WO2016017743A1 - 光ファイバ及びその製造方法 - Google Patents

光ファイバ及びその製造方法 Download PDF

Info

Publication number
WO2016017743A1
WO2016017743A1 PCT/JP2015/071622 JP2015071622W WO2016017743A1 WO 2016017743 A1 WO2016017743 A1 WO 2016017743A1 JP 2015071622 W JP2015071622 W JP 2015071622W WO 2016017743 A1 WO2016017743 A1 WO 2016017743A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical fiber
core
index difference
relative refractive
Prior art date
Application number
PCT/JP2015/071622
Other languages
English (en)
French (fr)
Inventor
岸 達也
祥 遠藤
北村 隆之
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201580001948.1A priority Critical patent/CN105556353B/zh
Priority to EP15826791.4A priority patent/EP3037855A4/en
Priority to RU2016109055A priority patent/RU2635839C2/ru
Priority to JP2016501467A priority patent/JP6155380B2/ja
Publication of WO2016017743A1 publication Critical patent/WO2016017743A1/ja
Priority to US15/083,957 priority patent/US9739935B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02028Small effective area or mode field radius, e.g. for allowing nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres

Definitions

  • the present invention relates to an optical fiber and a method for manufacturing the same, and more particularly, to provide an effective refractive index profile of a core for reducing excess loss generated when bending is applied to an optical fiber, so-called bending loss (macrobend loss). It has an optical fiber.
  • This application includes Japanese Patent Application No. 2014-157571 filed on August 1, 2014, Japanese Patent Application No. 2014-195937 filed on September 26, 2014, and Japanese Patent Application filed on September 26, 2014. Claims priority based on 2014-195938, the contents of which are incorporated herein.
  • ITU-T Recommendation G which is a standard for standard single mode optical fiber (SSMF).
  • SSMF standard single mode optical fiber
  • the following method has been proposed as a method for improving (reducing) the bending loss of a standard single mode optical fiber (SSMF).
  • SSMF standard single mode optical fiber
  • a low refractive index portion is provided in a portion of the clad away from the core (see, for example, Patent Documents 2 and 3).
  • a low refractive index part so-called a trench part, is provided at a location away from the core, thereby strengthening optical confinement in the core when bending is applied and bending loss of the optical fiber.
  • Other optical characteristics comply with G.B3 while complying with B3. 657.
  • Some products comply with the A series standards.
  • the refractive index profile of the core is set to the ⁇ power (see, for example, Patent Documents 3 and 9).
  • ⁇ power graded index type
  • light confinement in the core is strengthened and bending loss is reduced.
  • Patent Document 3 describes that 30% bending loss can be improved when the refractive index distribution shape of the core is set to the ⁇ power, compared to a simple step-type refractive index distribution shape. .
  • FIG. 1 shows a schematic diagram of an OTDR failure waveform observed when a connection step occurs.
  • An OTDR defect waveform having a shape as shown in FIG. 1 is originally observed when a disconnection occurs (see, for example, FIG. 5A of Japanese Patent Laid-Open No. 2000-205999), but optical fibers having different MFDs. It also occurs at the place where is connected. This is because the signal strength of OTDR is proportional to the -2nd power of MFD (inversely proportional to the 2nd power of MFD).
  • a low refractive index portion is provided in a portion of the clad away from the core.
  • a method for producing an optical fiber preform a VAD (Vapor Phase Axial Deposition) method, an OVD (Outside Vapor Deposition) method, a CVD (Chemical Vapor Deposition), and the like are known.
  • VAD Vapor Phase Axial Deposition
  • OVD Outside Vapor Deposition
  • CVD Chemical Vapor Deposition
  • a method of depositing material on the inner surface of a quartz tube (starting quartz tube) as a starting member as in the CVD method (so-called internal method)
  • a core is formed inside the starting quartz tube.
  • the size of the base material that can be manufactured from the starting quartz tube having the same size (inner diameter) is reduced.
  • a dopant for lowering the refractive index than quartz is required to provide the low refractive index portion.
  • an optical fiber having a trench type refractive index distribution needs to form a plurality of layers having different refractive indexes, the manufacturing process of the base material becomes complicated.
  • the present invention has been made in view of the above circumstances, and provides an optical fiber that can be made to have the same MFD as SSMF and can improve bending loss without adding a trench portion or a hole.
  • the task is to do.
  • the refractive index of the clad near the core has a great influence on the optical characteristics of the optical fiber.
  • the inventor We have found a refractive index profile that can reduce loss.
  • Another object of the present invention is to achieve both suppression of connection loss and reduction of bending loss when an optical fiber and another optical fiber are connected by adopting a refractive index distribution based on this knowledge. .
  • an optical fiber includes a core and a clad surrounding an outer periphery of the core, the radius of the core is represented by r1, and the center of the core and the core
  • the relative refractive index difference between the clad and the clad is expressed by the first relative refractive index difference ⁇ 1a, and the relative refractive index difference between the position where the radial distance from the center of the core is r1 is the second relative refractive index.
  • the first relative refractive index difference ⁇ 1a When expressed by a refractive index difference ⁇ 1b, the first relative refractive index difference ⁇ 1a is greater than 0, the second relative refractive index difference ⁇ 1b is greater than 0, and the first relative refractive index difference ⁇ 1a is the second ratio.
  • the first relative refractive index difference ⁇ 1a and the second relative refractive index difference ⁇ 1b are larger than the refractive index difference ⁇ 1b, and are expressed by the following formula: 0.20 ⁇ ( ⁇ 1a ⁇ 1b) / ⁇ 1a ⁇ 0.88.
  • the core refractive index distribution ⁇ is the center of the core.
  • the first relative refractive index difference ⁇ 1a may satisfy a relationship of 0.35% ⁇ 1a ⁇ 0.50%.
  • the second relative refractive index difference ⁇ 1b may satisfy a relationship of 0.06% ⁇ ⁇ 1b ⁇ 0.35%.
  • the radius r1 may satisfy a relationship of 4.50 ⁇ m ⁇ r1 ⁇ 6.25 ⁇ m.
  • a bending loss value at a wavelength of 1550 nm and a bending radius of 15 mm may be 0.102 dB / 10 turns or less.
  • the first relative refractive index difference ⁇ 1a and the second relative refractive index difference ⁇ 1b are expressed by the following formula: 0.42 ⁇ ( ⁇ 1a ⁇ 1b) / ⁇ 1a ⁇ 0.88
  • the relationship represented by may be satisfied.
  • the bending loss value at a wavelength of 1550 nm and a bending radius of 15 mm may be 0.055 dB / 10 turns or less.
  • the cable cutoff wavelength may be 1260 nm or less.
  • the mode field diameter MFD at a wavelength of 1310 nm may be within a range of 8.2 ⁇ m ⁇ MFD ⁇ 9.9 ⁇ m.
  • the manufacturing method of the optical fiber which concerns on the 2nd aspect of this invention is a manufacturing method of the optical fiber which concerns on the said 1st aspect, Comprising: When producing the preform
  • An optical fiber according to a third aspect of the present invention includes a core and a clad formed on an outer periphery of the core, and the clad is at least an inner clad portion adjacent to the core and an outer circumference of the inner clad portion.
  • the core has a refractive index of ⁇ 1, a maximum refractive index of ⁇ 1max
  • the inner cladding portion has a refractive index of ⁇ 2, and a minimum refractive index of ⁇ 2min.
  • the outer cladding portion has a refractive index of ⁇ 3, and the refractive indexes of the core, the inner cladding portion, and the outer cladding portion have a relationship shown in equations [4] and [5].
  • the outer peripheral radius r1 of the core, the outer peripheral radius r2 of the inner clad part, and the outer peripheral radius r3 of the outer clad part have the relationship shown in the equations [6] and [7]. r1 ⁇ r2 ⁇ r3 ... [6], 0.2 ⁇ r1 / r2 ⁇ 0.5 ... [7].
  • the cutoff wavelength ⁇ c 22m of 22m satisfies the formula [8].
  • the mode field diameter at the wavelength of 1310 nm satisfies the formula [9]. 8.6 ⁇ m ⁇ mode field diameter ⁇ 9.5 ⁇ m [9].
  • the refractive indexes of the core, the inner clad part, and the outer clad part may have the relationship shown in the formula [1A] and the formula [2A]. ⁇ 1max> ⁇ 3> ⁇ 2min ... [1A], 0.01% ⁇ ( ⁇ 3- ⁇ 2min) ⁇ 0.03% ... [2A].
  • the increase in loss at a wavelength of 1550 nm when wound 10 times around a mandrel having a diameter of 15 mm is 0.25 dB or less
  • the increase in loss at a wavelength of 1625 nm when wound around 10 times around the mandrel is It may be 1.0 dB or less.
  • the outer cladding portion may be made of pure silica glass, and the inner cladding portion may be made of silica glass to which fluorine is added.
  • the outer clad portion may be made of pure silica glass, and the inner clad portion may be made of silica glass to which chlorine is added.
  • the inner cladding portion may be made of, for example, silica glass to which fluorine (F) is added when ⁇ 2 ⁇ 3, and when ⁇ 2> ⁇ 3, for example, chlorine (Cl) is added. It may be made of silica glass.
  • An optical fiber according to a fourth aspect of the present invention includes a core and a clad formed on an outer periphery of the core, and the clad is at least an inner clad portion adjacent to the core and an outer circumference of the inner clad portion.
  • the core has a refractive index of ⁇ 1 and a maximum refractive index of ⁇ 1max, and the inner cladding portion has a refractive index.
  • the minimum refractive index is ⁇ 2min
  • the trench portion has a refractive index ⁇ 3
  • the minimum refractive index is ⁇ 3min
  • the outer cladding portion has a refractive index ⁇ 4, the core
  • the refractive indexes of the inner clad part, the trench part, and the outer clad part have a relationship represented by equations [14] to [16]. ⁇ 1max> ⁇ 2> ⁇ 3min ... [14], ⁇ 1max> ⁇ 4> ⁇ 3min ... [15], 0.01% ⁇ ( ⁇ 4- ⁇ 3min) ⁇ 0.03% ... [16].
  • the outer peripheral radius r1 of the core, the outer peripheral radius r2 of the inner cladding portion, the outer peripheral radius r3 of the trench portion, and the outer peripheral radius r4 of the outer cladding portion have the relationships shown in equations [17] to [19].
  • the cutoff wavelength ⁇ c 22m of 22m satisfies the formula [20].
  • the mode field diameter at the wavelength of 1310 nm satisfies the formula [21]. 8.6 ⁇ m ⁇ mode field diameter ⁇ 9.5 ⁇ m [21].
  • the loss increase at a wavelength of 1550 nm when it is wound 10 times on a mandrel having a diameter of 15 mm is 0.25 dB or less
  • the increase in loss at a wavelength of 1625 nm when it is wound 10 times on the mandrel is It may be 1.0 dB or less.
  • the outer cladding portion may be made of pure silica glass, and the trench portion may be made of silica glass to which fluorine is added.
  • an optical fiber in which the refractive index distribution of the core is linear and simple compared with the ⁇ power distribution, but the bending loss can be improved. be able to.
  • the MFD can be set to the same level as the SSMF, even if the optical fiber and the SSMF are connected, the connection step does not become a problem.
  • hole are not required for a clad.
  • the third aspect of the present invention by adjusting the difference in refractive index between the inner cladding portion and the outer cladding portion, the ratio of the outer peripheral radius between the core and the inner cladding portion, and the like, Connection loss when connected to a single mode optical fiber (SSMF) can be suppressed, and bending loss can be reduced.
  • SSMF single mode optical fiber
  • the fourth aspect of the present invention by adjusting the difference in refractive index between the trench portion and the outer cladding portion, the ratio of the outer peripheral radius of the core, the inner cladding portion, and the trench portion, and the like, for example, the connection loss when connected to a normal single mode optical fiber (SSMF) can be kept low, and the bending loss can be reduced.
  • SSMF normal single mode optical fiber
  • refractive index distribution when an acute angle is changed It is a specific example of a refractive index distribution when an acute angle is changed. It is a specific example of a refractive index distribution when an acute angle is changed. It is a specific example of a refractive index distribution when an acute angle is changed. It is a specific example of a refractive index distribution when an acute angle is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed.
  • a refractive index distribution when the ⁇ value is changed It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a specific example of a refractive index distribution when the ⁇ value is changed. It is a graph which shows the example of the dependence of (alpha) value with respect to bending loss. It is a graph which shows the example of the dependence of the acute angle with respect to bending loss.
  • FIG. 2 shows a schematic diagram of a refractive index distribution in the optical fiber according to the first embodiment of the present invention.
  • the optical fiber according to the present embodiment includes a core provided at the center of the optical fiber and a clad surrounding the outer periphery of the core.
  • the clad is generally concentric with the core, but the clad and the core may be eccentric within an acceptable range.
  • r1 represents the radius of the core.
  • the left end of the range of r1 indicates the center position of the core, and the right end of the range of r1 indicates the outer peripheral position of the core.
  • ⁇ 1a first relative refractive index difference
  • ⁇ 1b second relative refractive index difference
  • the relative refractive index difference of ⁇ 1a and ⁇ 1b means a relative refractive index difference based on the refractive index of the cladding.
  • a range in which the distance from the center of the core is equal to or less than r1 represents the core, and an outside of the range of r1 (in FIG. 2, a place where the distance from the center of the core is greater than r1) represents the cladding.
  • the relative refractive index difference is zero.
  • the refractive index distribution ⁇ of the core in the optical fiber according to the present embodiment is expressed by the following equation [1] over the entire section of 0 ⁇ r ⁇ r1 as a function ⁇ (r) of the radial distance r from the center of the core. It is represented by
  • the relative refractive index difference (first relative refractive index difference) ⁇ 1a is larger than the relative refractive index difference (second relative refractive index difference) ⁇ 1b. That is, the refractive index at the center of the core is higher than the refractive index at the outer periphery of the core.
  • the relative refractive index difference ⁇ 1a needs to be larger than 0 in the optical fiber that guides light by the difference in refractive index between the core and the clad. This means that the refractive index at the core center is higher than the refractive index at the cladding.
  • the “acute angle” in the optical fiber according to the present embodiment is represented by the symbol A and is defined as the following formula [2].
  • FIG. 3 shows the refractive index distribution when the acute angle of the optical fiber according to this embodiment is changed from 0% to 100% in increments of 20%.
  • ⁇ 1a is equal to ⁇ 1b
  • the acute angle A is 0%, resulting in a step-type refractive index profile.
  • ⁇ 1b is equal to 0
  • the acute angle A is 100%.
  • the refractive index distribution of the “pentagonal shape” illustrated in FIG. 2 not only represents the refractive index distribution by the formula [1], but also satisfies the relationship of ⁇ 1a> ⁇ 1b> 0.
  • the acute angle in this case is greater than 0% and less than 100%.
  • the refractive index distribution of the ⁇ power distribution in the optical fiber according to the present embodiment is generally expressed by the following formula [3].
  • n 1 is the refractive index at the core center
  • n 0 is the refractive index of the cladding
  • is the relative refractive index difference of the core center with respect to the cladding
  • r is the distance from the core center in the radial direction
  • FIG. 4 shows the refractive index distribution when the ⁇ value is changed from 1 to ⁇ in the ⁇ power distribution.
  • optical fiber bending loss occurs when light cannot be guided through the core of the optical fiber due to a change in the refractive index distribution induced when the optical fiber is bent, and light is emitted to the cladding. .
  • the refractive index distribution is such that the refractive index gradually decreases from the central part of the core to the cladding.
  • the relative refractive index difference between the core and the clad is small, light easily leaks into the clad. Therefore, in order to suppress light from leaking into the clad, it is preferable that (b) the relative refractive index difference at the outer periphery of the core with reference to the clad be large.
  • the range of the acute angle A defined by the above formula [2] is preferably 0.20 ⁇ A ⁇ 0.88, and more preferably 0.42 ⁇ A ⁇ 0.88.
  • the range of the relative refractive index difference ⁇ 1a at the core center is preferably 0.35% ⁇ 1a ⁇ 0.50%.
  • the range of the relative refractive index difference ⁇ 1b on the outer periphery of the core is preferably 0.06% ⁇ ⁇ 1b ⁇ 0.35%.
  • the range of the core radius r1 is preferably 4.50 ⁇ m ⁇ r1 ⁇ 6.25 ⁇ m.
  • the range of the value of bending loss at a wavelength of 1550 nm and a bending radius of 15 mm is preferably 0.102 dB / 10 turns or less (0.102 dB or less per 10 turns), 0.055 dB / 10 turns or less (0.055 dB or less per 10 turns) Is more preferable.
  • the range of the cable cutoff wavelength is preferably 1260 nm or less.
  • the range of the mode field diameter MFD at a wavelength of 1310 nm is preferably 8.2 ⁇ m ⁇ MFD ⁇ 9.9 ⁇ m.
  • the optical fiber according to the present embodiment is manufactured by spinning an optical fiber from an optical fiber preform after producing an optical fiber preform by a known preform producing method such as a VAD method, an OVD method, or a CVD method.
  • a known preform producing method such as a VAD method, an OVD method, or a CVD method.
  • a method for producing the optical fiber preform at least the glass constituting the core is produced by the OVD method or the CVD method, and the remaining glass portion is produced by further depositing silica (SiO 2 ) glass, a quartz tube jacket, or the like.
  • the part produced by the OVD method or the CVD method may be only glass (part or all) constituting the core, and includes part of the glass constituting the cladding in addition to the glass constituting the core. But you can.
  • the size of the optical fiber is not particularly limited, examples of the cladding diameter include 125 ⁇ m and 80 ⁇ m.
  • the spun optical fiber one or more coatings such as a resin may be laminated on the outer periphery of the clad.
  • dopants used in the production of quartz optical fibers include germanium (Ge), phosphorus (P), fluorine (F), boron (B), and aluminum (Al). Two or more kinds of dopants may be used in the production of the silica-based optical fiber.
  • the core material includes Ge-added silica
  • the clad material includes pure silica.
  • the formula of the refractive index distribution shown in Formula [1] represents the design distribution.
  • fluctuations in the refractive index distribution due to manufacturing reasons are expected to be added.
  • the optical fiber according to the first embodiment only needs to satisfy the characteristics such as Expression [1] within the range of manufacturing tolerances. If the refractive index distribution fluctuates at the outer periphery of the core, the feature such as the formula [1] is satisfied within a range where the distance from the core center is within 90% (or within 95%) of the core radius. May be.
  • the relative refractive index difference ⁇ 1b is not a relative refractive index difference in the actual outer periphery of the core, but for describing a refractive index distribution inside the outer periphery of the core. It may be a virtual value.
  • FIG. 9 shows a schematic configuration of an optical fiber 10 according to the second embodiment of the present invention.
  • the optical fiber 10 includes a core 1 disposed in the center, and a clad 4 provided concentrically with the core 1 on the outer peripheral side (outer periphery) of the core 1.
  • the clad 4 has at least an inner clad portion 2 adjacent to the outer peripheral side (outer periphery) of the core 1 and an outer clad portion 3 formed on the outer peripheral side (outer periphery) of the inner clad portion 2.
  • FIG. 10 schematically shows the refractive index distribution of the optical fiber 10.
  • the refractive index of the core 1 is defined as ⁇ 1, and the maximum refractive index is defined as ⁇ 1max.
  • the refractive index of the inner cladding part 2 is defined as ⁇ 2, and the minimum refractive index is defined as ⁇ 2min.
  • the refractive index of the outer cladding part 3 is defined as ⁇ 3.
  • the maximum refractive index ⁇ 1max of the core 1 is the refractive index of the core 1 that is maximum in the radial range from the center of the core 1 to the outer periphery.
  • the refractive index ⁇ 1 is equal to the maximum refractive index ⁇ 1max over the entire range.
  • the minimum refractive index ⁇ 2min of the inner cladding portion 2 is the refractive index of the inner cladding portion 2 that is the smallest in the radial range from the inner periphery to the outer periphery of the inner cladding portion 2.
  • the refractive index ⁇ 2 of the inner cladding portion 2 is constant regardless of the radial position, the refractive index ⁇ 2 is equal to the minimum refractive index ⁇ 2min over the entire range.
  • the following equation [4] is established. ⁇ 1max> ⁇ 2min and ⁇ 1max> ⁇ 3 (4) As shown in Expression [4], the maximum refractive index ⁇ 1max of the core 1 is set to be larger than the minimum refractive index ⁇ 2min of the inner cladding portion 2 and the refractive index ⁇ 3 of the outer cladding portion 3. In the optical fiber 10, the minimum refractive index ⁇ 2 min of the inner cladding portion 2 is set to be smaller than the refractive index ⁇ 3 of the outer cladding portion 3.
  • Equation [5] means that the absolute value of the difference between the minimum refractive index ⁇ 2min of the inner cladding portion 2 and the refractive index ⁇ 3 of the outer cladding portion 3 is more than 0.01% and less than 0.03%. To do.
  • the bending loss may not be sufficiently reduced.
  • the absolute value of the difference between ⁇ 2min and ⁇ 3 is too large, the mode field diameter becomes small, and the connection loss when connected to another optical fiber (for example, a normal single mode optical fiber (SSMF)) may increase.
  • the bending loss can be reduced by setting the absolute value of the difference between ⁇ 2min and ⁇ 3 to a range exceeding 0.01%.
  • the mode field diameter (MFD) can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • the following equation [1A] holds regarding the magnitude relationship among ⁇ 1max, ⁇ 2min, and ⁇ 3.
  • ⁇ 1max> ⁇ 3> ⁇ 2min As shown in Expression [1A], the maximum refractive index ⁇ 1max of the core 1 is set to be larger than the refractive index ⁇ 3 of the outer cladding portion 3.
  • the refractive index ⁇ 3 of the outer cladding part 3 is set larger than the minimum refractive index ⁇ 2min of the inner cladding part 2.
  • Equation [2A] means that the difference between the refractive index ⁇ 3 of the outer cladding portion 3 and the minimum refractive index ⁇ 2min of the inner cladding portion 2 is more than 0.01% and less than 0.03%.
  • the outer peripheral radii of the core 1, the inner cladding part 2, and the outer cladding part 3 are defined as r1, r2, and r3, respectively.
  • the ratio r1 / r2 between the outer peripheral radius r1 of the core 1 and the outer peripheral radius r2 of the inner cladding portion 2 is in the range shown in the following equation [7]. 0.2 ⁇ r1 / r2 ⁇ 0.5 [7]
  • r1 / r2 If r1 / r2 is too small, the mode field diameter becomes small, and there is a possibility that the connection loss when connected to another optical fiber (for example, SSMF) becomes large. On the other hand, if r1 / r2 is too large, bending loss may increase. In the optical fiber 10, by adjusting r1 / r2 to be 0.2 or more, the mode field diameter can be optimized and the connection loss when connected to another optical fiber can be kept low. The bending loss can be reduced by adjusting r1 / r2 to be 0.5 or less.
  • the optical fiber 10 is adjusted so that the cutoff wavelength ⁇ c 22m of 22 m is 1260 nm or less. That is, the following formula [8] is established. ⁇ c 22m ⁇ 1260 nm (8) As a result, ITU-T Recommendation G. 652 can be satisfied.
  • the cutoff wavelength ⁇ c 22m is, for example, ITU-T Recommendation G. It can be measured by the measurement method described in 650.
  • the optical fiber 10 is set such that the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less by adjusting the refractive index and the outer radius. That is, the following formula [9] is established. 8.6 ⁇ m ⁇ MFD ⁇ 9.5 ⁇ m (9) By setting the mode field diameter within the range of the formula [9], connection loss when connected to another optical fiber (for example, SSMF) can be kept low.
  • the optical fiber 10 has an ITU-T G.D. It satisfies the provisions of 652.
  • the optical fiber 10 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 1 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding portion 2 can be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the inner cladding portion 2 may be made of silica glass whose refractive index is increased by adding a dopant such as chlorine (Cl).
  • the outer cladding part 3 can be comprised, for example with a pure silica glass.
  • the outer cladding portion 3 may adjust the refractive index by adding a dopant (eg, Ge, F, etc.).
  • Each layer constituting the optical fiber 10 can be formed by a known method such as an MCVD method, a PCVD method, a VAD method, an OVD method, or a combination thereof.
  • the optical fiber preform can be manufactured as follows.
  • a glass deposition layer serving as the inner cladding portion 2 is formed inside a silica glass tube serving as the outer cladding portion 3 (for example, a glass tube made of pure silica glass) using a raw material containing a dopant such as fluorine (F). .
  • the refractive index of the inner cladding part 2 can be adjusted by the amount of dopant added.
  • a glass deposition layer to be the core 1 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 1 can also be formed using the core rod produced separately.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification. By drawing this optical fiber preform, an optical fiber 10 shown in FIG. 9 is obtained.
  • the CVD method is preferable in that the refractive index distribution can be accurately adjusted by adding a dopant.
  • the VAD method and the OVD method are also applicable.
  • the VAD method and the OVD method have an advantage of high productivity.
  • the difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3 is set to the above range (see Formula [5]), and the ratio of the outer peripheral radius between the core 1 and the inner cladding portion 2 is set to the above range (Formula (Refer to [7]), it is possible to suppress the connection loss when connecting to another optical fiber and to reduce the bending loss.
  • the present inventor has found that the bending loss can be reduced without reducing the mode field diameter.
  • the optical fiber 10 is technically significant in that it adopts this refractive index distribution to achieve both suppression of connection loss and reduction of bending loss when connected to other optical fibers.
  • the optical fiber 10 has a small difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3, a conventional manufacturing method (for example, a normal SSMF manufacturing method) can be used without greatly changing the inner cladding portion 2. And the refractive index of the outer cladding part 3 can be adjusted easily and accurately. Further, since the difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3 is small, there are few restrictions based on the manufacturing method. For example, not only the CVD method suitable for adjusting the refractive index distribution but also a VAD method and an OVD method can be employed. Therefore, the optical fiber 10 can be easily manufactured, and the manufacturing cost can be kept low.
  • a conventional manufacturing method for example, a normal SSMF manufacturing method
  • the optical fiber 10 has a small difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3, the amount of dopant such as fluorine (F) and chlorine (Cl) for forming the inner cladding portion 2 can be reduced.
  • the source gas (for example, SiF 4 ) used for doping such as fluorine (F) is expensive, the source cost can be suppressed and the manufacturing cost can be reduced by reducing the dopant addition amount.
  • the optical fiber 10 since the minimum refractive index ⁇ 2min of the inner cladding portion 2 is smaller than the refractive index ⁇ 3 of the outer cladding portion 3, the optical fiber 10 has good confinement of light in the core 1 and reduces bending loss. it can.
  • FIG. 11 shows a schematic configuration of an optical fiber 20 according to the third embodiment of the present invention.
  • the optical fiber 20 includes a core 1 disposed in the center, and a clad 14 provided concentrically with the core 1 on the outer peripheral side (outer periphery) of the core 1.
  • the clad 14 has at least an inner cladding portion 12 adjacent to the outer peripheral side (outer periphery) of the core 1 and an outer cladding portion 13 formed on the outer peripheral side (outer periphery) of the inner cladding portion 12.
  • FIG. 12 schematically shows the refractive index distribution of the optical fiber 20.
  • the refractive index of the core 1 is defined as ⁇ 1, and the maximum refractive index is defined as ⁇ 1max.
  • the refractive index of the inner cladding portion 12 is defined as ⁇ 2, and the minimum refractive index is defined as ⁇ 2min.
  • the refractive index of the outer cladding part 13 is defined as ⁇ 3.
  • the following equation [10] is established as in the optical fiber 10 of the second embodiment. ⁇ 1max> ⁇ 2min and ⁇ 1max> ⁇ 3 (10)
  • the optical fiber 20 is different from the optical fiber 10 of the second embodiment in that the minimum refractive index ⁇ 2min of the inner cladding portion 12 is adjusted to be larger than the refractive index ⁇ 3 of the outer cladding portion 13.
  • the following equation [11] is established, as in the optical fiber 10 of the second embodiment. 0.01% ⁇
  • the mode field diameter (MFD) is optimized, and the connection loss when connected to other optical fibers is kept low, In addition, bending loss can be reduced.
  • the optical fiber 20 has a cut-off wavelength ⁇ c 22m of 22 m of 1260 nm or less.
  • the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less.
  • the optical fiber 20 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 1 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding part 2 can be made of, for example, pure silica glass.
  • the inner cladding portion 2 may adjust the refractive index by adding a dopant such as chlorine (Cl).
  • the outer cladding part 3 can be comprised, for example with a pure silica glass.
  • the outer clad part 3 may be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the optical fiber 20 can be manufactured by the MCVD method, the PCVD method, the VAD method, the OVD method, or the like, similarly to the optical fiber 10 of the second embodiment.
  • the optical fiber preform can be manufactured as follows. Using a raw material such as pure silica glass, a glass deposition layer to be the inner cladding portion 2 is formed inside a silica glass tube to be the outer cladding portion 3 (for example, a silica glass tube containing a dopant such as fluorine (F)). . Next, a glass deposition layer to be the core 1 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 1 can also be formed using the core rod produced separately.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification. By drawing this optical fiber preform, an optical fiber 20 shown in FIG. 11 is obtained.
  • the difference in refractive index between the inner cladding portion 12 and the outer cladding portion 13 is set in the above range (see Equation [11]), and the ratio of the outer peripheral radius between the core 1 and the inner cladding portion 12 is set in the above range (Equation). (Refer to [13]), it is possible to suppress the connection loss when connecting to another optical fiber and to reduce the bending loss. Since the optical fiber 20 can be used without greatly changing the conventional manufacturing method, it is easy to manufacture and the manufacturing cost can be kept low.
  • the clads 4 and 14 are composed of two clad parts (an inner clad part and an outer clad part), and the clad is other than the inner clad part and the outer clad part. It may have a layer.
  • FIG. 13 shows a schematic configuration of an optical fiber 110 according to the fourth embodiment of the present invention.
  • the optical fiber 110 includes a core 101 disposed in the center, and a clad 105 provided concentrically with the core 101 on the outer peripheral side (outer periphery) of the core 101.
  • the cladding 105 includes at least an inner cladding portion 102 adjacent to the outer peripheral side (outer periphery) of the core 101, a trench portion 103 formed adjacent to the outer peripheral side (outer periphery) of the inner cladding portion 102, and the outer periphery of the trench portion 103.
  • an outer clad portion 104 formed on the side (outer periphery).
  • FIG. 14 schematically shows the refractive index distribution of the optical fiber 110.
  • the refractive index of the core 101 is defined as ⁇ 1, and the maximum refractive index is defined as ⁇ 1max.
  • the refractive index of the inner cladding portion 102 is defined as ⁇ 2, and the minimum refractive index is defined as ⁇ 2min.
  • the refractive index of the trench portion 103 is defined as ⁇ 3, and the minimum refractive index is defined as ⁇ 3 min.
  • the refractive index of the outer cladding portion 104 is defined as ⁇ 4.
  • the maximum refractive index ⁇ 1max of the core 101 is the refractive index of the core 101 that is maximized in the radial range from the center to the outer periphery of the core 101.
  • the refractive index ⁇ 1 is equal to the maximum refractive index ⁇ 1max over the entire range.
  • the minimum refractive index ⁇ 2min of the inner cladding portion 102 is the refractive index of the inner cladding portion 102 that is minimum in the radial direction range from the inner circumference to the outer circumference of the inner cladding portion 102.
  • the refractive index ⁇ 2 of the inner cladding portion 102 is constant regardless of the radial position, the refractive index ⁇ 2 is equal to the minimum refractive index ⁇ 2min over the entire range.
  • the minimum refractive index ⁇ 3min of the trench portion 103 is the refractive index of the trench portion 103 that is the smallest in the radial range from the inner periphery to the outer periphery of the trench portion 103.
  • the refractive index ⁇ 3 is equal to the minimum refractive index ⁇ 3min over the entire range.
  • the following equation [14] is established. ⁇ 1max> ⁇ 2> ⁇ 3min [14]
  • the maximum refractive index ⁇ 1max of the core 101 is set to be larger than the refractive index ⁇ 2 of the inner cladding portion 102.
  • the refractive index ⁇ 2 of the inner cladding portion 102 is set to be larger than ⁇ 3 min of the trench portion 103.
  • the following equation [15] is further established. ⁇ 1max> ⁇ 4> ⁇ 3min [15]
  • the maximum refractive index ⁇ 1max of the core 101 is set to be larger than the refractive index ⁇ 4 of the outer cladding portion 104.
  • the refractive index ⁇ 4 of the outer cladding portion 104 is set to be larger than ⁇ 3 min of the trench portion 103.
  • Equation [16] means that the difference between the refractive index ⁇ 4 of the outer cladding portion 104 and the minimum refractive index ⁇ 3min of the trench portion 103 is more than 0.01% and less than 0.03%.
  • the bending loss may not be sufficiently reduced.
  • the difference between ⁇ 4 and ⁇ 3min is too small, the bending loss may not be sufficiently reduced.
  • the difference between ⁇ 4 and ⁇ 3min is too large, the mode field diameter becomes small, and the connection loss when connected to another optical fiber (for example, a normal single mode optical fiber (SSMF)) may increase.
  • SSMF normal single mode optical fiber
  • bending loss can be reduced by setting the difference between ⁇ 4 and ⁇ 3min to a range exceeding 0.01%.
  • the difference between ⁇ 4 and ⁇ 3min to be less than 0.03%, the mode field diameter (MFD) can be optimized and the connection loss when connecting to another optical fiber can be kept low.
  • the outer peripheral radii of the core 101, the inner cladding portion 102, the trench portion 103, and the outer cladding portion 104 are r1, r2, r3, and r4, respectively.
  • the following equation [17] is shown. There is a relationship. r1 ⁇ r2 ⁇ r3 ⁇ r4 [17]
  • the ratio r2 / r1 between the outer peripheral radius r2 of the inner cladding portion 102 and the outer peripheral radius r1 of the core 101 is in the range shown in the following equation [18]. 1 ⁇ r2 / r1 ⁇ 5 (18)
  • r2 / r1 If r2 / r1 is too small, bending loss may increase. On the other hand, if r2 / r1 is too large, the mode field diameter becomes small, and there is a possibility that the connection loss when connected to another optical fiber (for example, SSMF) becomes large. In the optical fiber 110, bending loss can be reduced by setting r2 / r1 to 1 or more. By setting r2 / r1 to 5 or less, the mode field diameter can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • SSMF connection loss when connected to another optical fiber
  • the ratio r3 / r2 between the outer peripheral radius r3 of the trench portion 103 and the outer peripheral radius r2 of the inner cladding portion 102 is in the range indicated by the following equation [19]. 1 ⁇ r3 / r2 ⁇ 2 [19]
  • r3 / r2 If r3 / r2 is too small, bending loss may increase. On the other hand, if r3 / r2 is too large, the mode field diameter becomes small, and the connection loss when connected to another optical fiber (for example, SSMF) may increase. In the optical fiber 110, bending loss can be reduced by setting r3 / r2 to be greater than 1. By setting r3 / r2 to 2 or less, the mode field diameter can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • the optical fiber 110 has a 22 m cutoff wavelength ⁇ c 22 m of 1260 nm or less. That is, the following formula [20] is established. ⁇ c 22m ⁇ 1260 nm (20) As a result, ITU-T Recommendation G. 652 can be satisfied.
  • the cutoff wavelength ⁇ c 22m is, for example, ITU-T Recommendation G. It can be measured by the measurement method described in 650.
  • the optical fiber 110 is set such that the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less by adjusting the refractive index and the outer radius. That is, the following formula [21] is established. 8.6 ⁇ m ⁇ MFD ⁇ 9.5 ⁇ m [21] By setting the mode field diameter within the range of the formula [21], the connection loss when connected to another optical fiber (for example, SSMF) can be suppressed low.
  • the optical fiber 110 has an ITU-T G.D. It satisfies the provisions of 652.
  • the optical fiber 110 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 101 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding portion 102 and the trench portion 103 can be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the outer cladding portion 104 can be made of, for example, pure silica glass. The outer cladding 104 may adjust the refractive index by adding a dopant (eg, Ge, F, etc.).
  • Each layer constituting the optical fiber 110 can be formed by a known method such as an MCVD method, a PCVD method, a VAD method, an OVD method, or a combination thereof.
  • the optical fiber preform can be manufactured as follows.
  • a glass deposition layer to be the trench portion 103 is formed inside a silica glass tube to be the outer cladding portion 104 (for example, a glass tube made of pure silica glass) using a raw material containing a dopant such as fluorine (F).
  • a glass deposition layer to be the inner cladding portion 102 is formed inside the glass deposition layer using a raw material containing a dopant such as fluorine (F).
  • the refractive indexes of the trench portion 103 and the inner cladding portion 102 can be adjusted by the amount of dopant added.
  • a glass deposition layer serving as the core 101 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 101 can also be formed using a separately prepared core rod.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification.
  • the optical fiber 110 shown in FIG. 13 is obtained by drawing this optical fiber preform.
  • the CVD method is preferable in that the refractive index distribution can be accurately adjusted by adding a dopant.
  • the VAD method and the OVD method can also be applied to manufacture the optical fiber 110.
  • the VAD method and the OVD method have an advantage of high productivity.
  • the difference in refractive index between the trench portion 103 and the outer cladding portion 104 is in the above-described range (see Equation [16]), and the ratio of the outer peripheral radii of the core 101, the inner cladding portion 102, and the trench portion 103 is By setting the above range (see equations [18] to [20]), it is possible to suppress a connection loss when connecting to another optical fiber and to reduce a bending loss.
  • the present inventor has found that the bending loss can be reduced without reducing the mode field diameter.
  • the optical fiber 110 is technically significant in that it adopts this refractive index distribution to achieve both suppression of connection loss and reduction of bending loss when connected to other optical fibers.
  • the conventional manufacturing method for example, a normal SSMF manufacturing method
  • the refractive index of the cladding part 104 can be adjusted easily and accurately.
  • the difference in refractive index between the trench portion 103 and the outer cladding portion 104 is small, there are few restrictions based on the manufacturing method. For example, not only the CVD method suitable for adjusting the refractive index distribution but also a VAD method and an OVD method can be employed. Therefore, the optical fiber 110 can be easily manufactured, and the manufacturing cost can be kept low.
  • the optical fiber 110 has a small difference in refractive index between the trench portion 103 and the outer cladding portion 104, the amount of dopant such as fluorine (F) for forming the trench portion 103 can be reduced. Since the source gas (for example, SiF 4 ) used for doping such as fluorine (F) is expensive, the source cost can be suppressed and the manufacturing cost can be reduced by reducing the dopant addition amount.
  • the source gas for example, SiF 4
  • the clad 105 includes only the trench portion 103 and the outer clad portion 104 formed on the outer peripheral side of the trench portion 103.
  • the clad 105 includes three layers (an inner clad portion, a trench portion, and an outer clad portion), but the clad may have other layers.
  • the characteristics such as bending loss were compared between an optical fiber having a pentagonal refractive index profile and an optical fiber having an ⁇ power refractive index profile. Since the bending loss is a parameter depending on the cable cutoff wavelength and MFD, in this embodiment, the cable cutoff wavelength is set to 1.21 ⁇ m (1210 nm), and the MFD at the wavelength of 1310 nm is adjusted to the range of 9.17 to 9.20 ⁇ m. It was. In order to keep the cable cutoff wavelength and MFD constant, in the optical fiber having a pentagonal refractive index profile, the relative refractive index difference ⁇ 1a at the core center and the core radius r1 were adjusted.
  • the refractive index n 1 at the core center and the core radius a were adjusted for the optical fiber having a refractive index distribution of ⁇ power.
  • the refractive index distributions of the respective cores of this example are shown in FIGS. 5A to 5I and FIGS. 6A to 6I.
  • 5A to 5I show specific examples of refractive index distributions when the acute angle is changed.
  • 5A is acute angle 0%
  • FIG. 5B is acute angle 20%
  • FIG. 5C is acute angle 30%
  • FIG. 5D is acute angle 40%
  • FIG. 5E is acute angle 50%
  • FIG. 5F is acute angle 70%
  • FIG. I is an acute angle of 80%
  • FIG. 5H is an acute angle of 90%
  • FIG. 5I is an acute angle of 100%.
  • 6A to 6I show specific examples of the refractive index distribution when the ⁇ value is changed.
  • FIG. 6C 2.5
  • Table 1 shows parameter values in an optical fiber having a pentagonal refractive index profile. Furthermore, numerical calculation by the finite element method was performed on the optical fibers having these refractive index distributions, and bending loss at a wavelength of 1550 nm when the optical fiber was wound 10 times around a mandrel having a radius of 15 mm was calculated. The results are shown in FIGS. FIG. 7 shows the results for an optical fiber having a refractive index profile of ⁇ power. FIG. 8 and Table 1 show the results for an optical fiber having a pentagonal refractive index profile.
  • the ideal step type refractive index profile can be virtually assumed in design, but in reality, the refractive index fluctuates at the outer periphery of the core at the time of manufacturing, so that it is considered difficult to manufacture. Even if a constant refractive index is obtained in the central part of the core, if the refractive index fluctuates in the outer peripheral part, it is considered that the ⁇ value in the ⁇ power distribution approaches a state where it is lower than ⁇ , and the bending loss increases. For this reason, the pentagonal refractive index distribution according to the present example is considered to be effective in reducing bending loss.

Abstract

 本発明の光ファイバは、コアと、前記コアの外周を取り囲むクラッドと、を有し、前記コアの半径をr1で表し、前記コアの中心と前記クラッドとの比屈折率差を第1の比屈折率差Δ1aで表し、前記コアの前記中心からの半径方向の距離がr1である位置と前記クラッドとの比屈折率差を第2の比屈折率差Δ1bで表すとき、前記第1の比屈折率差Δ1aは0より大きく、前記第2の比屈折率差Δ1bは0より大きく、前記第1の比屈折率差Δ1aは前記第2の比屈折率差Δ1bより大きく、前記第1の比屈折率差Δ1aと前記第2の比屈折率差Δ1bとが、次の式:0.20≦(Δ1a-Δ1b)/Δ1a≦0.88で表される関係を満たし、かつ、前記コアの屈折率分布Δが、前記コアの前記中心からの半径方向の距離rの関数Δ(r)として、0≦r≦r1の区間全域で、次の式:Δ(r)=Δ1a-(Δ1a-Δ1b)r/r1で表される。

Description

光ファイバ及びその製造方法
 本発明は、光ファイバ及びその製造方法に関し、特に、光ファイバに曲げを印加した際に発生する過剰損失、いわゆる曲げ損失(マクロベンド損失)を低減するために有効なコアの屈折率分布形状を有する光ファイバに関する。
 本願は、2014年8月1日に出願された特願2014-157571号、2014年9月26日に出願された特願2014-195937号、および2014年9月26日に出願された特願2014-195938号に基づき優先権を主張し、その内容をここに援用する。
 FTTH(Fiber To The Home)の普及に伴い、光ファイバはビルや住宅等の屋内まで敷設されている。これに伴い、曲げを加えたときに生じる過剰損失、いわゆる曲げ損失(マクロベンド損失)を低減した光ファイバが注目を集めている。
 低曲げ損失光ファイバを用いることにより、光ファイバに曲げが印加される際に発生する損失に起因する信号の瞬断の防止や、取り扱いの平易化による敷設コストの低減などが期待されている。
 標準シングルモード光ファイバ(SSMF)の規格であるITU-T Recommendation G.652に準拠しつつ、標準シングルモード光ファイバに比べて曲げ損失が低減された光ファイバの規格として、ITU-T Recommendation G.657がある。
 標準シングルモード光ファイバ(SSMF)の曲げ損失を改善(低減)する手法として、例えば次のような手法が提案されている。
(1)コアの屈折率を高くする(例えば特許文献1参照)。
 コアの屈折率を高くし、SSMFに比べてモードフィールド径(MFD)を小さくすることによって、コアへの光の閉じ込めを強くし、光ファイバの曲げ損失を低減する。この場合は、分散をG.652に合わせるために、コア近傍のクラッドの屈折率を低くした、いわゆるデプレスト型の屈折率分布を採用することが好ましい(例えば、非特許文献1を参照)。
 このタイプの光ファイバとしては、曲げ半径15mmまで対応する、G.657.A1に準拠する製品がある。
(2)クラッドのうちコアから離れた箇所に低屈折率部を設ける(例えば特許文献2,3参照)。
 コアの外周に設けられるクラッドのうち、コアから離れた箇所に低屈折率部、いわゆるトレンチ部を設けることによって、曲げが加わった場合にコアへの光の閉じ込めを強くし、光ファイバの曲げ損失を低減する(例えば、特許文献4を参照)。
 このタイプの光ファイバとしては、曲げ半径10mmまで対応する、G.657.A2あるいはG.657.B2に準拠する製品や、さらに小さい曲げ半径7.5mmまで対応する、G.657.B3に準拠する製品がある。また、曲げ半径7.5mmまで対応する、G.657.B3に準拠しつつ、その他の光学特性がG.657.Aシリーズの規格に準拠した製品もある。
(3)クラッドに空孔を追加する(例えば特許文献5,6参照)。
 コアの外周に設けられるクラッドのうち、コアから離れた箇所に、光ファイバの長手方向に連通する物理的な空孔(ホール)を設け、いわゆるホールアシステッドファイバ(HAF)とすることによって、または、独立した多数の空隙からなる微細構造を形成した光ファイバ(例えば、Corning社製、ClearCurve(登録商標))を用いることによって、コアへの光の閉じ込めを強くし、光ファイバの曲げ損失を低減する(例えば、特許文献7、8を参照)。
 このタイプの光ファイバとしては、曲げ半径7.5mmまで対応する、G.657.B3に準拠する製品がある。
(4)コアの屈折率分布形状をα乗にする(例えば特許文献3,9参照)。
 コアの屈折率分布形状をα乗(グレーデッドインデックス型)とすることにより、コアへの光の閉じ込めを強くし、曲げ損失を低減する。例えば特許文献3では、単純なステップ型の屈折率分布形状と比較して、コアの屈折率分布形状をα乗とした場合には、30%曲げ損失を改善することができると記述されている。
日本国特許第4268115号公報 日本国特開2013-88818号公報 米国特許第8428411号明細書 日本国特開昭63-43107号公報 日本国特許第4417286号公報 日本国特開2006-293166号公報 国際公開第2004/092793号パンフレット 日本国特表2009-543126号公報 米国特許第8588569号明細書
K. Okamoto and T. Okoshi,"Computer-aided synthesis of the optimum refractive index profile for a multimode fiber,"IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp.213-221, 1976
 それぞれの従来技術に対し、以下のような課題が挙げられる。
(1)コアの屈折率を高くする。
 SSMFに比べてMFDが小さい光ファイバは、SSMFと接続したときに接続段差が生じる。図1に、接続段差が生じた場合に観測されるOTDR不良波形の模式図を示す。
 図1に示すような形状のOTDR不良波形は、本来、断線が生じたときに観測される(例えば日本国特開2000-205999号公報の図5(a)参照)が、MFDの異なる光ファイバを接続した箇所でも発生する。これは、OTDRの信号強度がMFDの-2乗に比例する(MFDの2乗に反比例する)ためである。例えば、MFDの小さな光ファイバとMFDの大きな光ファイバとが接続された伝送路で、MFDの小さい光ファイバ側からOTDR測定を行うと、断線が生じていないにもかかわらず図1のような波形が得られる。
 また、コアの屈折率を高くした光ファイバは、曲げ損失を小さくすることができる。しかし、これに伴ってモードフィールド径が小径化し、SSMFとの接続損失が増大する。このため、曲げ損失の低減には限界がある。
(2)クラッドのうちコアから離れた箇所に低屈折率部を設ける。
 光ファイバ母材の作製方法として、VAD(Vapor phase axial deposition)法、OVD(Outside vapor deposition)法、CVD(Chemical vapor deposition)等が知られている。VAD法やOVD法といった出発部材の外面に材料を堆積させる方法(いわゆる外付け法)で低屈折率部を形成するには、屈折率の異なる層を複数形成する必要があるため、母材製造に必要な工程が増加する。一方、CVD法のように出発部材としての石英管(出発石英管)の内面に材料を堆積させる方法(いわゆる内付け法)で低屈折率部を形成するには、出発石英管の内側にコアだけでなく、トレンチ部まで形成する必要があるため、(内径が)同一サイズの出発石英管から製造可能な母材のサイズが小さくなる。また、外付け法および内付け法のいずれの場合も、低屈折率部を付与するためには、石英より屈折率を低下させるためのドーパントが必要になる。
 また、トレンチ型の屈折率分布を有する光ファイバは、屈折率が異なる複数の層を形成する必要があるため、母材の製造工程が複雑化する。
(3)クラッドに空孔を追加する。
 光ファイバ母材の段階で、クラッドに空孔を形成する工程が必要になるため、母材製造に必要な工程が増加する。空孔付きの光ファイバは、中実構造の光ファイバに比べて製造工程が複雑化する。また、光ファイバ母材から光ファイバを紡糸する段階で空孔を保持するため、特殊な紡糸工程が必要になる。空孔付きの光ファイバは、高度な紡糸技術が要求されるため、製造が容易とはいえない。
(4)コアの屈折率分布形状をα乗にする。
 コアの屈折率分布形状をα乗とするためには、屈折率分布の制御性を必要とする。つまり、コア材料の屈折率を変化させるには、ドーパントの量を高度に制御する必要がある。
 本発明は、上記事情に鑑みてなされたものであり、SSMFと同程度のMFDにすることが可能で、トレンチ部や空孔を追加することなく、曲げ損失の改善が可能な光ファイバを提供することを課題とする。
 また、コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 本発明の他の課題は、この知見に基づく屈折率分布を採用することにより、光ファイバと他の光ファイバとを接続した際の接続損失の抑制と曲げ損失の低減とを両立させることである。
 前記課題を解決するため、本発明の第一態様に係る光ファイバは、コアと、前記コアの外周を取り囲むクラッドと、を有し、前記コアの半径をr1で表し、前記コアの中心と前記クラッドとの比屈折率差を第1の比屈折率差Δ1aで表し、前記コアの前記中心からの半径方向の距離がr1である位置と前記クラッドとの比屈折率差を第2の比屈折率差Δ1bで表すとき、前記第1の比屈折率差Δ1aは0より大きく、前記第2の比屈折率差Δ1bは0より大きく、前記第1の比屈折率差Δ1aは前記第2の比屈折率差Δ1bより大きく、前記第1の比屈折率差Δ1aと前記第2の比屈折率差Δ1bとが、次の式:0.20≦(Δ1a-Δ1b)/Δ1a≦0.88で表される関係を満たし、かつ、前記コアの屈折率分布Δが、前記コアの前記中心からの半径方向の距離rの関数Δ(r)として、0≦r≦r1の区間全域で、次の式:Δ(r)=Δ1a-(Δ1a-Δ1b)r/r1で表される。
 前記第1の比屈折率差Δ1aが、0.35%<Δ1a≦0.50%の関係を満たしていてもよい。
 前記第2の比屈折率差Δ1bが、0.06%≦Δ1b<0.35%の関係を満たしていてもよい。
 前記半径r1が、4.50μm<r1≦6.25μmの関係を満たしていてもよい。
 波長1550nm、曲げ半径15mmにおける曲げ損失の値が、0.102dB/10ターン以下であってもよい。
 前記第1の比屈折率差Δ1aと前記第2の比屈折率差Δ1bとが、次の式:
   0.42≦(Δ1a-Δ1b)/Δ1a≦0.88
で表される関係を満たしていてもよい。
 波長1550nm、曲げ半径15mmにおける曲げ損失の値が、0.055dB/10ターン以下であってもよい。
 ケーブルカットオフ波長が1260nm以下であってもよい。
 波長1310nmにおけるモードフィールド径MFDが、8.2μm≦MFD≦9.9μmの範囲内であってもよい。
 また、本発明の第二態様に係る光ファイバの製造方法は、上記第一態様に係る光ファイバの製造方法であって、前記光ファイバの母材を作製する際に、前記コアを構成するガラスを、または前記コアを構成するガラスと前記クラッドを構成するガラスの一部とを、OVD法またはCVD法で作製する。
 本発明の第三態様に係る光ファイバは、コアと、前記コアの外周に形成されたクラッドとを備え、前記クラッドは、少なくとも前記コアに隣接した内クラッド部と、前記内クラッド部の外周に形成された外クラッド部とを有し、前記コアは、屈折率がΔ1であり、最大屈折率がΔ1maxであり、前記内クラッド部は、屈折率がΔ2であり、最小屈折率がΔ2minであり、前記外クラッド部は、屈折率がΔ3であり、前記コア、前記内クラッド部、および前記外クラッド部の屈折率は、式[4]および式[5]に示す関係がある。Δ1max>Δ2min、かつΔ1max>Δ3・・・[4]、0.01%<|Δ2min-Δ3|<0.03%・・・[5]。前記コアの外周半径r1、前記内クラッド部の外周半径r2、および前記外クラッド部の外周半径r3は、式[6]および式[7]に示す関係がある。r1<r2<r3・・・[6]、0.2≦r1/r2≦0.5・・・[7]。
22mのカットオフ波長λc22mは、式[8]を満たす。λc22m≦1260nm・・・[8]。波長1310nmにおけるモードフィールド径は、式[9]を満たす。8.6μm≦モードフィールド径≦9.5μm・・・[9]。
 前記コア、前記内クラッド部、および前記外クラッド部の屈折率は、式[1A]および式[2A]に示す関係であってもよい。Δ1max>Δ3>Δ2min・・・[1A]、0.01%<(Δ3-Δ2min)<0.03%・・・[2A]。
 上記第三態様に係るファイバにおいて、直径15mmのマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下であり、前記マンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下であってもよい。
 前記外クラッド部が純粋シリカガラスからなり、前記内クラッド部が、フッ素が添加されたシリカガラスからなる構成であってもよい。
 前記外クラッド部が純粋シリカガラスからなり、前記内クラッド部が、塩素が添加されたシリカガラスからなる構成であってもよい。
 前記内クラッド部は、Δ2<Δ3である場合には、例えばフッ素(F)が添加されたシリカガラスからなっていてもよく、Δ2>Δ3である場合には、例えば塩素(Cl)が添加されたシリカガラスからなっていてもよい。
 本発明の第四態様に係る光ファイバは、コアと、前記コアの外周に形成されたクラッドとを備え、前記クラッドは、少なくとも前記コアに隣接した内クラッド部と、前記内クラッド部の外周に隣接したトレンチ部と、前記トレンチ部の外周に形成された外クラッド部とを有し、前記コアは、屈折率がΔ1であり、最大屈折率がΔ1maxであり、前記内クラッド部は、屈折率がΔ2であり、最小屈折率がΔ2minであり、前記トレンチ部は、屈折率がΔ3であり、最小屈折率がΔ3minであり、前記外クラッド部は、屈折率がΔ4であり、前記コア、前記内クラッド部、前記トレンチ部、および前記外クラッド部の屈折率は、式[14]~式[16]に示す関係がある。Δ1max>Δ2>Δ3min・・・[14]、Δ1max>Δ4>Δ3min・・・[15]、0.01%<(Δ4-Δ3min)<0.03%・・・[16]。前記コアの外周半径r1、前記内クラッド部の外周半径r2、前記トレンチ部の外周半径r3、および前記外クラッド部の外周半径r4は、式[17]~式[19]に示す関係がある。r1≦r2<r3<r4・・・[17]、1≦r2/r1≦5・・・[18]、1<r3/r2≦2・・・[19]。22mのカットオフ波長λc22mは、式[20]を満たす。λc22m≦1260nm・・・[20]。波長1310nmにおけるモードフィールド径は、式[21]を満たす。8.6μm≦モードフィールド径≦9.5μm・・・[21]。
 上記第四態様に係る光ファイバは、直径15mmのマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となり、前記マンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となってもよい。
 前記外クラッド部は、純粋シリカガラスからなっていてもよく、前記トレンチ部は、フッ素が添加されたシリカガラスからなっていてもよい。
 本発明の上記第一態様および第二態様によれば、コアの屈折率分布が線型的であり、α乗分布に比較して単純でありながら、曲げ損失の改善が可能な光ファイバを提供することができる。上記第一態様および第二態様に係る光ファイバによれば、MFDをSSMFと同程度にすることが可能であるため、当該光ファイバとSSMFとを接続しても接続段差が問題にならない。また、クラッドにトレンチ部や空孔を必要としない。
 本発明の第三態様によれば、内クラッド部と外クラッド部の屈折率の差、および、コアと内クラッド部の外周半径の比などを調整することによって、他の光ファイバ(例えば通常のシングルモード光ファイバ(SSMF))と接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 本発明の第三態様では、従来の製造方法を大きく変更せずに利用できるため、製造が容易であり、製造コストを低く抑えることができる。
 本発明の第四態様によれば、トレンチ部と外クラッド部の屈折率の差、および、コアと内クラッド部とトレンチ部との外周半径の比などを調整することによって、他の光ファイバ(例えば通常のシングルモード光ファイバ(SSMF))と接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 本発明の第四態様では、従来の製造方法を大きく変更せずに利用できるため、製造が容易であり、製造コストを低く抑えることができる。
MFDが異なる光ファイバ同士を接続したときに観測されるOTDR波形の模式図である。 本発明の第1実施形態に係る光ファイバにおける屈折率分布の模式図である。 鋭角度を変化させた場合の屈折率分布の模式図である。 α値を変化させた場合の屈折率分布の模式図である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 鋭角度を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 α値を変化させた場合の屈折率分布の具体例である。 曲げ損失に対するα値の依存性の例を示すグラフである。 曲げ損失に対する鋭角度の依存性の例を示すグラフである。 第2実施形態に係る光ファイバを模式的に示す断面図である。 図9に示す光ファイバの屈折率分布を模式的に示す図である。 第3実施形態に係る光ファイバを模式的に示す断面図である。 図11に示す光ファイバの屈折率分布を模式的に示す図である。 第4実施形態に係る光ファイバを模式的に示す断面図である。 図13に示す光ファイバの屈折率分布を模式的に示す図である。 第5実施形態に係る光ファイバの屈折率分布を模式的に示す図である。
 以下、好適な実施形態に基づいて、本発明を説明する。
 図2に、本発明の第1実施形態に係る光ファイバにおける屈折率分布の模式図を示す。本実施形態に係る光ファイバは、光ファイバの中心部に設けられるコアと、このコアの外周を取り囲むクラッドとを有する。クラッドは、一般にコアに対して同心状であるが、許容範囲内でクラッドとコアとが偏心することがあり得る。
 図2において、r1はコアの半径を表す。r1の範囲の左端はコアの中心位置を指し、r1の範囲の右端はコアの外周位置を指す。Δ1a(第1の比屈折率差)は、コアの中心における比屈折率差を表し、Δ1b(第2の比屈折率差)は、コアの外周における比屈折率差を表す。Δ1aおよびΔ1bの比屈折率差は、クラッドの屈折率を基準とした比屈折率差を意味する。コアの中心からの距離がr1以下である範囲がコアを表し、r1の範囲の外側(図2において、コアの中心からの距離がr1より大きい箇所)はクラッドを表す。クラッドでは、比屈折率差が0である。
 本実施形態に係る光ファイバにおけるコアの屈折率分布Δは、コアの中心からの半径方向の距離rの関数Δ(r)として、0≦r≦r1の区間全域で、次の式[1]で表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、式[1]において、比屈折率差(第1の比屈折率差)Δ1aは比屈折率差(第2の比屈折率差)Δ1bより大きい。すなわち、コアの中心における屈折率は、コアの外周における屈折率より高い。また、一般に、コアとクラッドとの屈折率の違いによって光を導波する光ファイバでは、比屈折率差Δ1aは、0より大きい必要がある。これは、コア中心における屈折率が、クラッドにおける屈折率より高いことを意味する。
 本明細書において、「鋭角度」というパラメータを導入する。本実施形態に係る光ファイバにおける「鋭角度」を記号Aで表し、次の式[2]のように定義する。
Figure JPOXMLDOC01-appb-M000002
 図3に、本実施形態に係る光ファイバの鋭角度を0%から100%まで20%刻みで変化させた場合の屈折率分布を示す。Δ1aがΔ1bに等しい場合、鋭角度Aは0%であり、ステップ型の屈折率分布に帰着する。また、Δ1bが0に等しい場合、鋭角度Aは100%である。鋭角度が0%の場合、屈折率分布は「四角形形状」であり、鋭角度が100%の場合、屈折率分布は「三角形形状」である。これに対して、図2に例示される「五角形形状」の屈折率分布は、屈折率分布が式[1]で表されるだけではなく、Δ1a>Δ1b>0の関係を満たす。この場合の鋭角度は、0%より大きく、かつ100%より小さい。
 次に、「五角形形状」の屈折率分布と比較するため、α乗分布について述べる。本実施形態に係る光ファイバにおけるα乗分布の屈折率分布は、一般的に次の式[3]で表される。
Figure JPOXMLDOC01-appb-M000003
 式[3]において、nはコア中心における屈折率、nはクラッドの屈折率、Δはクラッドを基準としたコア中心の比屈折率差、rは半径方向のコア中心からの距離、aはコア半径を表す。比屈折率差Δは、Δ=(n -n )/2n で定義される。このため、n、nおよびΔは、n=n(1-2Δ)1/2の関係を有する。
 また、図4に、α乗分布において、α値を1から∞まで変化させた場合の屈折率分布を示す。α=1のときは、式[1]において鋭角度100%の場合に相当し、α=∞のときは、式[1]において鋭角度0%の場合に相当する。
 本実施形態に係る光ファイバの効果について説明する。光ファイバの曲げ損失は、光ファイバに曲げが加わったときに誘起される屈折率分布の変化により、光ファイバのコア中を光が導波できなくなり、クラッドに光が放射されることにより発生する。曲げ損失を低減するためには、クラッドに光が漏れていくことを抑制することが重要である。そのため、光ファイバを導波する光の分布が、あらかじめコアの中央部に集中していること、およびクラッドに光が漏れにくいことが、有効であると考えられる。
 光の分布がコアの中央部に集中するためには、(a)屈折率がコアの中央部からクラッドへとなだらかに低下するような屈折率分布であることが好ましい。しかし、コアとクラッドとの比屈折率差が小さいと、クラッドに光が漏れやすくなる。したがって、クラッドに光が漏れていくことを抑制するためには、(b)クラッドを基準としたコア外周部の比屈折率差が大きくなることが好ましい。曲げ損失を低減するためには、(a)および(b)の2つの特徴を併有することが好ましい。五角形形状の屈折率分布は、(a)および(b)の2つの特徴を併有することから、曲げ損失の低減に有効であると考えられる。
 曲げ損失を低減する効果を奏するためには、さらに次の特徴を有することが好ましい。
 上記式[2]で定義される鋭角度Aの範囲は、0.20≦A≦0.88が好ましく、0.42≦A≦0.88がより好ましい。
 コア中心の比屈折率差Δ1aの範囲は、0.35%<Δ1a≦0.50%が好ましい。
 コア外周の比屈折率差Δ1bの範囲は、0.06%≦Δ1b<0.35%が好ましい。
 コア半径r1の範囲は、4.50μm<r1≦6.25μmが好ましい。
 波長1550nm、曲げ半径15mmにおける曲げ損失の値の範囲は、0.102dB/10ターン以下(10ターン当たり0.102dB以下)が好ましく、0.055dB/10ターン以下(10ターン当たり0.055dB以下)がより好ましい。
 ケーブルカットオフ波長の範囲は、1260nm以下が好ましい。
 波長1310nmにおけるモードフィールド径MFDの範囲は、8.2μm≦MFD≦9.9μmが好ましい。
 本実施形態に係る光ファイバは、VAD法、OVD法、CVD法などの公知の母材作製方法により光ファイバ母材を作製した後、光ファイバ母材から光ファイバを紡糸することによって製造することができる。光ファイバ母材の作製方法の一例として、少なくともコアを構成するガラスをOVD法またはCVD法で作製し、残りのガラス部分をさらなるシリカ(SiO)ガラスの堆積、石英管のジャケット等により作製することが挙げられる。このとき、OVD法またはCVD法で作製する部分は、コアを構成するガラス(一部または全部)のみであってもよく、コアを構成するガラスに加えてクラッドを構成するガラスの一部を含んでもよい。光ファイバのサイズは特に限定されないが、例えばクラッド径として125μm、80μm等が挙げられる。紡糸後の光ファイバには、クラッドの外周に樹脂等の被覆が1層または2層以上積層されてもよい。
 以上、本発明の第1実施形態を説明してきたが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。 石英系光ファイバの製造に使用されるドーパントは、ゲルマニウム(Ge)、リン(P)、フッ素(F)、ホウ素(B)、アルミニウム(Al)等が挙げられる。石英系光ファイバの製造には、2種以上のドーパントを使用してもよい。コアおよびクラッドの組成の一例として、コア材料はGe添加シリカ、クラッド材料は純シリカが挙げられる。
 式[1]に示す屈折率分布の式は、設計上の分布を表している。実際の光ファイバの作製時には、製造上の原因による屈折率分布の揺らぎ(製造誤差)が加わることが予想される。上記第1実施形態に係る光ファイバは、製造上の許容誤差の範囲内で式[1]等の特徴を満たしていればよい。コア外周部における屈折率分布の揺らぎが大きい場合は、例えばコア中心からの距離がコア半径の90%以内(あるいは95%以内等)である範囲で、式[1]等の特徴を満たすようにしてもよい。コア外周部を式[1]による計算の範囲から除外する場合、比屈折率差Δ1bは実際のコアの外周における比屈折率差ではなく、コアの外周より内側の屈折率分布を記述するための仮想上の値であってもよい。
 以下、図面を参照して本発明の第2実施形態および第3実施形態を説明する。
 図9に、本発明の第2実施形態に係る光ファイバ10の概略構成を示す。
 この光ファイバ10は、中心部に配されるコア1と、コア1の外周側(外周)にコア1と同心状に設けられたクラッド4とを有する。
 クラッド4は、少なくとも、コア1の外周側(外周)に隣接した内クラッド部2と、内クラッド部2の外周側(外周)に形成された外クラッド部3とを有する。
 図10に、光ファイバ10の屈折率分布を模式的に示す。
 コア1の屈折率をΔ1と定義し、最大屈折率をΔ1maxと定義する。
 内クラッド部2の屈折率をΔ2と定義し、最小屈折率をΔ2minと定義する。
 外クラッド部3の屈折率をΔ3と定義する。
 コア1の最大屈折率Δ1maxは、コア1の中心から外周までの径方向範囲において最大となるコア1の屈折率である。図10に示す屈折率分布では、コア1の屈折率Δ1は径方向位置にかかわらず一定であるため、屈折率Δ1は全範囲で最大屈折率Δ1maxに等しい。
 内クラッド部2の最小屈折率Δ2minは、内クラッド部2の内周から外周までの径方向範囲において最小となる内クラッド部2の屈折率である。図10に示す屈折率分布では、内クラッド部2の屈折率Δ2は径方向位置にかかわらず一定であるため、屈折率Δ2は全範囲で最小屈折率Δ2minに等しい。
 光ファイバ10では、次の式[4]が成り立つ。
 Δ1max>Δ2min、かつΔ1max>Δ3  ・・・[4]
 式[4]に示すように、コア1の最大屈折率Δ1maxは、内クラッド部2の最小屈折率Δ2minおよび外クラッド部3の屈折率Δ3より大きく設定されている。
 また、光ファイバ10では、内クラッド部2の最小屈折率Δ2minは、外クラッド部3の屈折率Δ3より小さく設定されている。
 光ファイバ10では、さらに、次の式[5]が成り立つ。
 0.01%<|Δ2min-Δ3|<0.03%  ・・・[5]
 式[5]は、内クラッド部2の最小屈折率Δ2minと外クラッド部3の屈折率Δ3との差の絶対値が、0.01%を越え、かつ0.03%未満であることを意味する。
 Δ2minとΔ3との差の絶対値が小さすぎると、曲げ損失を十分に低減できないおそれがある。一方、Δ2minとΔ3との差の絶対値が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えば通常のシングルモード光ファイバ(SSMF))と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ10では、Δ2minとΔ3との差の絶対値を0.01%を越える範囲とすることによって、曲げ損失を低減することができる。また、Δ2minとΔ3との差の絶対値を0.03%未満とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 第2実施形態の光ファイバ10では、Δ1maxと、Δ2minと、Δ3との大小関係に関して、次の式[1A]が成り立つ。
 Δ1max>Δ3>Δ2min  ・・・[1A]
 式[1A]に示すように、コア1の最大屈折率Δ1maxは、外クラッド部3の屈折率Δ3より大きく設定されている。
 外クラッド部3の屈折率Δ3は、内クラッド部2の最小屈折率Δ2minより大きく設定されている。
 Δ3がΔ2minより大きいため、上述の式[5]は、次のように記載することができる。
 0.01%<(Δ3-Δ2min)<0.03%  ・・・[2A]
 式[2A]は、外クラッド部3の屈折率Δ3と内クラッド部2の最小屈折率Δ2minとの差が、0.01%を越え、かつ0.03%未満であることを意味する。
 コア1、内クラッド部2、および外クラッド部3の外周半径を、それぞれr1、r2、r3と定義する。
 コア1の外周半径r1と、内クラッド部2の外周半径r2と、外クラッド部3の外周半径r3と、の間には、次の式[6]に示す関係がある。
 r1<r2<r3  ・・・[6]
 コア1の外周半径r1と内クラッド部2の外周半径r2との比r1/r2は、次の式[7]に示す範囲にある。
 0.2≦r1/r2≦0.5  ・・・[7]
 r1/r2が小さすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばSSMF)と接続した際の接続損失が大きくなるおそれがある。一方、r1/r2が大きすぎると、曲げ損失が増大するおそれがある。
 光ファイバ10では、r1/r2を0.2以上となるように調整することによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。r1/r2を0.5以下となるように調整することによって、曲げ損失を低減することができる。
 光ファイバ10は、22mのカットオフ波長λc22mが1260nm以下となるように調整される。
すなわち、次の式[8]が成立する。
 λc22m≦1260nm  ・・・[8]
 これによって、ITU-T Recommendation G.652の規定を満足することができる。
 カットオフ波長λc22mは、例えばITU-T Recommendation G.650に記載の測定法により測定することができる。
 光ファイバ10は、上述の屈折率および外周半径の調整によって、波長1310nmにおけるモードフィールド径(MFD)が、8.6μm以上、かつ9.5μm以下となるように設定される。すなわち、次の式[9]が成立する。
 8.6μm≦MFD≦9.5μm  ・・・[9]
 モードフィールド径を式[9]の範囲にすることによって、他の光ファイバ(例えばSSMF)と接続した際の接続損失を低く抑えることができる。
 光ファイバ10は、モードフィールド径を式[9]の範囲にすることによって、ITU-T G.652の規定を満たす。
 光ファイバ10は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。
 また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア1は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部2は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成することができる。内クラッド部2は、例えば塩素(Cl)等のドーパントを添加することによって屈折率を高くしたシリカガラスで構成してもよい。
 外クラッド部3は、例えば純粋シリカガラスで構成することができる。外クラッド部3は、ドーパント(例えばGe、Fなど)を添加することによって屈折率を調整してもよい。
 光ファイバ10を構成する各層は、MCVD法、PCVD法、VAD法、OVD法などの公知の方法、またはこれらの組み合わせにより形成することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部3となるシリカガラス管(例えば純粋シリカガラスからなるガラス管)の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、内クラッド部2となるガラス堆積層を形成する。内クラッド部2の屈折率はドーパントの添加量によって調整することができる。
 次いで、前記ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア1となるガラス堆積層を形成する。なお、コア1は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図9に示す光ファイバ10を得る。
 CVD法は、ドーパントの添加によって屈折率分布を精度よく調整できる点で好ましい。
 光ファイバ10の製造には、VAD法、OVD法も適用可能である。VAD法、OVD法には、生産性が高いという利点がある。
 光ファイバ10では、内クラッド部2と外クラッド部3の屈折率の差を前記範囲(式[5]を参照)とし、かつコア1と内クラッド部2の外周半径の比を前記範囲(式[7]を参照)とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 光ファイバ10は、この屈折率分布を採用することにより、他の光ファイバと接続した際の接続損失の抑制と曲げ損失の低減とを両立させた点に技術的意義がある。
 光ファイバ10は、内クラッド部2と外クラッド部3の屈折率の差が小さいため、従来の製造方法(例えば通常のSSMFの製造方法)を大きく変更することなく利用して、内クラッド部2および外クラッド部3の屈折率を容易に、かつ精度よく調整することができる。
 また、内クラッド部2と外クラッド部3の屈折率の差が小さいため、製造方法に基づく制約が少ない。例えば、屈折率分布の調整に適しているとされるCVD法だけでなく、VAD法、OVD法を採用することもできる。
 従って、光ファイバ10の製造が容易であり、製造コストを低く抑えることができる。
 光ファイバ10は、内クラッド部2と外クラッド部3の屈折率の差が小さいため、内クラッド部2を形成するためのフッ素(F)、塩素(Cl)等のドーパントの添加量を削減できる。
 フッ素(F)等のドープに用いられる原料ガス(例えばSiF)は高価であるため、ドーパント添加量の削減によって、原料コストを抑制し、製造コストを低く抑えることができる。
 光ファイバ10は、図10に示すように、内クラッド部2の最小屈折率Δ2minが外クラッド部3の屈折率Δ3より小さいため、コア1への光の閉じ込めが良好であり、曲げ損失を低減できる。
 図11に、本発明の第3実施形態に係る光ファイバ20の概略構成を示す。
 この光ファイバ20は、中心部に配されるコア1と、コア1の外周側(外周)にコア1と同心状に設けられたクラッド14とを有する。
 クラッド14は、少なくとも、コア1の外周側(外周)に隣接した内クラッド部12と、内クラッド部12の外周側(外周)に形成された外クラッド部13とを有する。
 図12に、光ファイバ20の屈折率分布を模式的に示す。
 コア1の屈折率をΔ1と定義し、最大屈折率をΔ1maxと定義する。内クラッド部12の屈折率をΔ2と定義し、最小屈折率をΔ2minと定義する。外クラッド部13の屈折率をΔ3と定義する。
 光ファイバ20では、第2実施形態の光ファイバ10と同様に、次の式[10]が成り立つ。
 Δ1max>Δ2min、かつΔ1max>Δ3  ・・・[10]
 光ファイバ20では、内クラッド部12の最小屈折率Δ2minが、外クラッド部13の屈折率Δ3より大きくなるように調整されている点で、第2実施形態の光ファイバ10と異なる。
 光ファイバ20では、第2実施形態の光ファイバ10と同様に、次の式[11]が成り立つ。
 0.01%<|Δ2min-Δ3|<0.03%  ・・・[11]
 Δ2minとΔ3との差の絶対値を式[11]の範囲となるように調整することによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減することができる。
 コア1の外周半径r1と、内クラッド部12の外周半径r2と、外クラッド部13の外周半径r3と、の間には、第2実施形態の光ファイバ10と同様に、次の式[12]、式[13]に示す関係がある。
 r1<r2<r3  ・・・[12]
 0.2≦r1/r2≦0.5  ・・・[13]
 r1/r2を0.2以上となるように調整することによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減することができる。
 光ファイバ20は、第2実施形態の光ファイバ10と同様に、22mのカットオフ波長λc22mが1260nm以下とされる。
 また、波長1310nmにおけるモードフィールド径(MFD)は、8.6μm以上、かつ9.5μm以下とされる。
 光ファイバ20は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア1は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部2は、例えば純粋シリカガラスで構成することができる。内クラッド部2は、例えば塩素(Cl)等のドーパントを添加することによって屈折率を調整してもよい。
 外クラッド部3は、例えば純粋シリカガラスで構成することができる。外クラッド部3は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成してもよい。
 光ファイバ20は、第2実施形態の光ファイバ10と同様に、MCVD法、PCVD法、VAD法、OVD法などにより製造することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部3となるシリカガラス管(例えばフッ素(F)等のドーパントを含むシリカガラス管)の内側に、純粋シリカガラスなどの原材料を用いて、内クラッド部2となるガラス堆積層を形成する。
 次いで、前記ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア1となるガラス堆積層を形成する。なお、コア1は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図11に示す光ファイバ20を得る。
 光ファイバ20では、内クラッド部12と外クラッド部13の屈折率の差を前記範囲(式[11]を参照)とし、かつコア1と内クラッド部12の外周半径の比を前記範囲(式[13]を参照)とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 光ファイバ20は、従来の製造方法を大きく変更せずに利用できるため、製造が容易であり、製造コストを低く抑えることができる。
 以上、本発明の第2実施形態および第3実施形態を説明したが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。
 例えば、図9、図11に示す光ファイバ10,20では、クラッド4,14は2つのクラッド部(内クラッド部および外クラッド部)からなるが、クラッドは、内クラッド部および外クラッド部以外の層を有していてもよい。
 以下、図面を参照して本発明の第4実施形態および第5実施形態を説明する。
 図13に、本発明の第4実施形態に係る光ファイバ110の概略構成を示す。
 この光ファイバ110は、中心部に配されるコア101と、コア101の外周側(外周)にコア101と同心状に設けられたクラッド105とを有する。
 クラッド105は、少なくとも、コア101の外周側(外周)に隣接した内クラッド部102と、内クラッド部102の外周側(外周)に隣接して形成されたトレンチ部103と、トレンチ部103の外周側(外周)に形成された外クラッド部104とを有する。
 図14に、光ファイバ110の屈折率分布を模式的に示す。
 コア101の屈折率をΔ1と定義し、最大屈折率をΔ1maxと定義する。
 内クラッド部102の屈折率をΔ2と定義し、最小屈折率をΔ2minと定義する。
 トレンチ部103の屈折率をΔ3と定義し、最小屈折率をΔ3minと定義する。
 外クラッド部104の屈折率をΔ4と定義する。
 コア101の最大屈折率Δ1maxは、コア101の中心から外周までの径方向範囲において最大となるコア101の屈折率である。図14に示す屈折率分布では、コア101の屈折率Δ1は径方向位置にかかわらず一定であるため、屈折率Δ1は全範囲で最大屈折率Δ1maxに等しい。
 内クラッド部102の最小屈折率Δ2minは、内クラッド部102の内周から外周までの径方向範囲において最小となる内クラッド部102の屈折率である。図14に示す屈折率分布では、内クラッド部102の屈折率Δ2は径方向位置にかかわらず一定であるため、屈折率Δ2は全範囲で最小屈折率Δ2minに等しい。
 トレンチ部103の最小屈折率Δ3minは、トレンチ部103の内周から外周までの径方向範囲において最小となるトレンチ部103の屈折率である。図14に示す屈折率分布では、トレンチ部103の屈折率Δ3は径方向位置にかかわらず一定であるため、屈折率Δ3は全範囲で最小屈折率Δ3minに等しい。
 光ファイバ110では、次の式[14]が成り立つ。
 Δ1max>Δ2>Δ3min  ・・・[14]
 式[14]に示すように、コア101の最大屈折率Δ1maxは、内クラッド部102の屈折率Δ2より大きく設定されている。
 内クラッド部102の屈折率Δ2は、トレンチ部103のΔ3minより大きく設定されている。
 光ファイバ110では、さらに、次の式[15]が成り立つ。
 Δ1max>Δ4>Δ3min  ・・・[15]
 式[15]に示すように、コア101の最大屈折率Δ1maxは、外クラッド部104の屈折率Δ4より大きく設定されている。
 外クラッド部104の屈折率Δ4は、トレンチ部103のΔ3minより大きく設定されている。
 光ファイバ110では、さらに、次の式[16]が成り立つ。
 0.01%<(Δ4-Δ3min)<0.03%  ・・・[16]
 式[16]は、外クラッド部104の屈折率Δ4とトレンチ部103の最小屈折率Δ3minとの差が、0.01%を越え、かつ0.03%未満であることを意味する。
 Δ4とΔ3minとの差が小さすぎると、曲げ損失を十分に低減できないおそれがある。一方、Δ4とΔ3minとの差が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えば通常のシングルモード光ファイバ(SSMF))と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ110では、Δ4とΔ3minとの差を0.01%を越える範囲とすることによって、曲げ損失を低減することができる。また、Δ4とΔ3minとの差を0.03%未満とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 コア101、内クラッド部102、トレンチ部103および外クラッド部104の外周半径を、それぞれr1、r2、r3、r4とする。
 コア101の外周半径r1と、内クラッド部102の外周半径r2と、トレンチ部103の外周半径r3と、外クラッド部104の外周半径r4と、の間には、次の式[17]に示す関係がある。
 r1≦r2<r3<r4  ・・・[17]
 内クラッド部102の外周半径r2とコア101の外周半径r1との比r2/r1は、次の式[18]に示す範囲にある。
 1≦r2/r1≦5  ・・・[18]
 r2/r1が小さすぎると、曲げ損失が増大するおそれがある。一方、r2/r1が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばSSMF)と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ110では、r2/r1を1以上とすることによって、曲げ損失を低減することができる。r2/r1を5以下とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 トレンチ部103の外周半径r3と内クラッド部102の外周半径r2との比r3/r2は、次の式[19]に示す範囲にある。
 1<r3/r2≦2  ・・・[19]
 r3/r2が小さすぎると、曲げ損失が増大するおそれがある。一方、r3/r2が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばSSMF)と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ110では、r3/r2を1より大きくとすることによって、曲げ損失を低減することができる。r3/r2を2以下とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 光ファイバ110は、22mのカットオフ波長λc22mが1260nm以下とされる。
すなわち、次の式[20]が成立する。
 λc22m≦1260nm  ・・・[20]
 これによって、ITU-T Recommendation G.652の規定を満足することができる。
 カットオフ波長λc22mは、例えばITU-T Recommendation G.650に記載の測定法により測定することができる。
 光ファイバ110は、上述の屈折率および外周半径の調整によって、波長1310nmにおけるモードフィールド径(MFD)が、8.6μm以上、かつ9.5μm以下となるように設定される。すなわち、次の式[21]が成立する。
 8.6μm≦MFD≦9.5μm  ・・・[21]
 モードフィールド径を式[21]の範囲にすることによって、他の光ファイバ(例えばSSMF)と接続した際の接続損失を低く抑えることができる。
 光ファイバ110は、モードフィールド径を式[21]の範囲にすることによって、ITU-T G.652の規定を満たす。
 光ファイバ110は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。
 また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア101は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部102およびトレンチ部103は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成することができる。
 外クラッド部104は、例えば純粋シリカガラスで構成することができる。外クラッド部104は、ドーパント(例えばGe、Fなど)を添加することによって屈折率を調整してもよい。
 光ファイバ110を構成する各層は、MCVD法、PCVD法、VAD法、OVD法などの公知の方法、またはこれらの組み合わせにより形成することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部104となるシリカガラス管(例えば純粋シリカガラスからなるガラス管)の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、トレンチ部103となるガラス堆積層を形成する。
 前記ガラス堆積層の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、内クラッド部102となるガラス堆積層を形成する。
 トレンチ部103および内クラッド部102の屈折率はドーパントの添加量によって調整することができる。
 次いで、前記ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア101となるガラス堆積層を形成する。なお、コア101は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図13に示す光ファイバ110を得る。
 CVD法は、ドーパントの添加によって屈折率分布を精度よく調整できる点で好ましい。
 光ファイバ110の製造には、VAD法、OVD法も適用可能である。VAD法、OVD法には、生産性が高いという利点がある。
 光ファイバ110では、トレンチ部103と外クラッド部104の屈折率の差を前記範囲(式[16]を参照)とし、かつコア101、内クラッド部102、およびトレンチ部103の外周半径の比を前記範囲(式[18]~[20]を参照)とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 光ファイバ110は、この屈折率分布を採用することにより、他の光ファイバと接続した際の接続損失の抑制と曲げ損失の低減とを両立させた点に技術的意義がある。
 光ファイバ110は、トレンチ部103と外クラッド部104の屈折率の差が小さいため、従来の製造方法(例えば通常のSSMFの製造方法)を大きく変更することなく利用して、トレンチ部103および外クラッド部104の屈折率を容易に、かつ精度よく調整することができる。
 また、トレンチ部103と外クラッド部104の屈折率の差が小さいため、製造方法に基づく制約が少ない。例えば、屈折率分布の調整に適しているとされるCVD法だけでなく、VAD法、OVD法を採用することもできる。
 従って、光ファイバ110の製造が容易であり、製造コストを低く抑えることができる。
 光ファイバ110は、トレンチ部103と外クラッド部104の屈折率の差が小さいため、トレンチ部103を形成するためのフッ素(F)等のドーパントの添加量を削減できる。
 フッ素(F)等のドープに用いられる原料ガス(例えばSiF)は高価であるため、ドーパント添加量の削減によって、原料コストを抑制し、製造コストを低く抑えることができる。
 上述のように、コア101と内クラッド部102とトレンチ部103と外クラッド部104との外周半径r1~r4の間には、式[17]に示す関係がある。
 r1≦r2<r3<r4  ・・・[17]
 図13および図14に示す光ファイバ110では、r1とr2とr3とは互いに異なる値であるが、本発明は、r1=r2、かつr2≠r3の場合を含む。
 図15は、本発明の第5実施形態の光ファイバの屈折率分布図であり、r1=r2、かつr2≠r3の場合を示す。
 この光ファイバでは、r1とr2とが等しいため、クラッド105は、トレンチ部103と、トレンチ部103の外周側に形成された外クラッド部104のみからなる。
 以上、本発明の第4実施形態および第5実施形態を説明したが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。
 例えば、図13に示す光ファイバ110では、クラッド105は3つの層(内クラッド部、トレンチ部および外クラッド部)からなるが、クラッドは、これら以外の層を有していてもよい。
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 以下、実施例をもって本発明の実施形態を具体的に説明する。
 五角形形状の屈折率分布を有する光ファイバと、α乗の屈折率分布を有する光ファイバと、について曲げ損失等の特性を比較した。曲げ損失はケーブルカットオフ波長とMFDに依存するパラメータであるため、本実施例ではケーブルカットオフ波長を1.21μm(1210nm)、波長1310nmでのMFDを9.17~9.20μmの範囲に合わせた。
 ケーブルカットオフ波長とMFDを一定に合わせるため、五角形形状の屈折率分布を有する光ファイバではコア中心の比屈折率差Δ1aとコア半径r1を調整した。α乗の屈折率分布を有する光ファイバでも同様に、コア中心の屈折率nとコア半径aを調整した。本実施例のそれぞれのコアの屈折率分布を図5A~図5Iおよび図6A~図6Iに示す。
 図5A~図5Iは、鋭角度を変化させた場合の屈折率分布の具体例を示す。図5Aは鋭角度0%、図5Bは鋭角度20%、図5Cは鋭角度30%、図5Dは鋭角度40%、図5Eは鋭角度50%、図5Fは鋭角度70%、図5Gは鋭角度80%、図5Hは鋭角度90%、図5Iは鋭角度100%の場合である。
 図6A~図6Iは、α値を変化させた場合の屈折率分布の具体例を示す。図6Aはα=1、図6Bはα=2、図6Cはα=2.5、図6Dはα=3、図6Eはα=4、図6Fはα=5、図6Gはα=6、図6Hはα=10、図6Iはα=∞の場合である。
 また、表1には、五角形形状の屈折率分布を有する光ファイバにおけるパラメータの値を示す。さらに、これらの屈折率分布を有する光ファイバに対し、有限要素法による数値計算を行い、半径15mmのマンドレルに光ファイバを10回巻いた時の波長1550nmでの曲げ損失を計算した。その結果を図7、図8および表1に示す。図7には、α乗の屈折率分布を有する光ファイバについての結果を示す。図8および表1には、五角形形状の屈折率分布を有する光ファイバについての結果を示す。
Figure JPOXMLDOC01-appb-T000004
 図7より、α乗分布を有する光ファイバの具体例(1≦α≦10の範囲内)において最も曲げ損失が小さくなる極小値である、α=3の場合の曲げ損失を求めた。そして、図8より、鋭角度が88%以下の範囲においては、五角形形状の屈折率分布を有する光ファイバの曲げ損失の値が、α=3の場合の曲げ損失の値を下回るという結果を得た。さらに、鋭角度が42~88%の範囲においては、五角形形状の屈折率分布を有する光ファイバの曲げ損失の値が、理想ステップ型屈折率分布(鋭角度0%、α=∞に相当)の場合の曲げ損失の値を下回るという結果が得られた。
 なお、理想ステップ型屈折率分布は、設計上は仮想できるが、実際には製造時にコア外周部等で屈折率の揺らぎが生じるため、製造が困難と考えられる。コア中央部では一定の屈折率が得られても、外周部で屈折率が揺らぐと、α乗分布におけるα値が∞より低下した状態に近づき、曲げ損失が増加すると考えられる。このため、本実施例による五角形形状の屈折率分布は、曲げ損失の低減に有効と考えられる。
r1…コアの半径
Δ1a…コアの中心における比屈折率差
Δ1b…コアの外周における比屈折率差
1、101…コア
2、12、102…内クラッド部
3、13…外クラッド部
4、14、105…クラッド
103…トレンチ部
104…外クラッド部

Claims (10)

  1.  光ファイバであって、
     コアと、前記コアの外周を取り囲むクラッドと、を有し、
     前記コアの半径をr1で表し、前記コアの中心と前記クラッドとの比屈折率差を第1の比屈折率差Δ1aで表し、前記コアの前記中心からの半径方向の距離がr1である位置と前記クラッドとの比屈折率差を第2の比屈折率差Δ1bで表すとき、
     前記第1の比屈折率差Δ1aは0より大きく、
     前記第2の比屈折率差Δ1bは0より大きく、
     前記第1の比屈折率差Δ1aは前記第2の比屈折率差Δ1bより大きく、
     前記第1の比屈折率差Δ1aと前記第2の比屈折率差Δ1bとが、次の式:
       0.20≦(Δ1a-Δ1b)/Δ1a≦0.88
    で表される関係を満たし、かつ、
     前記コアの屈折率分布Δが、前記コアの前記中心からの半径方向の距離rの関数Δ(r)として、0≦r≦r1の区間全域で、次の式:
       Δ(r)=Δ1a-(Δ1a-Δ1b)r/r1
    で表される光ファイバ。
  2.  前記第1の比屈折率差Δ1aが、0.35%<Δ1a≦0.50%の関係を満たす請求項1に記載の光ファイバ。
  3.  前記第2の比屈折率差Δ1bが、0.06%≦Δ1b<0.35%の関係を満たす請求項1または2に記載の光ファイバ。
  4.  前記半径r1が、4.50μm<r1≦6.25μmの関係を満たす請求項1~3のいずれか1項に記載の光ファイバ。
  5.  波長1550nm、曲げ半径15mmにおける曲げ損失の値が、0.102dB/10ターン以下である請求項1~4のいずれか1項に記載の光ファイバ。
  6.  前記第1の比屈折率差Δ1aと前記第2の比屈折率差Δ1bとが、次の式:
       0.42≦(Δ1a-Δ1b)/Δ1a≦0.88
    で表される関係を満たす請求項1~5のいずれか1項に記載の光ファイバ。
  7.  波長1550nm、曲げ半径15mmにおける曲げ損失の値が、0.055dB/10ターン以下である請求項6に記載の光ファイバ。
  8.  ケーブルカットオフ波長が1260nm以下である請求項1~7のいずれか1項に記載の光ファイバ。
  9.  波長1310nmにおけるモードフィールド径MFDが、8.2μm≦MFD≦9.9μmの範囲内である請求項1~8のいずれか1項に記載の光ファイバ。
  10.  請求項1~9のいずれか1項に記載の光ファイバの製造方法であって、
     前記光ファイバの母材を作製する際に、前記コアを構成するガラスを、または前記コアを構成するガラスと前記クラッドを構成するガラスの一部とを、OVD法またはCVD法で作製する光ファイバの製造方法。
PCT/JP2015/071622 2014-08-01 2015-07-30 光ファイバ及びその製造方法 WO2016017743A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580001948.1A CN105556353B (zh) 2014-08-01 2015-07-30 光纤及其制造方法
EP15826791.4A EP3037855A4 (en) 2014-08-01 2015-07-30 Optical fiber and method for producing same
RU2016109055A RU2635839C2 (ru) 2014-08-01 2015-07-30 Оптическое волокно и способ его изготовления
JP2016501467A JP6155380B2 (ja) 2014-08-01 2015-07-30 光ファイバ及びその製造方法
US15/083,957 US9739935B2 (en) 2014-08-01 2016-03-29 Optical fiber and manufacturing method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-157571 2014-08-01
JP2014157571 2014-08-01
JP2014195938 2014-09-26
JP2014-195937 2014-09-26
JP2014195937 2014-09-26
JP2014-195938 2014-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/083,957 Continuation US9739935B2 (en) 2014-08-01 2016-03-29 Optical fiber and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016017743A1 true WO2016017743A1 (ja) 2016-02-04

Family

ID=55217640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071622 WO2016017743A1 (ja) 2014-08-01 2015-07-30 光ファイバ及びその製造方法

Country Status (6)

Country Link
US (1) US9739935B2 (ja)
EP (1) EP3037855A4 (ja)
JP (1) JP6155380B2 (ja)
CN (1) CN105556353B (ja)
RU (1) RU2635839C2 (ja)
WO (1) WO2016017743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032999A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 光ファイバ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017324A1 (ja) * 2017-07-18 2019-01-24 株式会社フジクラ 光ファイバ、及び、その製造方法
JP7461744B2 (ja) * 2018-01-19 2024-04-04 古河電気工業株式会社 光ファイバ母材の製造方法及び光ファイバ母材並びに光ファイバの製造方法及び光ファイバ
US11714227B2 (en) * 2019-06-17 2023-08-01 Sterlite Technologies Limited Universal optical fiber
CN110398802B (zh) * 2019-08-01 2021-01-29 中国工程物理研究院激光聚变研究中心 一种光纤制作方法
CN112099133B (zh) * 2020-09-25 2021-06-29 东北大学 一种具有斜坡型折射率分布的弱耦合少模光纤

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106544A1 (en) * 2004-04-28 2005-11-10 Ls Cable Ltd. Optical fiber with improved bending behavior
WO2006118362A1 (en) * 2005-04-29 2006-11-09 Ls Cable Ltd. Optical fiber with low stimulated brillouin scattering, and optical transmission line and optical transmission system using the same

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852968A (en) 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
US5504829A (en) 1993-12-27 1996-04-02 Corning Incorporated Optical fiber for soliton transmission and method of making
JP2002503824A (ja) * 1997-12-30 2002-02-05 サムスン エレクトロニクス カンパニー リミテッド 単一モード光ファイバ
JP3437484B2 (ja) * 1999-03-19 2003-08-18 信越化学工業株式会社 光ファイバプリフォームの製造方法及び装置
EP1364918B1 (en) 1998-11-05 2006-06-07 Shin-Etsu Chemical Co., Ltd. A method and apparatus for manufacturing a preform and optical fibre from the preform
JP2000205999A (ja) 1999-01-08 2000-07-28 Fujikura Ltd 光ファイバ測定装置
NL1018338C2 (nl) * 2001-06-20 2002-12-30 Draka Fibre Technology Bv Optische vezel.
JP3986842B2 (ja) * 2001-07-26 2007-10-03 株式会社フジクラ ノンゼロ分散シフト光ファイバ用光ファイバ母材の製法
KR100419418B1 (ko) * 2002-04-03 2004-02-21 삼성전자주식회사 분산 제어 광섬유
KR100506311B1 (ko) * 2003-01-20 2005-08-05 삼성전자주식회사 광대역 분산 제어 광섬유
CN100507621C (zh) 2003-04-17 2009-07-01 日本电信电话株式会社 带空孔型单模光纤
KR100848960B1 (ko) 2004-08-10 2008-07-29 가부시키가이샤후지쿠라 싱글 모드 광파이버
JP4268115B2 (ja) 2004-10-28 2009-05-27 古河電気工業株式会社 シングルモード光ファイバ
JP4101227B2 (ja) 2004-11-05 2008-06-18 古河電気工業株式会社 光ファイバおよびそれに用いる光ファイバの製造方法
JPWO2006049279A1 (ja) 2004-11-05 2008-05-29 株式会社フジクラ 光ファイバ及び伝送システム並びに波長多重伝送システム
KR100668284B1 (ko) * 2004-12-14 2007-01-16 한국전자통신연구원 S밴드 분리형 라만 증폭기를 위한 분산보상광섬유
JP4417286B2 (ja) 2005-04-13 2010-02-17 日本電信電話株式会社 ホーリーファイバおよび光ファイバモジュール
EP3521878A1 (en) 2005-06-15 2019-08-07 Corning Incorporated High sbs threshold optical fiber with aluminium dopant
US7764854B2 (en) * 2005-12-27 2010-07-27 Ofs Fitel Llc Optical fiber with specialized index profile to compensate for bend-induced distortions
US7406237B2 (en) * 2006-02-21 2008-07-29 Corning Incorporated Multiband optical fiber
US7505660B2 (en) 2006-06-30 2009-03-17 Corning Incorporated Microstructured transmission optical fiber
US20080050086A1 (en) 2006-08-24 2008-02-28 Scott Robertson Bickham Optical fiber containing alkali metal oxide
US7689085B1 (en) 2009-01-30 2010-03-30 Corning Incorporated Large effective area fiber with GE-free core
US7876990B1 (en) 2009-11-25 2011-01-25 Corning Incorporated Low loss optical fiber
US8542969B2 (en) 2010-02-26 2013-09-24 Corning Incorporated Low bend loss optical fiber
EP2369379B1 (en) 2010-03-17 2015-05-06 Draka Comteq B.V. Fibre optique monomode ayant des pertes par courbures réduites
CN103380389B (zh) * 2010-12-23 2016-03-09 普睿司曼股份公司 低宏弯曲损耗单模光纤
RU2614033C2 (ru) 2011-08-19 2017-03-22 Корнинг Инкорпорейтед Оптическое волокно с низкими изгибными потерями
KR101273801B1 (ko) 2011-10-17 2013-06-11 에쓰이에이치에프코리아 (주) 구부림 손실 강화 광섬유
US8588569B2 (en) 2011-11-30 2013-11-19 Corning Incorporated Low bend loss optical fiber
WO2014038512A1 (ja) 2012-09-04 2014-03-13 住友電気工業株式会社 光ファイバ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106544A1 (en) * 2004-04-28 2005-11-10 Ls Cable Ltd. Optical fiber with improved bending behavior
WO2006118362A1 (en) * 2005-04-29 2006-11-09 Ls Cable Ltd. Optical fiber with low stimulated brillouin scattering, and optical transmission line and optical transmission system using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3037855A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032999A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 光ファイバ

Also Published As

Publication number Publication date
RU2635839C2 (ru) 2017-11-16
CN105556353A (zh) 2016-05-04
EP3037855A1 (en) 2016-06-29
JPWO2016017743A1 (ja) 2017-04-27
US9739935B2 (en) 2017-08-22
RU2016109055A (ru) 2017-09-19
US20160209585A1 (en) 2016-07-21
CN105556353B (zh) 2018-10-26
EP3037855A4 (en) 2017-04-19
JP6155380B2 (ja) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6155380B2 (ja) 光ファイバ及びその製造方法
JP5820377B2 (ja) 低曲げ損失の光ファイバ
JP6527259B2 (ja) 光ファイバ
JP6008575B2 (ja) シングルモード光ファイバ
JP5881213B2 (ja) シングルモード光ファイバ
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
JP5222752B2 (ja) 光ファイバ
JP6527973B2 (ja) 光ファイバ
US9599769B2 (en) Hydrogen-resistant optical fiber
JP6393338B2 (ja) 光ファイバおよびその製造方法
US9057813B2 (en) Optical fiber
JP2014238526A (ja) 光ファイバ
WO2012128250A1 (ja) 光ファイバ、光ファイバコードおよび光ファイバケーブル
JP2020129037A (ja) 光ファイバおよび光ファイバの製造方法
WO2019017324A1 (ja) 光ファイバ、及び、その製造方法
WO2023112968A1 (ja) 光ファイバ
JP2020134884A (ja) 光ファイバおよび光ファイバの製造方法
WO2022181614A1 (ja) 光ファイバ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001948.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2016501467

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016109055

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015826791

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE