WO2016019824A1 - 多点煤岩体应力实时监测装置及方法 - Google Patents

多点煤岩体应力实时监测装置及方法 Download PDF

Info

Publication number
WO2016019824A1
WO2016019824A1 PCT/CN2015/085648 CN2015085648W WO2016019824A1 WO 2016019824 A1 WO2016019824 A1 WO 2016019824A1 CN 2015085648 W CN2015085648 W CN 2015085648W WO 2016019824 A1 WO2016019824 A1 WO 2016019824A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
pressure oil
stress
coal
capsule
Prior art date
Application number
PCT/CN2015/085648
Other languages
English (en)
French (fr)
Inventor
王恩元
王亚博
刘晓斐
王嗣衡
Original Assignee
王恩元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王恩元 filed Critical 王恩元
Priority to US15/318,877 priority Critical patent/US10082433B2/en
Publication of WO2016019824A1 publication Critical patent/WO2016019824A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0004Force transducers adapted for mounting in a bore of the force receiving structure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C39/00Devices for testing in situ the hardness or other properties of minerals, e.g. for giving information as to the selection of suitable mining tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices

Definitions

  • the invention relates to a multi-point coal rock mass stress real-time monitoring device and method, and is particularly suitable for synchronous monitoring of original rock stress or mining stress of multiple measuring points in multiple boreholes of coal rock mass, and belongs to the technical field of mine stress monitoring.
  • the mining activity destroys the original stress balance state of the coal rock, causing the redistribution of the stress around the mining space to form a “three-band” distribution.
  • the surrounding rock is deformed, moved and destroyed, and the roof pressure and pressure, the top and bottom plates move closer, the support is shrunk, and the damage is broken.
  • Phenomenon there may also be power phenomena such as water inrush, coal and gas outburst, impact ground pressure.
  • the stress of coal rock mass is the basic parameter for coal mine dynamic disaster prevention such as coal mining, support and roof design, impact ground pressure and coal and gas outburst.
  • the test and evaluation of coal rock mass stress is the main content of mine pressure observation. Therefore, the real-time monitoring of the stress of coal and rock mass is to solve the mine rock pressure control, mining program design, reasonable selection and maintenance of roadway position, impact ground pressure and coal and gas outburst prediction and prevention, and pressure coal body. Decision-making basis for major technical issues such as safe mining.
  • the internal stress state is balanced and coupled with each other.
  • the local mining stress or energy is accumulated and dissipated, and the stresses at different positions on the same axis are different.
  • the stress measurement mainly focused on a single measuring point, and it was impossible to measure the stress of multiple measuring points on one axis of the coal rock body synchronously, and could not reflect the synchronous change of the stress at each point in the direction of the drilling depth. This is not enough to reveal the internal stress distribution and synchronous variation of coal and rock mass.
  • sensors with different depths of different boreholes reflect the stress changes at different depths in the coal and rock.
  • the purpose of the present invention is to provide a real-time, multi-measurement, and adaptability to various problems such as complex and difficult operation of coal and rock mass stress testing, single test plan, and poor adaptability and timeliness of mining stress monitoring.
  • Coal-bearing rock mass original coal rock mass and broken coal rock mass
  • easy-to-use coal rock mass stress multi-point monitoring device and method original coal rock mass and broken coal rock mass
  • the multi-point coal rock stress real-time monitoring device of the invention comprises a capsule pressure sensor, a connecting rod, a three-way valve, a multi-channel monitor, a multi-channel control valve, a first high-pressure oil pipe, a second high-pressure oil pipe, and a a three-high pressure oil pipe, a fourth high-pressure oil pipe, a high-pressure oil pump, and a monitoring sub-station;
  • the plurality of capsule pressure sensors are connected in series, and a plurality of capsule pressure sensors are connected together via a connecting rod, the number of connecting rods and the capsule pressure The number of sensors is the same; each capsule pressure sensor is connected with a first high-pressure oil pipe, and the first high-pressure oil pipes are respectively connected to the three-way valve through the connecting rod, respectively, and the multi-channel monitor through the three-way valve Connected to a multi-channel control valve, the multi-channel control valve is connected to a high pressure oil pump.
  • a method for real-time monitoring of multi-point coal rock stress using the above device comprises the following steps:
  • a Determine the monitoring area and the drilling position according to the monitoring needs, and determine the drilling depth according to the number of monitoring points in the drilling hole and the monitoring position;
  • each connecting rod determining the length of each connecting rod according to the stress monitoring scheme, connecting the capsule pressure sensors in sequence by connecting rods, and connecting the first high pressure oil pipe connected to each capsule pressure sensor through the connecting rod to lead out of the borehole, and Feeding each capsule pressure sensor into a predetermined position inside the borehole;
  • Each capsule pressure sensor senses the stress of the coal rock mass, and the multi-channel monitor synchronously collects, converts, stores, displays data, or transmits the data to the remote monitoring center through the monitoring substation, and determines the drilling hole by analyzing the monitoring data. Real-time stress distribution and stress changes at different locations within.
  • the present invention is mainly used for performing multiple measuring points, continuous and real-time monitoring in a plurality of boreholes in a raw rock or a broken coal rock mass.
  • a multi-point coal rock mass stress real-time monitoring device in multiple boreholes to form regional stress monitoring, the stress field stress distribution and variation law in the whole region can be analyzed and determined.
  • the stress can be monitored in real time at different positions on the same axis, and the installation and operation are faster and simpler.
  • the capsule pressure sensor has good active coupling with coal rock, has good adaptability and stability, and is suitable for production. The impact is small, basically free from external disturbances such as labor, and is not affected by the degree of fracture of coal and rock mass.
  • the data monitored by the device is collected, converted, stored and displayed by the multi-channel monitor. It can also be transmitted to the remote monitoring center through the monitoring substation, and then transmitted to each terminal computer.
  • the ground stress data can be viewed or analyzed in the ground computer software. And its changing laws.
  • FIG. 1 is a schematic structural view of a multi-point coal rock mass stress real-time monitoring device according to the present invention
  • FIG. 3 is a structural schematic view of a real-time monitoring device for a porous multi-point coal rock mass according to the present invention.
  • capsule pressure sensor 1 connecting rod 2, three-way valve 3, multi-channel monitor 4, multi-channel control valve 5, first high pressure oil pipe 6, second high pressure oil pipe 7, third high pressure oil pipe 8, fourth High pressure oil pipe 9, high pressure oil pump 10, monitoring substation 11.
  • Embodiment 1 As shown in FIG. 1 , a schematic diagram of a multi-point coal rock mass stress real-time monitoring device, which is mainly composed of a capsule pressure sensor 1, a connecting rod 2, a three-way valve 3, a multi-channel monitor 4, and multi-channel control.
  • the valve 5, the first high pressure oil pipe 6, the second high pressure oil pipe 7, the third high pressure oil pipe 8, the fourth high pressure oil pipe 9, and the high pressure oil pump 10 are composed.
  • There are a plurality of capsule pressure sensors 1 which are arranged as needed, three in FIG.
  • each capsule pressure sensor 1 is connected with a first high pressure 6 oil pipe, and each of the first high pressure oil pipes 6 is respectively connected to the three-way valve 3 via the connecting rod 2, and respectively passes through the three-way valve 3 Connected to the multi-channel monitor 4 and the multi-channel control valve 5, the multi-channel control valve 5 is connected to the high-pressure oil pump 10.
  • the two ends of the connecting rod 2 are respectively connected to the end of the previous capsule pressure sensor 1 and the front end of the latter capsule pressure sensor 1, and the first high pressure oil pipe 6 is connected to the first capsule pressure sensor 1 and sequentially passes through the connecting rod 2, first The high pressure oil pipe 6 passes through the borehole and is connected to the three-way valve 3, the second end of the three-way valve 3 is connected to the multi-channel monitor 4 through the second high-pressure oil pipe 7, and the third end is connected to the multi-channel control through the third high-pressure oil pipe 8.
  • the valve 5, the multi-channel control valve 5 is connected to the high-pressure oil pump 10 through the fourth high-pressure oil pipe 9.
  • Figure 2 shows the real-time monitoring method of multi-point coal rock mass stress
  • the monitoring area and the drilling position are determined, and the drilling depth is determined according to the number of monitoring points in the drilling hole and the monitoring position; drilling into the specified depth of the coal rock body; determining the length of each connecting rod 2 according to the stress monitoring scheme,
  • the capsule pressure sensors 1 are sequentially connected by the connecting rod 2, and the first high-pressure oil pipe 6 connected to each capsule pressure sensor 1 is taken out of the borehole through the connecting rod 2, and each capsule pressure sensor 1 is fed.
  • the predetermined position inside the borehole; the second high pressure oil pipe 7 and the third high pressure oil pipe 8 which are led out of the borehole are respectively connected to the multi-channel monitor 4 and the multi-channel control valve 5 via the three-way valve 3, and the multi-channel control valve 5 and The high-pressure oil pump 10 is connected; the high-pressure oil pump 10 injects oil into each capsule pressure sensor 1 through the multi-channel control valve 5, and keeps the pressure rising steadily. When the pressure value reaches the set pressure and remains stable, the injection is stopped, and the liquid is turned off.
  • the three-way valve 3 removes the multi-channel control valve 5 and the high-pressure oil pump 10, and seals the oil-filling hole with a plug; each capsule pressure sensor senses the stress of the coal rock body, and is synchronously collected, converted, stored by the multi-channel monitor 4, Data shown, or by a monitoring and control station 11 transmits data to a remote monitoring center, determining the stress distribution in real time in the borehole at different positions and stress changes by monitoring data analysis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种多点煤岩体应力实时监测装置,由数个胶囊压力感应器(1)、连接杆(2)、三通阀(3)、多通道监测仪(4)、多通道控制阀(5)、第一高压油管(6)、第二高压油管(7)、第三高压油管(8)、第四高压油管(9)、高压油泵(10)、监控分站(11)组成。还涉及一种多点煤岩体应力实时监测方法,通过多通道控制阀(5)分别往在钻孔中布置每个胶囊压力感应器(1)中注入油液,使其油压达到预先设定的压力,实现与煤岩体良好藕合;监测信号由多通道监测仪(4)同步采集、转换、储存、显示,或通过监控分站(11)传送至远程监控中心。该装置与方法可用于煤岩体应力监测、矿压分析、冲击地压以及煤与瓦斯突出等煤岩动力灾害监测预警,能够实现在煤岩体的多个钻孔中同时测量多个测点的应力及其变化。

Description

多点煤岩体应力实时监测装置及方法 技术领域
本发明涉及多点煤岩体应力实时监测装置及方法,尤其适用于煤岩体多个钻孔中多个测点原岩应力或采动应力的同步监测,属矿山应力监测技术领域。
背景技术
在煤炭等资源井下开采过程中,开采活动破坏了煤岩原始应力平衡状态,引起采动空间周围的应力重新分布,形成“三带”分布。在采场和回采巷道周围,由于围岩应力的作用促使围岩发生变形、移动和破坏,可能出现顶板冒落与来压、顶底板移近、支架受载下缩、折损等矿压显现现象,也可能出现突水、煤与瓦斯突出、冲击地压等动力现象。
煤岩体应力大小是煤矿开采、支护及顶板设计、冲击地压以及煤与瓦斯突出等煤岩动力灾害预防的基础参数,测试及评估煤岩体应力是矿压观测的主要内容。因此,对煤岩体应力进行实时监测是解决受采动影响的巷道矿压控制、开采程序设计、巷道位置合理选择与维护、冲击地压和煤与瓦斯突出预测和防治、承压水上煤体安全开采等重大技术问题的决策依据。
煤岩体未受采动影响前内部受力状态整体平衡、互相耦合,随着采动的影响,局部采动应力或能量发生聚积与耗散,同一轴线不同位置的应力大小各不相同。过去的应力测量主要侧重于单个测点,无法对煤岩体内部某一轴线多个测点的应力进行同步测量,无法反映钻孔深度方向上各点应力的同步变化。这对于揭示煤岩体内部应力分布及同步变化规律是远远不够的。相比而言,通过不同钻孔不同深度的传感器反映了煤岩体内不同深度的应力变化,多个测点应力同步实时监测更贴近于工程实际,对煤岩体内部应力进行多个测点同步监测对于揭示应力分布规律、确定动力灾害发生危险性以及煤岩动力灾害防治具有重要的实际意义和参考价值。
煤岩体应力的测试是非常复杂的工程。目前,国内外对于煤岩体应力的测试和监测取得了很多成果,提出了扁千斤顶法、应力解除法、水压致裂法、电磁辐射法、声发射法等应力监测方法,开发了CSIRO空心包体应变、UNSW空心包体应变计,小孔径水压致裂地应力测试装置,深孔地应力检测装置的伸缩式贴片头,钻孔变形计,油压枕等应力监测装置,但是都不能实现对煤岩体中一个钻孔内不同深度的应力进行实时监测。因此,设计一种安装简便,适应性强,能够对煤岩体一个钻孔中不同深度的应力进行同步监测的装置是非常必要的。
发明内容
技术问题:本发明的目的是针对目前煤岩体应力测试复杂、难操作,测试方案单一,采动应力监测适应性和及时性差等问题,提供一种能够实时、多测点、适应各种受载煤岩体(原始的煤岩体和破碎的煤岩体)、操作简便的煤岩体应力多点监测装置及方法。
技术方案:本发明的多点煤岩体应力实时监测装置,包括胶囊压力感应器、连接杆、三通阀、多通道监测仪、多通道控制阀、第一高压油管、第二高压油管、第三高压油管、第四高压油管、高压油泵、监控分站;所述的胶囊压力感应器为多个,经连接杆将多个胶囊压力感应器串连在一起,连接杆的个数与胶囊压力感应器的个数相同;每个胶囊压力感应器上均连有一根第一高压油管,各第一高压油管经连接杆穿出分别与三通阀相连,经三通阀分别与多通道监测仪和多通道控制阀相连,多通道控制阀与高压油泵相连。
一种使用上述装置的多点煤岩体应力实时监测方法,包括如下步骤:
a.根据监测需要确定监测区域及钻孔位置,并根据钻孔内监测点数及监测位置确定钻孔深度;
b.向煤岩体内部打钻至指定深度;
c.根据应力监测方案确定每段连接杆的长度,用连接杆将各胶囊压力感应器依次相连,将与各胶囊压力感应器相连接的第一高压油管穿过连接杆引出钻孔外,并把各胶囊压力感应器送入钻孔内部预定位置;
d.将引出钻孔外的第二高压油管、第三高压油管经三通阀分别与多通道监测仪和多通道控制阀相连接,多通道控制阀与高压油泵相连;
e.通过高压油泵经多通道控制阀向各胶囊压力感应器内注入油液,并保持压力稳定上升,当压力值达到设定压力并保持稳定时,停止注液,关闭三通阀,卸下多通道控制阀与高压油泵,用堵头封住注油孔;
f.各胶囊压力感应器感应煤岩体的应力,由多通道监测仪同步采集、转换、存储、显示数据,或通过监控分站将数据传送至远程监控中心,通过对监测数据分析确定钻孔内不同位置的实时应力分布及应力变化。
有益效果:本发明主要用于对原岩或破碎煤岩体中的多个钻孔内进行多个测点、连续、实时监测。通过在多个钻孔内布置多点煤岩体应力实时监测装置,形成区域性应力监测,可分析确定整个区域内应力场应力分布及变化规律。与现有技术相比,能够对同一轴线不同位置处的应力实时监测,安装及操作更快捷、简便,胶囊压力感应器与煤岩主动耦合性好,具有良好的适应性和稳定性,对生产影响较小,基本不受人工等外界干扰,不受煤岩体破碎程度影响,在原岩体中和破碎的煤岩体中均可进行连续测试,尤其适用于实时监测破碎煤岩地应力大小随采动距离的变化规律。本装置监测的数据由多通道监测仪采集、转换、储存、显示,也可以通过监控分站传送至远程监控中心,进而传输到各终端计算机,在地面计算机软件中可查看或分析地应力数据大小及其变化规律。通过在多个钻孔内布置多点煤岩体应力实时监测装置,形成区域性应力监测,可分析确定整个区域内应力场应力分布及变化规律。
附图说明
图1是本发明的多点煤岩体应力实时监测装置的结构示意图;
图2是本发明的多点煤岩体应力实时监测工作流程图;
图3是本发明的多孔多点煤岩体应力实时监测装置结构示意图。
图中:胶囊压力感应器1、连接杆2、三通阀3、多通道监测仪4、多通道控制阀5、第一高压油管6、第二高压油管7、第三高压油管8、第四高压油管9、高压油泵10、监测分站11。
具体实施方式
下面结合附图对本发明的实施例作进一步的描述:
实施例1:如图1所示,多点煤岩体应力实时监测装置结构示意图,该装置主要由胶囊压力感应器1、连接杆2、三通阀3、多通道监测仪4、多通道控制阀5、第一高压油管6、第二高压油管7、第三高压油管8、第四高压油管9、高压油泵10组成。胶囊压力感应器1为多个,根据需要设置,图1中为3个;多个胶囊压力感应器1经多个连接杆2串连在一起,连接杆2的个数与胶囊压力感应器1的个数相同;每个胶囊压力感应器1上均连有一根第一高压6油管,各第一高压油管6经连接杆2穿出分别与三通阀3相连,并分别经三通阀3与多通道监测仪4和多通道控制阀5相连,多通道控制阀5与高压油泵10相连。连接杆2两端分别连接前一个胶囊压力感应器1末端与后一个胶囊压力感应器1的前端,第一高压油管6连接第一个胶囊压力感应器1并依次穿过连接杆2、第一高压油管6穿出钻孔并接入三通阀3,三通阀3第二端通过第二高压油管7接入多通道监测仪4,第三端通过第三高压油管8接入多通道控制阀5,多通道控制阀5通过第四高压油管9与高压油泵10连接。
图2所示,多点煤岩体应力实时监测方法:
根据监测需要确定监测区域及钻孔位置,并根据钻孔内监测点数及监测位置确定钻孔深度;向煤岩体内部打钻至指定深度;根据应力监测方案确定每段连接杆2的长度,用连接杆2将各胶囊压力感应器1依次相连,将与各胶囊压力感应器1相连接的第一高压油管6穿过连接杆2引出钻孔外,并把各胶囊压力感应器1送入钻孔内部预定位置;将引出钻孔外的第二高压油管7、第三高压油管8经三通阀3分别与多通道监测仪4和多通道控制阀5相连接,多通道控制阀5与高压油泵10相连;通过高压油泵10经多通道控制阀5向各胶囊压力感应器1内注入油液,并保持压力稳定上升,当压力值达到设定压力并保持稳定时,停止注液,关闭三通阀3,卸下多通道控制阀5与高压油泵10,用堵头封住注油孔;各胶囊压力感应器感应煤岩体的应力,由多通道监测仪4同步采集、转换、存储、显示数据,或通过监控分站11将数据传送至远程监控中心,通过对监测数据分析确定钻孔内不同位置的实时应力分布及应力变化。

Claims (2)

  1. 一种多点煤岩体应力实时监测装置,其特征在于,它包括胶囊压力感应器(1)、连接杆(2)、三通阀(3)、多通道监测仪(4)、多通道控制阀(5)、第一高压油管(6)、第二高压油管(7)、第三高压油管(8)、第四高压油管(9)、高压油泵(10)、监控分站(11);所述的胶囊压力感应器(1)为多个,经连接杆(2)将多个胶囊压力感应器(1)串连在一起,连接杆(2)的个数与胶囊压力感应器(1)的个数相同;每个胶囊压力感应器(1)上均连有一根第一高压油管(6),各第一高压油管(6)经连接杆(2)穿出分别与三通阀(3)相连,经三通阀(3)分别与多通道监测仪(4)和多通道控制阀(5)相连,多通道控制阀(5)与高压油泵(10)相连。
  2. 一种使用如权利要求1所述装置的多点煤岩体应力实时监测方法,其特征在于包括如下步骤:
    a.根据监测需要确定监测区域及钻孔位置,并根据钻孔内监测点数及监测位置确定钻孔深度;
    b.向煤岩体内部打钻至指定深度;
    c.根据应力监测方案确定每段连接杆(2)的长度,用连接杆(2)将各胶囊压力感应器(1)依次相连,将与各胶囊压力感应器(1)相连接的第一高压油管(6)穿过连接杆(2)引出钻孔外,并把各胶囊压力感应器(1)送入钻孔内部预定位置;
    d.将引出钻孔外的第二高压油管(7)、第三高压油管(8)经三通阀(3)分别与多通道监测仪(4)和多通道控制阀(5)相连接,多通道控制阀(5)与高压油泵(10)相连;
    e.通过高压油泵(10)经多通道控制阀(5)向各胶囊压力感应器(1)内注入油液,并保持压力稳定上升,当压力值达到设定压力并保持稳定时,停止注液,关闭三通阀(3),卸下多通道控制阀(5)与高压油泵(10),用堵头封住注油孔;
    f.各胶囊压力感应器感应煤岩体的应力,由多通道监测仪(4)同步采集、转换、存储、显示数据,或通过监控分站(11)将数据传送至远程监控中心,通过对监测数据分析确定钻孔内不同位置的实时应力分布及应力变化。
PCT/CN2015/085648 2014-08-04 2015-07-31 多点煤岩体应力实时监测装置及方法 WO2016019824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/318,877 US10082433B2 (en) 2014-08-04 2015-07-31 Multipoint coal and rock mass stress real-time monitoring device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410379604.1A CN104132761B (zh) 2014-08-04 2014-08-04 多点煤岩体应力实时监测装置及方法
CN201410379604.1 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016019824A1 true WO2016019824A1 (zh) 2016-02-11

Family

ID=51805530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085648 WO2016019824A1 (zh) 2014-08-04 2015-07-31 多点煤岩体应力实时监测装置及方法

Country Status (3)

Country Link
US (1) US10082433B2 (zh)
CN (1) CN104132761B (zh)
WO (1) WO2016019824A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024183A (zh) * 2017-06-01 2017-08-08 安徽理工大学 巷道围岩松动圈范围测试方法及系统
CN108593174A (zh) * 2018-05-08 2018-09-28 安徽理工大学 一种煤岩体采动应力监测包体
CN110514342A (zh) * 2019-09-18 2019-11-29 长江水利委员会长江科学院 快速测定软岩地层地应力的测量装置及方法
CN110821482A (zh) * 2019-12-20 2020-02-21 山东思科赛德矿业安全工程有限公司 多功能大直径钻孔形变监测用钻孔孔径自动补偿装置
CN113818927A (zh) * 2021-10-14 2021-12-21 山东省煤田地质规划勘察研究院 一种具有能量引导功能的冲击地压防治装置
CN114061814A (zh) * 2021-11-22 2022-02-18 西安科技大学 一种煤矿采动工作面顶板水情实时动态监测试验装置
WO2022267135A1 (zh) * 2021-06-23 2022-12-29 中国地质大学(武汉) 一种岩质边坡锁固段裂缝变形监测装置及布设方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132761B (zh) * 2014-08-04 2016-01-27 中国矿业大学 多点煤岩体应力实时监测装置及方法
CN104564030B (zh) * 2014-11-21 2017-08-25 山东科技大学 一种用于测量方形钻孔双向应力的应力计及其使用方法
CN104568706A (zh) * 2015-01-29 2015-04-29 湖南科技大学 一种流固耦合相似模拟实验平台
CN105486431B (zh) * 2015-12-30 2017-09-29 山东科技大学 一种可回收式钻孔应力监测装置及监测方法
CN105626151B (zh) * 2016-02-28 2018-04-24 辽宁工程技术大学 煤矿回采巷道冲击地压预警方法
CN105758561B (zh) * 2016-04-05 2018-02-02 中国矿业大学 基于可视化均布水压致裂地应力测量装置及方法
CN105927219B (zh) * 2016-06-30 2023-08-25 华北科技学院 采掘工作面前方应力分布状况的检测装置
CN106223997B (zh) * 2016-09-21 2018-05-01 中国矿业大学 一种高瓦斯突出煤层钻孔与水力冲割防喷防突装置及方法
CN106437854B (zh) * 2016-10-08 2019-02-22 中国矿业大学 分布式煤岩动力灾害声电同步监测系统及方法
CN106768496B (zh) * 2016-12-23 2019-03-01 北京科技大学 基于采场应力状态的岩体稳定性评价方法
CN106988738B (zh) * 2017-05-11 2020-12-15 中国矿业大学 一种确定地应力分布特征的探测方法
CN106989849B (zh) * 2017-05-15 2022-09-13 山东科技大学 单孔煤岩体定向应力分布与变形一体监测装置及监测方法
CN106996841B (zh) * 2017-05-27 2022-11-22 吉林大学 具有自洽功能的钻孔式光纤三维地应力观测装置
CN107269262A (zh) * 2017-06-12 2017-10-20 中国矿业大学(北京) 一种煤矿钻孔变形监测实验方法
CN107478357A (zh) * 2017-06-28 2017-12-15 山东科技大学 围岩应力场裂隙场一体化监测系统及定量确定方法
CN107237624A (zh) * 2017-08-04 2017-10-10 中国矿业大学(北京) 一种监测采动煤体瓦斯流动及有效应力变化规律的方法
CN107701234A (zh) * 2017-09-01 2018-02-16 郭亚晋 一种智能矿井监管系统
CN107764655B (zh) * 2017-11-14 2023-10-13 辽宁工程技术大学 一种可视化煤岩力学行为监测试验装置
CN108181026A (zh) * 2017-12-12 2018-06-19 陕西煤业化工技术研究院有限责任公司 一种钻孔应力测试装置及方法
CN108019215A (zh) * 2017-12-25 2018-05-11 辽宁三三工业有限公司 一种盾构机用电瓶车可靠停车及注浆量控制装置及其方法
CN108107115A (zh) * 2018-01-30 2018-06-01 辽宁工程技术大学 一种耐高压煤岩吸附损伤变形─声电复合监测试验装置
CN108802825B (zh) * 2018-08-22 2023-06-16 河南理工大学 一种次声波监测煤岩动力灾害定位方法及定位系统
CN108952679A (zh) * 2018-09-20 2018-12-07 中国矿业大学(北京) 钻孔应力定向监测装置及方法
CN109630201B (zh) * 2018-12-14 2020-06-30 山东科技大学 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法
CN109372581B (zh) * 2018-12-14 2023-11-14 山东科技大学 一种顶板岩层水平挤压力监测装置及使用方法
CN109991313B (zh) * 2019-03-11 2024-04-19 北京安科兴业科技股份有限公司 声发射监测装置以及利用该装置的声发射监测方法
CN110017931B (zh) * 2019-03-28 2021-04-13 天津大学 一种盾构隧道外侧土压力测量装置
CN110095093B (zh) * 2019-04-30 2021-08-17 东华理工大学 一种巷道底鼓量自动监测仪
CN110516875B (zh) * 2019-08-28 2020-11-27 江西理工大学 一种滑塌事故分析模型构建及滑塌事故预警方法、系统
CN111444461B (zh) * 2020-03-24 2023-04-07 成都理工大学 高水压下围岩大变形灾害等级预测方法
CN111551624B (zh) * 2020-04-21 2023-07-07 山东科技大学 一种氢键破裂预测煤岩冲击地压装置及其预测方法
CN111927554B (zh) * 2020-08-07 2022-03-15 中铁隧道局集团有限公司 一种用于精确测试隧道围岩接触压力的高度可调压力检测装置及安装检测方法
RU2744340C1 (ru) * 2020-09-02 2021-03-05 Общество с ограниченной ответственностью "РАНК 2" Автоматическая система деформационного контроля массива горных пород
CN112127870A (zh) * 2020-09-11 2020-12-25 北京安科兴业科技股份有限公司 主动承压式钻孔应变监测装置及监测方法
CN112253248B (zh) * 2020-10-26 2022-11-15 辽宁工程技术大学 一种巷道冒顶自动预警与防治装置
CN112302722B (zh) * 2020-11-17 2024-05-28 山西潞安环保能源开发股份有限公司常村煤矿 一种煤矿巷道多方位应力与形变无线监测预警方法及系统
CN112554939B (zh) * 2020-12-02 2022-08-05 太原理工大学 一种无通风开采采区溜煤眼和煤仓及使用方法
CN112924059B (zh) * 2021-01-26 2022-09-23 上海同岩土木工程科技股份有限公司 一种条带式围岩压力监测装置、监测方法及安装方法
CN113008440B (zh) * 2021-03-10 2023-01-10 山东科技大学 基于遗传算法优化神经网络的柔性注液传感器检测方法
CN113217103B (zh) * 2021-05-18 2022-09-09 华北科技学院(中国煤矿安全技术培训中心) 一种识别离层突水的方法
CN113295302A (zh) * 2021-05-24 2021-08-24 江苏峻峰机电设备有限公司 一种单孔双计应力变化监测装置
CN113217108B (zh) * 2021-06-03 2022-08-16 宁夏回族自治区矿产地质调查院 一种用于煤与瓦斯突出监测的预警系统
CN113532371B (zh) * 2021-07-14 2022-09-16 东北大学 一种巷道围岩绝对变形量动态监测方法
CN114112667B (zh) * 2021-11-19 2024-02-09 北京安科兴业矿山安全技术研究院有限公司 煤层应力监测冲击地压临界预警指标值设置方法
CN114542151B (zh) * 2022-01-12 2022-11-11 中南大学 一种采煤工作面瓦斯抽采与顶板治理方法
CN114233397B (zh) * 2022-02-24 2022-05-13 中铁十二局集团山西建筑构件有限公司 一种基于空陆两栖机器人的隧道施工岩爆预警系统
CN114674475B (zh) * 2022-03-11 2024-02-23 重庆地质矿产研究院 一种大型滑坡岩土体内部应力监测装置及方法
CN116242238B (zh) * 2023-04-28 2023-07-18 山东鲁地建设发展有限公司 一种矿山生态修复用滑坡监测装置
CN116341292B (zh) * 2023-05-30 2023-08-08 煤炭科学研究总院有限公司 应力场的获取方法、装置、设备及存储介质
CN117189255B (zh) * 2023-09-15 2024-05-14 尤洛卡(山东)矿业科技有限公司 一种煤与瓦斯突出的监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012183A (ja) * 2002-06-04 2004-01-15 Honda Motor Co Ltd 対象物検知装置の検知軸調整方法
CN101514926A (zh) * 2009-03-20 2009-08-26 中国矿业大学 煤岩体地应力连续测试装置及方法
US20100050762A1 (en) * 2008-09-02 2010-03-04 Nold Iii Raymond V Methods and apparatus to perform pressure testing of geological formations
CN102230375A (zh) * 2011-06-10 2011-11-02 中国矿业大学 煤层瓦斯参数实时监测装置及方法
CN202485845U (zh) * 2012-02-10 2012-10-10 天地科技股份有限公司 回采巷道侧向支承压力监测装置
CN103512693A (zh) * 2013-10-08 2014-01-15 中国矿业大学 煤岩体应力定向监测方法及装置
CN104132761A (zh) * 2014-08-04 2014-11-05 中国矿业大学 多点煤岩体应力实时监测装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060988B2 (ja) 2008-02-18 2012-10-31 セイコーインスツル株式会社 温度検出回路
DK177946B9 (da) * 2009-10-30 2015-04-20 Maersk Oil Qatar As Brøndindretning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012183A (ja) * 2002-06-04 2004-01-15 Honda Motor Co Ltd 対象物検知装置の検知軸調整方法
US20100050762A1 (en) * 2008-09-02 2010-03-04 Nold Iii Raymond V Methods and apparatus to perform pressure testing of geological formations
CN101514926A (zh) * 2009-03-20 2009-08-26 中国矿业大学 煤岩体地应力连续测试装置及方法
CN102230375A (zh) * 2011-06-10 2011-11-02 中国矿业大学 煤层瓦斯参数实时监测装置及方法
CN202485845U (zh) * 2012-02-10 2012-10-10 天地科技股份有限公司 回采巷道侧向支承压力监测装置
CN103512693A (zh) * 2013-10-08 2014-01-15 中国矿业大学 煤岩体应力定向监测方法及装置
CN104132761A (zh) * 2014-08-04 2014-11-05 中国矿业大学 多点煤岩体应力实时监测装置及方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024183A (zh) * 2017-06-01 2017-08-08 安徽理工大学 巷道围岩松动圈范围测试方法及系统
CN107024183B (zh) * 2017-06-01 2023-09-26 安徽理工大学 巷道围岩松动圈范围测试方法及系统
CN108593174A (zh) * 2018-05-08 2018-09-28 安徽理工大学 一种煤岩体采动应力监测包体
CN108593174B (zh) * 2018-05-08 2024-01-02 安徽理工大学 一种煤岩体采动应力监测包体
CN110514342A (zh) * 2019-09-18 2019-11-29 长江水利委员会长江科学院 快速测定软岩地层地应力的测量装置及方法
CN110514342B (zh) * 2019-09-18 2024-04-26 长江水利委员会长江科学院 快速测定软岩地层地应力的测量装置及方法
CN110821482A (zh) * 2019-12-20 2020-02-21 山东思科赛德矿业安全工程有限公司 多功能大直径钻孔形变监测用钻孔孔径自动补偿装置
WO2022267135A1 (zh) * 2021-06-23 2022-12-29 中国地质大学(武汉) 一种岩质边坡锁固段裂缝变形监测装置及布设方法
CN113818927A (zh) * 2021-10-14 2021-12-21 山东省煤田地质规划勘察研究院 一种具有能量引导功能的冲击地压防治装置
CN113818927B (zh) * 2021-10-14 2024-03-15 山东省煤田地质规划勘察研究院 一种具有能量引导功能的冲击地压防治装置
CN114061814A (zh) * 2021-11-22 2022-02-18 西安科技大学 一种煤矿采动工作面顶板水情实时动态监测试验装置
CN114061814B (zh) * 2021-11-22 2023-06-20 西安科技大学 一种煤矿采动工作面顶板水情实时动态监测试验装置

Also Published As

Publication number Publication date
US20170122822A1 (en) 2017-05-04
CN104132761B (zh) 2016-01-27
CN104132761A (zh) 2014-11-05
US10082433B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2016019824A1 (zh) 多点煤岩体应力实时监测装置及方法
WO2022088454A1 (zh) 模拟复杂地质条件下隧道开挖渗流变化的试验系统及方法
CN106546366B (zh) 一种伞型深孔三向应力及位移综合测试装置
CN110346216B (zh) 一种模拟掘进扰动情况下煤岩体三轴加载试验装置及方法
WO2019223389A1 (zh) 一种巷道围岩支护强度试验装置及强度确定方法
CN104061902B (zh) 复合式地下深部灾害监测装置
CN105758561A (zh) 基于可视化均布水压致裂地应力测量装置及方法
CN103926479B (zh) 煤体瓦斯运移过程电荷监测装置及其监测方法
Song et al. Evaluation of coal seam hydraulic fracturing using the direct current method
CN104697713A (zh) 一种测试特殊螺纹接头密封性的试验装置及试验方法
CN103994846A (zh) 围岩应力场分布测试装置及方法
WO2019000906A1 (zh) 围岩应力场裂隙场一体化监测系统及定量确定方法
CN111520131A (zh) 一种超远距离原位测定煤层瓦斯压力装置及方法
CN203145925U (zh) 上向远距离钻孔快速测定煤层瓦斯压力的装置
CN106761804A (zh) 一种搭载于tbm上实时超前水压探测装置与方法
CN103091726B (zh) 高压富水断层工程地质岩土的遥感量化勘察方法
CN104344785B (zh) 煤层细微变形量自动测试装置
US11906481B1 (en) Grouting and water-plugging device for fractured rock in mine coupling state, and test method
CN203669931U (zh) 一种测试巷道围岩松动圈的多点应力计
CN205506269U (zh) 基于可视化均布水压致裂地应力测量装置
CN105569623A (zh) 用于注水井的井口组合测试装置及其方法
CN206074155U (zh) 一种准分布式工作面底板多场测试装置
CN205400721U (zh) 一种井口气远程测定装置
CN104912549B (zh) 煤层气区域参数测试方法
CN108593174B (zh) 一种煤岩体采动应力监测包体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318877

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829733

Country of ref document: EP

Kind code of ref document: A1