WO2019000906A1 - 围岩应力场裂隙场一体化监测系统及定量确定方法 - Google Patents

围岩应力场裂隙场一体化监测系统及定量确定方法 Download PDF

Info

Publication number
WO2019000906A1
WO2019000906A1 PCT/CN2018/072145 CN2018072145W WO2019000906A1 WO 2019000906 A1 WO2019000906 A1 WO 2019000906A1 CN 2018072145 W CN2018072145 W CN 2018072145W WO 2019000906 A1 WO2019000906 A1 WO 2019000906A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
surrounding rock
fracture
water
stress
Prior art date
Application number
PCT/CN2018/072145
Other languages
English (en)
French (fr)
Inventor
文志杰
石少帅
高明忠
张瑞新
孟凡宝
邵国君
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2019000906A1 publication Critical patent/WO2019000906A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/02Measuring force or stress, in general by hydraulic or pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Definitions

  • the invention relates to the technical field of crack field monitoring of surrounding rock stress field of underground engineering, in particular to an integrated monitoring system for crack field of surrounding rock stress field.
  • the surrounding rock mass is in the original stress equilibrium state before the excavation of the underground space structure.
  • the excavation activity destroys the original stress balance of the surrounding rock mass and inevitably causes a certain range of inner rock mass.
  • mining fissure Field formation and development provide the necessary conditions, and the evolution of the fissure-stress field of the surrounding rock mass may occur due to the collapse of the roof and the pressure of the roof, the displacement of the top and bottom plates, the shrinkage of the support, and the collapse of the support.
  • coal and gas outburst, water inrush, impact and ground pressure and other dynamic disasters are induced.
  • the mining fissures of the surrounding rock mass are due to the mining, and the stresses of the surrounding rock are redistributed.
  • the primary fissures are formed by the continuous development and expansion of the stresses. These fractures control and affect the stability of the surrounding rock mass.
  • the magnitude of ground stress is the basic parameter for disaster prevention of underground engineering structure excavation, support and roof control (including impact mine pressure), coal and gas outburst.
  • the test and evaluation of surrounding rock mass stress is the main content of pressure observation, which is to solve the problem of mining. Decision-making basis for major technical problems such as dynamic surrounding rock mass control, coal mining program design, rational selection and maintenance of underground roadway location, impact ground pressure and coal and gas outburst prediction and prevention, and safe exploitation of pressurized water resources.
  • the Chinese patent document with the publication number CN205506271U discloses a borehole stress field drilling monitoring probe, which comprises a rigid rod, a flexible rod, a sensor, a waterproof membrane, a wire, a data acquisition instrument, and a rigid rod and a flexible rod are alternately connected, and the inside of the rod body They are all cavities, the sensors are connected to the wires, the sensors are mounted on the rigid rods, and the waterproof membrane is installed on the outer side of the rod body.
  • the wires are connected to the data collector through the internal cavity of the rod body to the end of the rod body.
  • the Chinese patent document with the publication number CN104632075B discloses an integrated drilling and testing system and method for overlying rock crack detection.
  • the system comprises a probe tube, a drilling device and a control device; the upper part of the probe tube body is provided with a sealing capsule, and the sealing device
  • the two ends of the hole capsule are respectively fixed by the upper boss and the lower boss on the probe tube, the inside of the sealed capsule is an electric three-way ball valve, and the probe rod body at the lower part of the lower boss is grooved.
  • the technical scheme can realize the simultaneous exploration of the excavation and the overburden fracture, and realize the crack detection of the overburden, but it cannot simultaneously monitor the surrounding rock stress field.
  • the object of the present invention is to provide an integrated monitoring system for the surrounding rock stress field and a quantitative determination method, which can simultaneously monitor the surrounding rock stress field, the surface crack wall of the surrounding rock wall and quantitatively analyze or simultaneously monitor the surrounding rock stress field and circumference.
  • the internal fracture field of the rock is quantitatively analyzed.
  • the invention provides an integrated monitoring system for a surrounding rock stress field fracture field, and an integrated monitoring system for a surrounding rock stress field fracture field comprises a stress field monitoring component and a fracture field monitoring component, a stress field monitoring component assembly connection fracture field monitoring component; a stress field
  • the monitoring component comprises a seat body, a high pressure oil pipe and an oil pump.
  • the seat body is provided with a pressure chamber and a slide pipe connected with the pressure chamber.
  • the slide pipe is slidably connected with a pressure head seat.
  • the pressure head seat is provided with a pressure head, and the pressure chamber is connected by a high pressure oil pipe.
  • the oil pump and the high pressure oil pipe are provided with a hydraulic pressure gauge;
  • the fracture field monitoring component is one of a hole wall crack field monitoring component and an internal fracture field monitoring component;
  • the hole wall crack field monitoring component includes a crack monitor, a video cable and a camera monitoring
  • the host, the crack monitor is connected to the camera monitoring host via a video cable signal;
  • the internal fracture field component includes a support body, a front water bladder, a rear water bladder, a water pump and a water pipe, and the front water bladder and the rear water bladder are respectively disposed at two ends of the support body, and the water pump
  • the water pipe is connected to the front water bladder and the rear water bladder respectively, and the front water bladder or the rear water bladder is connected with a safety valve, and the liquid discharge port of the safety valve is located in the front water bladder Between the bladders provided with pressure gauge and flow meter on the water.
  • the surrounding rock stress field fracture field integrated monitoring system further comprises a connecting rod, the connecting rod comprises a first rod and a plurality of extension rods, the front end of the first rod is assembled with a stress field monitoring component and a fracture field monitoring component, and the rear end of the first rod
  • the detachable connection has a number of extension rods.
  • one end of the extension rod is provided with an elastic pin shaft, and the other end of the extension rod is provided with a pin hole, and a rear end of the rod is provided with a pin hole or an elastic pin shaft.
  • the indenter, the pin hole, and the elastic pin are on the same straight line.
  • the surrounding rock stress field fracture field integrated monitoring system further comprises a data processing host, and the data processing host is respectively connected with the oil pressure meter, the camera monitoring host, the water pressure meter and the flow meter signal via the data transmission line.
  • the crack monitor is disposed at the front end of the seat.
  • the front end of the fracture monitor is provided with a crosshair.
  • the invention also provides a method for quantitatively determining the fracture field of the surrounding rock stress field, and applying the above-mentioned integrated monitoring system for the surrounding rock stress field fracture field, the fracture field monitoring component is a hole wall crack field monitoring component, comprising the following steps:
  • Step 1 Drill holes in the surrounding rock of the underground engineering structure at the location to be monitored. The drilling depth reaches the required depth of the test and cleans the debris in the borehole;
  • Step 2 Push the seat body and the crack monitor into the initial monitoring point in the borehole and set the initial monitoring point as the coordinate origin to align the indenter with the specified direction;
  • Step 3 Turn on the oil pump.
  • the oil pump injects high-pressure oil into the pressure chamber through the high-pressure oil pipe.
  • the oil pressure reaches the maximum value and starts to decrease, close the oil pump, stop injecting high-pressure oil and read the maximum value of the oil pressure gauge.
  • the maximum value of the pressure gauge is used to calculate the stress value of the surrounding rock at the initial monitoring point, and the indenter is retracted to the initial position;
  • Step 4 The crack monitor scans the surface of the surrounding rock wall of the initial monitoring point to form a picture and transmits the picture data to the camera monitoring host.
  • the program written by the fractal theory identifies the number of cracks in the picture and determines the surrounding rock hole of the initial monitoring point. Degree of development of wall surface fissures;
  • Step 5 Continue to move the seat and crack monitor into the borehole to the subsequent monitoring point, and calculate the stress value of the surrounding rock of the subsequent monitoring point according to steps 3 and 4, and record the development of the crack on the surface of the surrounding rock wall of the subsequent monitoring point. degree;
  • Step 6 According to the stress value of the surrounding rock at each monitoring point and the degree of crack development on the wall surface of the surrounding rock wall, respectively establish the stress-monitoring distance-fracture map along the drilling direction.
  • the invention also provides a method for quantitatively determining the fracture field of the surrounding rock stress field, and applying the above-mentioned integrated monitoring system for the surrounding rock stress field fracture field, the fracture field monitoring component is an internal fracture field monitoring component, comprising the following steps:
  • Step 1 Drill holes in the surrounding rock of the underground engineering structure at the location to be monitored. The drilling depth reaches the required depth of the test and cleans the debris in the borehole;
  • Step 2 Push the seat body and the support body (with the front water bladder and the rear water bladder) into the initial monitoring point in the borehole and set the initial monitoring point as the coordinate origin to align the indenter with the specified direction;
  • Step 3 Turn on the oil pump.
  • the oil pump injects high-pressure oil into the pressure chamber through the high-pressure oil pipe.
  • the oil pressure reaches the maximum value and starts to decrease, close the oil pump, stop injecting high-pressure oil and read the maximum value of the oil pressure gauge.
  • the maximum value of the pressure gauge is used to calculate the stress value of the surrounding rock at the initial monitoring point, and the indenter is retracted to the initial position;
  • Step 4 Turn on the water pump.
  • the water pump fills the water bladder and the rear water bladder through the water pipe.
  • the front water bladder and the rear water bladder bulge against the borehole wall.
  • the safety valve is opened, and the water enters the space between the front water bladder and the rear water bladder through the liquid discharge port of the safety valve and enters the interior of the surrounding rock.
  • the water pressure gauge checks the pressure of the water in the water bladder just before the safety valve threshold starts. And determine the water flow rate through the flow meter to determine the amount of water leakage per unit time, and then determine the degree of development of the crack inside the surrounding rock;
  • Step 5 Continue to move the seat body and the support body (with the front water bladder and the rear water bladder) to the subsequent monitoring points, and calculate the stress values of the surrounding rock of the subsequent monitoring points according to steps 3 and 4, and record the follow-up. Monitoring the degree of crack development inside the surrounding rock;
  • Step 6 According to the stress value of the surrounding rock at each monitoring point and the degree of crack development inside the surrounding rock, respectively establish the stress-monitoring distance-fracture map along the drilling direction.
  • the surrounding rock stress field fracture field integrated monitoring system and the quantitative determination method of the invention have the following characteristics and advantages:
  • the integrated monitoring system for the surrounding rock stress field of the present invention can simultaneously monitor the surrounding rock stress field, the fracture field of the surrounding rock wall and quantitatively analyze, or simultaneously monitor the surrounding rock stress field, the internal fracture field of the surrounding rock and quantify analysis.
  • the method for quantitatively determining the fracture field of the surrounding rock stress field of the present invention can simultaneously monitor the surrounding rock stress field, the fracture field of the surrounding rock wall wall and quantitatively analyze, or simultaneously monitor the surrounding rock stress field and the internal fracture field of the surrounding rock. Quantitative analysis, convenient operation, accurate monitoring, and solving the current single type of data monitoring program will affect the feasibility and economic analysis of the underground engineering structure excavation plan.
  • FIG. 1 is a front view showing a part of a structure of a stress field monitoring component and a hole wall crack field monitoring component in an integrated monitoring system for a surrounding rock stress field fracture field according to Embodiment 1 of the present invention
  • FIG. 2 is a side view showing a partial structure of a stress field monitoring component and a hole wall crack field monitoring component in an integrated monitoring system for a surrounding rock stress field fracture field according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing the connection between the first rod and the extension rod or the extension rod in the integrated monitoring system of the surrounding rock stress field fracture field according to the first embodiment of the present invention
  • FIG. 4 is a schematic view showing the installation of an integrated monitoring system for a surrounding rock stress field fracture field according to Embodiment 1 of the present invention
  • FIG. 5 is a stress-drilling direction monitoring distance-fracture diagram established by the integrated rock mass field integrated monitoring system method in the first and second embodiments of the present invention
  • FIG. 6 is a diagram showing stress-strain relationship of an elastic stage loading and unloading process in Embodiments 1 and 2 of the present invention.
  • Figure 7 is a graph showing the stress-strain relationship of the plastic stage loading and unloading process in the first embodiment and the second embodiment of the present invention.
  • FIG. 8 is a partial front view showing a part of a structure of a stress field monitoring component and an internal fracture field monitoring component in an integrated monitoring system for a surrounding rock stress field fracture field according to Embodiment 2 of the present invention
  • FIG. 9 is a schematic view showing a pipeline arrangement in an integrated monitoring system for a surrounding rock stress field fracture field according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic view showing the installation of an integrated monitoring system for a surrounding rock stress field fracture field according to Embodiment 2 of the present invention.
  • the embodiment provides an integrated monitoring system for a surrounding rock stress field fracture field
  • the surrounding rock stress field fracture field integrated monitoring system includes a stress field monitoring component, a fracture field monitoring component, and a data processing host.
  • the fracture field monitoring component is a hole wall crack field monitoring component
  • the stress field monitoring component is assembled with a connecting hole wall crack field monitoring component.
  • the connecting rod includes a first rod 41 and a plurality of extension rods 42.
  • the front end of the rod 41 is assembled with a stress field monitoring assembly and a fracture field monitoring assembly.
  • the rear end of the rod 42 is detachably coupled with a plurality of extension rods 42.
  • the rear end of the first rod 42 is provided with a pin hole 43 or an elastic pin 44.
  • One end of the extension rod 42 is provided with an elastic pin 44, and the other end of the extension rod 42 is provided with a pin hole 43, the elastic pin 44 and the pin
  • the holes 43 are snap-fitted to facilitate the assembly of the connecting extension rod 42 by the operator, and is also convenient for the operator to disassemble.
  • the ram 15, pin bore 43, and spring pin 44 are on the same line to allow the operator to control the position of the ram 15 within the bore 6.
  • the stress field monitoring component comprises a seat 11, a high pressure oil pipe 16 and an oil pump 17, and the base 11 is provided with a pressure chamber 12 and a slide 13 .
  • the pressure chamber 12 is connected with the slide 13 , and the slide 13 is slidably connected with a pressure head seat. 14.
  • the indenter seat 14 is provided with a pressure head 15, and the pressure chamber 12 is connected to the oil pump 17 via a high pressure oil pipe 16, and the high pressure oil pipe 16 is provided with a hydraulic pressure gauge 18.
  • the high pressure oil enters the pressure chamber 12 through the high pressure oil pipe 16, and the pressure head seat 14 is pressed and pressed on the slide rail 13, and the pressure head seat 14 pushes the pressure head 15 to stress load the surrounding rock mass.
  • the pressure relief valve on the oil pump 17 is turned on to return the oil to the oil storage tank, and then the degree of crack development on the wall surface of the surrounding rock wall is monitored.
  • the hole wall crack field monitoring component includes a crack monitor 21, a video cable 22, and a camera monitoring host 23, and the crack monitor 21 is connected to the camera monitoring host 23 via a video cable 22.
  • the slit monitor 21 is disposed at the front end of the seat body 11, so that the slit monitor 21 scans the viewing angle optimally.
  • the front end of the crack monitor 21 is provided with a crosshair for adjusting the monitoring direction.
  • the crack monitor 21 can scan the crack of the wall surface of the borehole 6 of the borehole 6 and transmit the scanned picture data to the camera monitoring host 23 via the video cable 22.
  • the data processing host 5 passes through the data transmission line 51 and the oil pressure gauge 18 and the image monitoring host 23, respectively.
  • the stress value of the surrounding rock of the monitoring point is determined by the oil pressure gauge 18, and transmitted to the data processing host 5 through the data transmission line 51, and the data processing host 5 calculates the absolute stress of the surrounding rock mass of the monitoring point by a preset calculation formula.
  • the camera monitoring host 23 processes the pictures and manually records them, and also transmits them to the data processing host 5 through the data transmission line 51.
  • the data processing host 5 recognizes the number of cracks in the picture and determines the monitoring points by the program written by the fractal theory. The degree of fissure development on the surface of the rock wall.
  • the surrounding rock stress field fracture field integrated monitoring system can simultaneously monitor the surrounding rock stress field, the surface crack wall of the surrounding rock wall and quantitative analysis.
  • the embodiment provides a method for quantitatively determining the fracture field of the surrounding rock stress field, and the above-mentioned integrated monitoring system for the surrounding rock stress field fracture field includes the following steps:
  • Step 1 Drill holes 6 into the surrounding rock of the underground engineering structure at the location to be monitored. The depth of the borehole 6 reaches the required depth of the test and cleans the debris in the borehole 6.
  • Step 2 Push the seat body 11 and the crack monitor 21 into the initial monitoring point in the borehole 6 and set the initial monitoring point as the coordinate origin to align the indenter 15 with the specified direction.
  • Step 3 Turn on the oil pump 17, and the oil pump 17 injects high-pressure oil into the pressure chamber 12 via the high-pressure oil pipe 16.
  • the oil pressure gauge 18 reaches the maximum value and starts to decrease, the oil pump 17 is turned off, the injection of the high-pressure oil is stopped, and the oil pressure is read.
  • the stress value of the surrounding rock at the initial monitoring point is calculated by the maximum value of the oil pressure gauge 18, and the indenter 15 is retracted to the initial position.
  • Step 4 The crack monitor 21 scans the surface of the surrounding rock wall of the initial monitoring point to form a picture and transmits the picture data to the camera monitoring host 23, and the program written by the fractal theory identifies the number of cracks in the picture and determines the initial monitoring point. The degree of fissure development on the surface of the rock wall.
  • Step 5 The seat body 11 and the crack monitor 21 are continuously moved into the borehole 6 to the subsequent monitoring point, and according to steps 3 and 4, the stress value of the surrounding rock of the subsequent monitoring point is calculated, and the surrounding rock wall of the subsequent monitoring point is recorded. The degree of surface fissure development.
  • Step 6 According to the stress value of the surrounding rock at each monitoring point and the degree of crack development on the wall surface of the surrounding rock wall, the data processing host 5 draws a stress-monitoring distance-fracture map along the drilling direction, as shown in Fig. 5.
  • Step 7 After the monitoring is completed, the camera monitoring host 23 and the data processing host 5 are turned off, the oil pump 17 is turned off, the pressure relief valve on the oil pump 17 is turned on, and the oil in the pressure chamber 12 and the high pressure oil pipe 16 is returned to the oil storage chamber, and finally The monitoring component is removed from the borehole 6 and the monitoring is completed.
  • the stress measured by the stress field monitoring component is absolute stress
  • the absolute stress field measurement method of the surrounding rock at different depths and the absolute stress calculation method of the surrounding rock at different depths are as follows:
  • the coal (rock) body will exhibit different mechanical states due to the mining effect.
  • the stress and strain have a linear relationship in the elastic phase.
  • the loading and unloading is shown in Fig. 6.
  • the stress and strain are nonlinear, and the loading and unloading is shown in Fig. 7. Shown.
  • the drilling depth is in the plastic zone, and the coal (rock) body around the hole wall is changed from the pre-drilled loading state to the post-drilling unloading state, that is, the shaping state, which will be unloaded according to the curve psq path of Fig. 7, at this time by the indenter 15
  • the pressure will be loaded according to the qip path.
  • the stress will gradually decrease as the loading continues.
  • the p-point stress is the absolute stress of the drilling detection position, and so on, gradually determine the different positions of the shaping zone. Stress size
  • the drilling depth is in the elastic zone, and the coal (rock) body around the hole wall is changed from the pre-drilled loading state to the post-drilling unloading state, that is, the elastic state, and will be unloaded according to the curve po' path of Fig. 6, at this time, the indenter 15 is added.
  • the pressure will be loaded according to the o'p path, the absolute force value of p point is the stress of the intersection point of the loading and unloading curve, and so on, and the absolute stress of different positions in the elastic zone is gradually determined.
  • the absolute magnitude curve of the mining depth of different depths can be obtained through field measurement.
  • the number of cracks in the distance along the borehole direction will be integrated, from the initial monitoring point to a monitoring point in the borehole (depth is l 0 position) ) C a sum of the number of cracks, the total number of fractures obtained within the borehole (borehole depth l) after completion of each monitoring point is then monitored for the total C, the ratio of total C a and C is the measured drilled paragraph
  • the coefficient f(D) of the degree of pore fissure development The following formula is established by the original rock stress and the coefficient of crack development degree. This formula is another method for quantitatively determining the absolute stress ⁇ value of the surrounding rock at a certain measuring point along the borehole monitoring direction. Let ⁇ 0 be the original rock stress and f(c) be a function of the number of cracks as a function of l.
  • the absolute stress ⁇ is a value calculated by the stress-measured distance in the borehole direction-fracture curve in the fracture map.
  • the surrounding rock stress field fracture field integrated monitoring system in this embodiment is different from that in Embodiment 1 in that the fracture field monitoring component is an internal fracture field monitoring component, and the stress field monitoring component is assembled to connect the internal fracture field monitoring component.
  • the internal fracture field monitoring assembly includes a support body 31, a front water bladder 32, a rear water bladder 33, a water pump 36, and a water pipe 35.
  • the front and rear water bladders 32 and 33 are respectively disposed at two ends of the support body 31, and the water pump 36 is connected to the water tank 36. 35, the front water bladder 32 and the rear water bladder 33 are respectively connected, and the front water bladder 32 or the rear water bladder 33 is connected with a safety valve 34.
  • the liquid discharge port of the safety valve 34 is located between the front water bladder 32 and the rear water bladder 33, and the water pipe 35
  • a water pressure gauge 37 and a flow meter 38 are provided thereon.
  • the support body 31 is a sleeve closed at both ends, and the sleeve is divided into a front cavity, a middle cavity and a rear cavity by a partition plate, and a partition or a rear cavity between the front cavity and the middle cavity
  • a safety valve 34 is disposed on the partition between the intermediate chambers, and a liquid discharge port of the safety valve 34 is located in the middle cavity, and the water pipe 35 is respectively connected to the front cavity and the rear cavity, and the sleeve is wrapped on the front cavity at the position of the front cavity.
  • the sleeve is wrapped with the rear water tank 33 at the position of the rear cavity.
  • the side wall of the sleeve wrapped by the front water bladder 32 is provided with a plurality of drain holes 311, and the side wall of the sleeve wrapped by the rear water bladder 33 is opened.
  • a plurality of drain holes 311, a plurality of water injection holes 312 are defined in the side wall of the sleeve at the position of the middle cavity.
  • the water pump 36 presses the water through the end of the water pipe 35 into the front cavity and enters the front water bladder 32 from the drain hole 311, presses the drain hole 351 from the water pipe 35 into the rear cavity, and enters the rear water bladder from the drain hole 311. 33.
  • the front water bladder 32 and the rear water bladder 33 bulge against the wall of the hole of the borehole 6 to seal both ends of the borehole 6.
  • the water When the water pressure in the front water bladder 32 and the rear water bladder 33 increases beyond the threshold value of the safety valve 34, the water enters the middle cavity from the liquid discharge port of the safety valve 34, and enters the interior of the surrounding rock through the water injection hole 312 in the middle cavity.
  • the data processing host 5 is signal-connected to the oil pressure gauge 18, the water pressure gauge 37, and the flow rate meter 38 via the data transmission line 51, respectively.
  • the stress value of the surrounding rock of the monitoring point is determined by the oil pressure gauge 18, and transmitted to the data processing host 5 through the data transmission line 51, and the data processing host 5 calculates the absolute stress of the surrounding rock mass of the monitoring point by a preset calculation formula.
  • the water pressure meter 37 checks the pressure of the water in the front water bladder 32 and the rear water bladder 33 just before the threshold value of the safety valve 34, and determines the water flow rate through the flow meter 38, thereby determining the water leakage amount per unit time, thereby determining the circumference. The degree of development of cracks inside the rock.
  • the surrounding rock stress field fracture field integrated monitoring system can simultaneously monitor the surrounding rock stress field, the internal fissure field of the surrounding rock and quantitative analysis.
  • the embodiment provides a method for quantitatively determining the fracture field of the surrounding rock stress field, and the above-mentioned integrated monitoring system for the surrounding rock stress field fracture field includes the following steps:
  • Step 1 Drill holes 6 into the surrounding rock of the underground engineering structure at the location to be monitored. The depth of the borehole 6 reaches the depth required for testing and cleans up the debris in the borehole 6.
  • Step 2 Push the seat body 11, the support body 31 (with the front water bladder 32 and the rear water bladder 33) into the initial monitoring point in the borehole 6 and set the initial monitoring point as the coordinate origin, and align the indenter 15 with the designated direction.
  • Step 3 Turn on the oil pump 17, and the oil pump 17 injects high-pressure oil into the pressure chamber 12 via the high-pressure oil pipe 16.
  • the oil pressure gauge 18 reaches the maximum value and starts to decrease, the oil pump 17 is turned off, the injection of the high-pressure oil is stopped, and the oil pressure is read.
  • the stress value of the surrounding rock at the initial monitoring point is calculated by the maximum value of the oil pressure gauge 18, and the indenter 15 is retracted to the initial position.
  • Step 4 The water pump 36 is turned on, and the water pump 36 fills the water bladder 32 and the rear water bladder 33 through the water pipe 35.
  • the front water bladder 32 and the rear water bladder 33 bulge against the inner wall of the borehole 6, the front water bladder 32, and the rear water.
  • the safety valve 34 is opened, and the water enters the space between the front water bladder 32 and the rear water bladder 33 through the liquid discharge port of the safety valve 34 and enters the interior of the surrounding rock, and passes through the water pressure gauge.
  • the water flow rate is determined by the flow meter 38, thereby determining the water leakage amount per unit time, thereby determining the internal crack of the surrounding rock. The degree of development.
  • Step 5 the seat body 11, the support body 31 (with the front water bladder 32, the rear water bladder 33) continue to move into the borehole 6 to the subsequent monitoring point, and according to steps 3 and 4, calculate the surrounding rock of the subsequent monitoring point.
  • the stress value records the degree of crack development inside the surrounding rock at the subsequent monitoring point.
  • Step 6 According to the stress value of the surrounding rock at each monitoring point and the degree of crack development inside the surrounding rock, the data processing host 5 draws the stress-monitoring distance-fracture map along the drilling direction, similar to Fig. 5.
  • Step 7 After the monitoring is completed, the water data processing host 5 is closed, the water pump 36 is turned off, the drain valve on the water pump 36 is opened, the water in the front water bladder 32 and the rear water bladder 33 is discharged, the oil pump 17 is turned off, and the oil pump 17 is turned on.
  • the pressure relief valve allows the oil in the pressure chamber 12 and the high pressure oil pipe 16 to flow back into the oil storage chamber, and finally the monitoring assembly is taken out of the borehole 6, and the monitoring is completed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Earth Drilling (AREA)

Abstract

一种围岩应力场裂隙场一体化监测系统及定量确定方法,监测系统包括应力场监测组件和裂隙场监测组件,应力场监测组件中,座体(11)开设有压力室(12)、滑道(13),滑道(13)上滑动连接有压头座(14),压头座(14)上设置有压头(15),压力室(12)经高压油管(16)连接油泵(17),高压油管(16)上设置有油压表(18);裂隙场监测组件为孔壁裂隙场监测组件和内部裂隙场监测组件二者中的一个,孔壁裂隙场监测组件中,裂隙监测仪(21)信号连接摄像监测主机(23);内部裂隙场监测组件中,支撑体(31)的两端分别设置前水囊(32)和后水囊(33),水泵(36)经水管(35)分别连接前水囊(32)和后水囊(33),前水囊(32)或后水囊(33)连接有安全阀(34),安全阀(34)的泄液口位于前水囊(32)和后水囊(33)之间,水管(35)上设置有水压表(37)和流量表(38)。监测系统同时监测围岩应力场、围岩孔壁表面裂隙场并定量分析或者同时监测围岩应力场、围岩内部裂隙场并定量分析。

Description

围岩应力场裂隙场一体化监测系统及定量确定方法 技术领域
本发明涉及地下工程围岩应力场裂隙场监测技术领域,特别是涉及一种围岩应力场裂隙场一体化监测系统。
背景技术
在地下工程结构开挖(或资源开发)过程中,地下空间结构开挖前围岩体处于原始应力平衡状态,开挖活动破坏了围岩体原始的应力平衡,必然引起一定范围内围岩体的变形、破坏,由于采动应力场随开挖不断发展演化,而应力场的演化又带来与之对应的采动裂隙场的演化,可以说采动及其应力场的变化为采动裂隙场形成和发展(演化)提供了必要条件,而围岩体裂隙场-应力场的演化可能出现顶板冒落与来压、顶底板移近、支架受载下缩、折损等矿压现象,进而诱发煤与瓦斯突出、突水、冲击地压等动力灾害。
围岩体采动裂隙是由于受采动影响,围岩承受的应力重新分布,而原生裂隙是在应力作用不断发展扩张并相互贯通而形成的,这些裂隙场控制和影响着围岩体的稳定性。地应力大小是地下工程结构开掘、支护及顶板控制(含冲击矿压)、煤与瓦斯突出等灾害预防的基础参数,测试及评估围岩体应力是压力观测的主要内容,是解决受采动影响的地下工程结构围岩体控制、煤矿开采程序设计、地下巷道位置合理选择与维护、冲击地压和煤与瓦斯突出预测和防治、承压水上资源安全开采等重大技术问题的决策依据。
围岩体中的裂隙场和应力场的监测是一项非常复杂的工程,在地下工程中进行应力场和裂隙场测试的设备种类较少而且样式单一。
公告号为CN205506271U的中国专利文献公开了一种围岩应力场钻孔监测探杆,包括刚性杆、柔性杆、传感器、防水膜、导线、数据采集仪,刚性杆和柔性杆交替连接,杆体内部均为空腔,传感器和导线相连,传感器安装在刚性杆上,防水膜安装在整个杆体外侧,导线通过杆体内部空腔通向杆体末端连接数据采集仪。该技术方案可以实现对围岩的应力监测,但并不能同时监测围岩裂隙场,并且其对围岩的应力监测需在钻孔内注浆耦合,操作繁琐。
公告号为CN104632075B的中国专利文献公开了一种用于覆岩裂隙探测的钻测一体化系统及方法,系统包括探管、钻进装置和控制装置;探管杆体上部套有封孔胶囊,封孔胶囊两端分别通过位于探管上的上凸台和下凸台固定,封孔胶囊内部为电动三通球阀,下凸台下部的探管杆体上开有凹槽。该技术方案可以实现开挖钻孔与覆岩裂隙探测同时进行,实现对覆岩的裂隙探测,但并不能同时监测围岩应力场。
发明内容
本发明的目的在于提供一种围岩应力场裂隙场一体化监测系统及定量确定方法,实现同时监测围岩应力场、围岩孔壁表面裂隙场并定量分析或者同时监测围岩应力场、围岩内部裂隙场并定量分析。
本发明提供一种围岩应力场裂隙场一体化监测系统,围岩应力场裂隙场一体化监测系统包括应力场监测组件和裂隙场监测组件,应力场监测组件装配连接裂隙场监测组件;应力场监测组件包括座体、高压油管和油泵,座体开设有压力室和与压力室连通的滑道,滑道上滑动连接有压头座,压头座上设置有压头,压力室经高压油管连接油泵,高压油管上设置有油压表;裂隙场监测组件为孔壁裂隙场监测组件和内部裂隙场监测组件二者中的一个;孔壁裂隙场监测组件包括裂隙监测仪、视频电缆和摄像监测主机,裂隙监测仪经视频电缆信号连接摄像监测主机;内部裂隙场组件包括支撑体、前水囊、后水囊、水泵和水管,支撑体的两端分别设置前水囊和后水囊,水泵经水管分别连接前水囊和后水囊,前水囊或后水囊连接有安全阀,安全阀的泄液口位于前水囊和后水囊之间,水管上设置有水压表和流量表。
进一步的,围岩应力场裂隙场一体化监测系统还包括连接杆,连接杆包括首杆和若干根加长杆,首杆的前端装配连接应力场监测组件和裂隙场监测组件,首杆的后端可拆卸连接有若干根加长杆。
进一步的,加长杆的一端设置有弹性销轴,加长杆的另一端设置有销孔,首杆的后端设置有销孔或弹性销轴。
进一步的,压头、销孔、弹性销轴在同一条直线上。
进一步的,围岩应力场裂隙场一体化监测系统还包括数据处理主机,数据处理主机分别经数据传输线与油压表、摄像监测主机、水压表和流量表信号连接。
进一步的,裂隙监测仪设置于座体的前端。
进一步的,裂隙监测仪的前端设置有十字准星。
本发明还提供一种围岩应力场裂隙场一体化定量确定方法,应用上述的围岩应力场裂隙场一体化监测系统,裂隙场监测组件为孔壁裂隙场监测组件,包括以下步骤:
步骤一、在需要监测的地点向地下工程结构围岩内部打钻孔,钻孔深度达到测试所需深度并清理钻孔内杂物;
步骤二、将座体、裂隙监测仪推入钻孔内的初始监测点并把初始监测点设为坐标原点,将压头对准指定方向;
步骤三、开启油泵,油泵经高压油管向压力室内注入高压油液,当油压表达到最大值后开始降低时,关闭油泵,停止注入高压油液并读取油压表的最大值,通过油压表的最大值计算初始监测点围岩的应力值,压头回缩至初始位置;
步骤四、裂隙监测仪扫描初始监测点围岩孔壁表面形成图片并将图片数据传输至摄像监测主机,通过分形理论为基础编写的程序识别出图片中裂隙的数目并确定初始监测点围岩孔壁表面裂隙发育程度;
步骤五、将座体、裂隙监测仪继续向钻孔内推移至后续监测点,并按照步骤三和步骤四,计算后续监测点围岩的应力值,记录后续监测点围岩孔壁表面裂隙发育程度;
步骤六、根据各监测点的围岩的应力值和围岩孔壁表面裂隙发育程度,分别建立应力-沿钻孔方向监测距离-裂隙图。
本发明还提供一种围岩应力场裂隙场一体化定量确定方法,应用上述的围岩应力场裂隙场一体化监测系统,裂隙场监测组件为内部裂隙场监测组件,包括以下步骤:
步骤一、在需要监测的地点向地下工程结构围岩内部打钻孔,钻孔深度达到测试所需深度并清理钻孔内杂物;
步骤二、将座体、支撑体(附带前水囊、后水囊)推入钻孔内的初始监测点并把初始监测点设为坐标原点,将压头对准指定方向;
步骤三、开启油泵,油泵经高压油管向压力室内注入高压油液,当油压表达到最大值后开始降低时,关闭油泵,停止注入高压油液并读取油压表的最大值,通过油压表的最大值计算初始监测点围岩的应力值,压头回缩至初始位置;
步骤四、开启水泵,水泵经水管向前水囊、后水囊注水,前水囊、后水囊鼓起贴紧钻孔壁,前水囊、后水囊中水的压力超过安全阀阈值时安全阀打开,水经安全阀的泄液口进入前水囊、后水囊之间的空间并进入围岩内部,通过水压表核对水囊中水的压力刚超过安全阀阈值时开始计时,并通过流量表确定水流量,以此确定单位时间内漏水量,进而确定围岩内部裂隙的发育程度;
步骤五、将座体、支撑体(附带前水囊、后水囊)继续向钻孔内推移至后续监测点,并按照步骤三和步骤四,计算后续监测点围岩的应力值,记录后续监测点围岩内部裂隙发育程度;
步骤六、根据各监测点的围岩的应力值和围岩内部裂隙发育程度,分别建立应力-沿钻孔方向监测距离-裂隙图。
与现有技术相比,本发明的围岩应力场裂隙场一体化监测系统及定量确定方法具有以下特点和优点:
1、本发明的围岩应力场裂隙场一体化监测系统,可同时监测围岩应力场、围岩孔壁表面裂隙场并定量分析,或者同时监测围岩应力场、围岩内部裂隙场并定量分析。
2、本发明的围岩应力场裂隙场一体化定量确定方法,可同时监测围岩应力场、围岩孔壁表面裂隙场并定量分析,或者同时监测围岩应力场、围岩内部裂隙场并定量分析,操作方便, 监测准确,解决目前单一类型的数据监测方案会影响到地下工程结构开挖方案实行的可行性、经济性分析的问题。
结合附图阅读本发明的具体实施方式后,本发明的特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中围岩应力场裂隙场一体化监测系统中应力场监测组件、孔壁裂隙场监测组件的部分结构主视图;
图2为本发明实施例1中围岩应力场裂隙场一体化监测系统中应力场监测组件、孔壁裂隙场监测组件的部分结构侧视图;
图3为本发明实施例1中围岩应力场裂隙场一体化监测系统中首杆与加长杆或加长杆之间的连接示意图;
图4为本发明实施例1中围岩应力场裂隙场一体化监测系统安装示意图;
图5为本发明实施例1和例2中通过围岩应力场裂隙场一体化监测系统方法建立的应力-沿钻孔方向监测距离-裂隙图;
图6为本发明实施例1和例2中弹性阶段加卸载过程应力应变关系图;
图7为本发明实施例1和例2中塑性阶段加卸载过程应力应变关系图;
图8为本发明实施例2中围岩应力场裂隙场一体化监测系统中应力场监测组件、内部裂隙场监测组件的部分结构主视图;
图9为本发明实施例2中围岩应力场裂隙场一体化监测系统中的管线布置示意图;
图10为本发明实施例2中围岩应力场裂隙场一体化监测系统安装示意图;
其中,11、座体,12、压力室,13、滑道,14、压头座,15、压头,16、高压油管,17、油泵,18、油压表,21、裂隙监测仪,22、视频电缆,23、摄像监测主机,31、支撑体,311、泄水孔,312、注水孔,32、前水囊,33、后水囊,34、安全阀,35、水管,351、排水孔,36、水泵,37、水压表,38、流量表,41、首杆,42、加长杆,43、销孔,44、弹性销轴,5、数据处理主机,51、数据传输线,6、钻孔。
具体实施方式
实施例1
如图1至图4所示,本实施例提供一种围岩应力场裂隙场一体化监测系统,围岩应力场裂隙场一体化监测系统包括应力场监测组件、裂隙场监测组件、数据处理主机5和连接杆,裂隙场监测组件为孔壁裂隙场监测组件,应力场监测组件装配连接孔壁裂隙场监测组件。连接杆包括首杆41和若干根加长杆42,首杆41的前端装配连接应力场监测组件和裂隙场监测组件,首杆42的后端可拆卸连接有若干根加长杆42。通过连接加长杆42,使监测组件持续向钻孔6内推进,加长杆42为固定长度,则通过续接加长杆42确定监测组件的具体位置。
具体的,首杆42的后端设置有销孔43或弹性销轴44,加长杆42的一端设置有弹性销轴44,加长杆42的另一端设置有销孔43,弹性销轴44与销孔43卡合连接,以方便操作人员装配连接加长杆42,也方便操作人员拆卸。压头15、销孔43、弹性销轴44在同一条直线上,以便于操作人员控制钻孔6内的压头15的位置。
应力场监测组件包括座体11、高压油管16和油泵17等部件,座体11开设有压力室12和滑道13,压力室12与滑道13连通,滑道13上滑动连接有压头座14,压头座14上设置有压头15,压力室12经高压油管16连接油泵17,高压油管16上设置有油压表18。在油泵17的作用下,高压油经高压油管16进入压力室12,压头座14在滑道13上受压推移,压头座14推动压头15对围岩体进行应力加载。应力测试完毕后,打开油泵17上的泄压阀使油液回流入储油箱中,然后再监测围岩孔壁表面裂隙发育程度。
孔壁裂隙场监测组件包括裂隙监测仪21、视频电缆22和摄像监测主机23等部件,裂隙监测仪21经视频电缆22信号连接摄像监测主机23。裂隙监测仪21设置于座体11的前端,使裂隙监测仪21扫描视角最佳。裂隙监测仪21的前端设置有十字准星,用于调整监测方向。裂隙监测仪21可以扫描钻孔6围岩孔壁表面的裂隙,把扫描的图片数据通过视频电缆22传输到摄像监测主机23。
数据处理主机5分别经数据传输线51与油压表18、摄像监测主机23。通过油压表18的确定监测点围岩的应力值,并通过数据传输线51传输给数据处理主机5,数据处理主机5通过预设的计算公式计算出监测点围岩体的绝对应力。摄像监测主机23把图片处理之后通过人工分辨记录,也可通过数据传输线51传输给数据处理主机5,数据处理主机5通过分形理论为基础编写的程序识别出图片中裂隙的数目并确定监测点围岩孔壁表面裂隙发育程度。
本实施例的围岩应力场裂隙场一体化监测系统,可同时监测围岩应力场、围岩孔壁表面裂隙场并定量分析。
本实施例提供一种围岩应力场裂隙场一体化定量确定方法,应用上述的围岩应力场裂隙场一体化监测系统,包括以下步骤:
步骤一、在需要监测的地点向地下工程结构围岩内部打钻孔6,钻孔6的深度达到测试 所需深度并清理钻孔6内的杂物。
步骤二、将座体11、裂隙监测仪21推入钻孔6内的初始监测点并把初始监测点设为坐标原点,将压头15对准指定方向。
步骤三、开启油泵17,油泵17经高压油管16向压力室12内注入高压油液,当油压表18达到最大值后开始降低时,关闭油泵17,停止注入高压油液并读取油压表18的最大值,通过油压表18的最大值计算初始监测点围岩的应力值,压头15回缩至初始位置。
步骤四、裂隙监测仪21扫描初始监测点围岩孔壁表面形成图片并将图片数据传输至摄像监测主机23,通过分形理论为基础编写的程序识别出图片中裂隙的数目并确定初始监测点围岩孔壁表面裂隙发育程度。
步骤五、将座体11、裂隙监测仪21继续向钻孔6内推移至后续监测点,并按照步骤三和步骤四,计算后续监测点围岩的应力值,记录后续监测点围岩孔壁表面裂隙发育程度。
步骤六、根据各监测点的围岩的应力值和围岩孔壁表面裂隙发育程度,由数据处理主机5绘制成应力-沿钻孔方向监测距离-裂隙图,如图5所示。
步骤七、监测完毕后,关闭摄像监测主机23、数据处理主机5,关闭油泵17,打开油泵17上的泄压阀让压力室12和高压油管16中的油液回流入储油室,最后从钻孔6中取出监测组件,监测结束。
需要说明的是,上述通过应力场监测组件测得的应力为绝对应力,不同深度围岩绝对应力现场实测方法和不同深度围岩绝对应力计算方法具体如下:
(1)不同深度围岩绝对应力现场实测方法
煤(岩)体受采动影响将呈现不同力学状态,在弹性阶段应力与应变呈线性关系,加卸载如图6所示;在塑形阶段应力与应变呈非线性关系,加卸载如图7所示。
钻孔深度处于塑性区,孔壁周围煤(岩)体由钻孔前加载状态变为钻孔后卸载状态,即塑形状态,将按照图7曲线p-s-q路径卸载,此时经压头15加压,将按照q-i-p路径加载,达到p点后随着加载持续,应力将逐渐降低,此时p点应力即为钻孔探测位置的绝对应力大小,依此类推,逐渐确定塑形区不同位置绝对应力大小;
钻孔深度处于弹性区,孔壁周围煤(岩)体由钻孔前加载状态变为钻孔后卸载状态,即弹性状态,将按照图6曲线po′路径卸载,此时经压头15加压,将按照o′p路径加载,p点绝对力值大小为加卸载曲线交叉点应力大小,依此类推,逐渐确定弹性区不同位置绝对应力大小。
将弹性区及塑性区力值大小连线,即可通过现场实测获得不同深度采动应力绝对大小曲线。
(2)不同深度围岩绝对应力计算方法
根据图5中的应力-沿钻孔方向监测距离-裂隙图,将沿钻孔方向监测距离上裂隙数量积分,可得从初始监测点到钻孔中某一监测点(深度为l 0位置处)裂隙数目的总和C A,然后钻孔(钻孔深度为l)内每个监测点监测完毕后所得的总的裂隙的数目为C ,C A与C 的比值即为衡量此段钻孔裂隙发育程度的系数f(D)。通过原岩应力与裂隙发育程度系数建立如下所示公式,此公式是定量确定沿钻孔监测方向某一测点围岩的绝对应力σ值的另一方法。设σ 0为原岩应力,f(c)为裂隙数目随l变化的函数,则有:
Figure PCTCN2018072145-appb-000001
注:
Figure PCTCN2018072145-appb-000002
Figure PCTCN2018072145-appb-000003
绝对应力σ为通过图5中的应力-沿钻孔方向监测距离-裂隙图中的裂隙曲线计算得到的值。
当地下工程围岩开挖时在其周围依次出现处于不同应力-应变状态的破碎区、塑性区、弹性区和原岩应力区。而且地下工程体所处深度的地应力的垂直分量接近或超出岩石的单轴抗压强度时,或者开挖空间不断扩大时破裂区和塑性区会不断扩大,地下工程结构将或者处于不稳定状态或者该处围岩根本不能开挖。所以绘制成图5中的应力-沿钻孔方向监测距离-裂隙图,并且根据测得的应力曲线把岩体依次分为破碎区、塑性区、弹性区和原岩应力区,根据不同区域应力和裂隙的分布可以解决目前单一类型的数据监测方案会影响到地下工程结构开挖方案实行的可行性、经济性分析的问题。为解决受采动影响的地铁隧道等的围岩体控制、煤矿开采程序设计、地下巷道位置合理选择与维护、冲击地压和煤与瓦斯突出预测和防治、承压水上资源安全开采等重大技术问题提供决策依据。
实施例2
本实施例中的围岩应力场裂隙场一体化监测系统,与实施例1中的区别之处在于,裂隙场监测组件为内部裂隙场监测组件,应力场监测组件装配连接内部裂隙场监测组件。内部裂隙场监测组件包括支撑体31、前水囊32、后水囊33、水泵36和水管35等部件,支撑体31的两端分别设置前水囊32和后水囊33,水泵36经水管35分别连接前水囊32和后水囊33,前水囊32或后水囊33连接有安全阀34,安全阀34的泄液口位于前水囊32和后水囊33之间,水管35上设置有水压表37和流量表38。
具体的,支撑体31为两端封闭的套筒,套筒内经隔板分隔成前腔体、中腔体和后腔体,前腔体与中腔体之间的隔板或者后腔体与中腔体之间的隔板设置安全阀34,安全阀34的泄液口位于中腔体,水管35分别连接前腔体和后腔体,套筒上于前腔体的位置包裹前水囊32, 套筒上于后腔体的位置包裹后水囊33,前水囊32包裹的套筒侧壁上开设有若干个泄水孔311,后水囊33包裹的套筒侧壁上开设有若干个泄水孔311,中腔体位置的套筒侧壁上开设有若干个注水孔312。水泵36将水经水管35的端头压入前腔体并从泄水孔311进入前水囊32中,从水管35的排水孔351压入后腔体并从泄水孔311进入后水囊33中。前水囊32、后水囊33鼓起贴紧钻孔6的孔壁以密封钻孔6的两端。前水囊32、后水囊33中水压增大超过安全阀34阈值时,水从安全阀34泄液口进入中腔体,通过中腔体上的注水孔312进入围岩内部。
数据处理主机5分别经数据传输线51与油压表18、水压表37和流量表38信号连接。通过油压表18的确定监测点围岩的应力值,并通过数据传输线51传输给数据处理主机5,数据处理主机5通过预设的计算公式计算出监测点围岩体的绝对应力。通过水压表37核对前水囊32、后水囊33中水的压力刚超过安全阀34阈值时开始计时,并通过流量表38确定水流量,以此确定单位时间内漏水量,进而确定围岩内部裂隙的发育程度。
本实施例的围岩应力场裂隙场一体化监测系统,可同时监测围岩应力场、围岩内部裂隙场并定量分析。
本实施例提供一种围岩应力场裂隙场一体化定量确定方法,应用上述的围岩应力场裂隙场一体化监测系统,包括以下步骤:
步骤一、在需要监测的地点向地下工程结构围岩内部打钻孔6,钻孔6的深度达到测试所需深度并清理钻孔6内的杂物。
步骤二、将座体11、支撑体31(附带前水囊32、后水囊33)推入钻孔6内的初始监测点并把初始监测点设为坐标原点,将压头15对准指定方向。
步骤三、开启油泵17,油泵17经高压油管16向压力室12内注入高压油液,当油压表18达到最大值后开始降低时,关闭油泵17,停止注入高压油液并读取油压表18的最大值,通过油压表18的最大值计算初始监测点围岩的应力值,压头15回缩至初始位置。
步骤四、开启水泵36,水泵36经水管35向前水囊32、后水囊33注水,前水囊32、后水囊33鼓起贴紧钻孔6的内壁,前水囊32、后水囊33中水的压力超过安全阀34阈值时安全阀34打开,水经安全阀34的泄液口进入前水囊32、后水囊33之间的空间并进入围岩内部,通过水压表37核对前水囊32、后水囊33中水的压力刚超过安全阀34的阈值时开始计时,并通过流量表38确定水流量,以此确定单位时间内漏水量,进而确定围岩内部裂隙的发育程度。
步骤五、将座体11、支撑体31(附带前水囊32、后水囊33)继续向钻孔6内推移至后续监测点,并按照步骤三和步骤四,计算后续监测点围岩的应力值,记录后续监测点围岩内部裂隙发育程度。
步骤六、根据各监测点的围岩的应力值和围岩内部裂隙发育程度,由数据处理主机5绘制成应力-沿钻孔方向监测距离-裂隙图,类似图5。
步骤七、监测完毕后,关闭水数据处理主机5,关闭水泵36,打开水泵36上的泄水阀,前水囊32、后水囊33中的水排放完毕,关闭油泵17,打开油泵17上的泄压阀让压力室12和高压油管16中的油液回流入储油室,最后从钻孔6中取出监测组件,监测结束。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种围岩应力场裂隙场一体化监测系统,其特征在于:围岩应力场裂隙场一体化监测系统包括应力场监测组件和裂隙场监测组件,应力场监测组件装配连接裂隙场监测组件;应力场监测组件包括座体、高压油管和油泵,座体开设有压力室和与压力室连通的滑道,滑道上滑动连接有压头座,压头座上设置有压头,压力室经高压油管连接油泵,高压油管上设置有油压表;裂隙场监测组件为孔壁裂隙场监测组件和内部裂隙场监测组件二者中的一个;孔壁裂隙场监测组件包括裂隙监测仪、视频电缆和摄像监测主机,裂隙监测仪经视频电缆信号连接摄像监测主机;内部裂隙场监测组件包括支撑体、前水囊、后水囊、水泵和水管,支撑体的两端分别设置前水囊和后水囊,水泵经水管分别连接前水囊和后水囊,前水囊或后水囊连接有安全阀,安全阀的泄液口位于前水囊和后水囊之间,水管上设置有水压表和流量表。
  2. 根据权利要求1所述的围岩应力场裂隙场一体化监测系统,其特征在于:围岩应力场裂隙场一体化监测系统还包括连接杆,连接杆包括首杆和若干根加长杆,首杆的前端装配连接应力场监测组件和裂隙场监测组件,首杆的后端可拆卸连接有若干根加长杆。
  3. 根据权利要求2所述的围岩应力场裂隙场一体化监测系统,其特征在于:加长杆的一端设置有弹性销轴,加长杆的另一端设置有销孔,首杆的后端设置有销孔或弹性销轴。
  4. 根据权利要求3所述的围岩应力场裂隙场一体化监测系统,其特征在于:压头、销孔、弹性销轴在同一条直线上。
  5. 根据权利要求1所述的围岩应力场裂隙场一体化监测系统,其特征在于:围岩应力场裂隙场一体化监测系统还包括数据处理主机,数据处理主机分别经数据传输线与油压表、摄像监测主机、水压表和流量表信号连接。
  6. 根据权利要求1所述的围岩应力场裂隙场一体化监测系统,其特征在于:裂隙监测仪设置于座体的前端。
  7. 根据权利要求1所述的围岩应力场裂隙场一体化监测系统,其特征在于:裂隙监测仪的前端设置有十字准星。
  8. 根据权利要求1所述的围岩应力场裂隙场一体化监测系统,其特征在于:支撑体为两端封闭的套筒,套筒内经隔板分隔成前腔体、中腔体和后腔体,前腔体与中腔体之间的隔板或者后腔体与中腔体之间的隔板设置安全阀,安全阀的泄液口位于中腔体,水管分别连接前腔体和后腔体,套筒上于前腔体的位置包裹前水囊,套筒上于后腔体的位置包裹后水囊,前水囊包裹的套筒侧壁上开设有若干个泄水孔,后水囊包裹的套筒侧壁上开设有若干个泄水孔,中腔体位置的套筒侧壁上开设有若干个注水孔。
  9. 一种围岩应力场裂隙场一体化定量确定方法,应用权利要求1至8所述的围岩应力场裂隙场一体化监测系统,裂隙场监测组件为孔壁裂隙场监测组件,其特征在于包括以下步骤:
    步骤一、在需要监测的地点向地下工程结构围岩内部打钻孔,钻孔深度达到测试所需深度并清理钻孔内杂物;
    步骤二、将座体、裂隙监测仪推入钻孔内的初始监测点并把初始监测点设为坐标原点,将压头对准指定方向;
    步骤三、开启油泵,油泵经高压油管向压力室内注入高压油液,当油压表达到最大值后开始降低时,关闭油泵,停止注入高压油液并读取油压表的最大值,通过油压表的最大值计算初始监测点围岩的应力值,压头回缩至初始位置;
    步骤四、裂隙监测仪扫描初始监测点围岩孔壁表面形成图片并将图片数据传输至摄像监测主机,通过分形理论为基础编写的程序识别出图片中裂隙的数目并确定初始监测点围岩孔壁表面裂隙发育程度;
    步骤五、将座体、裂隙监测仪继续向钻孔内推移至后续监测点,并按照步骤三和步骤四,计算后续监测点围岩的应力值,记录后续监测点围岩孔壁表面裂隙发育程度;
    步骤六、根据各监测点的围岩的应力值和围岩孔壁表面裂隙发育程度,建立应力-沿钻孔方向监测距离-裂隙图。
  10. 一种围岩应力场裂隙场一体化定量确定方法,应用权利要求1至8所述的围岩应力场裂隙场一体化监测系统,裂隙场监测组件为内部裂隙场监测组件,其特征在于包括以下步骤:
    步骤一、在需要监测的地点向地下工程结构围岩内部打钻孔,钻孔深度达到测试所需深度并清理钻孔内杂物;
    步骤二、将座体、支撑体(附带前水囊、后水囊)推入钻孔内的初始监测点并把初始监测点设为坐标原点,将压头对准指定方向;
    步骤三、开启油泵,油泵经高压油管向压力室内注入高压油液,当油压表达到最大值后开始降低时,关闭油泵,停止注入高压油液并读取油压表的最大值,通过油压表的最大值计算初始监测点围岩的应力值,压头回缩至初始位置;
    步骤四、开启水泵,水泵经水管向前水囊、后水囊注水,前水囊、后水囊鼓起贴紧钻孔壁,前水囊、后水囊中水的压力超过安全阀阈值时安全阀打开,水经安全阀的泄液口进入前水囊、后水囊之间的空间并进入围岩内部,通过水压表核对水囊中水的压力刚超过安全阀阈值时开始计时,并通过流量表确定水流量,以此确定单位时间内漏水量,进而确定围岩内部裂隙的发育程度;
    步骤五、将座体、支撑体(附带前水囊、后水囊)继续向钻孔内推移至后续监测点,并按照步骤三和步骤四,计算后续监测点围岩的应力值,记录后续监测点围岩内部裂隙发育程度;
    步骤六、根据各监测点的围岩的应力值和围岩内部裂隙发育程度,分别建立应力-沿钻孔方向监测距离-裂隙图。
PCT/CN2018/072145 2017-06-28 2018-01-10 围岩应力场裂隙场一体化监测系统及定量确定方法 WO2019000906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710504195.7A CN107478357A (zh) 2017-06-28 2017-06-28 围岩应力场裂隙场一体化监测系统及定量确定方法
CN201710504195.7 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019000906A1 true WO2019000906A1 (zh) 2019-01-03

Family

ID=60596012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072145 WO2019000906A1 (zh) 2017-06-28 2018-01-10 围岩应力场裂隙场一体化监测系统及定量确定方法

Country Status (2)

Country Link
CN (1) CN107478357A (zh)
WO (1) WO2019000906A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478357A (zh) * 2017-06-28 2017-12-15 山东科技大学 围岩应力场裂隙场一体化监测系统及定量确定方法
CN108593174B (zh) * 2018-05-08 2024-01-02 安徽理工大学 一种煤岩体采动应力监测包体
CN110984968A (zh) * 2019-12-16 2020-04-10 山东科技大学 一种随钻卸压监测方法
CN114199435A (zh) * 2021-12-10 2022-03-18 黑龙江科技大学 煤矿地下开采巷道围岩应力测试、裂隙窥视装置、系统及方法
CN116878577B (zh) * 2023-07-19 2024-02-27 山东大学 一种隧道钻爆法原位改扩建工程的监测方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220160A (ja) * 1997-02-05 1998-08-18 Sanko Consultant Kk 水圧破砕式応力測定方法および装置
JPH11108775A (ja) * 1997-09-30 1999-04-23 Techno Togo:Kk 岩盤の応力変化測定方法
JP2005037313A (ja) * 2003-07-18 2005-02-10 Ube Techno Enji Kk 応力測定プローブ
CN101514926A (zh) * 2009-03-20 2009-08-26 中国矿业大学 煤岩体地应力连续测试装置及方法
CN103512693A (zh) * 2013-10-08 2014-01-15 中国矿业大学 煤岩体应力定向监测方法及装置
CN104132761A (zh) * 2014-08-04 2014-11-05 中国矿业大学 多点煤岩体应力实时监测装置及方法
CN105716747A (zh) * 2016-02-18 2016-06-29 中国矿业大学 矿井下岩层地应力快速测量装备及方法
CN105758561A (zh) * 2016-04-05 2016-07-13 中国矿业大学 基于可视化均布水压致裂地应力测量装置及方法
CN107478357A (zh) * 2017-06-28 2017-12-15 山东科技大学 围岩应力场裂隙场一体化监测系统及定量确定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH682182A5 (zh) * 1990-05-31 1993-07-30 Kk Holding Ag
CN201757686U (zh) * 2010-01-23 2011-03-09 中国矿业大学 一种水压致裂测量地应力装置
CN103089254B (zh) * 2013-01-23 2015-10-28 重庆大学 多场耦合煤层气开采物理模拟试验管
CN103900751B (zh) * 2013-11-28 2016-02-24 长江水利委员会长江科学院 绳索取芯钻杆双回路水压致裂法地应力测试装置及测试方法
CN104020192B (zh) * 2014-06-23 2017-02-01 中国矿业大学 瓦斯煤水力压裂裂隙场时空监测装置及方法
CN104632075B (zh) * 2014-12-16 2016-09-21 山东科技大学 一种用于覆岩裂隙探测的钻测一体化系统及方法
CN106153857B (zh) * 2016-06-16 2017-12-19 中国矿业大学(北京) 一种多资源协调开采模拟实验台及应用方法
CN106525292B (zh) * 2016-11-24 2018-12-21 中国矿业大学 一种位态可调的围岩应力测量装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220160A (ja) * 1997-02-05 1998-08-18 Sanko Consultant Kk 水圧破砕式応力測定方法および装置
JPH11108775A (ja) * 1997-09-30 1999-04-23 Techno Togo:Kk 岩盤の応力変化測定方法
JP2005037313A (ja) * 2003-07-18 2005-02-10 Ube Techno Enji Kk 応力測定プローブ
CN101514926A (zh) * 2009-03-20 2009-08-26 中国矿业大学 煤岩体地应力连续测试装置及方法
CN103512693A (zh) * 2013-10-08 2014-01-15 中国矿业大学 煤岩体应力定向监测方法及装置
CN104132761A (zh) * 2014-08-04 2014-11-05 中国矿业大学 多点煤岩体应力实时监测装置及方法
CN105716747A (zh) * 2016-02-18 2016-06-29 中国矿业大学 矿井下岩层地应力快速测量装备及方法
CN105758561A (zh) * 2016-04-05 2016-07-13 中国矿业大学 基于可视化均布水压致裂地应力测量装置及方法
CN107478357A (zh) * 2017-06-28 2017-12-15 山东科技大学 围岩应力场裂隙场一体化监测系统及定量确定方法

Also Published As

Publication number Publication date
CN107478357A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2019000906A1 (zh) 围岩应力场裂隙场一体化监测系统及定量确定方法
Mair et al. Pressuremeter testing: methods and interpretation
Papamichos et al. Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion
Gao et al. Numerical investigation of the scale effect and anisotropy in the strength and deformability of coal
JP5175855B2 (ja) 低温熱亀裂現象を利用した岩盤内の初期応力測定方法及び装置
Kang et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China
WO2016019824A1 (zh) 多点煤岩体应力实时监测装置及方法
CN105716747A (zh) 矿井下岩层地应力快速测量装备及方法
Zeng et al. Experimental investigation on mining-induced strain and failure characteristics of rock masses of mine floor
CN104005747B (zh) 一种围压水力压裂实验装置及其使用方法
CN106596290A (zh) 岩体结构面现场水力耦合直剪试验结构装置及构建方法
CN110174503B (zh) 一种基于隧道变形确定围岩弱化发展范围的方法
CN107703031A (zh) 一种气压驱动松散体注浆模拟试验装置及试验方法
US10550687B2 (en) Methods for analyzing formation tester pretest data
He et al. Leakage path prediction model and gas tightness assessment method for gas storage salt cavern wellbores
Wu et al. Stability of borehole with breakouts–an experimental and numerical modelling study
CN116256237A (zh) 一种动态检测多尺度裂缝激活状态的系统以及方法
CN113281176B (zh) 水压致裂法测量结果的校验方法及加载装置
Hajiabadi et al. An evaluation of viscous deformation of chalk on wellbore stability
Rezaei et al. Comparison between the in situ tests’ data and empirical equations for estimation of deformation modulus of rock mass
Lan et al. Experimental investigation examining influence of pump rates on horizontal borehole stability in sand
Ask et al. A quadruple packer tool for conducting hydraulic stress measurements in mines and other high stress settings
KR101847079B1 (ko) 코어 손상을 이용한 현지응력 평가방법
Gray et al. Factors influencing caving
Indraratna et al. Evaluation of jointed rock permeability using a high pressure triaxial apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824865

Country of ref document: EP

Kind code of ref document: A1