CN106596290A - 岩体结构面现场水力耦合直剪试验结构装置及构建方法 - Google Patents

岩体结构面现场水力耦合直剪试验结构装置及构建方法 Download PDF

Info

Publication number
CN106596290A
CN106596290A CN201611048698.XA CN201611048698A CN106596290A CN 106596290 A CN106596290 A CN 106596290A CN 201611048698 A CN201611048698 A CN 201611048698A CN 106596290 A CN106596290 A CN 106596290A
Authority
CN
China
Prior art keywords
cabin
test
jack
water pressure
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611048698.XA
Other languages
English (en)
Other versions
CN106596290B (zh
Inventor
邬爱清
张宜虎
王媛
刘元坤
钟作武
范雷
卢波
熊诗湖
唐爱松
韩晓玉
黄书岭
庞正江
杨宜
谢斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Original Assignee
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changjiang River Scientific Research Institute Changjiang Water Resources Commission filed Critical Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority to CN201611048698.XA priority Critical patent/CN106596290B/zh
Publication of CN106596290A publication Critical patent/CN106596290A/zh
Application granted granted Critical
Publication of CN106596290B publication Critical patent/CN106596290B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及岩体结构面现场水力耦合直剪试验结构装置,包括筒式钢结构高水压试验舱、传力钢板、扁平千斤顶、用于安装试验岩体的剪切盒、位于剪切盒两侧且固定在筒式钢结构高水压试验舱底部的两个反力支撑钢板、固定在筒式钢结构高水压试验舱顶部内侧上的第一传立柱、固定在第一传立柱底部与剪切盒顶部之间的试验舱内竖向千斤顶、顶端与试验室顶面连接的第二传立柱、设置在筒式钢结构高水压试验舱顶部外侧与第二传立柱底端之间的舱外反力千斤顶;筒式钢结构高水压试验舱外还设有法向荷载控制系统、差异式油压倍增器、剪切荷载控制系统;本发明不受试验部位与时间的限制,能够保证准确真实地测定水下岩体结构面抗剪强度参数指标。

Description

岩体结构面现场水力耦合直剪试验结构装置及构建方法
技术领域
本发明涉及现场岩体结构面力学试验技术领域,具体涉及一种岩体结构面现场水力耦合直剪试验结构装置及构建方法。
背景技术
现场岩体结构面直剪试验是通过一种在现场加工试样进行法向和切向加载获得岩体结构面抗剪强度参数方法,所获得的岩体结构面抗剪强度参数指标对工程设计具有指导作用。在我国西部水利水电工程建设过程中,形成了众多的高坝大库,这些水库在运行期间,库水以下岩体通常处于一定的水压作用条件下,如果岩体中存在裂隙、软弱夹层等结构面,往往会成为库水或地下水的渗流通道。与无水条件相比,水压力与渗流作用对结构面的抗剪强度特性产生显著影响。特别是高山峡谷区的高坝大库坝基岩体以及库坡岩体中存在的结构面在长期运行过程中,将承受库水压力与地下水渗流的长期作用,而水下岩体结构面抗剪强度特性的劣化会引起峡谷较明显的谷幅变形,严重影响高坝的工作性态和长期安全运行。
目前的现场岩体结构面直剪试验方法均在无水压无渗流条件下进行,所获得的抗剪强度参数无法与工程运行期间岩体结构面具有一定水压条件或一定渗流条件下的抗剪强度参数相匹配。
发明内容
本发明的目的在于提供一种岩体结构面现场水力耦合直剪试验结构装置及构建方法,该装置和方法能实现有水压有渗流条件下的岩体结构面直剪试验,获得真实反映水下岩体结构面抗剪强度参数指标,可为工程岩体结构面水力耦合变形强度特性研究提供有效、可靠手段。
为解决上述技术问题,本发明公开的一种岩体结构面现场水力耦合直剪试验结构装置,其特征在于,它包括筒式钢结构高水压试验舱、传力钢板、扁平千斤顶、用于安装试验岩体的剪切盒、位于剪切盒两侧且固定在筒式钢结构高水压试验舱底部的两个反力支撑钢板、固定在筒式钢结构高水压试验舱顶部内侧上的第一传立柱、设置在第一传立柱底部与剪切盒顶部之间的试验舱内竖向千斤顶、顶端与试验室顶面连接的第二传立柱、设置在筒式钢结构高水压试验舱顶部外侧与第二传立柱底端之间的舱外反力千斤顶;所述筒式钢结构高水压试验舱外还设有法向荷载控制系统、差异式油压倍增器、剪切荷载控制系统;
所述两个反力支撑钢板与剪切盒的下部侧面之间均设置有传力钢板,所述剪切盒的上部侧面与一个反力支撑钢板之间设置有扁平千斤顶,所述法向荷载控制系统的液压接口连接差异式油压倍增器的第一液压接口,试验舱内竖向千斤顶的进油口通过舱内试验竖向加压系统管路的进油管连接差异式油压倍增器的第二液压接口,试验舱内竖向千斤顶的出油口通过舱内试验竖向加压系统管路的出油管接出筒式钢结构高水压试验舱外,扁平千斤顶的进油口通过舱内试验切向加压系统管路的进油管连接剪切荷载控制系统的液压接口,扁平千斤顶的出油口通过舱内试验切向加压系统管路的出油管接出筒式钢结构高水压试验舱外,舱外反力千斤顶的进油口通过舱外竖向荷载加压管路的进油管连接差异式油压倍增器的第三液压接口,舱外反力千斤顶的出油口连接舱外竖向荷载加压管路的出油管,筒式钢结构高水压试验舱内设有试验舱充水管和数据采集通讯总成,所述筒式钢结构高水压试验舱的顶部还设有试验舱排气管,试验舱充水管和试验舱排气管接出筒式钢结构高水压试验舱外;
所述剪切盒的顶面设有滚轴排,滚轴排上设有钢垫板,滚轴排上的钢垫板能与试验舱内竖向千斤顶的底部贴合;
所述滚轴排上的钢垫板上设有水下位移传感器,剪切盒顶部侧面也设有水下位移传感器,水下位移传感器的信号输出端连接数据采集通讯总成的信号输入端。
一种上述岩体结构面现场水力耦合直剪试验结构的构建方法,其特征在于,它包括如下步骤:
步骤1:选定构建筒式钢结构高水压试验舱的隧洞部位,对隧洞的顶板和底板松动围岩进行清理,然后在隧洞的底板浇筑混凝土底板;
步骤2:在混凝土底板上安装钢底板,并在钢底板上安装试验舱充水管、数据采集通讯总成、舱内试验竖向加压系统管路和舱内试验切向加压系统管路的安装接口,将两个反力支撑钢板固定于钢底板上;
步骤3:将放置有岩体结构面试样的剪切盒放置于钢底板上,并采用传力钢板将剪切盒固定于两个反力支撑钢板之间;
步骤4:在剪切盒的上部侧面与一个反力支撑钢板之间安装扁平千斤顶,在剪切盒的顶部与试验舱内竖向千斤顶底部的钢垫板之间设置滚轴排,在试验舱内竖向千斤顶顶部依次设置钢垫板和第一传立柱,在筒式钢结构高水压试验舱顶部内侧上固定舱内千斤顶定位钢板,第一传立柱的顶部与舱内千斤顶定位钢板贴合,在步骤2安装的各个接口上对应安装试验舱充水管、数据采集通讯总成、舱内试验竖向加压系统管路和舱内试验切向加压系统管路;
步骤5:分层安装多个环形钢构件,相邻两个环形钢构件之间通过定位螺栓固定连接,相邻两个环形钢构件之间设有止水密封条;最顶部的环形钢构件通过定位螺栓与钢盖板固定连接,最顶部的环形钢构件与钢盖板之间设有止水密封条,最底部的环形钢构件通过定位螺栓与钢底板固定连接,最底部的环形钢构件与钢底板之间设有止水密封条;
步骤6:在所述筒式钢结构高水压试验舱顶部外侧固定舱外千斤顶定位钢板,在舱外千斤顶定位钢板顶部安装舱外反力千斤顶,在舱外反力千斤顶顶部与试验室顶面之间依次设置钢垫板、第二传立柱和另一个钢垫板;
步骤7:将法向荷载控制系统的液压接口连接差异式油压倍增器的第一液压接口,将试验舱内竖向千斤顶的进油口通过舱内试验竖向加压系统管路的进油管连接差异式油压倍增器的第二液压接口,将试验舱内竖向千斤顶的出油口通过舱内试验竖向加压系统管路的出油管接出筒式钢结构高水压试验舱外,将扁平千斤顶的进油口通过舱内试验切向加压系统管路的进油管连接剪切荷载控制系统的液压接口,将扁平千斤顶的出油口通过舱内试验切向加压系统管路的出油管接出筒式钢结构高水压试验舱外,将舱外反力千斤顶的进油口通过舱外竖向荷载加压管路的进油管连接差异式油压倍增器的第三液压接口,将舱外反力千斤顶的出油口连接舱外竖向荷载加压管路的出油管,在所述筒式钢结构高水压试验舱的顶部设置试验舱排气管;
步骤8:通过试验舱充水管对筒式钢结构高水压试验舱进行充水,使得筒式钢结构高水压试验舱中的水压力达到指定压力,并进行稳压;
步骤9:启动法向荷载控制系统和剪切荷载控制系统进行具有预设水压条件下的岩体结构面直剪试验。
本发明通过与现场岩体结构面直剪试验相配合,解决了具有一定水压条件下的岩体结构面直剪试验问题;突破传统现场岩体结构面直剪试验在有水压条件下无法进行试验的局限,不受试验部位与时间的限制,能够保证准确真实地测定水下岩体结构面抗剪强度参数指标,为高坝坝基、涉水边坡和地下洞室设计与稳定评价提供基础数据。并为工程岩体结构面水力耦合变形强度特性研究提供有效、可靠手段。
本发明突破传统现场岩体结构面直剪试验在有水压条件下无法进行试验的局限,不受试验部位与时间的限制,能够保证准确真实地测定水下岩体结构面抗剪强度参数指标。同时该装置具有拆卸、重复使用的特点。
附图说明
图1为本发明的结构示意图;
图2为筒式钢结构高水压试验舱内除去钢盖板后的俯视结构示意图;
其中,1—混凝土底板、2—钢底板、3—传力钢板、4—剪切盒、5—第一传立柱、5.1—第二传立柱、6—反力支撑钢板、7—固定螺栓、8—扁平千斤顶、9—滚轴排、10—钢垫板、11—试验舱内竖向千斤顶、12—舱内千斤顶定位钢板、13—水下位移传感器、14—环形钢构件、15—定位螺栓、16—钢盖板、17—舱内试验竖向加压系统管路、18—舱内试验切向加压系统管路、19—舱外竖向荷载加压管路、20—试验舱排气管、21—舱外千斤顶定位钢板、22—止水密封条、24—试验舱充水管、25—数据采集通讯总成、26—差异式油压倍增器、27—法向荷载控制系统、28—剪切荷载控制系统、29—试验室顶面。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细说明:
本发明岩体结构面现场水力耦合直剪试验结构装置,它包括筒式钢结构高水压试验舱、传力钢板3、扁平千斤顶8、用于安装试验岩体的剪切盒4、位于剪切盒4两侧且固定在筒式钢结构高水压试验舱底部的两个反力支撑钢板6(两个反力支撑钢板6均通过固定螺栓7固定在筒式钢结构高水压试验舱底部)、固定在筒式钢结构高水压试验舱顶部内侧上的第一传立柱5、设置在第一传立柱5底部与剪切盒4顶部之间的试验舱内竖向千斤顶11、顶端与试验室顶面29连接的第二传立柱5.1、设置在筒式钢结构高水压试验舱顶部外侧与第二传立柱5.1底端之间的舱外反力千斤顶23(舱外反力千斤顶23和第二传立柱5.1均有两个);所述筒式钢结构高水压试验舱外还设有法向荷载控制系统27、差异式油压倍增器26、剪切荷载控制系统28;
所述两个反力支撑钢板6与剪切盒4的下部侧面之间均设置有传力钢板3,所述剪切盒4的上部侧面与一个反力支撑钢板6之间设置有扁平千斤顶8,所述法向荷载控制系统27的液压接口连接差异式油压倍增器26的第一液压接口,试验舱内竖向千斤顶11的进油口通过舱内试验竖向加压系统管路17的进油管连接差异式油压倍增器26的第二液压接口,试验舱内竖向千斤顶11的出油口通过舱内试验竖向加压系统管路17的出油管接出筒式钢结构高水压试验舱外,扁平千斤顶8的进油口通过舱内试验切向加压系统管路18的进油管连接剪切荷载控制系统28的液压接口,扁平千斤顶8的出油口通过舱内试验切向加压系统管路18的出油管接出筒式钢结构高水压试验舱外,舱外反力千斤顶23的进油口通过舱外竖向荷载加压管路19的进油管连接差异式油压倍增器26的第三液压接口,舱外反力千斤顶23的出油口连接舱外竖向荷载加压管路19的出油管,筒式钢结构高水压试验舱内设有试验舱充水管24和数据采集通讯总成25,所述筒式钢结构高水压试验舱的顶部还设有试验舱排气管20,试验舱充水管24和试验舱排气管20接出筒式钢结构高水压试验舱外;
所述剪切盒4的顶面设有滚轴排9,滚轴排9上设有钢垫板10,滚轴排9上的钢垫板10能与试验舱内竖向千斤顶11的底部贴合;滚轴排9用于降低试样顶部摩阻力,保证施加剪切荷载时,试样沿水平方向自由变形;
所述滚轴排9上的钢垫板10上设有水下位移传感器13,剪切盒4顶部侧面也设有水下位移传感器13,水下位移传感器13的信号输出端连接数据采集通讯总成25的信号输入端。
数据采集通讯总成25的信号输出端用于连接电脑,电脑软件控制数据采集。所述扁平千斤顶8位于传力钢板3的上方。差异式油压倍增器26用于保证试验加卸载过程中,试验舱外反力千斤顶23与舱内竖向荷载千斤顶11压力之间保持一定的压力差,从而保证试验舱系统的稳定。
上述技术方案中,由于试验时实验舱内存在较高水压力,筒式钢结构可使构件受力均匀,此外,圆形也便于止水。
上述技术方案中,数据采集通讯总成25用于采集法向变形量和剪切变形量。试验舱排气管20用于在试密封验舱内充水时,顺利排出空气。
上述技术方案中,水下位移传感器13用于测量试验的法向变形量和剪切变形量,并将其通过数据采集通讯总成25传输给电脑。
上述技术方案中,所述试验室顶面29与第二传立柱5.1顶部之间设有钢垫板10,第二传立柱5.1底部与舱外反力千斤顶23之间也设有钢垫板10,第一传立柱5的底部与试验舱内竖向千斤顶11之间也设有钢垫板10。传立柱为壁厚2cm的中空钢筒,千斤顶推头需要钢垫板与传立柱接触传力。
上述技术方案中,所述筒式钢结构高水压试验舱顶部外侧固定有舱外千斤顶定位钢板21,所述舱外反力千斤顶23的底部安装在舱外千斤顶定位钢板21上。
上述技术方案中,所述筒式钢结构高水压试验舱顶部内侧上固定有舱内千斤顶定位钢板12,第一传立柱5的顶部安装在舱内千斤顶定位钢板12上。
上述技术方案中,所述筒式钢结构高水压试验舱的底部设置在混凝土底板1上。试验平洞洞底为开挖裸露岩石,凹凸不平,混凝土底板起到找平作用。
上述技术方案中,所述筒式钢结构高水压试验舱包括钢盖板16、钢底板2和多个环形钢构件14(采用Q345钢),所述多个环形钢构件14同轴搭建形成筒式钢结构高水压试验舱的侧壁,相邻两个环形钢构件14之间通过定位螺栓15固定连接,相邻两个环形钢构件14之间设有止水密封条22(U型密封条);最顶部的环形钢构件14通过定位螺栓15与钢盖板16固定连接,最顶部的环形钢构件14与钢盖板16之间设有止水密封条22,最底部的环形钢构件14通过定位螺栓15与钢底板2固定连接,最底部的环形钢构件14与钢底板2之间设有止水密封条22。
筒式钢结构高水压试验舱采用上述结构具有如下效果:
1、每组试验需完成6个试样,采用多个环形钢构件同轴搭建,方便试验设备重复安装拆卸;
2、采用定位螺栓,以便在安装过程中快速准确定位;
3、钢构件之间采用微向内倾斜的U型止水槽内塞止水密封条的止水方式,可使钢构件所受荷载越大时止水密封条被压越紧密,止水效果越好。
一种上述岩体结构面现场水力耦合直剪试验结构的构建方法,其特征在于,它包括如下步骤:
步骤1:选定构建筒式钢结构高水压试验舱的隧洞部位,对隧洞的顶板和底板松动围岩进行清理,然后在隧洞的底板采用C30混凝土浇筑混凝土底板1;
步骤2:在混凝土底板1上安装钢底板2,并在钢底板2上安装试验舱充水管24、数据采集通讯总成25、舱内试验竖向加压系统管路17和舱内试验切向加压系统管路18的安装接口,将两个反力支撑钢板6固定于钢底板2上;
步骤3:将放置有岩体结构面试样的剪切盒4放置于钢底板2上,并采用传力钢板3将剪切盒4固定于两个反力支撑钢板6之间;
步骤4:在剪切盒4的上部侧面与一个反力支撑钢板6之间安装扁平千斤顶8(即为水平方向千斤顶),在剪切盒4的顶部与试验舱内竖向千斤顶11底部的钢垫板10之间设置滚轴排9,在试验舱内竖向千斤顶11顶部依次设置钢垫板10和第一传立柱5,在筒式钢结构高水压试验舱顶部内侧上固定舱内千斤顶定位钢板12,第一传立柱5的顶部与舱内千斤顶定位钢板12贴合,在步骤2安装的各个接口上对应安装试验舱充水管24、数据采集通讯总成25、舱内试验竖向加压系统管路17和舱内试验切向加压系统管路18;
步骤5:分层安装多个环形钢构件14,相邻两个环形钢构件14之间通过定位螺栓15固定连接,相邻两个环形钢构件14之间设有止水密封条22;最顶部的环形钢构件14通过定位螺栓15与钢盖板16固定连接,最顶部的环形钢构件14与钢盖板16之间设有止水密封条22,最底部的环形钢构件14通过定位螺栓15与钢底板2固定连接,最底部的环形钢构件14与钢底板2之间设有止水密封条22;
步骤6:在所述筒式钢结构高水压试验舱顶部外侧固定舱外千斤顶定位钢板21,在舱外千斤顶定位钢板21顶部安装舱外反力千斤顶23,在舱外反力千斤顶23顶部与试验室顶面29之间依次设置钢垫板10、第二传立柱5.1和另一个钢垫板10;
步骤7:将法向荷载控制系统27的液压接口连接差异式油压倍增器26的第一液压接口,将试验舱内竖向千斤顶11的进油口通过舱内试验竖向加压系统管路17的进油管连接差异式油压倍增器26的第二液压接口,将试验舱内竖向千斤顶11的出油口通过舱内试验竖向加压系统管路17的出油管接出筒式钢结构高水压试验舱外,将扁平千斤顶8的进油口通过舱内试验切向加压系统管路18的进油管连接剪切荷载控制系统28的液压接口,将扁平千斤顶8的出油口通过舱内试验切向加压系统管路18的出油管接出筒式钢结构高水压试验舱外,将舱外反力千斤顶23的进油口通过舱外竖向荷载加压管路19的进油管连接差异式油压倍增器26的第三液压接口,将舱外反力千斤顶23的出油口连接舱外竖向荷载加压管路19的出油管,在所述筒式钢结构高水压试验舱的顶部设置试验舱排气管20;
步骤8:通过试验舱充水管24对筒式钢结构高水压试验舱进行充水,使得筒式钢结构高水压试验舱中的水压力达到指定压力,并进行稳压;
步骤9:启动法向荷载控制系统27和剪切荷载控制系统28进行具有预设水压条件下的岩体结构面直剪试验。
岩体结构面直剪试验的试验过程为:在试验系统全部安装后,试验舱内注水并达到预定水压力值后,通过试验舱内竖向千斤顶11按预先设定的法向荷载,分2~3级施加,法向载荷每次施加完毕后通过水下位移传感器13立即测读法向位移,5min后再测读一次法向位移后施下一级法向载荷,按同样的方法施加法向荷载直至预定值,法向荷载施加完毕试样变形稳定后,通过扁平千斤顶8按预估最大剪切载荷分10~12级施加剪切荷载,每级载荷施加后通过水下位移传感器13立即测读剪切位移和法向位移,5min后再测读一次剪切位移和法向位移即可施加下一级剪切载荷,当剪切载荷加不上或无法稳定时,认为试样破坏,试验结束。
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (9)

1.一种岩体结构面现场水力耦合直剪试验结构装置,其特征在于,它包括筒式钢结构高水压试验舱、传力钢板(3)、扁平千斤顶(8)、用于安装试验岩体的剪切盒(4)、位于剪切盒(4)两侧且固定在筒式钢结构高水压试验舱底部的两个反力支撑钢板(6)、固定在筒式钢结构高水压试验舱顶部内侧上的第一传立柱(5)、设置在第一传立柱(5)底部与剪切盒(4)顶部之间的试验舱内竖向千斤顶(11)、顶端与试验室顶面(29)连接的第二传立柱(5.1)、设置在筒式钢结构高水压试验舱顶部外侧与第二传立柱(5.1)底端之间的舱外反力千斤顶(23);所述筒式钢结构高水压试验舱外还设有法向荷载控制系统(27)、差异式油压倍增器(26)、剪切荷载控制系统(28);
所述两个反力支撑钢板(6)与剪切盒(4)的下部侧面之间均设置有传力钢板(3),所述剪切盒(4)的上部侧面与一个反力支撑钢板(6)之间设置有扁平千斤顶(8),所述法向荷载控制系统(27)的液压接口连接差异式油压倍增器(26)的第一液压接口,试验舱内竖向千斤顶(11)的进油口通过舱内试验竖向加压系统管路(17)的进油管连接差异式油压倍增器(26)的第二液压接口,试验舱内竖向千斤顶(11)的出油口通过舱内试验竖向加压系统管路(17)的出油管接出筒式钢结构高水压试验舱外,扁平千斤顶(8)的进油口通过舱内试验切向加压系统管路(18)的进油管连接剪切荷载控制系统(28)的液压接口,扁平千斤顶(8)的出油口通过舱内试验切向加压系统管路(18)的出油管接出筒式钢结构高水压试验舱外,舱外反力千斤顶(23)的进油口通过舱外竖向荷载加压管路(19)的进油管连接差异式油压倍增器(26)的第三液压接口,舱外反力千斤顶(23)的出油口连接舱外竖向荷载加压管路(19)的出油管,筒式钢结构高水压试验舱内设有试验舱充水管(24)和数据采集通讯总成(25),所述筒式钢结构高水压试验舱的顶部还设有试验舱排气管(20),试验舱充水管(24)和试验舱排气管(20)接出筒式钢结构高水压试验舱外;
所述剪切盒(4)的顶面设有滚轴排(9),滚轴排(9)上设有钢垫板(10),滚轴排(9)上的钢垫板(10)能与试验舱内竖向千斤顶(11)的底部贴合;
所述滚轴排(9)上的钢垫板(10)上设有水下位移传感器(13),剪切盒(4)顶部侧面也设有水下位移传感器(13),水下位移传感器(13)的信号输出端连接数据采集通讯总成(25)的信号输入端。
2.根据权利要求1所述的岩体结构面现场水力耦合直剪试验结构装置,其特征在于:所述试验室顶面(29)与第二传立柱(5.1)顶部之间设有钢垫板(10),第二传立柱(5.1)底部与舱外反力千斤顶(23)之间也设有钢垫板(10),第一传立柱(5)的底部与试验舱内竖向千斤顶(11)之间也设有钢垫板(10)。
3.根据权利要求1所述的岩体结构面现场水力耦合直剪试验结构装置,其特征在于:所述筒式钢结构高水压试验舱顶部外侧固定有舱外千斤顶定位钢板(21),所述舱外反力千斤顶(23)的底部安装在舱外千斤顶定位钢板(21)上。
4.根据权利要求1所述的岩体结构面现场水力耦合直剪试验结构装置,其特征在于:所述筒式钢结构高水压试验舱顶部内侧上固定有舱内千斤顶定位钢板(12),第一传立柱(5)的顶部安装在舱内千斤顶定位钢板(12)上。
5.根据权利要求1所述的岩体结构面现场水力耦合直剪试验结构装置,其特征在于:所述筒式钢结构高水压试验舱的底部设置在混凝土底板(1)上。
6.根据权利要求1所述的岩体结构面现场水力耦合直剪试验结构装置,其特征在于:所述筒式钢结构高水压试验舱包括钢盖板(16)、钢底板(2)和多个环形钢构件(14),所述多个环形钢构件(14)同轴搭建形成筒式钢结构高水压试验舱的侧壁,相邻两个环形钢构件(14)之间通过定位螺栓(15)固定连接,相邻两个环形钢构件(14)之间设有止水密封条(22);最顶部的环形钢构件(14)通过定位螺栓(15)与钢盖板(16)固定连接,最顶部的环形钢构件(14)与钢盖板(16)之间设有止水密封条(22),最底部的环形钢构件(14)通过定位螺栓(15)与钢底板(2)固定连接,最底部的环形钢构件(14)与钢底板(2)之间设有止水密封条(22)。
7.根据权利要求1所述的岩体结构面现场水力耦合直剪试验结构装置,其特征在于:所述扁平千斤顶(8)位于传力钢板(3)的上方。
8.一种权利要求1所述岩体结构面现场水力耦合直剪试验结构的构建方法,其特征在于,它包括如下步骤:
步骤1:选定构建筒式钢结构高水压试验舱的隧洞部位,对隧洞的顶板和底板松动围岩进行清理,然后在隧洞的底板浇筑混凝土底板(1);
步骤2:在混凝土底板(1)上安装钢底板(2),并在钢底板(2)上安装试验舱充水管(24)、数据采集通讯总成(25)、舱内试验竖向加压系统管路(17)和舱内试验切向加压系统管路(18)的安装接口,将两个反力支撑钢板(6)固定于钢底板(2)上;
步骤3:将放置有岩体结构面试样的剪切盒(4)放置于钢底板(2)上,并采用传力钢板(3)将剪切盒(4)固定于两个反力支撑钢板(6)之间;
步骤4:在剪切盒(4)的上部侧面与一个反力支撑钢板(6)之间安装扁平千斤顶(8),在剪切盒(4)的顶部与试验舱内竖向千斤顶(11)底部的钢垫板(10)之间设置滚轴排(9),在试验舱内竖向千斤顶(11)顶部依次设置钢垫板(10)和第一传立柱(5),在筒式钢结构高水压试验舱顶部内侧上固定舱内千斤顶定位钢板(12),第一传立柱(5)的顶部与舱内千斤顶定位钢板(12)贴合,在步骤2安装的各个接口上对应安装试验舱充水管(24)、数据采集通讯总成(25)、舱内试验竖向加压系统管路(17)和舱内试验切向加压系统管路(18);
步骤5:分层安装多个环形钢构件(14),相邻两个环形钢构件(14)之间通过定位螺栓(15)固定连接,相邻两个环形钢构件(14)之间设有止水密封条(22);最顶部的环形钢构件(14)通过定位螺栓(15)与钢盖板(16)固定连接,最顶部的环形钢构件(14)与钢盖板(16)之间设有止水密封条(22),最底部的环形钢构件(14)通过定位螺栓(15)与钢底板(2)固定连接,最底部的环形钢构件(14)与钢底板(2)之间设有止水密封条(22);
步骤6:在所述筒式钢结构高水压试验舱顶部外侧固定舱外千斤顶定位钢板(21),在舱外千斤顶定位钢板(21)顶部安装舱外反力千斤顶(23),在舱外反力千斤顶(23)顶部与试验室顶面(29)之间依次设置钢垫板(10)、第二传立柱(5.1)和另一个钢垫板(10);
步骤7:将法向荷载控制系统(27)的液压接口连接差异式油压倍增器(26)的第一液压接口,将试验舱内竖向千斤顶(11)的进油口通过舱内试验竖向加压系统管路(17)的进油管连接差异式油压倍增器(26)的第二液压接口,将试验舱内竖向千斤顶(11)的出油口通过舱内试验竖向加压系统管路(17)的出油管接出筒式钢结构高水压试验舱外,将扁平千斤顶(8)的进油口通过舱内试验切向加压系统管路(18)的进油管连接剪切荷载控制系统(28)的液压接口,将扁平千斤顶(8)的出油口通过舱内试验切向加压系统管路(18)的出油管接出筒式钢结构高水压试验舱外,将舱外反力千斤顶(23)的进油口通过舱外竖向荷载加压管路(19)的进油管连接差异式油压倍增器(26)的第三液压接口,将舱外反力千斤顶(23)的出油口连接舱外竖向荷载加压管路(19)的出油管,在所述筒式钢结构高水压试验舱的顶部设置试验舱排气管(20);
步骤8:通过试验舱充水管(24)对筒式钢结构高水压试验舱进行充水,使得筒式钢结构高水压试验舱中的水压力达到指定压力,并进行稳压;
步骤9:启动法向荷载控制系统(27)和剪切荷载控制系统(28)进行具有预设水压条件下的岩体结构面直剪试验。
9.根据权利要求8所述的构建方法,其特征在于:所述岩体结构面直剪试验的试验过程为:在试验系统全部安装后,试验舱内注水并达到预定水压力值后,通过试验舱内竖向千斤顶(11)按预先设定的法向荷载,分2~3级施加,法向载荷每次施加完毕后通过水下位移传感器(13)测读法向位移,4~6min后再测读一次法向位移后施下一级法向载荷,按同样的方法施加法向荷载直至预定值,法向荷载施加完毕试样变形稳定后,通过扁平千斤顶(8)按预估最大剪切载荷分10~12级施加剪切荷载,每级载荷施加后通过水下位移传感器(13)测读剪切位移和法向位移,5min后再测读一次剪切位移和法向位移即可施加下一级剪切载荷,当剪切载荷加不上或无法稳定时,认为试样破坏,试验结束。
CN201611048698.XA 2016-11-24 2016-11-24 岩体结构面现场水力耦合直剪试验结构装置及构建方法 Expired - Fee Related CN106596290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611048698.XA CN106596290B (zh) 2016-11-24 2016-11-24 岩体结构面现场水力耦合直剪试验结构装置及构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611048698.XA CN106596290B (zh) 2016-11-24 2016-11-24 岩体结构面现场水力耦合直剪试验结构装置及构建方法

Publications (2)

Publication Number Publication Date
CN106596290A true CN106596290A (zh) 2017-04-26
CN106596290B CN106596290B (zh) 2019-03-08

Family

ID=58593087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611048698.XA Expired - Fee Related CN106596290B (zh) 2016-11-24 2016-11-24 岩体结构面现场水力耦合直剪试验结构装置及构建方法

Country Status (1)

Country Link
CN (1) CN106596290B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109163985A (zh) * 2018-08-15 2019-01-08 三峡大学 一种测试岩样抗剪强度和长期蠕变变形的原位测试装置及方法
CN110940577A (zh) * 2019-12-11 2020-03-31 北京交通大学 一种采用机械加载、重力稳压技术的岩体结构面剪切流变仪
CN112504851A (zh) * 2020-11-24 2021-03-16 中国电建集团成都勘测设计研究院有限公司 一种考虑谷幅变形作用的拱坝变形监控方法
CN113281193A (zh) * 2021-05-21 2021-08-20 东北大学 真三轴剪切试验过程岩石变形信息精确测量装置及方法
CN115078128A (zh) * 2022-06-29 2022-09-20 江河工程检验检测有限公司 一种模拟真实水下环境中的岩石剪切破坏试验设备及试验方法
CN117110090A (zh) * 2023-10-20 2023-11-24 北京凌空天行科技有限责任公司 一种级间螺栓变载荷试验台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920101A1 (ru) * 1980-04-04 1982-04-15 Всесоюзный научно-исследовательский институт транспортного строительства Установка дл испытани грунта на сдвиг
JPH0484732A (ja) * 1990-07-27 1992-03-18 Tetsuo Ezaki コンクリート又は岩石等の剪断・透水同時試験装置
CN102353592A (zh) * 2011-05-27 2012-02-15 长江水利委员会长江科学院 现场伺服控制岩体真三轴试验装置
CN105115832A (zh) * 2015-06-26 2015-12-02 中国科学院地质与地球物理研究所 一种考虑渗流影响的土工斜剪强度试验装置
CN105203411A (zh) * 2015-11-06 2015-12-30 武汉大学 一种适用于三轴压力室的裂隙剪切-渗流耦合试验系统及试验方法
CN106053209A (zh) * 2016-07-13 2016-10-26 长江水利委员会长江科学院 现场岩体拉剪试验系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920101A1 (ru) * 1980-04-04 1982-04-15 Всесоюзный научно-исследовательский институт транспортного строительства Установка дл испытани грунта на сдвиг
JPH0484732A (ja) * 1990-07-27 1992-03-18 Tetsuo Ezaki コンクリート又は岩石等の剪断・透水同時試験装置
CN102353592A (zh) * 2011-05-27 2012-02-15 长江水利委员会长江科学院 现场伺服控制岩体真三轴试验装置
CN105115832A (zh) * 2015-06-26 2015-12-02 中国科学院地质与地球物理研究所 一种考虑渗流影响的土工斜剪强度试验装置
CN105203411A (zh) * 2015-11-06 2015-12-30 武汉大学 一种适用于三轴压力室的裂隙剪切-渗流耦合试验系统及试验方法
CN106053209A (zh) * 2016-07-13 2016-10-26 长江水利委员会长江科学院 现场岩体拉剪试验系统及方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109163985A (zh) * 2018-08-15 2019-01-08 三峡大学 一种测试岩样抗剪强度和长期蠕变变形的原位测试装置及方法
CN109163985B (zh) * 2018-08-15 2020-09-08 三峡大学 一种测试岩样抗剪强度和长期蠕变变形的原位测试装置及方法
CN110940577A (zh) * 2019-12-11 2020-03-31 北京交通大学 一种采用机械加载、重力稳压技术的岩体结构面剪切流变仪
CN112504851A (zh) * 2020-11-24 2021-03-16 中国电建集团成都勘测设计研究院有限公司 一种考虑谷幅变形作用的拱坝变形监控方法
CN112504851B (zh) * 2020-11-24 2023-07-25 中国电建集团成都勘测设计研究院有限公司 一种考虑谷幅变形作用的拱坝变形监控方法
CN113281193A (zh) * 2021-05-21 2021-08-20 东北大学 真三轴剪切试验过程岩石变形信息精确测量装置及方法
CN113281193B (zh) * 2021-05-21 2022-08-09 东北大学 真三轴剪切试验过程岩石变形信息精确测量装置及方法
CN115078128A (zh) * 2022-06-29 2022-09-20 江河工程检验检测有限公司 一种模拟真实水下环境中的岩石剪切破坏试验设备及试验方法
CN115078128B (zh) * 2022-06-29 2023-10-20 江河安澜工程咨询有限公司 一种模拟真实水下环境中的岩石剪切破坏试验设备及试验方法
CN117110090A (zh) * 2023-10-20 2023-11-24 北京凌空天行科技有限责任公司 一种级间螺栓变载荷试验台
CN117110090B (zh) * 2023-10-20 2024-01-30 北京凌空天行科技有限责任公司 一种级间螺栓变载荷试验台

Also Published As

Publication number Publication date
CN106596290B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN106596290A (zh) 岩体结构面现场水力耦合直剪试验结构装置及构建方法
CN106353120B (zh) 模拟隧道内水压力的试验装置及方法
CN102943493B (zh) 测量预制桩内力及变形的方法
Bica et al. Instrumentation and axial load testing of displacement piles
CN102879284B (zh) 三向加载大型三维相似模拟试验试件箱
Yin et al. An innovative laboratory box for testing nail pull-out resistance in soil
CN105928791B (zh) 岩体层间软弱夹层坯样试样现场直剪试验方法
CN108051294A (zh) 一种模拟高地应力及地下水条件下岩体锚固的装置及方法
CN102879548B (zh) 三向加载大型三维相似模拟试验制样方法
CN105510121B (zh) 钢管混凝土拱架套管节点大偏心试验装置及使用方法
CN109682416A (zh) 测量隧道水土压力分布及隧道变形规律的实验装置及方法
CN107796926A (zh) 滑坡作用下大尺度埋地输气管道破坏模拟试验装置及方法
CN103741605B (zh) 抑制梁体产生裂缝和抑制梁体裂缝扩大的方法
WO2019000906A1 (zh) 围岩应力场裂隙场一体化监测系统及定量确定方法
CN105350488A (zh) 一种新型板桩码头的试验装置及其制作方法和试验方法
Augusthus-Nelson et al. Large-scale physical modelling of soil-filled masonry arch bridges
CN102879550B (zh) 三向加载大型三维相似模拟试验载荷模拟方法
CN104196064A (zh) 一种挡土墙失稳模型试验装置及安装、试验方法
Seah et al. Horizontal coefficient of consolidation of soft Bangkok clay
CN111577232B (zh) 一种煤矿井下控制压裂安全保障方法
CN111680896A (zh) 一种煤矿地下水库安全距离确定方法
Gandhi Observations on pile design and construction practices in India
CN103105308A (zh) 跨断层埋地管线原位试验方法
CN104032720B (zh) 适用于深持力层承载力的试验方法及装置
CN114518292B (zh) 斜跨坎儿井的高速铁路路基的模型试验装置及试验方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190308

Termination date: 20211124