WO2016017857A1 - 그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도 - Google Patents

그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도 Download PDF

Info

Publication number
WO2016017857A1
WO2016017857A1 PCT/KR2014/009779 KR2014009779W WO2016017857A1 WO 2016017857 A1 WO2016017857 A1 WO 2016017857A1 KR 2014009779 W KR2014009779 W KR 2014009779W WO 2016017857 A1 WO2016017857 A1 WO 2016017857A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
clay
graphene oxide
dispersion
membrane
Prior art date
Application number
PCT/KR2014/009779
Other languages
English (en)
French (fr)
Inventor
이상봉
심진기
유종태
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140098241A external-priority patent/KR101662231B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US15/329,556 priority Critical patent/US10547032B2/en
Publication of WO2016017857A1 publication Critical patent/WO2016017857A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/42Applications of coated or impregnated materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a film comprising graphene oxide (GO) and clay, an electronic device having the film as an oxygen barrier film and a packaging material coated with the film, and a method of manufacturing the same.
  • GO graphene oxide
  • Gas barrier films designed to block active gases are one of the most important topics in many applications such as solar cells, electronic devices as well as food packaging.
  • a method of vacuum depositing aluminum on a polymer film substrate PET, OPP, CPP, LDPE, etc.
  • an inorganic material such as silica or alumina, and ethylene vinyl alcohol copolymer (EVOH)
  • PET polymer film substrate
  • EVOH ethylene vinyl alcohol copolymer
  • Polymer film with excellent gas barrier properties such as nylon, polyacrylonitrile and PVDC (polyvinyliolene chloride) is used.
  • the gas barrier polymer film has a problem that it is difficult to form a thin thin film.
  • Graphene has recently attracted much attention in the field of gas barrier membranes due to its high gas barrier ability as well as mechanical, thermal and electrical properties. Since graphene has a gas barrier property by itself, it was judged that the above object can be achieved by using a graphene thin film or graphene nanoplate formed through molecular deposition, but due to the cost of manufacturing or low gas barrier performance, There is a limit to using it.
  • the synthesis of large area graphene through deposition is considered an ideal gas barrier material due to its high transparency and pore diameters smaller than the kinetic diameters of various gases.
  • the barrier property is lowered.
  • the wider the area to be formed the more expensive equipment and facilities are required, the higher the manufacturing process costs, there is a limit in industrial production. Therefore, the method of synthesizing defect-free large-area graphene and its application as a product are still difficult to achieve for this reason, and there is a strong demand for an industrially and easily manufactured barrier film that can replace it.
  • hydroxy, epoxide, carbonyl and graphene may be mixed with a polymer to form a film or the graphene may be modified to facilitate dispersion in a solvent. And / or converted to graphene oxide (GO) having a carboxyl group and then using the dispersion thereof as a coating solution.
  • GO graphene oxide
  • a relatively long extended gas diffusion is formed by forming a 'tortuous channel' having a nano-barrier effect by the graphene nanoplatelet having a gas barrier property dispersed in a polymer. It forms a pathway and thus shows a decrease in oxygen transmission rate (OTR).
  • OTR oxygen transmission rate
  • the present inventors have studied to find a way to significantly improve the oxygen blocking ability by coating with graphene oxide and additives having an oxygen blocking ability as described above, and further comprising an inorganic clay such as a plate-shaped clay. In one case it was confirmed that the oxygen blocking ability is significantly improved and completed the present invention.
  • One object of the present invention is to provide a film comprising graphene oxide (GO) and clay.
  • Another object of the present invention is to provide an electronic device having the film as an oxygen barrier film.
  • Another object of the present invention is to provide a packaging material coated with the membrane as an oxygen barrier membrane.
  • Still another object of the present invention is to prepare a graphene oxide dispersion; Preparing a clay dispersion; A third step of homogenizing by mixing the two dispersions in a predetermined ratio; And it provides a method for producing a composite membrane comprising a graphene oxide and clay comprising a fourth step of forming a film from the homogenized mixed solution.
  • Still another object of the present invention is to prepare a graphene oxide dispersion; Preparing a clay dispersion; Forming a first thin film from one of the graphene oxide dispersion or the clay dispersion; And a fourth step of forming a thin film on the thin film to form a second thin film using a dispersion liquid different from that used in the third step, to provide a method for manufacturing a multilayer film including graphene oxide and clay.
  • the film containing the graphene oxide and the clay of the present invention may not only exhibit excellent oxygen blocking ability even at a thin thickness, but also include only inorganic materials as compared with the case of using a composite material with an organic polymer to improve the conventional oxygen blocking ability. Therefore, the heat resistance can also be improved, and thus it can be widely used as an oxygen barrier film for electronic devices or the like or for packaging materials. In addition, since it can be produced by a simple method such as bar coating, it is easy for mass production and large area coating.
  • FIG. 1 is a view showing an image of a PET film before and after coating with an oxygen barrier film according to an embodiment of the present invention. From the left, (a) is a PET film before coating, and (b) to (d) are laponite (LN), graphene oxide (GO) and graphene oxide / laponite (GO / LN) composites, respectively. It is an image after coating with a material, and the right side shows the flexibility of the GO / LN coated PET film.
  • LN laponite
  • GO graphene oxide
  • GO / LN graphene oxide / laponite
  • FIG. 2 is a diagram illustrating oxygen transmission rates (OTR) of a PET film before and after coating with an oxygen barrier film according to an embodiment of the present invention.
  • OTR oxygen transmission rates
  • a PET film coated with only laponite (LN) and graphene oxide (GO) was used as a positive control, respectively, and in the experimental group, GO and LN were respectively 1.9: 0.1 (GO 1.9).
  • FIG. 3 is a SEM image of a cross section of a PET film coated with an oxygen barrier film according to an embodiment of the present invention.
  • (A) is GO alone
  • (B) is GO 1.9 / LN 0.1
  • (C) is PET film coated with GO 1.5 / LN 0.5 .
  • Scale bar 100 nm.
  • FIG. 4 is a view showing the FT-IR spectrum according to the pH or content of the components of the oxygen barrier film according to an embodiment of the present invention.
  • (a) to (e) are in turn GO of pH 1.7, 2.3, 4.2, 5.5 and 12.0
  • (f) and (g) are GO / LN composites of GO 1.9 / LN 0.1 and GO 1.5 / LN 0.5 respectively
  • (h) and (i) are the results for LN at pH 9.8 and 5.2, respectively.
  • FIG. 5 is a diagram illustrating a Raman spectrum of an oxygen barrier layer according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing an X-ray diffraction (XRD) pattern of a PET film coated with an oxygen barrier film according to an embodiment of the present invention.
  • Oxygen barrier membranes were prepared using pure GO and GO / LN composites (1.9: 0.1, 1.8: 0.2, 1.7: 0.3, 1.6: 0.4 and 1.5: 0.5) mixed with LN in various contents.
  • FIG. 7 is a view showing an SEM image of the surface of the PET film coated with an oxygen barrier film according to an embodiment of the present invention.
  • (A) to (D) shows the PET surface images coated with GO alone, GO 1.9 / LN 0.1 , GO 1.7 / LN 0.3 and GO 1.5 / LN 0.5 composite, respectively.
  • Scale bar 1 mm.
  • FIG. 8 is a view showing an AFM image of the surface of the PET film coated with an oxygen barrier film according to an embodiment of the present invention.
  • A is GO homogenous material
  • B shows the surface coated with GO / LN solution in which GO and LN were mixed in a volume ratio of 1.9: 0.1.
  • Figure 9 is a schematic diagram showing a schematic diagram of the oxygen blocking film and oxygen blocking principle according to an embodiment of the present invention.
  • the present invention provides a film comprising graphene oxide (GO) and clay (clay).
  • graphene oxide is a compound comprising carbon, oxygen and hydrogen in various proportions, wherein the carbon atoms are hexagonally connected to each other to form a plate shape, the open end of the carbon plane and / or above and below the carbon plane A hydroxy group or two adjacent carbons may comprise an epoxide structure linked via oxygen. It is a graphene analogue, a material of structure consisting of tens to hundreds of layers of platelets from a single layer that can be obtained by treating graphite with a strong oxidant to induce delamination.
  • the graphene oxide may have a plate shape having an average diameter of 100 nm to 10 ⁇ m.
  • clay refers to fine-grained soil containing one or more minerals containing trace amounts of metal oxides, which may be distinguished by size and / or mineralogy.
  • the clay may exist in the form of a plate having a large surface area relative to the thickness, and may be composed of a facet of silica and aluminum.
  • natural clay, synthetic clay or a mixture thereof can be used as the clay of the present invention.
  • the clay is preferably charged and can be dispersed in water.
  • graphene oxide is a material having excellent dispersibility in water, using a clay that can be dispersed in water under charge, simply mixing and dispersing a homogeneous dispersion of graphene oxide and clay in an aqueous solution It can be easily obtained by processing.
  • the clay may be plate-shaped.
  • the average diameter of the plate-shaped clay may be 10 nm to 500 nm.
  • Graphene oxide is a plate-like material with an average diameter of several to tens of micrometers.
  • the relatively small size of clay Defects of fin oxide or gaps with other graphene oxides can be effectively filled.
  • Non-limiting examples of such clays include laponite (LN), montmorillonite (MMT), hectorite, saponite, beadellite and nontronite and Anionic clays such as cationic clay and layered double hydroxide (LDH).
  • LN laponite
  • MMT montmorillonite
  • hectorite hectorite
  • saponite saponite
  • beadellite nontronite
  • Anionic clays such as cationic clay and layered double hydroxide (LDH).
  • LDH layered double hydroxide
  • the membrane of the present invention can be produced by using any one of these clays alone or by mixing two or more kinds.
  • the film may have a thickness of 10 nm to 500 nm. More preferably, the film may have a thickness of 20 nm to 200 nm, but is not limited thereto. If the thickness of the film is less than 10 nm, it may be difficult to obtain a sufficient effect of improving the oxygen blocking capacity as desired. If the thickness exceeds 500 nm, the film may be unnecessarily thick as well as the rigidity of the film itself may be increased, thereby reducing the flexibility and the impact of bending. This can cause cracks, detachment or shattering from the substrate.
  • the film comprising graphene oxide and clay according to the present invention may be a film composed of graphene oxide and clay which does not additionally contain organic substances such as polymers. Therefore, since the durability is excellent even in harsh conditions such as high temperature, and does not require additional components, it is possible to produce a film exhibiting excellent oxygen blocking ability even with a thin film of several tens of nm level.
  • the film comprising graphene oxide and clay according to the present invention may have a multilayer structure comprising 1) a composite film formed of a composite material including graphene oxide and clay or 2) a graphene oxide layer and a clay layer stacked separately. Can be.
  • the composite material may contain graphene oxide and clay in a weight ratio (wt / wt) of 99: 1 to 45:55.
  • graphene oxide and clay may be contained in a weight ratio of 95: 5 to 45:55 (wt / wt).
  • graphene oxide and clay may be contained in a weight ratio of 90:10 to 45:55 (wt / wt), but are not limited thereto.
  • the film including graphene oxide and clay according to the present invention has a layered structure in which the upper and lower adjacent graphene oxide layers form a layered structure as shown in FIG. 9B, and the clay is formed in the form of filling the gaps between adjacent graphene oxide layers of the outermost layer. Can be.
  • the film was coated using a composite material including graphene oxide and clay in different ratios, and respective oxygen transmission rates were measured.
  • the oxygen permeability reduction effect is dependent on the mixing ratio of graphene oxide and laponite, specifically, from a composite material containing graphene oxide and laponite in a weight ratio of about 60:40 compared to a film made of graphene oxide only.
  • a significant decrease in oxygen permeability was found in one membrane.
  • it was confirmed that such an oxygen permeability reduction effect was not observed in the composite material or clay, for example, laponite, which only contains graphene oxide and laponite in an amount of about 43:57 by weight, but the laponite content was increased. .
  • the film including the graphene oxide and the clay according to the present invention is characterized in that it can exhibit an improved oxygen blocking ability compared to the graphene oxide alone film or clay alone film of the same thickness.
  • the present invention provides an electronic device having a film including the graphene oxide and clay as an oxygen barrier film.
  • Non-limiting examples of electronic devices that require such an oxygen barrier film may include batteries, organic light emitting devices, display devices, photovoltaic devices, integrated circuits, pressure sensors, chemical sensors, biosensors, solar devices, and lighting devices. have.
  • the present invention provides a packaging material comprising a film comprising the graphene oxide and clay as the oxygen barrier film.
  • the film using aluminum or inorganic material deposited or a composite film in which gas barrier resin is laminated is used, but the packaging material containing them may become opaque, and the production cost may increase.
  • the thickness can be increased.
  • the membrane of the present invention can not only significantly improve oxygen blocking ability, but also have excellent transparency and flexibility, and exhibit excellent blocking ability even at a thin thickness, thereby reducing the thickness and easily producing the conventional coating equipment. Since it is easy to manufacture and has the effect of reducing costs, it can be usefully used as a packaging material. In addition, since only inorganic substances are included without organic substances such as binders, heat resistance can be improved, and oxygen blocking ability can be maintained even at high temperatures.
  • the packaging material may further include a base layer, a printing layer, a water vapor barrier, and / or a sealing layer for heat sealing to maintain the strength of the film of the present invention, or may be coated and used on an existing packaging material.
  • the present invention comprises the steps of preparing a graphene oxide dispersion; Preparing a clay dispersion; A third step of homogenizing by mixing the two dispersions in a predetermined ratio; And a fourth step of forming a film from the homogenized mixed solution, and provides a method of manufacturing a film in the form of a composite layer including graphene oxide and clay.
  • the solvent of the dispersion may be water.
  • graphene oxide and clay have excellent dispersibility in water.
  • water is a safe solvent that does not need to consider toxicity compared to other organic solvents. Therefore, cost, safety, etc. can be improved by using water as a solvent.
  • the fourth step may be performed by bar coating, gravure coating, slit coater, comma coater, spin coater, spray coater, dip coat or roll to roll.
  • the fourth step may be performed by bar coating on the substrate, but is not limited thereto.
  • Bar coating is the coating method that can be easily performed when using a solution is a method that can be useful for mass production or large area coating.
  • the method of performing the fourth step is not limited thereto, and may be achieved by using a coating method using a solution known in the art.
  • the substrate may be a polyethylene terephthalate (PET) film, a polyethylene (PE) film, or a polypropylene (PP) film, but is not limited thereto. Films widely used in the art can be used without limitation.
  • the coating was performed on a PET substrate using a single or mixed dispersion of GO and clay prepared by using water as a solvent.
  • a substrate having a hydrophilicity such as PET may be used for even application of the coating solution on the substrate.
  • a lipophilic substrate such as PE or PP may be used after being hydrophilized by corona treatment or the like.
  • a commercially available substrate can be used without limitation.
  • the present invention comprises the steps of preparing a graphene oxide dispersion; Preparing a clay dispersion; Forming a first thin film from one of the graphene oxide dispersion or the clay dispersion; And a fourth step of forming a thin film on the thin film to form a second thin film with a dispersion different from that used in the third step, thereby providing a method of manufacturing a multilayer film including graphene oxide and clay.
  • the third step and the fourth step may be independently performed alternately one or more times.
  • the third and fourth steps may be alternately performed several tens to hundreds of times, and the number of repetitions is not limited as long as the desired oxygen blocking ability can be achieved and flexibility can be secured according to the purpose.
  • the number of repetitions may be determined by those skilled in the art in consideration of the thickness of each layer and the use of the final product.
  • the third and fourth steps may be independently performed by bar coating, applicator-coating, gravure coating, slit coater, comma coater, spin coater, spray coater, dip coating or roll-to-roll.
  • bar coating applicator-coating
  • gravure coating slit coater
  • comma coater comma coater
  • spin coater spin coater
  • spray coater dip coating or roll-to-roll.
  • Any method that can introduce additional coating layers known in the art can be used without limitation.
  • Highly-concentrated graphene oxide (GO, 5 g / L, flake size: 0.5-5 ⁇ m, thickness: 1 atomic layer—at least 60%) dispersed in water was purchased from GRAPHENE SUPERMARKET (Calverton, NY, USA).
  • Laponite (LN, RD grade) was purchased from ROCKWOOD ADDITIVES Ltd. (Widnes, Cheshire, UK) and used as is.
  • PET polyethylene terephthalate
  • Hydrochloric acid (36.5-38.0%, SIGMA-ALDRICH) and sodium hydroxide (98%, SAMCHUN CHEMICALS) were used to adjust the pH of the GO and LN solutions.
  • Oxygen permeation analyzer Oxygen permeation analyzer; OX-TRAN Model 702, MOCON, Minneapolis, MN, USA
  • OX-TRAN Model 702 MOCON, Minneapolis, MN, USA
  • FT-IR and Raman spectroscopy were performed using Varian 660-IR (Varian medical systems, Inc., California, USA) and SENTERRA Raman microscopy (BRUKER Corporation, Billerica, Mass., USA), respectively.
  • Contact angle measurements were performed using a contact angle analyzer (Phoenix 300, Surface Electro Optics Co., Ltd., Gyeonggi-do, Korea). The shape of the coated surface was analyzed at 0.5 Hz scanning speed using an atomic force microscope (AFM) with a non-contact cantilever (NX10, Park Systems Corp., Suwon, Korea).
  • AFM atomic force microscope
  • GO dispersion (0.5 wt%) was sonicated at 50% power for 1 hour using a chip-type ultrasonic generator (HD2200, BANDELIN electronic, GmbH & Co. KG, Berlin, Germany) and then bar- Coating was performed on a film substrate using a coater (RDS bar coater # 10) to prepare a GO-coated film.
  • LN-coated films were prepared by applicator-coating (200 ⁇ m) with an aqueous LN solution (4 wt%).
  • GO and LN are respectively 1.9: 0.1 (GO 1.9 / LN 0.1 ), 1.8: 0.2 (GO 1.8 / LN 0.2 ), 1.7: 0.3 GO dispersion and LN aqueous solution (2 wt%) were mixed to provide a final volume ratio of (GO 1.7 / LN 0.3 ), 1.6: 0.4 (GO 1.6 / LN 0.4 ) and 1.5: 0.5 (GO 1.5 / LN 0.5 ) It was homogenized for 10 minutes with a model ultrasonic generator (ULTRASONIC 3010, KODO Technical research Co., Ltd., Gyeonggi-do, Korea).
  • ULTRASONIC 3010 model ultrasonic generator
  • a PET film coated with a GO / LN composite material was prepared from the mixed dispersion by bar coating (RDS bar coater # 10).
  • RDS bar coater # 10 instead of laponite, montmorillonite (MT) was mixed with GO solution at the same concentration and ratio and coated in the same manner to prepare a PET film coated with GO / MMT composite material.
  • a PET film (DL-GO / LN) coated with a GO dispersion 0.5 wt%, RDS bar coater # 10) and then coated with an applicator with an LN aqueous solution (3 wt%, 200 ⁇ m applicator) was prepared.
  • composition and pH of the solution used are shown in Table 1 below.
  • Solute content in solution 0.5 (wt / v)% GO and 2 (wt / wt)% LN
  • PET film coated with GO, LN and GO / LN composite material prepared from Example 3 was confirmed to be transparent and flexible. Before and after coating, the PET film was photographed and shown in FIG. 1. As shown in FIG. 1, the film coated with LN alone was completely transparent, similar to before coating, and the film coated with GO alone or GO / LN composite was somewhat grayish, but still transparent. On the other hand, the film coated with the GO / LN composite material was flexible and well bent in spite of being composed of only inorganic materials, not including a polymeric binder, etc., the peeling of the coating layer did not appear accordingly.
  • the GO 1.9 / LN 0.1 thin film ( ⁇ 59 nm) can be expected to show a somewhat improved blocking ability in that it has an increased thickness compared to the film coated with only GO ( ⁇ 44 nm), Figure 2 and As confirmed from Figure 3C, according to the composition ratio of the constituents, even when forming a thicker layer, even when showing a lower blocking ability, because it is present, improved GO 1.9 / LN 0.1 thin film compared to the film coated with only GO It was proved that the oxygen blocking ability of was mainly due to the difference in composite material and composition rather than due to the increase in thickness.
  • the LN aqueous solution has a stable colloidal state in the high pH region of the basic conditions due to the formation of the electron double layer inserted by the sodium ions on the LN surface.
  • sodium ions are replaced by the addition of H + ions, which causes the electron double layer to shrink, causing the positive charge at the edge of the disk to interact with the negatively charged surface of the neighboring disk.
  • functional groups of GO such as carboxyl, epoxy and hydroxy groups
  • the interaction between the Si—OH functionality of the LN and the carboxyl and hydroxy groups of the GO plate may also be the driving force for LN adhesion to defects in the GO layer.
  • FT-IR and Raman spectra of the coating film were analyzed.
  • the FT-IR and Raman spectra obtained from pure GO and LN and GO / LN composite membranes are shown in FIGS. 4 and 5, respectively.
  • the desired pH eg, the GO solution
  • the LN solution was adjusted to pH 2.3 and the LN solution to pH 9.8 using a concentrated hydrochloric acid solution or sodium hydroxide solution.
  • the asymmetric stretch of the carboxylate anion (-COO-) showed a vibration band at 1617 cm -1 .
  • the peaks of 1421, 1052 and 968 cm ⁇ 1 represent CO and epoxide groups of the carboxy group CO, alkoxy or alkoxide group, respectively.
  • the band at 1722 cm ⁇ 1 due to carboxylic acid decreased and disappeared completely at pH 12.
  • a carboxy group on the CO peak appeared at pH 4.2 and 5.5 are due to the dehydrogenation of a carboxyl group in an acidic condition of pH 1.7 and 2.2 was shifted from 1421 cm -1 to 1373 ⁇ 1385 cm -1.
  • the peak appearing at 1016 cm ⁇ 1 is due to the Si—O vibration of amorphous silica.
  • the change in peak position in the FT-IR peak pattern of the composite indicates that the carboxyl, alkoxy and epoxy groups of GO interact with LN.
  • X-ray diffraction (XRD) patterns of the films coated with GO plates and LN disks were measured and shown in FIG. 6.
  • XRD peaks corresponding to films coated with pure GO and LN appeared at 2 ⁇ 10.4 ° and 7.4 °, respectively, corresponding to d-spacing of 0.85 and 1.19 nm. This is close to the interlayer distance (d-spaced) of about 0.83 nm seen in typical GO specimens.
  • the surface of the composite film having various compositions was studied by SEM.
  • the GO wrinkles gradually disappearing from the GO / LN composite layer compared to the pure GO have weak edge-to-edge interactions between the GO sheets, resulting in edge-to-edge interactions between GO sheets. This is due to the increased distance from the edge, which is due to the increase in repulsion force due to the deprotonation of the carboxyl groups at the edge of GO, as the pH of the composite coating solution increases as a relatively high pH LN solution is added to the GO solution. to be.
  • FIG. 9 shows the mechanism for oxygen blocking of membranes comprising GO and clay.
  • Pure GO specimens have a layered structure showing edge-to-edge interactions based on carboxyl groups and face-to-face interactions based on alkoxy and epoxy groups (FIG. 9A).
  • the addition of clay reduced the edge-to-edge interactions caused by the deprotonation of the carboxyl groups as the pH of the mixed solution increased, and the lamellar discs attached to the surface of the GO in solution as it dried during film making This interaction was induced by moving to the outermost surface of the GO.
  • Clay disks on the outermost surface can block the oxygen molecule's permeation by filling in GO leaks or defects.
  • the composite film or the multilayer structure film further comprising a small amount of clay showed an effect of significantly reducing the OTR even in a thin film having a thickness of about 50 nm.
  • This improved oxygen barrier ability was confirmed to be due to the formation of a dense barrier layer formed by the interaction of clay with GO on the outermost surface of the coating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 그라핀 옥사이드(graphene oxide; GO) 및 클레이(clay)를 포함하는 막, 상기 막을 구비한 전자소자, 상기 막으로 코팅된 포장재, 및 이의 제조방법에 관한 것이다.

Description

그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도
본 발명은 그라핀 옥사이드(graphene oxide; GO) 및 클레이(clay)를 포함하는 막, 산소 차단막으로서 상기 막을 구비한 전자소자 및 상기 막으로 코팅된 포장재, 및 이의 제조방법에 관한 것이다.
활성 기체를 차단하기 위하여 고안된 기체 차단 필름은 식품 포장뿐만 아니라 태양전지, 전자소자와 같은 많은 응용 분야에 있어서 가장 중요한 주제 중 하나이다. 일반적으로 기체 차단 필름을 제조하기 위하여 고분자 필름 기재(PET, OPP, CPP, LDPE 등) 위에 알루미늄을 진공증착하거나, 실리카나 알루미나와 같은 무기물을 증착 또는 코팅하는 방법과, EVOH(ethylene vinyl alcohol copolymer), 나일론, 폴리아크릴로 니트릴, PVDC(polyvinyliolene chloride)와 같은 기체 차단성이 우수한 고분자 필름을 적층하여 사용한다. 그러나, 알루미늄 증착 필름의 경우 불투명해지며, 무기물을 증착시키는 경우 높은 증착비용으로 인해 생산단가가 증가하는 단점이 있으며, 기체 차단성 고분자 필름의 경우 얇은 박막을 형성하기 어려운 문제점을 갖는다.
그라핀은 기계적, 열적 및 전기적 성질과 함께 높은 기체 차단능으로 인해 최근 기체 차단막 분야에서 많은 관심을 받고 있다. 그라핀은 자체로서 기체 차단성을 가지고 있으므로 분자 증착을 통해 형성된 그라핀 박막 또는 그라핀 나노판을 이용하여 상기 목적을 달성할 수 있을 것으로 판단되었으나, 제조비용적인 측면이나 낮은 기체 차단성능으로 인해 상업적으로 사용하는 데는 제한이 있다.
증착을 통한 대면적 그라핀의 합성은 높은 투명도와 다양한 기체의 역학적 직경(kinetic diameters)보다 더 작은 기공 직경으로 인해 이상적인 기체 차단물질로 여겨진다. 그러나, 실제 합성과정에서 발생하는 벤젠 고리 이외에 보다 많은 또는 적은 탄소원자에 기인하는 분자 구조적 결함 및 합성된 대면적 그라핀 막의 기재(substrate) 부착 과정 동안 발생할 수 있는 찢어짐과 같은 물리적 결함으로 인해 기체의 차단성이 저하된다. 또한, 형성하고자 하는 면적이 넓어질수록 이에 상응하는 고가의 장비 및 시설을 필요로 하여 제조공정 비용이 상승하는 등 산업적 생산에 있어서 제한을 갖는다. 따라서, 결함 없는 대면적 그라핀의 합성방법 및 제품으로서의 응용은 이러한 이유로 여전히 달성하기 어려우며, 이를 대체할 수 있는 산업상, 용이하게 제조될 수 있는 차단막이 강하게 요구되고 있다.
그라파이트로부터 박리된 그라핀 나노판(nanoplatelets)을 이용하여 가스 차단막을 제조하기 위해서는 그라핀을 고분자와 혼합하여 막을 형성하거나 용매에 분산이 용이하도록 그라핀을 변성시켜 히드록시, 에폭사이드, 카르보닐 및/또는 카르복시기를 갖는 그라핀 옥사이드(graphene oxide; GO)로 전환한 후 이의 분산액을 코팅액으로 사용한다.
상기 그라핀 나노판-고분자 복합체 막의 경우, 고분자 내에 분산된 기체 차단성을 가지는 그라핀 나노판에 의한 나노-장벽 효과를 갖는 '일그러진 채널(tortuous channel)'을 형성하여 상대적으로 긴 연장된 기체 확산 경로를 형성하므로 산소투과율(oxygen transmission rate; OTR)에서 감소를 나타낸다. 그러나, 차단성 막으로 제조하기 위해 고분자 기질 내에 첨가된 그라핀 나노판의 함유량을 일정 수준 이상으로 높일 수 없고, 고분자 기질 내에서 그라핀 나노판의 낮은 분산성으로 인해 달성할 수 있는 산소투과율의 감소율은 제한적이다.
한편, 용매에 대한 분산성을 향상시킨 그라핀 옥사이드 나노판을 사용하는 경우, 적층된 나노판 사이에 틈이 존재하고 그 틈으로 기체가 투과할 수 있으므로 매우 두껍게 코팅하지 않는 한 기대만큼의 기체 차단성을 구현하기는 어렵다.
본 발명자들은 위와 같이 산소 차단능을 갖는 그라핀 옥사이드와 첨가물을 이용한 코팅에 의해 산소 차단능을 현저히 향상시킬 수 있는 방법을 찾기 위하여 연구 노력한 결과, 무기물인 클레이 예컨대, 판상형 클레이를 추가로 포함하여 코팅한 경우 산소 차단능이 현저히 향상되었음을 확인하고 본 발명을 완성하였다.
본 발명의 하나의 목적은 그라핀 옥사이드(graphene oxide; GO) 및 클레이(clay)를 포함하는 막을 제공하는 것이다.
본 발명의 다른 목적은 산소 차단막으로서 상기 막을 구비한 전자소자를 제공하는 것이다.
본 발명의 또 다른 목적은 산소 차단막으로서 상기 막으로 코팅된 포장재를 제공하는 것이다.
본 발명의 또 다른 목적은 그라핀 옥사이드 분산액을 준비하는 제1단계; 클레이 분산액을 준비하는 제2단계; 상기 2가지 분산액을 소정의 비율로 혼합하여 균질화하는 제3단계; 및 상기 균질화한 혼합 용액으로부터 막을 형성하는 제4단계를 포함하는, 그라핀 옥사이드 및 클레이를 포함하는 복합체막의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 그라핀 옥사이드 분산액을 준비하는 제1단계; 클레이 분산액을 준비하는 제2단계; 상기 그라핀 옥사이드 분산액 또는 클레이 분산액 중 하나로부터 제1박막을 형성하는 제3단계; 및 상기 박막 상에 제3단계에서 사용한 것과 다른 하나의 분산액으로 제2박막을 형성하는 박막을 형성하는 제4단계를 포함하는, 그라핀 옥사이드 및 클레이를 포함하는 다층막의 제조방법을 제공하는 것이다.
본 발명의 그라핀 옥사이드 및 클레이를 포함하는 막은 얇은 두께로도 우수한 산소 차단능을 나타낼 수 있을 뿐만 아니라 종래의 산소 차단능을 향상시키기 위해 유기 고분자와의 복합소재를 이용하는 경우와 비교하여 무기물만을 포함하므로 내열성 또한 향상시킬 수 있으므로, 전자소자 등에 산소차단막으로, 또는 포장재 등에 널리 활용할 수 있다. 또한, 바코팅과 같은 간단한 방법으로 제조할 수 있으므로 대량생산 및 대면적 코팅에도 용이하다.
도 1은 본 발명의 일 실시예에 따른 산소 차단막으로의 코팅 전과 후 PET 필름의 이미지를 나타낸 도이다. 좌측으로부터 (a)는 코팅 전 PET 필름, (b) 내지 (d)는 각각 라포나이트(laponite; LN), 그라핀 옥사이드(graphene oxide; GO) 및 그라핀 옥사이드/라포나이트(GO/LN) 복합소재로 코팅 후의 이미지이며, 우측은 GO/LN 코팅된 PET 필름의 가요성을 나타내는 도이다.
도 2는 본 발명의 일 실시예에 따른 산소 차단막으로의 코팅 전과 후 PET 필름의 산소투과율(oxygen transmission rates; OTR)을 나타낸 도이다. 음성 대조군으로는 코팅하지 않은 PET 필름을 양성 대조군으로는 각각 라포나이트(LN)와 그라핀 옥사이드(GO) 만으로 코팅한 PET 필름을 사용하였으며, 실험군으로는 GO와 LN을 각각 1.9:0.1(GO1.9/LN0.1), 1.7:0.3(GO1.7/LN0.3) 및 1.5:0.5(GO1.5/LN0.5)의 비율로 함유하는 복합소재로 PET 필름 위에 바코팅하여 막을 형성하였다.
도 3은 본 발명의 일 실시예에 따른 산소 차단막으로 코팅된 PET 필름 단면의 SEM 이미지를 나타낸 도이다. (A)는 GO 단독, (B)는 GO1.9/LN0.1 및 (C)는 GO1.5/LN0.5로 코팅한 PET 필름이다. 스케일바=100 nm.
도 4는 본 발명의 일 실시예에 따른 산소 차단막의 pH 또는 성분의 함량에 따른 FT-IR 스펙트럼을 나타낸 도이다. (a) 내지 (e)는 각각 차례로 pH 1.7, 2.3, 4.2, 5.5 및 12.0의 GO, (f) 및 (g)는 각각 GO1.9/LN0.1 및 GO1.5/LN0.5의 GO/LN 복합소재, (h) 및 (i)는 각각 pH 9.8 및 5.2의 LN에 대한 결과이다.
도 5는 본 발명의 일 실시예에 따른 산소 차단막의 라만 스펙트럼을 나타낸 도이다.
도 6은 본 발명의 일 실시예에 따른 산소 차단막으로 코팅된 PET 필름의 X-선 회절(X-ray diffraction; XRD) 패턴을 나타낸 도이다. 산소 차단막은 순수한 GO 및 다양한 함량으로 LN과 혼합된 GO/LN 복합소재(1.9:0.1, 1.8:0.2, 1.7:0.3, 1.6:0.4 및 1.5:0.5)를 이용하여 제조하였다.
도 7은 본 발명의 일 실시예에 따른 산소 차단막으로 코팅된 PET 필름 표면의 SEM 이미지를 나타낸 도이다. (A) 내지 (D)는 각각 GO 단독, GO1.9/LN0.1, GO1.7/LN0.3 및 GO1.5/LN0.5 복합소재로 코팅한 PET 표면 이미지를 나타낸다. 스케일바=1 mm.
도 8은 본 발명의 일 실시예에 따른 산소 차단막으로 코팅된 PET 필름 표면의 AFM 이미지를 나타낸 도이다. (A)는 GO 단독물질로, (B)는 GO와 LN을 1.9:0.1의 부피비로 혼합한 GO/LN 용액으로 코팅한 표면을 나타낸다.
도 9는 본 발명의 일 실시예에 따른 산소 차단막의 모식도 및 산소 차단 원리를 나타낸 개략도이다.
상기 본 발명의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 그라핀 옥사이드(graphene oxide; GO) 및 클레이(clay)를 포함하는 막을 제공한다.
본 발명은 수십 나노미터 내지 십수 마이크로미터 수준의 직경을 갖는 판상형 그라핀 옥사이드와 나노미터 수준의 직경을 갖는 클레이를 포함하는 복합체막 또는 다층막이 수십 nm 수준의 얇은 박막으로 제조될지라도 효율적으로 산소를 차단할 수 있음을 발견한 것에 기초한다.
용어, "그라핀 옥사이드"는 탄소, 산소 및 수소를 다양한 비율로 포함하는 화합물로서, 탄소원자들은 서로 6각형으로 연결되어 판상형을 이루며, 상기 탄소 평면의 열린 말단 및/또는 상기 탄소 평면의 아래 위에 히드록시기나 이웃한 2개의 탄소가 산소를 통해 연결된 에폭사이드 구조를 포함할 수 있다. 이는 그라핀 유사체로, 그라파이트를 강력한 산화제로 처리하여 층간 박리를 유도함으로서 얻어질 수 있는 단일층으로부터 수십 내지 수백 층의 판상으로 이루어진 구조의 물질이다.
바람직하게, 상기 그라핀 옥사이드는 평균 직경 100 nm 내지 10 μm의 판상형일 수 있다.
용어, "클레이"는 미량의 금속산화물을 포함하는 하나 이상의 광물질(mineral)을 포함하는 세립질 토양(fine-grained soil)을 의미하는 것으로, 크기 및/또는 광물학(mineralogy)에 의해 구분될 수 있다. 일반적으로 클레이는 두께 대비 넓은 표면적을 갖는 판상 형태로 존재할 수 있으며, 실리카와 알루미늄의 면체로 구성될 수 있다. 본 발명의 클레이로는 천연 클레이, 합성 클레이 또는 이들을 혼합하여 사용할 수 있다.
상기 클레이는 전하를 띠어 물에 분산될 수 있는 것이 바람직하다. 전술한 바와 같이, 그라핀 옥사이드는 물에 대한 분산성이 우수한 물질이므로, 전하를 띠어 물에 분산될 수 있는 클레이를 이용하면 수용액 상에서 그라핀 옥사이드와 클레이가 균질하게 분포된 분산액을 단순히 혼합하고 초음파 처리함으로써 용이하게 얻을 수 있다. 또한, 바람직하게, 상기 클레이는 판상형일 수 있다. 또한 상기 판상형 클레이의 평균 직경은 10 nm 내지 500 nm일 수 있다. 그라핀 옥사이드는 수 내지 수십 마이크로미터 수준의 평균 직경을 갖는 판상형의 물질로, 이보다 작은 나노미터 수준의 직경을 갖는 클레이와 혼합한 복합소재로 필름을 형성할 경우, 상대적으로 작은 크기의 클레이는 그라핀 옥사이드의 결함이나 다른 그라핀 옥사이드와의 간극을 효율적으로 채울 수 있다. 이와 같은 클레이의 비제한적인 예는 라포나이트(laponite; LN), 몬모릴로나이트(montmorillonite; MMT), 헥토라이트(hectorite), 사포나이트(saponite), 베이델라이트(beidellite) 및 논트로나이트(nontronite)와 같은 양이온성 클레이 및 층상이중수산화물(layered double hydroxide; LDH)와 같은 음이온 클레이를 포함한다. 본 발명의 막은 이들 클레이 중 어느 하나를 단독으로 이용하거나, 2종 이상을 혼합하여 제조할 수 있다.
바람직하게, 상기 막은 10 nm 내지 500 nm 두께를 가질 수 있다. 보다 바람직하게, 상기 막은 20 nm 내지 200 nm의 두께를 가질 수 있으나, 이에 제한되지 않는다. 막의 두께가 10 nm 미만인 경우 원하는 정도의 충분한 산소 차단능 향상효과를 얻기 어려울 수 있으며, 500 nm를 초과하는 경우 불필요하게 두꺼워짐은 물론 필름 자체의 강직성이 증가되어 유연성이 감소되어 굽힘 등의 충격에 의해 균열이 생기거나 기판으로부터 분리되거나 부스러질 수 있다.
바람직하게, 본 발명에 따른 그라핀 옥사이드와 클레이를 포함하는 막은 바인더로서 고분자 등의 유기물을 추가로 포함하지 않는 그라핀 옥사이드 및 클레이로 구성된 막일 수 있다. 따라서, 고온 등의 가혹한 조건에서도 내구성이 뛰어나며, 추가적인 구성물을 필요로 하지 않으므로 수십 nm 수준의 박막으로도 우수한 산소 차단능을 나타내는 막을 제조할 수 있다.
본 발명에 따른 그라핀 옥사이드와 클레이를 포함하는 막은 1) 그라핀 옥사이드와 클레이를 포함하는 복합소재로 형성된 복합체 막 또는 2) 개별적으로 적층된 그라핀 옥사이드 층과 클레이 층이 반복되는 다층 구조를 가질 수 있다.
이때, 상기 복합소재는 그라핀 옥사이드와 클레이를 99:1 내지 45:55 중량비(wt/wt)로 함유할 수 있다. 또는 그라핀 옥사이드와 클레이를 95:5 내지 45:55 중량비(wt/wt)로 함유할 수 있다. 또는 그라핀 옥사이드와 클레이를 90:10 내지 45:55 중량비(wt/wt)로 함유할 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 그라핀 옥사이드와 클레이를 포함하는 막은 도 9B에 나타난 바와 같이 상하로 인접한 그라핀 옥사이드 층들이 층상구조를 이루며, 클레이는 최외각층의 이웃한 그라핀 옥사이드 층들의 사이를 채우는 형태로 제조될 수 있다.
본 발명의 구체적인 실시예에서는 그라핀 옥사이드와 클레이를 각기 다른 비율로 포함하는 복합소재를 이용하여 필름을 코팅하고 각각의 산소 투과율을 측정하였다. 그 결과, 산소투과율 감소효과는 그라핀 옥사이드와 라포나이트의 혼합비에 의존적이며, 구체적으로 그라핀 옥사이드만으로 제조한 필름에 비해 그라핀 옥사이드와 라포나이트를 약 60:40 중량비로 함유하는 복합소재로부터 제조한 막에서 현저한 산소투과율 감소가 확인되었다. 반면, 이보다 라포나이트 함량이 증가된, 그라핀 옥사이드와 라포나이트를 약 43:57 중량비로 함유하는 복합소재나 클레이 예컨대, 라포나이트만으로 제조한 필름에서는 이와 같은 산소투과율 감소효과는 나타나지 않음을 확인하였다.
바람직하게, 본 발명에 따른 그라핀 옥사이드와 클레이를 포함하는 막은 동일한 두께의 그라핀 옥사이드 단독체 막 또는 클레이 단독체 막에 비해 향상된 산소 차단능을 나타낼 수 있는 것이 특징이다.
다른 하나의 양태로서, 본 발명은 산소 차단막으로서 상기 그라핀 옥사이드 및 클레이를 포함하는 막을 구비한 전자소자를 제공한다.
대부분의 전자소자는 전자전도성이 높은 금속 등을 함유한다. 그러나, 이들 소재는 산화, 즉 산소와의 반응에 민감하다. 따라서, 산소를 차단할 수 있는 필름 등으로 코팅하는 것이 바람직하다. 이와 같은 산소 차단막을 요구하는 전자소자의 비제한적인 예는 배터리, 유기 발광 소자, 디스플레이 소자, 광기전성 소자, 집적 회로, 압력센서, 화학센서, 바이오센서, 태양광 소자 및 조명용 소자를 포함할 수 있다.
또 하나의 양태로서, 본 발명은 산소 차단막으로서 상기 그라핀 옥사이드 및 클레이를 포함하는 막을 포함하는 포장재를 제공한다.
금속성 물질, 식품, 영양제 등은 공기 중의 산소와 반응하여 산화할 수 있다. 따라서, 현재는 유통기한을 증가시키기 위해 알루미늄 또는 무기물이 증착된 필름을 사용하거나 기체 차단성 수지가 적층된 복합필름 등을 사용하고 있으나, 이들을 포함하는 포장재가 불투명해질 수 있으며, 생산 비용이 증가하고 두께가 증대될 수 있다.
그러나 상기 본 발명의 막은 산소 차단능을 현저히 향상시킬 수 있을 뿐만 아니라 우수한 투명성 및 가요성을 가질 뿐만 아니라 얇은 두께로도 우수한 차단능을 나타내므로 두께를 감소시키고 기존의 코팅장비를 이용하여 용이하게 생산할 수 있으므로 제조가 용이하고 비용을 절감하는 효과를 가지므로 포장재로도 유용하게 사용될 수 있다. 또한, 바인더 등의 유기물을 포함하지 않고 무기물만을 포함하므로 내열성이 향상되어 고온에서도 산소 차단능을 유지할 것으로 기대할 수 있다. 이때, 포장재는 본 발명의 막에 강도를 유지시켜주는 기재층, 인쇄층, 수증기 차단 및/또는 열봉합을 위한 실링층을 추가로 포함하여 형성하거나, 기존의 포장재에 코팅하여 사용할 수 있다.
또 하나의 양태로서, 본 발명은 그라핀 옥사이드 분산액을 준비하는 제1단계; 클레이 분산액을 준비하는 제2단계; 상기 2가지 분산액을 소정의 비율로 혼합하여 균질화하는 제3단계; 및 상기 균질화한 혼합 용액으로부터 막을 형성하는 제4단계를 포함하는, 그라핀 옥사이드 및 클레이를 포함하는 복합층 형태의 막의 제조방법을 제공한다.
바람직하게, 상기 분산액의 용매는 물일 수 있다. 전술한 바와 같이, 그라핀 옥사이드 및 클레이는 물에 대한 분산력이 우수하다. 또한 물은 다른 유기 용매에 비해 독성 등을 고려할 필요없는 안전한 용매이다. 따라서, 물을 용매로 사용함으로써 비용이나 안전성 등의 향상을 도모할 수 있다.
상기 제4단계는 바코팅, 그라비아 코팅, 슬릿코터, 콤마코터, 스핀코터, 스프레이코터, 딥코팅 또는 롤투롤에 의해 수행될 수 있다. 바람직하게, 제4단계는 기재 상에서 바코팅에 의해 수행될 수 있으나, 이에 제한되지 않는다. 바코팅은 용액을 이용하는 경우 가장 간편하게 수행할 수 있는 코팅방법으로 대량생산이나, 대면적 코팅에도 유용하게 사용될 수 있는 방법이다. 그러나, 상기 제4단계을 수행하는 방법은 이에 제한되는 것은 아니며, 당업계에 공지된 용액을 이용하는 코팅방법을 사용하여 달성할 수 있다.
바람직하게, 상기 기재는 폴리에틸렌테레프탈레이트(polyethylene terephthalate; PET) 필름, 폴리에틸렌(polyethylene; PE) 필름 또는 폴리프로필렌(polypropylene; PP) 필름일 수 있으나, 이에 제한되지 않는다. 당업계에 널리 사용되는 필름을 제한없이 사용할 수 있다.
본 발명의 구체적인 실시예에서는 물을 용매로 사용하여 제조한 GO 및 클레이의 단독 또는 혼합 분산액을 코팅액으로 이용하여 PET 기재 상에 바코팅하였다. 이와 같이 수성 또는 친수성 용매를 사용하는 경우 기재 상에서 코팅액의 고른 도포를 위하여 PET와 같이 친수화도를 갖는 기재를 사용할 수 있다. 또는 PE 또는 PP와 같이 친유성을 갖는 기재를 코로나 처리 등으로 친수화하여 사용할 수 있다. 이와 같이, 당업계에 공지된 적절한 전처리를 통해 기재를 개질하여 사용할 수 있으므로 상용화된 기재를 제한없이 사용할 수 있다.
또 하나의 양태로서, 본 발명은 그라핀 옥사이드 분산액을 준비하는 제1단계; 클레이 분산액을 준비하는 제2단계; 상기 그라핀 옥사이드 분산액 또는 클레이 분산액 중 하나로부터 제1박막을 형성하는 제3단계; 및 상기 박막 상에 제3단계에서 사용한 것과 다른 하나의 분산액으로 제2박막을 형성하는 박막을 형성하는 제4단계를 포함하는, 그라핀 옥사이드 및 클레이를 포함하는 다층 형태의 막의 제조방법을 제공한다.
바람직하게, 제3단계 및 제4단계를 독립적으로 각 1회 이상 번갈아 수행할 수 있다. 상기 제3단계 및 제4단계를 각각 수십 내지 수백회 번갈아 수행할 수 있으며, 원하는 산소 차단능을 달성하는 동시에 목적에 따라 가요성을 확보할 수 있는 한, 반복 횟수는 제한되지 않는다. 상기 반복 횟수는 각 층의 두께 및 최종 산물의 용도 등을 고려하여 당업자에 의해 결정될 수 있다.
이때, 제3단계 및 제4단계는 각각 독립적으로 바코팅, 어플리케이터 코팅(applicator-coating), 그라비아 코팅, 슬릿코터, 콤마코터, 스핀코터, 스프레이코터, 딥코팅 또는 롤투롤에 의해 수행될 수 있으나, 이에 제한되지 않는다. 당업계에 공지된 추가적인 코팅층을 도입할 수 있는 방법을 제한없이 사용할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 물질 및 박막의 제조
물에 분산된 고농축(highly-concentrated) 그라핀 옥사이드(graphene oxide; GO, 5 g/L, 판상 크기(flake size): 0.5-5 μm, 두께: 1 원자층(atomic layer)-최소 60%)를 GRAPHENE SUPERMARKET(Calverton, NY, USA)으로부터 구입하였다. 라포나이트(laponite; LN, RD grade)는 ROCKWOOD ADDITIVES Ltd.(Widnes, Cheshire, UK)로부터 구입하여 그대로 사용하였다. 기재로는 임의의 화학적 처리를 하지 않은 폴리에틸렌테레프탈레이트(polyethylene terephthalate; PET) 필름(TR55 및 SG05, 두께: 100 μm, SKC, Seoul, Korea)을 사용하였다. 염산(36.5-38.0%, SIGMA-ALDRICH) 및 수산화나트륨(98 %, SAMCHUN CHEMICALS)을 사용하여 GO 용액 및 LN 용액의 pH를 조절하였다.
실시예 2: 특성분석
SU-8020(HITACHI, Tokyo, Japan)을 이용하여 1 kV에서 전계방출 주사전자현미경(Field emission scanning electron microscopy; FE-SEM) 측정을 수행하였다. 0.17 cc/min 유속으로 아르곤 가스를 흘려주면서 4 V 가속전압 및 ~415 μA 방전전류에서 단면 이미지의 전처리과정을 위하여 이온 밀링 시스템(Ion milling system; IM4000, HITACHI, Tokyo, Japan)을 사용하였다. 0.01 cc/m2·atm·day의 검출한계를 갖는 산소투과분석기(Oxygen permeation analyzer; OX-TRAN Model 702, MOCON, Minneapolis, MN, USA)를 이용하여 23℃ 온도 및 0% 상대습도 조건에서 50 cm2의 면적에 걸쳐 산소투과율(oxygen transmission rates; OTR)을 측정하였다. 각각 Varian 660-IR(Varian medical systems, Inc., California, USA)과 SENTERRA 라만 현미경 분광계(BRUKER Corporation, Billerica, MA, USA)를 이용하여 FT-IR 및 라만 분광법을 수행하였다. X-선 회절(XRD) 측정은 SmartLab(Rigaku)을 이용하여 40 kV와 30 mA(CuKα radiation, λ=0.154 nm)로 1°<2θ<70° 범위에서 수행하였다. 접촉각 분석기(Phoenix 300, Surface Electro Optics Co., Ltd., Gyeonggi-do, Korea)를 이용하여 접촉각 측정을 수행하였다. 코팅된 표면의 형태는 비접촉 캔틸레버를 구비한 원자력 현미경(AFM)(NX10, Park Systems Corp., Suwon, Korea)을 이용하여 0.5 Hz 주사속도로 분석하였다.
실시예 3: GO/클레이로 코팅된 PET 필름의 제조
GO 분산액(0.5 wt%)을 칩형(chip-type) 초음파발생장치(HD2200, BANDELIN electronic·GmbH & Co. KG, Berlin, Germany)를 이용하여 50%-출력으로 1시간 동안 초음파처리한 후 바-코터(RDS bar coater #10)를 이용하여 필름 기재 상에 코팅하여 GO-코팅된 필름을 제조하였다. LN-코팅된 필름은 LN 수용액(4 wt%)을 이용한 어플리케이터 코팅(applicator-coating, 200 μm)으로 제조하였다. GO 및 라포나이트(laponite; LN)를 포함하는 복합소재로의 코팅을 위하여, GO와 LN 를 각각 1.9:0.1(GO1.9/LN0.1), 1.8:0.2(GO1.8/LN0.2), 1.7:0.3(GO1.7/LN0.3), 1.6:0.4(GO1.6/LN0.4) 및 1.5:0.5(GO1.5/LN0.5)의 최종 부피비를 제공하도록 GO 분산액과 LN 수용액(2 wt%)을 혼합하고, 수조형 초음파발생기(ULTRASONIC3010, KODO Technical research Co., Ltd., Gyeonggi-do, Korea)로 10분 동안 균질화하였다. 상기 혼합된 분산액으로부터 바코팅(RDS bar coater #10)에 의해 GO/LN 복합소재로 코팅된 PET 필름을 제조하였다. 또한, 라포나이트를 대신하여 몬모릴로나이트(montmorillonite; MMT)를 동일한 농도와 비율로 GO 용액과 혼합하고 동일한 방식으로 코팅하여 GO/MMT 복합소재로 코팅된 PET 필름을 제조하였다. 한편, GO 분산액(0.5 wt%, RDS bar coater #10)으로 코팅한 후, LN 수용액(3 wt%, 200 μm 어플리케이터)으로의 어플리케이터로 코팅하여 다층으로 코팅된 PET 필름(DL-GO/LN)을 제조하였다.
사용한 용액의 조성 및 pH를 하기 표 1에 나타내었다.
표 1
혼합 비율 (v/v)* 용질의 중량비 (wt/wt) 용액의 pH
GO LN GO LN
GO 2.0 0 100 0 2.3
GO1.9/LN0.1 1.9 0.1 82.6 17.4 2.9
GO1.7/LN0.3 1.7 0.3 58.6 41.4 4.4
GO1.5/LN0.5 1.5 0.5 42.9 57.1 5.7
LN 0 2.0 0 100 9.8
* 용액 중의 용질 함량: 0.5 (wt/v)% GO 및 2 (wt/wt)% LN
<결과>
상기 실시예 3으로부터 제조된 GO, LN 및 GO/LN 복합소재로 코팅된 PET 필름은 투명하며 유연함을 확인하였다. 코팅 전과 후 PET 필름을 사진으로 찍어 도 1에 나타내었다. 도 1에 나타난 바와 같이, LN 만으로 코팅된 필름은 코팅 전과 유사하게 완전히 투명하였으며, GO 만으로 또는 GO/LN 복합소재로 코팅된 필름은 다소 회색빛을 띠기는 하였으나, 여전히 투명하였다. 한편, 상기 GO/LN 복합소재로 코팅된 필름은 고분자 결합제(polymeric binder) 등을 포함하지 않고 무기물 만으로 구성되었음에도 불구하고 유연하여 잘 휘어졌으며, 이에 따른 코팅층의 박리도 나타나지 않았다.
복합소재의 산소 차단능 향상에 대한 GO 및 클레이 함량의 영향을 확인하기 위하여, GO 및 LN를 각기 다른 비율로 혼합하여 준비한 복합소재로 코팅하였다. 각각 0.5 내지 5 μm 및 25 nm의 평균직경을 갖는 GO 플레이트(platelet)와 LN 디스크를 사용하였다. 또는 LN을 대신하여 200 nm의 평균직경을 갖는 MMT를 사용하였다.
본 발명의 GO/클레이 필름의 산소 차단능 및 이의 클레이 함량 의존도를 확인하기 위하여, 음성 대조군으로는 코팅 처리하지 않은 PET 필름을, 양성 대조군으로는 각각 GO 및 LN 단독으로 코팅한 PET 필름을, 실험군으로는 GO와 클레이 비율을 달리하여 제조한 복합소재로 코팅한 PET 필름을 사용하였다. 각각 75.0° 및 67.0°의 접촉각을 갖는 TR55와 SG05, 2종의 PET 필름을 사용하였고, 클레이로는 라포나이트(LN)와 몬모릴로나이트(MMT)를 사용하였다. 상기 다양한 비코팅/코팅 필름에 대한 산소투과율을 측정하여, 라포나이트에 대한 결과는 도 2에, 몬모릴로나이트에 대한 결과는 표 2에 각각 나타내었다.
표 2
시료 상대습도 (RH, %) OTRs (cc/m2·atm·day)
GO1.9/MMT0.1 0 0.8±0.8
GO1.8/MMT0.2 0 2.0±0.3
GO1.7/MMT0.3 0 2.1±0.2
GO1.6/MMT0.4 0 3.6±0.3
GO1.5/MMT0.5 0 3.9±0.8
도 2에 나타난 바와 같이, 순수한 GO 또는 LN으로 코팅된 TR55 필름은 각각 비코팅 필름보다 약간 낮거나 유사한 수준인 7.7 및 11.3 cc/m2·atm·day의 산소투과율(OTR)값을 나타내었다. 상기 결과에 기초하면, 판상형의 GO 및 LN 디스크는 자체로 불투과성 산소 차단체로 알려져 있음에도 불구하고, GO 자체의 원자결함(atomic defects), GO의 불완전한 적층구조 형성에 의한 핀홀의 발생, 또는 건조과정 동안 산소를 투과시키는 LN의 감지할 수 없을 정도의 미세한 균열로 인해 단일 성분으로 구성된 필름의 산소 차단능은 여전히 충분하지 못하였다. 기존의 연구는 GO 페이퍼와 같이 충분히 두꺼운 GO 층은 일그러진 채널(tortuous channel)을 통해 결함 또는 핀홀 발생을 상쇄하고 보다 산소 분자 투과에 대한 긴 경로를 형성함으로써 보다 낮은 OTR 값을 달성할 수 있음을 제안하였다. 그러나, 본 발명의 GO와 클레이를 포함하는 코팅막은 50 nm의 상대적으로 얇은 막에 의해서도 현저히 감소된 산소투과율을 달성할 수 있었다(도 3A).
이와 같은 OTR 값의 현저한 감소는 GO/LN 복합소재로부터 제조한 복합체막으로 코팅된 필름 및 GO와 LN 층을 차례로 적층하여 제조한 다층막으로 코팅한 필름에서 모두 관찰되었다. 산소 차단능에 대한 특히 우수한 효과는 GO와 LN 또는 GO와 MMT를 각각 1.9:0.1의 부피비 즉, 82.6:17.4의 중량비로 함유하는 복합소재로 코팅한 필름에서 나타남을 확인하였다(도 2 및 표 2). 이때, 코팅막의 두께는 단지 59 nm에 불과하였다(도 3B). 이는 비록 코팅막의 두께가 얇더라도 적절한 비율로 그라핀 옥사이드와 클레이를 혼합한 복합소재로 형성한 박막은 효과적으로 산소기체의 출입을 차단할 수 있음을 나타내는 것이다. 다만, 상기 GO1.9/LN0.1 박막(~59 nm)이 GO만으로 코팅된 필름(~44 nm)에 비해 증가된 두께를 갖는다는 점에서 다소 향상된 차단능을 나타낼 것으로 예상할 수 있으나, 도 2 및 도 3C로부터 확인된 바와 같이, 구성성분의 조성비에 따라 보다 두꺼운 층을 형성하고도 더 낮은 차단능을 나타내는 경우도 존재함을 확인하였으므로, 상기 GO만으로 코팅된 필름에 비해 향상된 GO1.9/LN0.1 박막의 산소 차단능은 두께 증가로 인한 것보다 복합소재 및 조성의 차이에 주로 기인함을 입증할 수 있었다.
Konkena 등은 GO의 작용기들의 상태가 다양한 pH 조건에서 변화하며, GO의 작용기 중 카르복시기는 4.3과 6.6, 에폭시 및 히드록시기는 9.8의 pKa 값을 나타냄을 보고하였다. 또한, LN 수용액은 LN 표면에 나트륨 이온에 의해 삽입된 전자이중층의 형성으로 인해 염기성 조건인 높은 pH 영역에서 안정한 콜로이드 상태를 갖는다. 반면, 나트륨 이온은 H+ 이온의 첨가에 의해 치환되며, 이는 전자이중층의 축소를 유발하고, 디스크의 가장자리의 양전하가 이웃한 디스크의 음으로 하전된 표면과 상호작용하도록 한다. 따라서, 카르복시기, 에폭시기 및 히드록시기와 같은 GO의 작용기는 LN의 표면 또는 가장자리와 분자 간 또는 분자 내 상호작용할 수 있으며, 이는 다양한 pH 조건 하에서 전하 상태에 의해 결정될 수 있다. 특히, LN의 Si-OH 작용기와 GO 플레이트의 카르복시기 및 히드록시기 간의 상호작용 역시 GO 층의 결함에 대한 LN 부착에 대한 원동력이 될 수 있다.
GO와 LN의 상호작용을 연구하기 위하여, 코팅막에 대한 FT-IR 및 라만 스펙트럼을 분석하였다. 순수한 GO 및 LN, 그리고 GO/LN 복합막으로부터 획득한 FT-IR 및 라만 스펙트럼을 각각 도 4 및 도 5에 나타내었다. FT-IR 측정을 위하여 원하는 pH, 예턴대 GO 용액은 pH 2.3, LN 용액은 pH 9.8에 이르도록 농축 염산 용액 또는 수산화나트륨 용액을 이용하여 조절하였다. pH 2.3의 순수한 GO로 코팅된 층에 대해 1722 cm-1에서 카르복시산(-COOH)의 카르보닐기(-C=O)의 신축모드(stretching mode)에 상응하는 강한 밴드가 나타났다. 카르복실레이트 음이온(-COO-)의 비대칭 신축(asymmetric stretch)은 1617 cm-1에서 진동밴드를 나타내었다. 그리고, 1421, 1052 및 968 cm-1의 피크는 각각 카르복시기의 C-O, 알콕시 또는 알콕사이드기의 C-O 및 에폭사이드기를 나타내었다. pH가 증가함에 따라 카르복시산에 기인하는 1722 cm-1에서 나타난 밴드는 감소하였고, pH 12에서는 완전히 사라졌다. pH 4.2 및 5.5에서 나타난 카르복시기 상의 C-O 피크는 카르복시기의 탈수소화로 인해 pH 1.7 및 2.2의 산성 조건에서는 1421 cm-1로부터 1373~1385 cm-1로 이동하였다. pH 5.5에서는 수소결합의 약화와 함께 1052 cm-1에서 알콕시 또는 알콕사이드기로 인한 C-O 피크의 이동 역시 수반되었다. GO/LN 복합소재에 대해, GO1.9/LN0.1(pH 2.9) 및 GO1.5/LN0.5(pH 5.7)는 유사한 피크 패턴을 나타내었다. GO 상의 카르복시산 작용기에 상응하는 피크는 LN과의 상호작용에 의해 유도되는 상호작용의 변화르 인해 1722 cm-1로부터 1716~1712 cm-1로 이동하였다. 또한, 알콕시 피크는 1083 cm-1로 이동하였으며, 새로운 피크가 1245 cm-1에서 나타났으며, 이는 에폭시/에테르기의 C-O 진동에 기인한다. 한편, 1016 cm-1에서 나타난 피크는 무정형 실리카의 Si-O 진동에 기인한다. 순수한 GO 및 LN 코팅막과 비교하여, 복합소재의 FT-IR 피크 패턴에서 피크 위치의 변화는 GO의 카르복시기, 알콕시기 및 에폭시기가 LN과 상호작용함을 나타내는 것이다.
도 5에 나타난 바와 같이, GO1.9/LN0.1 복합소재로부터 얻어진 라만 스펙트럼에서는 2D 피크의 뚜렷한 감소가 관찰되었다. 한편, GO는 뚜렷한 2D 피크를 나타내었으며, GO의 1583 cm-1에서의 G-밴드로부터 GO/LN의 1591 cm-1로의 피크 이동 및 GO의 1349 cm-1 에서의 D-밴드로부터 GO/LN의 1355 cm-1로의 피크 이동 또한 확인되었다. 기존에 보고된 바와 같이, 2D 피크의 감소가 약 2700 cm-1에서 나타났으며, 라만 스펙트럼에서 G- 및 D-밴드의 피크 이동이 하전된 불순물의 도핑 및 흡착에 의해 유발되었다. 이는 LN 디스크가 GO 표면에 흡착되었음을 나타내는 것이며, 특히, 결함 및 가장자리의 LN으로 보호된 자리가 기체 분자의 전달을 차단하여 확산경로를 효과적으로 연장시켰음을 나타내는 것이다. 한편, OTR 값은 GO의 환원 상태에 의해 영향을 받는 것으로 알려졌다. 그러나, 도 5에 나타난 바와 같이, GO/LN에 대해 계산된 ID/IG 값은 순수한 GO에 대한 값과 비슷한 0.89를 나타내었으며, 이로부터 LN의 첨가로 인한 GO 환원 상태의 변화는 유발되지 않음을 확인하였다.
GO 플레이트 및 LN 디스크로 코팅된 필름의 X-선 회절(XRD) 패턴을 측정하여 도 6에 나타내었다. 순수한 GO 및 LN으로 코팅된 필름에 상응하는 XRD 피크는 각각 2θ=10.4° 및 7.4°에서 나타났으며, 이는 0.85 및 1.19 nm의 d-스페이싱(d-spacing)에 상응한다. 이는 전형적인 GO 표본에서 나타나는 약 0.83 nm의 층간 거리(d-스페이싱)에 가깝다. 한편, 복합소재 GO1.9/LN0.1은 오직 하나의 피크를 나타내는 반면, 클레이의 함량이 증가된 GO1.5/LN0.5은 2θ=8.3°(small shoulder) 및 11.3°에서 2개의 피크 패턴을 나타내었다.
2θ=10 내지 11° 근처에서의 GO의 특징적인 피크 패턴은 복합소재 용액 내에서 GO 플레이트의 표면에 부착된 LN 디스크가 GO 플레이트 간의 상대적으로 더 강한 면-대-면(face-to-face) 상호작용으로 인해 건조 과정 동안 GO 로부터 탈착되었음을 나타내는 것이다. 만약, LN 디스크가 탈착없이 GO 플레이트 사이사이에 부착되어 적층된다면 GO 플레이트의 d-스페이싱이 증가하여야한다. 그럼에도 불구하고 오히려 d-스페이싱이 GO 자체보다 감소하는 경우 LN의 탈착을 예상할 수 있다. 도 7에 나타난 AFM 이미지로부터 LN 디스크가 최외각 표면을 덮고 있는 것으로 확인된 바, 이는 건조과정 중 GO 플레이트로부터의 LN의 탈착되었으며, 탈착된 LN 디스크는 적층된 GO 플레이트의 최외각으로 이동하여 붙어 있음을 나타내는 것이다. 또한, 복합소재에서 LN의 함량이 증가할수록 용액의 pH가 증가하므로 GO 플레이트 사이의 더 강한 상호작용으로 인해 d-스페이싱이 감소하고, 이에 따라 LN 함량이 가장 높은 GO1.5/LN0.5에서 가장 큰 2θ 값(가장 작은 d-스페이싱)을 나타내었다. 그러나, 가장 작은 d-스페이싱을 나타내는 GO1.5/LN0.5에서 산소투과율이 높아지는 것은 θ=8.3°에서 나타나는 LN 디스크 자체의 응집에 의한 재적층(restacking)에 기인하는 것으로, 이는 적층된 GO의 최외곽 표면을 덮고도 남는 재적층된 과량의 LN 이 GO 플레이트 적층면 사이사이에 삽입되어 그사이로 기체가 투과되는 경로를 형성하기 때문이다. 한편 순수한 LN 표본 2θ=7.4°피크에 대한 결과와 비교하여 GO1.5/LN0.5의 2θ=8.3°에서의 피크의 이동은 복합소재 용액에서 산성 조건으로의 pH 변화에 의해 야기되는 나트륨 이온(Na+)의 양성자(H+)로의 치환에 기인할 수 있다.
이러한 현상을 확인하기 위하여 SEM으로 다양한 조성을 갖는 복합소재 필름 표면을 연구하였다. 도 8에 나타난 바와 같이, 순수한 GO에 비해 GO/LN 복합층에서 점차적으로 사라지는 GO 주름은 GO 시트 간의 가장자리-대-가장자리(edge-to-edge)의 상호작용이 약해져 GO 시트 간의 가장자리-대-가장자리 거리가 멀어지는데서 기인하는 것이며, 이는 상대적으로 pH가 높은 LN 용액이 GO 용액에 다량 첨가되면서 복합체 코팅용액의 pH가 높아지므로 GO 가장자리에 있는 카르복시기의 탈양성자화로 인한 척력(repulsion force)의 증가때문이다.
도 9에는 GO와 클레이를 포함하는 막의 산소 차단능에 대한 메커니즘을 도시하였다. 순수한 GO 표본은 카르복시기에 기초한 가장자리-대-가장자리 상호작용 및 알콕시 및 에폭시기에 기초한 면-대-면 상호작용을 나타내는 층상구조(layered structure)를 갖는다(도 9A). 클레이의 첨가는 혼합 용액의 pH가 증가함에 따른 카르복시기의 탈양성자화에 의해 유발되는 가장자리-대-가장자리 상호작용을 감소시켰으며, 필름 제조시 건조되면서 용액에서 GO의 표면에 부착된 판상형 디스크들이 층을 이룬 GO의 최외각 표면으로 이동하여 이와 같은 상호작용을 유도하였다. 최외각 표면 상의 클레이 디스크들은 GO의 누출 또는 결함을 채워줌으로써 산소분자의 투과를 차단할 수 있다. 이는 GO와 클레이의 다층막(DL-GO/LN) 필름의 OTR 값으로부터 확인되었다. 다층막의 경우 클레이 층의 클레이 입자와 GO는 GO 층의 내부가 아닌 최외각 표면에서만 상호작용할 수 있고 캡핑할 수 있다(도 9). 다층형 GO/클레이 필름의 OTR은 0.31~0.37 cc/m2·atm·day의 가장 낮은 수준으로, 빈 공간을 커버하기 위해 코팅하는 충분한 양의 클레이로 인해 층을 이룬 GO의 최외각 표면 상에서만의 클레이의 보다 효과적인 적층이 이루어질 수 있음을 나타내는 것이다. 과량의 클레이의 첨가는 GO 플레이트의 가장자리-대-가장자리 상호작용을 방해하며, 클레이 자체가 층을 이룬 GO 플레이트 사이에 삽입될 수 있다.
종합적으로, 유기 첨가물 없이 탄소-기반 GO 및 무기 클레이를 이용한 용액주조(solution casting)에 의해 투명하고 유연한 필름을 용이하게 제조할 수 있음을 확인하였다. 순수한 GO로 코팅한 필름의 OTR 값과 비교하여, 소량의 클레이를 추가로 포함하는 복합체 막 또는 다층 구조의 필름이 약 50 nm 두께의 박막에서도 OTR을 현저히 감소시키는 효과를 나타내었다. 이와 같은 향상된 산소 차단능은 코팅층의 최외각 표면 상에서 GO와 클레이의 상호작용에 의해 형성되는 조밀한 장벽층의 형성에 의한 것임을 확인하였다.

Claims (20)

  1. 그라핀 옥사이드(graphene oxide; GO) 및 클레이(clay)를 포함하는 막.
  2. 제1항에 있어서,
    상기 그라핀 옥사이드는 평균 직경 100 nm 내지 10 μm의 판상형인 것인 막.
  3. 제1항에 있어서,
    상기 클레이는 전하를 띠어 물에 분산될 수 있는 것인 막.
  4. 제1항에 있어서,
    상기 클레이는 판상형인 것인 막.
  5. 제1항에 있어서,
    상기 클레이는 라포나이트(laponite; LN), 몬모릴로나이트(montmorillonite; MMT), 헥토라이트(hectorite), 사포나이트(saponite), 베이델라이트(beidellite), 논트로나이트(nontronite)로 구성된 군으로부터 선택되는 양이온 클레이 또는 층상이중수산화물(layered double hydroxide; LDH)의 음이온 클레이 및 이들의 혼합물로 구성된 군으로부터 선택되는 것인 막.
  6. 제1항에 있어서,
    10 nm 내지 500 nm 두께를 갖는 것인 막.
  7. 제1항에 있어서,
    그라핀 옥사이드 및 클레이로 구성된 것인 막.
  8. 제1항에 있어서,
    그라핀 옥사이드와 클레이를 포함하는 복합소재로 형성된 복합체 막 또는 그라핀 옥사이드 층과 클레이 층이 반복되는 다층 구조인 것인 막.
  9. 제8항에 있어서,
    상기 복합소재의 조성은 그라핀 옥사이드:클레이=99:1 내지 45:55 중량비(wt/wt)인 것인 막.
  10. 제8항에 있어서,
    상하로 인접한 그라핀 옥사이드 단일층들이 서로 엇갈린 층상구조를 이루며, 클레이는 최외각층의 이웃한 그라핀 옥사이드 단일층들의 사이를 채우는 형태인 것인 막.
  11. 제1항에 있어서,
    동일한 두께의 그라핀 옥사이드 막 또는 클레이 막에 비해 향상된 산소 차단능을 갖는 것인 막.
  12. 산소 차단막으로서 제1항 내지 제11항 중 어느 한 항에 기재된 막을 구비한 전자소자.
  13. 제12항에 있어서,
    상기 전자소자는 배터리, 유기 발광 소자, 디스플레이 소자, 광기전성 소자, 집적 회로, 압력센서, 화학센서, 바이오센서, 태양광 소자 또는 조명용 소자인 것인 전자소자.
  14. 산소 차단막으로서 제1항 내지 제11항 중 어느 한 항에 기재된 막으로 코팅된 포장재.
  15. 그라핀 옥사이드 분산액을 준비하는 제1단계;
    클레이 분산액을 준비하는 제2단계;
    상기 2가지 분산액을 소정의 비율로 혼합하여 균질화하는 제3단계; 및
    상기 균질화한 혼합 용액으로부터 막을 형성하는 제4단계를 포함하는,
    그라핀 옥사이드 및 클레이를 포함하는 복합체막의 제조방법.
  16. 제15항에 있어서,
    상기 분산액의 용매는 물인 것인 제조방법.
  17. 제15항에 있어서,
    제4단계는 기재 상에서 바코팅, 그라비아 코팅, 슬릿코터, 콤마코터, 스핀코터, 스프레이코터, 딥코팅 또는 롤투롤에 의해 수행되는 것인 제조방법.
  18. 제17항에 있어서,
    상기 기재는 폴리에틸렌테레프탈레이트(polyethylene terephthalate; PET) 필름, 폴리에틸렌(polyethylene; PE) 필름 또는 폴리프로필렌(polypropylene; PP) 필름인 것인 제조방법.
  19. 그라핀 옥사이드 분산액을 준비하는 제1단계;
    클레이 분산액을 준비하는 제2단계;
    상기 그라핀 옥사이드 분산액 또는 클레이 분산액 중 하나로부터 제1박막을 형성하는 제3단계; 및
    상기 박막 상에 제3단계에서 사용한 것과 다른 하나의 분산액으로 제2박막을 형성하는 박막을 형성하는 제4단계를 포함하는,
    그라핀 옥사이드 및 클레이를 포함하는 다층막의 제조방법.
  20. 제19항에 있어서,
    제3단계 및 제4단계는 각각 독립적으로 바코팅, 어플리케이터 코팅(applicator-coating), 그라비아 코팅, 슬릿코터, 콤마코터, 스핀코터, 스프레이코터, 딥코팅 또는 롤투롤에 의해 수행되는 것인 제조방법.
PCT/KR2014/009779 2014-07-31 2014-10-17 그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도 WO2016017857A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,556 US10547032B2 (en) 2014-07-31 2014-10-17 Film comprising graphene oxide and clay, preparation method therefor, and use thereof as oxygen barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140098241A KR101662231B1 (ko) 2014-07-18 2014-07-31 그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도
KR10-2014-0098241 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017857A1 true WO2016017857A1 (ko) 2016-02-04

Family

ID=55217738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009779 WO2016017857A1 (ko) 2014-07-31 2014-10-17 그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도

Country Status (2)

Country Link
US (1) US10547032B2 (ko)
WO (1) WO2016017857A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412101A (zh) * 2018-04-27 2019-11-05 天津大学 表面银颗粒修饰的层状双金属氢氧化物气敏元件及其制备方法和应用
CN115975520A (zh) * 2022-12-14 2023-04-18 华侨大学 一种用于偏光片的tac复合膜及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2596033B (en) * 2019-11-15 2022-10-19 Toraphene Ltd Biodegradable container
CN110818939A (zh) * 2019-11-19 2020-02-21 电子科技大学 一种水氧阻隔柔性薄膜、制备方法及应用
CN113424355B (zh) * 2020-09-25 2024-03-19 宁德新能源科技有限公司 包装膜及具有所述包装膜的电芯
CN114171764B (zh) * 2021-11-25 2024-02-23 湖北工业大学 一种质子交换膜及其制备方法
CN114291822A (zh) * 2021-12-14 2022-04-08 福建工程学院 一种二维层状响应膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090093946A (ko) * 2006-10-06 2009-09-02 더 트러스티즈 오브 프린스턴 유니버시티 가스 차단층 적용을 위한 작용성 그라핀-고무 나노복합물
JP2013052680A (ja) * 2006-04-05 2013-03-21 National Institute Of Advanced Industrial Science & Technology 黒鉛粘土複合材、並びにこの複合材からなるガスケット又はパッキン
KR20130125668A (ko) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 금속의 산화 방지용 환원 그래핀 박막 제조방법
JP2014001098A (ja) * 2012-06-18 2014-01-09 Mitsubishi Chemicals Corp グラフェン分散液、グラフェン分散液を用いて形成される膜及び該膜を備える部材
KR20140043747A (ko) * 2011-07-28 2014-04-10 도판 인사츠 가부시키가이샤 적층체, 가스 배리어 필름, 및 이들의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190627597A (en) * 1906-12-04 1907-09-26 Lionel Henry Teale Improvements in or relating to Domestic Fireplaces.
GB2522626A (en) * 2014-01-29 2015-08-05 Nokia Technologies Oy Apparatus and method for providing barrier coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052680A (ja) * 2006-04-05 2013-03-21 National Institute Of Advanced Industrial Science & Technology 黒鉛粘土複合材、並びにこの複合材からなるガスケット又はパッキン
KR20090093946A (ko) * 2006-10-06 2009-09-02 더 트러스티즈 오브 프린스턴 유니버시티 가스 차단층 적용을 위한 작용성 그라핀-고무 나노복합물
KR20140043747A (ko) * 2011-07-28 2014-04-10 도판 인사츠 가부시키가이샤 적층체, 가스 배리어 필름, 및 이들의 제조 방법
KR20130125668A (ko) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 금속의 산화 방지용 환원 그래핀 박막 제조방법
JP2014001098A (ja) * 2012-06-18 2014-01-09 Mitsubishi Chemicals Corp グラフェン分散液、グラフェン分散液を用いて形成される膜及び該膜を備える部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412101A (zh) * 2018-04-27 2019-11-05 天津大学 表面银颗粒修饰的层状双金属氢氧化物气敏元件及其制备方法和应用
CN110412101B (zh) * 2018-04-27 2022-02-22 天津大学 层状双金属氢氧化物气敏元件在检测乙醇中的应用
CN115975520A (zh) * 2022-12-14 2023-04-18 华侨大学 一种用于偏光片的tac复合膜及其制备方法

Also Published As

Publication number Publication date
US10547032B2 (en) 2020-01-28
US20180212209A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2016017857A1 (ko) 그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도
Chen et al. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films
Ding et al. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination
Kang et al. Selective molecular separation on Ti3C2T x–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes
Yoo et al. Graphene and graphene oxide and their uses in barrier polymers
Zhu et al. A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination
Lee et al. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides
An et al. Separation performance of graphene oxide membrane in aqueous solution
Tong et al. Graphene based materials and their composites as coatings
Yin et al. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification
Song et al. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films
JP6665531B2 (ja) 放熱材、ガスバリア材およびそれらの製造方法
Kim et al. Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes
Zhang et al. Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly
Layek et al. Layer-structured graphene oxide/polyvinyl alcohol nanocomposites: dramatic enhancement of hydrogen gas barrier properties
US9574266B2 (en) Laminate body, gas barrier film, and method of manufacturing the same
US20120277360A1 (en) Graphene Compositions
Liu et al. Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas barrier application
Lin et al. Synthesis and applications of large-area single-layer graphene
Yoo et al. Graphene oxide and laponite composite films with high oxygen-barrier properties
Zhan et al. Poly (vinyl alcohol)/reduced graphene oxide multilayered coatings: The effect of filler content on gas barrier and surface resistivity properties
KR101662231B1 (ko) 그라핀 옥사이드 및 클레이를 포함하는 막, 이의 제조방법 및 이의 산소 차단막으로서의 용도
US20120301730A1 (en) Barrier film for an electronic device, methods of manufacturing the same, and articles including the same
KR101878572B1 (ko) 접착제를 사용하지 않는 다층구조의 수분 및 기체 고차단성 유연필름 및 그 제조방법
Zhu et al. Oriented printable layered double hydroxide thin films via facile filtration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15329556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898805

Country of ref document: EP

Kind code of ref document: A1