WO2016017749A1 - Epoxy resin composition, resin sheet, prepreg and metal-clad laminated sheet, printed circuit board, and semiconductor device - Google Patents

Epoxy resin composition, resin sheet, prepreg and metal-clad laminated sheet, printed circuit board, and semiconductor device Download PDF

Info

Publication number
WO2016017749A1
WO2016017749A1 PCT/JP2015/071630 JP2015071630W WO2016017749A1 WO 2016017749 A1 WO2016017749 A1 WO 2016017749A1 JP 2015071630 W JP2015071630 W JP 2015071630W WO 2016017749 A1 WO2016017749 A1 WO 2016017749A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
prepreg
glass
printed wiring
Prior art date
Application number
PCT/JP2015/071630
Other languages
French (fr)
Japanese (ja)
Inventor
政隆 中西
篤彦 長谷川
清二 江原
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201580037793.7A priority Critical patent/CN106661195B/en
Priority to KR1020167032750A priority patent/KR102387048B1/en
Publication of WO2016017749A1 publication Critical patent/WO2016017749A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to an epoxy resin composition, a resin sheet obtained by applying it to the surface of a support, a prepreg impregnated in a fiber base, a metal-clad laminate, a printed wiring board, and a semiconductor device.
  • Non-patent Document 3 the thickness of the semiconductor element and the sealing material, which conventionally has been responsible for most of the rigidity of the semiconductor device, becomes extremely thin, and the semiconductor device is likely to warp in the mounting process.
  • the proportion of the resin substrate as a constituent member increases, the physical properties / behavior of the resin substrate have a great influence on the warpage of the semiconductor device (Non-patent Document 3).
  • the maximum temperature in the reflow process that occurs when mounting semiconductor elements on printed circuit boards or mounting semiconductor packages on motherboards becomes very high. It is coming. Since the melting point of commonly used lead-free solder is about 210 degrees, the maximum temperature during the reflow process is over 260 degrees. In general, the difference in thermal expansion between a semiconductor element and a printed wiring board on which the semiconductor element is mounted is very large. For this reason, the resin substrate may be greatly warped in the reflow process performed when the semiconductor element is mounted on the printed wiring board. Similarly, in the reflow process that is performed when the semiconductor package is mounted on the mother board, the resin substrate may be greatly warped.
  • Patent Document 1 discloses a phenol novolac resin having a biphenyl skeleton and a phenol novolac type epoxy resin obtained by epoxidizing the phenol novolak resin, and describes its usefulness for use as a semiconductor encapsulant.
  • a phenol novolac resin having a biphenyl skeleton and a phenol novolac type epoxy resin obtained by epoxidizing the phenol novolak resin and describes its usefulness for use as a semiconductor encapsulant.
  • there is no description about the characteristics of the composition containing these epoxy resins and cyanate ester compounds there is no description about the usefulness of the printed wiring board.
  • an epoxy resin composition capable of obtaining a resin substrate in which warpage generated in the heating step in the substrate manufacturing process and / or the mounting process is suppressed, a resin sheet, a prepreg, and a metal-clad obtained using the same. It is an object to provide a laminated board, a printed wiring board, and a semiconductor device.
  • the present invention provides (1) An epoxy resin composition
  • the epoxy resin composition of the present invention has excellent heat resistance and high flexural modulus in a high temperature region in the cured product, so it is extremely useful for producing laminated boards such as printed wiring boards and build-up boards.
  • Material. ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin composition which can obtain the resin substrate by which the curvature which generate
  • the epoxy resin composition of the present invention will be described.
  • the epoxy resin composition of the present invention contains an epoxy resin represented by the following general formula (1) as an essential component.
  • the epoxy resin represented by the formula (1) is disclosed in Japanese Unexamined Patent Publication No. 2011-252037, Japanese Unexamined Patent Publication No. 2008-156553, Japanese Unexamined Patent Publication No. 2013-043958, International Publication WO2012 / 053522, WO2007 / 007827.
  • any method may be used as long as it has the structure of the formula (1).
  • the structure (a) is large, the heat resistance is improved, but the water absorption characteristics are deteriorated, and the structure becomes brittle and hard. Therefore, the polyfunctionalization rate within the above range is used.
  • the softening point (ring and ball method) of the epoxy resin used is preferably 50 to 150 ° C., more preferably 52 to 100 ° C., and particularly preferably 52 to 95 ° C. Below 50 ° C., stickiness is severe, handling is difficult, and problems may arise in productivity. Moreover, in the case of 150 degreeC or more, it is a temperature close
  • the epoxy equivalent of the epoxy resin used is 180 to 350 g / eq. It is preferable that In particular, 190 to 300 g / eq. It is preferable that Epoxy equivalent is 180 g / eq. When the ratio is less than 1, since the functional group is too many, the cured product after curing tends to have a high water absorption rate and become brittle. Epoxy equivalent is 350 g / eq. If it exceeds 1, the softening point becomes very large or the epoxidation has not progressed neatly, which is not preferable because the amount of chlorine caused by epichlorohydrin used as a raw material may become very large. .
  • the chlorine content of the epoxy resin used in the present invention is preferably 200 to 1500 ppm, particularly preferably 200 to 900 ppm in terms of total chlorine (hydrolysis method). From the JPCA standard, it is desired that epoxy alone does not exceed 900 ppm. Furthermore, a large amount of chlorine is not preferable because it may affect the electrical reliability. When it is less than 200 ppm, an excessive purification step is required, which may cause problems in productivity, which is not preferable.
  • the melt viscosity at 150 ° C. of the epoxy resin used in the present invention is preferably 0.05 to 5 Pa ⁇ s, particularly preferably 0.05 to 2.0 Pa ⁇ s.
  • the melt viscosity is higher than 5 Pa ⁇ s, there is a problem in fluidity, and there may be a problem in flow property and embedding property during pressing.
  • it is less than 0.05 Pa ⁇ s, the molecular weight is too small, and the heat resistance may be insufficient.
  • n is a repeating unit and is 0-5. When n does not exceed 5, the flowability and fluidity of the prepreg or resin sheet are controlled.
  • solubility of the epoxy resin in a solvent is important.
  • these resins also need to be soluble in solvents such as methyl ethyl ketone, toluene, propylene glycol monomethyl ether and the like.
  • solubility in methyl ethyl ketone is particularly important, and it is required that crystals do not precipitate for 2 months or more at 5 ° C., room temperature or the like.
  • the epoxy resin composition of the present invention contains a cyanate ester compound having two or more cyanato groups in the molecule as an essential component.
  • cyanate ester compound conventionally known cyanate ester compounds can be used. Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. And cyanate ester compounds obtained by reacting phenols and aromatic dimethanols, phenols and aromatic dichloromethyls, phenols and aromatic bisalkoxymethyls with cyanogen halides, etc. It is not limited. These may be used alone or in combination of two or more.
  • phenols examples include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
  • aldehydes examples include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, and the like.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
  • ketones examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, and the like.
  • bisphenols examples include bisphenol A, bisphenol F, bisphenol S, biphenol, and bisphenol AD.
  • aromatic dimethanols such as benzenedimethanol and biphenyldimethanol, aromatic dichloromethyls as ⁇ , ⁇ '-dichloroxylene, bischloromethylbiphenyl, etc., and aromatic bisalkoxymethyls as bismethoxymethyl
  • aromatic dimethanols such as benzenedimethanol and biphenyldimethanol
  • aromatic dichloromethyls as ⁇ , ⁇ '-dichloroxylene
  • bischloromethylbiphenyl etc.
  • aromatic bisalkoxymethyls as bismethoxymethyl
  • Examples include benzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, and the like.
  • cyanate ester compound used in the epoxy resin composition of the present invention include compounds represented by the following general formulas (2) to (4), but are not limited thereto.
  • R 1 represents a structure represented by the following formula (2 ′)
  • R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different.
  • R's are present independently and each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • N is an average value and 1 ⁇ n ⁇ 20.
  • Particularly preferred in the present invention is an epoxy resin composition using a compound in which R 1 in the formula (2) is a methylene group, an isopropylidene group or a tricyclodecane structure, or a compound having the structure of the formula (4).
  • R 1 in the formula (2) is a methylene group, an isopropylidene group or a tricyclodecane structure, or a compound having the structure of the formula (4).
  • the blending amount of the cyanate ester compound is not particularly limited. However, in the case of blending mainly cyanate ester and epoxy, 0.1 to 1.4 equivalent, more preferably, with respect to the functional group equivalent (cyanate ester equivalent) of the cyanate ester compound. Is preferably 0.2 to 1.4, more preferably 0.5 to 1.4 equivalents of an epoxy resin.
  • This blending amount is also affected by the catalyst to be used and the material to be blended. For example, specifically, in the case of a nitrogen-containing catalyst such as imidazole, anionic polymerization of epoxies occurs simultaneously, so 0.8 to 1.4 Equivalent weight is particularly preferred.
  • an epoxy resin curing agent When an epoxy resin curing agent is blended, it is preferable to blend 0.5 to 1.4 equivalents of epoxy resin with respect to the total functional group equivalents of the curing agent and cyanate ester. Furthermore, when blending resins such as maleimide resins that can be cured simultaneously and crosslinked with epoxy resins or cyanate esters, it is necessary to subtract the amount corresponding to their functional group equivalents, but react with epoxy. Those having a functional group capable of being used are particularly preferably 0.5 to 1.4 equivalents.
  • epoxy resin composition of the present invention other epoxy resins can be used in combination.
  • other epoxy resins that can be used in combination with the epoxy resin used in the present invention include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols (phenol, alkyl-substituted phenol, aromatic Group-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde) , Crotonaldehyde, cinnam
  • epoxy resin curing agent When blending the epoxy resin composition of the present invention, a conventionally known epoxy resin curing agent can be used in combination.
  • epoxy resin curing agents that can be used in combination include amine compounds, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride Acid anhydride compounds such as hexahydrophthalic anhydride and methylhexahydrophthalic anhydride, bisphenols, phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene , Dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde,
  • the amount of the curing agent used in the epoxy resin composition of the present invention is preferably 1 equivalent or less with respect to 1 equivalent of the epoxy group of the epoxy resin. When the epoxy group exceeds 1 equivalent, when the reaction between epoxy and cyanate proceeds, the curing agent is left behind, and curing may be incomplete, and good cured properties may not be obtained. Particularly preferred is 0.1 to 0.98.
  • a preferable combination of an epoxy resin and a curing agent is an epoxy resin having a softening point of 45 to 140 ° C. (more preferably 50 to 100 ° C.) and a curing agent having a softening point of 50 to 140 ° C. (preferably 55 to 120 ° C.). It is. A resin composition having balanced properties in terms of fluidity, flame retardancy, and heat resistance is obtained.
  • a maleimide resin may be added.
  • a maleimide resin is not particularly limited as long as it is a commercially available maleimide resin, a bismaleimide phenylmethane or phenol novolac type maleimide resin in which an alkyl group having 1 to 3 carbon atoms is substituted with 1 to 4 hydrogen atoms on the aromatic ring or unsubstituted is used.
  • the maleimide resin is not a reaction in an equivalent amount with the cyanate resin, but is polymerized in a form incorporated individually or randomly, so that the blending ratio is not particularly limited, but in order to further bring out the characteristics of the epoxy resin composition of the present invention. Is preferably 10 to 45% by weight, particularly preferably 10 to 40% by weight, based on the total amount of epoxy resin, cyanate ester and maleimide resin.
  • the epoxy resin composition of the present invention may contain a curing accelerator.
  • curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate.
  • the curing accelerator is used as necessary in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
  • additives such as flame retardants and fillers can be blended as necessary within a range that does not deteriorate the attractive properties and heat resistance of the cured product.
  • the flame retardant blended as necessary is not particularly limited, a flame retardant having no reactivity with a cyanate group is preferable.
  • the flame retardant when the flame retardant is added to the printed wiring board resin composition, the flame retardant is a cyanate group of the cyanate ester compound even when mixed within a range of 300 ° C. or less. It is included in the printed wiring board resin composition as it is in the form of dispersion or dissolution without reacting with. This reaction does not include the reaction of the flame retardant when the resin composition is heated and burned.
  • the production and use of a resin composition for a printed wiring board, and varnishes, prepregs, metal-clad laminates, printed wiring boards, and the like using the resin composition are performed within a range of 300 ° C. or lower.
  • the filler to be blended as necessary is not particularly limited, but as inorganic filler, fused silica, crystalline silica, alumina, calcium carbonate, calcium silicate, barium sulfate, talc, clay, magnesium oxide, aluminum oxide, Examples include beryllium oxide, iron oxide, titanium oxide, aluminum nitride, silicon nitride, boron nitride, mica, glass, quartz, and mica. Further, it is also preferable to use a metal hydroxide such as magnesium hydroxide or aluminum hydroxide in order to impart a flame retardant effect. However, it is not limited to these. Two or more kinds may be mixed and used.
  • the amount of the inorganic filler used is usually in the range of 5% to 70% by weight, preferably 10% to 60% by weight, more preferably 15% to 60% by weight. It is. If the amount is too small, the flame retardancy effect may not be obtained, and the elastic modulus may be lowered. If the amount is too large, the filler settles when the varnish is dissolved in the solution to be sealed, and is homogeneous. May not be obtained.
  • the shape, particle size and the like of the inorganic filler are not particularly limited, but are usually those having a particle size of 0.01 to 50 ⁇ m, preferably 0.1 to 15 ⁇ m.
  • a coupling agent can be blended in order to enhance the adhesion between the glass cloth or the inorganic filler and the resin component.
  • Any conventionally known coupling agent can be used.
  • Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more.
  • the coupling agent may be added by treating the surface of the inorganic filler with the coupling agent in advance and then kneading with the resin, or mixing the coupling agent with the resin and then kneading the inorganic filler. .
  • varnish-like composition An organic solvent can be added to the epoxy resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish).
  • the solvent used include amide solvents such as ⁇ -butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone.
  • ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone
  • Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned.
  • the solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by weight, preferably 20 to 70% by weight.
  • additives can be blended in the epoxy resin composition of the present invention as necessary.
  • additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds, silicone gel, and silicone oil.
  • colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
  • the resin sheet of the present invention will be described.
  • the sheet using the epoxy resin composition of the present invention has a thickness after drying the varnish on a planar support by various coating methods such as gravure coating, screen printing, metal masking, and spin coating methods known per se. Is applied after application to a predetermined thickness, for example, 5 to 100 ⁇ m, and dried. Which type of coating method is used depends on the type, shape, size, thickness of coating, support It is appropriately selected depending on the heat resistance and the like.
  • planar support examples include various types such as polyamide, polyamideimide, polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyetherketone, polyetherimide, polyetheretherketone, polyketone, polyethylene, polypropylene, and Teflon (registered trademark).
  • examples thereof include films made from molecules and / or copolymers thereof, and metal foils such as copper foils. After application, it can be dried to obtain a sheet-like composition (resin sheet of the present invention), but it can also be made into a sheet-like cured product by further heating the sheet. Moreover, you may serve as a solvent drying and hardening process by one heating.
  • the epoxy resin composition of the present invention can form a cured product layer on both sides or one side of the support by coating and heating on both sides or one side of the support by the above method. It is also possible to produce a laminate by bonding and adhering the adherend before curing. Moreover, the resin sheet of this invention can also be used as an adhesive sheet by peeling off from a support body, and it can also be made to contact with a to-be-adhered body and to apply pressure and heat as needed, and to make it adhere
  • the prepreg of the present invention will be described.
  • the prepreg of the present invention is obtained by impregnating a fiber base material with the above resin composition.
  • the fiber base material include glass fiber base materials such as glass woven fabric, glass non-woven fabric, and glass paper, paper, aramid, polyester, aromatic polyester, and synthetic fibers such as fluororesin, etc.
  • glass fiber base materials such as glass woven fabric, glass non-woven fabric, and glass paper, paper, aramid, polyester, aromatic polyester, and synthetic fibers such as fluororesin, etc.
  • Examples thereof include woven fabrics, nonwoven fabrics, mats and the like made of fibers, carbon fibers, mineral fibers and the like. These substrates may be used alone or in combination.
  • a glass fiber base material is preferable. Thereby, the rigidity and dimensional stability of a prepreg can be improved.
  • As a glass fiber base material what contains at least 1 type chosen from the group which consists of T glass, S glass, E glass, NE glass, and quartz
  • Examples of the method of impregnating the fiber base material with the resin composition include a method of immersing the base material in a resin varnish, a method of applying with various coaters, and a method of spraying with a spray.
  • the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to a base material can be improved.
  • a normal impregnation coating equipment can be used.
  • the epoxy resin composition of the present invention is used as it is or in the form of a varnish dissolved or dispersed in a solvent, after impregnating a substrate such as a glass cloth, usually in a drying furnace or the like, usually at 80 to 200 ° C.
  • the prepreg can be obtained by drying at a temperature of 2 to 30 minutes, preferably 2 to 15 minutes, at a temperature higher than the temperature at which the solvent can be volatilized.
  • the metal-clad laminate of the present invention will be described.
  • the laminate used in the present invention is formed by heating and pressing the above prepreg. Thereby, the metal-clad laminated board excellent in heat resistance, low expansibility, and a flame retardance can be obtained.
  • the metal foil is overlapped on both the upper and lower surfaces or one surface.
  • Two or more prepregs can be laminated.
  • a metal foil or film is laminated on the outermost upper and lower surfaces or one surface of the laminated prepreg.
  • a metal-clad laminate can be obtained by heat-pressing a laminate of a prepreg and a metal foil.
  • the heating temperature is not particularly limited, but is preferably 120 to 220 ° C, and particularly preferably 150 to 200 ° C.
  • the pressure to be pressurized is not particularly limited, but is preferably 1.5 to 5 MPa, and particularly preferably 2 to 4 MPa. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. with a high-temperature iron or the like.
  • the printed wiring board of the present invention will be described.
  • the printed wiring board uses the metal-clad laminate as an inner layer circuit board.
  • a circuit is formed on one or both sides of the metal-clad laminate.
  • through holes can be formed by drilling or laser processing, and electrical connection on both sides can be achieved by plating or the like.
  • a commercially available or resin sheet of the present invention, or the prepreg of the present invention is superposed on the inner layer circuit board and heated and pressed to obtain a multilayer printed wiring board.
  • the insulating layer side of the resin sheet and the inner layer circuit board are combined, vacuum-pressed using a vacuum pressurizing laminator, etc., and then the insulating layer is heated and cured with a hot air dryer or the like.
  • the conditions for heat and pressure molding are not particularly limited, but as an example, it can be carried out at a temperature of 60 to 160 ° C. and a pressure of 0.2 to 3 MPa.
  • the conditions for heat curing are not particularly limited, but for example, the temperature can be 140 to 240 ° C.
  • the time can be 30 to 120 minutes.
  • it can be obtained by overlaying the prepreg of the present invention on an inner circuit board and subjecting it to hot press molding using a flat plate press or the like.
  • the conditions for heat and pressure molding are not particularly limited, but as an example, it can be carried out at a temperature of 140 to 240 ° C. and a pressure of 1 to 4 MPa.
  • the insulating layer is heat-cured simultaneously with the heat and pressure forming.
  • the method for producing a multilayer printed wiring board according to the present invention includes a step of continuously laminating the resin sheet or the prepreg of the present invention on a surface on which an inner layer circuit pattern of the inner layer circuit board is formed, and a conductor circuit Forming a layer by a semi-additive process.
  • Curing of the resin sheet or the insulating layer formed from the prepreg of the present invention may be left in a semi-cured state in order to facilitate the subsequent laser irradiation and removal of the resin residue and improve desmearability.
  • the first insulating layer is partially cured (semi-cured) by heating at a temperature lower than the normal heating temperature, and one or more insulating layers are further formed on the insulating layer to form a semi-cured insulating layer.
  • the semi-curing temperature is preferably 80 ° C.
  • the inner layer circuit board used when obtaining the multilayer printed wiring board is preferably, for example, one in which a predetermined conductor circuit is formed by etching or the like on both surfaces of a copper clad laminate and the conductor circuit portion is blackened. Can be used.
  • Resin residues after laser irradiation are preferably removed with an oxidizing agent such as permanganate or dichromate. Further, the surface of the smooth insulating layer can be simultaneously roughened, and the adhesion of the conductive wiring circuit formed by subsequent metal plating can be improved.
  • an outer layer circuit is formed.
  • the outer layer circuit is formed by connecting the insulating resin layers by metal plating and forming an outer layer circuit pattern by etching.
  • a multilayer printed wiring board can be obtained in the same manner as when a resin sheet or prepreg is used.
  • a circuit may be formed by etching for use as a conductor circuit without peeling off the metal foil.
  • an ultrathin copper foil of 1 to 5 ⁇ m, or 12 to 18 ⁇ m.
  • the copper foil is half-etched to a thickness of 1 to 5 ⁇ m by etching.
  • an insulating layer may be further laminated and a circuit may be formed in the same manner as described above.
  • a solder resist is formed on the outermost layer after the circuit is formed.
  • the method for forming the solder resist is not particularly limited. For example, a method of laminating (laminating) a dry film type solder resist, forming by exposure and development, or forming a printed liquid resist by exposure and development It is done by the method to do.
  • the electrode part for a connection is provided.
  • the connecting electrode portion can be appropriately coated with a metal film such as gold plating, nickel plating, or solder plating.
  • a multilayer printed wiring board can be manufactured by such a method.
  • a semiconductor element having solder bumps is mounted on the multilayer printed wiring board obtained as described above, and connection to the multilayer printed wiring board is attempted through the solder bumps. Then, a liquid sealing resin is filled between the multilayer printed wiring board and the semiconductor element to form a semiconductor device.
  • the solder bump is preferably made of an alloy made of tin, lead, silver, copper, bismuth or the like.
  • the semiconductor element and multilayer printed wiring board can be connected by aligning the connection electrode part on the substrate with the solder bump of the semiconductor element using a flip chip bonder, etc., and then using an IR reflow device, hot plate, etc.
  • solder bumps are heated to the melting point or higher by using a heating device, and the multilayer printed wiring board and the solder bumps are connected by fusion bonding.
  • a metal layer having a relatively low melting point such as solder paste may be formed in advance on the connection electrode portion on the multilayer printed wiring board.
  • the connection reliability can be improved by applying a flux to the solder bumps and / or the surface layer of the connection electrode portion on the multilayer printed wiring board.
  • semiconductor devices obtained from the blend include, for example, DIP (Dual Inline Package), QFP (Quad Flat Package), BGA (Ball Grid Array), CSP (Chip Size Package), SOP (Small outline package), TSOP (thin small outline package), TQFP (think quad flat package), and the like.
  • DMA Dynamic viscoelasticity measuring instrument: TA-insRents, DMA-2980 Measurement temperature range: -30 to 280 ° C Temperature rising rate: 2 ° C./min. Test piece size: 5 mm ⁇ 50 mm cut out was used. Tg: Tan- ⁇ peak point in DMA measurement was defined as Tg.
  • Example 1 Into 211 parts of the epoxy resin (EP1) obtained in Synthesis Example 1, 139 parts of 2,2-bis (4-cyanatephenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as BisA-OCN) was mixed. Further, 356 parts of methyl ethyl ketone was added and stirred at 40 ° C. for 10 minutes to obtain a preparation having an appropriate viscosity. 6 parts of imidazole catalyst (manufactured by 2E4MZ Shikoku Kasei) was further added to this preparation liquid, and the mixture was further stirred at 40 ° C. for 5 minutes to obtain a composition for a resin sheet and / or prepreg as preparation liquid (A).
  • BisA-OCN 2,2-bis (4-cyanatephenyl) propane
  • This preparation solution was impregnated with glass cloth 1037 (Asahi Kasei Co., Ltd.) cut to A4 size, and the excess resin solution was dropped, followed by drying at 180 ° C. for 5 minutes to obtain a prepreg. There was no problem in the appearance including the smoothness of the surface of the obtained prepreg. The color became a light red-brown sheet. The exothermic onset peak by DSC was 129 ° C., confirming that the sheet was curable.
  • Example 2 Five prepregs obtained in Example 1 were stacked and formed with a hot plate press for 15 minutes at a pressure of 10 kg / cm 2 to obtain a substrate-like plate. The obtained substrate-like plate was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a firmly cured laminate. The cured physical properties were measured with the obtained laminate. The obtained cured sheet was not confirmed to have a heat generation start peak by DSC at 200 ° C. or less, and could be judged to be sufficiently cured.
  • Example 3 The preparation liquid (A) was applied to a 35-micron copper foil (rough surface) and dried at 175 ° C. for 5 minutes to obtain a copper-clad resin sheet.
  • Example 4 The obtained resin sheet with copper was formed with a hot plate press at a pressure of 10 kg / cm 2 for 15 minutes to obtain a substrate-like plate. The obtained board-like board was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a board with copper foil.
  • Example 5 Two sheets of the copper-clad resin sheet obtained in Example 3 and the prepreg obtained in Example 1 were stacked and formed with a hot plate press for 15 minutes at a pressure of 10 kg / cm 2 to obtain a copper-clad laminate. It was. The obtained substrate-like plate was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a firmly cured laminate.
  • Example 6 The prepreg obtained in Example 1 was formed as it was with a hot plate press for 15 minutes at a pressure of 10 kg / cm 2 to obtain a substrate-like plate.
  • the obtained board-like board was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a firmly cured printed wiring board board.
  • the cured physical properties were measured on the obtained substrate. The results are shown in Table 1.
  • the obtained cured sheet did not have an exothermic start peak due to DSC at 200 ° C. or less, and was judged to be sufficiently cured.
  • Example 1 instead of BisA-OCN, the comparative phenol resin (KAYAHARD, GPH-103, hereinafter referred to as “PN1”) was changed to 231 parts, and 120 ° C. for 5 minutes in the solvent drying step during preparation of the prepreg. A prepreg was produced in the same manner as described above, and then cured in the same manner as in Example 6 to produce a printed wiring board board. The results are shown in Table 1.
  • PN1 comparative phenol resin
  • PN1 Biphenyl aralkyl type phenol having a hydroxyl group equivalent of 236 and a softening point of 102 ° C.
  • KAYAHARD GPH-103 manufactured by Nippon Kayaku Co., Ltd.
  • BisA-OCN 2,2-bis (4-cyanatephenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • the printed wiring board made of the epoxy resin composition of the present invention has higher heat resistance than Comparative Example 1, and has a very high elastic modulus at high temperature. It was.
  • the epoxy resin composition of the present invention has excellent heat resistance in a cured product and excellent bending elastic modulus in a high temperature region, so it is extremely useful for producing laminated boards such as printed wiring boards and build-up boards. It is a useful material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

The purpose of the present invention is to provide an epoxy resin composition capable of forming a resin board in which warping, which may occur in a heating step of a board manufacturing process and/or a mounting process, is suppressed, a resin sheet, a prepreg, a metal-clad laminated sheet, a printed circuit board, and a semiconductor device which are obtained using said epoxy resin composition. The epoxy resin composition according to the present invention includes, as essential components, an epoxy resin represented by the following general formula (1) and a cyanate ester compound having two or more cyanato groups in its molecule. (In the formula, the ratio of (a) to (b), i.e., (a)/(b)=1-3. G represents a glycidyl group. n is 0-5, which is the number of repetitions.)

Description

エポキシ樹脂組成物、樹脂シート、プリプレグ及び金属張積層板、プリント配線基板、半導体装置Epoxy resin composition, resin sheet, prepreg, metal-clad laminate, printed wiring board, semiconductor device
 本発明は、エポキシ樹脂組成物、それを支持体の表面に塗布して得られる樹脂シート、繊維基材に含浸させたプリプレグ、金属張積層板、プリント配線基板、および半導体装置に関する。 The present invention relates to an epoxy resin composition, a resin sheet obtained by applying it to the surface of a support, a prepreg impregnated in a fiber base, a metal-clad laminate, a printed wiring board, and a semiconductor device.
 近年の電子機器の高機能化および軽薄短小化の要求にともなって、電子部品の高密度集積化、さらには高密度実装化が進んできており、これらの電子機器に使用される半導体装置の小型化が急速に進行している。
 そのため、半導体素子を含めた電子部品を実装するプリント配線基板も薄型化される傾向にあり、プリント配線基板に使用される樹脂基板は、厚みが約0.8mmのものが主流となっている。
 さらに最近では、0.4mm以下の樹脂基板を用いた半導体パッケージ同士を積層するパッケージ・オン・パッケージ(以下、POPという。)がモバイル機器(例えば、携帯電話、スマートフォン、タブレット型PCなど)に搭載されている。この傾向はさらに加速していき、年々薄型化が進むことは確実である(非特許文献1)。
In recent years, with the demand for higher functionality and lighter, thinner and smaller electronic devices, high-density integration and further high-density mounting of electronic components have been promoted. The miniaturization of semiconductor devices used in these electronic devices The process is progressing rapidly.
For this reason, printed wiring boards on which electronic components including semiconductor elements are mounted tend to be thinned, and a resin board used for the printed wiring board has a thickness of about 0.8 mm.
More recently, a package-on-package (hereinafter referred to as POP) in which semiconductor packages using a resin substrate of 0.4 mm or less are stacked is mounted on a mobile device (for example, a mobile phone, a smartphone, a tablet PC, etc.). Has been. This trend is further accelerated, and it is certain that the thickness will be reduced year by year (Non-Patent Document 1).
日本国特開2013-43958号公報Japanese Unexamined Patent Publication No. 2013-43958
 このように半導体装置の小型化が進むと、基板作製時に200℃を超える高温での工程を経由する場合が多く、基板の厚みが薄いと、剛性が足りなくなってしまい、工程の際にゆがむ、もしくは変形してしまうという課題が出てくることで生産性が悪化する(非特許文献2)。
 さらには、従来では半導体装置の剛性の大部分を担っていた半導体素子、封止材の厚みが極めて薄くなり、実装工程において半導体装置の反りが発生しやすくなる。また、構成部材として樹脂基板の占める割合が大きくなるため、樹脂基板の物性・挙動が半導体装置の反りに大きな影響を及ぼすようになってきている(非特許文献3)。
 一方、地球環境保護の観点から半田の鉛フリー化が進むにつれて、プリント配線基板へ半導体素子を搭載するときや、マザーボードへ半導体パッケージを実装するときにおこなうリフロー工程での最高温度が非常に高くなってきている。一般的によく使われている鉛フリー半田の融点が約210度であることからリフロー工程中での最高温度は260度を超えるレベルとなっている。
 一般的に、半導体素子と半導体素子が搭載されるプリント配線基板との熱膨張の差は非常に大きい。そのため、プリント配線基板へ半導体素子を実装するときにおこなうリフロー工程において、樹脂基板が大きく反ってしまう場合があった。また、マザーボードへ半導体パッケージを実装するときにおこなうリフロー工程においても、同様に樹脂基板が大きく反ってしまう場合があった。
As semiconductor devices are miniaturized in this way, they often go through a process at a high temperature exceeding 200 ° C. when the substrate is manufactured, and if the thickness of the substrate is thin, the rigidity becomes insufficient, and the process is distorted. Or productivity deteriorates because the subject that it will deform | transform comes out (nonpatent literature 2).
Furthermore, the thickness of the semiconductor element and the sealing material, which conventionally has been responsible for most of the rigidity of the semiconductor device, becomes extremely thin, and the semiconductor device is likely to warp in the mounting process. In addition, since the proportion of the resin substrate as a constituent member increases, the physical properties / behavior of the resin substrate have a great influence on the warpage of the semiconductor device (Non-patent Document 3).
On the other hand, as lead-free solder progresses from the viewpoint of protecting the global environment, the maximum temperature in the reflow process that occurs when mounting semiconductor elements on printed circuit boards or mounting semiconductor packages on motherboards becomes very high. It is coming. Since the melting point of commonly used lead-free solder is about 210 degrees, the maximum temperature during the reflow process is over 260 degrees.
In general, the difference in thermal expansion between a semiconductor element and a printed wiring board on which the semiconductor element is mounted is very large. For this reason, the resin substrate may be greatly warped in the reflow process performed when the semiconductor element is mounted on the printed wiring board. Similarly, in the reflow process that is performed when the semiconductor package is mounted on the mother board, the resin substrate may be greatly warped.
 一方、特許文献1には、ビフェニル骨格を有するフェノールノボラック樹脂及びこれをエポキシ化することで得られるフェノールノボラック型エポキシ樹脂が開示され、半導体封止剤用途への有用性が記載されている。しかしながら、これらのエポキシ樹脂とシアネートエステル化合物を含有する組成物の特性について何ら記載されておらず、またプリント配線基板用途の有用性についても記載されていない。 On the other hand, Patent Document 1 discloses a phenol novolac resin having a biphenyl skeleton and a phenol novolac type epoxy resin obtained by epoxidizing the phenol novolak resin, and describes its usefulness for use as a semiconductor encapsulant. However, there is no description about the characteristics of the composition containing these epoxy resins and cyanate ester compounds, and there is no description about the usefulness of the printed wiring board.
 そこで、本発明では、基板作製工程および/または実装工程における加熱工程において発生する反りが抑制された樹脂基板を得ることができるエポキシ樹脂組成物、それを用いて得られる樹脂シート、プリプレグ、金属張積層板、プリント配線基板、および半導体装置を提供することを課題とする。 Therefore, in the present invention, an epoxy resin composition capable of obtaining a resin substrate in which warpage generated in the heating step in the substrate manufacturing process and / or the mounting process is suppressed, a resin sheet, a prepreg, and a metal-clad obtained using the same. It is an object to provide a laminated board, a printed wiring board, and a semiconductor device.
 本発明者らは前記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。
 すなわち本発明は
(1)
 下記一般式(1)で表されるエポキシ樹脂及び分子中にシアナト基を2つ以上有するシアネートエステル化合物を必須成分とするエポキシ樹脂組成物、
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention provides (1)
An epoxy resin composition comprising, as an essential component, an epoxy resin represented by the following general formula (1) and a cyanate ester compound having two or more cyanate groups in the molecule;
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、(a)(b)の比率は(a)/(b)=1~3である。Gはグリシジル基を表す。nは繰り返し数であり、0~5である。)
(2)
 前項(1)に記載のエポキシ樹脂組成物を繊維基材に含浸してなるプリプレグ、
(3)
 前記繊維基材がガラス繊維基材である前項(2)に記載のプリプレグ、
(4)
 前記ガラス繊維基材がTガラス、Sガラス、Eガラス、NEガラス、および石英ガラスからなる群から選ばれる少なくとも一種を含む、前項(3)に記載のプリプレグ、
(5)
 前項(2)及至(4)に記載のプリプレグの少なくとも一方の面に金属箔が積層された、金属張積層板、
(6)
 前項(1)に記載のエポキシ樹脂組成物からなる絶縁層をフィルム上に、又は金属箔上に形成してなる樹脂シート、
(7)
 前項(5)に記載の金属張積層板を内層回路基板に用いてなるプリント配線基板、
(8)
 前項(2)及至(4)のいずれか一項に記載のプリプレグ又は前項(6)に記載の樹脂シートを硬化してなるプリント配線基板、
(9)
 前項(7)又は(8)に記載のプリント配線基板に半導体素子を搭載してなる半導体装置、
を提供するものである。
(In the formula, the ratio of (a) and (b) is (a) / (b) = 1 to 3. G represents a glycidyl group. N is the number of repetitions and is 0 to 5.)
(2)
A prepreg obtained by impregnating a fiber base material with the epoxy resin composition according to item (1),
(3)
The prepreg according to (2) above, wherein the fiber base material is a glass fiber base material,
(4)
The prepreg according to (3) above, wherein the glass fiber base material includes at least one selected from the group consisting of T glass, S glass, E glass, NE glass, and quartz glass.
(5)
A metal-clad laminate in which a metal foil is laminated on at least one surface of the prepreg described in the preceding paragraphs (2) to (4),
(6)
A resin sheet formed by forming an insulating layer made of the epoxy resin composition according to item (1) on a film or a metal foil;
(7)
A printed wiring board using the metal-clad laminate as described in (5) above for an inner circuit board;
(8)
A printed wiring board obtained by curing the prepreg according to any one of (2) to (4) or the resin sheet according to (6);
(9)
A semiconductor device in which a semiconductor element is mounted on the printed wiring board according to (7) or (8),
Is to provide.
 本発明のエポキシ樹脂組成物はその硬化物において高耐熱性、高温領域での高い曲げ弾性率に優れた特性を併せ持つため、プリント配線基板やビルドアップ基板などの積層板を作製するのに極めて有用な材料である。
 本発明によれば、基板作製工程および/または実装工程における加熱工程において発生する反りが抑制された樹脂基板を得ることができるエポキシ樹脂組成物、それを用いて得られる樹脂シート、プリプレグ、金属張積層板、プリント配線基板、および半導体装置を提供することができる。
The epoxy resin composition of the present invention has excellent heat resistance and high flexural modulus in a high temperature region in the cured product, so it is extremely useful for producing laminated boards such as printed wiring boards and build-up boards. Material.
ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin composition which can obtain the resin substrate by which the curvature which generate | occur | produces in the heating process in a board | substrate preparation process and / or a mounting process was suppressed, a resin sheet obtained using it, a prepreg, metal-clad A laminated board, a printed wiring board, and a semiconductor device can be provided.
 本発明のエポキシ樹脂組成物について説明する。
 本発明のエポキシ樹脂組成物は下記一般式(1)で表されるエポキシ樹脂を必須成分として含有する。
The epoxy resin composition of the present invention will be described.
The epoxy resin composition of the present invention contains an epoxy resin represented by the following general formula (1) as an essential component.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、(a)(b)の比率は(a)/(b)=1~3である。Gはグリシジル基を表す。nは繰り返し数であり、0~5である。) (In the formula, the ratio of (a) and (b) is (a) / (b) = 1 to 3. G represents a glycidyl group. N is the number of repetitions and is 0 to 5.)
 前記式(1)で表されるエポキシ樹脂は日本国特開2011-252037号公報、日本国特開2008-156553号公報、日本国特開2013-043958公報、国際公開WO2012/053522、WO2007/007827に記載されている手法で合成できるが、前記式(1)の構造をもてばどのような手法のものを用いても構わない。
 ただし、本発明においては特に前記式(a)と前記式(b)の割合(多官能化率)が(a)/(b)=1~3の物を使用する。(a)の構造が多いと耐熱性があがるがその分吸水特性が悪くなるばかりか、脆く硬くなってしまう。そこで上述の範囲内の多官能化率のものを使用する。
The epoxy resin represented by the formula (1) is disclosed in Japanese Unexamined Patent Publication No. 2011-252037, Japanese Unexamined Patent Publication No. 2008-156553, Japanese Unexamined Patent Publication No. 2013-043958, International Publication WO2012 / 053522, WO2007 / 007827. However, any method may be used as long as it has the structure of the formula (1).
However, in the present invention, those in which the ratio (polyfunctionalization ratio) of the formula (a) to the formula (b) is (a) / (b) = 1 to 3 are used. When the structure (a) is large, the heat resistance is improved, but the water absorption characteristics are deteriorated, and the structure becomes brittle and hard. Therefore, the polyfunctionalization rate within the above range is used.
 使用するエポキシ樹脂の軟化点(環球法)は50~150℃が好ましく、さらに好ましくは52~100℃、特に好ましくは52~95℃である。50℃以下ではべた付きが激しく、取り扱いが困難であり生産性に課題が生じる場合がある。また150℃以上の場合、成型温度に近い温度であり、成型時の流動性が確保できないことから好ましくない場合がある。 The softening point (ring and ball method) of the epoxy resin used is preferably 50 to 150 ° C., more preferably 52 to 100 ° C., and particularly preferably 52 to 95 ° C. Below 50 ° C., stickiness is severe, handling is difficult, and problems may arise in productivity. Moreover, in the case of 150 degreeC or more, it is a temperature close | similar to molding temperature, and since the fluidity | liquidity at the time of shaping | molding cannot be ensured, it may be unpreferable.
 使用するエポキシ樹脂のエポキシ当量は180~350g/eq.であることが好ましい。特に190~300g/eq.であることが好ましい。エポキシ当量が180g/eq.を下回る場合、官能基が多すぎるため、硬化後の硬化物において吸水率が高くなる、また脆くなりやすい傾向にある。エポキシ当量が350g/eq.を超える場合、軟化点が非常に大きくなるか、きれいにエポキシ化が進行していないことが考えられ、原料として使用したエピクロルヒドリンに起因する塩素量が非常に多くなってしまう場合があることから好ましくない。 The epoxy equivalent of the epoxy resin used is 180 to 350 g / eq. It is preferable that In particular, 190 to 300 g / eq. It is preferable that Epoxy equivalent is 180 g / eq. When the ratio is less than 1, since the functional group is too many, the cured product after curing tends to have a high water absorption rate and become brittle. Epoxy equivalent is 350 g / eq. If it exceeds 1, the softening point becomes very large or the epoxidation has not progressed neatly, which is not preferable because the amount of chlorine caused by epichlorohydrin used as a raw material may become very large. .
 なお、本発明において使用するエポキシ樹脂の塩素量は全塩素(加水分解法)で好ましくは200~1500ppmであり、特に好ましくは200~900ppmとなる。JPCAの規格からエポキシ単体でも900ppmを超えないことが望まれている。さらには塩素量が多いとその分電気信頼性に影響する場合があるので好ましくない。200ppmを下回る場合、過度な精製工程が必要となり、生産性に課題が生じる場合があるため好ましくない。 The chlorine content of the epoxy resin used in the present invention is preferably 200 to 1500 ppm, particularly preferably 200 to 900 ppm in terms of total chlorine (hydrolysis method). From the JPCA standard, it is desired that epoxy alone does not exceed 900 ppm. Furthermore, a large amount of chlorine is not preferable because it may affect the electrical reliability. When it is less than 200 ppm, an excessive purification step is required, which may cause problems in productivity, which is not preferable.
 なお、本発明において使用するエポキシ樹脂の150℃における溶融粘度は、好ましくは0.05~5Pa・sであり、特に好ましくは0.05~2.0Pa・sである。5Pa・sよりも溶融粘度が高いと流動性に課題が生じ、プレス時のフロー性や埋め込み性に問題が生じる場合がある。0.05Pa・sを下回る場合、分子量が小さすぎるため、耐熱性が足りない場合がある。 The melt viscosity at 150 ° C. of the epoxy resin used in the present invention is preferably 0.05 to 5 Pa · s, particularly preferably 0.05 to 2.0 Pa · s. When the melt viscosity is higher than 5 Pa · s, there is a problem in fluidity, and there may be a problem in flow property and embedding property during pressing. When it is less than 0.05 Pa · s, the molecular weight is too small, and the heat resistance may be insufficient.
 前記式中(a)と(b)の比率は(a)/(b)=1~3である。すなわち、半分以上がレゾルシン構造のグリシジルエーテル体であることを特徴とする。本比率は結晶の析出および耐熱性の向上には重要であり、(a)/(b)は1を超えることが好ましい。また、(a)/(b)が3以下であることでレゾルシン構造のグリシジルエーテル体の量を制限することで、吸水率と強靭性を改善することができる。
 前記式中、nは繰り返し単位であり、0~5である。nが5を超えないことでプリプレグや樹脂シートにした際のフロー性や流動性をコントロールする。これが5を超えた場合、流動性ばかりか、溶剤への溶解性に課題が生じる。
 本発明において、エポキシ樹脂は溶剤への溶解性が重要となる。例えば、同様の骨格を有するビフェニルアラルキルタイプのエポキシ樹脂を併用する場合、これらの樹脂についてもメチルエチルケトンやトルエン、プロピレングリコールモノメチルエーテル等の溶剤に対し、溶解性が必要となる。
 本発明においては、特にメチルエチルケトンへの溶解性が重要であり、5℃、室温等で2か月以上、結晶が析出しないことが求められる。前述の(a)/(b)の比率にも関与するが、(a)の値が大きいと結晶が出やすくなってしまうため、(a)/(b)が1以上であることが重要となる。
In the above formula, the ratio of (a) to (b) is (a) / (b) = 1-3. That is, more than half are glycidyl ethers having a resorcin structure. This ratio is important for the precipitation of crystals and the improvement of heat resistance, and (a) / (b) preferably exceeds 1. Moreover, water absorption and toughness can be improved by restrict | limiting the quantity of the glycidyl ether body of a resorcinol structure because (a) / (b) is 3 or less.
In the above formula, n is a repeating unit and is 0-5. When n does not exceed 5, the flowability and fluidity of the prepreg or resin sheet are controlled. When this exceeds 5, a problem arises not only in fluidity but also in solubility in a solvent.
In the present invention, the solubility of the epoxy resin in a solvent is important. For example, when a biphenyl aralkyl type epoxy resin having the same skeleton is used in combination, these resins also need to be soluble in solvents such as methyl ethyl ketone, toluene, propylene glycol monomethyl ether and the like.
In the present invention, solubility in methyl ethyl ketone is particularly important, and it is required that crystals do not precipitate for 2 months or more at 5 ° C., room temperature or the like. Although it is also related to the ratio of (a) / (b) described above, it is important that (a) / (b) is 1 or more because crystals are likely to appear when the value of (a) is large. Become.
 本発明のエポキシ樹脂組成物は、分子中にシアナト基を2つ以上有するシアネートエステル化合物を必須成分として含有する。
 前記シアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物、フェノール類と芳香族ジメタノール類、フェノール類と芳香族ジクロロメチル類、フェノール類と芳香族ビスアルコキシメチル類などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
The epoxy resin composition of the present invention contains a cyanate ester compound having two or more cyanato groups in the molecule as an essential component.
As the cyanate ester compound, conventionally known cyanate ester compounds can be used. Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. And cyanate ester compounds obtained by reacting phenols and aromatic dimethanols, phenols and aromatic dichloromethyls, phenols and aromatic bisalkoxymethyls with cyanogen halides, etc. It is not limited. These may be used alone or in combination of two or more.
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。 Examples of the phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。 Examples of the various aldehydes include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, and the like.
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。 Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
 上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。 Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, and the like.
 上記ビスフェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等が挙げられる。 Examples of the bisphenols include bisphenol A, bisphenol F, bisphenol S, biphenol, and bisphenol AD.
 上記、芳香族ジメタノール類としてはベンゼンジメタノール、ビフェニルジメタノール等、芳香族ジクロロメチル類としてはα,α’-ジクロロキシレン、ビスクロロメチルビフェニル等、芳香族ビスアルコキシメチル類としてはビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等が挙げられる。 As mentioned above, aromatic dimethanols such as benzenedimethanol and biphenyldimethanol, aromatic dichloromethyls as α, α'-dichloroxylene, bischloromethylbiphenyl, etc., and aromatic bisalkoxymethyls as bismethoxymethyl Examples include benzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, and the like.
 本発明のエポキシ樹脂組成物において用いられるシアネートエステル化合物の具体例として、下記の一般式(2)~(4)で表される化合物を挙げられるが、これに限られない。 Specific examples of the cyanate ester compound used in the epoxy resin composition of the present invention include compounds represented by the following general formulas (2) to (4), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは下記式(2’)構造を示し、R及びRは、水素原子又は炭素数1~4のアルキル基を示し、それぞれ同じであっても、異なっても良い。) (Wherein R 1 represents a structure represented by the following formula (2 ′), R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different. )
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~5のアルキル基もしくはフェニル基を表す。nは平均値であり1<n≦20を表す。) (In the formula, a plurality of R's are present independently and each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a phenyl group. N is an average value and 1 <n ≦ 20.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明において特に好ましくは、前記式(2)においてRがメチレン基、イソプロピリデン基もしくはトリシクロデカン構造の化合物、また前記式(4)の構造の化合物を用いたエポキシ樹脂組成物である。
 これらシアネートエステル化合物の具体的な合成法としては例えば、日本国特開2005-264154号公報に合成方法が記載されている。
Particularly preferred in the present invention is an epoxy resin composition using a compound in which R 1 in the formula (2) is a methylene group, an isopropylidene group or a tricyclodecane structure, or a compound having the structure of the formula (4).
As a specific synthesis method of these cyanate ester compounds, for example, a synthesis method is described in Japanese Patent Application Laid-Open No. 2005-264154.
 シアネートエステル化合物の配合量は特に限定されないが、シアネートエステルとエポキシを主とする配合の場合、シアネートエステル化合物の官能基当量(シアネートエステル当量)に対し、0.1~1.4当量、より好ましくは0.2~1.4、さらに好ましくは0.5~1.4当量のエポキシ樹脂を配合することが好ましい。
 この配合量は特に使用する触媒や、配合する材料にも影響され、たとえば、具体的にはイミダゾール等の含窒素触媒の場合、エポキシ同士のアニオン重合も同時に起こるため、0.8~1.4当量が特に好ましい。
 またエポキシ樹脂硬化剤を配合する場合、硬化剤とシアネートエステルの総官能基当量に対して0.5~1.4当量のエポキシ樹脂を配合することが好ましい。さらにはマレイミド樹脂等の同時に硬化、またエポキシ樹脂やシアネートエステルと架橋しうるような樹脂を配合する場合、それらの官能基当量に見合った量を差し引いて配合を決める必要があるが、エポキシと反応しうる官能基を持ったものが0.5~1.4当量であることが特に好ましい。
The blending amount of the cyanate ester compound is not particularly limited. However, in the case of blending mainly cyanate ester and epoxy, 0.1 to 1.4 equivalent, more preferably, with respect to the functional group equivalent (cyanate ester equivalent) of the cyanate ester compound. Is preferably 0.2 to 1.4, more preferably 0.5 to 1.4 equivalents of an epoxy resin.
This blending amount is also affected by the catalyst to be used and the material to be blended. For example, specifically, in the case of a nitrogen-containing catalyst such as imidazole, anionic polymerization of epoxies occurs simultaneously, so 0.8 to 1.4 Equivalent weight is particularly preferred.
When an epoxy resin curing agent is blended, it is preferable to blend 0.5 to 1.4 equivalents of epoxy resin with respect to the total functional group equivalents of the curing agent and cyanate ester. Furthermore, when blending resins such as maleimide resins that can be cured simultaneously and crosslinked with epoxy resins or cyanate esters, it is necessary to subtract the amount corresponding to their functional group equivalents, but react with epoxy. Those having a functional group capable of being used are particularly preferably 0.5 to 1.4 equivalents.
 本発明のエポキシ樹脂組成物において、他のエポキシ樹脂を併用して用いることができる。本発明において用いられるエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)またはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物;前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物;前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物;前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物;前記フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物;前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物;前記ビスフェノール類と各種アルデヒドの重縮合物またはアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 In the epoxy resin composition of the present invention, other epoxy resins can be used in combination. Specific examples of other epoxy resins that can be used in combination with the epoxy resin used in the present invention include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols (phenol, alkyl-substituted phenol, aromatic Group-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde) , Crotonaldehyde, cinnamaldehyde, etc.); said phenols Polymers with various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.); the phenols and ketones ( Polycondensates of acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.); polycondensates of the above phenols with aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.); the above phenols and aromatic Polycondensates with dichloromethyls (α, α'-dichloroxylene, bischloromethylbiphenyl, etc.); phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bisme Polycondensates with xymethylbiphenyl, bisphenoxymethylbiphenyl, etc .; glycidyl ether epoxy resins, alicyclic epoxy resins, glycidylamine epoxies obtained by glycidylation of polycondensates of the above bisphenols and various aldehydes or alcohols Resins, glycidyl ester epoxy resins and the like can be mentioned, but not limited to these as long as they are usually used epoxy resins. These may be used alone or in combination of two or more.
 本発明のエポキシ樹脂組成物を配合する場合、従来公知のエポキシ樹脂硬化剤を併用することができる。併用し得るエポキシ樹脂硬化剤の具体例としては、アミン化合物や、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸などの酸無水物系化合物、ビスフェノール類、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、などが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。これらの配合量は、重量比でエポキシ樹脂の2倍以下、好ましくは1倍以下の範囲である。 When blending the epoxy resin composition of the present invention, a conventionally known epoxy resin curing agent can be used in combination. Specific examples of epoxy resin curing agents that can be used in combination include amine compounds, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride Acid anhydride compounds such as hexahydrophthalic anhydride and methylhexahydrophthalic anhydride, bisphenols, phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene , Dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde) Polycondensates with glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc., phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, Polymers with diisopropenylbiphenyl, butadiene, isoprene, etc.), polycondensates with phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.), etc. It is not a thing. These may be used alone or in combination of two or more. These blending amounts are in the range of 2 times or less, preferably 1 time or less of the epoxy resin in weight ratio.
 本発明のエポキシ樹脂組成物において硬化剤を使用する場合の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量以下が好ましい。エポキシ基1当量超える場合、エポキシとシアネートの反応が進行した場合、硬化剤が取り残されることとなり、硬化が不完全となり良好な硬化物性が得られない恐れがある。特に好ましくは0.1~0.98である。また本発明においてエポキシ樹脂と硬化剤の好ましい組み合わせとしては軟化点45~140度のエポキシ樹脂(より好ましくは50~100℃)と軟化点50~140℃(好ましくは55~120℃)の硬化剤である。流動性、難燃性、耐熱性の面でバランスの取れた特性を有する樹脂組成物となる。 The amount of the curing agent used in the epoxy resin composition of the present invention is preferably 1 equivalent or less with respect to 1 equivalent of the epoxy group of the epoxy resin. When the epoxy group exceeds 1 equivalent, when the reaction between epoxy and cyanate proceeds, the curing agent is left behind, and curing may be incomplete, and good cured properties may not be obtained. Particularly preferred is 0.1 to 0.98. In the present invention, a preferable combination of an epoxy resin and a curing agent is an epoxy resin having a softening point of 45 to 140 ° C. (more preferably 50 to 100 ° C.) and a curing agent having a softening point of 50 to 140 ° C. (preferably 55 to 120 ° C.). It is. A resin composition having balanced properties in terms of fluidity, flame retardancy, and heat resistance is obtained.
 本発明のエポキシ樹脂組成物においてマレイミド樹脂の添加をしても構わない。市販のマレイミド樹脂であれば特に限定されないが、炭素数1~3のアルキル基で1~4か所芳香環上の水素が置換、もしくは無置換のビスマレイミドフェニルメタンやフェノールノボラック型のマレイミド樹脂が挙げられる。
 マレイミド樹脂はシアネート樹脂と当量での反応ではなく、個別もしくはランダムに取り込まれた形で重合するため、配合比率においては特に限定はされないが、本発明のエポキシ樹脂組成物の特性をさらに引き出すためにはエポキシ樹脂、シアネートエステル、マレイミド樹脂の総量において10~45重量%が好ましく、特に好ましくは10~40重量%である。
In the epoxy resin composition of the present invention, a maleimide resin may be added. Although it is not particularly limited as long as it is a commercially available maleimide resin, a bismaleimide phenylmethane or phenol novolac type maleimide resin in which an alkyl group having 1 to 3 carbon atoms is substituted with 1 to 4 hydrogen atoms on the aromatic ring or unsubstituted is used. Can be mentioned.
The maleimide resin is not a reaction in an equivalent amount with the cyanate resin, but is polymerized in a form incorporated individually or randomly, so that the blending ratio is not particularly limited, but in order to further bring out the characteristics of the epoxy resin composition of the present invention. Is preferably 10 to 45% by weight, particularly preferably 10 to 40% by weight, based on the total amount of epoxy resin, cyanate ester and maleimide resin.
 本発明のエポキシ樹脂組成物においては、硬化促進剤を含有させても差し支えない。使用できる硬化促進剤の具体例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤は、エポキシ樹脂100重量部に対して0.1~5.0重量部が必要に応じ用いられる。 The epoxy resin composition of the present invention may contain a curing accelerator. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate. The curing accelerator is used as necessary in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
 本発明のエポキシ樹脂組成物には、必要に応じて難燃剤、充填剤等の添加剤を、硬化物の誘特性や耐熱性等の特性を悪化させない範囲で配合することができる。 In the epoxy resin composition of the present invention, additives such as flame retardants and fillers can be blended as necessary within a range that does not deteriorate the attractive properties and heat resistance of the cured product.
 必要に応じて配合される難燃剤は、特に限定されないが、シアナト基と反応性を有しない難燃剤が好ましい。ここで、シアナト基と反応性を有しないとは、プリント配線基板樹脂組成物中に難燃剤を添加した場合に、300℃以下の範囲で混合しても、難燃剤がシアネートエステル化合物のシアナト基と反応せずに、分散あるいは溶解といった形態でそのままプリント配線基板樹脂組成物中に含まれていることをいう。この反応には、樹脂組成物を加熱燃焼した場合における難燃剤の反応は含まない。一般に、プリント配線基板用樹脂組成物、並びにこれを用いたワニス、プリプレグ、金属張積層板、プリント配線基板等の製造、使用は、300℃以下の範囲内で行われるものである。 Although the flame retardant blended as necessary is not particularly limited, a flame retardant having no reactivity with a cyanate group is preferable. Here, when the flame retardant is added to the printed wiring board resin composition, the flame retardant is a cyanate group of the cyanate ester compound even when mixed within a range of 300 ° C. or less. It is included in the printed wiring board resin composition as it is in the form of dispersion or dissolution without reacting with. This reaction does not include the reaction of the flame retardant when the resin composition is heated and burned. In general, the production and use of a resin composition for a printed wiring board, and varnishes, prepregs, metal-clad laminates, printed wiring boards, and the like using the resin composition are performed within a range of 300 ° C. or lower.
 必要に応じて配合される充填剤は、特に限定されないが、無機充填剤としては溶融シリカ、結晶性シリカ、アルミナ、炭酸カルシウム、ケイ酸カルシウム、硫酸バリウム、タルク、クレー、酸化マグネシウム、酸化アルミニウム、酸化ベリリウム、酸化鉄、酸化チタン、窒化アルミニウム、窒化ケイ素、窒化ホウ素、マイカ、ガラス、石英、雲母などが挙げられる。さらに難燃効果を付与するため、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物を使用することも好ましい。ただし、これらに限定されない。また2種以上を混合して使用しても良い。これら無機充填剤のうち、溶融シリカや結晶性シリカなどのシリカ類はコストが安く、電気信頼性も良好なため好ましい。本発明のエポキシ樹脂組成物において、無機充填剤の使用量は内割りで通常5重量%~70重量%、好ましくは10重量%~60重量%、より好ましくは15重量%~60重量%の範囲である。少なすぎると難燃性の効果が得られない、また弾性率が下がってしまう可能性があり、また、多すぎると封止する溶液に溶かしたワニスとした際にフィラーが沈降してしまい、均質な成型体が得られない可能性がある。 The filler to be blended as necessary is not particularly limited, but as inorganic filler, fused silica, crystalline silica, alumina, calcium carbonate, calcium silicate, barium sulfate, talc, clay, magnesium oxide, aluminum oxide, Examples include beryllium oxide, iron oxide, titanium oxide, aluminum nitride, silicon nitride, boron nitride, mica, glass, quartz, and mica. Further, it is also preferable to use a metal hydroxide such as magnesium hydroxide or aluminum hydroxide in order to impart a flame retardant effect. However, it is not limited to these. Two or more kinds may be mixed and used. Of these inorganic fillers, silicas such as fused silica and crystalline silica are preferred because of low cost and good electrical reliability. In the epoxy resin composition of the present invention, the amount of the inorganic filler used is usually in the range of 5% to 70% by weight, preferably 10% to 60% by weight, more preferably 15% to 60% by weight. It is. If the amount is too small, the flame retardancy effect may not be obtained, and the elastic modulus may be lowered. If the amount is too large, the filler settles when the varnish is dissolved in the solution to be sealed, and is homogeneous. May not be obtained.
 なお、無機充填剤の形状、粒径等も特に限定されないが、通常、粒径0.01~50μm、好ましくは0.1~15μmのものである。 The shape, particle size and the like of the inorganic filler are not particularly limited, but are usually those having a particle size of 0.01 to 50 μm, preferably 0.1 to 15 μm.
 本発明のエポキシ樹脂組成物にはガラスクロスや無機充填剤と樹脂成分との接着性を高めるためにカップリング剤を配合することができる。カップリング剤としては従来公知のものをいずれも使用できるが、例えばビニルアルコキシシラン、エポキアルコキシシラン、スチリルアルコキシシラン、メタクリロキシアルコキシシラン、アクリロキシアルコキシシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、イソシアナートアルコキシシランなどの各種アルコキシシラン化合物、アルコキシチタン化合物、アルミニウムキレート類などが挙げられる。これらは単独で使用しても2種以上併用しても良い。カップリング剤の添加方法は、カップリング剤であらかじめ無機充填剤表面を処理した後、樹脂と混練しても良いし、樹脂にカップリング剤を混合してから無機充填剤を混練しても良い。 In the epoxy resin composition of the present invention, a coupling agent can be blended in order to enhance the adhesion between the glass cloth or the inorganic filler and the resin component. Any conventionally known coupling agent can be used. For example, vinyl alkoxy silane, epoxy alkoxy silane, styryl alkoxy silane, methacryloxy alkoxy silane, acryloxy alkoxy silane, amino alkoxy silane, mercapto alkoxy silane, isocyanate alkoxy Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more. The coupling agent may be added by treating the surface of the inorganic filler with the coupling agent in advance and then kneading with the resin, or mixing the coupling agent with the resin and then kneading the inorganic filler. .
 本発明のエポキシ樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。用いられる溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10~80重量%、好ましくは20~70重量%となる範囲で使用する。 An organic solvent can be added to the epoxy resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish). Examples of the solvent used include amide solvents such as γ-butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone. Sulfones, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned. The solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by weight, preferably 20 to 70% by weight.
 更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにカーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤などが挙げられる。 Furthermore, a known additive can be blended in the epoxy resin composition of the present invention as necessary. Specific examples of additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds, silicone gel, and silicone oil. And colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
 本発明の樹脂シートについて説明する。
 本発明のエポキシ樹脂組成物を用いたシートは上記ワニスをそれ自体公知のグラビアコート法、スクリーン印刷、メタルマスク法、スピンコート法などの各種塗工方法により平面状支持体に乾燥後の厚さが所定の厚さ、たとえば5~100μmになるように塗布後、乾燥して得られるが、どの塗工方法を用いるかは支持体の種類、形状、大きさ、塗工の膜厚、支持体の耐熱性等により適宜選択される。平面支持体としては、たとえばポリアミド、ポリアミドイミド、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルケトン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリケトン、ポリエチレン、ポリプロピレン、テフロン(登録商標)等の各種高分子、および/またはその共重合体から作られるフィルム、あるいは銅箔等の金属箔等が挙げられる。
 塗布後、乾燥し、シート状の組成物を得ることができる(本発明の樹脂シート)が、本シートをさらに加熱することでシート状の硬化物とすることもできる。また一度の加熱で溶剤乾燥と硬化工程を兼ねてもよい。
 本発明のエポキシ樹脂組成物は上記支持体の両面もしくは片面に上記方法で塗工、加熱することにより、該支持体の両面または片面に硬化物の層を形成することができる。また硬化前に被着体を貼り合わせ、硬化させることで積層体を作製することも可能である。
 また本発明の樹脂シートは支持体から剥がすことで接着シートとして使用することもでき、被着体に接触させ、必要に応じて圧力と熱をかけ、硬化とともに接着させるということもできる。
The resin sheet of the present invention will be described.
The sheet using the epoxy resin composition of the present invention has a thickness after drying the varnish on a planar support by various coating methods such as gravure coating, screen printing, metal masking, and spin coating methods known per se. Is applied after application to a predetermined thickness, for example, 5 to 100 μm, and dried. Which type of coating method is used depends on the type, shape, size, thickness of coating, support It is appropriately selected depending on the heat resistance and the like. Examples of the planar support include various types such as polyamide, polyamideimide, polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyetherketone, polyetherimide, polyetheretherketone, polyketone, polyethylene, polypropylene, and Teflon (registered trademark). Examples thereof include films made from molecules and / or copolymers thereof, and metal foils such as copper foils.
After application, it can be dried to obtain a sheet-like composition (resin sheet of the present invention), but it can also be made into a sheet-like cured product by further heating the sheet. Moreover, you may serve as a solvent drying and hardening process by one heating.
The epoxy resin composition of the present invention can form a cured product layer on both sides or one side of the support by coating and heating on both sides or one side of the support by the above method. It is also possible to produce a laminate by bonding and adhering the adherend before curing.
Moreover, the resin sheet of this invention can also be used as an adhesive sheet by peeling off from a support body, and it can also be made to contact with a to-be-adhered body and to apply pressure and heat as needed, and to make it adhere | attach with hardening.
 本発明のプリプレグについて説明する。
 本発明のプリプレグは上記樹脂組成物を繊維基材に含浸してなるものである。これにより、耐熱性、低膨張性および難燃性に優れたプリプレグを得ることができる。前記繊維基材としては、例えばガラス織布、ガラス不繊布、ガラスペーパー等のガラス繊維基材、紙、アラミド、ポリエステル、芳香族ポリエステル、フッ素樹脂等の合成繊維等からなる織布や不織布、金属繊維、カーボン繊維、鉱物繊維等からなる織布、不織布、マット類等が挙げられる。これらの基材は単独又は混合して使用してもよい。これらの中でもガラス繊維基材が好ましい。これにより、プリプレグの剛性、寸法安定性を向上することができる。
 ガラス繊維基材としては、Tガラス、Sガラス、Eガラス、NEガラス、および石英ガラスからなる群から選ばれる少なくとも一種を含むものが好ましい。
The prepreg of the present invention will be described.
The prepreg of the present invention is obtained by impregnating a fiber base material with the above resin composition. Thereby, the prepreg excellent in heat resistance, low expansibility, and a flame retardance can be obtained. Examples of the fiber base material include glass fiber base materials such as glass woven fabric, glass non-woven fabric, and glass paper, paper, aramid, polyester, aromatic polyester, and synthetic fibers such as fluororesin, etc. Examples thereof include woven fabrics, nonwoven fabrics, mats and the like made of fibers, carbon fibers, mineral fibers and the like. These substrates may be used alone or in combination. Among these, a glass fiber base material is preferable. Thereby, the rigidity and dimensional stability of a prepreg can be improved.
As a glass fiber base material, what contains at least 1 type chosen from the group which consists of T glass, S glass, E glass, NE glass, and quartz glass is preferable.
 前記樹脂組成物を前記繊維基材に含浸させる方法は、例えば基材を樹脂ワニスに浸漬する方法、各種コーターによる塗布する方法、スプレーによる吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。
 例えば、本発明のエポキシ樹脂組成物をそのままで、又は溶媒に溶解若しくは分散させたワニスの形態で、ガラス布等の基材に含浸させた後、乾燥炉中等で通常、80~200℃(ただし、溶媒を使用した場合は溶媒の揮発可能な温度以上とする)の温度で、2~30分間、好ましくは2~15分間乾燥させることによってプリプレグが得られる。
Examples of the method of impregnating the fiber base material with the resin composition include a method of immersing the base material in a resin varnish, a method of applying with various coaters, and a method of spraying with a spray. Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to a base material can be improved. In addition, when a base material is immersed in a resin varnish, a normal impregnation coating equipment can be used.
For example, the epoxy resin composition of the present invention is used as it is or in the form of a varnish dissolved or dispersed in a solvent, after impregnating a substrate such as a glass cloth, usually in a drying furnace or the like, usually at 80 to 200 ° C. (however, The prepreg can be obtained by drying at a temperature of 2 to 30 minutes, preferably 2 to 15 minutes, at a temperature higher than the temperature at which the solvent can be volatilized.
 本発明の金属張積層板について説明する。
 本発明で用いられる積層板は、上記のプリプレグを加熱加圧成形してなるものである。これにより、耐熱性、低膨張性および難燃性に優れた金属張積層板を得ることができる。プリプレグ1枚のときは、その上下両面もしくは片面に金属箔を重ねる。また、プリプレグを2枚以上積層することもできる。プリプレグ2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔あるいはフィルムを重ねる。次に、プリプレグと金属箔とを重ねたものを加熱加圧成形することで金属張積層板を得ることができる。前記加熱する温度は、特に限定されないが、120~220℃が好ましく、特に150~200℃が好ましい。前記加圧する圧力は、特に限定されないが、1.5~5MPaが好ましく、特に2~4MPaが好ましい。また、必要に応じて高温漕等で150~300℃の温度で後硬化を行ってもかまわない。
The metal-clad laminate of the present invention will be described.
The laminate used in the present invention is formed by heating and pressing the above prepreg. Thereby, the metal-clad laminated board excellent in heat resistance, low expansibility, and a flame retardance can be obtained. When one prepreg is used, the metal foil is overlapped on both the upper and lower surfaces or one surface. Two or more prepregs can be laminated. When two or more prepregs are laminated, a metal foil or film is laminated on the outermost upper and lower surfaces or one surface of the laminated prepreg. Next, a metal-clad laminate can be obtained by heat-pressing a laminate of a prepreg and a metal foil. The heating temperature is not particularly limited, but is preferably 120 to 220 ° C, and particularly preferably 150 to 200 ° C. The pressure to be pressurized is not particularly limited, but is preferably 1.5 to 5 MPa, and particularly preferably 2 to 4 MPa. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. with a high-temperature iron or the like.
 本発明のプリント配線基板について説明する。
 プリント配線基板は、前記金属張積層板を内層回路基板として用いる。金属張積層板の片面又は両面に回路形成する。場合によっては、ドリル加工、レーザー加工によりスルーホールを形成し、めっき等で両面の電気的接続をとることもできる。
The printed wiring board of the present invention will be described.
The printed wiring board uses the metal-clad laminate as an inner layer circuit board. A circuit is formed on one or both sides of the metal-clad laminate. In some cases, through holes can be formed by drilling or laser processing, and electrical connection on both sides can be achieved by plating or the like.
 前記内層回路基板に市販又は本発明の樹脂シート、または前記本発明のプリプレグを重ね合わせて加熱加圧成形し、多層プリント配線基板を得ることができる。
 具体的には、上記樹脂シートの絶縁層側と内層回路基板とを合わせて、真空加圧式ラミネーター装置などを用いて真空加熱加圧成形させ、その後、熱風乾燥装置等で絶縁層を加熱硬化させることにより得ることができる。
 ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度60~160℃、圧力0.2~3MPaで実施することができる。また、加熱硬化させる条件としては特に限定されないが、一例を挙げると、温度140~240℃、時間30~120分間で実施することができる。
 あるいは、前記本発明のプリプレグを内層回路基板に重ね合わせ、これを平板プレス装置などを用いて加熱加圧成形することにより得ることができる。ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度140~240℃、圧力1~4MPaで実施することができる。このような平板プレス装置等による加熱加圧成形では、加熱加圧成形と同時に絶縁層の加熱硬化が行われる。
A commercially available or resin sheet of the present invention, or the prepreg of the present invention is superposed on the inner layer circuit board and heated and pressed to obtain a multilayer printed wiring board.
Specifically, the insulating layer side of the resin sheet and the inner layer circuit board are combined, vacuum-pressed using a vacuum pressurizing laminator, etc., and then the insulating layer is heated and cured with a hot air dryer or the like. Can be obtained.
Here, the conditions for heat and pressure molding are not particularly limited, but as an example, it can be carried out at a temperature of 60 to 160 ° C. and a pressure of 0.2 to 3 MPa. The conditions for heat curing are not particularly limited, but for example, the temperature can be 140 to 240 ° C. and the time can be 30 to 120 minutes.
Alternatively, it can be obtained by overlaying the prepreg of the present invention on an inner circuit board and subjecting it to hot press molding using a flat plate press or the like. Here, the conditions for heat and pressure molding are not particularly limited, but as an example, it can be carried out at a temperature of 140 to 240 ° C. and a pressure of 1 to 4 MPa. In the heat and pressure forming by such a flat plate press apparatus or the like, the insulating layer is heat-cured simultaneously with the heat and pressure forming.
 また、本発明に係る多層プリント配線基板の製造方法は、前記樹脂シート、または本発明のプリプレグを、内層回路基板の内層回路パターンが形成された面に重ね合わせて連続積層する工程、及び導体回路層をセミアディティブ法で形成する工程を含む。 Further, the method for producing a multilayer printed wiring board according to the present invention includes a step of continuously laminating the resin sheet or the prepreg of the present invention on a surface on which an inner layer circuit pattern of the inner layer circuit board is formed, and a conductor circuit Forming a layer by a semi-additive process.
 前記樹脂シート、または本発明のプリプレグより形成された絶縁層の硬化は、次のレーザー照射および樹脂残渣の除去を容易にし、デスミア性を向上させるため、半硬化状態にしておく場合もある。また、一層目の絶縁層を通常の加熱温度より低い温度で加熱することにより一部硬化(半硬化)させ、絶縁層上に、一層ないし複数の絶縁層をさらに形成し半硬化の絶縁層を実用上問題ない程度に再度加熱硬化させることにより絶縁層間および絶縁層と回路との密着力を向上させることができる。この場合の半硬化の温度は、80℃~200℃が好ましく、100℃~180℃がより好ましい。尚、次工程においてレーザーを照射し、絶縁層に開口部を形成するが、その前に基材を剥離する必要がある。基材の剥離は、絶縁層を形成後、加熱硬化の前、または加熱硬化後のいずれに行っても特に問題はない。
 なお、前記多層プリント配線基板を得る際に用いられる内層回路基板は、例えば、銅張積層板の両面に、エッチング等により所定の導体回路を形成し、導体回路部分を黒化処理したものを好適に用いることができる。
Curing of the resin sheet or the insulating layer formed from the prepreg of the present invention may be left in a semi-cured state in order to facilitate the subsequent laser irradiation and removal of the resin residue and improve desmearability. In addition, the first insulating layer is partially cured (semi-cured) by heating at a temperature lower than the normal heating temperature, and one or more insulating layers are further formed on the insulating layer to form a semi-cured insulating layer. By heat-curing again to such an extent that there is no practical problem, the adhesion between the insulating layer and between the insulating layer and the circuit can be improved. In this case, the semi-curing temperature is preferably 80 ° C. to 200 ° C., more preferably 100 ° C. to 180 ° C. In the next step, laser is irradiated to form an opening in the insulating layer, but it is necessary to peel off the substrate before that. There is no particular problem with the peeling of the base material either after the insulating layer is formed, before heat curing, or after heat curing.
The inner layer circuit board used when obtaining the multilayer printed wiring board is preferably, for example, one in which a predetermined conductor circuit is formed by etching or the like on both surfaces of a copper clad laminate and the conductor circuit portion is blackened. Can be used.
 レーザー照射後の樹脂残渣等は過マンガン酸塩、重クロム酸塩等の酸化剤などにより除去することが好ましい。
 また、平滑な絶縁層の表面を同時に粗化することができ、続く金属メッキにより形成する導電配線回路の密着性を上げることができる。
Resin residues after laser irradiation are preferably removed with an oxidizing agent such as permanganate or dichromate.
Further, the surface of the smooth insulating layer can be simultaneously roughened, and the adhesion of the conductive wiring circuit formed by subsequent metal plating can be improved.
 次に、外層回路を形成する。外層回路の形成方法は、金属メッキにより絶縁樹脂層間の接続を図り、エッチングにより外層回路パターン形成を行う。樹脂シート、またはプリプレグを用いたときと同様にして、多層プリント配線基板を得ることができる。
 尚、金属箔を有する樹脂シート、またはプリプレグを用いた場合は、金属箔を剥離することなく、導体回路として用いるためにエッチングにより回路形成を行ってもよい。その場合、厚い銅箔を使用した基材付き絶縁樹脂シートを使うと、その後の回路パターン形成においてファインピッチ化が困難になるため、1~5μmの極薄銅箔を使うか、または12~18μmの銅箔をエッチングにより1~5μmに薄くするハーフエッチングする場合もある。
Next, an outer layer circuit is formed. The outer layer circuit is formed by connecting the insulating resin layers by metal plating and forming an outer layer circuit pattern by etching. A multilayer printed wiring board can be obtained in the same manner as when a resin sheet or prepreg is used.
When a resin sheet having a metal foil or a prepreg is used, a circuit may be formed by etching for use as a conductor circuit without peeling off the metal foil. In that case, if an insulating resin sheet with a base material using a thick copper foil is used, it becomes difficult to make a fine pitch in the subsequent circuit pattern formation, so use an ultrathin copper foil of 1 to 5 μm, or 12 to 18 μm. In some cases, the copper foil is half-etched to a thickness of 1 to 5 μm by etching.
 さらに絶縁層を積層し、前記同様回路形成を行っても良いが、多層プリント配線基板の設計上、最外層には、回路形成後、ソルダーレジストを形成する。ソルダーレジストの形成方法は、特に限定されないが、例えば、ドライフィルムタイプのソルダーレジストを積層(ラミネート)し、露光、および現像により形成する方法、または液状レジストを印刷したものを露光、および現像により形成する方法によりなされる。なお、得られた多層プリント配線基板を半導体装置に用いる場合、半導体素子を実装するため接続用電極部を設ける。接続用電極部は、金めっき、ニッケルメッキおよび半田めっき等の金属皮膜で適宜被覆することができる。このような方法により多層プリント配線基板を製造することができる。 Further, an insulating layer may be further laminated and a circuit may be formed in the same manner as described above. However, in the design of the multilayer printed wiring board, a solder resist is formed on the outermost layer after the circuit is formed. The method for forming the solder resist is not particularly limited. For example, a method of laminating (laminating) a dry film type solder resist, forming by exposure and development, or forming a printed liquid resist by exposure and development It is done by the method to do. In addition, when using the obtained multilayer printed wiring board for a semiconductor device, in order to mount a semiconductor element, the electrode part for a connection is provided. The connecting electrode portion can be appropriately coated with a metal film such as gold plating, nickel plating, or solder plating. A multilayer printed wiring board can be manufactured by such a method.
 次に、本発明の半導体装置について説明する。
 前記で得られた多層プリント配線基板に半田バンプを有する半導体素子を実装し、半田バンプを介して、前記多層プリント配線基板との接続を図る。そして、多層プリント配線基板と半導体素子との間には液状封止樹脂を充填し、半導体装置を形成する。半田バンプは、錫、鉛、銀、銅、ビスマスなどからなる合金で構成されることが好ましい。
 半導体素子と多層プリント配線基板との接続方法は、フリップチップボンダーなどを用いて基板上の接続用電極部と半導体素子の半田バンプとの位置合わせを行ったあと、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、多層プリント配線基板と半田バンプとを溶融接合することにより接続する。尚、接続信頼性を良くするため、予め多層プリント配線基板上の接続用電極部に半田ペースト等、比較的融点の低い金属の層を形成しておいても良い。この接合工程に先んじて、半田バンプおよび、または多層プリント配線基板上の接続用電極部の表層にフラックスを塗布することで接続信頼性を向上させることもできる。
Next, the semiconductor device of the present invention will be described.
A semiconductor element having solder bumps is mounted on the multilayer printed wiring board obtained as described above, and connection to the multilayer printed wiring board is attempted through the solder bumps. Then, a liquid sealing resin is filled between the multilayer printed wiring board and the semiconductor element to form a semiconductor device. The solder bump is preferably made of an alloy made of tin, lead, silver, copper, bismuth or the like.
The semiconductor element and multilayer printed wiring board can be connected by aligning the connection electrode part on the substrate with the solder bump of the semiconductor element using a flip chip bonder, etc., and then using an IR reflow device, hot plate, etc. The solder bumps are heated to the melting point or higher by using a heating device, and the multilayer printed wiring board and the solder bumps are connected by fusion bonding. In order to improve connection reliability, a metal layer having a relatively low melting point such as solder paste may be formed in advance on the connection electrode portion on the multilayer printed wiring board. Prior to this bonding step, the connection reliability can be improved by applying a flux to the solder bumps and / or the surface layer of the connection electrode portion on the multilayer printed wiring board.
 基板としてはマザーボード、ネットワーク基板、パッケージ基板等に使用される。特にパッケージ基板としては片面封止材料用の薄層基板として有用である。また半導体封止材として使用した場合、その配合から得られる半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。 Used as a motherboard, network board, package board, etc. as a board. Especially as a package substrate, it is useful as a thin layer substrate for a single-sided sealing material. In addition, when used as a semiconductor encapsulant, semiconductor devices obtained from the blend include, for example, DIP (Dual Inline Package), QFP (Quad Flat Package), BGA (Ball Grid Array), CSP (Chip Size Package), SOP (Small outline package), TSOP (thin small outline package), TQFP (think quad flat package), and the like.
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
ここで、各物性値の測定条件は下記の通りである。
・エポキシ当量
 JIS K-7236に記載された方法で測定し、単位はg/eq.である。
・軟化点
 JIS K-7234に準拠した方法で測定し、単位は℃である。
・弾性率(DMA)
 動的粘弾性測定器:TA-instRuments、DMA-2980
 測定温度範囲:-30~280℃
 昇温速度:2℃/分
 試験片サイズ:5mm×50mmに切り出した物を使用した
 Tg:DMA測定に於けるTan-δのピーク点をTgとした
The features of the present invention will be described more specifically with reference to synthesis examples and examples. The following materials, processing details, processing procedures, and the like can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
Here, the measurement conditions of each physical property value are as follows.
Epoxy equivalent Measured by the method described in JIS K-7236, the unit is g / eq. It is.
-Softening point Measured by a method according to JIS K-7234, the unit is ° C.
-Elastic modulus (DMA)
Dynamic viscoelasticity measuring instrument: TA-insRents, DMA-2980
Measurement temperature range: -30 to 280 ° C
Temperature rising rate: 2 ° C./min. Test piece size: 5 mm × 50 mm cut out was used. Tg: Tan-δ peak point in DMA measurement was defined as Tg.
合成例1
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらWO2007/007827に準拠して製造した下記式で表されるフェノール樹脂((a)/(b)=1.3 n=0.5 (GPCにおける分子量分布と水酸基当量から算出)水酸基当量134g/eq. 軟化点93℃)134部、エピクロロヒドリン450部、メタノール54部を加え、撹拌下で溶解し、70℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42.5部を90分かけて分割添加した後、更に70℃で1時間反応を行った。反応終了後,水洗し、塩を除いた後、得られた有機層をロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン500部を加え溶解し、撹拌下で30重量%の水酸化ナトリウム水溶液17部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで、前記一般式(1)で表されるエポキシ樹脂(EP1)195部を得た。得られたエポキシ樹脂のエポキシ当量は211g/eq.軟化点71℃、150℃における溶融粘度(ICI溶融粘度 コーン#1)は0.34Pa・sであった。
Synthesis example 1
A phenol resin represented by the following formula ((a) / (b) = 1.3 n manufactured according to WO2007 / 007827 while applying nitrogen purge to a flask equipped with a stirrer, a reflux condenser, and a stirrer. = 0.5 (Calculated from molecular weight distribution in GPC and hydroxyl equivalent) 134 equivalents of hydroxyl equivalent 134 g / eq. Softening point 93 ° C.) 134 parts, 450 parts of epichlorohydrin, 54 parts of methanol were added and dissolved under stirring. The temperature was raised to. Next, 42.5 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 70 ° C. for 1 hour. After completion of the reaction, the mixture was washed with water to remove the salt, and then the resulting organic layer was distilled off excess solvent such as epichlorohydrin under reduced pressure using a rotary evaporator. Add 500 parts of methyl isobutyl ketone to the residue, dissolve, add 17 parts of 30% by weight aqueous sodium hydroxide solution under stirring, react for 1 hour, and then wash with water until the washing water of the oil layer becomes neutral. From the resulting solution, 195 parts of an epoxy resin (EP1) represented by the general formula (1) was obtained by distilling off methyl isobutyl ketone and the like under reduced pressure using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 211 g / eq. The melt viscosity (ICI melt viscosity cone # 1) at a softening point of 71 ° C. and 150 ° C. was 0.34 Pa · s.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
実施例1
 合成例1で得られたエポキシ樹脂(EP1)211部に、2,2-ビス(4-シアネートフェニル)プロパン(東京化成工業株式会社製、以下、BisA-OCNと称す)139部を混合し、更にメチルエチルケトン356部を加えて40℃で10分間攪拌して適当な粘度の調製液を得た。この調製液にさらにイミダゾール触媒(2E4MZ 四国化成製)を6部添加し、さらに40℃で5分撹拌し、樹脂シートおよび/またはプリプレグ用の組成物を調製液(A)として得た。この調製液にA4サイズにカットしたガラスクロス1037(旭化成製)を含浸させ、余分な樹脂液を落としたのち、180℃で5分間乾燥させてプリプレグを得た。得られたプリプレグの表面の平滑性を含めた外観に問題はなかった。色味は淡赤茶色のシートとなった。DSCによる発熱開始ピークは129℃であり、硬化可能なシートであることを確認した。
Example 1
Into 211 parts of the epoxy resin (EP1) obtained in Synthesis Example 1, 139 parts of 2,2-bis (4-cyanatephenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as BisA-OCN) was mixed. Further, 356 parts of methyl ethyl ketone was added and stirred at 40 ° C. for 10 minutes to obtain a preparation having an appropriate viscosity. 6 parts of imidazole catalyst (manufactured by 2E4MZ Shikoku Kasei) was further added to this preparation liquid, and the mixture was further stirred at 40 ° C. for 5 minutes to obtain a composition for a resin sheet and / or prepreg as preparation liquid (A). This preparation solution was impregnated with glass cloth 1037 (Asahi Kasei Co., Ltd.) cut to A4 size, and the excess resin solution was dropped, followed by drying at 180 ° C. for 5 minutes to obtain a prepreg. There was no problem in the appearance including the smoothness of the surface of the obtained prepreg. The color became a light red-brown sheet. The exothermic onset peak by DSC was 129 ° C., confirming that the sheet was curable.
実施例2
 実施例1で得られたプリプレグを5枚重ね、熱板プレスで15分、10kg/cmの圧力で形成し、基板様板を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、しっかりと硬化した積層板を得た。得られた積層板で硬化物性を測定した。得られた硬化シートはDSCによる発熱開始ピークは200℃以下では確認されず、十分に硬化したものと判断できた。
Example 2
Five prepregs obtained in Example 1 were stacked and formed with a hot plate press for 15 minutes at a pressure of 10 kg / cm 2 to obtain a substrate-like plate. The obtained substrate-like plate was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a firmly cured laminate. The cured physical properties were measured with the obtained laminate. The obtained cured sheet was not confirmed to have a heat generation start peak by DSC at 200 ° C. or less, and could be judged to be sufficiently cured.
実施例3
 調製液(A)を35ミクロンの銅箔(粗面)に塗布し、175℃5分で乾燥し、銅張の樹脂シートを得た。
Example 3
The preparation liquid (A) was applied to a 35-micron copper foil (rough surface) and dried at 175 ° C. for 5 minutes to obtain a copper-clad resin sheet.
実施例4
 得られた銅付の樹脂シートを熱板プレスで15分、10kg/cmの圧力で形成し、基板様板を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、銅箔付の板を得た。
Example 4
The obtained resin sheet with copper was formed with a hot plate press at a pressure of 10 kg / cm 2 for 15 minutes to obtain a substrate-like plate. The obtained board-like board was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a board with copper foil.
実施例5
 実施例3で得られた銅張の樹脂シートと、実施例1で得られたプリプレグを2枚重ね、熱板プレスで15分、10kg/cmの圧力で形成し、銅張積層板を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、しっかりと硬化した積層板を得た。
Example 5
Two sheets of the copper-clad resin sheet obtained in Example 3 and the prepreg obtained in Example 1 were stacked and formed with a hot plate press for 15 minutes at a pressure of 10 kg / cm 2 to obtain a copper-clad laminate. It was. The obtained substrate-like plate was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a firmly cured laminate.
実施例6
 実施例1で得られたプリプレグをそのまま熱板プレスで15分、10kg/cmの圧力で形成し、基板様板を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、しっかりと硬化したプリント配線基板用板を得た。得られた基板で硬化物性を測定した。この結果を表1に示す。
 なお、得られた硬化シートはDSCによる発熱開始ピークは200℃以下では確認されず、十分に硬化したものと判断できた。
Example 6
The prepreg obtained in Example 1 was formed as it was with a hot plate press for 15 minutes at a pressure of 10 kg / cm 2 to obtain a substrate-like plate. The obtained board-like board was further post-cured at 175 ° C. for 1 hour and 220 ° C. for 1 hour to obtain a firmly cured printed wiring board board. The cured physical properties were measured on the obtained substrate. The results are shown in Table 1.
The obtained cured sheet did not have an exothermic start peak due to DSC at 200 ° C. or less, and was judged to be sufficiently cured.
比較例1
 実施例1において、BisA-OCNの代わりに比較用のフェノール樹脂(KAYAHARD、GPH-103、以下「PN1」と称す。)を231部に変更し、プリプレグ作製時の溶剤乾燥工程において120℃5分とした以外は同様の操作によりプリプレグを作製し、その後、実施例6と同様にして硬化することでプリント配線基板用板を作製した。この結果を表1に示す。
Comparative Example 1
In Example 1, instead of BisA-OCN, the comparative phenol resin (KAYAHARD, GPH-103, hereinafter referred to as “PN1”) was changed to 231 parts, and 120 ° C. for 5 minutes in the solvent drying step during preparation of the prepreg. A prepreg was produced in the same manner as described above, and then cured in the same manner as in Example 6 to produce a printed wiring board board. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
・PN1:水酸基当量236、軟化点102℃のビフェニルアラルキル型フェノール(日本化薬(株)製、 KAYAHARD GPH-103)
・BisA-OCN:2,2-ビス(4-シアネートフェニル)プロパン(東京化成(株)製)
PN1: Biphenyl aralkyl type phenol having a hydroxyl group equivalent of 236 and a softening point of 102 ° C. (KAYAHARD GPH-103, manufactured by Nippon Kayaku Co., Ltd.)
BisA-OCN: 2,2-bis (4-cyanatephenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.)
 表1により、本発明のエポキシ樹脂組成物からなるプリント配線基板は、比較例1に比べて、高い耐熱性を有しており、高温において非常に高い弾性率を有していることが確認できた。 From Table 1, it can be confirmed that the printed wiring board made of the epoxy resin composition of the present invention has higher heat resistance than Comparative Example 1, and has a very high elastic modulus at high temperature. It was.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年8月1日付で出願された日本国特許出願(特願2014-157630)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2014-157630) filed on August 1, 2014, and is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 本発明のエポキシ樹脂組成物は、その硬化物において高耐熱性、高温領域での高い曲げ弾性率に優れた特性を併せ持つため、プリント配線基板やビルドアップ基板などの積層板を作製するのに極めて有用な材料である。 The epoxy resin composition of the present invention has excellent heat resistance in a cured product and excellent bending elastic modulus in a high temperature region, so it is extremely useful for producing laminated boards such as printed wiring boards and build-up boards. It is a useful material.

Claims (9)

  1.  下記一般式(1)で表されるエポキシ樹脂及び分子中にシアナト基を2つ以上有するシアネートエステル化合物を必須成分とするエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、(a)(b)の比率は(a)/(b)=1~3である。Gはグリシジル基を表す。nは繰り返し数であり、0~5である。)
    An epoxy resin composition comprising as an essential component an epoxy resin represented by the following general formula (1) and a cyanate ester compound having two or more cyanato groups in the molecule.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, the ratio of (a) and (b) is (a) / (b) = 1 to 3. G represents a glycidyl group. N is the number of repetitions and is 0 to 5.)
  2.  請求項1に記載のエポキシ樹脂組成物を繊維基材に含浸してなるプリプレグ。 A prepreg obtained by impregnating a fiber base material with the epoxy resin composition according to claim 1.
  3.  前記繊維基材がガラス繊維基材である請求項2に記載のプリプレグ。 The prepreg according to claim 2, wherein the fiber base material is a glass fiber base material.
  4.  前記ガラス繊維基材がTガラス、Sガラス、Eガラス、NEガラス、および石英ガラスからなる群から選ばれる少なくとも一種を含む、請求項3に記載のプリプレグ。 The prepreg according to claim 3, wherein the glass fiber substrate includes at least one selected from the group consisting of T glass, S glass, E glass, NE glass, and quartz glass.
  5.  請求項2及至請求項4のいずれか一項に記載のプリプレグの少なくとも一方の面に金属箔が積層された、金属張積層板。 A metal-clad laminate in which a metal foil is laminated on at least one surface of the prepreg according to any one of claims 2 to 4.
  6.  請求項1に記載のエポキシ樹脂組成物からなる絶縁層をフィルム上に、又は金属箔上に形成してなる樹脂シート。 A resin sheet formed by forming an insulating layer made of the epoxy resin composition according to claim 1 on a film or a metal foil.
  7.  請求項5に記載の金属張積層板を内層回路基板に用いてなるプリント配線基板。 A printed wiring board using the metal-clad laminate according to claim 5 as an inner layer circuit board.
  8.  請求項2及至請求項4のいずれか一項に記載のプリプレグ又は請求項6に記載の樹脂シートを硬化してなるプリント配線基板。 A printed wiring board obtained by curing the prepreg according to any one of claims 2 to 4 or the resin sheet according to claim 6.
  9.  請求項7又は請求項8に記載のプリント配線基板に半導体素子を搭載してなる半導体装置。 A semiconductor device in which a semiconductor element is mounted on the printed wiring board according to claim 7 or 8.
PCT/JP2015/071630 2014-08-01 2015-07-30 Epoxy resin composition, resin sheet, prepreg and metal-clad laminated sheet, printed circuit board, and semiconductor device WO2016017749A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580037793.7A CN106661195B (en) 2014-08-01 2015-07-30 Epoxy resin composition, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
KR1020167032750A KR102387048B1 (en) 2014-08-01 2015-07-30 Epoxy resin composition, resin sheet, prepreg and metal-clad laminated sheet, printed circuit board, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-157630 2014-08-01
JP2014157630A JP6366136B2 (en) 2014-08-01 2014-08-01 Epoxy resin composition, resin sheet, prepreg, metal-clad laminate, printed wiring board

Publications (1)

Publication Number Publication Date
WO2016017749A1 true WO2016017749A1 (en) 2016-02-04

Family

ID=55217646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071630 WO2016017749A1 (en) 2014-08-01 2015-07-30 Epoxy resin composition, resin sheet, prepreg and metal-clad laminated sheet, printed circuit board, and semiconductor device

Country Status (5)

Country Link
JP (1) JP6366136B2 (en)
KR (1) KR102387048B1 (en)
CN (1) CN106661195B (en)
TW (1) TWI664227B (en)
WO (1) WO2016017749A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609382B (en) * 2016-07-26 2017-12-21 台灣太陽油墨股份有限公司 Dielectric material composition, insulated film and circuit board containing the same
JP6827645B2 (en) * 2016-11-02 2021-02-10 三菱瓦斯化学株式会社 Cyanic acid ester compound, method for producing cyanic acid ester compound, resin composition, cured product, single layer resin sheet, laminated resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber reinforced composite material And adhesive
JP6879451B2 (en) * 2016-11-02 2021-06-02 三菱瓦斯化学株式会社 Cyanic acid ester compound, method for producing cyanic acid ester compound, resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material And adhesive
JP6848950B2 (en) * 2018-10-30 2021-03-24 味の素株式会社 Resin composition
TW202305027A (en) * 2021-07-30 2023-02-01 日商日本化藥股份有限公司 Epoxy resin, curable resin composition, and cured products thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292066A (en) * 1994-04-28 1995-11-07 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured product thereof
WO2011132674A1 (en) * 2010-04-21 2011-10-27 三菱瓦斯化学株式会社 Thermosetting composition
JP2011246612A (en) * 2010-05-27 2011-12-08 Mitsubishi Gas Chemical Co Inc Thermosetting resin composition
JP2013043958A (en) * 2011-08-25 2013-03-04 Meiwa Kasei Kk Epoxy resin, method of producing the same, and use of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028110A1 (en) * 2007-08-24 2009-03-05 Sumitomo Bakelite Co., Ltd. Multilayered wiring board and semiconductor device
JP2011184650A (en) * 2010-03-11 2011-09-22 Nitto Denko Corp Resin composition for electronic component encapsulation and electronic component device using the same
KR101763975B1 (en) * 2010-05-07 2017-08-01 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition for circuit boards, prepreg, laminate, resin sheet, laminate for printed wiring boards, printed wiring boards, and semiconductor devices
CN103897143B (en) * 2012-12-28 2018-05-01 明和化成株式会社 Epoxy resin, the manufacture method of epoxy resin and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292066A (en) * 1994-04-28 1995-11-07 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured product thereof
WO2011132674A1 (en) * 2010-04-21 2011-10-27 三菱瓦斯化学株式会社 Thermosetting composition
JP2011246612A (en) * 2010-05-27 2011-12-08 Mitsubishi Gas Chemical Co Inc Thermosetting resin composition
JP2013043958A (en) * 2011-08-25 2013-03-04 Meiwa Kasei Kk Epoxy resin, method of producing the same, and use of the same

Also Published As

Publication number Publication date
JP2016034997A (en) 2016-03-17
KR102387048B1 (en) 2022-04-15
TW201609947A (en) 2016-03-16
KR20170039079A (en) 2017-04-10
JP6366136B2 (en) 2018-08-01
TWI664227B (en) 2019-07-01
CN106661195B (en) 2020-06-30
CN106661195A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
KR102316144B1 (en) Epoxy resin composition, resin sheet, and prepreg, and metal-clad laminate board, printed circuit board, and semiconductor device
JP5569270B2 (en) Prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP6366136B2 (en) Epoxy resin composition, resin sheet, prepreg, metal-clad laminate, printed wiring board
JP2017206578A (en) Thermosetting resin composition, carrier-attached resin film, prepreg, metal-clad laminate, resin substrate, printed wiring board, and semiconductor device
JP2014205755A (en) Resin composition for primer layer formation
TWI775880B (en) resin composition
TWI662056B (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, laminated board, printed wiring board, semiconductor device
JP2017082213A (en) Epoxy resin composition, cured product, semiconductor element, resin sheet, prepreg, and carbon fiber-reinforced composite material
JP6932116B2 (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, printed wiring board, semiconductor device
JP2006089595A (en) Build-up resin composition and its application
JP2020015864A (en) Resin composition, sheet-like laminated material, printed wiring board, semiconductor chip package, and semiconductor device
JP5293654B2 (en) Circuit board resin composition, prepreg, laminate, printed wiring board, and semiconductor device
TWI815938B (en) Aromatic amine resin having N-alkyl group, curable resin composition and cured product thereof
TW202219167A (en) resin composition
JP6636599B2 (en) Epoxy resin composition, prepreg and metal-clad laminate, printed wiring board
JP7195372B2 (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, printed wiring board, semiconductor device
JP2015086293A (en) Prepreg and multilayer printed wiring board
TWI839802B (en) Resin composition
JP2011195644A (en) Cyanate resin composition for laminated board, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP4942384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP2024037317A (en) Resin composition, cured product and application of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167032750

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827268

Country of ref document: EP

Kind code of ref document: A1