WO2016017143A1 - 非接触給電装置及びそれを用いた非接触給電システム - Google Patents

非接触給電装置及びそれを用いた非接触給電システム Download PDF

Info

Publication number
WO2016017143A1
WO2016017143A1 PCT/JP2015/003758 JP2015003758W WO2016017143A1 WO 2016017143 A1 WO2016017143 A1 WO 2016017143A1 JP 2015003758 W JP2015003758 W JP 2015003758W WO 2016017143 A1 WO2016017143 A1 WO 2016017143A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
coil
primary side
unit
control unit
Prior art date
Application number
PCT/JP2015/003758
Other languages
English (en)
French (fr)
Inventor
一志 中澤
田村 秀樹
悟 田舎片
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016017143A1 publication Critical patent/WO2016017143A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates generally to a noncontact power feeding device and a noncontact power feeding system, and more particularly to a noncontact power feeding device for noncontact power feeding to a load and a noncontact power feeding system using the same.
  • Document 1 Japanese Patent Application Publication No. 2014-90617.
  • the conventional example described in Document 1 discloses a non-contact power transmission and reception system that includes a power transmission unit of a power transmission device and a power reception unit of a vehicle, and charges the power storage device of the vehicle contactlessly.
  • the power transmission unit has a primary self-resonance coil (primary side coil), receives supply of high frequency AC power from the power supply unit, and transmits power to the power reception unit in a contactless manner.
  • the power receiving unit has a secondary self-resonant coil (secondary side coil), and receives power transmitted from the power transmission unit in a contactless manner.
  • power is transmitted contactlessly from the power transmission unit to the power reception unit by resonating the primary coil and the secondary coil with an electromagnetic field.
  • the target parking position is presented to the user so as to efficiently transmit power between the power transmission unit and the power receiving unit, and the user is urged to park the vehicle at the target parking position.
  • the vehicle is not necessarily parked accurately at the target parking position, and there is a possibility that the parking position of the vehicle may deviate from the target parking position.
  • the present invention has been made in view of the above points, and provides a non-contact power feeding device capable of determining in which frequency region of resonance characteristics the operating frequency is located, and a non-contact power feeding system using the same.
  • the purpose is
  • the non-contact power feeding device includes an inverter circuit, a primary side resonance unit, a magnetic field detection unit, and a control unit.
  • the inverter circuit converts direct current power into alternating current power and outputs it.
  • the primary side resonance unit is configured of a spiral type primary side coil that receives an AC power output from the inverter circuit to generate a magnetic flux, and a primary side capacitor that forms a primary side resonance circuit with the primary side coil.
  • the magnetic field detection unit detects a magnetic field.
  • the control unit executes a determination process of determining the correlation between the operating frequency of the inverter circuit and the resonance characteristic of the primary side resonance unit based on the detection result of the magnetic field detection unit.
  • the non-contact electric power feeding system of the aspect which concerns on this invention is equipped with said non-contact electric power feeding apparatus and the non-contact power receiving apparatus which receives the electric power supplied from the said non-contact electric power feeding apparatus.
  • the non-contact power reception device is configured of a secondary coil that generates an AC power by receiving a magnetic flux generated by the primary coil, and a secondary capacitor that forms a secondary resonance circuit with the secondary coil. And a secondary side resonance unit.
  • FIG. 1A is a diagram showing the arrangement of primary coils in the non-contact power feeding device according to the embodiment.
  • FIG. 1B and FIG. 1C are figures which show an example of arrangement
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the circuit schematic which shows the non-contact electric power supply and the non-contact electric power supply system which concern on embodiment. It is a schematic diagram showing an example of use of a non-contact electric supply system concerning an embodiment.
  • FIG. 4A is a diagram showing resonance characteristics in a normal state.
  • FIG. 4B is a diagram showing resonance characteristics when the relative position between the primary coil and the secondary coil is shifted.
  • FIG. 5B are diagrams showing equivalent circuits of the primary side resonance part and the secondary side resonance part, respectively.
  • 6A and 6B are diagrams showing magnetic flux distributions generated by the primary coil and the secondary coil, respectively.
  • FIGS. 7A and 7B are diagrams showing simulation results of the magnetic flux distribution generated in the primary coil and the secondary coil, respectively.
  • the non-contact electric power supply which concerns on embodiment WHEREIN It is a figure which shows an example which arrange
  • FIG. 9A is a circuit diagram showing an example of a primary side capacitor in the non-contact power feeding device according to the embodiment.
  • FIG. 9B is a circuit diagram showing an example of a primary side coil in the non-contact power feeding device according to the embodiment.
  • FIG. 9A is a circuit diagram showing an example of a primary side capacitor in the non-contact power feeding device according to the embodiment.
  • FIG. 9B is a circuit diagram showing an example of a primary side coil in the non-contact power feeding device according to the embodiment
  • FIG. 10A is a circuit diagram showing another configuration of the primary-side resonant unit of the non-contact power feeding device according to the embodiment.
  • FIG. 10B is a circuit diagram showing still another configuration of the primary-side resonant unit of the non-contact power feeding device according to the embodiment. It is the circuit schematic which shows the other structure of the non-contact electric power feeding system which concerns on embodiment.
  • the non-contact power feeding device 2 according to the embodiment of the present invention has the following first feature.
  • the non-contact power feeding device 2 includes an inverter circuit 212, a primary side resonance unit 23, a magnetic field detection unit 25, and a control unit 22.
  • the inverter circuit 212 converts DC power into AC power and outputs it.
  • the primary side resonance unit 23 is configured by a spiral type primary side coil L1 that receives an AC power output from the inverter circuit 212 and generates a magnetic flux, and a primary side capacitor C1 that forms a primary side resonance circuit with the primary side coil L1. Be done.
  • the magnetic field detection unit 25 detects a magnetic field.
  • the control unit 22 executes a determination process of determining the correlation between the operating frequency f1 of the inverter circuit 212 and the resonance characteristic of the primary side resonance unit 23 based on the detection result of the magnetic field detection unit 25.
  • the non-contact power feeding device 2 of the present embodiment may have the following second feature.
  • the resonance characteristic of the primary side resonance unit 23 has two resonance frequencies. And, this resonance characteristic is a low frequency area which is a frequency area lower than a predetermined frequency and a frequency area higher than the predetermined frequency with a predetermined frequency at which the output of the primary side resonance unit 23 shows a local minimum as a boundary. And a high frequency region that is Then, in the determination process, the control unit 22 determines which one of the low frequency region and the high frequency region the operating frequency f1 is located in accordance with the comparison result between the strength of the magnetic field detected by the magnetic field detection unit 25 and the threshold value. judge.
  • the non-contact power feeding device 2 of the present embodiment may have the following third feature.
  • the magnetic field detection unit 25 is disposed at a position surrounded by the primary coil L1.
  • the non-contact power feeding device 2 of the present embodiment may have the following fourth feature in addition to any of the first to third features.
  • the non-contact power feeding device 2 includes a plurality of magnetic field detectors 25. Then, the control unit 22 compares at least two detection results of the plurality of magnetic field detection units 25 in the determination process.
  • non-contact power feeding device 2 of the present embodiment may have the following fifth feature in addition to any of the first to fourth features.
  • control unit 22 executes adjustment processing for adjusting the operating frequency f1 of the inverter circuit 212 based on the determination result of the determination processing.
  • the non-contact power feeding device 2 of the present embodiment may have the following sixth feature in addition to any of the first to fourth features.
  • control unit 22 executes an adjustment process of adjusting the resonance parameter of the primary side resonance unit 23 based on the determination result of the determination process.
  • the non-contact electric power supply 2 of this embodiment may have the following 7th characteristics.
  • the control unit 22 when the resonance characteristic of the primary side resonance unit 23 has two resonance frequencies, the control unit 22 performs adjustment processing so that the operating frequency f1 approaches one of the two resonance frequencies that is lower. Run.
  • non-contact power feeding device 2 of the present embodiment may have the following eighth feature in addition to any of the fifth to seventh features.
  • the non-contact power feeding device 2 includes a current detection unit 24 that detects a current corresponding to the current flowing through the primary coil L1. Then, based on the detection result of the current detection unit 24, the control unit 22 executes adjustment processing so that the inverter circuit 212 operates in the lagging mode.
  • non-contact power feeding system 1 of the present embodiment may have the following ninth feature.
  • the non-contact power feeding system 1 includes a non-contact power feeding device 2 and a non-contact power receiving device 3 receiving power supplied from the non-contact power feeding device 2.
  • the non-contact power reception device 3 receives a magnetic flux generated by the primary coil L1 and generates an alternating current power, and a secondary side capacitor C2 which forms a secondary side resonant circuit with the secondary side coil L2.
  • the secondary side resonance part 31 comprised by these is provided.
  • the non-contact power feeding system 1 of the present embodiment may have the following tenth feature.
  • control unit 22 performs adjustment based on the determination result of the determination process to output an instruction signal prompting a change in the relative position of the primary coil L1 and the secondary coil L2. Execute the process
  • the non-contact power feeding device 2 and the non-contact power feeding system 1 of the present embodiment can determine in which frequency region in the resonance characteristic the operating frequency is located.
  • the non-contact power feeding device 2 and the non-contact power feeding system 1 of the present embodiment will be described in detail.
  • the configuration described below is only an example of the present invention, and the present invention is not limited to the following embodiment, and even if it is other than this embodiment, it deviates from the technical idea according to the present invention. If it is not within the range, various changes can be made according to the design and the like.
  • the non-contact power feeding device 2 and the non-contact power feeding system 1 of the present embodiment may be configured to contact the load 4 in a non-contact manner, and the load 4 is not limited to the charging circuit 102 of the electric vehicle 100.
  • the non-contact power feeding system 1 of the present embodiment includes the non-contact power feeding device 2 and the non-contact power receiving device 3.
  • the non-contact power feeding device 2 includes a power supply unit 21, a control unit 22, a primary side resonance unit 23, a current detection unit 24, and a magnetic field detection unit 25.
  • the primary side resonance unit 23 is configured of a primary side capacitor C1 and a primary side coil L1.
  • the non-contact power reception device 3 includes a secondary side resonance unit 31 and a rectification unit 32.
  • the secondary side resonance part 31 is comprised by the secondary side capacitor
  • the noncontact power feeding device 2 is installed on the floor or the ground.
  • the non-contact power feeding device 2 may be embedded not only on the floor or the ground but also, for example, on the floor or the ground.
  • the non-contact power feeding device 2 is configured such that only the primary side coil L1 is disposed at a position where it can face the secondary side coil L2, and other components, circuits, etc. are disposed at a distance from the primary side coil L1. It may be done.
  • the non-contact power receiving device 3 is installed in a vehicle of the electric vehicle 100.
  • the non-contact power reception device 3 is electrically connected to the storage battery 101 via the charging circuit 102.
  • the storage battery 101 is configured of, for example, a nickel hydrogen battery, a lithium ion battery, a high capacity capacitor, or the like.
  • Storage battery 101 is used as a power source of a motor provided in electric vehicle 100.
  • the storage battery 101 is used as a power supply of electronic devices such as a car navigation system, a car audio system, and a power window provided in the electric vehicle 100.
  • the charging circuit 102 is a circuit that charges the storage battery 101 with the power obtained by appropriately converting the power supplied from the non-contact power feeding device 2.
  • the non-contact power feeding device 2 will be described.
  • the power supply unit 21 is a circuit for supplying desired AC power from the AC power supply AC1 to the primary side resonance unit 23.
  • a power factor correction (PFC) circuit 211 and an inverter circuit 212 are provided. And have.
  • the power factor correction circuit 211 is composed of a diode bridge composed of four diodes D1 to D4, a coil L0, a switching element Q0, a diode D5, and a capacitor C0.
  • the switching element Q0 is controlled to be turned on / off by receiving a control signal from the control unit 22.
  • the switching element Q0 is an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the switching element Q0 may be configured of another semiconductor switching element such as a bipolar transistor or an IGBT (Insulated Gate Bipolar Transistor). Therefore, the power factor improvement circuit 211 is configured to output a voltage of a desired height by controlling the on / off of the switching element Q0 by the control unit 22.
  • the inverter circuit 212 is a full bridge inverter composed of four switching elements Q1 to Q4 as shown in FIG.
  • the switching elements Q1 to Q4 are n-channel enhancement MOSFETs.
  • Switching elements Q1 to Q4 may be formed of other semiconductor switching elements such as bipolar transistors and IGBTs, respectively.
  • a series circuit of two switching elements Q1 and Q2 and a series circuit of two switching elements Q3 and Q4 are electrically connected in parallel.
  • the drains of the switching elements Q1 and Q3 are electrically connected to the high potential side output point of the power factor correction circuit 211, respectively.
  • the sources of the switching elements Q2 and Q4 are electrically connected to the low potential side output point of the power factor correction circuit 211, respectively.
  • the connection point of the source of the switching element Q3 and the drain of the switching element Q4 is a first output point of the inverter circuit 212.
  • a connection point of the source of the switching element Q1 and the drain of the switching element Q2 is a second output point of the inverter circuit 212.
  • the switching elements Q1 and Q4 are switched on / off by receiving the first drive signal G1 from the control unit 22.
  • the switching elements Q2 and Q3 can be switched on / off by being supplied with the second drive signal G2.
  • the second drive signal G2 is a rectangular wave signal that is 180 degrees out of phase with the first drive signal G1.
  • the inverter circuit 212 operates so as to alternately switch on periods of the switching elements Q1 and Q4 and on periods of the switching elements Q2 and Q3 according to the first drive signal G1 and the second drive signal G2.
  • the inverter circuit 212 converts the DC power supplied from the power factor correction circuit 211 into AC power and outputs it.
  • the voltage output from the inverter circuit 212 is referred to as “output voltage V1”
  • the current output from the inverter circuit 212 is referred to as “output current I1”.
  • the control unit 22 is configured of, for example, a microcomputer.
  • the control unit 22 changes the output voltage of the power factor correction circuit 211 by giving a control signal to the power factor correction circuit 211. Further, the control unit 22 controls the operation of the inverter circuit 212 by providing the first drive signal G1 and the second drive signal G2 to the switching elements Q1 to Q4.
  • the primary side resonance unit 23 is configured by electrically connecting a primary side capacitor C1 and a primary side coil L1 in series at a pair of output points of the inverter circuit 212. Further, the primary side coil L1 forms a resonant circuit (a primary side resonant circuit) together with the primary side capacitor C1.
  • the primary coil L1 is a spiral type coil formed by spirally winding a conducting wire around one arbitrary point on one surface (upper surface in FIG. 1A) of the core 231.
  • the spiral coil is also called a circular coil.
  • the core 231 is formed in a plate shape, for example, by a magnetic material such as ferrite.
  • the primary coil L1 generates a magnetic flux when the alternating current output from the inverter circuit 212 flows. That is, the primary coil L1 receives the AC power output from the inverter circuit 212 and generates a magnetic flux.
  • the current detection unit 24 is configured of, for example, a shunt resistor or a Hall element. As shown in FIG. 2, the current detection unit 24 detects an output current I1 flowing from the inverter circuit 212 to the primary coil L1. In other words, the current detection unit 24 detects a current corresponding to the current flowing through the primary coil L1. The detection result (the instantaneous current of the output current I1) of the current detection unit 24 is used when the control unit 22 executes an adjustment process described later.
  • the magnetic field detection unit 25 includes, for example, a Hall element or a search coil.
  • the magnetic field detection unit 25 detects a magnetic field acting on a space including the primary coil L1 and the secondary coil L2, as shown in FIG. 1B.
  • the detection result (for example, the strength of the magnetic field) of the magnetic field detection unit 25 is used when the control unit 22 executes a determination process described later.
  • the magnetic field detection part 25 is comprised by the Hall element, it is preferable that the magnetic field detection part 25 is arrange
  • the magnetic field detection unit 25 is configured by a search coil, it is preferable that the magnetic field detection unit 25 be disposed so that the magnetic flux generated by the primary coil L1 intersects the search coil.
  • the magnetic field detection unit 25 is disposed at a position (central portion of the core 231) surrounded by the primary coil L1, as shown in FIGS. 1B and 1C.
  • the magnetic field detection unit 25 is disposed at a predetermined distance from the core 231 in the thickness direction of the core 231 (vertical direction in FIG. 1B) using, for example, a spacer.
  • the secondary side resonance unit 31 is configured by electrically connecting a secondary side capacitor C2 and a secondary side coil L2 in series at a pair of input points of the rectification unit 32. . Further, the secondary side coil L2 forms a resonant circuit (secondary side resonant circuit) together with the secondary side capacitor C2.
  • the secondary coil L2 is a spiral type coil formed by spirally winding a conducting wire around one arbitrary point on one surface of the core 311 (the lower surface in FIG. 1A).
  • the core 311 is formed in a plate shape, for example, by a magnetic material such as ferrite.
  • the secondary coil L2 is provided so as to be located in the vicinity of the primary coil L1 when the electric vehicle 100 stops at a prescribed stopping position. In other words, the secondary coil L2 is provided to face the primary coil L1 at a predetermined interval when the electric vehicle 100 stops at a prescribed stopping position.
  • the secondary coil L2 receives the magnetic flux generated by the primary coil L1, an alternating current flows by electromagnetic induction. That is, the secondary coil L2 receives the magnetic flux generated by the primary coil L1 and generates AC power.
  • the rectifying unit 32 is configured of a diode bridge 321 configured of four diodes and a capacitor C3.
  • the diode bridge 321 converts the alternating current generated in the secondary coil L2 into a pulsating current and outputs it.
  • the capacitor C3 is electrically connected to a pair of output points of the diode bridge 321, smoothes the pulsating current output from the diode bridge 321, and outputs a direct current. That is, the rectifying unit 32 rectifies AC power generated by the secondary coil L2 into DC power and outputs DC power.
  • the DC power output from the rectifying unit 32 is supplied to the load 4 (here, the charging circuit 102).
  • the non-contact power feeding system 1 of the present embodiment power is transmitted from the primary side resonance unit 23 to the secondary side resonance unit 31 by a resonance method using a magnetic resonance phenomenon. Then, in the non-contact power feeding system 1 of the present embodiment, the non-contact power receiving device 3 efficiently outputs the output power of the non-contact power feeding device 2 by utilizing the magnetic resonance between the primary side resonance unit 23 and the secondary side resonance unit 31. It is transmitted to Therefore, it is preferable that the frequency characteristic of the primary side resonance unit 23 and the frequency characteristic of the secondary side resonance unit 31 match each other.
  • the frequency characteristic (hereinafter, referred to as “resonance characteristic”) of the primary side resonance unit 23 in the non-contact power feeding system 1 of the present embodiment will be described.
  • the resonance characteristics change according to the density of the magnetic coupling between the primary coil L1 and the secondary coil L2.
  • the resonance characteristic changes in accordance with the magnitude of the coupling coefficient between the primary coil L1 and the secondary coil L2.
  • the resonance characteristic exhibits so-called bimodal characteristics in which two local maximum values of the output of the primary side resonance unit 23 appear as shown in FIG. 4A.
  • this resonance characteristic there are a peak at which the output of the primary side resonance unit 23 becomes the maximum value at the first frequency fr1, and a valley at which the output of the primary side resonance unit 23 becomes the minimum value at the second frequency fr2 (fr2> fr1). It has appeared. Further, in this resonance characteristic, a peak at which the output of the primary side resonance unit 23 is a maximum value appears at the third frequency fr3 (fr3> fr2). That is, this resonance characteristic (bimodal characteristic) has two resonance frequencies (first frequency fr1 and third frequency fr3).
  • the inverter circuit 212 operates in either the lagging mode or the phase advancing mode.
  • the “operating frequency f1” is the frequency of the first drive signal G1 and the second drive signal G2, in other words, the frequency of the output voltage V1 of the inverter circuit 212.
  • the phase advance mode is a mode in which the inverter circuit 212 operates with the phase of the output current I1 of the inverter circuit 212 leading the phase of the output voltage V1 of the inverter circuit 212.
  • the switching operation of the inverter circuit 212 is so-called hard switching.
  • the lagging mode is a mode in which the inverter circuit 212 operates in a state in which the output current I1 of the inverter circuit 212 is delayed from the phase of the output voltage V1 of the inverter circuit 212. In the lagging mode, the switching operation of the inverter circuit 212 is so-called soft switching.
  • the inverter circuit 212 preferably operates in the lagging mode.
  • the operating frequency f1 is located in the frequency range between the first frequency fr1 and the second frequency fr2, and the operating frequency f1 is larger than the third frequency fr3. Operates in lagging mode, either in
  • the operating frequency f1 be located in the low frequency range rather than the high frequency range.
  • the “low frequency region” is a frequency region lower than the second frequency fr2 (predetermined frequency) at which the output of the primary side resonance unit 23 exhibits a local minimum value in the resonance characteristics.
  • the “high frequency region” is a frequency region higher than the second frequency fr2 (predetermined frequency) at which the output of the primary side resonance unit 23 exhibits a local minimum value in the resonance characteristics.
  • the relative position of the primary side coil L1 and the secondary side coil L2 may shift
  • the stopping position of the electric vehicle 100 deviates from a predetermined stopping position
  • the relative position between the primary coil L1 and the secondary coil L2 deviates.
  • the magnetic coupling between the primary coil L1 and the secondary coil L2 changes (that is, the coupling coefficient changes).
  • the resonance characteristics change, for example, from the characteristics shown in FIG. 4A to the characteristics shown in FIG. 4B by changing the frequencies fr1 to fr3.
  • the operating frequency f1 is a constant frequency.
  • the operating frequency f1 in the resonance characteristic shown in FIG. 4A, the operating frequency f1 is located in the low frequency region, whereas in the resonance characteristic shown in FIG. 4B, the operating frequency f1 is located in the high frequency region. Therefore, in the resonance characteristic shown in FIG. 4B, the phase of the current flowing through the primary coil L1 and the phase of the current flowing through the secondary coil L2 are aligned, and the unnecessary radiation can not be reduced.
  • the inventors of the present application operate in the space including the primary coil L1 and the secondary coil L2 when the operating frequency f1 is located in the low frequency region and when the operating frequency f1 is located in the high frequency region. Focused on the change of the magnetic field (magnetic field).
  • FIG. 5A shows an equivalent circuit of the primary side resonance unit 23 and the secondary side resonance unit 31 when the operating frequency f1 is located in the low frequency region.
  • the parallel circuit of mutual inductor M1 and two series resonance circuits (the primary side resonance part 23 and the secondary side resonance part 31) resonates .
  • a current flows through the mutual inductor M1, and the direction of the current flowing through the primary coil L1 and the direction of the current flowing through the secondary coil L2 become opposite to each other.
  • FIG. 5B shows an equivalent circuit of the primary side resonance unit 23 and the secondary side resonance unit 31 when the operating frequency f1 is located in the high frequency region.
  • the primary side coil L1 and the secondary side coil L2 resonate with the primary side capacitor C1 and the secondary side capacitor C2.
  • no current flows through the mutual inductor M1 and the direction of the current flowing through the primary coil L1 and the direction of the current flowing through the secondary coil L2 become the same.
  • FIG. 6A shows the distribution of magnetic flux generated by the primary coil L1 and the secondary coil L2 when the operating frequency f1 is located in the low frequency region.
  • the direction of the magnetic flux B1 generated by the primary coil L1 and the direction of the magnetic flux B2 generated by the secondary coil L2 are the same at the position surrounded by the primary coil L1 (the center of the core 231). Become. For this reason, in the space between the primary coil L1 and the secondary coil L2, the magnetic flux B1 generated by the primary coil L1 and the magnetic flux B2 generated by the secondary coil L2 mutually reinforce each other.
  • FIG. 6B shows the distribution of magnetic flux generated by the primary coil L1 and the secondary coil L2 when the operating frequency f1 is located in the high frequency region.
  • the direction of the magnetic flux B1 generated by the primary coil L1 and the direction of the magnetic flux B2 generated by the secondary coil L2 are opposite to each other at a position surrounded by the primary coil L1 (central portion of the core 231). become. Therefore, in the space between the primary coil L1 and the secondary coil L2, the magnetic flux B1 generated by the primary coil L1 and the magnetic flux B2 generated by the secondary coil L2 cancel each other.
  • FIGS. 7A and 7B show the results of the magnetic flux.
  • Arrows shown in FIGS. 7A and 7B indicate the directions of the magnetic flux.
  • the operating frequency f1 is located in the low frequency region, as shown in FIG. 7A, the magnetic flux in the direction from the primary coil L1 to the secondary coil L2 (upward in FIG. 7A) becomes strong.
  • the operating frequency f1 is located in the high frequency region, as shown in FIG. 7B, the magnetic flux in the direction from the primary coil L1 toward the secondary coil L2 becomes weak.
  • the “vertical direction” is a direction (vertical direction in FIG. 7A) perpendicular to one surface (upper surface or lower surface in FIG. 7A) of the core 231 (core 311).
  • the magnetic field detection unit 25 is disposed at a position surrounded by the primary coil L1 (see FIGS. 1B and 1C). Therefore, the magnetic field detected by the magnetic field detection unit 25 becomes stronger when the operating frequency f1 is located in the low frequency region, and becomes weaker when the operating frequency f1 is located in the high frequency region. Then, based on the detection result of the magnetic field detection unit 25, the control unit 22 executes a determination process of determining the correlation between the operating frequency f1 of the inverter circuit 212 and the resonance characteristic of the primary side resonance unit 23. Specifically, in the determination process, the control unit 22 compares the strength of the magnetic field detected by the magnetic field detection unit 25 with a preset threshold.
  • the control unit 22 determines that the operating frequency f1 is located in the low frequency region. In the determination process, if the strength of the magnetic field detected by the magnetic field detection unit 25 falls below the threshold, the control unit 22 determines that the operating frequency f1 is located in the high frequency region.
  • the strength of the magnetic field detected by the magnetic field detection unit 25 is equal to the threshold value, which of the low frequency region and the high frequency region the operating frequency f1 is positioned may be set appropriately.
  • the non-contact power feeding device 2 of the present embodiment includes the magnetic field detection unit 25 that detects a magnetic field. Then, in the non-contact power feeding device 2 of the present embodiment, the control unit 22 determines the correlation between the operating frequency f1 of the inverter circuit 212 and the resonance characteristic of the primary side resonance unit 23 based on the detection result of the magnetic field detection unit 25. Execute judgment processing. Therefore, the non-contact power feeding device 2 of the present embodiment can determine in which frequency region in the resonance characteristic the operating frequency f1 is located by the determination processing performed by the control unit 22.
  • the non-contact power feeding device 2 of the present embodiment determines which frequency region in the changed resonance characteristic Can determine whether the operating frequency f1 is located.
  • the magnetic field detection unit 25 is disposed at a position surrounded by the primary side coil L1, as shown in FIG. 1B and FIG. 1C. For this reason, since the magnetic flux linked (crossed) to the magnetic field detection unit 25 largely changes depending on whether the operating frequency f1 is located in the low frequency region or in the high frequency region, a change in the strength of the magnetic field is detected. It has the advantage of being easy to do.
  • the non-contact electric power supply 2 of this embodiment may be equipped with the magnetic field detection part 25 of plurality (five in the illustration), for example, as shown in FIG.
  • one magnetic field detection unit 25 is disposed at a position surrounded by the primary coil L1, and the remaining four magnetic field detection units 25 are disposed concentrically around the one magnetic field detection unit 25. ing.
  • the control unit 22 may compare at least two detection results of the plurality of magnetic field detection units 25 in the determination process.
  • the strength of the magnetic field detected by the magnetic field detector 25 changes in accordance with the relative position of the primary coil L1 and the secondary coil L2. That is, in the magnetic field detection unit 25, the strength of the detected magnetic field becomes stronger as it approaches the secondary coil L2, and the strength of the detected magnetic field becomes weaker as it gets farther from the secondary coil L2. Therefore, in the determination process, the control unit 22 determines the relative position between the primary coil L1 and the secondary coil L2 based on the difference (gradient) in the strength of the magnetic field detected by each magnetic field detection unit 25. It can be determined.
  • the control unit 22 It can be determined that the coil L2 is shifted downward in FIG. In addition, it is arbitrary whether to employ
  • the control unit 22 determines that the operating frequency f1 is an appropriate frequency range (that is, a low frequency range) in the resonance characteristic based on the determination process as well as the determination process.
  • An adjustment process may be performed to adjust the position of the vehicle.
  • control unit 22 may execute the adjustment process of adjusting the operating frequency f1 of the inverter circuit 212 based on the determination result of the determination process. For example, it is assumed that the control unit 22 determines that the operating frequency f1 is located in the high frequency region in the determination process. In this case, the control unit 22 reduces the operating frequency f1 in the adjustment process. By this adjustment process, the operating frequency f1 is adjusted to be located in the low frequency region. In addition, it is arbitrary whether to employ
  • control unit 22 may execute an adjustment process of adjusting the resonance parameter of the primary side resonance unit 23 based on the determination result of the determination process.
  • the “resonance parameter” is the capacitance of the primary side capacitor C1 or the inductance of the primary side coil L1.
  • the control unit 22 determines that the operating frequency f1 is located in the high frequency region in the determination process.
  • the control unit 22 reduces at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 in the adjustment process.
  • the resonance characteristics shift to the high frequency side by increasing the frequencies fr1 to fr3.
  • the operating frequency f1 is adjusted to be located in the low frequency region of the adjusted resonance characteristic.
  • the control unit 22 sets the operating frequency f1 to a low resonance frequency of the two resonance frequencies. It is preferable to carry out the adjustment process to get closer. That is, as described above, the control unit 22 adjusts the operating frequency f1 of the inverter circuit 212 or adjusts the resonance parameter of the primary side resonance unit 23 to position the operating frequency f1 in the low frequency region. It is preferable to carry out the adjustment process as follows. In addition, it is arbitrary whether to employ
  • a configuration shown in FIG. 9A can be considered as the primary side capacitor C1 whose capacitance can be adjusted by the control unit 22.
  • the primary side capacitor C1 shown in FIG. 9A includes two capacitors C11 and C12 having different capacitances, and two switches QC1 and QC2.
  • the switch QC1 is electrically connected in series to the capacitor C11.
  • the switch QC2 is electrically connected in series to the capacitor C12. Then, a series circuit of the capacitor C11 and the switch QC1 and a series circuit of the capacitor C12 and the switch QC2 are electrically connected in parallel.
  • the primary side coil L1 shown in FIG. 9B includes two coils L11 and L12 electrically connected in series to each other, and a switch QL1 electrically connected in parallel to one coil L12.
  • the switches QC1, QC2, QL1 are formed of semiconductor switches such as MOSFETs, for example.
  • the switches QC1, QC2, and QL1 are controlled by the control unit 22 to turn on and off. Therefore, in the configuration shown in FIG. 9A, the capacitance of the primary side capacitor C1 can be adjusted by controlling the control unit 22 to switch on / off the switches QC1 and QC2. Similarly, in the configuration shown in FIG. 9B, the inductance of the primary side coil L1 can be adjusted by controlling the control unit 22 to switch on / off the switch QL1.
  • the capacitance of the primary side capacitor C1 can be made in more stages by increasing the number of series circuits. It is possible to adjust.
  • the number of parallel circuits of the coil L12 and the switch QL1 is one in the configuration shown in FIG. 9B, the inductance of the primary side coil L1 may be adjusted in more stages by increasing the number of parallel circuits. It is possible.
  • the primary side capacitor C1 may be incorporated in a capacity adjustment circuit 232 as shown in FIG. 10A.
  • the capacitance adjustment circuit 232 is configured of a primary side capacitor C1 and four switching elements Q5 to Q8.
  • switching elements Q5 to Q8 are n-channel enhancement type MOSFETs.
  • a series circuit of two switching elements Q5 and Q6 and a series circuit of two switching elements Q7 and Q8 are electrically connected in parallel.
  • the connection point of the source of the switching element Q5 and the drain of the switching element Q6 is electrically connected to the first output point of the inverter circuit 212.
  • connection point of the source of the switching element Q7 and the drain of the switching element Q8 is electrically connected to one end of the primary coil L1.
  • the primary side capacitor C1 is electrically connected between the connection point of the sources of the switching elements Q5 and Q7 and the connection point of the drains of the switching elements Q6 and Q8.
  • the capacitance adjustment circuit 232 operates by supplying the third drive signal G3 to the switching elements Q5 and Q8 and the fourth drive signal G4 to the switching elements Q6 and Q7. Specifically, the capacitance adjustment circuit 232 operates so as to alternately switch on periods of the switching elements Q5 and Q8 and on periods of the switching elements Q6 and Q7 by the third drive signal G3 and the fourth drive signal G4. Do.
  • the capacitance adjustment circuit 232 is configured to switch the path through the primary side capacitor C1 and the path not through the primary side capacitor C1 by switching on / off the switching elements Q5 to Q8.
  • the capacitance of the capacity adjustment circuit 232 (that is, the capacitance of the primary side capacitor C1) can be adjusted by changing the period in which the primary side capacitor C1 is connected between the input and output of the capacity adjustment circuit 232. it can.
  • capacitance adjustment circuit 232 may be configured using two bidirectional switches Q9 and Q10 as shown in FIG. 10B.
  • the bidirectional switch Q9 is composed of a semiconductor element of a double gate structure having two gate terminals. Further, the bidirectional switch Q9 is electrically connected in series to the primary side capacitor C1.
  • the bidirectional switch Q10 is composed of a semiconductor element of a double gate structure having two gate terminals. Further, the bidirectional switch Q10 is electrically connected in parallel to the series circuit of the bidirectional switch Q9 and the primary side capacitor C1.
  • the third drive signal G3 and the fourth drive signal G4 are input to the two gate terminals of the bidirectional switch Q9, respectively.
  • the third drive signal G3 and the fourth drive signal G4 are input to the two gate terminals of the bidirectional switch Q10, respectively.
  • the capacitance adjustment circuit 232 configured in this way operates in the same manner as the capacitance adjustment circuit 232 shown in FIG. 10A.
  • the non-contact power feeding device 2 of the present embodiment includes the current detection unit 24 that detects a current (output current I1) corresponding to the current flowing through the primary side coil L1 (see FIG. 2). Therefore, based on the detection result of the current detection unit 24, the control unit 22 may perform adjustment processing so that the inverter circuit 212 operates in the lagging mode. For example, the control unit 22 controls the inverter circuit 212 in any one of the lagging phase mode and the phase advancing mode according to the current value of the output current I1 when the pair of switching elements Q1 and Q4 of the inverter circuit 212 is turned off. Can be determined.
  • the control unit 22 determines that the circuit 212 is operating in the lagging mode.
  • the control unit 22 operates the inverter circuit 212 in the phase advance mode. It is determined that there is.
  • control unit 22 adjusts the inverter circuit 212 to operate in the lagging mode based on the determination result of whether the inverter circuit 212 is operating in the lagging mode or the phase advancing mode.
  • the adjustment method as described above, the method of adjusting the operating frequency f1 of the inverter circuit 212 or adjusting the resonance parameter of the primary side resonance unit 23 may be mentioned.
  • the inverter circuit 212 can be operated in the lagging mode, it is possible to reduce the loss due to the switching of the switching elements Q1 to Q4 of the inverter circuit 212. Moreover, in this configuration, it is possible to prevent the excessive electrical stress from being applied to the switching elements Q1 to Q4 of the inverter circuit 212. In addition, it is arbitrary whether to employ
  • the control unit 22 may execute the determination process again after performing the adjustment process. Then, if it is determined that the operating frequency f1 is located in the high frequency region also in the second determination process, the control unit 22 may further execute the adjustment process.
  • the control unit 22 performs the determination process and the adjustment process in the start period from the start of the power supply unit 21 to the start of the power feeding operation to make the operating frequency f1 constant. Running. Then, the control unit 22 controls the power factor improvement circuit 211 such that the output voltage V1 in the start period is lower than the output voltage V1 during the power supply operation. For example, if the power factor correction circuit 211 has the configuration shown in FIG. 2, the control unit 22 lowers the output voltage V1 in the start period by controlling the on / off of the switching element Q0. Further, when starting the power supply operation, the control unit 22 controls the on / off of the switching element Q0 to increase the output voltage V1 during the power supply operation.
  • the control unit 22 outputs an instruction signal for prompting a change in the relative position of the primary coil L1 and the secondary coil L2 based on the determination result of the determination process. Processing may be performed.
  • the control unit 22 may output an instruction signal to the actuator.
  • the control unit 22 determines that the operating frequency f1 is located in the high frequency region in the determination process.
  • the control unit 22 outputs an instruction signal to the actuator.
  • the actuator adjusts the position of the primary coil L1 in accordance with the instruction signal.
  • the non-contact power feeding system 1 for example, provides an instruction signal to the non-contact power reception device 3 and adjusts the position of the secondary coil L2 according to the instruction signal. You may be comprised so that the relative position of the following coil L2 may be adjusted.
  • the non-contact power feeding device 2 and the non-contact power receiving device 3 respectively include communication units 26 and 34.
  • the communication units 26 and 34 are configured to communicate with each other by, for example, radio signals using radio waves as a medium.
  • the non-contact power reception device 3 also includes a control unit 33 that executes a process according to the instruction signal.
  • the control unit 33 is, for example, a microcomputer as in the case of the control unit 22.
  • the control unit 22 determines that the operating frequency f1 is located in the high frequency region in the determination process.
  • the control unit 22 generates an instruction signal, and causes the communication unit 26 to transmit the instruction signal to the non-contact power reception device 3.
  • the communication unit 34 inputs the instruction signal to the control unit 33.
  • the control unit 33 instructs the user to move the electric vehicle 100 to the appropriate stopping position based on the input instruction signal.
  • the instruction is performed by, for example, outputting sound from a speaker mounted on the electric vehicle 100 or displaying an image or a moving image on a display mounted on the electric vehicle 100.
  • the core 231 is provided with the primary coil L1 and the core 311 is provided with the secondary coil L2, but the present invention is not limited to this configuration. That is, the primary coil L1 may be provided to a member other than the core 231. Similarly, the secondary coil L2 may be provided to a member other than the core 311.
  • the non-contact electric power supply system 1 of this embodiment provides the magnetic field detection part 25 in the non-contact electric power supply apparatus 2 and makes the control part 22 perform a determination process and adjustment process, even if it is another structure. Good. That is, in the non-contact power feeding system 1 of the present embodiment, the non-contact power reception device 3 may be configured to have the magnetic field detection unit 25 and cause the control unit 33 to execute the determination process and the adjustment process.
  • the non-contact power feeding device 2 and the non-contact power feeding system 1 of the present embodiment power is transmitted from the primary coil L1 to the secondary coil L2 by resonance, but power is transmitted by electromagnetic induction. It may be In this configuration, since it is not necessary to form a resonant circuit in the non-contact power reception device 3, the secondary side capacitor C2 is unnecessary.
  • the non-contact electric power feeding system 1 of this embodiment employ
  • the spiral coil is less effective radiation than a solenoid coil, and is particularly effective in a non-contact power feeding system that requires high power feeding such as an electric car.
  • the use of the spiral coil has an advantage that the unnecessary radiation is reduced, and the range of the operating frequency f1 that can be used in the inverter circuit 212 is expanded.
  • the inverter circuit 212 operates in the lagging mode if the operating frequency f1 of the inverter circuit 212 is in the lagging region (fr1 ⁇ f1 ⁇ fr2) of the low frequency region, And unnecessary radiation will also be reduced.
  • the low frequency region of the low frequency region changes in accordance with the coupling coefficient between the primary coil L1 and the secondary coil L2, the operating frequency f1 of the inverter circuit 212 is set in such an indeterminate low phase region. Control to fit is needed.
  • the operating frequency f1 of the inverter circuit 212 is in the low phase region (fr3 ⁇ f1) of the high frequency region, unnecessary radiation is significantly larger than that of a solenoid coil. Reduced. That is, by using a spiral coil, the operating frequency f1 of the inverter circuit 212 is not limited to the lagging region of the low frequency region, and the range of the operating frequency f1 usable in the inverter circuit 212 is expanded. Become.
  • the lagging region in the high frequency region is also an uncertain region, if the operating frequency f1 of the inverter circuit 212 is swept from a sufficiently high frequency to the low frequency side, the operating frequency f1 is in the lagging region in the high frequency region. Because it passes, complicated control is unnecessary.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 本発明の課題は、動作周波数が共振特性におけるどの周波数領域に位置するかを判定することである。本発明の非接触給電装置(2)は、インバータ回路と、一次側共振部と、磁界検知部(25)と、制御部とを備える。インバータ回路は、直流電力を交流電力に変換して出力する。一次側共振部は、インバータ回路の出力する交流電力を受けて磁束を発生するスパイラル型の一次側コイル(L1)、及び一次側コイル(L1)と共に一次側の共振回路を形成する一次側コンデンサで構成される。磁界検知部(25)は、磁界を検知する。制御部は、磁界検知部(25)の検知結果に基づいて、インバータ回路の動作周波数と一次側共振部の共振特性との相関を判定する判定処理を実行する。

Description

非接触給電装置及びそれを用いた非接触給電システム
 本発明は、一般に非接触給電装置、非接触給電システムに関し、より詳細には負荷に非接触で給電する非接触給電装置及びそれを用いた非接触給電システムに関する。
 従来、携帯型機器や電気自動車などの機器に非接触で送電する技術が知られており、例えば文献1(日本国特許出願公開番号2014-90617)に開示されている。文献1に記載の従来例には、送電装置が有する送電ユニットと、車両が有する受電ユニットとを備え、車両の蓄電装置を非接触で充電する非接触送受電システムが開示されている。
 送電ユニットは、一次自己共振コイル(一次側コイル)を有し、電源部から高周波の交流電力の供給を受け、受電ユニットへ非接触で電力を伝送する。受電ユニットは、二次自己共振コイル(二次側コイル)を有し、送電ユニットから送出される電力を非接触で受電する。上記従来例では、一次側コイルと二次側コイルとを電磁界によって共振(共鳴)させることで、送電ユニットから受電ユニットへ非接触で電力を伝送させている。
 上記従来例では、送電ユニットと受電ユニットとの間で効率よく電力の伝送が行われるように、目標駐車位置をユーザに提示し、目標駐車位置に車両を駐車するように促している。しかしながら、車両は必ずしも目標駐車位置に正確に駐車されるとは限らず、車両の駐車位置が目標駐車位置からずれてしまう可能性がある。
 この場合、一次側コイルと二次側コイルとの相対的な位置がずれることで、一次側コイルを含む共振回路及び二次側コイルを含む共振回路の共振特性が変化し、所望の動作を行うことができない虞がある。そして、上記従来例は、電源部から供給される交流電力の周波数(動作周波数)が、位置ずれによって変化した共振特性におけるどの周波数領域に位置するかを判定することができないという問題があった。
 本発明は、上記の点に鑑みて為されており、動作周波数が共振特性におけるどの周波数領域に位置するかを判定することのできる非接触給電装置及びそれを用いた非接触給電システムを提供することを目的とする。
 本発明に係る一態様の非接触給電装置は、インバータ回路と、一次側共振部と、磁界検知部と、制御部とを備える。前記インバータ回路は、直流電力を交流電力に変換して出力する。前記一次側共振部は、前記インバータ回路の出力する交流電力を受けて磁束を発生するスパイラル型の一次側コイル、及び前記一次側コイルと共に一次側の共振回路を形成する一次側コンデンサで構成される。前記磁界検知部は、磁界を検知する。前記制御部は、前記磁界検知部の検知結果に基づいて、前記インバータ回路の動作周波数と前記一次側共振部の共振特性との相関を判定する判定処理を実行する。
 また、本発明に係る一態様の非接触給電システムは、上記の非接触給電装置と、前記非接触給電装置から供給される電力を受ける非接触受電装置とを備える。前記非接触受電装置は、前記一次側コイルが発生する磁束を受けて交流電力を発生する二次側コイル、及び前記二次側コイルと共に二次側の共振回路を形成する二次側コンデンサで構成される二次側共振部を備える。
図1Aは、実施形態に係る非接触給電装置における一次側コイルの配置を示す図である。図1B,図1Cは、それぞれ実施形態に係る非接触給電装置における磁界検知部の配置の一例を示す図である。 実施形態に係る非接触給電装置及び非接触給電システムを示す回路概略図である。 実施形態に係る非接触給電システムの使用例を示す概略図である。 図4Aは、通常時における共振特性を示す図である。図4Bは、一次側コイルと二次側コイルとの相対的な位置がずれた場合における共振特性を示す図である。 図5A,図5Bは、それぞれ一次側共振部及び二次側共振部の等価回路を示す図である。 図6A,図6Bは、それぞれ一次側コイル及び二次側コイルで発生する磁束分布を示す図である。 図7A,図7Bは、それぞれ一次側コイル及び二次側コイルで発生する磁束分布のシミュレーションの結果を示す図である。 実施形態に係る非接触給電装置において、複数の磁界検知部を配置した一例を示す図である。 図9Aは、実施形態に係る非接触給電装置における一次側コンデンサの一例を示す回路図である。図9Bは、実施形態に係る非接触給電装置における一次側コイルの一例を示す回路図である。 図10Aは、実施形態に係る非接触給電装置の一次側共振部の他の構成を示す回路図である。図10Bは、実施形態に係る非接触給電装置の一次側共振部の更に他の構成を示す回路図である。 実施形態に係る非接触給電システムの他の構成を示す回路概略図である。
 本発明の実施形態に係る非接触給電装置2は、以下の第1の特徴を有する。
 第1の特徴では、非接触給電装置2は、図1A~図1C、及び図2に示すように、インバータ回路212と、一次側共振部23と、磁界検知部25と、制御部22とを備える。インバータ回路212は、直流電力を交流電力に変換して出力する。一次側共振部23は、インバータ回路212の出力する交流電力を受けて磁束を発生するスパイラル型の一次側コイルL1、及び一次側コイルL1と共に一次側の共振回路を形成する一次側コンデンサC1で構成される。磁界検知部25は、磁界を検知する。制御部22は、磁界検知部25の検知結果に基づいて、インバータ回路212の動作周波数f1と一次側共振部23の共振特性との相関を判定する判定処理を実行する。
 また、本実施形態の非接触給電装置2は、第1の特徴に加えて、以下の第2の特徴を有していてもよい。
 第2の特徴では、一次側共振部23の共振特性は2つの共振周波数を有する。かつ、この共振特性は、一次側共振部23の出力が極小値を示す所定の周波数を境界にして、所定の周波数よりも低い周波数領域である低周波数領域と、所定の周波数よりも高い周波数領域である高周波数領域とを有する。そして、制御部22は、判定処理において、磁界検知部25で検知された磁界の強さと閾値との比較結果に応じて、動作周波数f1が低周波数領域及び高周波数領域のいずれに位置するかを判定する。
 また、本実施形態の非接触給電装置2は、第1又は第2の特徴に加えて、以下の第3の特徴を有していてもよい。
 第3の特徴では、磁界検知部25は、一次側コイルL1で囲まれる位置に配置される。
 また、本実施形態の非接触給電装置2は、第1~第3のいずれかの特徴に加えて、以下の第4の特徴を有していてもよい。
 第4の特徴では、非接触給電装置2は、磁界検知部25を複数備える。そして、制御部22は、判定処理において、複数の磁界検知部25のうち少なくとも2つの検知結果を比較する。
 また、本実施形態の非接触給電装置2は、第1~第4のいずれかの特徴に加えて、以下の第5の特徴を有していてもよい。
 第5の特徴では、制御部22は、判定処理の判定結果に基づいて、インバータ回路212の動作周波数f1を調整する調整処理を実行する。
 また、本実施形態の非接触給電装置2は、第1~第4のいずれかの特徴に加えて、以下の第6の特徴を有していてもよい。
 第6の特徴では、制御部22は、判定処理の判定結果に基づいて、一次側共振部23の共振パラメータを調整する調整処理を実行する。
 また、本実施形態の非接触給電装置2は、第5又は第6の特徴に加えて、以下の第7の特徴を有していてもよい。
 第7の特徴では、制御部22は、一次側共振部23の共振特性が2つの共振周波数を有している場合、動作周波数f1が2つの共振周波数のうち低い共振周波数に近づくように調整処理を実行する。
 また、本実施形態の非接触給電装置2は、第5~第7のいずれかの特徴に加えて、以下の第8の特徴を有していてもよい。
 第8の特徴では、非接触給電装置2は、一次側コイルL1を流れる電流に相当する電流を検知する電流検知部24を備える。そして、制御部22は、電流検知部24の検知結果に基づいて、インバータ回路212が遅相モードで動作するように調整処理を実行する。
 また、本実施形態の非接触給電システム1は、以下の第9の特徴を有していてもよい。
 第9の特徴では、非接触給電システム1は、図2に示すように、非接触給電装置2と、非接触給電装置2から供給される電力を受ける非接触受電装置3とを備える。非接触受電装置3は、一次側コイルL1が発生する磁束を受けて交流電力を発生する二次側コイルL2、及び二次側コイルL2と共に二次側の共振回路を形成する二次側コンデンサC2で構成される二次側共振部31を備える。
 また、本実施形態の非接触給電システム1は、第9の特徴に加えて、以下の第10の特徴を有していてもよい。
 第10の特徴では、制御部22(制御部33)は、判定処理の判定結果に基づいて、一次側コイルL1及び二次側コイルL2の相対的な位置の変更を促す指示信号を出力する調整処理を実行する。
 本実施形態の非接触給電装置2及び非接触給電システム1は、動作周波数が共振特性におけるどの周波数領域に位置するかを判定することができる。
 以下、本実施形態の非接触給電装置2及び非接触給電システム1について詳細に説明する。但し、以下に説明する構成は、本発明の一例に過ぎず、本発明は下記の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
 なお、以下では、図3に示すように、本実施形態の非接触給電装置2及び非接触給電システム1を用いて充電回路102に給電することで、電気自動車100の蓄電池101を充電する場合について例示するが、この例に限定する趣旨ではない。すなわち、本実施形態の非接触給電装置2及び非接触給電システム1は、負荷4に非接触で給電する構成であればよく、負荷4は電気自動車100の充電回路102に限定されない。
 本実施形態の非接触給電システム1は、図2に示すように、非接触給電装置2と、非接触受電装置3とを備えている。非接触給電装置2は、電源部21と、制御部22と、一次側共振部23と、電流検知部24と、磁界検知部25とを備えている。一次側共振部23は、一次側コンデンサC1と、一次側コイルL1とで構成されている。非接触受電装置3は、二次側共振部31と、整流部32とを備えている。二次側共振部31は、二次側コンデンサC2と、二次側コイルL2とで構成されている。
 本実施形態の非接触給電システム1において、非接触給電装置2は、図3に示すように、床や地面上に設置されている。なお、非接触給電装置2は、床や地面上のみならず、例えば床や地面に埋め込んで配置されていてもよい。また、非接触給電装置2は、一次側コイルL1のみを二次側コイルL2と対向可能な位置に配置し、その他の部品や回路等は一次側コイルL1から離れた場所に配置するように構成されていてもよい。
 本実施形態の非接触給電システム1において、非接触受電装置3は、図3に示すように、電気自動車100の車両内に設置されている。非接触受電装置3は、充電回路102を介して蓄電池101に電気的に接続されている。蓄電池101は、例えばニッケル水素電池やリチウムイオン電池、高容量のコンデンサ等により構成される。蓄電池101は、電気自動車100の備える電動機の電源として用いられる。その他、蓄電池101は、電気自動車100が備えるカーナビゲーションシステムやカーオーディオ、パワーウィンドウなどの電子機器の電源として用いられる。充電回路102は、非接触給電装置2より供給される電力を適宜変換した電力により、蓄電池101を充電する回路である。
 先ず、非接触給電装置2について説明する。
 電源部21は、交流電源AC1から一次側共振部23に所望の交流電力を供給する回路であり、図2に示すように、力率改善(PFC:Power Factor Correction)回路211と、インバータ回路212とを備えている。力率改善回路211は、図2に示すように、4つのダイオードD1~D4で構成されるダイオードブリッジと、コイルL0と、スイッチング素子Q0と、ダイオードD5と、コンデンサC0とで構成されている。スイッチング素子Q0は、制御部22から制御信号を与えられることでオン/オフを制御される。本実施形態の非接触給電装置2では、スイッチング素子Q0は、nチャネルのエンハンスメント型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。なお、スイッチング素子Q0は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)等の他の半導体スイッチング素子で構成されていてもよい。したがって、力率改善回路211は、制御部22によりスイッチング素子Q0のオン/オフが制御されることで、所望の高さの電圧を出力するように構成されている。
 インバータ回路212は、図2に示すように、4つのスイッチング素子Q1~Q4で構成されるフルブリッジ・インバータである。本実施形態の非接触給電装置2では、スイッチング素子Q1~Q4は、それぞれnチャネルのエンハンスメント型MOSFETである。なお、スイッチング素子Q1~Q4は、それぞれバイポーラトランジスタやIGBT等の他の半導体スイッチング素子で構成されていてもよい。
 インバータ回路212では、2つのスイッチング素子Q1,Q2の直列回路と、2つのスイッチング素子Q3,Q4の直列回路とが並列に電気的に接続されている。スイッチング素子Q1,Q3のドレインは、それぞれ力率改善回路211の高電位側の出力点に電気的に接続されている。また、スイッチング素子Q2,Q4のソースは、それぞれ力率改善回路211の低電位側の出力点に電気的に接続されている。そして、スイッチング素子Q3のソース及びスイッチング素子Q4のドレインの接続点が、インバータ回路212の第1出力点となっている。また、スイッチング素子Q1のソース及びスイッチング素子Q2のドレインの接続点が、インバータ回路212の第2出力点となっている。
 スイッチング素子Q1,Q4は、制御部22から第1駆動信号G1を与えられることにより、オン/オフを切り替えられる。また、スイッチング素子Q2,Q3は、第2駆動信号G2を与えられることにより、オン/オフを切り替えられる。第2駆動信号G2は、第1駆動信号G1とは位相が180度異なる矩形波状の信号である。
 インバータ回路212は、第1駆動信号G1及び第2駆動信号G2により、スイッチング素子Q1,Q4のオン期間と、スイッチング素子Q2,Q3のオン期間とを交互に切り替えるように動作する。これにより、インバータ回路212は、力率改善回路211から供給される直流電力を交流電力に変換して出力する。以下では、図2に示すように、インバータ回路212が出力する電圧を「出力電圧V1」、インバータ回路212が出力する電流を「出力電流I1」と称する。
 制御部22は、例えばマイコン(マイクロコンピュータ)で構成されている。制御部22は、制御信号を力率改善回路211に与えることで、力率改善回路211の出力電圧を変化させる。また、制御部22は、第1駆動信号G1及び第2駆動信号G2をスイッチング素子Q1~Q4に与えることで、インバータ回路212の動作を制御する。
 一次側共振部23は、図2に示すように、インバータ回路212の一対の出力点に、一次側コンデンサC1と一次側コイルL1とを直列に電気的に接続して構成されている。また、一次側コイルL1は、一次側コンデンサC1と共に共振回路(一次側の共振回路)を形成している。
 一次側コイルL1は、図1Aに示すように、コア231の一面(図1Aにおける上面)において、任意の一点を中心として導線を渦巻状に巻き回して構成されるスパイラル型のコイルである。なお、スパイラル型のコイルは、サーキュラー型のコイルとも呼ばれている。コア231は、例えばフェライトなどの磁性材料により板状に形成されている。一次側コイルL1は、インバータ回路212が出力する交流電流が流れると、磁束を発生する。つまり、一次側コイルL1は、インバータ回路212が出力する交流電力を受けて磁束を発生する。
 電流検知部24は、例えばシャント抵抗やホール素子などで構成されている。電流検知部24は、図2に示すように、インバータ回路212から一次側コイルL1へと流れる出力電流I1を検知する。言い換えれば、電流検知部24は、一次側コイルL1を流れる電流に相当する電流を検知する。この電流検知部24の検知結果(出力電流I1の瞬時電流)は、後述する調整処理を制御部22が実行する際に用いられる。
 磁界検知部25は、例えばホール素子やサーチコイルなどで構成される。磁界検知部25は、図1Bに示すように、一次側コイルL1と二次側コイルL2とを含む空間に作用する磁界を検知する。この磁界検知部25の検知結果(例えば、磁界の強さ)は、後述する判定処理を制御部22が実行する際に用いられる。なお、磁界検知部25がホール素子で構成されている場合、磁界検知部25は、一次側コイルL1で発生する磁束がホール素子の検知面に交差するように配置されるのが好ましい。また、磁界検知部25がサーチコイルで構成されている場合、磁界検知部25は、一次側コイルL1で発生する磁束がサーチコイルに交差するように配置されるのが好ましい。
 本実施形態の非接触給電装置2では、磁界検知部25は、図1B,図1Cに示すように、一次側コイルL1で囲まれる位置(コア231の中心部)に配置される。また、磁界検知部25は、コア231の厚さ方向(図1Bにおける上下方向)において、例えばスペーサ等を用いて、コア231と所定の間隔を空けて配置される。
 次に、非接触受電装置3について説明する。
 二次側共振部31は、図2に示すように、整流部32の一対の入力点に、二次側コンデンサC2と二次側コイルL2とを直列に電気的に接続して構成されている。また、二次側コイルL2は、二次側コンデンサC2と共に共振回路(二次側の共振回路)を形成している。
 二次側コイルL2は、図1Aに示すように、コア311の一面(図1Aにおける下面)において、任意の一点を中心として導線を渦巻状に巻き回して構成されるスパイラル型のコイルである。コア311は、例えばフェライトなどの磁性材料により板状に形成されている。二次側コイルL2は、図3に示すように、電気自動車100が規定の停車位置に停車すると、一次側コイルL1の近傍に位置するように設けられる。言い換えれば、二次側コイルL2は、電気自動車100が規定の停車位置に停車すると、一次側コイルL1と所定の間隔を空けて対向するように設けられる。二次側コイルL2は、一次側コイルL1が発生する磁束を受けると、電磁誘導により交流電流が流れる。つまり、二次側コイルL2は、一次側コイルL1が発生する磁束を受けて交流電力を発生する。
 整流部32は、図2に示すように、4つのダイオードで構成されるダイオードブリッジ321と、コンデンサC3とで構成されている。ダイオードブリッジ321は、二次側コイルL2で発生した交流電流を脈流電流に変換して出力する。コンデンサC3は、ダイオードブリッジ321の一対の出力点に電気的に接続されており、ダイオードブリッジ321から出力される脈流電流を平滑化し、直流電流を出力する。つまり、整流部32は、二次側コイルL2で発生した交流電力を直流電力に整流して直流電力を出力する。整流部32が出力する直流電力は、負荷4(ここでは、充電回路102)に供給される。
 本実施形態の非接触給電システム1では、磁気共鳴現象を利用した共鳴方式により、一次側共振部23から二次側共振部31に電力を伝送している。そして、本実施形態の非接触給電システム1では、一次側共振部23と二次側共振部31との磁気共鳴を利用して、非接触給電装置2の出力電力を効率良く非接触受電装置3に伝送している。したがって、一次側共振部23の周波数特性と、二次側共振部31の周波数特性とが互いに一致するのが好ましい。
 以下、本実施形態の非接触給電システム1における一次側共振部23の周波数特性(以下、「共振特性」と称する)について説明する。本実施形態の非接触給電システム1では、共振特性は、一次側コイルL1と二次側コイルL2との磁気的な結合の疎密に応じて変化する。言い換えれば、共振特性は、一次側コイルL1と二次側コイルL2との結合係数の大小に応じて変化する。そして、結合係数がある程度大きい場合、共振特性は、図4Aに示すように一次側共振部23の出力の極大値が2箇所現れる、いわゆる双峰特性を示す。この共振特性では、第1周波数fr1で一次側共振部23の出力が極大値となる山と、第2周波数fr2(fr2>fr1)で一次側共振部23の出力が極小値となる谷とが現れている。また、この共振特性では、第3周波数fr3(fr3>fr2)で一次側共振部23の出力が極大値となる山が現れている。つまり、この共振特性(双峰特性)は、2つの共振周波数(第1周波数fr1、第3周波数fr3)を有している。
 ここで、インバータ回路212の動作周波数f1(例えば、85±5kHz)と各周波数fr1~fr3との相関に応じて、インバータ回路212は遅相モード又は進相モードの何れかのモードで動作する。なお、「動作周波数f1」は、第1駆動信号G1及び第2駆動信号G2の周波数、言い換えれば、インバータ回路212の出力電圧V1の周波数である。
 進相モードは、インバータ回路212の出力電流I1の位相が、インバータ回路212の出力電圧V1の位相よりも進んだ状態でインバータ回路212が動作するモードである。進相モードでは、インバータ回路212のスイッチング動作がいわゆるハードスイッチングになる。遅相モードは、インバータ回路212の出力電流I1が、インバータ回路212の出力電圧V1の位相よりも遅れた状態でインバータ回路212が動作するモードである。遅相モードでは、インバータ回路212のスイッチング動作がいわゆるソフトスイッチングになる。
 遅相モードでは、スイッチング素子Q1~Q4のスイッチングによる損失を低減することができ、また、スイッチング素子Q1~Q4に過大な電気的ストレスがかかるのを防止することができる。したがって、本実施形態の非接触給電装置2では、インバータ回路212は、遅相モードで動作するのが好ましい。インバータ回路212は、図4Aに示すように、動作周波数f1が第1周波数fr1と第2周波数fr2との間の周波数領域に位置する場合と、動作周波数f1が第3周波数fr3よりも大きい周波数領域に位置する場合との何れかで、遅相モードで動作する。
 また、動作周波数f1は、高周波領域よりも低周波領域に位置するのが好ましい。「低周波領域」は、共振特性において、一次側共振部23の出力が極小値を示す第2周波数fr2(所定の周波数)よりも低い周波数領域である。「高周波領域」は、共振特性において、一次側共振部23の出力が極小値を示す第2周波数fr2(所定の周波数)よりも高い周波数領域である。動作周波数f1が低周波領域に位置する場合、一次側コイルL1を流れる電流の位相と、二次側コイルL2を流れる電流の位相とが互いに180度近くずれることで、不要輻射を低減することができる。
 ところで、本実施形態の非接触給電装置2では、一次側コイルL1と二次側コイルL2との相対的な位置がずれる場合がある。例えば、電気自動車100の停車位置が予め規定されている停車位置からずれると、一次側コイルL1と二次側コイルL2との相対的な位置がずれる。この場合、一次側コイルL1と二次側コイルL2との磁気的な結合が変化(つまり、結合係数が変化)する。すると、各周波数fr1~fr3が変化することで、共振特性は、例えば図4Aに示す特性から図4Bに示す特性に変化する。
 ここで、動作周波数f1が一定の周波数であると仮定する。この場合、図4Aに示す共振特性では、動作周波数f1が低周波領域に位置しているのに対して、図4Bに示す共振特性では、動作周波数f1が高周波領域に位置する。したがって、図4Bに示す共振特性では、一次側コイルL1を流れる電流の位相と、二次側コイルL2を流れる電流の位相とが揃ってしまい、不要輻射を低減することができない。
 そして、従来の非接触送受電システムでは、一次側コイルと二次側コイルとの相対的な位置ずれによって共振特性が変化すると、動作周波数が変化後の共振特性におけるどの周波数領域に位置するかを判定することができない。したがって、従来の非接触給電システムでは、動作周波数が高周波領域に位置しているにも関わらず、電気自動車の充電を開始してしまうという問題があった。
 そこで、本願の発明者等は、動作周波数f1が低周波領域に位置する場合と、動作周波数f1が高周波領域に位置する場合とで、一次側コイルL1及び二次側コイルL2を含む空間に作用する磁場(磁界)が変化することに着目した。
 図5Aに、動作周波数f1が低周波領域に位置する場合の一次側共振部23及び二次側共振部31の等価回路を示す。図5Aに示すように、動作周波数f1が低周波領域に位置する場合、相互インダクタM1と、2つの直列共振回路(一次側共振部23と二次側共振部31)との並列回路が共振する。この場合、図5Aにおける矢印が示すように、相互インダクタM1に電流が流れ、一次側コイルL1を流れる電流の向きと、二次側コイルL2を流れる電流の向きとが互いに逆になる。
 図5Bに、動作周波数f1が高周波領域に位置する場合の一次側共振部23及び二次側共振部31の等価回路を示す。図5Bに示すように、動作周波数f1が高周波領域に位置する場合、一次側コイルL1及び二次側コイルL2と、一次側コンデンサC1及び二次側コンデンサC2とが共振する。この場合、図5Bにおける矢印が示すように、相互インダクタM1には電流が流れず、一次側コイルL1を流れる電流の向きと、二次側コイルL2を流れる電流の向きとが同じになる。
 図6Aに、動作周波数f1が低周波領域に位置する場合の一次側コイルL1及び二次側コイルL2で発生する磁束の分布を示す。この場合、一次側コイルL1に囲まれた位置(コア231の中心部)において、一次側コイルL1で発生する磁束B1の向きと、二次側コイルL2で発生する磁束B2の向きとが同じになる。このため、一次側コイルL1と二次側コイルL2との間の空間では、一次側コイルL1が発生する磁束B1と、二次側コイルL2が発生する磁束B2とが互いに強め合う。
 図6Bに、動作周波数f1が高周波領域に位置する場合の一次側コイルL1及び二次側コイルL2で発生する磁束の分布を示す。この場合、一次側コイルL1に囲まれた位置(コア231の中心部)において、一次側コイルL1で発生する磁束B1の向きと、二次側コイルL2で発生する磁束B2の向きとが互いに逆になる。したがって、一次側コイルL1と二次側コイルL2との間の空間では、一次側コイルL1が発生する磁束B1と、二次側コイルL2が発生する磁束B2とが互いに打ち消し合う。
 次に、一次側コイルL1と二次側コイルL2との間の空間での磁束分布を、シミュレーションにより求めた結果を図7A,図7Bに示す。なお、図7A,図7Bに示す矢印は、それぞれ磁束の向きを表している。動作周波数f1が低周波領域に位置する場合、図7Aに示すように、一次側コイルL1から二次側コイルL2に向かう向き(図7Aにおける上向き)の磁束が強くなる。一方、動作周波数f1が高周波領域に位置する場合、図7Bに示すように、一次側コイルL1から二次側コイルL2に向かう向きの磁束が弱くなる。
 つまり、一次側コイルL1と二次側コイルL2との間の空間では、垂直方向の磁界は、動作周波数f1が低周波領域に位置すると強くなり、動作周波数f1が高周波領域に位置すると弱くなる。なお、「垂直方向」は、コア231(コア311)の一面(図7Aにおける上面又は下面)に垂直な方向(図7Aにおける上下方向)である。
 本実施形態の非接触給電装置2では、既に述べたように、磁界検知部25は、一次側コイルL1で囲まれる位置に配置されている(図1B,図1C参照)。このため、磁界検知部25で検知される磁界は、動作周波数f1が低周波領域に位置する場合に強くなり、動作周波数f1が高周波領域に位置する場合に弱くなる。そして、制御部22は、磁界検知部25の検知結果に基づいて、インバータ回路212の動作周波数f1と一次側共振部23の共振特性との相関を判定する判定処理を実行する。具体的には、制御部22は、判定処理において、磁界検知部25で検知された磁界の強さと、予め設定された閾値とを比較する。そして、判定処理において、磁界検知部25で検知された磁界の強さが閾値を上回れば、制御部22は、動作周波数f1が低周波領域に位置すると判定する。また、判定処理において、磁界検知部25で検知された磁界の強さが閾値を下回れば、制御部22は、動作周波数f1が高周波領域に位置すると判定する。なお、磁界検知部25で検知された磁界の強さが閾値と等しい場合に、動作周波数f1が低周波領域及び高周波領域のいずれに位置するかは、適宜設定されてよい。
 上述のように、本実施形態の非接触給電装置2は、磁界を検知する磁界検知部25を備えている。そして、本実施形態の非接触給電装置2では、制御部22は、磁界検知部25の検知結果に基づいて、インバータ回路212の動作周波数f1と一次側共振部23の共振特性との相関を判定する判定処理を実行する。したがって、本実施形態の非接触給電装置2は、制御部22の実行する判定処理により、動作周波数f1が共振特性におけるどの周波数領域に位置するかを判定することができる。このため、仮に一次側コイルL1と二次側コイルL2との相対的な位置がずれ、共振特性が変化したとしても、本実施形態の非接触給電装置2は、変化した共振特性におけるどの周波数領域に動作周波数f1が位置するかを判定することができる。
 また、本実施形態の非接触給電装置2では、磁界検知部25は、図1B,図1Cに示すように、一次側コイルL1で囲まれる位置に配置されている。このため、動作周波数f1が低周波領域に位置する場合と高周波領域に位置する場合とで、磁界検知部25に鎖交(交差)する磁束が大きく変化するため、磁界の強さの変化を検知し易いという利点がある。
 また、本実施形態の非接触給電装置2は、例えば図8に示すように、複数(図示では5つ)の磁界検知部25を備えていてもよい。図8に示す例では、1つの磁界検知部25が一次側コイルL1で囲まれる位置に配置され、残りの4つの磁界検知部25が、1つの磁界検知部25を中心として同心円状に配置されている。
 そして、制御部22は、判定処理において、複数の磁界検知部25のうち少なくとも2つの検知結果を比較してもよい。磁界検知部25で検知される磁界の強さは、一次側コイルL1と二次側コイルL2との相対的な位置に応じて変化する。つまり、磁界検知部25は、二次側コイルL2に近づくほど検知される磁界の強さが強くなり、二次側コイルL2から遠ざかるほど検知される磁界の強さが弱くなる。したがって、制御部22は、判定処理において、各磁界検知部25で検知される磁界の強さの差(勾配)に基づいて、一次側コイルL1と二次側コイルL2との相対的な位置を判定することができる。例えば、図8における右下の磁界検知部25と、左下の磁界検知部25で検知される磁界が他の磁界検知部25で検知される磁界よりも強ければ、制御部22は、二次側コイルL2が図8における下側にずれていると判定することができる。なお、当該構成を採用するか否かは任意である。
 ところで、本実施形態の非接触給電装置2では、制御部22は、判定処理のみならず、判定処理の結果に基づいて、動作周波数f1が共振特性における適正な周波数領域(つまり、低周波領域)に位置するように調整する調整処理を実行してもよい。以下、制御部22で実行し得る種々の調整処理について例を挙げる。
 例えば、制御部22は、判定処理の判定結果に基づいて、インバータ回路212の動作周波数f1を調整する調整処理を実行してもよい。例えば、制御部22が、判定処理において、動作周波数f1が高周波領域に位置すると判定した場合を考える。この場合、制御部22は、調整処理において、動作周波数f1を低下させる。この調整処理により、動作周波数f1は、低周波領域に位置するように調整される。なお、当該構成を採用するか否かは任意である。
 また、制御部22は、判定処理の判定結果に基づいて、一次側共振部23の共振パラメータを調整する調整処理を実行してもよい。「共振パラメータ」とは、一次側コンデンサC1のキャパシタンスや、一次側コイルL1のインダクタンスである。例えば、制御部22が、判定処理において、動作周波数f1が高周波領域に位置すると判定した場合を考える。この場合、制御部22は、調整処理において、一次側コンデンサC1のキャパシタンス及び一次側コイルL1のインダクタンスの少なくとも一方を低下させる。この調整処理により、各周波数fr1~fr3が大きくなることで、共振特性が高周波数側にシフトする。すると、動作周波数f1は、調整後の共振特性における低周波領域に位置するように調整される。なお、当該構成を採用するか否かは任意である。
 特に、制御部22は、一次側共振部23の共振特性が2つの共振周波数を有している場合(つまり、双峰特性の場合)、動作周波数f1が2つの共振周波数のうち低い共振周波数に近づくように調整処理を実行するのが好ましい。すなわち、既に述べたように、制御部22は、インバータ回路212の動作周波数f1を調整したり、一次側共振部23の共振パラメータを調整したりすることで、動作周波数f1が低周波領域に位置するように調整処理を実行するのが好ましい。なお、当該構成を採用するか否かは任意である。
 なお、制御部22によってキャパシタンスを調整可能な一次側コンデンサC1としては、バラクタダイオードの他に、例えば図9Aに示す構成が考えられる。図9Aに示す一次側コンデンサC1は、キャパシタンスが互いに異なる2つのコンデンサC11,C12と、2つのスイッチQC1,QC2とを備える。スイッチQC1は、コンデンサC11に直列に電気的に接続される。また、スイッチQC2は、コンデンサC12に直列に電気的に接続される。そして、コンデンサC11及びスイッチQC1の直列回路と、コンデンサC12及びスイッチQC2の直列回路とが並列に電気的に接続される。
 また、制御部22によってインダクタンスを調整可能な一次側コイルL1としては、例えば図9Bに示す構成が考えられる。図9Bに示す一次側コイルL1は、互いに直列に電気的に接続された2つのコイルL11,L12と、一方のコイルL12に並列に電気的に接続されたスイッチQL1とを備える。
 スイッチQC1,QC2,QL1は、例えばMOSFETのような半導体スイッチにより構成される。また、スイッチQC1,QC2,QL1は、それぞれ制御部22によってオン/オフを制御される。したがって、図9Aに示す構成において、制御部22がスイッチQC1,QC2のオン/オフを切り替えるように制御することにより、一次側コンデンサC1のキャパシタンスを調整することができる。同様に、図9Bに示す構成において、制御部22がスイッチQL1のオン/オフを切り替えるように制御することにより、一次側コイルL1のインダクタンスを調整することができる。
 なお、図9Aに示す構成では、コンデンサC11,C12及びスイッチQC1,QC2の直列回路の個数は2つであるが、直列回路の個数を増やすことで、一次側コンデンサC1のキャパシタンスをより多段階に調整することが可能である。また、図9Bに示す構成では、コイルL12及びスイッチQL1の並列回路の個数は1つであるが、並列回路の個数を増やすことで、一次側コイルL1のインダクタンスをより多段階に調整することが可能である。
 また、一次側コンデンサC1は、図10Aに示すような容量調整回路232に組み込まれていてもよい。この容量調整回路232は、一次側コンデンサC1と、4つのスイッチング素子Q5~Q8とで構成される。ここでは、スイッチング素子Q5~Q8は、nチャネルのエンハンスメント型MOSFETである。容量調整回路232では、2つのスイッチング素子Q5,Q6の直列回路と、2つのスイッチング素子Q7,Q8の直列回路とが並列に電気的に接続されている。スイッチング素子Q5のソース及びスイッチング素子Q6のドレインの接続点は、インバータ回路212の第1出力点に電気的に接続されている。また、スイッチング素子Q7のソース及びスイッチング素子Q8のドレインの接続点は、一次側コイルL1の一端に電気的に接続されている。そして、スイッチング素子Q5,Q7のソースの接続点と、スイッチング素子Q6,Q8のドレインの接続点との間に、一次側コンデンサC1が電気的に接続されている。
 容量調整回路232は、第3駆動信号G3をスイッチング素子Q5,Q8に、第4駆動信号G4をスイッチング素子Q6,Q7に与えられることで動作する。具体的には、容量調整回路232は、第3駆動信号G3及び第4駆動信号G4により、スイッチング素子Q5,Q8のオン期間と、スイッチング素子Q6,Q7のオン期間とを交互に切り替えるように動作する。
 スイッチング素子Q5,Q8のオン期間において、インバータ回路212の出力電圧V1が正極性の期間では、スイッチング素子Q5,Q8を介して一次側コンデンサC1に電圧が印加される。つまり、容量調整回路232の入出力間は、一次側コンデンサC1を介する経路となる。一方、インバータ回路212の出力電圧V1が負極性の期間では、スイッチング素子Q7の寄生ダイオードとスイッチング素子Q5とを通る経路で電流が流れる。つまり、容量調整回路232の入出力間は、一次側コンデンサC1を介さない経路となる。
 同様に、スイッチング素子Q6,Q7のオン期間において、インバータ回路212の出力電圧V1が正極性の期間では、スイッチング素子Q6とスイッチング素子Q8の寄生ダイオードとを通る経路で電流が流れる。つまり、容量調整回路232の入出力間は、一次側コンデンサC1を介さない経路となる。一方、インバータ回路212の出力電圧V1が負極性の期間では、スイッチング素子Q6,Q7を介して一次側コンデンサC1に電圧が印加される。つまり、容量調整回路232の入出力間は、一次側コンデンサC1を介する経路となる。
 つまり、容量調整回路232は、スイッチング素子Q5~Q8のオン/オフが切り替えられることで、一次側コンデンサC1を介する経路と、一次側コンデンサC1を介さない経路とを切り替えるように構成されている。このように、一次側コンデンサC1が容量調整回路232の入出力間に接続されている期間を変化させることで、容量調整回路232のキャパシタンス(すなわち、一次側コンデンサC1のキャパシタンス)を調整することができる。
 さらに、容量調整回路232は、上記のように4つのスイッチング素子Q5~Q8を用いた構成の他に、図10Bに示すように、2つの双方向スイッチQ9,Q10を用いた構成であってもよい。双方向スイッチQ9は、2つのゲート端子を有するダブルゲート構造の半導体素子で構成されている。また、双方向スイッチQ9は、一次側コンデンサC1に直列に電気的に接続されている。双方向スイッチQ10は、2つのゲート端子を有するダブルゲート構造の半導体素子で構成されている。また、双方向スイッチQ10は、双方向スイッチQ9及び一次側コンデンサC1の直列回路と並列に電気的に接続されている。双方向スイッチQ9の2つのゲート端子には、それぞれ第3駆動信号G3及び第4駆動信号G4が入力される。また、双方向スイッチQ10の2つのゲート端子にも、それぞれ第3駆動信号G3及び第4駆動信号G4が入力される。このように構成された容量調整回路232は、図10Aに示す容量調整回路232と同様に動作する。
 また、本実施形態の非接触給電装置2は、一次側コイルL1を流れる電流に相当する電流(出力電流I1)を検知する電流検知部24を備えている(図2参照)。そこで、制御部22は、電流検知部24の検知結果に基づいて、インバータ回路212が遅相モードで動作するように調整処理を実行してもよい。例えば、制御部22は、インバータ回路212のスイッチング素子Q1,Q4の組がオンからオフになった時点の出力電流I1の電流値により、遅相モード及び進相モードの何れのモードでインバータ回路212が動作しているかを判定することができる。つまり、スイッチング素子Q1,Q4の組がオンからオフになる(すなわち、出力電圧V1がゼロクロスする)時点で、出力電流I1の電流値が正の値を示していれば、制御部22は、インバータ回路212が遅相モードで動作していると判定する。一方、スイッチング素子Q1,Q4の組がオンからオフになる時点で、出力電流I1の電流値が負の値を示していれば、制御部22は、インバータ回路212が進相モードで動作していると判定する。
 そして、制御部22は、インバータ回路212が遅相モード及び進相モードの何れのモードで動作しているかの判定結果を踏まえて、インバータ回路212が遅相モードで動作するように調整する。調整方法としては、既に述べたように、インバータ回路212の動作周波数f1を調整したり、一次側共振部23の共振パラメータを調整したりする方法が挙げられる。
 この構成では、インバータ回路212を遅相モードで動作させることができるため、インバータ回路212のスイッチング素子Q1~Q4のスイッチングによる損失を低減することができる。また、この構成では、インバータ回路212のスイッチング素子Q1~Q4に過大な電気的ストレスがかかるのを防止することができる。なお、当該構成を採用するか否かは任意である。
 なお、制御部22は、調整処理を実行した後に、再度、判定処理を実行してもよい。そして、再度の判定処理においても動作周波数f1が高周波領域に位置すると判定された場合は、制御部22は、更に調整処理を実行してもよい。
 また、本実施形態の非接触給電装置2では、電源部21を始動させてから、動作周波数f1を一定とする給電動作を開始するまでの始動期間において、制御部22が判定処理や調整処理を実行している。そして、制御部22は、始動期間における出力電圧V1が、給電動作中の出力電圧V1よりも低くなるように、力率改善回路211を制御する。例えば、力率改善回路211が図2に示す構成であれば、制御部22は、スイッチング素子Q0のオン/オフを制御することで、始動期間における出力電圧V1を低くする。また、制御部22は、給電動作を開始する際には、スイッチング素子Q0のオン/オフを制御することで、給電動作中における出力電圧V1を高くする。この構成では、始動期間において動作周波数f1が高周波領域に位置する場合であっても、始動期間においては出力電圧V1を給電動作中よりも低く抑えられるため、不要輻射を抑えることができる。なお、当該構成を採用するか否かは任意である。
 ところで、本実施形態の非接触給電システム1において、制御部22は、判定処理の判定結果に基づいて、一次側コイルL1及び二次側コイルL2の相対的な位置の変更を促す指示信号を出力する処理を実行してもよい。例えば、一次側コイルL1(及びコア231)の位置を調整可能に構成されたアクチュエータを非接触給電装置2が備えている場合、制御部22は、アクチュエータに指示信号を出力すればよい。以下、制御部22が、判定処理において、動作周波数f1が高周波領域に位置すると判定した場合を考える。この場合、制御部22は、アクチュエータに指示信号を出力する。アクチュエータは、指示信号に応じて一次側コイルL1の位置を調整する。この処理により、一次側コイルL1と二次側コイルL2との相対的な位置が調整され、動作周波数f1は、低周波領域に位置するように調整される。
 その他、本実施形態の非接触給電システム1は、例えば、指示信号を非接触受電装置3に与え、指示信号に応じて二次側コイルL2の位置を調整することで、一次側コイルL1及び二次側コイルL2の相対的な位置を調整するように構成されていてもよい。
 以下、この構成について簡単に説明する。この構成では、図11に示すように、非接触給電装置2と、非接触受電装置3とは、それぞれ通信部26,34を備える。通信部26,34は、例えば電波を媒体とする無線信号により相互に通信を行うように構成される。また、非接触受電装置3は、指示信号に応じた処理を実行する制御部33を備える。制御部33は、制御部22と同様に、例えばマイコンにより構成される。
 例えば、制御部22が、判定処理において、動作周波数f1が高周波領域に位置すると判定した場合を考える。この場合、制御部22は、指示信号を生成し、通信部26により指示信号を非接触受電装置3に向けて送信させる。非接触受電装置3において、通信部34は、指示信号を受信すると、指示信号を制御部33に入力する。制御部33は、入力された指示信号に基づいて、ユーザに適正な停車位置に電気自動車100を移動させるように指示する。指示は、例えば電気自動車100に搭載されたスピーカから音声を出力させたり、電気自動車100に搭載されたディスプレイに画像や動画を表示させたりすることで行う。この処理により、一次側コイルL1と二次側コイルL2との相対的な位置が調整され、動作周波数f1は、低周波領域に位置するように調整される。
 なお、当該構成を採用するか否かは任意である。また、上記構成は、複数の磁界検知部25の各々の検知結果に基づいて一次側コイルL1と二次側コイルL2との相対的な位置ずれを判定する構成と共に採用するのが好ましい。
 なお、本実施形態の非接触給電システム1では、コア231に一次側コイルL1を、コア311に二次側コイルL2を設けているが、この構成に限定する趣旨ではない。つまり、一次側コイルL1は、コア231以外の部材に設けてもよい。同様に、二次側コイルL2は、コア311以外の部材に設けてもよい。
 また、本実施形態の非接触給電システム1は、非接触給電装置2に磁界検知部25を設け、制御部22に判定処理や調整処理を実行させる構成であるが、他の構成であってもよい。すなわち、本実施形態の非接触給電システム1は、非接触受電装置3に磁界検知部25を設け、制御部33に判定処理や調整処理を実行させる構成であってもよい。
 また、本実施形態の非接触給電装置2及び非接触給電システム1では、共鳴方式により一次側コイルL1から二次側コイルL2に電力を伝送しているが、電磁誘導方式で電力を伝送する構成であってもよい。この構成では、非接触受電装置3において共振回路を形成する必要がないので、二次側コンデンサC2は不要である。
 また、本実施形態の非接触給電システム1は、一次側コイルL1及び二次側コイルL2として、スパイラル型のコイルを採用している。スパイラル型のコイルは、ソレノイド型のコイルと比べて不要輻射が少なく、特に電気自動車のように高出力での給電が必要な非接触給電システムにおいて非常に有効である。また、スパイラル型のコイルが用いられることで、不要輻射が低減される結果、インバータ回路212において使用可能な動作周波数f1の範囲が拡大される、という利点もある。以下、この点について詳述する。
 すなわち、ソレノイド型のコイルが採用される場合でも、インバータ回路212の動作周波数f1が低周波領域の遅相領域(fr1<f1<fr2)にあれば、インバータ回路212が遅相モードで動作し、かつ不要輻射も低減されることになる。しかし、低周波領域の遅相領域は、一次側コイルL1と二次側コイルL2との結合係数に応じて変化するため、このような不確定な遅相領域にインバータ回路212の動作周波数f1を収める制御が必要になる。
 これに対して、スパイラル型のコイルであれば、たとえインバータ回路212の動作周波数f1が高周波領域の遅相領域(fr3<f1)にあっても、ソレノイド型のコイルに比べれば不要輻射は大幅に低減される。つまり、スパイラル型のコイルが用いられることで、インバータ回路212の動作周波数f1は低周波領域の遅相領域に制限されず、インバータ回路212において使用可能な動作周波数f1の範囲が拡大されることになる。なお、高周波領域の遅相領域も不確定な領域ではあるが、インバータ回路212の動作周波数f1を十分に高い周波数から低周波側にスイープさせれば、動作周波数f1が高周波領域の遅相領域を通るので、複雑な制御は不要である。

Claims (10)

  1.  直流電力を交流電力に変換して出力するインバータ回路と、
     前記インバータ回路の出力する交流電力を受けて磁束を発生するスパイラル型の一次側コイル、及び前記一次側コイルと共に一次側の共振回路を形成する一次側コンデンサで構成される一次側共振部と、
     磁界を検知する磁界検知部と、
     前記磁界検知部の検知結果に基づいて、前記インバータ回路の動作周波数と前記一次側共振部の共振特性との相関を判定する判定処理を実行する制御部とを備えることを特徴とする非接触給電装置。
  2.  前記一次側共振部の前記共振特性は2つの共振周波数を有し、かつ前記一次側共振部の出力が極小値を示す所定の周波数を境界にして、前記所定の周波数よりも低い周波数領域である低周波領域と、前記所定の周波数よりも高い周波数領域である高周波領域とを有し、
     前記制御部は、前記判定処理において、前記磁界検知部で検知された磁界の強さと閾値との比較結果に応じて、前記動作周波数が前記低周波領域及び前記高周波領域のいずれに位置するかを判定することを特徴とする請求項1記載の非接触給電装置。
  3.  前記磁界検知部は、前記一次側コイルで囲まれる位置に配置されることを特徴とする請求項1又は2記載の非接触給電装置。
  4.  前記磁界検知部を複数備え、
     前記制御部は、前記判定処理において、前記複数の磁界検知部のうち少なくとも2つの検知結果を比較することを特徴とする請求項1乃至3の何れか1項に記載の非接触給電装置。
  5.  前記制御部は、前記判定処理の判定結果に基づいて、前記インバータ回路の動作周波数を調整する調整処理を実行することを特徴とする請求項1乃至4の何れか1項に記載の非接触給電装置。
  6.  前記制御部は、前記判定処理の判定結果に基づいて、前記一次側共振部の共振パラメータを調整する調整処理を実行することを特徴とする請求項1乃至4の何れか1項に記載の非接触給電装置。
  7.  前記制御部は、前記一次側共振部の前記共振特性が2つの共振周波数を有している場合、前記動作周波数が前記2つの共振周波数のうち低い共振周波数に近づくように前記調整処理を実行することを特徴とする請求項5又は6記載の非接触給電装置。
  8.  前記一次側コイルを流れる電流に相当する電流を検知する電流検知部を備え、
     前記制御部は、前記電流検知部の検知結果に基づいて、前記インバータ回路が遅相モードで動作するように前記調整処理を実行することを特徴とする請求項5乃至7の何れか1項に記載の非接触給電装置。
  9.  請求項1乃至8の何れか1項に記載の非接触給電装置と、前記非接触給電装置から供給される電力を受ける非接触受電装置とを備え、
     前記非接触受電装置は、前記一次側コイルが発生する磁束を受けて交流電力を発生する二次側コイル、及び前記二次側コイルと共に二次側の共振回路を形成する二次側コンデンサで構成される二次側共振部を備えることを特徴とする非接触給電システム。
  10.  前記制御部は、前記判定処理の判定結果に基づいて、前記一次側コイル及び前記二次側コイルの相対的な位置の変更を促す指示信号を出力する処理を実行することを特徴とする請求項9に記載の非接触給電システム。
PCT/JP2015/003758 2014-07-31 2015-07-27 非接触給電装置及びそれを用いた非接触給電システム WO2016017143A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156801 2014-07-31
JP2014156801A JP2016034214A (ja) 2014-07-31 2014-07-31 非接触給電装置及びそれを用いた非接触給電システム

Publications (1)

Publication Number Publication Date
WO2016017143A1 true WO2016017143A1 (ja) 2016-02-04

Family

ID=55217061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003758 WO2016017143A1 (ja) 2014-07-31 2015-07-27 非接触給電装置及びそれを用いた非接触給電システム

Country Status (2)

Country Link
JP (1) JP2016034214A (ja)
WO (1) WO2016017143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038105A (ja) * 2016-08-29 2018-03-08 株式会社Ihi 送電装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026904A (ja) * 2016-08-08 2018-02-15 Tdk株式会社 ワイヤレス給電装置およびワイヤレス電力伝送システム
JP6475684B2 (ja) 2016-11-22 2019-02-27 株式会社Subaru コイルユニット
JP2018095226A (ja) * 2016-12-13 2018-06-21 大平電子株式会社 電動航空機充電システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089465A (ja) * 2007-09-27 2009-04-23 Panasonic Corp 充電器および充電システム
JP2010239847A (ja) * 2009-03-31 2010-10-21 Fujitsu Ltd 送電装置、送受電装置および送電方法
JP2013153627A (ja) * 2012-01-26 2013-08-08 Shindengen Electric Mfg Co Ltd 非接触給電回路
JP2013240263A (ja) * 2012-04-17 2013-11-28 Nitto Denko Corp 磁界空間の形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089465A (ja) * 2007-09-27 2009-04-23 Panasonic Corp 充電器および充電システム
JP2010239847A (ja) * 2009-03-31 2010-10-21 Fujitsu Ltd 送電装置、送受電装置および送電方法
JP2013153627A (ja) * 2012-01-26 2013-08-08 Shindengen Electric Mfg Co Ltd 非接触給電回路
JP2013240263A (ja) * 2012-04-17 2013-11-28 Nitto Denko Corp 磁界空間の形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038105A (ja) * 2016-08-29 2018-03-08 株式会社Ihi 送電装置
WO2018043297A1 (ja) * 2016-08-29 2018-03-08 株式会社Ihi 送電装置
US10778040B2 (en) 2016-08-29 2020-09-15 Ihi Corporation Power transmitter

Also Published As

Publication number Publication date
JP2016034214A (ja) 2016-03-10

Similar Documents

Publication Publication Date Title
KR102655303B1 (ko) 비접촉 전력전송 시스템
US10680457B2 (en) Systems, methods, and apparatus implementing hybrid symmetric and asymmetric control for soft switching in wireless power transfer applications
WO2016017143A1 (ja) 非接触給電装置及びそれを用いた非接触給電システム
JP6089464B2 (ja) 非接触電力伝送装置
Haldi et al. A 3.5 kW wireless charger for electric vehicles with ultra high efficiency
US9849796B2 (en) Method for charging a vehicle battery by induction
JP2013017254A (ja) 電力伝送システム
JPWO2012081424A1 (ja) ワイヤレス給電装置およびワイヤレス電力伝送システム
WO2016157758A1 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、および非接触電力伝送システム
JPWO2012063570A1 (ja) 非接触給電装置
JP6176547B2 (ja) 非接触給電装置及び非接触給電装置の始動方法
US20210099018A1 (en) Non-contact power feeding apparatus
WO2016143359A1 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、および非接触電力伝送システム
JP6454943B2 (ja) 非接触給電装置及びそれを用いた非接触給電システム
US10218186B2 (en) Power feeding device and non-contact power transmission device
JP2013055856A (ja) 非接触電力供給装置
JP2013027082A (ja) 電力伝送システム
JP5589786B2 (ja) 非接触給電装置
WO2015182097A1 (ja) 非接触給電装置およびそれを用いた非接触給電システム
WO2016017142A1 (ja) 非接触給電装置及びそれを用いた非接触給電システム
JP6369792B2 (ja) 非接触給電装置及び非接触給電システム
JP6425183B2 (ja) 非接触給電装置および非接触給電システム
JP6569987B2 (ja) 非接触給電装置および非接触給電システム
JP6183671B2 (ja) 非接触給電装置の制御方法及び非接触給電装置
KR101787991B1 (ko) 자기유도 픽업장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827070

Country of ref document: EP

Kind code of ref document: A1