d'un stop et s'arrête au stop, ou un piéton proche d'un passage piéton est susceptible de traverser la chaussée, ou encore un véhicule ralentit lorsqu'un piéton est susceptible de traverser la chaussée.
On désigne ici par "ontologie de base", référencée 20 en figure 2, la définition des classes et des relations entre classes ; cette définition donne une description conceptuelle de l'environnement routier (objets et événements que l'on peut trouver dans un tel environnement routier), sans application à un contexte routier particulier.
Le module de conversion 1 0 comprend par exemple un bloc de construction 1 2 d'un monde numérique à partir des données de perception DVEH, DLOC, DMES, DEXT décrites plus haut. Le monde numérique est une structure de données qui représente l'ensemble des objets OBJ, perçus par le véhicule sur la base des données de perception DVEH, DLOC, DMES, DEXT- En pratique, le monde numérique est par exemple défini par une liste des objets perçus OBJ, et par les caractéristiques de ces objets (par exemple leur situation dans l'espace).
Comme représenté schématiquement sur la figure 4, ces objets sont par exemple un piéton P (détecté par exemple par les données de mesure DMES issues de la caméra CAM), un passage piéton C (connu grâce aux données de localisation DLoc et à une carte numérique 1 20 mémorisée, comme expliqué plus bas en référence à la figure 3) et un véhicule V2 (situé devant le véhicule V1 équipé du système d'aide à la conduite et connu grâce aux données de mesure DMES et/ou à des données de connaissance externe DEXT reçues par exemple du véhicule V2).
On décrit plus bas en référence à la figure 3 un exemple de bloc de construction 1 2.
Le module de conversion 1 0 comprend également un bloc de création 1 4 d'instances INST, correspondant respectivement aux objets OBJ, du monde numérique.
Précisément, pour chaque objet OBJ, du monde numérique, le bloc de création 14 crée une instance INST, de la classe associée (dans l'ontologie) au type de l'objet concerné. L'instance de classe INST, ainsi créée a des propriétés définies en fonction des caractéristiques de l'objet OBJ, dans le monde numérique (par exemple des propriétés de position, de vitesse, etc).
Dans l'exemple précité, sont ainsi créées une instance INSTP de la classe "piéton", une instance INSTC de la classe "passage piéton" et une instance INSTV2 de la classe "véhicule".
Les instances INST, générées en sortie du module de conversion 10 sont associées à l'ontologie de base 20 (mémorisée par exemple dans la mémoire MEM) au moyen d'un module d'association 30, qui peut ainsi délivrer une ontologie complétée ONT modélisant l'environnement routier perçu par le véhicule V1 équipé du système d'aide à la conduite.
Comme représenté en pointillés en figure 2, l'ontologie complétée ONT peut inclure en outre des informations sur l'état ST du véhicule V1 équipé du système d'aide à la conduite (informations produites par un sous-bloc 1 10 de génération de l'état du véhicule décrit plus bas en référence à la figure 3).
Un outil de raisonnement 40, ou raisonneur, est alors appliqué à l'ontologie complétée ONT afin d'en déduire des propriétés implicites de certaines instances de classe INST,, ce qui permet en outre de prédire certaines de ces propriétés PRED. On utilise par exemple un raisonneur de type Pellet, ou Fact++, ou Racer, ou encore Hermit.
Dans l'exemple déjà utilisé, le raisonneur applique les règles mentionnées plus haut ("un piéton proche d'un passage piéton est susceptible de traverser la chaussée" et "un véhicule ralentit lorsqu'un piéton est susceptible de traverser la chaussée") aux instances créées INSTP, INSTC, INSTV2 et en déduit que le véhicule V2 va (probablement) ralentir.
Un module de commande 50 reçoit les propriétés déduites (notamment les propriétés prédites) PRED par l'outil de raisonnement 40 et génère les informations de commande CM DATT, CMDACT en tenant compte de ces propriétés déduites PRED.
Plus précisément, le module de commande 50 peut utiliser des mécanismes classiquement utilisés dans les systèmes d'aide à la conduite pour générer les commandes CMDATT, CMDACT, en y ajoutant la prise en compte des informations déduites PRED.
En variante, on peut prévoir que le module de commande détienne plus d'informations sur l'état des objets que la liste d'instances de classes se trouvant dans l'ontologie.
Ici, dans le cas où l'actionneur ACT est un régulateur de vitesse, la vitesse du véhicule V1 équipé du régulateur de vitesse est par exemple régulée selon un mécanisme classique en fonction de la vitesse du véhicule V2 telle que détectée au moyen d'un capteur, par exemple la caméra CAM. En revanche, lorsque le module de commande 50 reçoit la propriété prédite PRED indiquant que le véhicule V2 va ralentir, le module de commande 50 envoie une commande CMDACT au régulateur de vitesse afin d'adapter la vitesse du véhicule V1 (équipé du régulateur de vitesse) au ralentissement prévu du véhicule V2, ce avant même le ralentissement effectif du véhicule V2.
De même, dans le cas où l'avertisseur ATT est un avertisseur de survitesse, le seuil de déclenchement de l'avertisseur ATT (vitesse au-delà de laquelle un signal lumineux ou sonore est émis par l'avertisseur ATT) peut être fixé selon un mécanisme classique en fonction de la vitesse du véhicule V2 telle que détectée au moyen d'un capteur, par exemple la caméra CAM. En revanche, lorsque le module de commande 50 reçoit la propriété prédite PRED indiquant que le véhicule V2 va ralentir, le module de commande 50 envoie une commande CMDATT à l'avertisseur ATT de manière à réduire le seuil de déclenchement de l'avertisseur ATT.
La figure 3 représente un exemple de réalisation envisageable pour le bloc de construction 12.
Dans cet exemple, le bloc de construction 12 comprend le sous-bloc 1 10 de génération de l'état ST du véhicule V1 (déjà mentionné plus haut). Ce sous- bloc de génération 100 reçoit en entrée les données proprioceptives DVEH (par exemple la vitesse du véhicule V1 ) et les données de localisation DLoc, ce qui permet de déterminer en sortie différentes variables d'état ST du véhicule V1 .
Le bloc de construction 12 comprend également un sous-bloc 1 30 de génération de l'horizon électronique H, qui utilise l'état ST du véhicule V1 reçu du sous-bloc de génération 1 10 et une carte numérique 120 (mémorisée par exemple dans la mémoire MEM) afin de générer l'horizon électronique H du véhicule V1 . L'horizon électronique H est formé d'un ensemble d'informations extraites de la carte numérique 120 et relatives à l'environnement (notamment les routes) dans lequel le véhicule V1 est susceptible d'évoluer dans un futur proche, c'est-à-dire en pratique les informations de la carte numérique 120 à une distance inférieure à un seuil déterminé (éventuellement réglable), par exemple 500 m.
En variante, plutôt qu'utiliser un seul de distance (500 m), on pourrait utiliser un seuil de temps (par exemple 15 secondes), ce qui aurait pour avantage d'adapter le nombre d'informations à traiter à la vitesse du véhicule.
L'horizon électronique H contient donc des objets OBJ, (par exemple le passage piéton C) qui feront partie du monde numérique produit par le bloc de construction 12, comme expliqué ci-dessus.
Le bloc de construction 12 comprend un sous-bloc 140 de traitement des données de mesure DMES qui détecte des objets OBJ, (par exemple le piéton P) par interprétation de ces données de mesure DMES (issues dans le cas du piéton P de la caméra CAM déjà mentionnée).
Le bloc de construction 12 comprend un sous-bloc 150 d'analyse des données de connaissance externe DEXT qui détermine l'existence et les caractéristiques (notamment la localisation) de certains objets OBJ, (par exemple le véhicule V2) par analyse de ces données de connaissance externe DEXT (le véhicule V2 communiquant par exemple sa position via le système de communication COMM).
Le bloc de construction 12 comprend enfin un sous-bloc d'association 160 qui regroupe les objets OBJ, signalés par les sous-blocs 1 30, 140, 150 (par exemple, comme déjà indiqué plus haut, sous forme d'une liste) afin de constituer le monde numérique fourni en sortie du bloc de construction 12.

Claims

REVENDICATIONS
1 . Système d'aide à la conduite comprenant :
- au moins un module de réception (REC) conçu pour recevoir des données de perception (DVEH, DLOC, DMES, DEXT) d'un environnement routier ; et
- un module de commande (50) conçu pour commander un système embarqué (ATT, ACT),
caractérisé par :
- un module de conversion (10) conçu pour générer, à partir des données de perception (DVEH, DLOC, DMES, DEXT), une pluralité d'instances (INST,) de classes d'une ontologie (20) mémorisée par le système d'aide à la conduite et définissant des relations entre classes ; et
- un outil de raisonnement (40) conçu pour déduire, sur la base de l'ontologie (20, ONT), au moins une propriété (PRED) d'une instance (INST,) de ladite pluralité,
dans lequel le module de commande (50) est conçu pour commander le système embarqué (ATT, ACT) sur la base de la propriété déduite (PRED).
2. Système d'aide à la conduite selon la revendication 1 , dans lequel le module de conversion (10) comprend un bloc de construction (1 2) d'un monde numérique comprenant des objets (OBJ,) déterminés sur la base des données de perception (DVEH, DLOC, DMES, DEXT) et un bloc de création (14) desdites instances (INSTj) sur la base des objets déterminés (OBJ,).
3. Système d'aide à la conduite selon la revendication 1 ou 2, dans lequel les données de perception comprennent des données proprioceptives (DVEH) émises par un ordinateur de bord (VEH).
4. Système d'aide à la conduite selon l'une des revendications 1 à 3, dans lequel les données de perception comprennent des données de localisation (DLoc) générées par un système de localisation (GNSS).
5. Système d'aide à la conduite selon la revendication 4 prise dans la dépendance de la revendication 2, dans lequel le bloc de construction (12) comprend un sous-bloc (130) de génération d'un horizon numérique (H) conçu pour déterminer au moins un desdits objets (OBJ,) sur la base des données de localisation (DLoc) et d'une carte numérique (120).
6. Système d'aide à la conduite selon l'une des revendications 1 à 5, dans lequel les données de perception comprennent des données de mesure (DMES) générées par un capteur (CAM).
7. Système d'aide à la conduite selon l'une des revendications 1 à 6, dans lequel les données de perception comprennent des données de connaissance externe (DEXT) reçues d'un système de communication (COMM).
8. Système d'aide à la conduite selon l'une des revendications 1 à 7, dans lequel le système embarqué est un avertisseur (ATT).
9. Système d'aide à la conduite selon l'une des revendications 1 à 7, dans lequel le système embarqué est un actionneur (ACT).
10. Procédé mis en œuvre dans un système d'aide à la conduite comprenant les étapes suivantes :
- réception de données de perception (DVEH, DLOC, DMES, DEXT) d'un environnement routier ;
- génération, à partir des données de perception (DVEH, DLOC, DMES, DEXT), d'une pluralité d'instances (INST,) de classes d'une ontologie mémorisée par le système d'aide à la conduite et définissant des relations entre classes ;
- déduction, par un outil de raisonnement (40) et sur la base de l'ontologie, d'au moins une propriété (PRED) d'une instance (INST,) de ladite pluralité,
- commande d'un système embarqué (ATT, ACT) sur la base de la propriété déduite (PRED).
PCT/FR2015/052028 2014-08-06 2015-07-23 Systeme d'aide a la conduite et procede mis en oeuvre dans un tel systeme WO2016020598A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/501,324 US10346690B2 (en) 2014-08-06 2015-07-23 Driving assistance systems and method implemented in such a system
JP2017506713A JP6978313B2 (ja) 2014-08-06 2015-07-23 運転支援システム、および、そのようなシステムにおいて実装される方法
EP15759515.8A EP3177497A1 (fr) 2014-08-06 2015-07-23 Systeme d'aide a la conduite et procede mis en oeuvre dans un tel systeme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1457648 2014-08-06
FR1457648A FR3024699B1 (fr) 2014-08-06 2014-08-06 Systeme d’aide a la conduite et procede mis en oeuvre dans un tel systeme

Publications (1)

Publication Number Publication Date
WO2016020598A1 true WO2016020598A1 (fr) 2016-02-11

Family

ID=51987259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052028 WO2016020598A1 (fr) 2014-08-06 2015-07-23 Systeme d'aide a la conduite et procede mis en oeuvre dans un tel systeme

Country Status (5)

Country Link
US (1) US10346690B2 (fr)
EP (1) EP3177497A1 (fr)
JP (1) JP6978313B2 (fr)
FR (1) FR3024699B1 (fr)
WO (1) WO2016020598A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174417A (ja) * 2016-03-25 2017-09-28 トヨタ自動車株式会社 道路シーン状況の理解および確実に共有するための道路シーン状況のセマンティック表現

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021117424A1 (de) * 2021-07-06 2023-01-12 HELLA GmbH & Co. KGaA Verfahren zur Steuerung eines Fahrzeugs, Steuervorrichtung, Computerprogrammprodukt und Fahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898232A1 (fr) * 2006-09-08 2008-03-12 Ford Global Technologies, LLC Procédé et système d'évitement de collision
DE102009008959A1 (de) * 2008-02-15 2009-09-03 Continental Teves Ag & Co. Ohg Fahrzeugsystem zur Navigation und/oder Fahrerassistenz
DE102011088807A1 (de) * 2011-12-16 2013-06-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Entwickeln und/oder Testen eines Fahrerassistenzsystems
DE102013005362A1 (de) * 2013-03-28 2013-10-10 Daimler Ag Verfahren zur Analyse einer Verkehrssituation

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342083A (ja) 2003-04-22 2004-12-02 Toshiba Corp 車両走行管理システムおよびこの車両走行管理システムに用いられる車載器並びに車両走行管理方法
DE10356309A1 (de) * 2003-11-28 2005-06-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Warnung des Fahrers eines Kraftfahrzeugs
US20080065328A1 (en) 2006-09-08 2008-03-13 Andreas Eidehall Method and system for collision avoidance
US20120300072A1 (en) * 2007-07-06 2012-11-29 Chol Kim Device and method for detection and prevention of motor vehicle accidents
FR2947231B1 (fr) 2009-06-30 2013-03-29 Valeo Vision Procede pour determiner de maniere predictive des situations routieres d'un vehicule
EP2289754B1 (fr) * 2009-08-31 2015-04-29 Toyota Motor Europe NV/SA Procédé et système de contrôle de véhicule ou de trafic
JP5607409B2 (ja) * 2010-04-06 2014-10-15 トヨタ自動車株式会社 対象物リスク予測装置
US8509982B2 (en) * 2010-10-05 2013-08-13 Google Inc. Zone driving
DE102011076763A1 (de) * 2011-05-31 2012-12-06 Robert Bosch Gmbh Fahrerassistenzsystem und Verfahren zum Betreiben eines Fahrerassistenzsystems
EP2562060B1 (fr) * 2011-08-22 2014-10-01 Honda Research Institute Europe GmbH Procédé et système de prédiction de comportement de mouvement d'un objet de trafic cible
US9460626B2 (en) * 2011-08-26 2016-10-04 Toyota Jidosha Kabushiki Kaisha Driving support device and driving support method
DE102011087774A1 (de) * 2011-12-06 2013-06-06 Robert Bosch Gmbh Verfahren zur Überwachung und Signalisierung einer Verkehrssituation im Umfeld eines Fahrzeuges
US9102261B2 (en) * 2012-05-10 2015-08-11 Zen Lee CHANG Vehicular collision-activated information exchange method and apparatus using wireless communication radios
JP2014041556A (ja) 2012-08-23 2014-03-06 Toyota Motor Corp 運転支援装置
DE102012224107A1 (de) 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Verfahren zum Bestimmen einer Referenzposition als Startposition für ein Trägheitsnavigationssystem
KR20140126975A (ko) * 2013-04-24 2014-11-03 주식회사 만도 차량의 충돌 회피 장치 및 방법
DE102013010004A1 (de) * 2013-06-14 2014-12-18 Valeo Schalter Und Sensoren Gmbh Verfahren und Vorrichtung zum Ausführen von kollisionsvermeidenden Maßnahmen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898232A1 (fr) * 2006-09-08 2008-03-12 Ford Global Technologies, LLC Procédé et système d'évitement de collision
DE102009008959A1 (de) * 2008-02-15 2009-09-03 Continental Teves Ag & Co. Ohg Fahrzeugsystem zur Navigation und/oder Fahrerassistenz
DE102011088807A1 (de) * 2011-12-16 2013-06-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Entwickeln und/oder Testen eines Fahrerassistenzsystems
DE102013005362A1 (de) * 2013-03-28 2013-10-10 Daimler Ag Verfahren zur Analyse einer Verkehrssituation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BROADHURST A ET AL: "MONTE CARLO ROAD SAFETY REASONING", INTELLIGENT VEHICLES SYMPOSIUM, 2005. PROCEEDINGS. IEEE LAS VEGAS, NV, USA JUNE 6-8, 2005, PISCATAWAY, NJ, USA,IEEE, PISCATAWAY, NJ, USA, 6 June 2005 (2005-06-06), pages 319 - 324, XP010834142, ISBN: 978-0-7803-8961-8, DOI: 10.1109/IVS.2005.1505122 *
See also references of EP3177497A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174417A (ja) * 2016-03-25 2017-09-28 トヨタ自動車株式会社 道路シーン状況の理解および確実に共有するための道路シーン状況のセマンティック表現

Also Published As

Publication number Publication date
FR3024699A1 (fr) 2016-02-12
JP2017523938A (ja) 2017-08-24
EP3177497A1 (fr) 2017-06-14
FR3024699B1 (fr) 2016-07-22
US20170316272A1 (en) 2017-11-02
JP6978313B2 (ja) 2021-12-08
US10346690B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
US10802450B2 (en) Sensor event detection and fusion
US10317901B2 (en) Low-level sensor fusion
US20180067488A1 (en) Situational awareness determination based on an annotated environmental model
US20210065733A1 (en) Audio data augmentation for machine learning object classification
EP3407249A2 (fr) Procédé et système pour générer et utiliser un graphe de scène de perception dans des applications de véhicules à moteur
CN114274972A (zh) 自主驾驶环境中的场景识别
EP4176286A1 (fr) Système et procédé de détection d'un obstacle dans un environnement d'un véhicule
EP3177497A1 (fr) Systeme d'aide a la conduite et procede mis en oeuvre dans un tel systeme
FR2999283A1 (fr) Procede et dispositif pour determiner la position et/ou la nature d'une installation d'infrastructure routiere
FR3103437A1 (fr) Procédé et dispositif de détermination de consigne pour véhicule
WO2018041978A1 (fr) Dispositif de détermination d'une limitation de vitesse, système embarqué comprenant un tel dispositif et procédé de détermination d'une limitation de vitesse.
FR3122391A1 (fr) Procédé et dispositif de détermination d’un état d’attention d’un conducteur d’un véhicule autonome
FR3047217B1 (fr) Dispositif de determination de l'etat d'un feu de signalisation, systeme embatque comprenant un tel dispositif, vehicule comprenant un tel systeme et procede de determination associe
EP4185504A1 (fr) Procédé de détermination d'une trajectoire d'un véhicule automobile
FR3119817A1 (fr) Procédé et dispositif de détermination d’une trajectoire pour un véhicule autonome
EP3726494B1 (fr) Procédé d'assistance à la conduite de véhicules, programme d'ordinateur et système associés
WO2018069060A1 (fr) Dispositif de localisation et dispositif de production de données d'intégrité
EP3775988B1 (fr) Procédé et dispositif de détection d'objets dans l'environnement d'un véhicule, en présence de goutelettes
EP4090565B1 (fr) Procédé et dispositif de contrôle d'un vehicule
FR3144092A1 (fr) Procédé mis en œuvre par ordinateur d’aide à la conduite d’un véhicule automobile
FR3141913A1 (fr) Procédé et dispositif de surveillance d’un véhicule
FR3107024A1 (fr) Procédé et dispositif de contrôle d’un véhicule
CN116729410A (zh) 车辆事件记录缓冲器的事件片段长度的动态调整
FR3098329A1 (fr) Procédé de saisie automatique dans un formulaire de rapport prédéfini d’accident de véhicule automobile.
FR3146640A1 (fr) Procédé et dispositif de contrôle d’un trajet d’un véhicule autonome circulant selon un mode manuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759515

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015759515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015759515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017506713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15501324

Country of ref document: US