WO2016019742A1 - 开关电源 - Google Patents

开关电源 Download PDF

Info

Publication number
WO2016019742A1
WO2016019742A1 PCT/CN2015/077815 CN2015077815W WO2016019742A1 WO 2016019742 A1 WO2016019742 A1 WO 2016019742A1 CN 2015077815 W CN2015077815 W CN 2015077815W WO 2016019742 A1 WO2016019742 A1 WO 2016019742A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
input
operational amplifier
coupled
Prior art date
Application number
PCT/CN2015/077815
Other languages
English (en)
French (fr)
Inventor
唐样洋
王新入
张臣雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016019742A1 publication Critical patent/WO2016019742A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • Embodiments of the present invention relate to the field of power supplies, and in particular, to a switching power supply.
  • the PI of the power supply determines the functionality, logic, and power consumption of the load module.
  • the low PI of the power supply ie, large ripple, spiked pulses, etc.
  • the Hysteretic Buck Dc-Dc Converter has become a widely used type of power supply in chip integrated circuits.
  • the hysteresis switching power supply uses a hysteresis comparator as a main component to control the switching circuit to be turned on or off.
  • the control of the switching frequency is only related to the output, but the change of the two ends of the inductor cannot be reflected on the control of the switching element, that is, the traditional hysteresis type switching power supply cannot be implemented.
  • Quick response. Another type of improved hysteresis switching power supply uses an additional RC filter to decouple the inductor and capacitor of the power output network, which can increase the switching frequency of the power supply.
  • the chip integration is increasing.
  • the switching power supply provided by the embodiment of the invention can avoid the self-oscillation phenomenon while improving the integrity of the output voltage, can achieve fast response, and does not need to add an additional RC filter, thereby effectively improving the practicability.
  • an embodiment of the present invention provides a switching power supply, where the switching power supply includes: a switch a circuit, a power output circuit, a feedback circuit, a hysteresis comparator, a reference circuit, and a switch drive circuit, wherein the power output circuit includes: an inductor and a capacitor; and the feedback circuit includes a first operational amplifier;
  • the first end of the inductor is connected to the first end of the switch circuit, the second end of the inductor is connected to the first end of the capacitor, and the second end of the capacitor is connected to the second end of the switch circuit End connection
  • a first input end of the feedback circuit is coupled to the first end of the inductor, and a second input end of the feedback circuit is coupled to the first end of the capacitor such that the first end of the inductor is first
  • the second voltage of the voltage and the first end of the capacitor is weighted and added by the first operational amplifier, and the result of the weighted addition is used as an output of the output of the feedback circuit;
  • An output end of the feedback circuit is connected to a first input end of the hysteresis comparator, an output end of the reference circuit is connected to a second input end of the hysteresis comparator, and a result of the comparison of the hysteresis comparator output is used.
  • the switch drive circuit is caused to control the turn-on and turn-off of the switch circuit.
  • the feedback circuit further includes: a first resistor and a second resistor;
  • a first end of the first resistor is coupled to the first end of the inductor, and a second end of the first resistor is coupled to a non-inverting input of the first operational amplifier for causing the first operational amplifier Obtaining a third voltage obtained by dividing the first voltage on the first resistor;
  • a first end of the second resistor is coupled to the first end of the capacitor, and a second end of the second resistor is coupled to a non-inverting input of the first operational amplifier for causing the first operational amplifier Obtaining a fourth voltage obtained by dividing the second voltage after the second voltage is divided on the second resistor;
  • An inverting input end of the first operational amplifier is coupled to a second end of the capacitor, and an output of the first operational amplifier is coupled to a first input of the hysteresis comparator for causing the first
  • the operational amplifier amplifies the fifth voltage obtained by adding the third voltage and the fourth voltage, and outputs the fifth voltage to the first input end of the hysteresis comparator;
  • a second input of the hysteresis comparator is coupled to an output of the reference circuit.
  • the feedback circuit further includes:
  • the non-inverting input of the second operational amplifier is coupled to the first end of the inductor, and the inverting input of the second operational amplifier is coupled to the second end of the capacitor, the second An output of the operational amplifier is coupled to the first end of the first resistor for amplifying the second operational amplifier to the first voltage.
  • the hysteresis comparator includes:
  • An analog hysteresis comparator includes: a third operational amplifier and a third resistor, a first end of the third resistor being coupled to a non-inverting input of the third operational amplifier, the third resistor a second end is coupled to an output of the third operational amplifier, wherein an inverting input of the third operational amplifier is coupled to an output of the first operational amplifier, and a non-inverting input of the third operational amplifier Connected to the reference circuit output terminal, an output end of the third operational amplifier is connected to an input end of the switch drive circuit, and an output terminal of the reference circuit outputs a reference voltage.
  • the hysteresis comparator includes:
  • a digital hysteresis comparator comprising: a voltage controlled oscillator VCO, a digital comparator, and a display lookup table LUT, the input of the voltage controlled oscillator VCO being coupled to the output of the first operational amplifier, An output of the voltage controlled oscillator VCO is coupled to a first input of the digital comparator, an output of the reference circuit is coupled to a second input of the digital comparator, the display lookup table LUT An output is coupled to the third input of the digital comparator, wherein an input of the voltage controlled oscillator VCO is coupled to an output of the first operational amplifier, and a second input of the digital comparator The output of the reference circuit is connected, the output of the digital comparator is connected to the input of the switch drive circuit, and the output of the reference circuit outputs a reference frequency.
  • the switching circuit includes:
  • a first end of the first switching element is connected to a positive pole of the input terminal power source, a second end of the first switching element is connected to a first end of the second switching element, and the second switching element is The second end is connected to the negative pole of the input power source;
  • the second end of the first switching element is connected to the first end of the inductor, and the second end of the second switching element is connected to the second end of the capacitor;
  • the switch driving circuit is configured to control turn-on and turn-off of the first switching element and the second switching element.
  • the first switching component is a PMOS transistor, and the second switching component is an NMOS transistor;
  • a source S of the PMOS transistor is connected to a positive terminal of the input terminal power source, a drain D of the PMOS transistor is connected to the NMOS transistor source S, a gate G of the PMOS transistor and the switch driving circuit
  • the first output terminal is connected, the drain D of the PMOS transistor is connected to the first end of the inductor, the drain D of the NMOS transistor is connected to the negative terminal of the input terminal power supply, and the gate of the NMOS transistor G is coupled to the second output of the switch drive circuit, and the drain D of the NMOS transistor is coupled to the second end of the capacitor.
  • the first switching component is a PMOS transistor, and the second switching component is an NPN-type triode;
  • a source S of the PMOS transistor is connected to a positive terminal of the input terminal power source, a drain D of the PMOS transistor is connected to a collector of the NPN transistor, a gate G of the PMOS transistor is driven by the switch a first output end of the circuit is connected, a drain D of the PMOS transistor is connected to a first end of the inductor, and an emitter of the NPN transistor is connected to a negative pole of the input power source, the NPN type transistor The base is connected to the second output end of the switch driving circuit, and the emitter of the NPN type transistor is connected to the second end of the capacitor.
  • the first switching component is a PNP-type transistor, and the second switching component is an NPN-type triode;
  • a collector of the PNP type transistor is connected to a positive electrode of the input terminal power source, an emitter of the PNP type transistor is connected to a collector of the NPN type transistor, a base of the PNP type transistor is driven by the switch a first output end of the circuit is connected, an emitter of the PNP type transistor is connected to a first end of the inductor, an emitter of the NPN type transistor is connected to a negative pole of the input end power source, and the NPN type triode is connected The base is connected to the second output end of the switch driving circuit, and the emitter of the NPN type transistor is connected to the second end of the capacitor.
  • the first switching component is a PNP transistor, and the second switching component is an NMOS transistor;
  • a collector of the PNP type transistor is connected to a positive electrode of the input terminal power source, an emitter of the PNP type transistor is connected to a source S of the NMOS transistor, a base of the PNP type transistor is driven by the switch a first output end of the circuit is connected, an emitter of the PNP transistor is connected to a first end of the inductor, a drain D of the NMOS transistor is connected to a negative terminal of the input power source, and a gate of the NMOS transistor
  • the pole G is connected to the second output end of the switch driving circuit, and the drain D of the NMOS transistor is connected to the second end of the capacitor.
  • the switching power supply includes: a switch circuit, a power output circuit, a feedback circuit, a hysteresis comparator, a reference circuit, and a switch drive circuit, wherein the power output circuit includes: an inductor and a capacitor; and the feedback circuit includes a first operational amplifier; a first end of the inductor is coupled to the first end of the switching circuit, a second end of the inductor is coupled to a first end of the capacitor, and a second end of the capacitor is a second end of the switching circuit is connected; a first input end of the feedback circuit is coupled to the first end of the inductor, and a second input end of the feedback circuit is coupled to the first end of the capacitor to enable the a first voltage of the first end of the inductor and a second voltage of the first end of the capacitor are weighted and added by the first operational amplifier, and a result of the weighted addition is used as an output of the output of the feedback circuit; An output end of the feedback circuit is coupled to
  • FIG. 1 is a circuit structural diagram of a conventional hysteresis type switching power supply
  • FIG. 2 is a circuit structural diagram of a conventional improved hysteresis switching power supply
  • FIG. 3 is a structural block diagram of a circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 4 is a circuit structural diagram 1 of a feedback circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 5 is a circuit diagram 2 of a feedback circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 6 is a circuit structural diagram 1 of a hysteresis comparator of a switching power supply according to an embodiment of the present invention
  • FIG. 7 is a circuit diagram 2 of a hysteresis comparator of a switching power supply according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a circuit of a switching circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 9 is a circuit diagram 1 of a switching circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 10 is a circuit diagram 2 of a switching circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 11 is a circuit diagram 3 of a switching circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 12 is a circuit diagram 4 of a switching circuit of a switching power supply according to an embodiment of the present invention.
  • FIG. 13 is a circuit diagram 1 of a switching power supply according to an embodiment of the present invention.
  • FIG. 14 is a second structural diagram of a circuit of a switching power supply according to an embodiment of the present invention.
  • the implementation circuit of the conventional hysteresis switching power supply is as shown in FIG. 1 , wherein the switching circuit is composed of an input power source V i , a P-channel MOS transistor (Positive Channel Metal Oxide Semiconductor, PMOS transistor), and An N-channel metal oxide semiconductor field effect transistor (NMOS transistor), the power output circuit is composed of an energy storage element inductor L and an output capacitor C, and a feedback circuit passes from the output of the capacitor C through R 3 and R 4 outputs a feedback voltage V fb , and the hysteresis comparator is composed of an operational amplifier and a resistor R 2 connected across the non-inverting input terminal and the output terminal of the operational amplifier, and the non-inverting input of the hysteresis comparator inputs a reference voltage V ref After the resistor R 1 is divided, the inverting input of the hysteresis comparator inputs V fb .
  • the switching circuit is composed of an input power source V
  • the window size of the hysteresis comparator can be controlled, and the output of the hysteresis comparator is used as a switch driver.
  • the input of the circuit, the output of the switch drive circuit is used to control the turn-on of the switching elements (PMOS transistor and NMOS transistor) Shutdown.
  • the resistor R includes a resistor of the output terminal and an equivalent resistance of the capacitor C and the inductor L.
  • FIG. 2 there is an improved hysteresis switching power supply.
  • the main improvement is that an RC filter composed of a resistor R C and a capacitor C C is introduced at both ends of the inductor L.
  • the filter L can be decoupled from the capacitance at the output. In this way, the voltage change at the output of the capacitor C is collected by collecting the voltage output at the end of the capacitor C C in the filter.
  • the switch drive circuit pairs the PMOS transistor and the NMOS crystal
  • the on/off state of the tube is controlled, and specifically includes: a first state (the NMOS transistor is turned off when the PMOS transistor is turned on), and a second state (the NMOS transistor is turned on when the PMOS transistor is turned off);
  • the PMOS transistor operates in the on state under the control of the switch driving circuit while the NMOS transistor operates in the off state under the control of the switch driving circuit, and the V i voltage is passed through the source S and the drain D of the PMOS transistor.
  • the inductor L and the capacitor C form a loop, and the charging current not only establishes a DC voltage across the capacitor C, but also generates a left positive and a negative negative electromotive force on the energy storage inductor L, and a DC voltage obtained at both ends of the capacitor C supplies power to the load;
  • the PMOS transistor operates in the off state under the control of the switch driving circuit while the NMOS transistor operates in the on state under the control of the switch driving circuit. Since the current in the energy storage inductor L cannot be abruptly changed, the inductor L passes The self-inductance produces a right positive and left negative pulse voltage. Therefore, the positive voltage of the right end of the inductor L ⁇ capacitor C ⁇ NMOS transistor ⁇ the left end of the inductor L constitutes a discharge loop, the discharge current continues to establish a DC voltage across the capacitor C, and the DC voltage obtained at both ends of the capacitor C supplies power to the load.
  • the conventional hysteresis switching power supply shown in FIG. 1 does not consider the delay caused by the charging and discharging process of the capacitor C of the power output network, the switching element and the switching driving circuit, and the switching frequency can be expressed by the formula (1).
  • D is the duty cycle
  • D V o /V i
  • V i is the input terminal voltage
  • V o is the voltage output across the capacitor C
  • H is the hysteresis window value of the hysteresis comparator
  • H V i *R 4 /(R 3 +R 4 )
  • L is the inductance value of the inductor
  • F sw is the switching frequency
  • R is the equivalent resistance of the output.
  • the improved hysteresis switching power supply additionally adds an RC filter to decouple the change value of the inductance from the capacitance at the output end.
  • the switching element and the switch drive circuit band are charged and discharged during the charging and discharging process of the power output network.
  • the delay, the switching frequency can be expressed by the formula (2),
  • D is the duty cycle
  • D V o /V i
  • V i is the input terminal voltage
  • V o is the voltage output across the capacitor C
  • H is the hysteresis window value of the hysteresis comparator
  • H V i *R 4 /(R 3 +R 4 )
  • L is the inductance of the inductor
  • F sw is the switching frequency
  • R c is the resistance of the additional RC filter
  • C c is the capacitance of the additional RC filter.
  • the implementation of the improved hysteresis switching power supply effectively solves the previously mentioned variation of the inductive inductance at both ends, thereby failing to achieve a fast response to the output voltage, when actually designing the hysteretic switching power supply chip,
  • the extra capacitor C c will bring great obstacles to the actual implementation, which will increase the chip area, can not meet the design requirements of the chip area, and reduce the practicability of the switching power supply.
  • the additional RC filter decouples the inductor from the power output network, which is prone to self-oscillation. That is, the jump of the output load cannot be reflected in the feedback circuit, so that the jump information cannot be added to the hysteresis comparator and cannot respond to the jump of the output load.
  • the switching power supply provided by the embodiment of the present invention is described in detail below through a specific embodiment. As shown in FIG. 3, the switching power supply includes:
  • a switching circuit a power output circuit, a feedback circuit, a hysteresis comparator, a reference circuit, and a switch drive circuit
  • the power output circuit comprises: an inductor and a capacitor
  • the feedback circuit comprises a first operational amplifier
  • the first end of the inductor is connected to the first end of the switch circuit, the second end of the inductor is connected to the first end of the capacitor, and the second end of the capacitor is connected to the second end of the switch circuit;
  • a first input end of the feedback circuit is coupled to the first end of the inductor, and a second input end of the feedback circuit is coupled to the first end of the capacitor such that the first voltage of the first end of the inductor and the second voltage of the first end of the capacitor Weighted addition by a first operational amplifier, and the result of the weighted addition is used as an output of the output of the feedback circuit;
  • the output end of the feedback circuit is connected to the first input end of the hysteresis comparator, the output end of the reference circuit is connected to the second input end of the hysteresis comparator, and the result of the comparison of the hysteresis comparator output is used to enable the switch drive circuit to control the opening of the switch circuit. And shut down.
  • the first operational amplifier in the feedback circuit weights and adds the first voltage of the first end of the collected inductor and the second voltage of the first end of the capacitor.
  • the feedback circuit of the embodiment of the present invention does not need to increase the capacitance component when acquiring the feedback voltage, and the capacitance component is generally bulky. Therefore, the input of the hysteresis comparator is compared with the conventional hysteresis-type switching power supply of FIG. 2 .
  • the hysteresis switching power supply provided by the embodiment of the invention can increase the switching frequency without adding additional capacitance.
  • the feedback circuit further includes:
  • the first end of the first resistor is coupled to the first end of the inductor, and the second end of the first resistor is coupled to the first operation a non-inverting input terminal of the amplifier, configured to enable the first operational amplifier to obtain a third voltage obtained by dividing the first voltage on the first resistor;
  • a first end of the second resistor is coupled to the first end of the capacitor, and a second end of the second resistor is coupled to the non-inverting input of the first operational amplifier for causing the first operational amplifier to acquire the second voltage at the second voltage a fourth voltage obtained by dividing the two resistors;
  • An inverting input of the first operational amplifier is coupled to the second end of the capacitor, and an output of the first operational amplifier is coupled to the first input of the hysteresis comparator for causing the first operational amplifier to apply the third voltage to the fourth voltage
  • the fifth voltage obtained after the addition is amplified and output to the first input end of the hysteresis comparator;
  • a second input of the hysteresis comparator is coupled to the output of the reference circuit.
  • the first end and the second end of the switch circuit are the same as those shown in FIG. 3, the first end of the first resistor is used as the first input end of the feedback circuit, and the first end of the second resistor is used as a second input of the feedback circuit; the output of the first operational amplifier is coupled to the first input of the hysteresis comparator as an output of the feedback circuit.
  • the hysteresis switching power supply shown in FIG. 4 is composed of a first resistor R 1 , a second resistor R 2 , and a first operational amplifier. 2, respectively, together with a current mode input terminal of the inductor and a first capacitor voltage signal from a first terminal acquired by R 1 and R to the cathode of the first operational amplifier, this time can be formulated by the size of the resistance 2 R 1 and R A weighted addition of the voltage value of the first end of the inductor and the first end of the capacitor is achieved.
  • the feedback circuit further includes:
  • the non-inverting input of the second operational amplifier is coupled to the first end of the inductor, the inverting input of the second operational amplifier is coupled to the second end of the capacitor, and the output of the second operational amplifier is coupled to the first resistor The first end is connected for amplifying the first operational voltage by the second operational amplifier.
  • the first end and the second end of the switch circuit are the same as those shown in FIG. 3;
  • the non-inverting input terminal of the first operational amplifier serves as the first input end of the feedback circuit, and the first end of the second resistor As a second input of the feedback circuit;
  • the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in FIG.
  • the hysteresis switching power supply shown in FIG. 5 is composed of a first resistor R 1 , a second resistor R 2 , a first operational amplifier, and a second operational amplifier.
  • the voltage signal collected from the first end of the inductor passes through the second operational amplifier, R 1 and the first operational amplifier, and the voltage signal collected from the first end of the capacitor is input to the anode of the first operational amplifier through the R 2 in a current mode.
  • the weighted addition of the voltage values of the first end of the inductor and the first end of the capacitor can be achieved by adjusting the magnitudes of the R 1 and R 2 resistors.
  • the hysteresis comparator includes:
  • An analog hysteresis comparator includes: a third operational amplifier and a third resistor; a first end of the third resistor is coupled to the non-inverting input of the third operational amplifier, and the second end of the third resistor is coupled to the third operational amplifier
  • the output terminal is connected, wherein the inverting input terminal of the third operational amplifier is connected to the output end of the first operational amplifier, the non-inverting input terminal of the third operational amplifier is connected to the output terminal of the reference circuit, and the output terminal and the switch of the third operational amplifier are connected
  • the input terminal of the driving circuit is connected, and the output terminal of the reference circuit outputs a reference voltage.
  • FIG. 6 is that the first end and the second end of the switch circuit are the same as those shown in FIG. 3; the first input end of the feedback circuit and the second input end of the feedback circuit are the same as those shown in FIG. 5;
  • the inverting input of the three operational amplifiers serves as the first input of the hysteresis comparator, and the inverting input of the third operational amplifier serves as the second input of the hysteresis comparator.
  • the hysteresis comparator in the embodiment of the present invention can be implemented by using an analog circuit. Specifically, as shown in FIG. 6, the third operational amplifier is used and the non-inverting input and output across the third operational amplifier are connected. The third resistor between the terminals implements a hysteresis comparator.
  • first operational amplifier and the second operational amplifier of the feedback circuit in the embodiment of the present invention may be integrated in a chip of an operational amplifier, and the third operational amplifier may also be combined with the first operational amplifier and the second operational amplifier.
  • the chip area is integrated in one chip, so that the chip area of the switching power supply provided by the embodiment of the present invention can be effectively reduced.
  • the hysteresis comparator further includes:
  • the digital hysteresis comparator includes a voltage controlled oscillator VCO, a digital comparator, and a display lookup table LUT.
  • the input end of the voltage controlled oscillator VCO is connected to the output of the first operational amplifier, and the voltage controlled oscillator VCO The output end is connected to the first input end of the digital comparator, and the output end of the reference circuit is connected to the second input end of the digital comparator, and the output of the display table LUT is connected with the third input end of the digital comparator, wherein the voltage control
  • the input end of the oscillator VCO is connected to the output end of the first operational amplifier, the second input end of the digital comparator is connected to the output end of the reference circuit, and the output end of the digital comparator is connected to the input end of the switch drive circuit, and the output of the reference circuit
  • the terminal outputs the reference frequency.
  • FIG. 7 is that the first end and the second end of the switch circuit are the same as those shown in FIG. 3; the first input end of the feedback circuit and the second input end of the feedback circuit are the same as those shown in FIG. 5;
  • the input of the controlled oscillator VCO serves as the first input of the hysteresis comparator and the second input of the digital comparator As the second input of the hysteresis comparator.
  • the hysteresis comparator in the embodiment of the present invention may also be implemented by a digital circuit, and the feedback voltage V fb outputted by the first operational amplifier is not directly applied to the hysteresis comparator, but is first passed through the voltage controlled oscillator.
  • VCO the VCO output is a feedback voltage V fb corresponding to the frequency signal F fb, that is, the V fb converted to the corresponding F fb, then, the digital comparator via the output F fb and the reference circuit output of the VCO
  • the reference frequency F ref is compared and the result is output to the switch drive circuit.
  • the digital comparator and look-up table (LUT) complete the comparison of the input reference frequency F ref and the feedback frequency F fb , and the hysteresis window value of the hysteresis comparator is also represented by the specific value in the LUT. It is worth mentioning that the digital comparator is simple to implement, as long as the working clock is determined, that is, the reference frequency F ref and the feedback frequency F fb are compared by the hysteresis window value stored in the LUT.
  • the switch circuit includes:
  • the first end of the first switching element is connected to the anode of the input power source, the second end of the first switching element is connected to the first end of the second switching element, and the second end of the second switching element is connected to the negative terminal of the input power source ;
  • a second end of the first switching element is connected to the first end of the inductor, and a second end of the second end of the second switching element is connected;
  • the switch drive circuit is configured to control turn-on and turn-off of the first switching element and the second switching element.
  • the second end of the first switching element serves as the first end of the switching circuit, and the second end of the second switching element serves as the second end of the switching circuit;
  • the second input of the circuit is the same as that shown in Figure 3;
  • the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in Figure 3.
  • the switching circuit of the hysteresis switching power supply in the embodiment of the present invention may adopt a common implementation manner in the art, that is, the manner shown in FIG.
  • the first switching element is a PMOS transistor, and the second switching element is an NMOS transistor;
  • the source S of the PMOS transistor is connected to the anode of the input terminal power supply
  • the drain D of the PMOS transistor is connected to the source S of the NMOS transistor
  • the gate G of the PMOS transistor is connected to the first output terminal of the switch driving circuit
  • the drain of the PMOS transistor D is connected to the first end of the inductor
  • the drain D of the NMOS transistor is connected to the negative terminal of the input terminal power supply
  • the gate G of the NMOS transistor is connected to the second output end of the switch drive circuit
  • the drain D of the NMOS transistor and the capacitor are Two-terminal connection.
  • the drain D of the PMOS transistor is the first end of the switch circuit
  • the drain D of the NMOS transistor is the second end of the switch circuit
  • the first input of the feedback circuit and the second input of the feedback circuit is the same as that shown in Figure 3
  • the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in Figure 3.
  • the first switching element is a PMOS transistor, and the second switching element is an NPN type triode;
  • the source S of the PMOS transistor is connected to the anode of the input terminal power supply
  • the drain D of the PMOS transistor is connected to the collector of the NPN transistor
  • the gate G of the PMOS transistor is connected to the first output terminal of the switch driving circuit
  • the drain of the PMOS transistor The pole D is connected to the first end of the inductor
  • the emitter of the NPN transistor is connected to the cathode of the input power source
  • the base of the NPN transistor is connected to the second output of the switch driving circuit
  • the emitter and capacitor of the NPN transistor The second end is connected.
  • the drain D of the PMOS transistor is used as the first end of the switch circuit
  • the emitter of the NPN transistor is used as the second end of the switch circuit
  • the first input of the feedback circuit and the second input of the feedback circuit The end is the same as that shown in Figure 3
  • the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in Figure 3.
  • the first switching element is a PNP type triode
  • the second switching element is an NPN type triode
  • the collector of the PNP type transistor is connected to the anode of the input terminal power supply, the emitter of the PNP type transistor is connected to the collector of the NPN type transistor, and the base of the PNP type transistor is connected to the first output end of the switch drive circuit, and the PNP type transistor is connected.
  • the emitter is connected to the first end of the inductor, the emitter of the NPN transistor is connected to the negative terminal of the input power source, the base of the NPN transistor is connected to the second output of the switch drive circuit, and the emitter and capacitor of the NPN transistor are The second end is connected.
  • the emitter of the PNP transistor is used as the first end of the switch circuit
  • the emitter of the NPN transistor is used as the second end of the switch circuit
  • the first input of the feedback circuit and the second input of the feedback circuit The end is the same as that shown in Figure 3
  • the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in Figure 3.
  • the first switching element is a PNP type transistor, and the second switching element is an NMOS transistor;
  • the collector of the PNP transistor is connected to the anode of the input terminal power supply, the emitter of the PNP transistor is connected to the source S of the NMOS transistor, the base of the PNP transistor is connected to the first output of the switch driver circuit, and the PNP transistor is connected.
  • the emitter is connected to the first end of the inductor, the NMOS transistor
  • the drain D is connected to the negative terminal of the input terminal power supply, the gate G of the NMOS transistor is connected to the second output terminal of the switch driving circuit, and the drain D of the NMOS transistor is connected to the second end of the capacitor.
  • the emitter of the PNP transistor is used as the first end of the switching circuit
  • the drain D of the NMOS transistor is the second terminal of the switching circuit
  • the first input of the feedback circuit and the second input of the feedback circuit is the same as that shown in Figure 3
  • the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in Figure 3.
  • FIG. 13 is that the first end of the switch circuit and the second end of the switch circuit are the same as those shown in FIG. 9; the first input end of the feedback circuit and the second input end of the feedback circuit are as shown in FIG. The same; the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in FIG.
  • FIG. 14 is that the first end of the switch circuit and the second end of the switch circuit are the same as those shown in FIG. 9; the first input end of the feedback circuit and the second input end of the feedback circuit are as shown in FIG. The same; the first input of the hysteresis comparator and the second input of the hysteresis comparator are the same as shown in FIG.
  • D is the duty cycle
  • D V o /V i
  • Vi is the input terminal voltage
  • V o is the voltage output across the capacitor C
  • H is the hysteresis window value of the hysteresis comparator
  • H V i *R 4 /(R 3 +R 4 )
  • L is the inductance value of the inductor
  • F is the switching frequency
  • R is the equivalent resistance of the output terminal
  • the inductance value of L in FIG. 13 or FIG. 14 is greater than a certain threshold value
  • the capacitance value of C is less than a certain threshold.
  • the inductance value of L should be greater than the capacitance value of C.
  • the system will no longer apply the formula (3).
  • the inductance value of L can be reduced to 49 nH when the capacitance value of C reaches 800 nF.
  • the switching power supply provided by the embodiment of the present invention is outputted compared to the existing hysteresis switching power supply with the RC filter shown in FIG. 2 .
  • the ripple on the voltage can be effectively suppressed, and the spike of the output voltage caused by the jump at the load end (the load resistance R changes) is obviously small.
  • the switching power supply provided by the embodiment of the present invention can effectively suppress the ripple. As well as spikes, it improves the PI (power integrity) signal integrity of the output voltage, which in turn reduces the power consumption caused by system instability.
  • the switching power supply provided by the embodiment of the present invention can also avoid the self-oscillation phenomenon.
  • the existing hysteresis switching power supply with an increased RC filter as shown in FIG. 2 is prone to the self-oscillation of the output voltage due to the increased RC filter.
  • the self-decoupling mode that is, the added RC filter makes the feedback voltage not directly related to the output terminal voltage, and the jump of the output end is out of the feedback during the response period less than the switching frequency, so that the self-oscillation phenomenon occurs, and the embodiment provides
  • the voltage feedback of the switching power supply adopts the double-feedback mode of the first end of the inductor Vx and the first end of the capacitor Vo, thereby avoiding the occurrence of this phenomenon.
  • the switching power supply provided by the embodiment of the present invention improves the integration degree of the power supply, and the system Bode diagram (amplitude gain ratio and phase gain ratio) of the switching power supply provided by the embodiment of the present invention without additional price adjustment of the RC filter
  • a Bode diagram that is similar to a hysteresis switching power supply system with an additional RC filter is achieved, that is, the gain and attenuation effects of the switching power supply on the amplitude and phase of the switching power supply provided by the embodiment of the present invention are good.
  • the transient response capability of the switching power supply can be improved by adjusting the resistance of R1 and R2.
  • the ratio of R1 to R2 is larger and within a certain range, which can bring a faster response speed to the switching power supply.
  • the technical architecture proposed in FIG. 13 and FIG. 14 is the application of the single-phase output of the patented invention, and the technical architecture can also be extended to the application of multi-phase output, which will not be enumerated here.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the various method embodiments described above;
  • the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)

Abstract

一种开关电源,包括开关电路、功率输出电路、反馈电路、滞后比较器、基准电路以及开关驱动电路,功率输出电路包括电感和电容,反馈电路包括第一运算放大器;电感第一端与开关电路第一端以及反馈电路第一输入连接,电容第一端与电感第二端以及反馈电路第二输入端连接,电容第二端与开关电路第二端连接;电感的第一端的第一电压与电容第一端的第二电压通过第一运算放大器完成加权相加,并将加权相加的结果和基准电路的输出作为滞后比较器的输入,滞后比较器输出比较结果用于使开关驱动电路控制开关电路的开通与关断。该开关电源无需额外添加RC滤波器,能在提高输出电压完整性的同时做到快速响应,提高开关电源的实用性。

Description

开关电源 技术领域
本发明实施例涉及电源领域,尤其涉及一种开关电源。
背景技术
伴随着半导体工艺节点的持续缩小,芯片的单位面积内元件密度迅速上升,芯片集成性,能源效率,以及电源完整性(Power Integrity,PI)制约着现今电源的设计发展。尤其是电源的PI,决定着负载模块的功能性、逻辑性以及功耗。电源的低PI(即纹波大、尖刺脉冲多等)直接会给整个系统带来沉重负担,不但影响系统响应速度及正确性,还会增加整个系统的能量损耗。现如今,滞后类开关电源(Hysteretic Buck Dc-Dc Converter)成为芯片集成电路中应用很广泛的一类电源。滞后类开关电源采用滞后比较器作为控制开关电路开通或关断的主要组成部分。
传统的滞后类开关电源在实际使用当中,开关频率的控制仅与输出有关系,但是电感两端的变化无法体现在对开关元件的控制之上,也就是说,传统的滞后类开关电源无法做到快速响应。另一类改进的滞后类开关电源利用额外增加RC滤波器来将功率输出网络的电感与电容解耦,可以提高电源的开关频率,但是由于电源的芯片面积非常有限而芯片集成度却越来越高,因此在滞后类开关电源中添加额外的电容会给实际实现带来很大的障碍,降低了开关电源的实用性,并且,如果输出端负载有跳变的话,由于额外添加的RC滤波器将电感与功率输出网络解耦,容易产生自震荡现象。也即输出端负载的跳变无法体现在反馈电路中,从而无法将跳变信息加入到滞后比较器中,无法响应输出端负载的跳变。
发明内容
本发明实施例提供的开关电源,在提高输出电压完整性的同时可以避免发生自震荡现象,能够做到快速响应,且不需要额外添加RC滤波器,有效提高了实用性。
第一方面,本发明实施例提供一种开关电源,所述开关电源包括:开关 电路、功率输出电路、反馈电路、滞后比较器、基准电路以及开关驱动电路,其中,所述功率输出电路包括:电感和电容;所述反馈电路包括第一运算放大器;
所述电感的第一端与所述开关电路的第一端连接,所述电感的第二端与所述电容的第一端连接,所述电容的第二端与所述开关电路的第二端连接;
所述反馈电路的第一输入端与所述电感的第一端连接,所述反馈电路的第二输入端与所述电容的第一端连接,以使所述电感的第一端的第一电压与所述电容第一端的第二电压通过所述第一运算放大器进行加权相加,并将加权相加的结果作为所述反馈电路输出端的输出;
所述反馈电路的输出端与所述滞后比较器的第一输入端连接,所述基准电路的输出端与所述滞后比较器的第二输入端连接,所述滞后比较器输出比较的结果用于使所述开关驱动电路控制所述开关电路的开通与关断。
结合第一方面,在第一种可能的实现方式中,所述反馈电路还包括:第一电阻、第二电阻;
所述第一电阻的第一端与所述电感的第一端连接,所述第一电阻的第二端与所述第一运算放大器的同相输入端连接,用于使所述第一运算放大器获取所述第一电压在所述第一电阻上分压后得到的第三电压;
所述第二电阻的第一端与所述电容的第一端连接,所述第二电阻的第二端与所述第一运算放大器的同相输入端连接,用于使所述第一运算放大器获取所述第二电压在所述第二电压在所述第二电阻上分压后得到的第四电压;
所述第一运算放大器的反相输入端与所述电容的第二端连接,所述第一运算放大器的输出端与所述滞后比较器的第一输入端连接,用于使所述第一运算放大器将所述第三电压与第四电压相加后得到的第五电压进行放大后输出至所述滞后比较器的第一输入端;
所述滞后比较器的第二输入端与所述基准电路的输出端连接。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述反馈电路还包括:
第二运算放大器,所述第二运算放大器的同相输入端与所述电感的第一端连接,所述第二运算放大器的反相输入端与所述电容的第二端连接,所述第二运算放大器的输出端与所述第一电阻的第一端连接,用于使所述第二运算放大器放大所述第一电压。
结合第一方面的第一种或者第二种可能的实现方式,在第三种可能的实现方式中,所述滞后比较器包括:
模拟滞后比较器,所述模拟滞后比较器包括:第三运算放大器与第三电阻,所述第三电阻的第一端与所述第三运算放大器的同相输入端连接,所述第三电阻的第二端与所述第三运算放大器的输出端连接,其中,所述第三运算放大器的反相输入端与所述第一运算放大器的输出端连接,所述第三运算放大器的同相输入端与所述基准电路输出端连接,所述第三运算放大器的输出端与所述开关驱动电路的输入端连接,所述基准电路的输出端输出基准电压。
结合第一方面的第一种或者第二种可能的实现方式,在第四种可能的实现方式中,所述滞后比较器包括:
数字滞后比较器,所述数字滞后比较器包括:压控振荡器VCO、数字比较器以及显示查找表LUT,所述压控振荡器VCO的输入端与所述第一运算放大器的输出端连接,所述压控振荡器VCO的输出端与所述数字比较器的第一输入端连接,所述基准电路的输出端与所述数字比较器的第二输入端连接,所述显示查找表LUT的输出与所述数字比较器的第三输入端连接,其中,所述压控振荡器VCO的输入端与所述第一运算放大器的输出端连接,所述数字比较器的第二输入端与所述基准电路输出端连接,所述数字比较器的输出端与所述开关驱动电路的输入端连接,所述基准电路的输出端输出基准频率。
结合第一方面至第一方面的第四种可能的实现方式中的任一可能的实现方式,在第五种可能的实现方式中,所述开关电路包括:
第一开关元件、第二开关元件以及输入端电源;
所述第一开关元件的第一端与所述输入端电源的正极连接,所述第一开关元件的第二端与所述第二开关元件的第一端连接,所述第二开关元件的第二端与所述输入端电源的负极连接;
所述第一开关元件的第二端与所述电感的第一端连接,所述第二开关元件的第二端所述电容的第二端连接;
所述开关驱动电路用于控制所述第一开关元件以及所述第二开关元件的开通与关断。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第一开关元件为PMOS晶体管,所述第二开关元件为NMOS晶体管;
所述PMOS晶体管的源极S与所述输入端电源的正极连接,所述PMOS晶体管的漏极D与所述NMOS晶体管源极S连接,所述PMOS晶体管的栅极G与所述开关驱动电路的第一输出端连接,所述PMOS晶体管的漏极D与所述电感的第一端连接,所述NMOS晶体管的漏极D与所述输入端电源的负极连接,所述NMOS晶体管的栅极G与所述开关驱动电路的第二输出端连接,所述NMOS晶体管的漏极D与所述电容的第二端连接。
结合第一方面的第第五种可能的实现方式,在第七种可能的实现方式中,所述第一开关元件为PMOS晶体管,所述第二开关元件为NPN型三极管;
所述PMOS晶体管的源极S与所述输入端电源的正极连接,所述PMOS晶体管的漏极D与所述NPN型三极管的集电极连接,所述PMOS晶体管的栅极G与所述开关驱动电路的第一输出端连接,所述PMOS晶体管的漏极D与所述电感的第一端连接,所述NPN型三极管的发射极与所述输入端电源的负极连接,所述NPN型三极管的基极与所述开关驱动电路的第二输出端连接,所述NPN型三极管的发射极与所述电容的第二端连接。
结合第一方面的第第五种可能的实现方式,在第八种可能的实现方式中,所述第一开关元件为PNP型三极管,所述第二开关元件为NPN型三极管;
所述PNP型三极管的集电极与所述输入端电源的正极连接,所述PNP型三极管的发射极与所述NPN型三极管的集电极连接,所述PNP型三极管的基极与所述开关驱动电路的第一输出端连接,所述PNP型三极管的发射极与所述电感的第一端连接,所述NPN型三极管的发射极与所述输入端电源的负极连接,所述NPN型三极管的基极与所述开关驱动电路的第二输出端连接,所述NPN型三极管的发射极与所述电容的第二端连接。
结合第一方面的第第五种可能的实现方式,在第九种可能的实现方式中,所述第一开关元件为PNP型三极管,所述第二开关元件为NMOS晶体管;
所述PNP型三极管的集电极与所述输入端电源的正极连接,所述PNP型三极管的发射极与所述NMOS晶体管的源极S连接,所述PNP型三极管的基极与所述开关驱动电路的第一输出端连接,所述PNP型三极管的发射极与所述电感的第一端连接,所述NMOS晶体管的漏极D与所述输入端电源的负极连接,所述NMOS晶体管的栅极G与所述开关驱动电路的第二输出端连接,所述NMOS晶体管的漏极D与所述电容的第二端连接。
本发明实施例提供的开关电源,包括:开关电路、功率输出电路、反馈电路、滞后比较器、基准电路以及开关驱动电路,其中,所述功率输出电路包括:电感和电容;所述反馈电路包括第一运算放大器;所述电感的第一端与所述开关电路的第一端连接,所述电感的第二端与所述电容的第一端连接,所述电容的第二端与所述开关电路的第二端连接;所述反馈电路的第一输入端与所述电感的第一端连接,所述反馈电路的第二输入端与所述电容的第一端连接,以使所述电感的第一端的第一电压与所述电容第一端的第二电压通过所述第一运算放大器进行加权相加,并将加权相加的结果作为所述反馈电路输出端的输出;所述反馈电路的输出端与所述滞后比较器的第一输入端连接,所述基准电路的输出端与所述滞后比较器的第二输入端连接,所述滞后比较器输出比较的结果用于使所述开关驱动电路控制所述开关电路的开通与关断。在提高输出电压完整性的同时可以避免发生自震荡现象,能够做到快速响应,且不需要额外添加RC滤波器,有效提高了实用性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有的滞后类开关电源的电路结构图;
图2为现有的改进型滞后类开关电源的电路结构图;
图3为本发明实施例提供的开关电源的电路的结构框图;
图4为本发明实施例提供的开关电源的反馈电路的电路结构图一;
图5为本发明实施例提供的开关电源的反馈电路的电路结构图二;
图6为本发明实施例提供的开关电源的滞后比较器的电路结构图一;
图7为本发明实施例提供的开关电源的滞后比较器的电路结构图二;
图8为本发明实施例提供的开关电源的开关电路的电路的结构框图;
图9为本发明实施例提供的开关电源的开关电路的电路结构图一;
图10为本发明实施例提供的开关电源的开关电路的电路结构图二;
图11为本发明实施例提供的开关电源的开关电路的电路结构图三;
图12为本发明实施例提供的开关电源的开关电路的电路结构图四;
图13为本发明实施例提供的开关电源的电路结构图一;
图14为本发明实施例提供的开关电源电路结构图二。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本领域技术人员能够更清楚地理解本发明实施例提供的技术方案,在介绍本发明实施例提供的开关电源前,先对现有的滞后类开关电源的结构和原理做简单介绍以便本领域技术人员能够更详细理解本发明实施例提供的开关电源。
一般的,传统滞后类开关电源的实现电路如图1所示,其中,开关电路由输入端电源Vi、P沟道金属氧化物半导体场效应MOS晶体管(Positive Channel Metal Oxide Semiconductor,PMOS晶体管)以及N沟道金属氧化物半导体场效应晶体管(Negative Channel Metal Oxide Semiconductor,NMOS晶体管)组成,功率输出电路由储能元件电感L和输出端的电容C组成,反馈电路从电容C的输出端通过R3和R4输出反馈电压Vfb,滞后比较器由运算放大器以及跨接在运算放大器同相输入端与输出端之间的电阻R2与组成,滞后比较器的同相输入端输入的是参考电压Vref经电阻R1后的分压,滞后比较器的反相输入端输入的是Vfb,通过调节电阻R1和电阻R2的大小可以控制滞后比较器的窗口大小,滞后比较器的输出作为开关驱动电路的输入,开关驱动电路的输出用于控制开关元件(PMOS晶体管和NMOS晶体管)的开通和关断。其中,电阻R包括输出端负载的电阻以及电容C和电感L的等效电阻。
如图2所示是现有的一种改进的滞后类开关电源,主要改进点在于电感L两端引入了一个由电阻RC和电容CC组成的RC滤波器。通过该滤波器可以将电感L与输出端的电容解耦。这样一来,通过采集该滤波器中的电容CC一端的电压输出来采集电容C输出端电压的变化。
结合图1和图2对滞后类开关电源的工作原理简述如下:
滞后类开关电源工作时,由开关驱动电路对PMOS晶体管和NMOS晶体 管的通断状态进行控制,具体的,包括:第一状态(PMOS晶体管开通时NMOS晶体管关断),第二状态(PMOS晶体管关断时NMOS管开通);
第一状态下,PMOS晶体管在开关驱动电路的控制下工作在开通状态同时NMOS晶体管在开关驱动电路的控制下工作在关断状态,Vi电压经PMOS晶体管的源极S、漏极D、储能电感L和电容C构成回路,充电电流不但在电容C两端建立直流电压,而且在储能电感L上产生左正、右负的电动势,电容C两端获得的直流电压为负载供电;
第二状态下,PMOS晶体管在开关驱动电路的控制下工作在关断状态同时NMOS晶体管在开关驱动电路的控制下工作在开通状态,由于储能电感L中的电流不能突变,因此,电感L通过自感产生右正、左负的脉冲电压。于是,电感L右端正的电压→电容C→NMOS晶体管→电感L左端构成放电回路,放电电流继续在电容C两端建立直流电压,电容C两端获得的直流电压为负载供电。
如图1所示的传统滞后类开关电源,在不考虑功率输出网络的电容C充放电过程、开关元件及开关驱动电路带来的延迟,其开关频率可以由公式(1)式来表达,
Figure PCTCN2015077815-appb-000001
其中,D为占空比,D=Vo/Vi,Vi为输入端电压,Vo为电容C两端输出的电压,H为滞后比较器的滞后窗口值,H=Vi*R4/(R3+R4),L为电感的电感值,Fsw为开关频率,R为输出端的等效电阻,由公式(1)可以看出,其中开关频率的控制仅与输出有关系,但是电感两端的变化无法体现在对开关元件的控制之上。也就是说,该传统的滞后类开关电源无法做到快速响应。
如图2所示的改进型滞后类开关电源,额外增加RC滤波器来将电感的变化值与输出端的电容解耦,在不考虑功率输出网络的电容C充放电过程开关元件及开关驱动电路带来的延迟,其开关频率可以由公式(2)来表达,
Figure PCTCN2015077815-appb-000002
其中,D为占空比,D=Vo/Vi,Vi为输入端电压,Vo为电容C两端输出的电压,H为滞后比较器的滞后窗口值,H=Vi*R4/(R3+R4),L为电感的电感值,Fsw为开关频率,Rc为额外增加的RC滤波器中的电阻,Cc为额外增加的RC滤波器中的电容,由公式(2)可以看出,其开关频率与Rc*Cc成反比,只 要Rc*Cc足够小,就可以有效提高开关频率。虽然改进型滞后类开关电源的实现方案有效地解决了之前所提及的无法感知电感两端的变化,从而无法实现对输出电压的快速响应的问题,但是在实际设计滞后类开关电源芯片时,添加额外的电容Cc会给实际实现带来很大的障碍,会增加芯片面积,不能满足设计时对芯片面积的要求,降低了开关电源的实用性。并且,如果输出端负载有跳变的话,由于额外添加的RC滤波器将电感与功率输出网络解耦,容易产生自震荡现象。也即:输出端负载的跳变无法体现在反馈电路中,从而无法将跳变信息加入到滞后比较器中,无法响应输出端负载的跳变。
下面通过具体的实施例,对本发明的实施例提供的开关电源进行详细说明,如图3所示,该开关电源包括:
开关电路、功率输出电路、反馈电路、滞后比较器、基准电路以及开关驱动电路,其中,功率输出电路包括:电感和电容;反馈电路包括第一运算放大器;
电感的第一端与开关电路的第一端连接,电感的第二端与电容的第一端连接,电容的第二端与开关电路的第二端连接;
反馈电路的第一输入端与电感的第一端连接,反馈电路的第二输入端与电容的第一端连接,以使电感的第一端的第一电压与电容第一端的第二电压通过第一运算放大器进行加权相加,并将加权相加的结果作为反馈电路输出端的输出;
反馈电路的输出端与滞后比较器的第一输入端连接,基准电路的输出端与滞后比较器的第二输入端连接,滞后比较器输出比较的结果用于使开关驱动电路控制开关电路的开通与关断。
需要说明的是,在图3所示的开关电源中,反馈电路中的第一运算放大器对采集的电感第一端的第一电压以及电容第一端的第二电压进行加权相加后再作为滞后比较器的输入,相较于图2中的现有的滞后类开关电源,本发明实施例中的反馈电路在获取反馈电压时无需增加电容元件,又因为电容元件一般体积比较大,因此,本发明实施例提供的滞后类开关电源可以在不增加额外电容的情况下提高开关频率。
可选的,如图4所示,反馈电路还包括:
第一电阻、第二电阻;
第一电阻的第一端与电感的第一端连接,第一电阻的第二端与第一运算 放大器的同相输入端连接,用于使第一运算放大器获取第一电压在第一电阻上分压后得到的第三电压;
第二电阻的第一端与电容的第一端连接,第二电阻的第二端与第一运算放大器的同相输入端连接,用于使第一运算放大器获取第二电压在第二电压在第二电阻上分压后得到的第四电压;
第一运算放大器的反相输入端与电容的第二端连接,第一运算放大器的输出端与滞后比较器的第一输入端连接,用于使第一运算放大器将第三电压与第四电压相加后得到的第五电压进行放大后输出至滞后比较器的第一输入端;
滞后比较器的第二输入端与基准电路的输出端连接。
对于图4需要说明的是,开关电路的第一端和第二端与图3中所示相同,第一电阻的第一端作为反馈电路的第一输入端,第二电阻的第一端作为反馈电路的第二输入端;第一运算放大器的输出端作为反馈电路的输出端与滞后比较器的第一输入端连接。
示例性的,图4所示的滞后类开关电源,由第一电阻R1、第二电阻R2、第一运算放大器组成反馈电路。从电感第一端和电容第一端采集的电压信号分别通过R1和R2,以电流模式一并输入至第一运算放大器的正极,这时候可以通过调配R1和R2阻值大小来实现对电感第一端和电容第一端的电压值的加权相加。
可选的,如图5所示,反馈电路还包括:
第二运算放大器,第二运算放大器的同相输入端与电感的第一端连接,第二运算放大器的反相输入端与电容的第二端连接,第二运算放大器的输出端与第一电阻的第一端连接,用于使第二运算放大器放大第一电压。
对于图5需要说明的是,开关电路的第一端和第二端与图3中所示相同;第一运算放大器的同相输入端作为反馈电路的第一输入端,第二电阻的第一端作为反馈电路的第二输入端;滞后比较器的第一输入与滞后比较器的第二输入端与图4中所示相同。
示例性的,图5所示的滞后类开关电源,由第一电阻R1、第二电阻R2、第一运算放大器以及第二运算放大器组成反馈电路。从电感第一端采集的电压信号经过第二运算放大器、R1和第一运算放大器以及从电容第一端采集的电压信号经过R2以电流模式一并输入至第一运算放大器的正极,这时候可以 通过调配R1和R2阻值大小来实现对电感第一端和电容第一端的电压值的加权相加。
可选的,如图6所示,滞后比较器包括:
模拟滞后比较器,模拟滞后比较器包括:第三运算放大器与第三电阻,第三电阻的第一端与第三运算放大器的同相输入端连接,第三电阻的第二端与第三运算放大器的输出端连接,其中,第三运算放大器的反相输入端与第一运算放大器的输出端连接,第三运算放大器的同相输入端与基准电路输出端连接,第三运算放大器的输出端与开关驱动电路的输入端连接,基准电路的输出端输出基准电压。
对于图6需要说明的是,开关电路的第一端和第二端与图3中所示相同;反馈电路的第一输入端和反馈电路的第二输入端与图5中所示相同;第三运算放大器的反相输入端作为滞后比较器的第一输入端,第三运算放大器的反相输入端作为滞后比较器的第二输入端。
还需说明的是,本发明实施例中的滞后比较器可以用模拟电路来实现,具体的,如图6所示,使用第三运算放大器以及跨接在第三运算放大器的同相输入端与输出端之间的第三电阻实现滞后比较器。
值得指出的是,本发明实施例中的反馈电路的第一运算放大器和第二运算放大器可以集成在一个运算放大器的芯片中,另外第三运算放大器也可以和第一运算放大器以及第二运算放大器集成在一个芯片中,这样,可以有效降低本发明实施例提供的开关电源在实际实现时的芯片面积。
可选的,如图7所示,滞后比较器还包括:
数字滞后比较器,数字滞后比较器包括:压控振荡器VCO、数字比较器以及显示查找表LUT,压控振荡器VCO的输入端与第一运算放大器的输出端连接,压控振荡器VCO的输出端与数字比较器的第一输入端连接,基准电路的输出端与数字比较器的第二输入端连接,显示查找表LUT的输出与数字比较器的第三输入端连接,其中,压控振荡器VCO的输入端与第一运算放大器的输出端连接,数字比较器的第二输入端与基准电路输出端连接,数字比较器的输出端与开关驱动电路的输入端连接,基准电路的输出端输出基准频率。
对于图7需要说明的是,开关电路的第一端和第二端与图3中所示相同;反馈电路的第一输入端和反馈电路的第二输入端与图5中所示相同;压控振荡器VCO的输入端作为滞后比较器的第一输入端,数字比较器的第二输入端 作为滞后比较器的第二输入端。
还需说明的是,本发明实施例中的滞后比较器也可以用数字电路来实现,第一运算放大器输出的反馈电压Vfb不会直接给到滞后比较器,而是先通过压控振荡器VCO,而VCO输出的则是反馈电压Vfb相对应的频率信号Ffb,也即是将Vfb转化为相应的Ffb,之后,数字比较器通过对VCO的输出Ffb与基准电路输出的基准频率Fref进行比较,将结果输出至开关驱动电路。数字比较器和查找表(Look-Up Table,LUT)来完成对输入的基准频率Fref和反馈频率Ffb比较,且滞后比较器的滞后窗口值也由LUT中的具体值来体现。值得一提的是,数字比较器实现简单,只要工作时钟确定之后,即通过LUT中存储的滞后窗口值对基准频率Fref和反馈频率Ffb进行比较。
可选的,如图8所示,开关电路包括:
第一开关元件、第二开关元件以及输入端电源;
第一开关元件的第一端与输入端电源的正极连接,第一开关元件的第二端与第二开关元件的第一端连接,第二开关元件的第二端与输入端电源的负极连接;
第一开关元件的第二端与电感的第一端连接,第二开关元件的第二端电容的第二端连接;
开关驱动电路用于控制第一开关元件以及第二开关元件的开通与关断。
对于图8需要说明的是,第一开关元件的第二端作为开关电路的第一端,第二开关元件的和第二端作为开关电路的第二端;反馈电路的第一输入端和反馈电路的第二输入端与图3中所示相同;滞后比较器的第一输入端和滞后比较器的第二输入端与图3中所示相同。
还需说明的是,本发明实施例中的滞后类开关电源的开关电路可以采用本领域内通用的实现方式,即图8中所示的方式。
可选的,如图9所示,第一开关元件为PMOS晶体管,第二开关元件为NMOS晶体管;
PMOS晶体管的源极S与输入端电源的正极连接,PMOS晶体管的漏极D与NMOS晶体管源极S连接,PMOS晶体管的栅极G与开关驱动电路的第一输出端连接,PMOS晶体管的漏极D与电感的第一端连接,NMOS晶体管的漏极D与输入端电源的负极连接,NMOS晶体管的栅极G与开关驱动电路的第二输出端连接,NMOS晶体管的漏极D与电容的第二端连接。
对于图9需要说明的是,PMOS晶体管的漏极D作为开关电路的第一端,NMOS晶体管的漏极D作为开关电路的第二端;反馈电路的第一输入端和反馈电路的第二输入端与图3中所示相同;滞后比较器的第一输入端和滞后比较器的第二输入端与图3中所示相同。
可选的,如图10所示,第一开关元件为PMOS晶体管,第二开关元件为NPN型三极管;
PMOS晶体管的源极S与输入端电源的正极连接,PMOS晶体管的漏极D与NPN型三极管的集电极连接,PMOS晶体管的栅极G与开关驱动电路的第一输出端连接,PMOS晶体管的漏极D与电感的第一端连接,NPN型三极管的发射极与输入端电源的负极连接,NPN型三极管的基极与开关驱动电路的第二输出端连接,NPN型三极管的发射极与电容的第二端连接。
对于图10需要说明的是,PMOS晶体管的漏极D作为开关电路的第一端,NPN型三极管的发射极作为开关电路的第二端;反馈电路的第一输入端和反馈电路的第二输入端与图3中所示相同;滞后比较器的第一输入端和滞后比较器的第二输入端与图3中所示相同。
可选的,如图11所示,第一开关元件为PNP型三极管,第二开关元件为NPN型三极管;
PNP型三极管的集电极与输入端电源的正极连接,PNP型三极管的发射极与NPN型三极管的集电极连接,PNP型三极管的基极与开关驱动电路的第一输出端连接,PNP型三极管的发射极与电感的第一端连接,NPN型三极管的发射极与输入端电源的负极连接,NPN型三极管的基极与开关驱动电路的第二输出端连接,NPN型三极管的发射极与电容的第二端连接。
对于图11需要说明的是,PNP型三极管的发射极作为开关电路的第一端,NPN型三极管的发射极作为开关电路的第二端;反馈电路的第一输入端和反馈电路的第二输入端与图3中所示相同;滞后比较器的第一输入端和滞后比较器的第二输入端与图3中所示相同。
可选的,如图12所示,第一开关元件为PNP型三极管,第二开关元件为NMOS晶体管;
PNP型三极管的集电极与输入端电源的正极连接,PNP型三极管的发射极与NMOS晶体管的源极S连接,PNP型三极管的基极与开关驱动电路的第一输出端连接,PNP型三极管的发射极与电感的第一端连接,NMOS晶体管 的漏极D与输入端电源的负极连接,NMOS晶体管的栅极G与开关驱动电路的第二输出端连接,NMOS晶体管的漏极D与电容的第二端连接。
对于图12需要说明的是,PNP型三极管的发射极作为开关电路的第一端,NMOS晶体管的漏极D作为开关电路的第二端;反馈电路的第一输入端和反馈电路的第二输入端与图3中所示相同;滞后比较器的第一输入端和滞后比较器的第二输入端与图3中所示相同。
还需说明的是,对于上述四种情况,本领域的普通技术人员可以在本发明实施例提供的内容下实现,这里不做赘述。
为了使本领域技术人员能够更详细的理解本发明实施例提供的开关电源,下面给出更详细的实现方式,例如图13和图14所示。
对于图13需要说明的是,开关电路的第一端和开关电路的第二端与图9中所示相同;反馈电路的第一输入端和反馈电路的第二输入端与图5中所示相同;滞后比较器的第一输入端和滞后比较器的第二输入端与图6中所示相同。
对于图14需要说明的是,开关电路的第一端和开关电路的第二端与图9中所示相同;反馈电路的第一输入端和反馈电路的第二输入端与图5中所示相同;滞后比较器的第一输入端和滞后比较器的第二输入端与图7中所示相同。
还需说明的是,在不考虑功率输出网络的电容C充放电时间、开关驱动电路的时延以及开关元件开启及关断的时延的情况下,对于图13或图14所示的滞后类开关电源,其开关频率可以由公式(3)来表示:
Figure PCTCN2015077815-appb-000003
其中,D为占空比,D=Vo/Vi,Vi为输入端电压,Vo为电容C两端输出的电压,H为滞后比较器的滞后窗口值,H=Vi*R4/(R3+R4),L为电感的电感值,F为开关频率,R为输出端的等效电阻,且此时,图13或图14中L的电感值要大于某一阈值,且C的电容值小于某一阈值,由公式(3)可以看出,本发明实施例提出的架构摆脱了额外RC滤波器的依赖,同时实现了对输出端负载跳变的快速响应,避免了自震荡现象的出现。
另外需要指出的是,如果对图13或图14中对C和L的值进行修改时,L的电感值要小于某一阈值,且C的电容值大于某一阈值,公式(3)应该改写为如下公式(4):
Figure PCTCN2015077815-appb-000004
举例来说,当系统频率F需要达到3.6Mhz,根据公式(3),L的电感值应该大于C的电容值,但是,如果对C和L赋予不同的参数,系统将不再适用公式(3)的情况,而是公式(4)的情况,如系统频率F需要达到3.6Mhz,当C的电容值达到800nF则L的电感值可以降低到49nH。总的来说,通过对C和L的不同赋值,可以在实际产品应用中方便电容和电感的硬件化。
最后还需说明的是,本领域的普通技术人员通过电路仿真实验可以发现:相比图2所示的现有的增加RC滤波器的滞后类开关电源,本发明实施例提供的开关电源在输出电压上能有效抑制纹波,并且在负载端出现跳变时(负载阻值R发生变化)所引起的输出电压的尖刺脉冲明显要小,本发明实施例提供的开关电源可以有效抑制纹波以及尖刺脉冲,能提高输出电压的PI(power integrity)信号完整性,进而也降低了系统不稳定所引起的功耗。另外,本发明实施例提供的开关电源还可以避免自震荡现象,图2所示的现有的增加RC滤波器的滞后类开关电源容易出现输出电压自震荡的情况,原因在于增加的RC滤波器的自解耦方式,即添加的RC滤波器使得反馈的电压与输出端电压无直接关系,输出端的跳变在小于开关频率响应期内会脱离反馈,从而出现自震荡现象,而发明实施例提供的开关电源的电压反馈采用的电感第一端Vx和电容第一端Vo双反馈方式,从而避免了这一现象的出现。还有,本发明实施例提供的开关电源提高了电源的集成度,在不额外调价RC滤波器的情况下,本发明实施例提供的开关电源的系统波特图(幅度增益比和相位增益比)达到了与额外添加RC滤波器的滞后类开关电源系统近似的波特图,也即本发明实施例提供的开关电源对通频段在幅度和相位上的增益和衰减效果良好。最后,图13或图14所示的架构下,可以通过调节R1和R2的阻值来提升开关电源的瞬态响应能力。具体来说,当开关频率确定时,R1对R2的比值越大且在某个范围之内,则能给开关电源带来更快的响应速度。另外,图13和图14中提出的技术架构为本专利发明的单相输出的应用,此技术架构同样可以扩展至多相输出的应用,在此不再列举。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而 前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种开关电源,其特征在于,包括:开关电路、功率输出电路、反馈电路、滞后比较器、基准电路以及开关驱动电路,其中,所述功率输出电路包括:电感和电容;所述反馈电路包括第一运算放大器;
    所述电感的第一端与所述开关电路的第一端连接,所述电感的第二端与所述电容的第一端连接,所述电容的第二端与所述开关电路的第二端连接;
    所述反馈电路的第一输入端与所述电感的第一端连接,所述反馈电路的第二输入端与所述电容的第一端连接,以使所述电感的第一端的第一电压与所述电容第一端的第二电压通过所述第一运算放大器进行加权相加,并将加权相加的结果作为所述反馈电路输出端的输出;
    所述反馈电路的输出端与所述滞后比较器的第一输入端连接,所述基准电路的输出端与所述滞后比较器的第二输入端连接,所述滞后比较器输出比较的结果用于使所述开关驱动电路控制所述开关电路的开通与关断。
  2. 根据权利要求1所述的开关电源,其特征在于,所述反馈电路还包括:第一电阻、第二电阻;
    所述第一电阻的第一端与所述电感的第一端连接,所述第一电阻的第二端与所述第一运算放大器的同相输入端连接,用于使所述第一运算放大器获取所述第一电压在所述第一电阻上分压后得到的第三电压;
    所述第二电阻的第一端与所述电容的第一端连接,所述第二电阻的第二端与所述第一运算放大器的同相输入端连接,用于使所述第一运算放大器获取所述第二电压在所述第二电压在所述第二电阻上分压后得到的第四电压;
    所述第一运算放大器的反相输入端与所述电容的第二端连接,所述第一运算放大器的输出端与所述滞后比较器的第一输入端连接,用于使所述第一运算放大器将所述第三电压与第四电压相加后得到的第五电压进行放大后输出至所述滞后比较器的第一输入端;
    所述滞后比较器的第二输入端与所述基准电路的输出端连接。
  3. 根据权利要求2所述的开关电源,其特征在于,所述反馈电路还包括:
    第二运算放大器,所述第二运算放大器的同相输入端与所述电感的第一端连接,所述第二运算放大器的反相输入端与所述电容的第二端连接,所述第二运算放大器的输出端与所述第一电阻的第一端连接,用于使所述第二运算放大器放大所述第一电压。
  4. 根据权利要求2或3所述的开关电源,其特征在于,所述滞后比较器包括:
    模拟滞后比较器,所述模拟滞后比较器包括:第三运算放大器与第三电阻,所述第三电阻的第一端与所述第三运算放大器的同相输入端连接,所述第三电阻的第二端与所述第三运算放大器的输出端连接,其中,所述第三运算放大器的反相输入端与所述第一运算放大器的输出端连接,所述第三运算放大器的同相输入端与所述基准电路输出端连接,所述第三运算放大器的输出端与所述开关驱动电路的输入端连接,所述基准电路的输出端输出基准电压。
  5. 根据权利要求2或3所述的开关电源,其特征在于,所述滞后比较器包括:
    数字滞后比较器,所述数字滞后比较器包括:压控振荡器VCO、数字比较器以及显示查找表LUT,所述压控振荡器VCO的输入端与所述第一运算放大器的输出端连接,所述压控振荡器VCO的输出端与所述数字比较器的第一输入端连接,所述基准电路的输出端与所述数字比较器的第二输入端连接,所述显示查找表LUT的输出与所述数字比较器的第三输入端连接,其中,所述压控振荡器VCO的输入端与所述第一运算放大器的输出端连接,所述数字比较器的第二输入端与所述基准电路输出端连接,所述数字比较器的输出端与所述开关驱动电路的输入端连接,所述基准电路的输出端输出基准频率。
  6. 根据权利要求1至5任一所述的开关电源,其特征在于,所述开关电路包括:
    第一开关元件、第二开关元件以及输入端电源;
    所述第一开关元件的第一端与所述输入端电源的正极连接,所述第一开关元件的第二端与所述第二开关元件的第一端连接,所述第二开关元件的第二端与所述输入端电源的负极连接;
    所述第一开关元件的第二端与所述电感的第一端连接,所述第二开关元件的第二端所述电容的第二端连接;
    所述开关驱动电路用于控制所述第一开关元件以及所述第二开关元件的开通与关断。
  7. 根据权利要求6所述的开关电源,其特征在于,所述第一开关元件为PMOS晶体管,所述第二开关元件为NMOS晶体管;
    所述PMOS晶体管的源极S与所述输入端电源的正极连接,所述PMOS晶体管的漏极D与所述NMOS晶体管源极S连接,所述PMOS晶体管的栅极G与所述开关驱动电路的第一输出端连接,所述PMOS晶体管的漏极D与所述电感的第一端连接,所述NMOS晶体管的漏极D与所述输入端电源的负极连接,所述NMOS晶体管的栅极G与所述开关驱动电路的第二输出端连接,所述NMOS晶体管的漏极D与所述电容的第二端连接。
  8. 根据权利要求6所述的开关电源,其特征在于,所述第一开关元件为PMOS晶体管,所述第二开关元件为NPN型三极管;
    所述PMOS晶体管的源极S与所述输入端电源的正极连接,所述PMOS晶体管的漏极D与所述NPN型三极管的集电极连接,所述PMOS晶体管的栅极G与所述开关驱动电路的第一输出端连接,所述PMOS晶体管的漏极D与所述电感的第一端连接,所述NPN型三极管的发射极与所述输入端电源的负极连接,所述NPN型三极管的基极与所述开关驱动电路的第二输出端连接,所述NPN型三极管的发射极与所述电容的第二端连接。
  9. 根据权利要求6所述的开关电源,其特征在于,所述第一开关元件为PNP型三极管,所述第二开关元件为NPN型三极管;
    所述PNP型三极管的集电极与所述输入端电源的正极连接,所述PNP型三极管的发射极与所述NPN型三极管的集电极连接,所述PNP型三极管的基极与所述开关驱动电路的第一输出端连接,所述PNP型三极管的发射极与所述电感的第一端连接,所述NPN型三极管的发射极与所述输入端电源的负极连接,所述NPN型三极管的基极与所述开关驱动电路的第二输出端连接,所述NPN型三极管的发射极与所述电容的第二端连接。
  10. 根据权利要求6所述的开关电源,其特征在于,所述第一开关元件为PNP型三极管,所述第二开关元件为NMOS晶体管;
    所述PNP型三极管的集电极与所述输入端电源的正极连接,所述PNP型三极管的发射极与所述NMOS晶体管的源极S连接,所述PNP型三极管的基极与所述开关驱动电路的第一输出端连接,所述PNP型三极管的发射极与所述电感的第一端连接,所述NMOS晶体管的漏极D与所述输入端电源的负极连接,所述NMOS晶体管的栅极G与所述开关驱动电路的第二输出端连接,所述NMOS晶体管的漏极D与所述电容的第二端连接。
PCT/CN2015/077815 2014-08-08 2015-04-29 开关电源 WO2016019742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410391272.9A CN104124870B (zh) 2014-08-08 2014-08-08 开关电源
CN201410391272.9 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016019742A1 true WO2016019742A1 (zh) 2016-02-11

Family

ID=51770170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077815 WO2016019742A1 (zh) 2014-08-08 2015-04-29 开关电源

Country Status (2)

Country Link
CN (1) CN104124870B (zh)
WO (1) WO2016019742A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769560A (zh) * 2017-11-29 2018-03-06 苏州工业职业技术学院 一种基于buck电路的可调开关电源
CN108691796A (zh) * 2018-06-27 2018-10-23 阿里斯顿热能产品(中国)有限公司 风机控制装置及控制方法
CN109327145A (zh) * 2018-11-07 2019-02-12 国充充电科技江苏股份有限公司 一种输出纹波抑制电路拓扑结构的开关电源
CN109870950A (zh) * 2019-01-16 2019-06-11 金卡智能集团股份有限公司 一种基于gprs通信的控制系统
CN110620576A (zh) * 2019-08-26 2019-12-27 长春光华科技发展有限公司 一种自反射光电管抗干扰电路
EP3820047A4 (en) * 2018-10-30 2021-10-27 LG Chem, Ltd. DRIVER CIRCUIT FOR CONTROLLING A P-CHANNEL MOSFET AND CONTROL DEVICE WITH IT
CN113783423A (zh) * 2021-09-16 2021-12-10 浪潮商用机器有限公司 一种buck电路和芯片

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124870B (zh) * 2014-08-08 2017-09-05 华为技术有限公司 开关电源
CN114336269B (zh) * 2020-09-29 2024-01-16 深圳市帝迈生物技术有限公司 一种驱动电路及激光器装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147478A (en) * 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
CN1623269A (zh) * 2002-01-29 2005-06-01 英特赛尔美国股份有限公司 合成涟波调整器
CN103036432A (zh) * 2012-12-07 2013-04-10 上海电力学院 基于纹波的pwm滞环控制方法
CN103392131A (zh) * 2011-02-11 2013-11-13 I·D·德弗里斯 用于具有无损电感器电流感测的双向转换器的迟滞电流模控制器
CN104124870A (zh) * 2014-08-08 2014-10-29 华为技术有限公司 开关电源

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922044B2 (en) * 2002-09-06 2005-07-26 Intersil Americas Inc. Synchronization of multiphase synthetic ripple voltage regulator
DE102004036958A1 (de) * 2004-07-30 2006-03-23 Tridonicatco Gmbh & Co. Kg Ansteuerung von Leistungsschaltern
JP2007252137A (ja) * 2006-03-17 2007-09-27 Ricoh Co Ltd 非絶縁降圧型dc−dcコンバータ
US7459893B2 (en) * 2006-04-20 2008-12-02 Mark E Jacobs Optimal feedback control of switch-mode power converters
JP5405891B2 (ja) * 2009-05-08 2014-02-05 スパンション エルエルシー 電源装置、制御回路、電源装置の制御方法
JP5347032B2 (ja) * 2009-10-26 2013-11-20 日産自動車株式会社 スイッチング素子の駆動回路および電力変換装置
CN102281058B (zh) * 2010-12-10 2014-03-12 华为技术有限公司 确定锁相环pll带宽特性的方法、装置和系统
CN102097934A (zh) * 2011-02-25 2011-06-15 浙江大学 迟滞模式降压型dc/dc开关变换器
JP5902401B2 (ja) * 2011-05-31 2016-04-13 サイプレス セミコンダクター コーポレーション 電源装置、制御回路、電子機器及び電源の制御方法
CN102868293A (zh) * 2012-09-10 2013-01-09 常州大学 固定关断时间控制开关变换器的斜坡补偿控制方法及装置
CN103715870B (zh) * 2013-12-26 2016-06-29 华为技术有限公司 电压调整器及其谐振栅驱动器
CN103762831B (zh) * 2014-02-20 2017-01-25 上海电力学院 一种pwm电压优先级控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147478A (en) * 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
CN1623269A (zh) * 2002-01-29 2005-06-01 英特赛尔美国股份有限公司 合成涟波调整器
CN103392131A (zh) * 2011-02-11 2013-11-13 I·D·德弗里斯 用于具有无损电感器电流感测的双向转换器的迟滞电流模控制器
CN103036432A (zh) * 2012-12-07 2013-04-10 上海电力学院 基于纹波的pwm滞环控制方法
CN104124870A (zh) * 2014-08-08 2014-10-29 华为技术有限公司 开关电源

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769560A (zh) * 2017-11-29 2018-03-06 苏州工业职业技术学院 一种基于buck电路的可调开关电源
CN107769560B (zh) * 2017-11-29 2023-10-31 苏州工业职业技术学院 一种基于buck电路的可调开关电源
CN108691796A (zh) * 2018-06-27 2018-10-23 阿里斯顿热能产品(中国)有限公司 风机控制装置及控制方法
CN108691796B (zh) * 2018-06-27 2024-04-30 阿里斯顿热能产品(中国)有限公司 风机控制装置及控制方法
EP3820047A4 (en) * 2018-10-30 2021-10-27 LG Chem, Ltd. DRIVER CIRCUIT FOR CONTROLLING A P-CHANNEL MOSFET AND CONTROL DEVICE WITH IT
US11171642B2 (en) 2018-10-30 2021-11-09 Lg Chem, Ltd. Driver circuit for controlling P-channel MOSFET, and control device comprising same
CN109327145A (zh) * 2018-11-07 2019-02-12 国充充电科技江苏股份有限公司 一种输出纹波抑制电路拓扑结构的开关电源
CN109870950A (zh) * 2019-01-16 2019-06-11 金卡智能集团股份有限公司 一种基于gprs通信的控制系统
CN110620576A (zh) * 2019-08-26 2019-12-27 长春光华科技发展有限公司 一种自反射光电管抗干扰电路
CN110620576B (zh) * 2019-08-26 2022-11-25 长春光华科技发展有限公司 一种自反射光电管抗干扰电路
CN113783423A (zh) * 2021-09-16 2021-12-10 浪潮商用机器有限公司 一种buck电路和芯片
CN113783423B (zh) * 2021-09-16 2024-01-26 浪潮商用机器有限公司 一种buck电路和芯片

Also Published As

Publication number Publication date
CN104124870A (zh) 2014-10-29
CN104124870B (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2016019742A1 (zh) 开关电源
US10355591B2 (en) Multilevel boost DC to DC converter circuit
Roh High-performance error amplifier for fast transient DC-DC converters
US11444537B2 (en) Power converters and compensation circuits thereof
CN108512422B (zh) 一种固定导通时间控制的降压型dc-dc转换器
WO2016029489A1 (zh) 单电感正负电压输出装置
TW201722041A (zh) 同步降壓型直流對直流(dc-dc)轉換器及其方法
CN105634287A (zh) 用于谐振变换器的充电模式控制设备
US11128215B2 (en) Direct current voltage step-down regulation circuit structure
CN106329924A (zh) 一种提高负载瞬态响应性能的系统
JP2003319645A (ja) Dc−dcコンバータ
CN104617771A (zh) 开关电源转换器系统及其控制方法
JP2010025946A (ja) 電流感知を伴う燃料計電力スイッチ
JP7058326B2 (ja) スイッチング電源、半導体集積回路装置、差動入力回路
CN114744869A (zh) 一种三电平降压直流变换器
CN112421937B (zh) 同步整流驱动模块、同步整流驱动电路和buck型降压电路
WO2023103900A1 (en) Feedback circuit with adjustable loop gain for boost converter
WO2017000442A1 (zh) 一种直流转换器、实现方法及计算机存储介质
Tang et al. A fully integrated 28nm CMOS dual source adaptive thermoelectric and RF energy harvesting circuit with 110mv startup voltage
CN112821733B (zh) 脉冲宽度调制控制电路、驱动电路和直流变换器
TWI497890B (zh) 具單一零電壓輔助電路之串接式轉換器
Wu et al. Current-mode adaptively hysteretic control for buck converters with fast transient response and improved output regulation
US9952616B2 (en) Differential circuit including a current mirror
US9654003B1 (en) Methods and apparatus for resonant energy minimization in zero voltage transition power converters
JP2014180075A (ja) 降圧スイッチング回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829985

Country of ref document: EP

Kind code of ref document: A1