WO2016019690A1 - 水泵控制方法 - Google Patents

水泵控制方法 Download PDF

Info

Publication number
WO2016019690A1
WO2016019690A1 PCT/CN2014/095190 CN2014095190W WO2016019690A1 WO 2016019690 A1 WO2016019690 A1 WO 2016019690A1 CN 2014095190 W CN2014095190 W CN 2014095190W WO 2016019690 A1 WO2016019690 A1 WO 2016019690A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
water pump
water
control method
inlet
Prior art date
Application number
PCT/CN2014/095190
Other languages
English (en)
French (fr)
Inventor
张宝生
戴永福
陈慧
杨亮
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2016019690A1 publication Critical patent/WO2016019690A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control

Definitions

  • the present invention relates to the field of air conditioner technology, and more particularly to a water pump control method.
  • the water pump of the existing air conditioner to remove the water in the water tray is always operated during the cooling and dehumidification conditions, and the power consumption is large, and after long-term use, the water pump is severely heated, the life is shortened, and the failure rate is high.
  • the present invention aims to provide a water pump control method capable of improving the service life of a water pump.
  • the present invention provides a water pump control method, and the water pump control method includes: a detecting step: detecting a water quantity of a device equipped with a water pump by using a temperature sensor and a humidity sensor; and controlling the step: if the water quantity of the device is greater than or Equal to the first preset value, the water pump is turned on, and if the water production amount of the device is less than the first preset value, the water pump is turned off.
  • the detecting step includes: step S1: detecting the inlet humid air specific volume of the device; step S2: detecting the outlet wet air specific volume of the device; and step S3: determining the outflow from the device according to the inlet wet air specific volume and the outlet wet air specific volume Mass flow of air; step S4: determining the amount of water produced by the device.
  • the temperature sensor includes an inlet air temperature sensor
  • the humidity sensor includes an inlet air humidity sensor
  • step S1 includes: detecting an intake moisture content of the device by using an inlet air humidity sensor; and detecting an intake air temperature of the device by using an inlet air temperature sensor; The intake moisture content and the intake air temperature determine the inlet humid air specific volume.
  • inlet humid air specific volume is determined by the following formula:
  • v 1 is the inlet wet air specific volume
  • R a dry air gas constant
  • T 1 is the intake air temperature
  • d 1 is the intake moisture content
  • P B is the atmospheric pressure constant.
  • step S3 the mass flow rate of the air is determined by the following formula:
  • v 1 is the inlet wet air specific volume
  • V a is the outlet wet air specific volume
  • G m is the mass flow rate of the air.
  • the humidity sensor further includes an outlet air humidity sensor
  • step S4 includes: detecting an outlet moisture content of the device by using an outlet air humidity sensor; determining a water production amount of the device according to the moisture content of the outlet gas, the moisture content of the intake air, and the mass flow rate of the air.
  • the amount of water produced by the equipment is determined according to the following formula:
  • M 1 is the water production capacity of the equipment
  • d 1 is the moisture content of the intake air
  • d 2 is the moisture content of the outlet gas
  • G m is the mass flow rate of the air.
  • the water pump when the water production amount is greater than or equal to the first preset value, the water pump is turned on for at least 20 seconds; when the water production amount is less than the first preset value, the water pump is stopped for at least 60 seconds.
  • the first preset value is equal to the value of the minimum amount of water at which the water pump starts to drain minus the amount of return water in the drain pipe in the device.
  • the device is an air conditioner or a dehumidifier.
  • the opening and closing of the water pump is controlled according to the water production amount of the device with the water pump, so that the water pump can start working when needed, and the problem that the power consumption of the water pump is always running is avoided, and
  • the pump running interval also facilitates the heat dissipation of the pump, improves the service life of the pump, and reduces the failure rate of the pump.
  • Fig. 1 schematically shows a control logic diagram of a water pump control method of the present invention.
  • the pump control method includes a detection step and a control step.
  • the detecting step uses the temperature sensor and the humidity sensor to detect the water production amount of the device in which the water pump is installed; in the control step, if the water production amount of the device is greater than or equal to the first preset value, the water pump is turned on, if the water production amount of the device is less than the first A preset value turns off the pump.
  • the opening and closing of the water pump is controlled according to the water production amount of the device having the water pump, so that the water pump can start working only when needed, and the problem that the water consumption of the water pump is always running is high, and further,
  • the intermittent operation of the pump also facilitates the heat dissipation of the pump, improves the service life of the pump, and reduces the failure rate of the pump.
  • the detecting step is first performed, and the detecting step includes:
  • Step S1 detecting the inlet humid air specific volume of the device.
  • a temperature sensor and a humidity sensor are added at the inlet of the device.
  • the humidity sensor here includes an inlet air humidity sensor
  • the temperature sensor includes an inlet air temperature sensor.
  • the specific volume is the volume occupied by the mass per unit mass, and the unit is m 3 /kg.
  • the step of determining the specific volume of the imported humid air is: (1) using the inlet temperature sensor to detect the moisture content of the intake air of the device d 1; (2) using the inlet air temperature sensor device detecting the intake air temperature T 1; (3) 1, and the intake air temperature T 1 is determined moist air inlet volume ratio V 1 the moisture content of the intake d.
  • v 1 is the inlet humid air specific volume
  • T 1 is the intake air temperature
  • d 1 is the intake moisture content
  • step S2 After determining the inlet humid air specific volume v 1 , proceeding to step S2: detecting the device outlet wet air specific volume V a .
  • the outlet humid air specific volume of the device is changed according to the refrigeration capacity of the device and the working gear position.
  • the outlet wet air specific volume V a of the device is based on experimental statistics. It can be concluded that the cooling capacity and running gear of the equipment are different, and the outlet air of the equipment is different from the volume.
  • Step S3 determining the mass flow rate of the air flowing out of the device according to the inlet humid air specific volume v 1 and the outlet wet air specific volume V a .
  • the mass flow of this air is determined by the following formula:
  • v 1 is the inlet wet air specific volume
  • V a is the outlet wet air specific volume
  • G m is the mass flow rate of the air.
  • step S4 determining water production device M 1.
  • the temperature sensor of the embodiment further includes an outlet air temperature sensor
  • the humidity sensor further includes an outlet air humidity sensor.
  • Step S4 specifically includes: using an outlet humidity sensor to detect the moisture content of the device at a certain temperature, and detecting the outlet temperature T 2 of the device by using an outlet air temperature sensor during the process of detecting the moisture content of the device;
  • the outlet air humidity sensor detects the outgassing temperature T 2 of the combined device to obtain the outgas moisture content d 2 of the device , and then determines the water yield of the device according to the outgas moisture content d 2 , the intake moisture content d 1 , and the mass flow rate G m of the air.
  • M 1 The water production amount M 1 of the equipment is determined according to the following formula:
  • M 1 is the water production capacity of the equipment
  • d 1 is the moisture content of the intake air
  • d 2 is the moisture content of the outlet gas
  • G m is the mass flow rate of the air.
  • a control step is performed.
  • the water pump is turned on for at least 20 seconds; when the water production amount is less than the first preset value, the stop is stopped. Pump for at least 60 seconds.
  • the amount of water actually entering the water receiving tray of the device is equal to the amount of return water M 0 of the drain pipe and the amount of water produced by the device M of 1 and, therefore, in the present embodiment, in order to ensure that the pump can be opened at the appropriate time, the first predetermined value is equal to the embodiment, the pump starts to discharge the minimum amount of water was refluxed ⁇ M subtracting device within the drain The value after the amount of water.
  • the device may be an air conditioner (such as a patio machine, a duct machine, a unit machine, a cabinet machine, a wall hanging machine, a mobile air conditioner, etc.), a dehumidifier, or the like.
  • the air inlet of the device is the air inlet of the air conditioner or the dehumidifier
  • the air outlet of the device is the air outlet of the air conditioner or the dehumidifier.
  • the present invention can add several air temperature and humidity sensors to the existing air conditioning system, dehumidifier and the like, and the humidity sensor and the original evaporator tube temperature sensor and air conditioner.
  • the running time and the fan gear position jointly judge the water production capacity of the unit.
  • the air conditioning water production reaches the set minimum displacement, the water pump runs.
  • the pump stops running so that the pump can start working when needed, avoiding the problem that the pump always runs high power consumption.
  • the interval between the pumps is also convenient for the pump to dissipate heat. The service life of the pump reduces the failure rate of the pump.

Abstract

一种水泵控制方法,包括:检测步骤,利用温度传感器和湿度传感器检测安装有水泵的设备的产水量,控制步骤,如果设备的产水量大于或等于第一预设值,则开启水泵,如果设备的产水量小于第一预设值,则关闭水泵。该控制方法节约了电量,提高了水泵使用寿命,降低了水泵的故障率。

Description

水泵控制方法 技术领域
本发明涉及空调器技术领域,更具体地,涉及一种水泵控制方法。
背景技术
现有空调排除接水盘中水的水泵在制冷和除湿工况时一直运行,耗电量大,且长期使用会后,水泵发热严重,寿命缩短,故障率高。
发明内容
本发明旨在提供一种能够提高水泵使用寿命的水泵控制方法。
为解决上述技术问题,本发明提供了一种水泵控制方法,水泵控制方法包括:检测步骤:利用温度传感器和湿度传感器检测安装有水泵的设备的产水量;控制步骤:如果设备的产水量大于或等于第一预设值,则开启水泵,如果设备的产水量小于第一预设值,则关闭水泵。
进一步地,检测步骤包括:步骤S1:检测设备的进口湿空气比体积;步骤S2:检测设备的出口湿空气比体积;步骤S3:根据进口湿空气比体积和出口湿空气比体积确定从设备流出的空气的质量流量;步骤S4:确定设备的产水量。
进一步地,温度传感器包括进口空气温度传感器,湿度传感器包括进口空气湿度传感器,步骤S1包括:利用进口空气湿度传感器检测设备的进气含湿量;利用进口空气温度传感器检测设备的进气温度;根据进气含湿量和进气温度确定进口湿空气比体积。
进一步地,利用如下公式确定进口湿空气比体积:
Figure PCTCN2014095190-appb-000001
其中,v1是进口湿空气比体积,Ra干空气气体常数,T1是进气温度,d1是进气含湿量,PB是大气压力常数。
进一步地,在步骤S3中,空气的质量流量利用如下公式确定:
Figure PCTCN2014095190-appb-000002
其中,v1是进口湿空气比体积,Va是出口湿空气比体积,Gm是空气的质量流量。
进一步地,湿度传感器还包括出口空气湿度传感器,步骤S4包括:利用出口空气湿度传感器检测设备的出气含湿量;根据出气含湿量、进气含湿量以及空气的质量流量确定设备的产水量。
进一步地,设备的产水量根据如下公式确定:
M1=(d2-d1)×Gm
其中,M1为设备的产水量,d1是进气含湿量,d2是出气含湿量,Gm是空气的质量流量。
进一步地,在控制步骤中:当产水量大于或等于第一预设值时,打开水泵至少20秒;当产水量小于第一预设值时,停止水泵至少60秒。
进一步地,第一预设值等于水泵开始排水的最小水量减去设备中排水管内的回流水量后的值。
进一步地,设备为空调器或除湿机。
应用本发明的技术方案,根据具有水泵的设备的产水量来对水泵的开启和关闭进行控制,能够使水泵在需要的时候才开始工作,避免水泵一直运行耗电量高的问题的出现,此外,使水泵间隔运行还便于水泵散热,提高水泵的使用寿命、降低水泵的故障率。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示意性示出了本发明水泵控制方法的控制逻辑图。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。
参见图1所示,根据本发明的实施例,提供了一种水泵控制方法。该水泵控制方法包括检测步骤和控制步骤。其中,检测步骤利用温度传感器和湿度传感器检测安装有水泵的设备的产水量;在控制步骤中,如果设备的产水量大于或等于第一预设值,则开启水泵,如果设备的产水量小于第一预设值,则关闭水泵。在本发明中,根据具有水泵的设备的产水量来对水泵的开启和关闭进行控制,能够使水泵在需要的时候才开始工作,避免水泵一直运行耗电量高的问题的出现,此外,使水泵间隔运行还便于水泵散热,提高水泵的使用寿命、降低水泵的故障率。
本实施例的水泵控制方法的具体过程如下:
再次参见图1所示,首先进行检测步骤,该检测步骤包括:
步骤S1:检测设备的进口湿空气比体积。为了检测设备的进口湿空气比体积需要在设备的进口处增设温度传感器和湿度传感器,这里的湿度传感器包括进口空气湿度传感器,温度传感器包括进口空气温度传感器。其中比体积是单位质量的物质所占有的体积,单位为m3/kg,具体来说,进口湿空气比体积的确定步骤为:(1)利用进口温度传感器检测设备的进气含湿量d1;(2)利用进口空气温度传感器检测设备的进气温度T1;(3)根据进气含湿量d1和进气温度T1确定进口湿空气比体积v1。利用如下公式确定进口湿空气比体积:
Figure PCTCN2014095190-appb-000003
其中,v1是进口湿空气比体积,Ra干空气气体常数,Ra=287J/(kg·K),T1是进气温度,d1是进气含湿量,PB是大气压力常数,PB=101325Pa。
确定完进口湿空气比体积v1之后进行步骤S2:检测设备出口湿空气比体积Va。通常情况下,设备的出口湿空气比体积是根据设备的制冷容量、所处的工作档位的不同而改变的,在本发明的实施例中,设备的出口湿空气比体积Va根据实验统计得出,设备的制冷容量、运行的档位不一样,设备的出口湿空气比体积也不一样。
步骤S3:根据进口湿空气比体积v1和出口湿空气比体积Va确定从设备流出的空气的质量流量。该空气的质量流量利用如下公式确定:
Figure PCTCN2014095190-appb-000004
其中,v1是进口湿空气比体积,Va是出口湿空气比体积,Gm是空气的质量流量。
确定完空气的质量流量Gm之后,进行步骤S4:确定设备的产水量M1。为了检测设备的产水量M1,本实施例的温度传感器还包括出口空气温度传感器,湿度传感器还包括出口空气湿度传感器。步骤S4具体包括:在一定为温度下,利用出口湿度传感器检测设备的出气含湿量,在检测设备的出气含湿量的过程中,利用出口空气温度传感器检测得到设备的出气温度T2,利用出口空气湿度传感器检测结合设备的出气温度T2得到设备的出气含湿量d2,然后根据出气含湿量d2、进气含湿量d1以及空气的质量流量Gm确定设备的产水量M1。设备的产水量M1根据如下公式确定:
M1=(d2-d1)×Gm
其中,M1为设备的产水量,d1是进气含湿量,d2是出气含湿量,Gm是空气的质量流量。
确定完设备的产水量M1之后,进行控制步骤,在控制步骤中:当产水量大于或等于第一预设值时,打开水泵至少20秒;当产水量小于第一预设值时,停止水泵至少60秒。根据本实施例,能够对设备中的水泵是否开启以及怎样开启做准确的控制,使水泵在需要泵送水的时候才开启,避免水泵处于一直运行的状态,节约水泵的耗电量,使水泵间隔运行还便于水泵散热,提高水泵的使用寿命、降低水泵的故障率。
优选地,在本实施例中,由于设备的排水管道中有时候会存在回流水M0,所以,实际上进入设备的接水盘中的水量等于排水管回流水量M0和设备的产水量M1之和,因此,在本实施例中,为了能够保证水泵能够在合适的时候开启,本实施例中的第一预设值等于水泵开始排水的最小水量△M减去设备中排水管内的回流水量后的值。也就是说,当设备的产水量M1排水管回流水量M0大于等于水泵开始排水的最小值△M时,就开启水泵,使设备开始排水;设备的产水量M1排水管回流水量M0小于水泵开始排水的最小值△M时,就关闭水泵,停止排水,保证设备运行的可靠性和安全性。
在本发明中,所述的设备可以是空调器(如天井机、风管机、单元机、柜机、壁挂机、移动空调等),除湿机等。所述设备的空气进口即为空调器或除湿机的进风口、所述设备的空气出口即为空调器或除湿机的出风口。
根据本发明的上述实施例可以知道,本发明通过在现有的空调系统、除湿机等设备的基础上增设几个空气温湿度传感器,通过该湿度传感器和原有的蒸发器管温传感器、空调运行时间、风机档位共同判断机组的产水量,当空调产水量达到设定最小排水量时,水泵运行。当空调产水量未达到设定的最小排水量时,水泵停止运行能够使水泵在需要的时候才开始工作,避免水泵一直运行耗电量高的问题,此外,使水泵间隔运行还便于水泵散热,提高水泵的使用寿命、降低水泵的故障率。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种水泵控制方法,其特征在于,包括:
    检测步骤:利用温度传感器和湿度传感器检测安装有水泵的设备的产水量;
    控制步骤:如果所述设备的产水量大于或等于第一预设值,则开启所述水泵,如果所述设备的产水量小于所述第一预设值,则关闭所述水泵。
  2. 根据权利要求1所述的水泵控制方法,其特征在于,所述检测步骤包括:
    步骤S1:检测所述设备的进口湿空气比体积;
    步骤S2:检测所述设备的出口湿空气比体积;
    步骤S3:根据所述进口湿空气比体积和所述出口湿空气比体积确定从所述设备流出的空气的质量流量;
    步骤S4:确定所述设备的产水量。
  3. 根据权利要求2所述的水泵控制方法,其特征在于,所述温度传感器包括进口空气温度传感器,所述湿度传感器包括进口空气湿度传感器,所述步骤S1包括:
    利用所述进口空气湿度传感器检测所述设备的进气含湿量;
    利用所述进口空气温度传感器检测所述设备的进气温度;
    根据所述进气含湿量和所述进气温度确定所述进口湿空气比体积。
  4. 根据权利要求3所述的水泵控制方法,其特征在于,利用如下公式确定所述进口湿空气比体积:
    Figure PCTCN2014095190-appb-100001
    其中,v1是所述进口湿空气比体积,Ra干空气气体常数,T1是所述进气温度,d1是所述进气含湿量,PB是大气压力常数。
  5. 根据权利要求3所述的水泵控制方法,其特征在于,在所述步骤S3中,所述空气的质量流量利用如下公式确定:
    Figure PCTCN2014095190-appb-100002
    其中,v1是所述进口湿空气比体积,Va是所述出口湿空气比体积,Gm是所述空气的质量流量。
  6. 根据权利要求5所述的水泵控制方法,其特征在于,所述湿度传感器还包括出口空气湿度传感器,所述步骤S4包括:
    利用所述出口空气湿度传感器检测所述设备的出气含湿量;
    根据所述出气含湿量、所述进气含湿量以及所述空气的质量流量确定所述设备的产水量。
  7. 根据权利要求6所述的水泵控制方法,其特征在于,所述设备的产水量根据如下公式确定:
    M1=(d2-d1)×Gm
    其中,M1为所述设备的产水量,d1是所述进气含湿量,d2是所述出气含湿量,Gm是所述空气的质量流量。
  8. 根据权利要求1所述的水泵控制方法,其特征在于,在所述控制步骤中:
    当所述产水量大于或等于所述第一预设值时,打开所述水泵至少20秒;
    当所述产水量小于所述第一预设值时,停止所述水泵至少60秒。
  9. 根据权利要求1至8中任一项所述的水泵控制方法,其特征在于,所述第一预设值等于所述水泵开始排水的最小水量减去所述设备中排水管内的回流水量后的值。
  10. 根据权利要求1至8中任一项所述的水泵控制方法,其特征在于,所述设备为空调器或除湿机。
PCT/CN2014/095190 2014-08-07 2014-12-26 水泵控制方法 WO2016019690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410387727.X 2014-08-07
CN201410387727.XA CN104265612B (zh) 2014-08-07 2014-08-07 水泵控制方法

Publications (1)

Publication Number Publication Date
WO2016019690A1 true WO2016019690A1 (zh) 2016-02-11

Family

ID=52157168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095190 WO2016019690A1 (zh) 2014-08-07 2014-12-26 水泵控制方法

Country Status (2)

Country Link
CN (1) CN104265612B (zh)
WO (1) WO2016019690A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265612B (zh) * 2014-08-07 2016-03-02 珠海格力电器股份有限公司 水泵控制方法
CN110131145B (zh) * 2019-05-16 2020-06-09 珠海格力电器股份有限公司 水泵控制方法、系统及空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684648B2 (en) * 2000-07-26 2004-02-03 Fakieh Research & Development Center Apparatus for the production of freshwater from extremely hot and humid air
CN1963054A (zh) * 2006-12-05 2007-05-16 吕迎智 地下质子设备机房自动排水装置
CN202381308U (zh) * 2011-12-30 2012-08-15 大同煤矿集团有限责任公司 自动排水装置
CN203145180U (zh) * 2013-04-03 2013-08-21 睢县供电有限责任公司 一种自动排水装置
CN104265612A (zh) * 2014-08-07 2015-01-07 珠海格力电器股份有限公司 水泵控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459467B2 (ja) * 1994-06-13 2003-10-20 三洋電機株式会社 ドレン水処理装置およびこの装置を備えた空気調和装置
CN2814270Y (zh) * 2005-06-23 2006-09-06 四川长虹电器股份有限公司 冷剂水泵的自动控制装置
KR20080060857A (ko) * 2006-12-27 2008-07-02 엘지전자 주식회사 공기조화기의 응축수 배출장치
CN101839541A (zh) * 2009-03-19 2010-09-22 乐金电子(天津)电器有限公司 除湿机的冷凝水排出系统
CN201637000U (zh) * 2010-02-05 2010-11-17 广东美的电器股份有限公司 带排水功能的除湿机
JP5568046B2 (ja) * 2011-03-30 2014-08-06 日立アプライアンス株式会社 空気調和機
CN103090460B (zh) * 2011-11-07 2016-04-06 华为技术有限公司 用于供暖、通风或空气调节系统的冷凝水排放方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684648B2 (en) * 2000-07-26 2004-02-03 Fakieh Research & Development Center Apparatus for the production of freshwater from extremely hot and humid air
CN1963054A (zh) * 2006-12-05 2007-05-16 吕迎智 地下质子设备机房自动排水装置
CN202381308U (zh) * 2011-12-30 2012-08-15 大同煤矿集团有限责任公司 自动排水装置
CN203145180U (zh) * 2013-04-03 2013-08-21 睢县供电有限责任公司 一种自动排水装置
CN104265612A (zh) * 2014-08-07 2015-01-07 珠海格力电器股份有限公司 水泵控制方法

Also Published As

Publication number Publication date
CN104265612A (zh) 2015-01-07
CN104265612B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
AU2012201298B2 (en) Improvements in and relating to drying of water damaged buildings
CN103727622B (zh) 恒温恒湿空调器及其控制方法
CN105864939B (zh) 一种空调系统、以及除湿控制方法和系统
EP3279591A1 (en) Indoor air conditioning unit
CN105757807A (zh) 带风量调节的除湿机
WO2013023459A1 (zh) 废湿热空气全热回收系统及方法
WO2016047028A1 (ja) 熱交換形換気装置
WO2015146018A1 (ja) 熱交換形換気装置
RU2018113530A (ru) Интеллектуальный насос для переносного детектора утечки газа
WO2016019690A1 (zh) 水泵控制方法
CN203425833U (zh) 上送下回的高使用率的试验箱
CN104180605B (zh) 微波炉冰箱的风机的控制方法、控制装置和微波炉冰箱
JP2012207811A (ja) 空気調和機
JP6295413B2 (ja) 給排型換気装置
CN205690528U (zh) 带风量调节的除湿机
JP2017219258A (ja) 除湿装置、除湿方法及びプログラム
JP2009008045A (ja) ドレン排出異常の検出装置および圧縮空気除湿装置
KR101589807B1 (ko) 히트펌프 냉각기
JP2014163551A (ja) 熱交換換気装置
JP2016153701A (ja) 熱交換形換気装置
KR20120072850A (ko) 냉방 동결 방지 방법
JP2010012427A (ja) 圧縮空気除湿装置
CN203750551U (zh) 带导光管的高低温湿热试验箱
US20090134233A1 (en) Steam Control System
JP2016065692A (ja) 熱交換形換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899358

Country of ref document: EP

Kind code of ref document: A1