WO2016017991A1 - Nondestructive fatigue inspection apparatus and inspection method therefor using electromagnetic induction sensor - Google Patents

Nondestructive fatigue inspection apparatus and inspection method therefor using electromagnetic induction sensor Download PDF

Info

Publication number
WO2016017991A1
WO2016017991A1 PCT/KR2015/007662 KR2015007662W WO2016017991A1 WO 2016017991 A1 WO2016017991 A1 WO 2016017991A1 KR 2015007662 W KR2015007662 W KR 2015007662W WO 2016017991 A1 WO2016017991 A1 WO 2016017991A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic induction
magnetic flux
fatigue
inspection
information
Prior art date
Application number
PCT/KR2015/007662
Other languages
French (fr)
Korean (ko)
Inventor
박정웅
김국주
김준석
정민식
홍동기
Original Assignee
(주)라디안
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)라디안, 조선대학교산학협력단 filed Critical (주)라디안
Publication of WO2016017991A1 publication Critical patent/WO2016017991A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present invention relates to a non-destructive fatigue testing apparatus and an inspection method using an electromagnetic induction sensor, and more specifically, to a non-destructive inspection method according to the material of welding, joint sites, such as ships, vehicles, large structures, etc. by using the electromagnetic induction sensor
  • the present invention relates to an apparatus for inspecting fatigue and a method of inspecting the same.
  • a ship's structure is very complicated due to various wave loads generated by the natural environment even if its route is determined. Therefore, it is very difficult to accurately predict the degree of damage to the load under these operations. Since a ship accident can lead to a large-scale human accident, property damage, etc., it is very important to accurately predict the fatigue level of the ship structure and to determine the ship's life and safety diagnosis time.
  • non-destructive testing methods may be used to measure the fatigue of a ship structure.
  • the principle is to use the difference in the concentration on the film due to the change in the intensity of the transmitted radiation when the product is irradiated with transparent radiation, that is, the difference in the amount of transmission lines between the sound and defect parts. It is a method to inspect the product for defects. In the case of this inspection method, only the highly trained technicians can use the radiation itself in accordance with the National Radiation Dangerous Goods Handling and Management Regulation, and it is difficult to handle and increases the time and cost. It can't be done.
  • the principle is that the ultrasonic energy is transmitted to the product, and the amount of ultrasonic energy reflected from the discontinuous parts existing inside, the progress time of the ultrasonic wave, etc. It is one of the most widely used nondestructive testing methods in the world. However, this method also needs to be measured by applying a gel to the ultrasonic transducer to minimize the loss of ultrasonic energy, and the distortion of the data is influenced by the influence of the amount of gel applied, the measuring angle and position of the transducer, and the surrounding environment and temperature. Due to this, there is a limitation that it is difficult to apply to measure the fatigue of the ship.
  • the principle of magnetic particle nondestructive testing is to magnetize a ferromagnetic substance and apply magnetic powder to collect or blow the magnetic field by leakage magnetic field to detect the discontinuity (defect) on or under the ferromagnetic body. It is possible to measure cracks on the surface only by checking the location, size, shape and width of the surface.
  • PT Penetration Testing Nondestructive Testing
  • the principle of eddy current non-destructive testing is to bring the alternating current of eddy current inside the conductor when it is brought close to the test object such as metal, and the eddy current is changed in size and distribution by the influence of defect or material. It is a test method to measure cracks or defects on the surface of an object by measuring the amount of change.
  • this also has the disadvantage that it is difficult to determine the exact fatigue because the surface inspection is possible, but the inspection of the inner and deep parts of the product is impossible.
  • the present invention is to accurately measure the fatigue level of a ship, a vehicle, a large building, etc., and an object of the present invention is to easily perform the fatigue test using an electromagnetic induction sensor which is a kind of non-destructive test.
  • a fatigue inspection apparatus utilizing the electromagnetic induction sensor unit.
  • the inspection apparatus includes an electromagnetic induction coil and a probe unit including an electromagnetic induction sensor unit for transmitting and receiving a magnetic flux line generated by the electromagnetic induction coil to the inspection site, and an acceleration sensor unit for measuring and correcting the shaking of the measurer. ; A control unit for reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines; And a display unit for displaying the information on the magnetic flux lines in which the hand shake information is reflected.
  • the inspection apparatus may be configured to determine a degree of fatigue based on a specimen in a normal state so as to pre-measure a reference specimen having the same material and composition as the measurement specimen, to store data or to store a standard specimen of the measurement object in a space; And a reference sensor unit including a reference sensor for measuring the specimen in the steady state.
  • the controller may automatically determine the frequency of the magnetic flux line passing through the inspection region according to the material, thickness, or temperature of the inspection region by automatically changing the frequency of the magnetic flux line within a predetermined range after a start of inspection.
  • Algorithm analysis software may be further included.
  • a fatigue test method using the electromagnetic induction sensor unit may include receiving and transmitting a flux line using an electromagnetic induction sensor unit included in the probe unit with respect to the inspection site; Measuring a camera shaker using an acceleration sensor included in the probe unit; Reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines by a controller; And determining, by the controller, whether the inspection site is normal by comparing the information on the magnetic flux line in which the hand shake information is reflected with the information on the magnetic flux line of the specimen in the normal state measured by the reference sensor.
  • the inspection method may further include displaying information on a magnetic flux line reflecting the hand shake information on a display unit.
  • the present invention can easily inspect the fatigue degree of the welding, joining portion, etc. of the ship, vehicle, large structure, etc. by utilizing the electromagnetic induction sensor.
  • FIG. 1 shows a schematic diagram of a fatigue testing apparatus according to an embodiment of the present invention.
  • Figure 2 shows a conceptual diagram of the fatigue test apparatus according to an embodiment of the present invention.
  • FIG. 3A illustrates a state in which a magnetic flux line is generated by an electromagnetic induction sensor and transmitted after receiving the object to be inspected without fatigue and cracks according to an embodiment of the present invention.
  • 3B illustrates a state in which a magnetic flux line is generated by an electromagnetic induction sensor and transmitted after being transmitted to an inspection object in which fatigue and cracks exist, according to an embodiment of the present invention.
  • FIGS. 4A and 4B illustrate graphs displayed on the display unit according to an embodiment of the present invention.
  • FIG. 5 shows a flowchart of a fatigue test method according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 shows a schematic diagram of a fatigue testing apparatus according to an embodiment of the present invention.
  • a fatigue test apparatus using an electromagnetic induction sensor unit includes a probe 101 and a main body 102.
  • the measurer who wants to check the fatigue carries the fatigue test apparatus, scans the inspection site using the probe 101, transmits and receives the magnetic flux lines, displays the magnetic field information on the main body 102, and checks the normality of the inspection site. Determine whether or not.
  • Figure 2 shows a conceptual diagram of the fatigue test apparatus according to an embodiment of the present invention.
  • the fatigue test apparatus includes an acceleration sensor 201 for measuring a hand shake of an operator and an electromagnetic induction coil therein, and an electromagnetic induction sensor unit for receiving the magnetic flux lines generated by the electromagnetic induction coil after passing through the inspection part ( A probe unit 203 including 202; A control unit 204 for reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines; And a display unit 205 for displaying information on the magnetic flux lines in which the hand shake information is reflected.
  • the electromagnetic induction sensor unit 202 includes an electromagnetic induction coil therein and transmits the magnetic flux lines generated by the electromagnetic induction coil to the inspection site and receives the magnetic flux lines.
  • the controller 204 corrects an error due to hand shake by reflecting the hand shake information measured by the acceleration sensor 201 in the information on the magnetic flux lines received by the electromagnetic induction sensor unit 202.
  • the information on the magnetic flux lines whose error due to the hand shake is corrected by the controller 204 is displayed on the display unit 205.
  • the inspection apparatus includes a space 206 for receiving a specimen (standard specimen) in a steady state; And a reference sensor unit 208 including a reference sensor 207 for measuring the specimen in the steady state.
  • the inspection apparatus includes a reference sensor unit 208 in order to obtain information on the magnetic flux lines in such a steady state.
  • the reference sensor unit 208 is provided with a space 206 for accommodating the specimen in a steady state.
  • a specimen for example, iron, SUS, aluminum, cast iron, copper, etc.
  • a specimen for example, iron, SUS, aluminum, cast iron, copper, etc.
  • the reference sensor 207 can do.
  • the display unit 205 may display information on the magnetic flux lines of the inspection site and information on the magnetic flux lines of the specimen in the normal state.
  • FIG. 3A illustrates a state in which a magnetic flux line is generated by an electromagnetic induction sensor and transmitted after receiving the object to be inspected without fatigue in accordance with an embodiment of the present invention.
  • the magnetic flux lines output from the electromagnetic induction sensor unit 202 are received by the electromagnetic induction sensor unit 202 after passing through the inspection object 302.
  • the appearance of the magnetic flux lines is not changed and is received by the electromagnetic induction sensor unit 202.
  • the flux line transmitted to the inspection object is received by the electromagnetic induction sensor unit 202 when the appearance of the flux line is changed when there is a non-uniformity such as cracks, fatigue, plating peeling, etc. in the inspection object.
  • 3B illustrates a state in which a magnetic flux line is generated by an electromagnetic inductive sensor and transmitted after being transmitted to an inspection object in which fatigue, cracks, etc. are present, according to an embodiment of the present invention.
  • the magnetic flux lines output from the electromagnetic induction sensor unit 202 are received by the electromagnetic induction sensor unit 202 after passing through the inspection object 302.
  • the state of the magnetic flux lines is changed and received by the electromagnetic induction sensor unit 202.
  • the voltage of the normal region obtains the amplitude and phase graph in advance, and based on this, the fatigue is large when a difference over the predetermined range occurs in the amplitude and phase graph of the voltage.
  • the magnetic flux line can be changed by adjusting the shape and number of turns of the electromagnetic induction coil in the electromagnetic induction sensor unit 202 or by adjusting the current applied to the electromagnetic induction coil, and adjust the transmission distance to the inspection object according to the change of the magnetic flux line. Can be.
  • the controller 204 may automatically determine the frequency of the magnetic flux line passing through the inspection region according to the material, thickness, or temperature of the inspection region by changing the frequency of the magnetic flux line within a predetermined range after a start of inspection. have.
  • the controller 204 may automatically determine the most suitable frequency for inspecting the inspection site by sequentially changing the frequency of the magnetic flux line of the electromagnetic induction sensor unit 202 from 10 hz to 1000 MHz.
  • the controller 204 may process the display unit 205 to display information on the magnetic flux lines.
  • the control unit 204 on the display unit 205, sets the x-axis as the rotation angle of the inspection object from the reference point, and displays a graph on the y-axis of the voltage generated in the electromagnetic induction coil by the received magnetic flux lines. It is possible to process the voltage information of the magnetic flux lines received so as to.
  • FIGS. 4A and 4B illustrate graphs displayed on the display unit according to an embodiment of the present invention.
  • the x-axis represents the distance scanned by the inspection object
  • the y-axis represents the voltage generated in the magnetic induction coil by the magnetic flux lines received from the electromagnetic induction sensor unit.
  • the graph indicated by 401 is the output waveform of the normal region measured in advance or measured by the reference sensor unit
  • the graph indicated by 402 is the output waveform of the fatigue region, indicated by 402 because there is a difference between the predetermined reference in amplitude and phase.
  • the test object generating the graph is divided into fatigue sites.
  • FIG. 4B a graph in which the difference between the phase and the amplitude of the graph of the normal region and the fatigue region is converted into an absolute value is illustrated in FIG. 4A.
  • phase difference and amplitude difference between the voltage-distance graphs of the normal and fatigue parts according to the angles obtained in FIG. 4A are numerically expressed and displayed in a graph as in FIG. 4B, within a specific numerical value (for example, 1.0 to -1.0)
  • a specific numerical value for example, 1.0 to -1.0
  • the portions corresponding to 1 to 3, 6 to 14, and the like have a y value between 1.0 and -1.0, and thus this portion may be judged to have no fatigue of the welded portion.
  • parts 4 and 15 have y values outside of 1.0 to -1.0, it can be determined that fatigue occurs at the welded part.
  • the fatigue part can be judged, and when the fatigue degree of the regularly occurring part is measured, cracks are generated due to the breakdown due to fatigue at some point. It can be replaced.
  • the y value reflects, for example, the phase difference and amplitude difference of the voltage-distance graph at 1: 1, and sets the value of y to 1.0 when the phase difference is +20 degrees and the amplitude difference is +0.001 volt. You can decide.
  • the x-axis is shown in FIG. 4A and 4B as distance, this may be time or the like. Even in the case of time, converting the data of FIG. 4A to the data of FIG. 4B can be easily converted according to a desired setting.
  • FIG. 5 shows a flowchart of a method for checking fatigue quality according to an embodiment of the present invention.
  • a magnetic flux line is transmitted through a magnetic flux line by using an electromagnetic induction sensor unit included in a probe unit, and then received (1). Then, measuring the hand shake of the measurer using the acceleration sensor included in the probe unit (2). Next, the control unit 3 includes reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines.
  • step (4) of determining whether the inspection site is normal by comparing the information on the magnetic flux line reflecting the hand shake information with the information on the magnetic flux line of the specimen of the normal state measured by the reference sensor by the control unit can do.
  • the inspection method may further include the step (5) of displaying the information on the magnetic flux line reflecting the hand shake information on the display unit.
  • the method may further include automatically determining to transmit the magnetic flux lines at a frequency most suitable for the inspection site by automatically changing a frequency within a predetermined range for a predetermined time.
  • the present invention has high applicability in the field of nondestructive fatigue testing.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

The present invention is to accurately measure a degree of fatigue, and the aim of the present invention is to easily carry out degree of fatigue inspection using an electromagnetic induction sensor that is a kind of nondestructive inspection. To achieve the aim, according to an embodiment of the present invention a degree of fatigue inspection apparatus using an electromagnetic induction sensor unit is disclosed. The inspection apparatus may comprise: a probe unit including an electromagnetic induction sensor unit having an electromagnetic induction coil thereinside for transmitting magnetic flux lines generated from the electromagnetic induction coil into the inspection region and then receiving the same, and an acceleration sensor for measuring the measurer's hand-vibrations; a control unit for applying the hand-vibration information measured by the acceleration sensor to the received magnetic flux line information; and a display unit for displaying the magnetic flux line information to which the hand-vibration information is applied.

Description

전자기 유도 센서를 활용한 비파괴 피로 검사 장치 및 그 검사 방법Nondestructive Fatigue Testing Device Using Electromagnetic Induction Sensor and Its Inspection Method
본 발명은 전자기 유도 센서를 활용한 비파괴 피로 검사 장치 및 그 검사 방법에 관한 것으로서, 더 구체적으로 전자기 유도 센서를 활용함으로써 선박, 차량, 대형 구조물 등의 용접, 접합 부위 등의 재질에 따른 비파괴 검사 방법으로 피로도를 검사하는 장치 및 그 검사 방법에 관한 것이다. The present invention relates to a non-destructive fatigue testing apparatus and an inspection method using an electromagnetic induction sensor, and more specifically, to a non-destructive inspection method according to the material of welding, joint sites, such as ships, vehicles, large structures, etc. by using the electromagnetic induction sensor The present invention relates to an apparatus for inspecting fatigue and a method of inspecting the same.
예를들어 선박구조물은 운항항로가 결정되어도 자연환경에 의해 발생하는 다양한 파랑하중에 의해 매우 복잡한 손상을 입기 때문에, 이러한 운항 중에 받는 하중에 구조물의 손상 정도를 정확히 예측하기는 매우 어렵다. 선박의 사고는 대형 인명 사고, 재물 손괴 등을 초래할 수 있기 때문에, 선박 구조물의 피로도를 정확히 예측하여 선박의 수명, 안전진단 시기 등을 판단하는 것은 매우 중요하다. For example, a ship's structure is very complicated due to various wave loads generated by the natural environment even if its route is determined. Therefore, it is very difficult to accurately predict the degree of damage to the load under these operations. Since a ship accident can lead to a large-scale human accident, property damage, etc., it is very important to accurately predict the fatigue level of the ship structure and to determine the ship's life and safety diagnosis time.
이와 같이 한 예로 선박 구조물의 피로도를 측정하기 위하여 아래와 같은 비파괴 검사 방법들이 사용될 수 있다. As such, the following non-destructive testing methods may be used to measure the fatigue of a ship structure.
1. 방사선 비파괴검사(RT)방식의 경우, 원리는 투과성 방사선을 제품에 조사했을때 투과 방사선의 강도의 변화, 즉, 건전부와 결함부의 투과선 양의 차에 의한 필름상의 농도의 차를 이용하여 제품의 불량 유무를 검사하는 방법이다. 이 검사방법의 경우 방사선 자체가 [국가 방사선 위험물 취급관리 규정]에 의하여 고도의 숙력된 기술공만이 검사작업에 투입할 수 있으며, 취급이 어렵고 시간과 비용이 증가되어 선박의 피로 검사에는 거의 사용 할 수 없는 방법이다.1. In the non-destructive testing (RT) method, the principle is to use the difference in the concentration on the film due to the change in the intensity of the transmitted radiation when the product is irradiated with transparent radiation, that is, the difference in the amount of transmission lines between the sound and defect parts. It is a method to inspect the product for defects. In the case of this inspection method, only the highly trained technicians can use the radiation itself in accordance with the National Radiation Dangerous Goods Handling and Management Regulation, and it is difficult to handle and increases the time and cost. It can't be done.
2. 초음파탐상 검사(UT)의 경우 원리는 초음파를 제품에 전달하여 내부에 존재하는 불연속 부분으로부터 반사한 초음파 에너지량, 초음파의 진행시간 등을 CRT Screen표시, 분석하여 불연속(결함)의 위치 및 크기를 탐지하는 검사방법으로 세계적으로 가장 많이 사용되고 있는 비파괴검사 방법 중 하나이다. 그러나, 이 방법 역시 초음파 에너지의 손실을 최소화 하기 위해 초음파 탐촉자에 젤을 도포하여 측정하여야 하고, 젤의 도포량, 탐촉자의 측정각도 및 위치, 주위의 환경 및 온도 등의 영향에 의해 데이터의 왜곡 현상으로 인하여 선박의 피로도를 측정하는데 적용하기 어려운 한계점이 있다.2. In the case of Ultrasonic Testing (UT), the principle is that the ultrasonic energy is transmitted to the product, and the amount of ultrasonic energy reflected from the discontinuous parts existing inside, the progress time of the ultrasonic wave, etc. It is one of the most widely used nondestructive testing methods in the world. However, this method also needs to be measured by applying a gel to the ultrasonic transducer to minimize the loss of ultrasonic energy, and the distortion of the data is influenced by the influence of the amount of gel applied, the measuring angle and position of the transducer, and the surrounding environment and temperature. Due to this, there is a limitation that it is difficult to apply to measure the fatigue of the ship.
3. 자분탐상 비파괴검사(MT)의 원리는 강자성체 표면 또는 표면하에 있는 불연속부(결함)를 검출하기 위하여 강자성체를 자화시키고 자분을 적용하여 누설자장에 의해 자분이 모이거나, 불어서 결함부의 윤곽을 형성, 그 위치, 크기, 형태 및 넓이 등을 검사하는 방법으로 표면의 균열만 측정이 가능하고, 데이터화 수치화 할 수 없어 유관검사로만 이루어지고 있다.3. The principle of magnetic particle nondestructive testing (MT) is to magnetize a ferromagnetic substance and apply magnetic powder to collect or blow the magnetic field by leakage magnetic field to detect the discontinuity (defect) on or under the ferromagnetic body. It is possible to measure cracks on the surface only by checking the location, size, shape and width of the surface.
4. 침투탐상 비파괴검사(PT)의 원리는 제품의 표면에 침투액을 도포한 후 충분한 시간이 경과하면 불연속부(결함)에 침투하지 못하고 시험체 표면에 남아있는 과잉의 침투제를 제거, 거 위에 현상제를 도포하여 침투제를 빨아 올림으로서 결함의 위치, 크기 및 지시모양을 검출하는 방법이다. 이 방법역시 제품의 표면의 결함만 측정이 가능하고, 데이터화 수치화를 할 수 없어 선박의 피로도 검사에 적용하기 어렵다.4. The principle of Penetration Testing Nondestructive Testing (PT) is that the developer does not penetrate into the discontinuities (defects) after sufficient time has passed after applying the penetration liquid to the surface of the product, and removes the excess penetrant remaining on the surface of the test object. Is a method of detecting the location, size, and indication of a defect by sucking up the penetrant. This method also can measure only the defects on the surface of the product, and it is not possible to apply the numerical value of the data, making it difficult to apply the ship fatigue test.
5. 와전류 비파괴검사(ET)의 원리는 금속 등의 시험체에 가까이 가져가면 도체의 내부에는 와전류라는 교류전류가 발생하고, 그 와전류는 결함이나 재질 등의 영향에 의해 그 크기와 분포가 변화함으로 그 변화량을 측정하여 검사체 표면의 균열이나 결함을 측정하는 검사방법이다. 그러나 이 역시 표면검사는 가능하지만 제품의 내부 및 심층부의 검사는 불가능하여 정확한 피로도를 판별하기 어렵다는 단점이 있다.5. The principle of eddy current non-destructive testing (ET) is to bring the alternating current of eddy current inside the conductor when it is brought close to the test object such as metal, and the eddy current is changed in size and distribution by the influence of defect or material. It is a test method to measure cracks or defects on the surface of an object by measuring the amount of change. However, this also has the disadvantage that it is difficult to determine the exact fatigue because the surface inspection is possible, but the inspection of the inner and deep parts of the product is impossible.
종래의 기술(한국 공개 특허 제10-2009-0066853호)에 따르면, 선박용 멤브레인 피로 시편에 대하여 피로시험을 수행하는 피로 시험기에 사용되되, 상기 피로 시편의 일 측에 위치하며, 상기 피로 시편을 향하여 광을 비추는 조명 장치; 및 상기 피로 시편을 사이에 두고 상기 조명 장치와 마주 보도록 위치하며, 상기 피로 시편의 균열을 통해 상기 조명 장치의 광을 감지하는 광 감지 장치를 포함하는 것을 특징으로 하며, 상기 광 감지 장치로부터 광 감지 신호를 전송받고, 상기 피로 시험기로 상기 피로 시험기의 가동 중단 신호를 전송하는 제어 컴퓨터를 더 포함하고, 상기 광 감지 장치는 CCD 카메라인 피로 균열 감지 장치를 도시하고 있다. According to the prior art (Korean Patent Publication No. 10-2009-0066853), it is used in a fatigue tester for performing a fatigue test on the ship membrane fatigue specimen, located on one side of the fatigue specimen, toward the fatigue specimen Lighting devices for illuminating light; And an optical sensing device positioned to face the lighting device with the fatigue test piece interposed therebetween, the optical sensing device sensing the light of the lighting device through the cracking of the fatigue test piece. And a control computer for receiving a signal and for transmitting a shutdown signal of the fatigue tester to the fatigue tester, wherein the light sensing device is a fatigue crack detection device that is a CCD camera.
그러나, 이와 같은 종래의 기술에 의하더라도 CCD 카메라를 이용하여 피로를 감지하는 것으로써 검사체의 두께 및 깊이에 따른 피로를 정확하게 측정하기는 어려웠다.However, even by such a conventional technology, it is difficult to accurately measure the fatigue according to the thickness and depth of the test object by detecting fatigue using a CCD camera.
본 발명은 선박, 차량, 대형 건물 등의 피로도를 정확히 측정하기 위한 것으로서, 비파괴 검사의 일종인 전자 유도 센서를 활용하여 피로도 검사를 용이하게 실시하는 것을 목적으로 한다.The present invention is to accurately measure the fatigue level of a ship, a vehicle, a large building, etc., and an object of the present invention is to easily perform the fatigue test using an electromagnetic induction sensor which is a kind of non-destructive test.
본 발명의 일 실시예에 따르면, 전자기 유도 센서부를 활용한 피로도 검사 장치가 개시된다. 상기 검사 장치는 전자기 유도 코일을 포함하며 상기 전자기 유도 코일에서 발생된 자속선을 검사 부위에 투과시킨 후 수신하기 위한 전자기 유도 센서부, 측정자의 손떨림을 측정하여 보정 하기 위한 가속도 센서부를 포함하는 프로브부; 상기 수신한 자속선에 대한 정보에 상기 가속도 센서에 의해 측정된 손떨림 정보를 반영하기 위한 제어부; 및 상기 손떨림 정보가 반영된 자속선에 대한 정보를 디스플레이하기 위한 디스플레이부;를 포함할 수 있다. According to one embodiment of the present invention, a fatigue inspection apparatus utilizing the electromagnetic induction sensor unit is disclosed. The inspection apparatus includes an electromagnetic induction coil and a probe unit including an electromagnetic induction sensor unit for transmitting and receiving a magnetic flux line generated by the electromagnetic induction coil to the inspection site, and an acceleration sensor unit for measuring and correcting the shaking of the measurer. ; A control unit for reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines; And a display unit for displaying the information on the magnetic flux lines in which the hand shake information is reflected.
상기 검사 장치는 정상 상태의 시편을 기준으로 피로도를 판단 함으로 측정 검사체와 재질 및 성분이 같은 기준 시편을 미리 측정하여 데이터를 저장하거나 어느 공간에 측정 대상체의 표준 시편을 수납할 수 있는 공간; 및 상기 정상 상태의 시편을 측정하기 위한 기준 센서를 포함하는 기준 센서부를 더 포함할 수 있다. The inspection apparatus may be configured to determine a degree of fatigue based on a specimen in a normal state so as to pre-measure a reference specimen having the same material and composition as the measurement specimen, to store data or to store a standard specimen of the measurement object in a space; And a reference sensor unit including a reference sensor for measuring the specimen in the steady state.
상기 제어부는, 검사 시작 후 미리 결정된 시간 동안 상기 자속선의 주파수를 미리 결정된 범위 내에서 자동 변경함으로써 상기 검사 부위의 재질, 두께 또는 온도에 따라 상기 검사 부위에 통과되는 자속선의 주파수를 자동으로 결정할 수 있다 알고리즘 분석 소프트웨어를 더 포함할 수 있다. The controller may automatically determine the frequency of the magnetic flux line passing through the inspection region according to the material, thickness, or temperature of the inspection region by automatically changing the frequency of the magnetic flux line within a predetermined range after a start of inspection. Algorithm analysis software may be further included.
본원 발명의 다른 실시예에 따르면, 전자기 유도 센서부를 활용한 피로도 검사 방법이 개시된다. 상기 검사 방법은 검사 부위에 대하여 프로브부 내에 포함된 전자기 유도 센서부를 이용하여 자속선을 투과시킨 후 수신하는 단계; 상기 프로브부 내에 포함된 가속도 센서를 이용하여 측정자의 손떨림을 측정하는 단계; 제어부에 의해 상기 수신한 자속선에 대한 정보에 상기 가속도 센서에 의해 측정된 손떨림 정보를 반영하는 단계; 및 상기 제어부에 의해 상기 손떨림 정보가 반영된 자속선에 대한 정보를 기준센서에서 측정된 정상 상태의 시편의 자속선에 대한 정보와 비교하여 상기 검사 부위가 정상인지를 판단하는 단계를 포함할 수 있다. According to another embodiment of the present invention, a fatigue test method using the electromagnetic induction sensor unit is disclosed. The inspection method may include receiving and transmitting a flux line using an electromagnetic induction sensor unit included in the probe unit with respect to the inspection site; Measuring a camera shaker using an acceleration sensor included in the probe unit; Reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines by a controller; And determining, by the controller, whether the inspection site is normal by comparing the information on the magnetic flux line in which the hand shake information is reflected with the information on the magnetic flux line of the specimen in the normal state measured by the reference sensor.
상기 검사 방법은 디스플레이부에 상기 손떨림 정보가 반영된 자속선에 대한 정보를 디스플레이하는 단계를 더 포함할 수 있다.The inspection method may further include displaying information on a magnetic flux line reflecting the hand shake information on a display unit.
본 발명은 전자기 유도 센서를 활용함으로써 선박, 차량, 대형 구조물 등의 용접, 접합 부위 등의 피로도를 용이하게 검사할 수 있다.The present invention can easily inspect the fatigue degree of the welding, joining portion, etc. of the ship, vehicle, large structure, etc. by utilizing the electromagnetic induction sensor.
도 1은 본 발명의 일 실시예에 따른 피로도 검사 장치의 개략도를 도시한다. 1 shows a schematic diagram of a fatigue testing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 피로도 검사 장치의 개념도를 도시한다. Figure 2 shows a conceptual diagram of the fatigue test apparatus according to an embodiment of the present invention.
도 3a는 본 발명의 일 실시예에 따라 전자기 유도 센서에서 자속선을 발생시켜 피로 및 크랙 등이 없는 검사 대상물에 투과시킨 후 수신하는 모습을 도시한다. FIG. 3A illustrates a state in which a magnetic flux line is generated by an electromagnetic induction sensor and transmitted after receiving the object to be inspected without fatigue and cracks according to an embodiment of the present invention.
도 3b는 본 발명의 일 실시예에 따라 전자기 유도 센서에서 자속선을 발생시켜 피로 및 크랙 등이 존재하는 검사 대상물에 투과시킨 후 수신하는 모습을 도시한다.3B illustrates a state in which a magnetic flux line is generated by an electromagnetic induction sensor and transmitted after being transmitted to an inspection object in which fatigue and cracks exist, according to an embodiment of the present invention.
도 4a 및 4b는 본 발명의 일 실시예에 따라 디스플레이부에서 디스플레이되는 그래프들을 도시한다. 4A and 4B illustrate graphs displayed on the display unit according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 피로도 검사 방법의 흐름도를 도시한다.5 shows a flowchart of a fatigue test method according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 진공 카세트에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태 (펜타입, 도넛 모양, 말굽모양 등)를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, with reference to the accompanying drawings will be described in detail a vacuum cassette according to an embodiment of the present invention. The present invention may be modified in various ways and may have various forms (pen type, donut shape, horseshoe shape, etc.), and specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 일 실시예에 따른 피로도 검사 장치의 개략도를 도시한다. 1 shows a schematic diagram of a fatigue testing apparatus according to an embodiment of the present invention.
도 1을 참조하면, 전자기 유도 센서부를 활용한 피로도 검사 장치는 프로브(101) 및 본체(102)로 구성된다. 피로도를 검사하고자 하는 측정자가 피로도 검사 장치를 휴대하고, 프로브(101)를 이용하여 검사 부위를 스캐닝하면서 자속선을 투과시킨 후 수신하고 본체(102)에서 자속선 정보를 디스플레이하고, 검사 부위의 정상 여부를 판단한다. Referring to FIG. 1, a fatigue test apparatus using an electromagnetic induction sensor unit includes a probe 101 and a main body 102. The measurer who wants to check the fatigue carries the fatigue test apparatus, scans the inspection site using the probe 101, transmits and receives the magnetic flux lines, displays the magnetic field information on the main body 102, and checks the normality of the inspection site. Determine whether or not.
피로도 검사 장치의 상세한 구성에 대해서는 도 2를 참조하여 아래에서 추가적으로 설명한다. Detailed configuration of the fatigue test apparatus will be further described below with reference to FIG. 2.
도 2는 본 발명의 일 실시예에 따른 피로도 검사 장치의 개념도를 도시한다. Figure 2 shows a conceptual diagram of the fatigue test apparatus according to an embodiment of the present invention.
피로도 검사 장치는 측정자의 손떨림을 측정하기 위한 가속도 센서(201) 및 내부에 전자기 유도 코일을 포함하며 상기 전자기 유도 코일에서 발생된 자속선을 상기 검사 부위에 투과시킨 후 수신하기 위한 전자기 유도 센서부(202)를 포함하는 프로브부(203); 상기 수신한 자속선에 대한 정보에 상기 가속도 센서에 의해 측정된 손떨림 정보를 반영하기 위한 제어부(204); 및 상기 손떨림 정보가 반영된 자속선에 대한 정보를 디스플레이하기 위한 디스플레이부(205)를 포함할 수 있다. The fatigue test apparatus includes an acceleration sensor 201 for measuring a hand shake of an operator and an electromagnetic induction coil therein, and an electromagnetic induction sensor unit for receiving the magnetic flux lines generated by the electromagnetic induction coil after passing through the inspection part ( A probe unit 203 including 202; A control unit 204 for reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines; And a display unit 205 for displaying information on the magnetic flux lines in which the hand shake information is reflected.
검사 부위를 측정자가 프로브(203)로 스캔을 할 때에 손떨림이 발생하는 경우 전자기 유도 센서(202)에서 수신한 자속선에 오류가 발생할 수 있다. 따라서, 측정자의 손떨림을 보정하는 것이 필요하다. 본원 발명에서는 측정자의 손떨림을 측정하기 위한 가속도 센서(201)를 포함함으로써, 측정자의 손떨림을 측정하고 이를 이용하여 손떨림에 의한 자속선의 오차를 보정할 수 있다. If hand shake occurs when the tester scans the inspection site with the probe 203, an error may occur in the magnetic flux line received by the electromagnetic induction sensor 202. Therefore, it is necessary to correct the camera shake. In the present invention, by including the acceleration sensor 201 for measuring the hand shake of the measurer, by measuring the hand shake of the measurer can be used to correct the error of the magnetic flux lines due to hand shake.
전자기 유도 센서부(202)는 내부에 전자기 유도 코일을 포함하며 상기 전자기 유도 코일에서 발생된 자속선을 검사 부위에 투과시킨 후 수신한다. The electromagnetic induction sensor unit 202 includes an electromagnetic induction coil therein and transmits the magnetic flux lines generated by the electromagnetic induction coil to the inspection site and receives the magnetic flux lines.
제어부(204)에서는 전자기 유도 센서부(202)에서 수신한 자속선에 대한 정보에 가속도 센서(201)에 의해 측정된 손떨림 정보를 반영하여 손떨림으로 인한 오차를 보정한다. The controller 204 corrects an error due to hand shake by reflecting the hand shake information measured by the acceleration sensor 201 in the information on the magnetic flux lines received by the electromagnetic induction sensor unit 202.
제어부(204)에 의해 손떨림으로 인한 오차가 보정된 자속선에 대한 정보는 디스플레이부(205)에 디스플레이된다. The information on the magnetic flux lines whose error due to the hand shake is corrected by the controller 204 is displayed on the display unit 205.
검사 장치는 정상 상태의 시편 (기준 시편)을 수납할 수 있는 공간(206); 및 상기 정상 상태의 시편을 측정하기 위한 기준 센서(207)를 포함하는 기준 센서부(208)를 더 포함할 수 있다. The inspection apparatus includes a space 206 for receiving a specimen (standard specimen) in a steady state; And a reference sensor unit 208 including a reference sensor 207 for measuring the specimen in the steady state.
피로도가 정상인지 비정상인지를 판단하기 위해서는 현재 프로브로 스캔하고 있는 검사 부위가 정상 상태일 때의 자속선에 대한 정보와 현재 프로브로 스캔하고 있는 검사 부위의 자속선에 대한 정보가 필요하다. In order to determine whether fatigue is normal or abnormal, information about a magnetic flux line when a test region currently being scanned by a probe is in a normal state and information about a magnetic flux line of an inspection region currently being scanned by a probe is required.
이와 같은 정상 상태일 때의 자속선에 대한 정보를 얻기 위해서 검사 장치는 기준 센서부(208)를 포함한다. 기준 센서부(208)에는 정상 상태의 시편을 수납할 수 있는 공간(206)이 마련된다. 공간(206)에 피로도를 검사할 재질과 동일한 재질의 시편(예를 들어, 철, SUS, 알루미늄, 주철, 구리 등)을 수납한 후 기준 센서(207)로 정상 상태에서의 자속선의 정보를 측정할 수 있다. The inspection apparatus includes a reference sensor unit 208 in order to obtain information on the magnetic flux lines in such a steady state. The reference sensor unit 208 is provided with a space 206 for accommodating the specimen in a steady state. A specimen (for example, iron, SUS, aluminum, cast iron, copper, etc.) of the same material as that of the material to be tested for fatigue is stored in the space 206 and the information of the magnetic flux lines in the normal state is measured by the reference sensor 207. can do.
디스플레이부(205)에서는 검사 부위의 자속선에 대한 정보 및 정상 상태의 시편의 자속선에 대한 정보를 나타낼 수 있다. The display unit 205 may display information on the magnetic flux lines of the inspection site and information on the magnetic flux lines of the specimen in the normal state.
도 3a는 본 발명의 일 실시예에 따라 전자기 유도 센서에서 자속선을 발생시켜 피로 등이 없는 검사 대상물에 투과시킨 후 수신하는 모습을 도시한다. FIG. 3A illustrates a state in which a magnetic flux line is generated by an electromagnetic induction sensor and transmitted after receiving the object to be inspected without fatigue in accordance with an embodiment of the present invention.
도 3a를 참조하면, 전자기 유도 센서부(202)로부터 출력된 자속선은 검사 대상물(302)을 투과한 후 전자기 유도 센서부(202)로 수신된다. 도 3a에서는 검사 대상물에 피로, 크랙, 도금 박리 등의 불균일상이 존재하지 않기 때문에, 자속선의 모습이 변화되지 않고 전자기 유도 센서부(202)에 수신되고 있다. Referring to FIG. 3A, the magnetic flux lines output from the electromagnetic induction sensor unit 202 are received by the electromagnetic induction sensor unit 202 after passing through the inspection object 302. In FIG. 3A, since there are no irregularities such as fatigue, cracks, and plating peeling on the inspection object, the appearance of the magnetic flux lines is not changed and is received by the electromagnetic induction sensor unit 202.
검사 대상물에 투과된 자속선은 검사 대상물에 크랙, 피로, 도금 박리 등의 불균일상이 존재하는 경우 자속선의 모습이 변화되어 전자기 유도 센서부(202)에 수신된다. The flux line transmitted to the inspection object is received by the electromagnetic induction sensor unit 202 when the appearance of the flux line is changed when there is a non-uniformity such as cracks, fatigue, plating peeling, etc. in the inspection object.
도 3b는 본 발명의 일 실시예에 따라 전자기 유도 센서에서 자속선을 발생시켜 피로, 크랙 등이 존재하는 검사 대상물에 투과시킨 후 수신하는 모습을 도시한다. 3B illustrates a state in which a magnetic flux line is generated by an electromagnetic inductive sensor and transmitted after being transmitted to an inspection object in which fatigue, cracks, etc. are present, according to an embodiment of the present invention.
도 3b를 참조하면, 전자기 유도 센서부(202)로부터 출력된 자속선은 검사 대상물(302)을 투과한 후 전자기 유도 센서부(202)로 수신된다. 도 3b에서는 검사 대상물에 크랙, 피로, 도금 박리 등의 불균일상이 존재하기 때문에, 자속선의 모습이 변화되어 전자기 유도 센서부(202)에 수신되고 있다. Referring to FIG. 3B, the magnetic flux lines output from the electromagnetic induction sensor unit 202 are received by the electromagnetic induction sensor unit 202 after passing through the inspection object 302. In FIG. 3B, since irregularities such as cracks, fatigue, plating peeling, and the like exist in the inspection object, the state of the magnetic flux lines is changed and received by the electromagnetic induction sensor unit 202.
전자기 유도 센서부(202)에서 수신한 자속선에 의해 전자기 유도 코일에 발생하는 전압의 진폭 및 위상차을 분석함으로써, 검사 대상물에 크랙, 피로, 도금 박리 등의 불균일 상이 존재하는지 여부를 판단해 검사 대상물의 합격 여부를 결정할 수 있다. By analyzing the amplitude and phase difference of the voltage generated in the electromagnetic induction coil by the magnetic flux lines received by the electromagnetic induction sensor unit 202, it is determined whether there is a non-uniform phase such as crack, fatigue, plating peeling, etc. You can decide whether or not you pass.
예를 들어, 정상 부위의 전압이 진폭 및 위상 그래프를 미리 획득하고, 이를 기초로 하여, 전압의 진폭 및 위상 그래프에서 미리 결정된 범위 이상의 차이가 발생하는 경우 피로도가 크다고 결정할 수 있다. For example, it can be determined that the voltage of the normal region obtains the amplitude and phase graph in advance, and based on this, the fatigue is large when a difference over the predetermined range occurs in the amplitude and phase graph of the voltage.
전자기 유도 센서부(202) 내의 전자기 유도 코일의 형상 및 권선수를 조절하거나, 전자기 유도 코일에 가하는 전류를 조절함으로써 자속선을 변화시킬 수 있고, 자속선의 변화에 따라 검사 대상물로의 투과 거리를 조절할 수 있다. The magnetic flux line can be changed by adjusting the shape and number of turns of the electromagnetic induction coil in the electromagnetic induction sensor unit 202 or by adjusting the current applied to the electromagnetic induction coil, and adjust the transmission distance to the inspection object according to the change of the magnetic flux line. Can be.
상기 제어부(204)는, 검사 시작 후 미리 결정된 시간 동안 상기 자속선의 주파수를 미리 결정된 범위 내에서 변경함으로써 검사 부위의 재질, 두께 또는 온도에 따라 상기 검사 부위에 통과되는 자속선의 주파수를 자동으로 결정할 수 있다.The controller 204 may automatically determine the frequency of the magnetic flux line passing through the inspection region according to the material, thickness, or temperature of the inspection region by changing the frequency of the magnetic flux line within a predetermined range after a start of inspection. have.
예를 들어, 제어부(204)는 전자기 유도 센서부(202)의 자속선의 주파수를 10hz부터 1000MHz까지 순차적으로 변경해 나가면서 검사 부위를 검사하기에 가장 적합한 주파수를 자동으로 결정할 수 있다. For example, the controller 204 may automatically determine the most suitable frequency for inspecting the inspection site by sequentially changing the frequency of the magnetic flux line of the electromagnetic induction sensor unit 202 from 10 hz to 1000 MHz.
제어부(204)에서 자속선에 대한 정보를 디스플레이부(205)에서 디스플레이하도록 처리할 수 있다. 예를 들어, 제어부(204)는 디스플레이부(205)에서, x축을 기준점으로부터의 검사 대상물의 회전각도로 놓고, 수신된 자속선에 의해 전자기 유도 코일에 발생하는 전압을 y축으로 논 그래프를 디스플레이하도록 수신한 자속선의 전압 정보를 가공할 수 있다. The controller 204 may process the display unit 205 to display information on the magnetic flux lines. For example, the control unit 204, on the display unit 205, sets the x-axis as the rotation angle of the inspection object from the reference point, and displays a graph on the y-axis of the voltage generated in the electromagnetic induction coil by the received magnetic flux lines. It is possible to process the voltage information of the magnetic flux lines received so as to.
도 4a 및 4b는 본 발명의 일 실시예에 따라 디스플레이부에서 디스플레이되는 그래프들을 도시한다. 4A and 4B illustrate graphs displayed on the display unit according to an embodiment of the present invention.
도 4a를 참조하면, 그래프에서 x축은 검사 대상물을 스캔한 거리를 표시하고, y축은 전자기 유도 센서부에 수신된 자속선에 의해 자기 유도 코일에 발생하는 전압을 표시한다. Referring to FIG. 4A, in the graph, the x-axis represents the distance scanned by the inspection object, and the y-axis represents the voltage generated in the magnetic induction coil by the magnetic flux lines received from the electromagnetic induction sensor unit.
401로 표시된 그래프는 미리 측정해 놓거나 기준 센서부에서 측정한 정상 부위의 출력 파형이고, 402로 표시된 그래프는 피로 부위의 출력 파형으로써, 진폭 및 위상에 있어서 미리 결정된 기준 이상의 차이가 있기 때문에 402로 표시된 그래프를 생성시킨 검사 대상물은 피로 부위로 구분된다. The graph indicated by 401 is the output waveform of the normal region measured in advance or measured by the reference sensor unit, and the graph indicated by 402 is the output waveform of the fatigue region, indicated by 402 because there is a difference between the predetermined reference in amplitude and phase. The test object generating the graph is divided into fatigue sites.
4b를 참조하면, 도 4a에서 정상 부위와 피로 부위의 그래프의 위상 및 진폭의 차를 절대치로 변환하여 표시한 그래프가 도시되어 있다. Referring to FIG. 4B, a graph in which the difference between the phase and the amplitude of the graph of the normal region and the fatigue region is converted into an absolute value is illustrated in FIG. 4A.
도 4a에서 얻은, 각도에 따른 정상 부위와 피로 부위의 전압-거리 그래프 간의 위상차 및 진폭차를 수치화하여 도 4b에서와 같은 그래프로 표시하면, 특정 수치값(예를 들어, 1.0 내지 -1.0) 내에 값이 표시되는 부분은 용접부위의 피로가 발생하지 않았고, 이를 벗어나는 부분은 용접 부위의 피로가 발생하고 있는 것으로 판단할 수 있다. If the phase difference and amplitude difference between the voltage-distance graphs of the normal and fatigue parts according to the angles obtained in FIG. 4A are numerically expressed and displayed in a graph as in FIG. 4B, within a specific numerical value (for example, 1.0 to -1.0) The portion where the value is displayed did not cause fatigue of the welded portion, and the portion that deviates from it may be determined that the fatigue of the welded portion occurs.
예를 들어, 도 4b의 그래프에서 1 내지 3, 6 내지 14 등에 해당하는 부분은 그래프가 1.0 내지 -1.0 사이의 y값을 가지고 있기 때문에, 이 부분은 용접부위의 피로가 발생하지 않은 것으로 판단할 수 있으나, 4, 15 부분은 1.0 내지 -1.0 을 벗어난 y값을 가지고 있기 때문에, 이 부분에 용접부위의 피로가 발생하였다고 판단할 수 있다. For example, in the graph of FIG. 4B, the portions corresponding to 1 to 3, 6 to 14, and the like have a y value between 1.0 and -1.0, and thus this portion may be judged to have no fatigue of the welded portion. However, since parts 4 and 15 have y values outside of 1.0 to -1.0, it can be determined that fatigue occurs at the welded part.
따라서, 위와 같은 그래프에 따르면 피로 부위를 판단할 수 있으며 정기적으로 발생한 부위의 피로도를 측정하다 보면 어느 순간 피로에 의한 파괴로 인하여 크랙이 발생하게 되는데 크랙의 발생되지 전의 시점에서 보강을 하거나 안전을 위해 교체할 수 있게 된다.Therefore, according to the above graph, the fatigue part can be judged, and when the fatigue degree of the regularly occurring part is measured, cracks are generated due to the breakdown due to fatigue at some point. It can be replaced.
도 4b에서 y값은 예를 들어, 전압-거리 그래프의 위상차 및 진폭차를 1:1로 반영하고, 위상차가 +20도 및 진폭차가 +0.001볼트인 경우를 1.0으로 설정하여 이에 따라 y값을 정할 수 있다. In FIG. 4B, the y value reflects, for example, the phase difference and amplitude difference of the voltage-distance graph at 1: 1, and sets the value of y to 1.0 when the phase difference is +20 degrees and the amplitude difference is +0.001 volt. You can decide.
이는 예시일 뿐, 용접물의 종류, 용접물을 사용할 분야 등에 따라서, 위 값은 자유롭게 정할 수 있다. This is merely an example, and the above values may be freely determined depending on the type of weldment, the field in which the weldment is to be used, and the like.
도 4a 및 4b에서 x축이 거리인 것으로 나타내었으나, 이는 시간 등일 수 있다. 시간인 경우에도 도 4a의 데이터를 도 4b의 데이터로 변환하는 것은 원하는 설정에 따라 용이하게 변환할 수 있다. Although the x-axis is shown in FIG. 4A and 4B as distance, this may be time or the like. Even in the case of time, converting the data of FIG. 4A to the data of FIG. 4B can be easily converted according to a desired setting.
도 5는 본 발명의 일 실시예에 따른 피로의 품질 검사 방법의 흐름도를 도시한다. 5 shows a flowchart of a method for checking fatigue quality according to an embodiment of the present invention.
도 5를 참조하면, 우선, 검사부에 대하여 프로브부 내에 포함된 전자기 유도 센서부를 이용하여 자속선을 투과시킨 후 수신하는 단계를 포함한다(1). 그 다음에, 상기 프로브부 내에 포함된 가속도 센서를 이용하여 측정자의 손떨림을 측정하는 단계를 포함한다(2). 그 다음에, 제어부에 의해 상기 수신한 자속선에 대한 정보에 상기 가속도 센서에 의해 측정된 손떨림 정보를 반영하는 단계(3)를 포함한다. Referring to FIG. 5, first, a magnetic flux line is transmitted through a magnetic flux line by using an electromagnetic induction sensor unit included in a probe unit, and then received (1). Then, measuring the hand shake of the measurer using the acceleration sensor included in the probe unit (2). Next, the control unit 3 includes reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines.
마지막으로, 상기 제어부에 의해 상기 손떨림 정보가 반영된 자속선에 대한 정보를 기준센서에서 측정된 정상 상태의 시편의 자속선에 대한 정보와 비교하여 검사 부위가 정상인지를 판단하는 단계(4)를 포함할 수 있다. Finally, the step (4) of determining whether the inspection site is normal by comparing the information on the magnetic flux line reflecting the hand shake information with the information on the magnetic flux line of the specimen of the normal state measured by the reference sensor by the control unit can do.
상기 검사 방법은 디스플레이부에 상기 손떨림 정보가 반영된 자속선에 대한 정보를 디스플레이하는 단계(5)를 더 포함할 수 있다. The inspection method may further include the step (5) of displaying the information on the magnetic flux line reflecting the hand shake information on the display unit.
단계(1) 전에, 미리 결정된 시간동안 미리 결정된 범위 내에서 주파수를 자동으로 변경하여 검사 부위에 가장 적합한 주파수로 자속선을 투과하도록 자동으로 결정하는 단계를 더 포함할 수 있다. Prior to step (1), the method may further include automatically determining to transmit the magnetic flux lines at a frequency most suitable for the inspection site by automatically changing a frequency within a predetermined range for a predetermined time.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention should not be limited to the embodiments set forth herein but should be construed in a scope consistent with the principles and novel features set forth herein.
본 발명은 비파괴 피로검사 분야에서의 이용가능성이 높다.The present invention has high applicability in the field of nondestructive fatigue testing.

Claims (5)

  1. 전자기 유도 센서부를 활용한 피로도 검사 장치로서, As a fatigue test device using the electromagnetic induction sensor,
    센서 내부에 전자기 유도 코일을 포함하며 상기 전자기 유도 코일에서 발생된 자속선을 검사 부위에 투과시킨 후 수신하기 위한 전자기 유도 센서부 및 측정자의 손떨림을 측정하기 위한 가속도 센서를 포함하는 프로브부; A probe unit including an electromagnetic induction coil inside the sensor and including an electromagnetic induction sensor unit for transmitting and receiving a magnetic flux line generated by the electromagnetic induction coil to an inspection part and an acceleration sensor for measuring a hand shake of the measurer;
    상기 수신한 자속선에 대한 정보에 상기 가속도 센서에 의해 측정된 손떨림 정보를 반영하기 위한 제어부Control unit for reflecting the hand shake information measured by the acceleration sensor to the information on the received magnetic flux line
    상기 손떨림 정보가 반영된 자속선에 대한 정보를 디스플레이하기 위한 디스플레이부;A display unit for displaying information on a magnetic flux line reflecting the hand shake information;
    를 포함하는, 전자기 유도 센서부를 활용한 피로도 검사 장치.To include, fatigue testing device utilizing the electromagnetic induction sensor unit.
  2. 제 1 항에 있어서, The method of claim 1,
    측정 대상 재료와 똑 같은 정상 상태의 시편을 수납할 수 있는 공간; 및 상기 정상 상태의 시편을 측정하기 위한 기준 센서A space for storing specimens in the same steady state as the material to be measured; And a reference sensor for measuring the specimen in the steady state
    를 포함하는 기준 센서부를 더 포함하는, 전자기 유도 센서부를 활용한 피로도 검사 장치.Further comprising a reference sensor unit comprising a, fatigue testing device utilizing the electromagnetic induction sensor unit.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 제어부는, The control unit,
    검사 시작 후 미리 결정된 시간 동안 상기 자속선의 주파수를 미리 결정된 범위 내에서 변경함으로써 상기 검사 부위의 재질, 두께 또는 온도에 따라 상기 검사 부위에 통과되는 자속선의 주파수를 자동으로 결정하는, 알고리즘 분석 소프트웨어가 포함된 피로도 검사 장치.Algorithm analysis software for automatically determining the frequency of the magnetic flux lines passing through the inspection site according to the material, thickness or temperature of the inspection site by changing the frequency of the magnetic flux lines within a predetermined range for a predetermined time after the start of inspection. Fatigue testing device.
  4. 전자기 유도 센서부를 활용한 피로도 검사 방법으로서, As a fatigue test method using the electromagnetic induction sensor,
    검사 부위에 대하여 프로브부 내에 포함된 전자기 유도 센서부를 이용하여 자속선을 투과시킨 후 수신하는 단계; Receiving after transmitting the magnetic flux lines with respect to the inspection site using the electromagnetic induction sensor unit included in the probe unit;
    상기 프로브부 내에 포함된 가속도 센서를 이용하여 측정자의 손떨림을 측정하는 단계;Measuring a camera shaker using an acceleration sensor included in the probe unit;
    제어부에 의해 상기 수신한 자속선에 대한 정보에 상기 가속도 센서에 의해 측정된 손떨림 정보를 반영하는 단계; 및 Reflecting the hand shake information measured by the acceleration sensor in the received information on the magnetic flux lines by a controller; And
    상기 제어부에 의해 상기 손떨림 정보가 반영된 자속선에 대한 정보를 기준센서에서 측정된 정상 상태의 시편의 자속선에 대한 정보와 비교하여 상기 검사 부위가 정상인지를 판단하는 단계Determining whether the inspection site is normal by comparing the information on the magnetic flux line reflecting the hand shake information with the information on the magnetic flux line of the specimen in the normal state measured by the reference sensor by the controller;
    를 포함하는, 전자기 유도 센서부를 활용한 피로도 검사 방법.To include, fatigue inspection method utilizing the electromagnetic induction sensor unit.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    디스플레이부에 상기 손떨림 정보가 반영된 자속선에 대한 정보를 디스플레이하는 단계를 더 포함하는, 전자기 유도 센서부를 활용한 피로도 검사 방법.And displaying information on the magnetic flux lines in which the hand shake information is reflected, on a display unit.
PCT/KR2015/007662 2014-07-28 2015-07-23 Nondestructive fatigue inspection apparatus and inspection method therefor using electromagnetic induction sensor WO2016017991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140095990A KR101936367B1 (en) 2014-07-28 2014-07-28 A fatigue degree inspection apparatus and an inspection method thereof using an electromagnetic induction sensor
KR10-2014-0095990 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017991A1 true WO2016017991A1 (en) 2016-02-04

Family

ID=55217811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007662 WO2016017991A1 (en) 2014-07-28 2015-07-23 Nondestructive fatigue inspection apparatus and inspection method therefor using electromagnetic induction sensor

Country Status (2)

Country Link
KR (1) KR101936367B1 (en)
WO (1) WO2016017991A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213699B1 (en) 2018-05-15 2021-02-08 주식회사 정안시스템 A sensor unit of non-destructive inspection system
US20230109919A1 (en) * 2020-03-23 2023-04-13 Kevin D. McGushion Resonant Electromagnetic Sensor and System and Methods to Optimize

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141703A (en) * 1999-11-09 2001-05-25 Kyosan Electric Mfg Co Ltd Flaw detector for wire rope
JP2006292496A (en) * 2005-04-08 2006-10-26 Ishikawajima Inspection & Instrumentation Co Device and method for detecting and inspecting flaw by means of ac electromagnetic field measurement method
KR20110043095A (en) * 2009-10-21 2011-04-27 삼성메디슨 주식회사 Probe of ultrasonic diagnostic apparatus and control method thereof
KR101315391B1 (en) * 2013-02-21 2013-10-07 (주)라디안 A nondestructive welding quality total inspection system and a inspection method thereof using an electromagnetic induction sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090066853A (en) 2007-12-20 2009-06-24 주식회사 포스코 Apparatus for detecting fatigue cracks
US20120206143A1 (en) * 2011-02-14 2012-08-16 Mcgushion Kevin D Resonant electromagnetic sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141703A (en) * 1999-11-09 2001-05-25 Kyosan Electric Mfg Co Ltd Flaw detector for wire rope
JP2006292496A (en) * 2005-04-08 2006-10-26 Ishikawajima Inspection & Instrumentation Co Device and method for detecting and inspecting flaw by means of ac electromagnetic field measurement method
KR20110043095A (en) * 2009-10-21 2011-04-27 삼성메디슨 주식회사 Probe of ultrasonic diagnostic apparatus and control method thereof
KR101315391B1 (en) * 2013-02-21 2013-10-07 (주)라디안 A nondestructive welding quality total inspection system and a inspection method thereof using an electromagnetic induction sensor

Also Published As

Publication number Publication date
KR20160013750A (en) 2016-02-05
KR101936367B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
Willcox et al. A brief description of NDT techniques
WO2014178518A1 (en) Apparatus for wirelessly diagnosing structure using nonlinear ultrasonic modulation technique and diagnosis method for assuring safety using same
JP2001516053A (en) Eddy current pipeline inspection apparatus and method
US9453817B2 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
KR101275097B1 (en) Inspect apparatus and method system of on-line non destructive testing for spot welding
CN111902716A (en) Ultrasonic inspection device, method, program, and ultrasonic inspection system
CN106770628A (en) A kind of magneto-optic imaging non-destructive detection means
WO2018182103A1 (en) Defect detection device and defect detection method using same
WO2016017991A1 (en) Nondestructive fatigue inspection apparatus and inspection method therefor using electromagnetic induction sensor
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
KR20210059924A (en) Measuring system and method of metal material property
Trimm An overview of nondestructive evaluation methods
KR101789239B1 (en) Non-distructive inspection apparatus using induced electromotive force
KR101315391B1 (en) A nondestructive welding quality total inspection system and a inspection method thereof using an electromagnetic induction sensor
KR101465073B1 (en) Method and system for evaluating ultra sonic testing
JP2017058325A (en) Eddy current testing equipment and method of using the same
KR101967044B1 (en) Method and apparatus for surface inspection surface of blade
KR20160113069A (en) A fatigue degree inspection apparatus and an inspection method thereof using an electromagnetic induction sensor
JP2016173340A (en) Pipeline inspection device
RU2779446C1 (en) System for detecting faults in hard-to-reach surfaces using an eddy current fault detector
KR20150036972A (en) Casting nondestructive inspection system and inspection method thereof using an electromagnetic induction sensor
JP2013002822A (en) Nondestructive check method and nondestructive check apparatus
KR20150065649A (en) Casting nondestructive inspection system and inspection method thereof using an electromagnetic induction sensor
RU2664867C1 (en) Method of eddy current control
Azami et al. Developing a nondestructive test system using drone for aircraft inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826352

Country of ref document: EP

Kind code of ref document: A1