WO2016017098A1 - エジェクタ - Google Patents

エジェクタ Download PDF

Info

Publication number
WO2016017098A1
WO2016017098A1 PCT/JP2015/003563 JP2015003563W WO2016017098A1 WO 2016017098 A1 WO2016017098 A1 WO 2016017098A1 JP 2015003563 W JP2015003563 W JP 2015003563W WO 2016017098 A1 WO2016017098 A1 WO 2016017098A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
refrigerant
space
forming member
passage forming
Prior art date
Application number
PCT/JP2015/003563
Other languages
English (en)
French (fr)
Inventor
康太 武市
高野 義昭
西嶋 春幸
山田 悦久
佳之 横山
陽平 長野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016017098A1 publication Critical patent/WO2016017098A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to an ejector that sucks fluid by a suction action of a jet fluid ejected at a high speed.
  • Patent Document 1 is applied to a vapor compression refrigeration cycle apparatus, and sucks refrigerant from a refrigerant suction port by a suction action of a jet refrigerant injected at a high speed, and mixes the jet refrigerant and the suction refrigerant.
  • An ejector for boosting pressure is disclosed.
  • a conical passage forming member is disposed inside the body, and an annular refrigerant passage is formed in a gap between the body and the conical side surface of the passage forming member.
  • this refrigerant passage the portion on the most upstream side of the refrigerant flow is used as a nozzle passage for depressurizing and injecting the high-pressure refrigerant, and the portion on the downstream side of the refrigerant flow in the nozzle passage is mixed with the injected refrigerant and the suction refrigerant. This is used as a diffuser passage for increasing the pressure of the mixed refrigerant.
  • Patent Document 1 discloses an example in which a gas-liquid separation space for separating the gas-liquid refrigerant flowing out of the diffuser passage by the action of centrifugal force is formed inside the body.
  • This disclosure aims to improve the gas-liquid separation performance in the gas-liquid separation space without increasing the pressure loss of the refrigerant in the ejector having the gas-liquid separation space.
  • the present inventors have found that it is effective to reduce the flow rate of the gas-phase refrigerant among the gas-liquid two-phase refrigerants in order to reduce the pressure loss generated in the refrigerant flowing out of the diffuser passage. Obtained.
  • the present inventors effectively increase the speed component in the swirling direction of the liquid-phase refrigerant among the refrigerants in the gas-liquid two-phase state. The knowledge that it is.
  • an ejector applied to a vapor compression refrigeration cycle apparatus communicates with a decompression space for decompressing refrigerant flowing in from the outside and a refrigerant flow downstream side of the decompression space, and sucks the coolant from the outside.
  • a suction passage a boosting space that mixes the jetted refrigerant injected from the decompression space and the suction refrigerant sucked from the suction passage, a swirl promoting space that flows in the refrigerant that has flowed out of the boosting space, and a swirl promoting space
  • the refrigerant passage formed between the inner peripheral surface of the part of the body that forms the decompression space and the outer peripheral surface of the passage forming member is a nozzle passage that functions as a nozzle that decompresses and injects the refrigerant.
  • a refrigerant passage formed between an inner peripheral surface of a part of the body that forms a pressurizing space and an outer peripheral surface of the passage forming member functions as a mixed pressurizing unit that increases the pressure by mixing the injected refrigerant and the suction refrigerant. It is a passage.
  • the refrigerant passage formed between the inner peripheral surface of the part of the body that forms the swirl promoting space and the outer peripheral surface of the passage forming member is a swirl promoting passage that promotes the swirling flow of the refrigerant flowing out of the diffuser passage.
  • a plurality of rectifying plates are arranged in the turning promotion passage to promote the turning flow of the refrigerant flowing through the turning promotion passage.
  • the refrigerant flow passage area in the refrigerant passage in the range from the portion having the minimum height hmin of the diffuser passage to the maximum height hmax of the turning promotion passage is set to the downstream side of the refrigerant flow Can be enlarged in the axial direction.
  • the flow rate of the gas-phase refrigerant can be reduced to suppress an increase in pressure loss generated in the refrigerant flowing through the turning promotion passage.
  • the flow velocity of the liquid phase refrigerant is governed by the inertial force, the velocity component in the radial direction is diverted to the velocity component in the turning direction by the plurality of rectifying plates without being decelerated. Thereby, a swirl flow is promoted.
  • the gas-liquid separation performance in the gas-liquid separation space can be improved without increasing the pressure loss of the refrigerant.
  • the axial dimension at the most downstream portion of the refrigerant flow in the diffuser passage is defined as a diffuser outlet height h1
  • the axial dimension at the most downstream portion of the refrigerant flow in the turning promotion passage is defined as a turning outlet height h2.
  • the refrigerant flow passage area in the turning promotion passage can be increased in the axial direction toward the downstream side of the refrigerant flow. Therefore, among the gas-liquid two-phase refrigerant flowing through the turning promotion passage, the flow rate of the gas phase refrigerant can be reduced, and an increase in pressure loss occurring in the refrigerant flowing through the turning promotion passage can be suppressed.
  • the flow velocity of the liquid refrigerant is governed by the inertial force at the outlet of the diffuser passage. Therefore, the liquid-phase refrigerant is not decelerated at the outlet of the diffuser passage, but the radial speed component is turned to the rotational speed component by the plurality of rectifying plates. Thereby, a swirl flow is promoted.
  • the gas-liquid separation performance in the gas-liquid separation space can be improved without increasing the pressure loss of the refrigerant flowing out from the diffuser passage.
  • a plurality of rectifying plates for promoting the swirling flow of the refrigerant flowing through the swirl promoting passage may be arranged in an annular shape around the axis of the passage forming member at equal angular intervals in the swirl promoting passage.
  • a straight line passing through the axial center of the passage forming member and the innermost peripheral end of the inner peripheral side wall surface of the predetermined rectifying plate is defined as a first virtual straight line
  • a straight line passing through the outermost peripheral end of the inner peripheral side wall surface of the predetermined rectifying plate is defined as a second virtual straight line
  • a straight line passing through the innermost peripheral end of the outer peripheral side wall surface is defined as a third virtual straight line, and is an angle formed between the first virtual straight line and the second virtual straight line and sandwiches a predetermined rectifying plate
  • the angle formed on the side is defined as the blade angle ⁇ i
  • the angle formed between the first imaginary line and the third imaginary line and sandwiching the predetermined rectifying plate is the blade interval angle.
  • the rectifying plate is arranged so as not to increase the pressure loss of the refrigerant flowing through the turning promotion passage, ⁇ i> ⁇ o is satisfied, so that the gas-liquid two-phase refrigerant flowing out of the diffuser passage Among them, the flow direction of the liquid-phase refrigerant can be reliably turned in the turning direction by the rectifying plate.
  • the swirl flow that flows into the gas-liquid separation space from the swirl promoting passage can be effectively promoted.
  • the gas-liquid separation performance in the gas-liquid separation space can be improved without increasing the pressure loss of the refrigerant.
  • the “inner peripheral side wall surface of the rectifying plate” is a wall surface on the axial center side of the rectifying plate and contributes to the promotion of the swirling flow of the refrigerant. Therefore, it is a wall surface excluding a surface having only a function of connecting the inner peripheral side wall surface and the outer peripheral side wall surface.
  • the “outer peripheral side wall surface of the rectifying plate” is a wall surface on the opposite side (outer peripheral side) of the axial center side of the rectifying plate and contributes to promotion of the swirling flow of the refrigerant. Therefore, it is a wall surface excluding a surface having only a function of connecting the inner peripheral side wall surface and the outer peripheral side wall surface.
  • a half straight line passing through the innermost peripheral end of the outer peripheral side wall surface of the predetermined rectifying plate starting from the axial center of the passage forming member is defined as a virtual half straight line
  • the virtual half line may intersect with a plurality of rectifying plates.
  • the virtual half line intersects with the plurality of flow straightening plates.
  • the flow direction of the liquid-phase refrigerant can be reliably turned in the turning direction by the rectifying plate.
  • the gas-liquid separation performance in the gas-liquid separation space can be improved without increasing the pressure loss of the refrigerant.
  • the shortest distance between the outermost peripheral end of the inner peripheral side wall surface of the predetermined rectifying plate and the outer peripheral side wall surface of the rectifying plate adjacent to the predetermined rectifying plate is defined as a flow path width T1.
  • the outer diameter of the gas-liquid separation space is defined as the gas-liquid separation outer diameter Rn and the outer diameter of the passage forming member is defined as the turning outlet radius Rout, the relationship of Rn ⁇ Rout> T1 is satisfied. Good.
  • the turning flow flowing from the turning promotion passage into the gas-liquid separation space can be promoted.
  • the gas-liquid separation performance in the gas-liquid separation space can be improved without increasing the pressure loss of the refrigerant.
  • FIG. 5 is a schematic VV sectional view of FIG. 2. It is a typical axial direction vertical sectional view of the baffle plate of the ejector of 1st Embodiment.
  • the ejector 13 of this embodiment is applied to a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression unit, that is, an ejector refrigeration cycle 10. Furthermore, this ejector type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling the blown air blown into the vehicle interior, which is the air-conditioning target space. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
  • the compressor 11 sucks the refrigerant and discharges it until it becomes a high-pressure refrigerant.
  • the compressor 11 of the present embodiment is an electric compressor configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be adopted.
  • the electric motor is controlled in its operation (that is, the number of revolutions) by a control signal output from a control device to be described later, and may employ either an AC motor or a DC motor.
  • the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
  • the heat dissipator 12 heat-exchanges the high-pressure refrigerant discharged from the compressor 11 and the outside air (that is, outside air) blown by the cooling fan 12d to dissipate the high-pressure refrigerant and cool it. It is.
  • the heat radiator 12 exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d, and dissipates the high-pressure gas-phase refrigerant to condense and condense the part 12a.
  • the receiver 12b that separates the gas-liquid of the refrigerant that has flowed out of the condensing unit 12a and stores excess liquid-phase refrigerant, and the liquid-phase refrigerant that has flowed out of the receiver 12b and the outside air blown from the cooling fan 12d exchange heat.
  • This is a so-called subcool condenser that includes a supercooling unit 12c that supercools the liquid refrigerant.
  • the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • an HFO refrigerant specifically, R1234yf
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the cooling fan 12d is an electric blower in which the rotation speed (that is, the amount of blown air) is controlled by a control voltage output from the control device.
  • a refrigerant inlet 31 a of the ejector 13 is connected to the refrigerant outlet side of the supercooling portion 12 c of the radiator 12.
  • the ejector 13 functions as a refrigerant pressure reducing means for reducing the pressure of the supercooled high-pressure liquid-phase refrigerant that has flowed out of the radiator 12 and flowing it to the downstream side, and is described later by the suction action of the refrigerant flow injected at a high speed. It also functions as a refrigerant circulating means (refrigerant transporting means) for sucking (transporting) and circulating the refrigerant flowing out of the evaporator 14.
  • the ejector 13 according to the present embodiment also functions as a gas-liquid separation unit that separates the gas-liquid of the decompressed refrigerant. That is, the ejector 13 of this embodiment is configured as an ejector with a gas-liquid separation function (that is, an ejector module).
  • FIG. 3 is a schematic cross-sectional view for explaining the function of each refrigerant passage of the ejector 13, and parts having the same functions as those in FIG. 2 are denoted by the same reference numerals.
  • the ejector 13 of the present embodiment includes a body 30 configured by combining a plurality of constituent members.
  • the body 30 has a housing body 31 that is formed of a prismatic or columnar metal or resin and forms the outer shell of the ejector 13. Further, a nozzle body 32, a middle body 33, and a lower body 34 are fixed inside the housing body 31.
  • the housing body 31 includes a refrigerant inlet 31 a that allows the refrigerant flowing out of the radiator 12 to flow into the interior, a refrigerant suction port 31 b that sucks the refrigerant flowing out of the evaporator 14, and a gas-liquid separation space formed inside the body 30.
  • the liquid-phase refrigerant outlet 31c that causes the liquid-phase refrigerant separated in 30f to flow out to the refrigerant inlet side of the evaporator 14 and the gas-phase refrigerant separated in the gas-liquid separation space 30f to the inlet side of the compressor 11
  • a gas-phase refrigerant outlet 31d and the like are formed.
  • an orifice 30i as a pressure reducing means for reducing the pressure of the refrigerant flowing into the evaporator 14 is disposed in the liquid phase refrigerant passage connecting the gas-liquid separation space 30f and the liquid phase refrigerant outlet 31c. .
  • the nozzle body 32 is formed of a substantially conical metal member that tapers in the refrigerant flow direction. Furthermore, the nozzle body 32 is fixed inside the housing body 31 by means such as press fitting so that the axial direction is the vertical direction (that is, the vertical direction in FIG. 2). Between the upper side of the nozzle body 32 and the housing body 31, a swirling space 30a for swirling the refrigerant flowing from the refrigerant inlet 31a is formed.
  • the swirling space 30a is formed in a rotating body shape, and the central axis shown by the one-dot chain line in FIG. 2 extends in the vertical direction.
  • the rotating body shape is a three-dimensional shape formed when a plane figure is rotated around one straight line (that is, the central axis) on the same plane. More specifically, the swirl space 30a of the present embodiment is formed in a substantially cylindrical shape. Of course, you may form in the shape etc. which combined the cone or the truncated cone, and the cylinder.
  • the refrigerant inflow passage 31e that connects the refrigerant inlet 31a and the swirl space 30a extends in the tangential direction of the inner wall surface of the swirl space 30a when viewed from the central axis direction of the swirl space 30a. Thereby, the refrigerant that has flowed into the swirl space 30a from the refrigerant inflow passage 31e flows along the inner wall surface of the swirl space 30a and swirls around the central axis of the swirl space 30a.
  • the refrigerant pressure on the central axis side is lower than the refrigerant pressure on the outer peripheral side in the swirling space 30a. Therefore, in the present embodiment, during normal operation of the ejector refrigeration cycle 10, the refrigerant pressure on the central axis side in the swirling space 30a is set to the pressure that becomes the saturated liquid phase refrigerant, or the refrigerant is boiled under reduced pressure (that is, cavitation is performed). To occur) pressure.
  • Such adjustment of the refrigerant pressure on the central axis side in the swirling space 30a can be realized by adjusting the swirling flow velocity of the refrigerant swirling in the swirling space 30a.
  • the swirl flow rate can be adjusted by adjusting the area ratio between the passage sectional area of the refrigerant inflow passage 31e and the vertical sectional area in the axial direction of the swirling space 30a, for example.
  • the swirling flow velocity in the present embodiment means the flow velocity in the swirling direction of the refrigerant in the vicinity of the outermost peripheral portion of the swirling space 30a.
  • a decompression space 30b is formed in which the refrigerant that has flowed out of the swirling space 30a is decompressed and flows downstream.
  • the decompression space 30b is formed in a rotating body shape in which a cylindrical space and a frustoconical space that continuously spreads from the lower side of the cylindrical space and gradually expands in the refrigerant flow direction.
  • the central axis of the working space 30b is arranged coaxially with the central axis of the swirling space 30a.
  • a minimum passage area portion 30m having the smallest refrigerant passage area in the decompression space 30b, and a passage forming member 35 that changes the passage area of the minimum passage area portion 30m. Has been placed.
  • the passage forming member 35 is formed in a substantially conical shape that gradually expands toward the downstream side of the refrigerant flow, and the central axis thereof is arranged coaxially with the central axis of the decompression space 30b. That is, the passage forming member 35 is formed in a conical shape whose cross-sectional area increases as the distance from the decompression space 30b increases.
  • the tip 131 is formed as a refrigerant passage formed between the inner peripheral surface of the portion of the nozzle body 32 that forms the pressure reducing space 30 b and the upper outer peripheral surface of the passage forming member 35.
  • the divergent part 132 is formed.
  • the tapered portion 131 is a refrigerant passage that is formed on the upstream side of the refrigerant flow with respect to the minimum passage area portion 30m and gradually reduces the refrigerant passage area up to the minimum passage area portion 30m.
  • the divergent portion 132 is a refrigerant passage that is formed on the downstream side of the refrigerant flow from the minimum passage area portion 30m, and the refrigerant passage area gradually increases.
  • the decompression space 30b and the passage forming member 35 are overlapped (overlapped) when viewed from the radial direction, so that the shape of the axial cross section of the refrigerant passage is annular (that is, circular). To a donut shape excluding a small-diameter circular shape arranged coaxially). Furthermore, the refrigerant passage area in the divergent section 132 gradually increases toward the downstream side of the refrigerant flow.
  • the refrigerant passage formed between the inner peripheral surface of the pressure reducing space 30b and the outer peripheral surface on the top side of the passage forming member 35 by such a passage shape is a nozzle passage 13a that functions as a Laval nozzle. .
  • the pressure of the refrigerant is reduced, and the flow rate of the refrigerant is increased to be supersonic and injected.
  • the middle body 33 is provided with a through-hole penetrating the front and back (up and down in FIG. 2) at the center thereof. Further, the middle body 33 is formed of a metal disk-like member that accommodates a driving means 37 that displaces the passage forming member 35 on the outer peripheral side of the through hole.
  • the central axis of the through hole of the middle body 33 is arranged coaxially with the central axes of the swirling space 30a and the decompression space 30b.
  • the middle body 33 is fixed inside the housing body 31 and below the nozzle body 32 by means such as press fitting.
  • an inflow space 30c is formed between the upper surface of the middle body 33 and the inner wall surface of the housing body 31 opposite to the middle body 33 for retaining the refrigerant flowing in from the refrigerant suction port 31b.
  • the inflow space 30c since the tapered tip portion on the lower side of the nozzle body 32 is positioned inside the through hole of the middle body 33, the inflow space 30c has a cross section when viewed from the central axis direction of the swirl space 30a and the decompression space 30b. It is formed in an annular shape.
  • the suction refrigerant inflow passage 30h that connects the refrigerant suction port 31b and the inflow space 30c extends in the tangential direction of the inner peripheral wall surface of the inflow space 30c when viewed from the central axis direction of the inflow space 30c. desirable.
  • the reason is that the swirling flow of the refrigerant flowing out from the later-described diffuser passage 13c can be promoted by swirling the refrigerant flowing into the inflow space 30c via the suction refrigerant inflow passage 30h from the refrigerant suction port 31b.
  • the lower side of the nozzle body 32 is inserted, that is, in the range where the middle body 33 and the nozzle body 32 overlap when viewed from the radial direction perpendicular to the axis, the taper tip of the nozzle body 32 is formed.
  • the refrigerant passage area gradually decreases in the refrigerant flow direction so as to conform to the outer peripheral shape.
  • a suction passage 30d is formed between the inner peripheral surface of the through hole and the outer peripheral surface on the lower side of the nozzle body 32 to connect the inflow space 30c and the refrigerant flow downstream side of the decompression space 30b. That is, in the present embodiment, the suction passage 13b through which the suction refrigerant flows from the outer peripheral side to the inner peripheral side of the central axis is formed by the inflow space 30c and the suction passage 30d.
  • the shape of the cross section perpendicular to the central axis of the suction passage 13b is also formed in an annular shape.
  • a pressure increasing space 30e formed in a substantially truncated cone shape gradually spreading in the refrigerant flow direction is formed on the downstream side of the refrigerant flow in the suction passage 30d.
  • the pressurizing space 30e is a space for mixing the refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked from the suction passage 30d.
  • the lower side of the passage forming member 35 is disposed inside the pressurizing space 30e. Further, the refrigerant passage formed between the inner peripheral surface of the portion forming the pressurizing space 30e of the middle body 33 and the outer peripheral surface on the lower side of the passage forming member 35 increases the refrigerant passage area toward the downstream side of the refrigerant flow. It is formed into a shape that gradually expands. Thereby, in this refrigerant path, the velocity energy of the mixed refrigerant of the injection refrigerant and the suction refrigerant can be converted into pressure energy.
  • a diffuser passage 13c that functions as a diffuser (that is, a boosting unit) that performs mixing and boosting is configured.
  • the cross-sectional shape perpendicular to the central axis of the diffuser passage 13c is also formed in an annular shape.
  • a swirl promoting space 30g formed in a substantially truncated cone shape gradually spreading in the refrigerant flow direction is formed on the downstream side of the refrigerant flow in the pressurizing space 30e.
  • the turning promotion space 30g is a space into which the refrigerant that has flowed out of the pressurizing space 30e flows.
  • the refrigerant flow most downstream side of the passage forming member 35 is disposed in the turning promotion space 30g. Further, a plurality of rectifying plates 40 are joined to a portion of the passage forming member 35 on the most downstream side of the refrigerant flow that forms the turning promotion space 30g. The plurality of rectifying plates 40 promote the swirling flow of the refrigerant flowing through the refrigerant passage formed between the inner peripheral surface of the middle body 33 forming the swirl promoting space 30g and the outermost peripheral surface of the passage forming member 35.
  • the refrigerant passage formed between the inner peripheral surface of the middle body 33 forming the turning promotion space 30g and the outermost peripheral surface of the passage forming member 35 flows out from the diffuser passage 13c as shown in FIG.
  • a swirl promoting passage 13d that promotes the swirling flow of the refrigerant is formed.
  • the cross-sectional shape perpendicular to the central axis of the turning promotion passage 13d is also formed in an annular shape.
  • the diffuser passage 13c and the turning promotion passage 13d are divided in the radial direction.
  • the diffuser passage 13 c is formed on the radially inner peripheral side with respect to the inner peripheral side end of the rectifying plate 40, and the diameter is increased from the inner peripheral side end of the rectifying plate 40.
  • a turning promotion passage 13d is formed on the outer peripheral side in the direction.
  • Line is defined as line Ls1.
  • a line drawn by the most upstream portion of the passage forming member 35 that forms the turning promotion passage 13d is defined as a line Ls2.
  • the line Ls1 and the line Ls2 are arranged on the same straight line.
  • a line drawn by the most downstream portion of the body 30 (specifically, the middle body 33) forming the diffuser passage 13c (a line closer to the diffuser passage 13c than the point Cb in FIG. 4). Is defined as a line Lb1.
  • a line drawn by the most upstream portion of the part forming the turning promotion passage 13d in the body 30 (a line closer to the turning promotion passage 13d than the point Cb in FIG. 4) is defined as a line Lb2.
  • the angle ⁇ b formed between the line Lb1 and the line Lb2 and formed on the side sandwiching the body 30 is set to a value smaller than 180 °. More specifically, in the present embodiment, the angle ⁇ b is set to 170 °.
  • the axial dimension at the most downstream portion of the refrigerant flow in the diffuser passage 13c is defined as a diffuser outlet height h1
  • the axial dimension at the most downstream portion of the refrigerant flow in the turning promotion passage 13d is defined as a turning outlet height h2.
  • h1 and h2 are set so as to satisfy the following formula F1.
  • each rectifying plate 40 is formed in a shape that is curved or inclined in the swirling direction of the refrigerant from the axial center side toward the outer peripheral side.
  • path 13c flows along the baffle plate 40, and the swirling flow of a refrigerant
  • coolant is accelerated
  • a straight line passing through the axial center C of the passage forming member 35 and the innermost peripheral side end portion 41 a of the inner peripheral side wall surface 41 of the predetermined rectifying plate 40 is a first virtual straight line Lf1. It is defined as Further, a straight line passing through the axial center C and the outermost peripheral side end portion 41b of the inner peripheral side wall surface 41 of the predetermined rectifying plate 40 is defined as a second virtual straight line Lf2. Further, a straight line passing through the axial center C and the innermost peripheral side end portion 42a of the outer peripheral side wall surface 42 of the rectifying plate 40 disposed adjacent to the turning direction side of the predetermined rectifying plate 40 is referred to as a third virtual straight line Lf3. Define.
  • an angle formed between the first virtual straight line Lf1 and the second virtual straight line Lf2 and formed on the side sandwiching the predetermined rectifying plate 40 is defined as ⁇ i.
  • an angle formed between the first imaginary straight line Lf1 and the third imaginary straight line Lf3 and formed on the side sandwiching the predetermined rectifying plate 40 is defined as a blade interval angle ⁇ o.
  • the straight line to be defined is defined as a third virtual straight line Lf3.
  • ⁇ i and ⁇ o are set so as to satisfy the following formula F2.
  • the inner peripheral side wall surface 41 in the present embodiment is a wall surface on the axial center C side of the rectifying plate 40 and contributes to promotion of the swirling flow of the refrigerant. Therefore, it is a wall surface excluding a surface having only a function of connecting the inner peripheral side wall surface 41 and the outer peripheral side wall surface 42.
  • the outer peripheral side wall surface 42 in this embodiment is a wall surface of the outer peripheral side of the baffle plate 40, and is a wall surface contributing to promotion of the swirling flow of the refrigerant. Therefore, it is a wall surface excluding a surface having only a function of connecting the inner peripheral side wall surface 41 and the outer peripheral side wall surface 42.
  • the virtual half straight line Lf3 when the third virtual straight line Lf3 is redefined as a virtual half straight line Lf3 starting from the axis center C, the virtual half straight line Lf3 becomes the predetermined straightening plate 40 and the predetermined straightening plate 40. It intersects with both of the rectifying plates 40 arranged adjacent to each other in the turning direction side. In other words, the virtual half line Lf3 intersects with the plurality of rectifying plates 40.
  • the virtual half-line Lf3 is the outermost side wall surface 42 of the rectifying plate 40 that is arranged adjacent to the turning direction side of the predetermined rectifying plate 40 starting from the axial center C in the cross section of FIG. It can be defined as a half line passing through the inner peripheral side end 42a.
  • “intersecting with the rectifying plate 40” does not mean that the virtual half line Lf3 and the rectifying plate 40 are completely exposed, but the virtual half line Lf3 and the rectifying plate 40. Including that they are in contact.
  • the outermost peripheral side end portion 41 b of the inner peripheral side wall surface 41 of the predetermined rectifying plate 40 and the outer peripheral side wall surface 42 of the rectifying plate 40 adjacent to the turning direction side of the predetermined rectifying plate 40. Is defined as a flow path width T1.
  • an outer diameter of a gas-liquid separation space 30f described later is defined as a gas-liquid separation outer diameter Rn
  • an outer diameter of the passage forming member 35 is defined as a turning outlet radius Rout.
  • T1, Rn, and Rout are set so as to satisfy the following formula F3.
  • the flow path width T1 of this embodiment can also be defined as the distance of the outermost peripheral side of adjacent rectifying plates 40 as shown in FIG.
  • symbol of each line segment has shown the order from the inner peripheral side.
  • the line segment L i means the i-th line segment from the inner peripheral side (axis center C side).
  • the angle ⁇ 1 formed by the innermost line segment L 1 is also called “attack angle”.
  • the angle of attack is preferably set to a relatively small angle (10 ° or less) in order to suppress the collision between the refrigerant flowing into the turning promotion passage 13d from the diffuser passage 13c and the rectifying plate 40.
  • the angle ⁇ 6 formed by the outermost line segment L6 is also referred to as “outflow angle”. In this embodiment, the outflow angle ⁇ 6 is set to 65 ° or more.
  • the driving means 37 that is disposed inside the middle body 33 and displaces the passage forming member 35 will be described.
  • the driving means 37 is configured to have a circular thin plate-like diaphragm 37a which is a pressure responsive member. More specifically, as shown in FIG. 2, the diaphragm 37a is fixed by means such as welding so as to partition a cylindrical space formed on the outer peripheral side of the middle body 33 into two upper and lower spaces.
  • the space on the inflow space 30c side (the upper side in FIG. 2) is an enclosed space 37b in which a temperature-sensitive medium whose pressure changes according to the temperature of the refrigerant flowing out of the evaporator 14 is enclosed.
  • a temperature-sensitive medium having the same composition as the refrigerant circulating in the ejector refrigeration cycle 10 is enclosed in the enclosed space 37b so as to have a predetermined density. Therefore, the temperature sensitive medium in the present embodiment is a medium mainly composed of R134a.
  • the lower space of the two spaces partitioned by the diaphragm 37a constitutes an introduction space 37c for introducing the refrigerant flowing out of the evaporator 14 through a communication path (not shown). Therefore, the temperature of the refrigerant flowing out of the evaporator 14 is transmitted to the temperature-sensitive medium enclosed in the enclosed space 37b through the lid member 37d and the diaphragm 37a that partition the inflow space 30c and the enclosed space 37b.
  • the diaphragm 37a is deformed according to the differential pressure between the internal pressure of the enclosed space 37b and the pressure of the refrigerant flowing out of the evaporator 14 flowing into the introduction space 37c.
  • the diaphragm 37a is made of a tough material which is rich in elasticity and has good heat conduction.
  • a metal thin plate such as stainless steel (SUS304), EPDM (ethylene propylene diene copolymer rubber) containing a base fabric, or the like can be employed.
  • a columnar actuating rod 37e is joined to the center portion of the diaphragm 37a by means such as welding, and the outer peripheral side of the lowermost portion (bottom portion) of the passage forming member 35 is fixed to the lower end side of the actuating rod 37e.
  • the diaphragm 37a and the passage forming member 35 are connected, and the passage forming member 35 is displaced with the displacement of the diaphragm 37a, and the refrigerant passage area in the minimum passage area portion 30m of the nozzle passage 13a is adjusted.
  • the diaphragm 37a displaces the channel
  • the diaphragm 37a displaces the passage forming member 35 in a direction (upward in FIG. 2) in which the refrigerant passage area in the minimum passage area portion 30m is reduced.
  • the diaphragm 37a displaces the passage forming member 35 according to the degree of superheat of the refrigerant flowing out of the evaporator 14, so that the degree of superheat of the refrigerant on the outlet side of the evaporator 14 approaches the predetermined value.
  • the refrigerant passage area in the portion 30m is adjusted.
  • the gap between the operating rod 37e and the middle body 33 is sealed by a sealing member such as an O-ring (not shown), and the refrigerant does not leak from the gap even if the operating rod 37e is displaced.
  • the bottom surface of the passage forming member 35 receives a load of a coil spring 38 fixed to the lower body 34.
  • the coil spring 38 applies a load that biases the passage forming member 35 toward the side that reduces the refrigerant passage area in the minimum passage area portion 30m, and adjusts the load to form the passage.
  • the valve opening pressure of the member 35 can be changed to change the target degree of superheat.
  • a plurality of (specifically, two) columnar spaces are provided on the outer peripheral side of the middle body 33, and a circular thin plate diaphragm 37a is fixed inside each of the spaces, so that the two driving means 37 are provided.
  • the number of the drive means 37 is not limited to this.
  • the lower body 34 is formed of a cylindrical metal member, and is fixed in the housing body 31 by means such as screwing so as to close the bottom surface of the housing body 31.
  • a gas-liquid separation space 30f is formed between the upper side of the lower body 34 and the middle body 33 to separate the gas and liquid of the refrigerant that has flowed out of the turning promotion passage 13d.
  • the gas-liquid separation space 30f is formed as a substantially cylindrical rotary body-shaped space, and the central axis of the gas-liquid separation space 30f is also arranged coaxially with the central axes of the swirl space 30a, the decompression space 30b, and the like. Has been.
  • the swirl flow of the refrigerant is promoted in the swirl promoting passage 13d
  • the refrigerant flowing from the swirl promoting passage 13d into the gas-liquid separation space 30f has a velocity component in the swirling direction. Therefore, the gas-liquid refrigerant is separated in the gas-liquid separation space 30f by the action of centrifugal force. Further, the internal volume of the gas-liquid separation space 30f is such that even if a load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates, the surplus refrigerant cannot be substantially accumulated. .
  • a cylindrical pipe 34a that is arranged coaxially with the gas-liquid separation space 30f and extends upward.
  • the liquid refrigerant separated in the gas-liquid separation space 30f temporarily stays on the outer peripheral side of the pipe 34a and flows out from the liquid refrigerant outlet 31c.
  • a gas-phase refrigerant outflow passage 34b that guides the gas-phase refrigerant separated in the gas-liquid separation space 30f to the gas-phase refrigerant outlet 31d of the housing body 31 is formed inside the pipe 34a.
  • the above-described coil spring 38 is fixed to the upper end portion of the pipe 34a.
  • the coil spring 38 also functions as a vibration buffer member that attenuates the vibration of the passage forming member 35 caused by pressure pulsation when the refrigerant is depressurized.
  • An oil return hole 34c is formed on the bottom surface of the lower body 34 to return the refrigeration oil in the liquid phase refrigerant into the compressor 11 through the gas phase refrigerant outflow passage 34b.
  • the inlet side of the evaporator 14 is connected to the liquid-phase refrigerant outlet 31 c of the ejector 13.
  • the evaporator 14 performs heat exchange between the low-pressure refrigerant decompressed by the ejector 13 and the blown air blown into the vehicle interior from the blower fan 14a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is a vessel.
  • the blower fan 14a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device.
  • a refrigerant suction port 31 b of the ejector 13 is connected to the outlet side of the evaporator 14. Further, the suction side of the compressor 11 is connected to the gas-phase refrigerant outlet 31 d of the ejector 13.
  • a control device includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits.
  • the control device performs various calculations and processes based on the control program stored in the ROM, and controls the operation of the compressor 11, the cooling fan 12d, the blower fan 14a, and the like (various electric actuators).
  • control device includes an internal air temperature sensor that detects the temperature inside the vehicle, an external air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and an air temperature (evaporator temperature) of the evaporator 14.
  • a sensor group for air conditioning control such as an evaporator temperature sensor to detect, an outlet side temperature sensor to detect the temperature of the radiator 12 outlet side refrigerant, and an outlet side pressure sensor to detect the pressure of the radiator 12 outlet side refrigerant are connected, Detection values of these sensor groups are input.
  • an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
  • control device of the present embodiment is configured integrally with control means for controlling the operation of various control target devices connected to the output side of the control device.
  • the configuration (hardware and software) for controlling the operation constitutes the control means of each control target device.
  • the configuration that controls the operation of the electric motor of the compressor 11 constitutes the discharge capacity control means.
  • the refrigerant condensed in the condensing unit 12a is gas-liquid separated in the receiver unit 12b.
  • the liquid phase refrigerant separated by the receiver unit 12b exchanges heat with the outside air blown from the cooling fan 12d in the supercooling unit 12c, and further dissipates heat to become a supercooled liquid phase refrigerant (a7 in FIG. 7).
  • Point ⁇ b7 point Point
  • the supercooled liquid-phase refrigerant that has flowed out of the supercooling portion 12c of the radiator 12 passes through the nozzle passage 13a formed between the inner peripheral surface of the decompression space 30b of the ejector 13 and the outer peripheral surface of the passage forming member 35. It is depressurized entropically and injected (point b7 ⁇ point c7 in FIG. 7). At this time, the refrigerant passage area in the minimum passage area 30m of the decompression space 30b is adjusted so that the superheat degree of the refrigerant on the outlet side of the evaporator 14 approaches a predetermined value.
  • the refrigerant (point h7 in FIG. 7) that has flowed out of the evaporator 14 due to the suction action of the jetted refrigerant jetted from the nozzle passage 13a causes the refrigerant suction port 31b and the suction passage 13b (more specifically, the inflow space 30c). And is sucked through the suction passage 30d).
  • the refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked through the suction passage 13b and the like flow into the diffuser passage 13c and merge (point c7 ⁇ d7, h71 ⁇ d7 in FIG. 7). .
  • the suction passage 30d is formed in a shape in which the refrigerant passage area gradually decreases. For this reason, the suction refrigerant passing through the suction passage 30d increases the flow velocity while decreasing its pressure (point h7 ⁇ point h71 in FIG. 7). Thereby, the speed difference between the suction refrigerant and the injection refrigerant can be reduced, and the energy loss (mixing loss) when the suction refrigerant and the injection refrigerant are mixed in the diffuser passage 13c can be reduced.
  • the kinetic energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant rises while the injected refrigerant and the suction refrigerant are mixed (d7 point ⁇ e7 point in FIG. 7).
  • the refrigerant flowing out of the diffuser passage 13c is gas-liquid separated in the gas-liquid separation space 30f (point e7 ⁇ f7, point e7 ⁇ g7 in FIG. 7).
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f is decompressed by the orifice 30i (g7 point ⁇ g71 point in FIG. 7) and flows into the evaporator 14.
  • the refrigerant that has flowed into the evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (g71 point ⁇ h7 point in FIG. 7). Thereby, blowing air is cooled.
  • the gas-phase refrigerant separated in the gas-liquid separation space 30f flows out from the gas-phase refrigerant outlet 31d, is sucked into the compressor 11, and is compressed again (point f7 ⁇ a7 in FIG. 7).
  • the ejector refrigeration cycle 10 of the present embodiment operates as described above, and can cool the blown air blown into the vehicle interior. Further, in the ejector refrigeration cycle 10, since the refrigerant whose pressure is increased in the diffuser passage 13c is sucked into the compressor 11, the driving power of the compressor 11 can be reduced and the cycle efficiency (COP) can be improved. .
  • the refrigerant pressure on the turning center side in the swirling space 30a is reduced to the pressure that becomes the saturated liquid phase refrigerant, or the refrigerant is depressurized.
  • the pressure can be reduced to boiling (ie, causing cavitation).
  • the gas phase refrigerant is present in the swirl space 30a in the vicinity of the swirl center line, and the liquid single phase is surrounded by the two-phase separation so that a larger amount of gas-phase refrigerant exists on the inner periphery side than the outer periphery side of the swirl center shaft.
  • the tip 131 of the nozzle passage 13a has a wall surface boiling that occurs when the refrigerant is separated from the outer peripheral side wall surface of the annular refrigerant passage. Boiling of the refrigerant is promoted by interfacial boiling by boiling nuclei generated by cavitation of the refrigerant on the central axis side of the annular refrigerant passage. Thereby, the refrigerant flowing into the minimum passage area 30m of the nozzle passage 13a is in a gas-liquid mixed state in which the gas phase and the liquid phase are uniformly mixed.
  • the flow of refrigerant in the gas-liquid mixed state is choked in the vicinity of the minimum passage area portion 30m, and the gas-liquid mixed state refrigerant that has reached the speed of sound by this choking is accelerated by the divergent portion 132 and injected.
  • the energy conversion efficiency in the nozzle passage 13a can be improved by efficiently accelerating the gas-liquid mixed state refrigerant to the sound speed by the boiling promotion by both the wall surface boiling and the interface boiling.
  • the passage forming member 35 is formed in a conical shape whose cross-sectional area increases as the passage forming member 35 moves away from the decompression space 30b. Therefore, the shape of the diffuser passage 13c and the turning promotion passage 13d can be made to expand along the outer periphery of the passage forming member 35 as the distance from the decompression space 30b increases. As a result, the axial dimension of the ejector 13 as a whole can be shortened.
  • the turning promotion passage 13d since the turning promotion passage 13d is provided, the turning flow of the refrigerant flowing into the gas-liquid separation space 30f can be promoted. Therefore, the gas-liquid separation performance in the gas-liquid separation space 30f can be improved.
  • the gas-liquid separation space 30f is formed inside the body 30, the gas-liquid separation space is provided in contrast to the case where gas-liquid separation means that exhibits the same function is provided separately from the ejector 13.
  • the volume of 30f can be effectively reduced. The reason is that it is not necessary to provide a space for generating or growing the swirling flow of the refrigerant in the gas-liquid separation space 30f as in the case where the gas-liquid separation means is provided separately from the ejector 13.
  • the rectifying plate 40 becomes the passage resistance of the refrigerant flowing through the turning promotion passage 13d. This may increase the pressure loss when the refrigerant flows through the turning promotion passage 13d. If such pressure loss increases, the COP improvement effect of the refrigeration cycle apparatus due to the increased pressure of the refrigerant in the diffuser passage 13c cannot be obtained sufficiently.
  • the ejector 13 of the present embodiment employs the swirl promoting passage 13d and the rectifying plate 40 having the above-described characteristic configuration, and therefore, as described below, the refrigerant flowing out of the diffuser passage 13c.
  • the gas-liquid separation performance in the gas-liquid separation space 30f can be improved without causing an increase in pressure loss.
  • the characteristic configurations of the turning promotion passage 13d and the rectifying plate 40 described above are made on the basis of knowledge obtained through examinations by the inventors.
  • the present inventors have determined that the pressure generated in the refrigerant flowing out of the diffuser passage 13c. In order to reduce the loss, it has been found that it is effective to reduce the flow rate of the gas-phase refrigerant among the gas-liquid two-phase refrigerant.
  • the speed component in the swirl direction of the liquid-phase refrigerant flowing into the gas-liquid separation space 30f of the gas-liquid two-phase refrigerant is increased.
  • the knowledge that is effective is obtained.
  • the swivel outlet height h2 is set to a value larger than the diffuser outlet height h1 as shown in the formula F1. According to this, the refrigerant flow passage area in the turning promotion passage 13d can be expanded in the axial direction toward the downstream side of the refrigerant flow.
  • the flow rate of the gas-phase refrigerant can be reduced to suppress an increase in pressure loss that occurs in the refrigerant flowing through the turning promotion passage 13d.
  • the flow velocity of the liquid-phase refrigerant is controlled by the inertial force, so that it is difficult to decelerate. Therefore, among the refrigerants in the gas-liquid two-phase state, the flow direction of the liquid phase refrigerant can be changed by the rectifying plate 40 to promote the swirling flow. Therefore, the gas-liquid separation performance in the gas-liquid separation space 30f can be improved.
  • the line Ls1 and the line Ls2 are arranged on the same straight line, and the angle ⁇ b is set to 180 °. It is small. Thereby, the turning outlet height h2 can be set much larger than the diffuser outlet height h1 very easily.
  • the flow flowing out from the diffuser passage 13c is caused to flow on the inner peripheral side (that is, the passage forming member) of the turning promotion passage 13d. It has been confirmed that the collision loss due to the collision on the (35 side) can be suppressed. Therefore, the collision energy loss of the refrigerant flowing along the conical side surface of the passage forming member 35 can be suppressed.
  • the blade angle ⁇ i is set to a value larger than the blade interval angle ⁇ o, as shown in the formula F2.
  • the virtual half line Lf3 intersects with the plurality of rectifying plates 40. According to this, among the refrigerant in the gas-liquid two-phase state that has flowed out of the diffuser passage 13c, the flow direction of the liquid-phase refrigerant can be reliably turned in the turning direction by the rectifying plate 40.
  • FIG. 8 is explanatory drawing which represented typically a mode that the particle
  • the radial gap dimension (Rn ⁇ Rout) between the passage forming member 35 and the gas-liquid separation space 30f is determined from the flow path width T1. Is also set to a large value. According to this, it is possible to suppress an increase in pressure loss when the refrigerant that has flowed out of the diffuser passage 13c flows into the gas-liquid separation space 30f through the turning promotion passage 13d.
  • the shape of the inner peripheral side wall surface 41 of the rectifying plate 40 in the axial vertical cross section is a plurality of line segments having the same length (in this embodiment, six line segments).
  • the line segments L 1 to L 6 ) are connected. And each line segment is arrange
  • the amount can be even.
  • the angle variation of the flow direction of the refrigerant flowing along the flow direction and the line L 2 of the refrigerant flowing along the line L 1 and the flow direction of the refrigerant flowing along the line segment L 2 and the line segment L
  • the amount of change in angle with the flow direction of the refrigerant flowing along 3 can be made equal.
  • the flow rate of the gas phase refrigerant out of the refrigerant flowing out of the diffuser passage 13c can be reduced. Furthermore, the flow direction of the liquid phase refrigerant out of the refrigerant flowing out of the diffuser passage 13c can be changed to the turning direction without increasing the energy loss.
  • the gas-liquid separation performance in the gas-liquid separation space 30f can be improved without increasing the pressure loss of the refrigerant flowing out from the diffuser passage 13c.
  • the rectifying plate 40 of the present embodiment is configured by a plurality of plate-like members (specifically, two of the inlet-side plate-like member 40a and the outlet-side plate-like member 40b) arranged at intervals.
  • a plurality of plate-like members specifically, two of the inlet-side plate-like member 40a and the outlet-side plate-like member 40b
  • Each of the inlet side plate-like member 40a and the outlet side plate-like member 40b is formed in a shape that is curved or inclined in the swirling direction of the refrigerant from the axial center side toward the outer peripheral side.
  • the inlet side plate-like member 40a and the outlet side plate-like member 40b of the present embodiment are, as shown in FIG. 9, when viewed from the swirl flow direction (circumferential direction) and the refrigerant flow downstream portion of the inlet side plate-like member 40a. It arrange
  • the rectifying plate 40 is constituted by the inlet side plate member 40a and the outlet side plate member 40b, the inlet side plate member 40a and the outlet side plate are shown in FIG. A part of the refrigerant on the inner peripheral side of the rectifying plate 40 can be guided to the outer peripheral side through the gap with the member 40b.
  • the refrigerant inlet in the gap between the inlet side plate member 40a and the outlet side plate member 40b is arranged closer to the inlet side than the outlet side of the turning promotion passage 13d. ing. According to this, it is possible to reduce the amount of the liquid-phase refrigerant that slips from the inner peripheral side to the outer peripheral side through the gap between the inlet-side plate-like member 40a and the outlet-side plate-like member 40b. It can suppress that the promotion of a flow will be inhibited.
  • the rectifying plate 40 of the present embodiment is configured by a plurality of plate-like members (specifically, two of the inlet-side plate-like member 40a and the outlet-side plate-like member 40b) arranged at intervals.
  • a plurality of plate-like members specifically, two of the inlet-side plate-like member 40a and the outlet-side plate-like member 40b
  • Each of the inlet side plate-like member 40a and the outlet side plate-like member 40b is formed in a shape that is curved or inclined in the swirling direction of the refrigerant from the axial center side toward the outer peripheral side.
  • the inlet side plate-like member 40a and the outlet side plate-like member 40b of this embodiment are not arranged so as to overlap when viewed from the swirling flow direction (circumferential direction) as shown in FIG.
  • straightening board 43 is arrange
  • the rectifying plate 40 is constituted by the inlet side plate member 40a and the outlet side plate member 40b, the inlet side plate member 40a and the outlet side plate are shown in FIG.
  • the refrigerant on the inner peripheral side of the rectifying plate 40 can flow out to the outer peripheral side through the gap with the member 40b.
  • the auxiliary rectifying plate 43 is arranged, even if the particles of the liquid-phase refrigerant slip through the outer peripheral side through the gap between the inlet side plate member 40a and the outlet side plate member 40b, As shown in FIG. 10, the flow direction of the liquid refrigerant can be reliably turned in the turning direction by the auxiliary rectifying plate 43.
  • the auxiliary rectifying plate 43 of the present embodiment has a function of promoting the swirling flow of the liquid-phase refrigerant particles flowing between the adjacent rectifying plates 40.
  • the swirling flow of the refrigerant can be promoted even if the blade angle ⁇ i is not set to a value larger than the blade interval angle ⁇ o.
  • auxiliary rectifying plate 43 In the present embodiment, an example in which an auxiliary rectifying plate 43 is added to the first embodiment as shown in FIG. 11 will be described.
  • the auxiliary rectifying plate 43 of the present embodiment is formed in a shape that is curved or inclined in the direction of the refrigerant turning from the axial center side toward the outer peripheral side.
  • the auxiliary rectifying plate 43 of the present embodiment is not arranged over the entire region from the inlet side to the outlet side of the turning promotion passage 13d, and when viewed from the turning flow direction (circumferential direction), It arrange
  • the gap interval between the outer peripheral side wall surface of the rectifying plate 40 and the inner peripheral side wall surface of the auxiliary rectifying plate 43 is gradually reduced in the axial vertical cross section. Are arranged to be.
  • the outer periphery of the rectifying plate 40 indicated by the thick solid arrow in FIG. A decrease in the flow rate of the refrigerant flowing along the side wall surface can be suppressed. Therefore, energy loss due to the separation of the refrigerant flowing along the outer peripheral side wall surface of the rectifying plate 40 can be suppressed.
  • the auxiliary rectifying plate 43 of this embodiment is disposed between the adjacent rectifying plates 40 and functions to suppress the separation of the refrigerant from the rectifying plate 40.
  • FIG. 12 In the present embodiment, an example in which the shapes of the diffuser passage 13c and the turning promotion passage 13d of the ejector 13 are changed and the shape of the rectifying plate 40 is changed as shown in FIG. .
  • FIG. 12 FIG. 15 demonstrated below is sectional drawing corresponding to FIG. 4 of 1st Embodiment.
  • the minimum axial dimension of the diffuser passage 13c is defined as the minimum height hmin
  • the maximum axial dimension of the turning promotion passage 13d is defined as the maximum height hmax.
  • the diffuser passage 13c of the present embodiment is formed so that the axial dimension in the range from the inlet portion to the downstream side is hmin (constant).
  • the diffuser passage 13c is formed in an annular shape that expands in the radial direction toward the downstream side of the refrigerant flow. The passage area is gradually enlarged.
  • the turning promotion passage 13d is formed in a shape in which the axial dimension gradually decreases toward the downstream side of the refrigerant flow. Further, the turning promotion passage 13d is formed in a shape in which the refrigerant passage area is constant or gradually reduced toward the downstream side of the refrigerant flow. For this reason, in the turning promotion passage 13d of the present embodiment, the axial dimension at the entrance of the turning promotion passage 13d is hmax. That is, the diffuser outlet height h1 described in the first embodiment is the maximum height hmax.
  • each rectifying plate 40 of the present embodiment in the vertical cross section in the axial direction is set so as to satisfy the following formula F6.
  • tan ⁇ i + 1 -tan ⁇ i const ( constant) ... (F6)
  • ⁇ i in Formula F6 is defined exactly the same as in the first embodiment.
  • the maximum height hmax of the turning promotion passage 13d is set to a value larger than the minimum height hmin of the diffuser passage 13c. According to this, the refrigerant flow passage area in the refrigerant passage in the range from the portion having the minimum height hmin of the diffuser passage 13c to the maximum height hmax of the turning promotion passage 13d is expanded in the axial direction toward the downstream side of the refrigerant flow. Can be made.
  • the flow rate of the gas-phase refrigerant can be reduced to suppress an increase in pressure loss that occurs in the refrigerant that flows through the turning promotion passage 13d.
  • the flow velocity of the liquid phase refrigerant is governed by the inertial force, the swirl flow of the liquid phase refrigerant is promoted by the plurality of rectifying plates 40 without being decelerated. Therefore, the gas-liquid separation performance in the gas-liquid separation space 30f can be improved.
  • the shape of the inner peripheral side wall surface 41 of the rectifying plate 40 in the axial vertical cross section is formed in the same manner as in the first embodiment, and each line segment is expressed by the above formula. It arrange
  • the velocity component V ⁇ i in the swirling direction of the refrigerant at the innermost peripheral end of each line segment can be defined by the following equation F7.
  • the inner peripheral side wall surface 41 of the rectifying plate 40 is formed of n line segments in the vertical cross section in the axial direction shown in FIG.
  • V is the flow rate of the refrigerant flowing along the rectifying plate 40.
  • V is constant from the entrance side to the exit side of the turning promotion passage 13d. This is because the turning promotion passage 13d of the present embodiment is not formed in a shape that expands the refrigerant passage area toward the downstream side of the refrigerant flow.
  • the individual variation Derutabuishita i can be expressed by the following equation F8.
  • change_quantity (DELTA) V (theta) i into a fixed value the amount of diversions of the flow direction when a refrigerant
  • each line segment is arrange
  • ⁇ n in Formula F9 is an outflow angle
  • ⁇ 1 is an angle of attack.
  • ⁇ V ⁇ i may be determined according to the number of line segments as shown in Formula F10 below.
  • ⁇ V ⁇ i ⁇ V ⁇ (total) / n (F10) That is, in this embodiment, the individual change amount ⁇ V ⁇ i can be easily determined by determining the number n of line segments, the angle of attack ⁇ 1 , and the outflow angle ⁇ n , and the rectifying plate 40 in the axially vertical cross section.
  • the shape of the inner peripheral side wall surface 41 can be easily determined.
  • the diffuser passage 13c in addition to (b), (c), and (e) described in the first embodiment, as described in (g) and (f), the diffuser passage 13c.
  • the flow rate of the gas-phase refrigerant can be reduced.
  • the flow direction of the liquid phase refrigerant out of the refrigerant flowing out of the diffuser passage 13c can be changed to the turning direction without increasing the energy loss.
  • the gas-liquid separation performance in the gas-liquid separation space 30f can be improved without causing an increase in refrigerant pressure loss.
  • each rectifying plate 40 is set using Formula F4, and in this embodiment, the shape of each rectifying plate 40 is set using Formula F6.
  • Such a shape setting can be properly used according to the flow rate of the refrigerant flowing through the turning promotion passage 13d.
  • each rectifying plate 40 is formed in a shape that expands the refrigerant passage area toward the downstream side of the refrigerant flow, and becomes a speed field in which the flow rate of the refrigerant flowing through the turning promotion passage 13d gradually decreases. It is desirable to set the shape of each rectifying plate 40 using Formula F4.
  • the current plate 40 of the present embodiment is formed in a shape in which the thickness dimension Tw gradually decreases toward the outer peripheral side, the adjacent current plates 40 are adjacent to each other in the axial vertical cross section of the passage forming member 35. The distance between them can be increased toward the downstream side of the refrigerant flow. In other words, the refrigerant passage area of the refrigerant passage formed between adjacent rectifying plates 40 can be gradually enlarged toward the downstream side of the refrigerant flow.
  • the rectifying plate 40 when the rectifying plate 40 is set so as to satisfy the above formula F4, the radial velocity component of the refrigerant flowing through the turning promotion passage 13d is the downstream side of the refrigerant flow. It becomes gradually smaller toward.
  • the distance between the rectifying plates 40 adjacent to each other at the most downstream portion of the refrigerant flow can be maximized, so that it is formed between the adjacent rectifying plates 40. This is effective in that the refrigerant easily flows out of the refrigerant passage.
  • the distance on the innermost peripheral side of adjacent rectifying plates 40 is defined as pitch T2, and the distance between the inner peripheral side end and the outer peripheral side end of the rectifying plate 40 is the chord. It is defined as Lw.
  • T2 and Lw are set so as to satisfy the following formula F11. Lw / T2> 0.7 (F11)
  • Other configurations of the ejector 13 and the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, also in the ejector 13 of this embodiment, the effect similar to 1st Embodiment can be acquired.
  • the baffle plate 40 since the baffle plate 40 is set so that the said Formula F11 may be satisfied, it can suppress that peeling arises in the refrigerant
  • satisfying the above formula F11 means that the value obtained by multiplying the pitch T2 by a coefficient (ie, 0.7) is smaller than the chord Lw. Therefore, if the pitch T2 is set small with respect to the chord Lw, the above formula is easily satisfied.
  • the angle formed between the line Ls1 and the line Ls2 and the angle ⁇ s formed on the diffuser passage 13c and the turning promotion passage 13d side may be set smaller than 180 °, and the angle ⁇ b may be set smaller than the angle ⁇ s.
  • the diffuser passage 13c and the turning promotion passage 13d are separated in the radial direction, and further, the distance from the central axis of the passage forming member 35 to the point Cs.
  • the diffuser outlet height h1 is defined as the distance from the central axis of the passage forming member 35 to the point Cb being equal.
  • the distance from the central axis of the passage forming member 35 to the Cs point is different from the distance from the central axis of the passage forming member 35 to the Cb point, the axial direction from the Cb point to the passage forming member 35 is different.
  • the distance in the axial direction from the Cs point to the body 30 may be a larger value as the diffuser outlet height h1.
  • the portion forming the turning promotion passage 13d in the passage forming member 35 and the body 30 in the axial cross section it is desirable that the drawn lines (that is, the line Ls2 and the line Lb2 in FIG. 4) extend downward as the refrigerant flows downstream.
  • the shape of the inner peripheral side wall surface 41 of the rectifying plate 40 in the axial vertical cross section is the plurality of line segments L 1 to L 1 having the same length. L 6 is connected.
  • the line segments L 1 to L 6 are arranged so as to satisfy the formula F4 in the first embodiment, and arranged so as to satisfy the formula F6 in the fifth embodiment.
  • the arrangement of these line segments L 1 to L 6 is preferably arranged so as to completely satisfy the formula F4 or F6.
  • the arrangement of the line segments L 1 to L 6 satisfies the formula F4 or F6 due to manufacturing errors or the like. Even if it is slightly shifted, the same effect can be obtained.
  • the configuration of the ejector 13 is not limited to that disclosed in the above-described embodiment.
  • the material of the passage forming member 35 is not mentioned, but the passage forming member 35 may be formed of metal (for example, aluminum) or may be formed of resin. Furthermore, since the passage forming member 35 is made of resin to reduce the weight, the driving means 37 can be reduced in size, so that the size of the ejector 13 as a whole can be further reduced.
  • the driving means 37 for displacing the passage forming member 35 the enclosed space 37b in which the temperature-sensitive medium whose pressure changes with temperature change is enclosed, and the pressure of the temperature-sensitive medium in the enclosed space 37b.
  • a drive means is not limited to this.
  • thermowax that changes in volume depending on temperature
  • a structure having a shape memory alloy elastic member as the driving means may be adopted.
  • a drive unit that displaces the passage forming member 35 by an electric motor may be employed.
  • the rectifying plate 40 is joined to the passage forming member 35.
  • the rectifying plate 40 and the auxiliary rectifying plate 43 are joined to either the passage forming member 35 or the body 30. Just do it.
  • the rectifying plate 40 may be joined to one of the passage forming member 35 and the body 30, and the auxiliary rectifying plate 43 may be joined to the other.
  • the rectifying plate 40 and the auxiliary rectifying plate 43 may be formed as separate members with respect to the passage forming member 35 and the body 30, or formed integrally with the passage forming member 35 and the body 30. It may be a thing.
  • Each component device constituting the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
  • an electric compressor is employed as the compressor 11
  • the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like.
  • An engine driven compressor may be employed.
  • a variable displacement compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or by changing the operating rate of the compressor by intermittently connecting an electromagnetic clutch, the refrigerant discharge capacity can be increased.
  • a fixed capacity compressor to be adjusted can be employed.
  • the ejector refrigeration cycle 10 including the ejector 13 is applied to a vehicle air conditioner.
  • the application of the ejector refrigeration cycle 10 including the ejector 13 is not limited thereto.
  • the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

 エジェクタは、ボデー(30)の内部に配置された円錐形状の通路形成部材(35)を備える。ボデーと通路形成部材との隙間に、高圧冷媒を減圧させて噴射するノズル通路(13a)が形成される。ディフューザ通路(13c)は、噴射冷媒と吸引冷媒とを混合させて昇圧させる。旋回促進通路(13d)は、整流板(40)によってディフューザ通路から流出した冷媒の旋回流れを促進して気液分離空間(30f)側へ流出させる。旋回促進通路の冷媒流れ最下流部における軸方向寸法である旋回出口高さ(h2)は、ディフューザ通路の冷媒流れ最下流部における軸方向寸法であるディフューザ出口高さ(h1)よりも大きい。

Description

エジェクタ 関連出願の相互参照
 本出願は、2014年7月29日に出願された日本出願番号2014-153728号と、2015年6月4日に出願された日本出願番号2015-113982号と、に基づくもので、ここにそれらの記載内容を援用する。
 本開示は、高速度で噴射される噴射流体の吸引作用によって流体を吸引するエジェクタに関する。
 従来、特許文献1に、蒸気圧縮式の冷凍サイクル装置に適用されて、高速度で噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と吸引冷媒とを混合させて昇圧させるエジェクタが開示されている。
 より詳細には、特許文献1のエジェクタでは、ボデーの内部に円錐形状の通路形成部材を配置し、ボデーと通路形成部材の円錐状側面との隙間に断面円環状の冷媒通路を形成している。そして、この冷媒通路のうち、冷媒流れ最上流側の部位を、高圧冷媒を減圧させて噴射するノズル通路として利用し、ノズル通路の冷媒流れ下流側の部位を、噴射冷媒と吸引冷媒とを混合させて混合冷媒を昇圧させるディフューザ通路として利用している。
 特許文献1のエジェクタでは、このようにノズル通路およびディフューザ通路を、冷媒流れ上流側から下流側へ向かって通路形成部材の円錐状側面に沿って外周側へ広がる形状とすることで、エジェクタ全体としての軸方向寸法が拡大してしまうことを抑制しようとしている。さらに、特許文献1には、ボデーの内部に、遠心力の作用によってディフューザ通路から流出した冷媒の気液を分離する気液分離空間を形成した例も開示されている。
特開2013-177879号公報
 特許文献1の気液分離空間における気液分離性能を向上させる手段としては、ディフューザ通路から流出して気液分離空間へ流入する冷媒の旋回流れを促進させる手段が有効である。なお、「旋回流れを促進させる」とは、冷媒の速度成分のうち、通路形成部材の軸周りに旋回する旋回方向の速度成分を増加させることを意味する。
 しかしながら、ディフューザ通路から流出した冷媒の旋回方向の速度成分を増加させるために、例えば、通路形成部材の冷媒流れ最下流側に複数の整流板を増速翼列配置すると、冷媒が隣り合う整流板間を通過する際の圧力損失を増加させてしまう。その結果、ディフューザ通路にて冷媒を昇圧させたことによる冷凍サイクル装置のCOP向上効果を充分に得ることができなくなる。
 本開示は、気液分離空間を有するエジェクタにおいて、冷媒の圧力損失の増大なく、気液分離空間における気液分離性能を向上させることを目的とする。
 本発明者らは、ディフューザ通路から流出する冷媒が気液二相状態となっていることに着眼した。そして、この着眼に基づいて、ディフューザ通路から流出した冷媒に生じる圧力損失を低減させるために有効な手段、および気液分離空間へ流入する冷媒の旋回流れを促進させるために有効な手段について検討を行った。
 その結果、本発明者らは、ディフューザ通路から流出した冷媒に生じる圧力損失を低減させるには、気液二相状態の冷媒のうち気相冷媒の流速を低下させることが有効であるという知見を得た。
 さらに、本発明者らは、気液分離空間へ流入する冷媒の旋回流れを促進させるためには、気液二相状態の冷媒のうち液相冷媒の旋回方向の速度成分を増加させることが有効であるという知見を得た。
 すなわち、本発明者らは、気液分離空間における気液分離性能を向上させる為には、気液二相状態の冷媒のうち液相冷媒の旋回方向の速度成分を増加させることが有効であるという知見を得た。
 本開示の一態様では、蒸気圧縮式の冷凍サイクル装置に適用されるエジェクタは、外部から流入した冷媒を減圧させる減圧用空間、減圧用空間の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路、減圧用空間から噴射された噴射冷媒と吸引用通路から吸引された吸引冷媒とを混合させる昇圧用空間、昇圧用空間から流出した冷媒を流入させる旋回促進空間、旋回促進空間から流出した冷媒の気液を分離する気液分離空間が形成されたボデーと、少なくとも一部が減圧用空間の内部、昇圧用空間の内部、および旋回促進空間の内部に配置されるとともに、減圧用空間側から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材と、を備える。ボデーのうち減圧用空間を形成する部位の内周面と通路形成部材の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路である。ボデーのうち昇圧用空間を形成する部位の内周面と通路形成部材の外周面との間に形成される冷媒通路は、噴射冷媒および吸引冷媒を混合して昇圧させる混合昇圧部として機能するディフューザ通路である。ボデーのうち旋回促進空間を形成する部位の内周面と通路形成部材の外周面との間に形成される冷媒通路は、ディフューザ通路から流出した冷媒の旋回流れを促進する旋回促進通路である。旋回促進通路内には、旋回促進通路を流通する冷媒の旋回流れを促進する複数の整流板が配置されている。通路形成部材の軸方向断面において、ディフューザ通路の最小軸方向寸法を最小高さhminと定義し、旋回促進通路の最大軸方向寸法を最大高さhmaxと定義したときに、hmax>hminの関係が満たされる。
 これによれば、hmax>hminとなっているので、ディフューザ通路の最小高さhminとなる部位から旋回促進通路の最大高さhmaxへ至る範囲の冷媒通路における冷媒流路面積を、冷媒流れ下流側に向かって軸方向に拡大させることができる。
 従って、この範囲の冷媒通路を流通する気液二相冷媒のうち、気相冷媒の流速を低下させて、旋回促進通路を流通する冷媒に生じる圧力損失の増大を抑制することができる。一方、液相冷媒の流速は慣性力に支配されるので、液相冷媒は、減速されることなく複数の整流板によって径方向の速度成分が旋回方向の速度成分へ転向される。これにより、旋回流れが促進される。
 その結果、冷媒の圧力損失の増大を招くことなく、気液分離空間における気液分離性能を向上させることができる。延いては、適用された冷凍サイクル装置のCOP向上効果を充分に得ること、および気液分離空間における気液分離性能を向上させることの両立を図ることができる。
 通路形成部材の軸方向断面において、ディフューザ通路の冷媒流れ最下流部における軸方向寸法をディフューザ出口高さh1とし、旋回促進通路の冷媒流れ最下流部における軸方向寸法を旋回出口高さh2としたときに、hmax>hminの関係に代えて、h2>h1の関係が満たされていてもよい。
 これによれば、h2>h1となっているので、旋回促進通路における冷媒流路面積を冷媒流れ下流側に向かって軸方向に拡大させることができる。従って、旋回促進通路を流通する気液二相状態の冷媒のうち、気相冷媒の流速を低下させて、旋回促進通路を流通する冷媒に生じる圧力損失の増大を抑制することができる。
 一方、ディフューザ通路から流出した気液二相状態の冷媒のうち、液相冷媒の流速はディフューザ通路の出口における慣性力に支配される。従って、液相冷媒は、ディフューザ通路の出口にて減速されることなく、複数の整流板によって径方向の速度成分が旋回方向の速度成分へ転向される。これにより、旋回流れが促進される。
 その結果、ディフューザ通路から流出した冷媒の圧力損失の増大を招くことなく、気液分離空間における気液分離性能を向上させることができる。
 さらに、旋回促進通路内には、旋回促進通路を流通する冷媒の旋回流れを促進する複数の整流板が、通路形成部材の軸周りに等角度間隔で円環状に配置されてもよい。
 通路形成部材の軸方向垂直断面において、通路形成部材の軸中心と所定の整流板の内周側壁面の最内周側端部とを通過する直線を第1仮想直線と定義し、軸中心と所定の整流板の内周側壁面の最外周側端部とを通過する直線を第2仮想直線と定義し、軸中心と所定の整流板の旋回方向側に隣り合って配置された整流板の外周側壁面の最内周側端部とを通過する直線を第3仮想直線と定義し、第1仮想直線と第2仮想直線との間に形成される角度であって所定の整流板を挟む側に形成される角度を翼角度θiと定義し、第1仮想直線と第3仮想直線との間に形成される角度であって所定の整流板を挟む側に形成される角度を翼間隔角度θoと定義したときに、θi>θoの関係が満たされていてもよい。
 これによれば、旋回促進通路を流通する冷媒の圧力損失を増大させないように整流板を配置しても、θi>θoとなっているので、ディフューザ通路から流出した気液二相状態の冷媒のうち、液相冷媒の流れ方向を整流板によって旋回方向に確実に転向させることができる。
 従って、旋回促進通路から気液分離空間へ流入する旋回流れを効果的に促進することができる。その結果、冷媒の圧力損失の増大を招くことなく、気液分離空間における気液分離性能を向上させることができる。
 なお、「整流板の内周側壁面」とは、整流板の軸中心側の壁面であって、冷媒の旋回流れの促進に寄与する壁面である。従って、単に内周側壁面と外周側壁面とを接続する機能のみを有する面を除く壁面である。また、「整流板の外周側壁面」とは、整流板の軸中心側の反対側(外周側)の壁面であって、冷媒の旋回流れの促進に寄与する壁面である。従って、単に内周側壁面と外周側壁面とを接続する機能のみを有する面を除く壁面である。
 また、通路形成部材の軸方向垂直断面において、通路形成部材の軸中心を起点として、所定の整流板の外周側壁面の最内周側端部を通過する半直線を仮想半直線と定義したときに、仮想半直線は、複数の整流板と交わっていてもよい。
 これによれば、旋回促進通路を流通する冷媒の圧力損失を増大させないように整流板を配置しても、仮想半直線が複数の整流板と交わっているので、ディフューザ通路から流出した気液二相状態の冷媒のうち、液相冷媒の流れ方向を整流板によって旋回方向に確実に転向させることができる。
 その結果、冷媒の圧力損失の増大を招くことなく、気液分離空間における気液分離性能を向上させることができる。
 通路形成部材の軸方向垂直断面において、所定の整流板の内周側壁面の最外周側端部と所定の整流板に隣り合う整流板の外周側壁面との最短距離を流路幅T1と定義し、気液分離空間の外径を気液分離外径Rnと定義し、通路形成部材の外径を旋回出口半径Routと定義したときに、Rn-Rout>T1の関係が満たされていてもよい。
 これによれば、Rn-Rout>T1となっているので、ディフューザ通路から流出した冷媒が、旋回促進通路を通過して、気液分離空間へ流入する際の圧力損失の増大を抑制できる。
 さらに、旋回促進通路内には、複数の整流板が配置されているので、旋回促進通路から気液分離空間へ流入する旋回流れを促進することができる。その結果、冷媒の圧力損失の増大を招くことなく、気液分離空間における気液分離性能を向上させることができる。
 本開示についての上記およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第1実施形態のエジェクタの軸方向断面図である。 第1実施形態のエジェクタの各冷媒通路の機能を説明するための模式的な断面図である。 図2のIV部の模式的な拡大断面図である。 図2の模式的なV-V断面図である。 第1実施形態のエジェクタの整流板の模式的な軸方向垂直断面図である。 第1実施形態のエジェクタ式冷凍サイクルにおける冷媒の状態を示すモリエル線図である。 第1実施形態の旋回促進通路における液相冷媒の流れを説明するための説明図である。 第2実施形態の旋回促進通路における液相冷媒の流れを説明するための説明図である。 第3実施形態の旋回促進通路における液相冷媒の流れを説明するための説明図である。 第4実施形態の旋回促進通路における液相冷媒の流れを説明するための説明図である。 第5実施形態のエジェクタの模式的な軸方向拡大断面図である。 第6実施形態の整流板を説明するための軸方向垂直断面図である。 第7実施形態の整流板を説明するための軸方向垂直断面図である。 他の実施形態のエジェクタの模式的な軸方向拡大断面図である。
 (第1実施形態)
 図1~図8を用いて、第1実施形態を説明する。本実施形態のエジェクタ13は、図1に示すように、冷媒減圧手段としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置、すなわち、エジェクタ式冷凍サイクル10に適用されている。さらに、このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
 まず、エジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。
 この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。また、電動モータは、後述する制御装置から出力される制御信号によって、その作動(すなわち、回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。
 圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(すなわち、外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。
 より具体的には、放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器である。
 なお、このエジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 冷却ファン12dは、制御装置から出力される制御電圧によって回転数(すなわち、送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒出口側には、エジェクタ13の冷媒流入口31aが接続されている。
 エジェクタ13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させて下流側へ流出させる冷媒減圧手段としての機能を果たすとともに、高速度で噴射される冷媒流の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環手段(冷媒輸送手段)としての機能も果たす。
 さらに、本実施形態のエジェクタ13は、減圧させた冷媒の気液を分離する気液分離手段としての機能も果たす。つまり、本実施形態のエジェクタ13は、気液分離機能付きエジェクタ(すなわち、エジェクタモジュール)として構成されている。
 エジェクタ13の具体的構成については、図2~図6を用いて説明する。なお、図2における上下の各矢印は、エジェクタ13を車両に搭載した状態における上下の各方向を示している。また、図3は、エジェクタ13の各冷媒通路の機能を説明するための模式的な断面図であって、図2と同一の機能を果たす部分には同一の符号を付している。
 まず、本実施形態のエジェクタ13は、図2に示すように、複数の構成部材を組み合わせることによって構成されたボデー30を備えている。具体的には、ボデー30は、角柱状あるいは円柱状の金属もしくは樹脂にて形成されてエジェクタ13の外殻を形成するハウジングボデー31を有している。さらに、ハウジングボデー31の内部には、ノズルボデー32、ミドルボデー33、ロワーボデー34が固定されている。
 ハウジングボデー31には、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入口側へ流出させる気相冷媒流出口31d等が形成されている。
 さらに、本実施形態では、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路に、蒸発器14へ流入させる冷媒を減圧させる減圧手段としてのオリフィス30iを配置している。
 ノズルボデー32は、冷媒流れ方向に先細る略円錐形状の金属部材で形成されている。さらに、ノズルボデー32は、軸方向が鉛直方向(すなわち、図2の上下方向)となるように、ハウジングボデー31の内部に圧入等の手段によって固定されている。ノズルボデー32の上方側とハウジングボデー31との間には、冷媒流入口31aから流入した冷媒を旋回させる旋回空間30aが形成されている。
 旋回空間30aは、回転体形状に形成され、図2の一点鎖線で示す中心軸が鉛直方向に延びている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(すなわち、中心軸)の周りに回転させた際に形成される立体形状である。より具体的には、本実施形態の旋回空間30aは、略円柱状に形成されている。もちろん、円錐あるいは円錐台と円柱とを結合させた形状等に形成されていてもよい。
 冷媒流入口31aと旋回空間30aとを接続する冷媒流入通路31eは、旋回空間30aの中心軸方向から見たときに旋回空間30aの内壁面の接線方向に延びている。これにより、冷媒流入通路31eから旋回空間30aへ流入した冷媒は、旋回空間30aの内壁面に沿って流れ、旋回空間30aの中心軸周りに旋回する。
 ここで、旋回空間30a内で旋回する冷媒には遠心力が作用するので、旋回空間30a内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル10の通常運転時に、旋回空間30a内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(すなわち、キャビテーションを生じる)圧力まで低下させるようにしている。
 このような旋回空間30a内の中心軸側の冷媒圧力の調整は、旋回空間30a内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路31eの通路断面積と旋回空間30aの軸方向垂直断面積との面積比を調整すること等によって行うことができる。なお、本実施形態の旋回流速とは、旋回空間30aの最外周部近傍における冷媒の旋回方向の流速を意味している。
 また、ノズルボデー32の内部には、旋回空間30aから流出した冷媒を減圧させて下流側へ流出させる減圧用空間30bが形成されている。この減圧用空間30bは、円柱状空間とこの円柱状空間の下方側から連続して冷媒流れ方向に向かって徐々に広がる円錐台形状空間とを結合させた回転体形状に形成されており、減圧用空間30bの中心軸は旋回空間30aの中心軸と同軸上に配置されている。
 さらに、減圧用空間30bの内部には、減圧用空間30b内に冷媒通路面積が最も縮小した最小通路面積部30mを形成するとともに、最小通路面積部30mの通路面積を変化させる通路形成部材35が配置されている。
 通路形成部材35は、冷媒流れ下流側に向かって徐々に広がる略円錐形状に形成されており、その中心軸が減圧用空間30bの中心軸と同軸上に配置されている。つまり、通路形成部材35は、減圧用空間30bから離れるに伴って断面積が拡大する円錐状に形成されている。
 従って、ノズルボデー32の減圧用空間30bを形成する部位の内周面と通路形成部材35の上方側の外周面との間に形成される冷媒通路としては、図3に示すように、先細部131および末広部132が形成される。先細部131は、最小通路面積部30mよりも冷媒流れ上流側に形成されて、最小通路面積部30mに至るまでの冷媒通路面積が徐々に縮小する冷媒通路である。末広部132は、最小通路面積部30mから冷媒流れ下流側に形成されて、冷媒通路面積が徐々に拡大する冷媒通路である。
 この末広部132では、径方向から見たときに減圧用空間30bと通路形成部材35が重合(オーバーラップ)しているので、冷媒通路の軸方向垂直断面の形状が円環状(すなわち、円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)となる。さらに、末広部132における冷媒通路面積は、冷媒流れ下流側に向かって徐々に拡大している。
 本実施形態では、このような通路形状によって減圧用空間30bの内周面と通路形成部材35の頂部側の外周面との間に形成される冷媒通路を、ラバールノズルとして機能するノズル通路13aとしている。そして、このノズル通路13aにて、冷媒を減圧させるとともに、冷媒の流速を超音速となるように増速させて噴射している。
 次に、ミドルボデー33は、図2に示すように、その中心部に表裏(図2では、上下)を貫通する貫通穴が設けられている。さらに、ミドルボデー33は、この貫通穴の外周側に通路形成部材35を変位させる駆動手段37を収容した金属製円板状部材で形成されている。
 なお、ミドルボデー33の貫通穴の中心軸は旋回空間30aおよび減圧用空間30bの中心軸と同軸上に配置されている。また、ミドルボデー33は、ハウジングボデー31の内部であって、かつ、ノズルボデー32の下方側に圧入等の手段によって固定されている。
 さらに、ミドルボデー33の上面とこれに対向するハウジングボデー31の内壁面との間には、冷媒吸引口31bから流入した冷媒を滞留させる流入空間30cが形成されている。本実施形態では、ノズルボデー32の下方側の先細先端部がミドルボデー33の貫通穴の内部に位置付けられるため、流入空間30cは、旋回空間30aおよび減圧用空間30bの中心軸方向からみたときに、断面円環状に形成される。
 なお、冷媒吸引口31bと流入空間30cとを接続する吸引冷媒流入通路30hは、流入空間30cの中心軸方向から見たときに、流入空間30cの内周壁面の接線方向に延びていることが望ましい。その理由は、冷媒吸引口31bから吸引冷媒流入通路30hを介して流入空間30c内へ流入した冷媒を、旋回させることで後述するディフューザ通路13cから流出する冷媒の旋回流れを促進できるからである。
 また、ミドルボデー33の貫通穴のうち、ノズルボデー32の下方側が挿入される範囲、すなわち軸線に垂直な径方向から見たときにミドルボデー33とノズルボデー32が重合する範囲では、ノズルボデー32の先細先端部の外周形状に適合するように冷媒通路面積が冷媒流れ方向に向かって徐々に縮小している。
 これにより、貫通穴の内周面とノズルボデー32の下方側の外周面との間には、流入空間30cと減圧用空間30bの冷媒流れ下流側とを連通させる吸引通路30dが形成される。つまり、本実施形態では、流入空間30cおよび吸引通路30dによって、中心軸の外周側から内周側へ向かって吸引冷媒が流れる吸引用通路13bが形成されることになる。この吸引用通路13bの中心軸に垂直な断面の形状も円環状に形成される。
 また、ミドルボデー33の貫通穴のうち、吸引通路30dの冷媒流れ下流側には、冷媒流れ方向に向かって徐々に広がる略円錐台形状に形成された昇圧用空間30eが形成されている。昇圧用空間30eは、上述したノズル通路13aから噴射された噴射冷媒と吸引通路30dから吸引された吸引冷媒とを混合させる空間である。
 昇圧用空間30eの内部には、通路形成部材35の下方側が配置されている。さらに、ミドルボデー33の昇圧用空間30eを形成する部位の内周面と通路形成部材35の下方側の外周面との間に形成される冷媒通路は、冷媒流れ下流側に向かって冷媒通路面積を徐々に拡大させる形状に形成されている。これにより、この冷媒通路では、噴射冷媒と吸引冷媒との混合冷媒の速度エネルギを圧力エネルギに変換させることができる。
 従って、昇圧用空間30eを形成するミドルボデー33の内周面と通路形成部材35の下方側の外周面との間に形成される冷媒通路は、図3に示すように、噴射冷媒および吸引冷媒を混合して昇圧させるディフューザ(すなわち、昇圧部)として機能するディフューザ通路13cを構成している。このディフューザ通路13cの中心軸に垂直な断面の形状も円環状に形成される。
 また、ミドルボデー33の貫通穴のうち、昇圧用空間30eの冷媒流れ下流側には、冷媒流れ方向に向かって徐々に広がる略円錐台形状に形成された旋回促進空間30gが形成されている。旋回促進空間30gは、昇圧用空間30eから流出した冷媒を流入させる空間である。
 旋回促進空間30gの内部には、通路形成部材35の冷媒流れ最下流側が配置されている。さらに、通路形成部材35の冷媒流れ最下流側であって、旋回促進空間30gを形成する部位には、複数の整流板40が接合されている。複数の整流板40は、旋回促進空間30gを形成するミドルボデー33の内周面と通路形成部材35の最下流側の外周面との間に形成される冷媒通路を流通する冷媒の旋回流れを促進させる。
 従って、旋回促進空間30gを形成するミドルボデー33の内周面と通路形成部材35の最下流側の外周面との間に形成される冷媒通路は、図3に示すように、ディフューザ通路13cから流出した冷媒の旋回流れを促進する旋回促進通路13dを形成している。この旋回促進通路13dの中心軸に垂直な断面の形状も円環状に形成されている。
 次に、図4~図6を用いて、旋回促進通路13dおよび複数の整流板40の詳細構成を説明する。本実施形態では、図4の軸方向拡大断面図に示すように、ディフューザ通路13cおよび旋回促進通路13dは、径方向に区切られているものとする。換言すると、通路形成部材35の軸方向から見たとき、整流板40の内周側端部よりも径方向内周側にディフューザ通路13cが形成され、整流板40の内周側端部から径方向外周側に旋回促進通路13dが形成されている。
 さらに、図4の断面(中心軸を含む軸方向断面)において、通路形成部材35のうちディフューザ通路13cを形成する部位の最下流部が描く線(図4のCs点よりもディフューザ通路13c側の線)を線Ls1と定義する。また、通路形成部材35のうち旋回促進通路13dを形成する部位の最上流部が描く線(図4のCs点よりも旋回促進通路13d側の線)を線Ls2と定義する。このとき、本実施形態では、線Ls1および線Ls2が、同一直線上に配置されている。
 また、図4の断面において、ボデー30(具体的には、ミドルボデー33)のうちディフューザ通路13cを形成する部位の最下流部が描く線(図4のCb点よりもディフューザ通路13c側の線)を線Lb1と定義する。また、ボデー30のうち旋回促進通路13dを形成する部位の最上流部が描く線(図4のCb点よりも旋回促進通路13d側の線)を線Lb2と定義する。
 このとき、本実施形態では、線Lb1と線Lb2との間に形成される角度であって、ボデー30を挟む側に形成される角度θbは、180°より小さい値に設定されている。より具体的には、本実施形態では、角度θbを170°に設定している。
 そして、図4の断面において、ディフューザ通路13cの冷媒流れ最下流部における軸方向寸法をディフューザ出口高さh1とし、旋回促進通路13dの冷媒流れ最下流部における軸方向寸法を旋回出口高さh2としたときに、h1およびh2は、以下数式F1を満足するように設定されている。
h2>h1 …(F1)
 つまり、旋回出口高さh2は、ディフューザ出口高さh1よりも大きい値に設定されている。より具体的には、本実施形態では、ディフューザ出口高さh1を1.5mmとし、旋回出口高さh2を6mmとしている。
 次に、複数の整流板40は、図5の軸方向垂直断面に示すように、通路形成部材35の軸周りに等角度間隔で円環状に配置されている。また、それぞれの整流板40は、図5に示すように、軸中心側から外周側に向かって冷媒の旋回方向に湾曲あるいは傾斜した形状に形成されている。そして、ディフューザ通路13cから流出した冷媒が整流板40に沿って流れることにより、冷媒の旋回流れが促進される。
 より詳細には、図5の断面において、通路形成部材35の軸中心Cと所定の整流板40の内周側壁面41の最内周側端部41aとを通過する直線を第1仮想直線Lf1と定義する。また、軸中心Cと所定の整流板40の内周側壁面41の最外周側端部41bとを通過する直線を第2仮想直線Lf2と定義する。また、軸中心Cと所定の整流板40の旋回方向側に隣り合って配置された整流板40の外周側壁面42の最内周側端部42aとを通過する直線を第3仮想直線Lf3と定義する。
 さらに、図5の断面において、第1仮想直線Lf1と第2仮想直線Lf2との間に形成される角度であって所定の整流板40を挟む側に形成される角度をθiと定義する。また、第1仮想直線Lf1と第3仮想直線Lf3との間に形成される角度であって所定の整流板40を挟む側に形成される角度を翼間隔角度θoと定義する。する直線を第3仮想直線Lf3と定義する。
 このとき、θiおよびθoは、以下数式F2を満足するように設定されている。
θi>θo …(F2)
 つまり、翼角度θiは、翼間隔角度θoよりも大きい値に設定されている。
 なお、本実施形態における内周側壁面41とは、整流板40の軸中心C側の壁面であって、冷媒の旋回流れの促進に寄与する壁面である。従って、単に内周側壁面41と外周側壁面42とを接続する機能のみを有する面を除く壁面である。また、本実施形態における外周側壁面42とは、整流板40の外周側の壁面であって、冷媒の旋回流れの促進に寄与する壁面である。従って、単に内周側壁面41と外周側壁面42とを接続する機能のみを有する面を除く壁面である。
 このため、図5の断面において、第3仮想直線Lf3を、軸中心Cを起点とする仮想半直線Lf3と定義し直すと、仮想半直線Lf3は、所定の整流板40および所定の整流板40の旋回方向側に隣り合って配置された整流板40の双方と交わっている。換言すると、仮想半直線Lf3は、複数の整流板40と交わっている。
 より詳細には、仮想半直線Lf3は、図5の断面において、軸中心Cを起点として、所定の整流板40の旋回方向側に隣り合って配置された整流板40の外周側壁面42の最内周側端部42aを通過する半直線と定義することができる。
 なお、本実施形態において「整流板40と交わっている」とは、仮想半直線Lf3と整流板40が完全に公差していることのみを意味するものではなく、仮想半直線Lf3と整流板40が接触していることも含む。
 また、図5の断面において、所定の整流板40の内周側壁面41の最外周側端部41bと、この所定の整流板40の旋回方向側に隣り合う整流板40の外周側壁面42との最短距離を流路幅T1と定義する。また、後述する気液分離空間30fの外径を気液分離外径Rnと定義し、通路形成部材35の外径を旋回出口半径Routと定義する。
 このとき、T1、RnおよびRoutは、以下数式F3を満足するように設定されている。
Rn-Rout>T1 …(F3)
 つまり、軸方向垂直断面において、通路形成部材35と気液分離空間30fとの径方向隙間寸法(Rn-Rout)は、流路幅T1よりも大きい値に設定されている。なお、本実施形態の流路幅T1は、図5に示すように、隣り合う整流板40同士の最外周側の距離と定義することもできる。
 また、それぞれの整流板40の少なくとも内周側壁面41は、図6の軸方向垂直断面に示すように、互いに同一の長さの2つ以上の線分L1~Ln(nは2以上の整数であって、図6では、n=6としている。)を接続した形状に形成されている。ここで、各線分の符号の数字は、内周側からの順番を示している。例えば、線分Liは、内周側(軸中心C側)からi番目の線分であることを意味している。
 さらに、軸方向垂直断面において、軸中心Cと内周側からi番目の線分Liの最内周側端部とを通過する直線をi番目仮想線La1~Lanとし、i番目仮想線Laiとi番目の線分Liとの間に形成される角度であって、外周側に形成される角度をθiとしたときに、θiが以下数式F4を満足するように設定されている。
θi+1-θi=const(一定) …(F4)
 つまり、図6では、
θ2-θ1=θ3-θ2
θ3-θ2=θ4-θ3
θ4-θ3=θ5-θ4
θ5-θ4=θ6-θ5
となっている。
 また、図6において、最内周側の線分L1が形成する角度θ1は、「迎角」とも呼ばれる。迎角は、ディフューザ通路13cから旋回促進通路13dへ流入する冷媒と整流板40との衝突を抑制するため、比較的小さい角度(10°以下)に設定されることが望ましい。また、図6において、最外周側の線分L6が形成する角度θ6は、「流出角」とも呼ばれる。本実施形態では、流出角θ6を65°以上に設定している。
 次に、ミドルボデー33の内部に配置されて、通路形成部材35を変位させる駆動手段37について説明する。この駆動手段37は、圧力応動部材である円形薄板状のダイヤフラム37aを有して構成されている。より具体的には、図2に示すように、ダイヤフラム37aはミドルボデー33の外周側に形成された円柱状の空間を上下の2つの空間に仕切るように、溶接等の手段によって固定されている。
 ダイヤフラム37aによって仕切られた2つの空間のうち流入空間30c側(図2では、上方側)の空間は、蒸発器14流出冷媒の温度に応じて圧力変化する感温媒体が封入される封入空間37bを構成している。この封入空間37bには、エジェクタ式冷凍サイクル10を循環する冷媒と同等の組成の感温媒体が予め定めた密度となるように封入されている。従って、本実施形態における感温媒体は、R134aを主成分とする媒体である。
 一方、ダイヤフラム37aによって仕切られた2つの空間のうち下方側の空間は、図示しない連通路を介して、蒸発器14流出冷媒を導入させる導入空間37cを構成している。従って、封入空間37bに封入された感温媒体には、流入空間30cと封入空間37bとを仕切る蓋部材37dおよびダイヤフラム37aを介して、蒸発器14流出冷媒の温度が伝達される。
 さらに、ダイヤフラム37aは、封入空間37bの内圧と導入空間37cへ流入した蒸発器14流出冷媒の圧力との差圧に応じて変形する。このため、ダイヤフラム37aは弾性に富み、かつ熱伝導が良好で、強靭な材質にて形成することが好ましい。例えば、ダイヤフラム37aの材質としては、ステンレス(SUS304)等の金属薄板や、基布入りEPDM(エチレンプロピレンジエン共重合ゴム)等を採用することができる。
 また、ダイヤフラム37aの中心部には、円柱状の作動棒37eの上端側が溶接等の手段によって接合され、作動棒37eの下端側には通路形成部材35の最下方部(底部)の外周側が固定されている。これにより、ダイヤフラム37aと通路形成部材35が連結され、ダイヤフラム37aの変位に伴って通路形成部材35が変位し、ノズル通路13aの最小通路面積部30mにおける冷媒通路面積が調整される。
 より具体的には、蒸発器14流出冷媒の温度(過熱度)が上昇すると、封入空間37bに封入された感温媒体の飽和圧力が上昇し、封入空間37bの内圧から導入空間37cの圧力を差し引いた差圧が大きくなる。これにより、ダイヤフラム37aは、最小通路面積部30mにおける冷媒通路面積を拡大させる方向(図2では、下方側)に通路形成部材35を変位させる。
 一方、蒸発器14流出冷媒の温度(過熱度)が低下すると、封入空間37bに封入された感温媒体の飽和圧力が低下して、封入空間37bの内圧から導入空間37cの圧力を差し引いた差圧が小さくなる。これにより、ダイヤフラム37aは、最小通路面積部30mにおける冷媒通路面積を縮小させる方向(図2では、上方側)に通路形成部材35を変位させる。
 このように蒸発器14流出冷媒の過熱度に応じてダイヤフラム37aが通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた所定値に近づくように、最小通路面積部30mにおける冷媒通路面積が調整される。なお、作動棒37eとミドルボデー33との隙間は、図示しないO-リング等のシール部材によってシールされており、作動棒37eが変位してもこの隙間から冷媒が漏れることはない。
 また、通路形成部材35の底面は、ロワーボデー34に固定されたコイルバネ38の荷重を受けている。コイルバネ38は、通路形成部材35に対して、通路形成部材35が最小通路面積部30mにおける冷媒通路面積を縮小する側に付勢する荷重をかけており、この荷重を調整することで、通路形成部材35の開弁圧を変更して、狙いの過熱度を変更することもできる。
 本実施形態では、ミドルボデー33の外周側に複数(具体的には2つ)の円柱状の空間を設け、この空間の内部にそれぞれ円形薄板状のダイヤフラム37aを固定して2つの駆動手段37を構成しているが、駆動手段37の数はこれに限定されない。なお、駆動手段37を複数箇所に設ける場合は、それぞれ中心軸に対して等角度間隔で配置されていることが望ましい。
 次に、ロワーボデー34は、円柱状の金属部材で形成されており、ハウジングボデー31の底面を閉塞するように、ハウジングボデー31内にネジ止め等の手段によって固定されている。ロワーボデー34の上方側とミドルボデー33との間には、前述した旋回促進通路13dから流出した冷媒の気液を分離する気液分離空間30fが形成されている。
 この気液分離空間30fは、略円柱状の回転体形状の空間として形成されており、気液分離空間30fの中心軸も、旋回空間30a、減圧用空間30b等の中心軸と同軸上に配置されている。
 前述の如く、旋回促進通路13dでは、冷媒の旋回流れが促進されるので、旋回促進通路13dから気液分離空間30fへ流入する冷媒は、旋回方向の速度成分を有している。従って、気液分離空間30f内では遠心力の作用によって冷媒の気液が分離される。さらに、この気液分離空間30fの内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積になっている。
 ロワーボデー34の中心部には、気液分離空間30fに対して同軸上に配置されて、上方側へ向かって延びる円筒状のパイプ34aが設けられている。そして、気液分離空間30fにて分離された液相冷媒は、パイプ34aの外周側に一時的に滞留して、液相冷媒流出口31cから流出する。このパイプ34aの内部には、気液分離空間30fにて分離された気相冷媒をハウジングボデー31の気相冷媒流出口31dへ導く気相冷媒流出通路34bが形成されている。
 さらに、パイプ34aの上端部には、前述したコイルバネ38が固定されている。なお、このコイルバネ38は、冷媒が減圧される際の圧力脈動に起因する通路形成部材35の振動を減衰させる振動緩衝部材としての機能も果たしている。また、ロワーボデー34の底面には、液相冷媒中の冷凍機油を気相冷媒流出通路34bを介して圧縮機11内へ戻すオイル戻し穴34cが形成されている。
 エジェクタ13の液相冷媒流出口31cには、図1に示すように、蒸発器14の入口側が接続されている。蒸発器14は、エジェクタ13にて減圧された低圧冷媒と送風ファン14aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。
 送風ファン14aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器14の出口側には、エジェクタ13の冷媒吸引口31bが接続されている。さらに、エジェクタ13の気相冷媒流出口31dには圧縮機11の吸入側が接続されている。
 次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、圧縮機11、冷却ファン12d、送風ファン14a等(各種電気式のアクチュエータ)の作動を制御する。
 また、制御装置には、車室内温度を検出する内気温センサ、外気温を検出する外気温センサ、車室内の日射量を検出する日射センサ、蒸発器14の吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ、放熱器12出口側冷媒の温度を検出する出口側温度センサおよび放熱器12出口側冷媒の圧力を検出する出口側圧力センサ等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
 さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。
 なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御手段を構成している。例えば、本実施形態では、圧縮機11の電動モータの作動を制御する構成が吐出能力制御手段を構成している。
 次に、上記構成における本実施形態の作動を図7のモリエル線図を用いて説明する。図7のモリエル線図の縦軸には、図3のP0、P1、P2に対応する圧力が示されている。まず、操作パネルの作動スイッチが投入(ON)されると、制御装置が圧縮機11の電動モータ、冷却ファン12d、送風ファン14a等を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。
 圧縮機11から吐出された高温高圧冷媒(図7のa7点)は、放熱器12の凝縮部12aへ流入し、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図7のa7点→b7点)。
 放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタ13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される(図7のb7点→c7点)。この際、減圧用空間30bの最小通路面積部30mにおける冷媒通路面積は、蒸発器14出口側冷媒の過熱度が予め定めた所定値に近づくように調整される。
 そして、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒(図7のh7点)が、冷媒吸引口31bおよび吸引用通路13b(より詳細には、流入空間30cおよび吸引通路30d)を介して吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13b等を介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する(図7のc7点→d7点、h71点→d7点)。
 ここで、吸引通路30dは、冷媒通路面積が徐々に縮小する形状に形成されている。このため、吸引通路30dを通過する吸引冷媒は、その圧力を低下させながら(図7のh7点→h71点)、流速を増加させる。これにより、吸引冷媒と噴射冷媒との速度差を縮小し、ディフューザ通路13cにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させることができる。
 ディフューザ通路13cでは冷媒通路面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図7のd7点→e7点)。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される(図7のe7点→f7点、e7点→g7点)。
 気液分離空間30fにて分離された液相冷媒は、オリフィス30iにて減圧されて(図7のg7点→g71点)、蒸発器14へ流入する。蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図7のg71点→h7点)。これにより、送風空気が冷却される。一方、気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される(図7のf7点→a7点)。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。さらに、このエジェクタ式冷凍サイクル10では、ディフューザ通路13cにて昇圧された冷媒を圧縮機11に吸入させるので、圧縮機11の駆動動力を低減させて、サイクル効率(COP)を向上させることができる。
 また、本実施形態のエジェクタ13によれば、旋回空間30aにて冷媒を旋回させることで、旋回空間30a内の旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(すなわち、キャビテーションを生じる)圧力まで低下させることができる。これにより、旋回中心軸の外周側よりも内周側に気相冷媒が多く存在するようにして、旋回空間30a内の旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とすることができる。
 このように二相分離状態となった冷媒がノズル通路13aへ流入することで、ノズル通路13aの先細部131では、円環状の冷媒通路の外周側壁面から冷媒が剥離する際に生じる壁面沸騰および円環状の冷媒通路の中心軸側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰によって冷媒の沸騰が促進される。これにより、ノズル通路13aの最小通路面積部30mへ流入する冷媒が、気相と液相が均質に混合した気液混合状態となる。
 そして、最小通路面積部30mの近傍で気液混合状態の冷媒の流れに閉塞(チョーキング)が生じ、このチョーキングによって音速に到達した気液混合状態の冷媒が末広部132にて加速されて噴射される。このように、壁面沸騰および界面沸騰の双方による沸騰促進によって、気液混合状態の冷媒を音速となるまで効率よく加速できることで、ノズル通路13aにおけるエネルギ変換効率を向上させることができる。
 また、本実施形態のエジェクタ13では、通路形成部材35として減圧用空間30bから離れるに伴って断面積が拡大する円錐状に形成されたものを採用している。従って、ディフューザ通路13cおよび旋回促進通路13dの形状を減圧用空間30bから離れるに伴って通路形成部材35の外周に沿って広がる形状とすることができる。その結果、エジェクタ13全体としての軸方向寸法を短縮化することができる。
 また、本実施形態のエジェクタ13では、旋回促進通路13dが設けられているので、気液分離空間30fへ流入する冷媒の旋回流れを促進することができる。従って、気液分離空間30fにおける気液分離性能を向上させることができる。
 さらに、本実施形態では、ボデー30の内部に気液分離空間30fが形成されているので、エジェクタ13とは別に同様の機能を発揮する気液分離手段を設ける場合に対して、気液分離空間30fの容積を効果的に小さくすることができる。その理由は、エジェクタ13とは別に気液分離手段を設ける場合のように、気液分離空間30f内に、冷媒の旋回流れを発生あるいは成長させるための空間を設ける必要がないからである。
 ところで、本実施形態のエジェクタ13の如く、旋回促進通路13dに配置された整流板40によって冷媒の旋回流れを促進する構成では、整流板40が旋回促進通路13dを流通する冷媒の通路抵抗となってしまい、冷媒が旋回促進通路13dを流通する際の圧力損失を増加させてしまうおそれがある。このような圧力損失が増加してしまうと、ディフューザ通路13cにて冷媒を昇圧させたことによる冷凍サイクル装置のCOP向上効果を充分に得ることができなくなってしまう。
 これに対して、本実施形態のエジェクタ13では、上述した特徴的な構成の旋回促進通路13dおよび整流板40を採用しているので、以下に説明するように、ディフューザ通路13cから流出した冷媒の圧力損失の増大を招くことなく、気液分離空間30fにおける気液分離性能を向上させることができる。
 ここで、上述した旋回促進通路13dおよび整流板40の特徴的な構成は、本発明者らの試験検討によって得られた知見に基づいてなされたものである。
 より詳細には、本発明者らは、ディフューザ通路13cから流出する冷媒が気液二相状態になっていることに着眼して試験検討を進めた結果、ディフューザ通路13cから流出した冷媒に生じる圧力損失を低減させるには、気液二相状態の冷媒のうち、気相冷媒の流速を低下させることが有効であるという知見を得た。
 さらに、気液分離空間30fにおける気液分離性能を向上させる為には、気液二相状態の冷媒のうち、液相冷媒の気液分離空間30fへ流入する旋回方向の速度成分を増加させることが有効であるという知見を得た。
 (a)そこで、本実施形態のエジェクタ13では、上記数式F1に示すように、旋回出口高さh2が、ディフューザ出口高さh1よりも大きい値に設定されている。これによれば、旋回促進通路13dにおける冷媒流路面積を冷媒流れ下流側に向かって軸方向に拡大させることができる。
 従って、ディフューザ通路13cから流出した気液二相状態の冷媒のうち、気相冷媒の流速を低下させて、旋回促進通路13dを流通する冷媒に生じる圧力損失の増大を抑制することができる。
 一方、ディフューザ通路13cから流出した気液二相状態の冷媒のうち、液相冷媒の流速は慣性力に支配されるため減速しにくい。そのため、気液二相状態の冷媒のうち、液相冷媒については、整流板40によって流れ方向を転向させて旋回流れを促進させることができる。従って、気液分離空間30fにおける気液分離性能を向上させることができる。
 また、本実施形態のエジェクタ13では、具体的に、図4に示すように、中心軸を含む軸方向断面において、線Ls1および線Ls2を同一直線上に配置するとともに、角度θbを180°より小さくしている。これにより、極めて容易に、旋回出口高さh2をディフューザ出口高さh1よりも大きく設定することができる。
 さらに、本発明者らの検討によれば、線Ls1および線Ls2を同一直線上に配置することで、ディフューザ通路13cから流出した流れが、旋回促進通路13dの内周側(すなわち、通路形成部材35側)に衝突することによる衝突損失を抑制できることが確認されている。従って、通路形成部材35の円錐状側面に沿って流れる冷媒の衝突エネルギ損失を抑制することができる。
 (b)また、本実施形態のエジェクタ13では、上記数式F2に示すように、翼角度θiが、翼間隔角度θoよりも大きい値に設定されている。さらに、仮想半直線Lf3が複数の整流板40と交わっている。これによれば、ディフューザ通路13cから流出した気液二相状態の冷媒のうち、液相冷媒の流れ方向を整流板40によって旋回方向に確実に転向させることができる。
 より詳細には、図8に示すように、ディフューザ通路13cから流出した気液二相状態の冷媒のうち、液相冷媒の粒が慣性力によって径方向に進行しても、整流板40に衝突することなく隣り合う整流板40間をすり抜けてしまうことがない。従って、液相冷媒の流れ方向を確実に旋回方向へ転向させることができる。
 その結果、旋回促進通路13dから気液分離空間30fへ流入する旋回流れを効果的に促進することができる。なお、図8は、図5と同等の断面において、液相冷媒の粒が流れる様子を模式的に表した説明図である。
 (c)また、本実施形態のエジェクタ13では、上記数式F3に示すように、通路形成部材35と気液分離空間30fとの径方向の隙間寸法(Rn-Rout)が、流路幅T1よりも大きい値に設定されている。これによれば、ディフューザ通路13cから流出した冷媒が、旋回促進通路13dを介して、気液分離空間30fへ流入する際の圧力損失の増大を抑制できる。
 (d)また、本実施形態のエジェクタ13では、軸方向垂直断面における整流板40の内周側壁面41の形状が、互いに同一の長さの複数の線分(本実施形態では、6本の線分L1~L6)を接続した形状になっている。そして、それぞれの線分が上記数式F4を満足するように配置されている。これによれば、旋回促進通路13dにて、冷媒の流れ方向を旋回方向へ転向させる際のエネルギ損失を減少させることができる。
 このことをより詳細に説明すると、本実施形態の整流板40によれば、中心軸方向から見たときに、冷媒が各線分L1~L6に沿って流れ方向を変化させる際の角度変化量を均等とすることができる。例えば、線分L1に沿って流れる冷媒の流れ方向と線分L2に沿って流れる冷媒の流れ方向との角度変化量、および線分L2に沿って流れる冷媒の流れ方向と線分L3に沿って流れる冷媒の流れ方向との角度変化量を同等とすることができる。
 従って、冷媒が整流板40に沿って流れる際に、急激に流れ方向を転向させてしまうことがなく、冷媒の流れ方向を転向させる際のエネルギ損失を減少させることができる。このため、液相冷媒が旋回促進通路13dを流通する際に、その運動量を大きく低下させてしまうことがなく、液相冷媒の径方向の速度成分を旋回方向の速度成分へ効率的に変換することができる。
 (e)また、本実施形態では、流出角を65°以上に設定しているので、隣り合う整流板40から流出した冷媒が混ざり合う際の衝突を抑制して、冷媒同士の衝突によるエネルギ損失を減少させることができる。従って、旋回促進通路13dから気液分離空間30f内へ流入する冷媒の旋回方向の速度成分の低下を抑制することができる。
 以上(a)~(e)に説明したように、本実施形態のエジェクタ13によれば、ディフューザ通路13cから流出した冷媒のうち気相冷媒の流速を低下させることができる。さらに、エネルギ損失を増大させることなくディフューザ通路13cから流出した冷媒のうち液相冷媒の流れ方向を旋回方向に転向することができる。
 その結果、本実施形態のエジェクタ13によれば、ディフューザ通路13cから流出した冷媒の圧力損失の増大を招くことなく、気液分離空間30fにおける気液分離性能を向上させることができる。
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図9に示すように、エジェクタ13の整流板40の構成を変更した例を説明する。なお、以下に説明する図9~図11、図13、図14は、第1実施形態の図5に対応する断面図である。また、図9では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、他の図面においても同様である。
 より具体的には、本実施形態の整流板40は、間隔を開けて配置された複数の板状部材(具体的には、入口側板状部材40aおよび出口側板状部材40bの2つ)によって構成されている。これらの入口側板状部材40aおよび出口側板状部材40bは、軸方向垂直断面における形状が、それぞれ軸中心側から外周側に向かって冷媒の旋回方向に湾曲あるいは傾斜した形状に形成されている。
 さらに、本実施形態の入口側板状部材40aおよび出口側板状部材40bは、図9に示すように、旋回流れ方向(周方向)から見たときに、入口側板状部材40aの冷媒流れ下流部と出口側板状部材40bの冷媒流れ上流部が重合するように配置されている。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。従って、本実施形態のエジェクタ13においても、第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態では、整流板40を、入口側板状部材40aおよび出口側板状部材40bによって構成しているので、図9の太実線矢印に示すように、入口側板状部材40aと出口側板状部材40bとの隙間を介して、整流板40の内周側の冷媒の一部を外周側へ導くことができる。
 これにより、出口側板状部材40bの外周側壁面に沿って流れる冷媒の流速が低下してしまうことを抑制できるので、この冷媒に剥離が生じてしまうことを抑制することができる。従って、出口側板状部材40bの外周側壁面に沿って流れる冷媒の剥離によるエネルギ損失を抑制することができる。
 また、本実施形態では、図9に示すように、入口側板状部材40aと出口側板状部材40bとの隙間の冷媒流入口が、旋回促進通路13dの出口側よりも入口側の近くに配置されている。これによれば、入口側板状部材40aと出口側板状部材40bとの隙間を介して、内周側から外周側へすり抜けてしまう液相冷媒の量を低減させることができ、液相冷媒の旋回流れの促進が阻害されてしまうことを抑制できる。
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図10に示すように、エジェクタ13の整流板40の構成を変更した例を説明する。
 より具体的には、本実施形態の整流板40は、間隔を開けて配置された複数の板状部材(具体的には、入口側板状部材40aおよび出口側板状部材40bの2つ)によって構成されている。これらの入口側板状部材40aおよび出口側板状部材40bは、軸方向垂直断面における形状が、それぞれ軸中心側から外周側に向かって冷媒の旋回方向に湾曲あるいは傾斜した形状に形成されている。
 さらに、本実施形態の入口側板状部材40aおよび出口側板状部材40bは、図10に示すように、旋回流れ方向(周方向)から見たときに重合するように配置されていない。また、本実施形態では、旋回促進通路13dのうち整流板40よりも外周側に複数の補助整流板43が配置されている。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。従って、本実施形態のエジェクタ13においても、第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態では、整流板40を、入口側板状部材40aおよび出口側板状部材40bによって構成しているので、図10の太実線矢印に示すように、入口側板状部材40aと出口側板状部材40bとの隙間を介して、整流板40の内周側の冷媒を外周側へ流出させることができる。これにより、第2実施形態と同様に、出口側板状部材40bの外周側壁面に沿って流れる冷媒の剥離によるエネルギ損失を抑制することができる。
 また、本実施形態では、補助整流板43が配置されているので、液相冷媒の粒が入口側板状部材40aと出口側板状部材40bとの隙間を介して外周側にすり抜けてしまっても、図10に示すように、補助整流板43によって液相冷媒の流れ方向を確実に旋回方向へ転向させることができる。
 つまり、本実施形態の補助整流板43は、隣り合う整流板40同士の間を流通した液相冷媒の粒の旋回流れを促進する機能を果たしている。なお、本実施形態のように補助整流板43を配置する構成では、翼角度θiが翼間隔角度θoよりも大きい値に設定されていなくても冷媒の旋回流れを促進できる。
 (第4実施形態)
 本実施形態では、第1実施形態に対して、図11に示すように、補助整流板43を追加した例を説明する。本実施形態の補助整流板43は、軸中心側から外周側に向かって冷媒の旋回方向に湾曲あるいは傾斜した形状に形成されている。
 また、本実施形態の補助整流板43は、旋回促進通路13dの入口側から出口側へ至る全域に亘って配置されておらず、旋回流れ方向(周方向)から見たときに整流板40の冷媒流れ下流部と重合する範囲に配置されている。さらに、図11に示すように、整流板40および補助整流板43は、軸方向垂直断面において、整流板40の外周側壁面と補助整流板43の内周側壁面との隙間間隔が徐々に縮小するように配置されている。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。従って、本実施形態のエジェクタ13においても、第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態では、整流板40の外周側壁面と補助整流板43の内周側壁面との隙間間隔が徐々に縮小しているので、図11の太実線矢印に示す整流板40の外周側壁面に沿って流れる冷媒の流速の低下を抑制することができる。従って、整流板40の外周側壁面に沿って流れる冷媒の剥離によるエネルギ損失を抑制することができる。
 つまり、本実施形態の補助整流板43は、隣り合う整流板40間に配置されて、整流板40からの冷媒の剥離を抑制する機能を果たしている。
 (第5実施形態)
 本実施形態では、第1実施形態に対して、図12に示すように、エジェクタ13のディフューザ通路13cおよび旋回促進通路13dの形状を変更するとともに、整流板40の形状を変更した例を説明する。なお、以下に説明する図12、図15は、第1実施形態の図4に対応する断面図である。
 より具体的には、本実施形態では、図12の断面において、ディフューザ通路13cの最小軸方向寸法を最小高さhminと定義し、旋回促進通路13dの最大軸方向寸法を最大高さhmaxと定義したときに、最小高さhminおよび最大高さhmaxは、以下数式F5を満足するように設定されている。
hmax>hmin …(F5)
 つまり、最大高さhmaxは、最小高さhminよりも大きい値に設定されている。
 より詳細には、本実施形態のディフューザ通路13cは、入口部から下流側に至る範囲の軸方向寸法がhmin(一定)となるように形成されている。なお、ディフューザ通路13cでは、このように軸方向寸法が一定に形成されていても、冷媒流れ下流側に向かって径方向に広がる円環状に形成されているので、冷媒流れ下流側に向かって冷媒通路面積を徐々に拡大させる形状となる。
 さらに、ディフューザ通路13cの最下流部には、冷媒流れ下流側に向かって軸方向寸法が拡大する部位が設けられている。
 一方、旋回促進通路13dは、冷媒流れ下流側に向かって軸方向寸法が徐々に縮小する形状に形成されている。さらに、旋回促進通路13dは、冷媒流れ下流側に向かって冷媒通路面積が一定あるいは徐々に縮小する形状に形成されている。このため、本実施形態の旋回促進通路13dでは、旋回促進通路13dの入口部における軸方向寸法がhmaxとなっている。つまり、第1実施形態で説明したディフューザ出口高さh1が最大高さhmaxとなっている。
 また、軸方向垂直断面における本実施形態の各整流板40の形状は、以下数式F6を満足するように設定されている。
tanθi+1-tanθi=const(一定) …(F6)
 なお、数式F6におけるθiは、第1実施形態と全く同様に定義される。
 従って、第1実施形態で説明した図6を参照して説明すると、
tanθ2-tanθ1=tanθ3-tanθ2
tanθ3-tanθ2=tanθ4-tanθ3
tanθ4-tanθ3=tanθ5-tanθ4
tanθ5-tanθ4=tanθ6-tanθ5
となっている。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。従って、本実施形態のエジェクタ13においても、第1実施形態と同様に、エジェクタ式冷凍サイクル10のCOP向上効果を得ることができる。さらに、第1実施形態の(b)、(c)、(e)にて説明した優れた効果を得ることができる。
 (f)さらに、本実施形態のエジェクタ13では、上記数式F5に示すように、旋回促進通路13dの最大高さhmaxが、ディフューザ通路13cの最小高さhminよりも大きい値に設定されている。これによれば、ディフューザ通路13cの最小高さhminとなる部位から旋回促進通路13dの最大高さhmaxへ至る範囲の冷媒通路における冷媒流路面積を、冷媒流れ下流側に向かって軸方向に拡大させることができる。
 従って、この範囲の冷媒通路を流通する気液二相冷媒のうち、気相冷媒の流速を低下させて、旋回促進通路13dを流通する冷媒に生じる圧力損失の増大を抑制することができる。一方、液相冷媒の流速は慣性力に支配されるので、液相冷媒は、減速されることなく、複数の整流板40によって旋回流れが促進される。従って、気液分離空間30fにおける気液分離性能を向上させることができる。
 (g)また、本実施形態のエジェクタ13では、軸方向垂直断面における整流板40の内周側壁面41の形状が、第1実施形態と同様に形成されており、それぞれの線分が上記数式F6を満足するように配置されている。これによれば、旋回促進通路13dにて、冷媒の流れ方向を旋回方向へ転向させる際のエネルギ損失を減少させることができる。
 このことをより詳細に説明すると、まず、各線分の最内周側端部における冷媒の旋回方向の速度成分Vθiは、以下数式F7にて定義することができる。なお、以下の説明では、図6等に示す軸方向垂直断面において、整流板40の内周側壁面41が、n本の線分で形成されているものとする。
Vθi=V×tanθi(但し、i=1~n) …(F7)
 ここで、Vは、整流板40に沿って流れる冷媒の流速である。さらに、Vは、旋回促進通路13dの入口側から出口側まで一定であるものとする。これは、本実施形態の旋回促進通路13dが、冷媒流れ下流側に向かって冷媒通路面積を拡大させる形状に形成されていないからである。
 従って、冷媒が各線分に沿って流れることによる冷媒の旋回方向の速度成分の変化量を個別変化量ΔVθiとすると、個別変化量ΔVθiは、以下数式F8で表すことができる。
ΔVθi=V×tanθi+1-V×tanθi(但し、i=1~n) …(F8)
 そして、この個別変化量ΔVθiを一定の値にすることで、冷媒が各線分に沿って流れる際の流れ方向の転向量を均等とすることができる。換言すると、冷媒が一部の線分に沿って流れる際に、急激に流れ方向を転向させてしまうことを抑制できる。従って、個別変化量ΔVθiを一定の値にすることで、冷媒が急激に流れ方向を転向させる際に生じるエネルギ損失を抑制することができる。
 これに対して、本実施形態では、軸方向垂直断面において、上記通式F6を満足するように各線分を配置している。従って、数式F8においてΔVθiを一定の値にしたことと同様の効果を得ることができる。すなわち、本実施形態のエジェクタ13によれば、旋回促進通路13dにて、冷媒の流れ方向を転向させる際に生じるエネルギ損失を抑制することができる。
 さらに、冷媒が旋回促進通路13dを通過した際の冷媒の旋回方向の速度成分の変化量を総変化量ΔVθ(total)とすると、総変化量ΔVθ(total)は以下数式F9にて定義することができる。
ΔVθ(total)=V×tanθn-V×tanθ1 …(F9)
 ここで、数式F9のθnは、流出角であり、θ1は、迎角である。
 従って、ΔVθiは、以下数式F10に示すように線分の数に応じて決定すればよい。
ΔVθi=ΔVθ(total)/n …(F10)
 つまり、本実施形態では、線分の数n、迎角θ1、および流出角θnを決定すれば、個別変化量ΔVθiを容易に決定することができ、軸方向垂直断面における整流板40の内周側壁面41の形状を容易に決定することができる。
 以上、本実施形態のエジェクタ13によれば、第1実施形態で説明した(b)、(c)、(e)に加えて、(g)、(f)に説明したように、ディフューザ通路13cから流出した冷媒のうち気相冷媒の流速を低下させることができる。さらに、エネルギ損失を増大させることなくディフューザ通路13cから流出した冷媒のうち液相冷媒の流れ方向を旋回方向に転向することができる。
 その結果、本実施形態のエジェクタ13においても、冷媒の圧力損失の増大を招くことなく、気液分離空間30fにおける気液分離性能を向上させることができる。
 ここで、第1実施形態では、数式F4を用いて各整流板40の形状を設定し、本実施形態では、数式F6を用いて各整流板40の形状を設定している。このような形状の設定は、旋回促進通路13dを流通する冷媒の流速に応じて、使い分けることができる。
 すなわち、旋回促進通路13dが冷媒流れ下流側に向かって冷媒通路面積を拡大させる形状に形成されており、旋回促進通路13dを流通する冷媒の流速が徐々に低下する速度場となるエジェクタ13では、数式F4を用いて各整流板40の形状を設定することが望ましい。
 一方、旋回促進通路13dが冷媒流れ下流側に向かって冷媒通路面積を拡大させる形状に形成されておらず、旋回促進通路13dを流通する冷媒の流速が徐々に増加する速度場となるエジェクタ13では、数式F6を用いて各整流板40の形状を設定することが望ましい。
 (第6実施形態)
 本実施形態では、第1実施形態に対して、図13に示すように、エジェクタ13の整流板40の形状を変更した例を説明する。より具体的には、本実施形態の整流板40は、通路形成部材35の軸方向垂直断面において、整流板40の厚み寸法Twが外周側へ向かって徐々に減少する形状に形成されている。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。従って、本実施形態のエジェクタ13においても、第1実施形態と同様の効果を得ることができる。
 また、本実施形態の整流板40は、厚み寸法Twが外周側へ向かって徐々に減少する形状に形成されているので、通路形成部材35の軸方向垂直断面において、隣り合う整流板40同士の間の距離を冷媒流れ下流側に向かって拡大させることができる。換言すると、隣り合う整流板40同士の間に形成される冷媒通路の冷媒通路面積を冷媒流れ下流側に向かって徐々に拡大させることができる。
 従って、旋回促進通路13dを流通する冷媒に生じる圧力損失の増大を、より一層、効果的に抑制することができる。
 また、第1実施形態のように、整流板40が上記数式F4を満足するように設定されている際には、旋回促進通路13dを流通する冷媒の径方向の速度成分が、冷媒流れ下流側に向かって徐々に小さくなる。これに対して、本実施形態の整流板40では、冷媒流れ最下流部にて隣り合う整流板40同士の間の距離を最大とすることができるので、隣り合う整流板40同士の間に形成される冷媒通路から冷媒を流出させやすい点で有効である。
 (第7実施形態)
 本実施形態では、第1実施形態に対して、図14に示すように、エジェクタ13の整流板40の形状を変更した例を説明する。
 より具体的には、本実施形態では、隣り合う整流板40の最内周側の距離をピッチT2と定義し、整流板40の内周側端部と外周側端部との距離を翼弦Lwと定義する。このとき、本実施形態の整流板40では、T2およびLwが、以下数式F11を満足するように設定されている。
Lw/T2>0.7 …(F11)
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。従って、本実施形態のエジェクタ13においても、第1実施形態と同様の効果を得ることができる。
 また、本実施形態では、上記数式F11を満足するように整流板40が設定されているので、整流板40の外周側壁面42に沿って流れる冷媒に剥離が生じてしまうことを抑制することができる。従って、整流板40の外周側壁面42に沿って流れる冷媒の剥離によるエネルギ損失を抑制することができる。
 より詳細には、上記数式F11を満足するということは、ピッチT2に係数(すなわち、0.7)を乗算した値が、翼弦Lwよりも小さくなっていることを意味している。従って、翼弦Lwに対してピッチT2を小さく設定すれば、上記数式を満足しやすいことになる。
 そして、翼弦Lwに対してピッチT2を小さくすれば、隣り合う整流板40同士の距離が近づくことになる。すなわち、所定の整流板40の外周側壁面42と、この所定の整流板40に隣り合う整流板40の内周側壁面41との距離が近づくことになる。これにより、整流板40の外周側壁面42に沿って流れる冷媒に剥離が生じてしまうことを抑制することができる。
 さらに、本発明者らの検討によれば、上記数式F11の如く、係数を0.7とすることで、サイクルの負荷変動によってエジェクタ13内を流通する冷媒流量が変化しても、剥離が生じてしまうことを良好に抑制できることが確認されている。
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
 (1)上述の実施形態では、図4を用いて説明したように、通路形成部材35の断面形状である線Ls1および線Ls2が同一直線上に配置された例を説明したが、通路形成部材35の断面形状はこれに限定されない。
 例えば、図15に示すように、通路形成部材35の軸方向断面において、線Ls1および線Ls2の間に形成される角度であって、ディフューザ通路13cおよび旋回促進通路13d側に形成される角度θsについても、180°より小さく設定し、さらに、角度θbを角度θsよりも小さい値に設定してもよい。
 また、上述の実施形態では、図4等に示すように、ディフューザ通路13cおよび旋回促進通路13dが径方向に区切られているものとし、さらに、通路形成部材35の中心軸からCs点へ至る距離と通路形成部材35の中心軸からCb点へ至る距離が等しくなっているものとして、ディフューザ出口高さh1を定義した例を説明した。
 これに対して、通路形成部材35の中心軸からCs点へ至る距離と通路形成部材35の中心軸からCb点へ至る距離が異なっている場合は、Cb点から通路形成部材35へ至る軸方向の距離およびCs点からボデー30へ至る軸方向の距離のうち、大きい値をディフューザ出口高さh1とすればよい。
 さらに、旋回促進通路13dを流通する冷媒の剥離を抑制するためには、図4等に示すように、軸方向断面において、通路形成部材35およびボデー30のうち旋回促進通路13dを形成する部位が描く線(すなわち、図4の線Ls2および線Lb2)が、冷媒流れ下流側に進むに伴って下方側に延びていることが望ましい。
 (2)上述の実施形態では、図6を用いて説明したように、整流板40の内周側壁面41の軸方向垂直断面における形状を、互いに同一の長さの複数の線分L1~L6を接続した形状としている。そして、それぞれの線分L1~L6を、第1実施形態では数式F4を満足するように配置し、第5実施形態では数式F6を満足するように配置している。
 これらの線分L1~L6の配置は、完全に数式F4あるいはF6を満足するように配置されていることが望ましいが、製造上の誤差等により数式F4あるいはF6を満足する配置に対して僅かにずれていても同様の効果を得ることができる。
 (3)エジェクタ13の構成は、上述の実施形態に開示されたものに限定されない。
 例えば、上述の実施形態では、通路形成部材35の材質について言及していないが、通路形成部材35は金属(例えば、アルミニウム)で形成してもよいし、樹脂で形成してもよい。さらに、通路形成部材35を樹脂で形成して軽量化を図ることによって、駆動手段37を小型化することができるので、エジェクタ13全体としての体格のより一層の小型化を図ることができる。
 また、上述の実施形態では、通路形成部材35を変位させる駆動手段37として、温度変化に伴って圧力変化する感温媒体が封入された封入空間37bおよび封入空間37b内の感温媒体の圧力に応じて変位するダイヤフラム37aを有して構成されたものを採用した例を説明したが、駆動手段はこれに限定されない。
 例えば、感温媒体として温度によって体積変化するサーモワックスを採用してもよいし、駆動手段として形状記憶合金性の弾性部材を有して構成されたものを採用してもよい。さらに、駆動手段として電動モータによって通路形成部材35を変位させるものを採用してもよい。
 また、上述の実施形態では、エジェクタ13の液相冷媒流出口31c側に、オリフィス30iを配置した例を説明したが、オリフィス30iを廃止して、液相冷媒流出口31cから蒸発器14へ至る冷媒流路に冷媒減圧手段(例えば、オリフィスやキャピラリチューブからなる側固定絞り)を配置してもよい。
 また、上述の実施形態では、整流板40を通路形成部材35に接合した例を説明したが、整流板40および補助整流板43は、通路形成部材35およびボデー30のいずれか一方に接合されていればよい。もちろん、整流板40を通路形成部材35およびボデー30のいずれか一方に接合し、補助整流板43を他方に接合してもよい。
 さらに、整流板40および補助整流板43は、通路形成部材35およびボデー30に対して別部材で形成されたものであってもよいし、通路形成部材35およびボデー30に一体的に形成されたものであってもよい。
 (4)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整することのできる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用することができる。
 また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を採用してもよい。
 (5)上述の実施形態では、エジェクタ13を備えるエジェクタ式冷凍サイクル10を、車両用空調装置に適用した例を説明したが、エジェクタ13を備えるエジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。

 

Claims (19)

  1.  蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
     外部から流入した冷媒を減圧させる減圧用空間(30b)、前記減圧用空間(30b)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(13b)、前記減圧用空間(30b)から噴射された噴射冷媒と前記吸引用通路(13b)から吸引された吸引冷媒とを混合させる昇圧用空間(30e)、前記昇圧用空間(30e)から流出した冷媒を流入させる旋回促進空間(30g)、前記旋回促進空間(30g)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー(30)と、
     少なくとも一部が前記減圧用空間(30b)の内部、前記昇圧用空間(30e)の内部、および前記旋回促進空間(30g)の内部に配置されるとともに、前記減圧用空間(30b)側から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、を備え、
     前記ボデー(30)のうち前記減圧用空間(30b)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
     前記ボデー(30)のうち前記昇圧用空間(30e)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合して昇圧させる混合昇圧部として機能するディフューザ通路(13c)であり、
     前記ボデー(30)のうち前記旋回促進空間(30g)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記ディフューザ通路(13c)から流出した冷媒の旋回流れを促進する旋回促進通路(13d)であり、
     さらに、前記旋回促進通路(13d)内には、前記旋回促進通路(13d)を流通する冷媒の旋回流れを促進する複数の整流板(40)が配置されており、
     前記通路形成部材(35)の軸方向断面において、前記ディフューザ通路(13c)の最小軸方向寸法を最小高さhminと定義し、前記旋回促進通路(13d)の最大軸方向寸法を最大高さhmaxと定義したときに、
     hmax>hmin
     となっているエジェクタ。
  2.  蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
     外部から流入した冷媒を減圧させる減圧用空間(30b)、前記減圧用空間(30b)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(13b)、前記減圧用空間(30b)から噴射された噴射冷媒と前記吸引用通路(13b)から吸引された吸引冷媒とを混合させる昇圧用空間(30e)、前記昇圧用空間(30e)から流出した冷媒を流入させる旋回促進空間(30g)、前記旋回促進空間(30g)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー(30)と、
     少なくとも一部が前記減圧用空間(30b)の内部、前記昇圧用空間(30e)の内部、および前記旋回促進空間(30g)の内部に配置されるとともに、前記減圧用空間(30b)側から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、を備え、
     前記ボデー(30)のうち前記減圧用空間(30b)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
     前記ボデー(30)のうち前記昇圧用空間(30e)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合して昇圧させる混合昇圧部として機能するディフューザ通路(13c)であり、
     前記ボデー(30)のうち前記旋回促進空間(30g)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記ディフューザ通路(13c)から流出した冷媒の旋回流れを促進する旋回促進通路(13d)であり、
     さらに、前記旋回促進通路(13d)内には、前記旋回促進通路(13d)を流通する冷媒の旋回流れを促進する複数の整流板(40)が配置されており、
     前記通路形成部材(35)の軸方向断面において、前記ディフューザ通路(13c)の冷媒流れ最下流部における軸方向寸法をディフューザ出口高さh1と定義し、前記旋回促進通路(13d)の冷媒流れ最下流部における軸方向寸法を旋回出口高さh2と定義したときに、
     h2>h1
     となっているエジェクタ。
  3.  前記通路形成部材(35)の軸方向断面において、前記通路形成部材(35)うち前記ディフューザ通路(13c)を形成する部位の最下流部が描く線(Ls1)、および前記旋回促進通路(13d)を形成する部位の最上流部が描く線(Ls2)は、同一直線上に配置されており、
     さらに、前記通路形成部材(35)の軸方向断面において、前記ボデー(30)うち前記ディフューザ通路(13c)を形成する部位の最下流部が描く線(Lb1)、および前記旋回促進通路(13d)を形成する部位の最上流部が描く線(Lb2)の間に形成される角度であって、前記ボデー(30)側に形成される角度θbは、180°より小さくなっている請求項2に記載のエジェクタ。
  4.  前記複数の整流板(40)は、前記通路形成部材(35)の軸周りに等角度間隔で円環状に配置されており、
     前記通路形成部材(35)の軸方向垂直断面において、
      前記通路形成部材(35)の軸中心(C)と所定の整流板(40)の内周側壁面(41)の最内周側端部(41a)とを通過する直線を第1仮想直線(Lf1)と定義し、
      前記軸中心(C)と前記所定の整流板(40)の前記内周側壁面(41)の最外周側端部(41b)とを通過する直線を第2仮想直線(Lf2)と定義し、
      前記軸中心(C)と前記所定の整流板(40)の旋回方向側に隣り合って配置された整流板(40)の外周側壁面(42)の最内周側端部(42a)とを通過する直線を第3仮想直線(Lf3)と定義し、
     前記通路形成部材(35)の軸方向垂直断面において、
      前記第1仮想直線(Lf1)と前記第2仮想直線(Lf2)との間に形成される角度であって前記所定の整流板(40)を挟む側に形成される角度を翼角度θiと定義し、
      前記第1仮想直線(Lf1)と前記第3仮想直線(Lf3)との間に形成される角度であって前記所定の整流板(40)を挟む側に形成される角度を翼間隔角度θoと定義したときに、
     θi>θo
     となっている請求項1ないし3のいずれか1つに記載のエジェクタ。
  5.  前記複数の整流板(40)は、前記通路形成部材(35)の軸周りに等角度間隔で円環状に配置されており、
     前記通路形成部材(35)の軸方向垂直断面において、前記通路形成部材(35)の軸中心(C)を起点として、所定の整流板(40)の外周側壁面(42)の最内周側端部(42a)を通過する半直線を仮想半直線(Lf3)と定義したときに、
     前記仮想半直線(Lf3)は、前記複数の整流板(40)と交わっている請求項1ないし3のいずれか1つに記載のエジェクタ。
  6.  前記通路形成部材(35)の軸方向垂直断面において、隣り合う前記整流板(40)同士の最外周側の距離を流路幅T1と定義し、前記気液分離空間(30f)の外径を気液分離外径Rnと定義し、前記通路形成部材(35)の外径を旋回出口半径Routと定義したときに、
     Rn-Rout>T1
     となっている請求項1ないし5のいずれか1つに記載のエジェクタ。
  7.  蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
     外部から流入した冷媒を減圧させる減圧用空間(30b)、前記減圧用空間(30b)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(13b)、前記減圧用空間(30b)から噴射された噴射冷媒と前記吸引用通路(13b)から吸引された吸引冷媒とを混合させる昇圧用空間(30e)、前記昇圧用空間(30e)から流出した冷媒を流入させる旋回促進空間(30g)、前記旋回促進空間(30g)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー(30)と、
     少なくとも一部が前記減圧用空間(30b)の内部、前記昇圧用空間(30e)の内部、および前記旋回促進空間(30g)の内部に配置されるとともに、前記減圧用空間(30b)側から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、を備え、
     前記ボデー(30)のうち前記減圧用空間(30b)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
     前記ボデー(30)のうち前記昇圧用空間(30e)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合して昇圧させる混合昇圧部として機能するディフューザ通路(13c)であり、
     前記ボデー(30)のうち前記旋回促進空間(30g)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記ディフューザ通路(13c)から流出した冷媒の旋回流れを促進する旋回促進通路(13d)であり、
     さらに、前記旋回促進通路(13d)内には、前記旋回促進通路(13d)を流通する冷媒の旋回流れを促進する複数の整流板(40)が、前記通路形成部材(35)の軸周りに等角度間隔で円環状に配置されており、
     前記通路形成部材(35)の軸方向垂直断面において、
      前記通路形成部材(35)の軸中心(C)と所定の整流板(40)の内周側壁面(41)の最内周側端部(41a)とを通過する直線を第1仮想直線(Lf1)と定義し、
      前記軸中心(C)と前記所定の整流板(40)の前記内周側壁面(41)の最外周側端部(41b)とを通過する直線を第2仮想直線(Lf2)と定義し、
      前記軸中心(C)と前記所定の整流板(40)の旋回方向側に隣り合って配置された整流板(40)の外周側壁面(42)の最内周側端部(42a)とを通過する直線を第3仮想直線(Lf3)と定義し、
     前記通路形成部材(35)の軸方向垂直断面において、
      前記第1仮想直線(Lf1)と前記第2仮想直線(Lf2)との間に形成される角度であって前記所定の整流板(40)を挟む側に形成される角度を翼角度θiと定義し、
      前記第1仮想直線(Lf1)と前記第3仮想直線(Lf3)との間に形成される角度であって前記所定の整流板(40)を挟む側に形成される角度を翼間隔角度θoと定義したときに、
     θi>θo
     となっているエジェクタ。
  8.  蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
     外部から流入した冷媒を減圧させる減圧用空間(30b)、前記減圧用空間(30b)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(13b)、前記減圧用空間(30b)から噴射された噴射冷媒と前記吸引用通路(13b)から吸引された吸引冷媒とを混合させる昇圧用空間(30e)、前記昇圧用空間(30e)から流出した冷媒を流入させる旋回促進空間(30g)、前記旋回促進空間(30g)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー(30)と、
     少なくとも一部が前記減圧用空間(30b)の内部、前記昇圧用空間(30e)の内部、および前記旋回促進空間(30g)の内部に配置されるとともに、前記減圧用空間(30b)側から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、を備え、
     前記ボデー(30)のうち前記減圧用空間(30b)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
     前記ボデー(30)のうち前記昇圧用空間(30e)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合して昇圧させる混合昇圧部として機能するディフューザ通路(13c)であり、
     前記ボデー(30)のうち前記旋回促進空間(30g)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記ディフューザ通路(13c)から流出した冷媒の旋回流れを促進する旋回促進通路(13d)であり、
     さらに、前記旋回促進通路(13d)内には、前記旋回促進通路(13d)を流通する冷媒の旋回流れを促進する複数の整流板(40)が、前記通路形成部材(35)の軸周りに等角度間隔で円環状に配置されており、
     前記通路形成部材(35)の軸方向垂直断面において、前記通路形成部材(35)の軸中心(C)を起点として、所定の整流板(40)の外周側壁面(42)の最内周側端部(42a)を通過する半直線を仮想半直線(Lf3)と定義したときに、
     前記仮想半直線(Lf3)は、前記複数の整流板(40)と交わっているエジェクタ。
  9.  前記通路形成部材(35)の軸方向垂直断面において、隣り合う前記整流板(40)同士の最外周側の距離を流路幅T1と定義し、前記気液分離空間(30f)の外径を気液分離外径Rnと定義し、前記通路形成部材(35)の外径を旋回出口半径Routと定義したときに、
     Rn-Rout>T1
     となっている請求項7または8に記載のエジェクタ。
  10.  蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
     外部から流入した冷媒を減圧させる減圧用空間(30b)、前記減圧用空間(30b)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(13b)、前記減圧用空間(30b)から噴射された噴射冷媒と前記吸引用通路(13b)から吸引された吸引冷媒とを混合させる昇圧用空間(30e)、前記昇圧用空間(30e)から流出した冷媒を流入させる旋回促進空間(30g)、前記旋回促進空間(30g)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー(30)と、
     少なくとも一部が前記減圧用空間(30b)の内部、前記昇圧用空間(30e)の内部、および前記旋回促進空間(30g)の内部に配置されるとともに、前記減圧用空間(30b)側から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、を備え、
     前記ボデー(30)のうち前記減圧用空間(30b)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
     前記ボデー(30)のうち前記昇圧用空間(30e)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合して昇圧させる混合昇圧部として機能するディフューザ通路(13c)であり、
     前記ボデー(30)のうち前記旋回促進空間(30g)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記ディフューザ通路(13c)から流出した冷媒の旋回流れを促進する旋回促進通路(13d)であり、
     さらに、前記旋回促進通路(13d)内には、前記旋回促進通路(13d)を流通する冷媒の旋回流れを促進する複数の整流板(40)が配置されており、
     前記通路形成部材(35)の軸方向垂直断面において、所定の整流板(40)の内周側壁面(41)の最外周側端部(41b)と前記所定の整流板(40)に隣り合う整流板(40)の外周側壁面(42)との最短距離を流路幅T1と定義し、前記気液分離空間(30f)の外径を気液分離外径Rnと定義し、前記通路形成部材(35)の外径を旋回出口半径Routと定義したときに、
     Rn-Rout>T1
     となっているエジェクタ。
  11.  前記通路形成部材(35)の軸方向垂直断面において、前記整流板(40)の内周側壁面(41)は互いに同一の長さの複数の線分(L1~L6)を接続した形状に形成されており、
     さらに、前記通路形成部材(35)の軸方向垂直断面において、
      前記通路形成部材(35)の軸中心(C)と前記複数の線分(L1~L6)のうち内周側からi番目の線分(Li)の最内周側端部とを通過する直線をi番目仮想線(Lai)と定義し、
      前記i番目仮想線と前記i番目の線分(Li)との間に形成される角度であって外周側に形成される角度をθiと定義したときに、
     tanθi+1-tanθi=const(一定)
     となっている請求項1、7、8、9、10のいずれか1つに記載のエジェクタ。
  12.  前記通路形成部材(35)の軸方向垂直断面において、前記整流板(40)の内周側壁面(41)は互いに同一の長さの複数の線分(L1~L6)を接続した形状に形成されており、
     さらに、前記軸方向垂直断面において、
      前記通路形成部材(35)の軸中心(C)と前記複数の線分(L1~L6)のうち内周側からi番目の線分(Li)の最内周側端部とを通過する直線をi番目仮想線(Lai)と定義し、
      前記i番目仮想線と前記i番目の線分(Li)との間に形成される角度であって外周側に形成される角度をθiと定義したときに、
     θi+1-θi=const(一定)
     となっている請求項2、3、7、8、9、10のいずれか1つに記載のエジェクタ。
  13.  前記通路形成部材(35)の軸方向垂直断面において、前記整流板(40)の厚み寸法(Tw)が外周側へ向かって徐々に減少する形状に形成されている請求項1ないし12のいずれか1つに記載のエジェクタ。
  14.  前記通路形成部材(35)の軸方向垂直断面において、隣り合う前記整流板(40)の内周側端部同士の間隔寸法をピッチT2と定義し、前記整流板(40)の内周側端部と外周側端部との最短寸法を翼弦Lwと定義したときに、
     Lw/T2>0.7
     となっている請求項1ないし13のいずれか1つに記載のエジェクタ。
  15.  前記整流板(40)は、間隔を開けて配置された複数の板状部材(40a、40b)を有する請求項1ないし10のいずれか1つに記載のエジェクタ。
  16.  前記旋回促進通路(13d)内には、隣り合う前記整流板(40)間を流通した冷媒の旋回流れを促進する複数の補助整流板(43)が配置されている請求項15に記載のエジェクタ。
  17.  前記旋回促進通路(13d)内には、隣り合う前記整流板(40)間に配置されて、前記整流板(40)からの冷媒の剥離を抑制する複数の補助整流板(43)が配置されている請求項1ないし10のいずれか1つに記載のエジェクタ。
  18.  前記整流板(40)は、前記ボデー(30)および前記通路形成部材(35)のうち、少なくとも一方に接合されている請求項1ないし17のいずれか1つに記載のエジェクタ。
  19.  前記ボデー(30)には、外部から流入した冷媒を旋回させて、前記減圧用空間(30b)側へ流出させる旋回空間(30a)が形成されている請求項1ないし18のいずれか1つに記載のエジェクタ。

     
PCT/JP2015/003563 2014-07-29 2015-07-14 エジェクタ WO2016017098A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-153728 2014-07-29
JP2014153728 2014-07-29
JP2015113982A JP2016033369A (ja) 2014-07-29 2015-06-04 エジェクタ
JP2015-113982 2015-06-04

Publications (1)

Publication Number Publication Date
WO2016017098A1 true WO2016017098A1 (ja) 2016-02-04

Family

ID=55217023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003563 WO2016017098A1 (ja) 2014-07-29 2015-07-14 エジェクタ

Country Status (2)

Country Link
JP (1) JP2016033369A (ja)
WO (1) WO2016017098A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053956B2 (en) 2016-02-02 2021-07-06 Denso Corporation Ejector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284899A (ja) * 1995-04-13 1996-10-29 Mitsubishi Heavy Ind Ltd 圧縮機
JP2005098664A (ja) * 2003-08-27 2005-04-14 Fuji Koki Corp 気液分離器
JP2006233877A (ja) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd 送風機及びこれを利用する空気調和機
JP2013249734A (ja) * 2012-05-30 2013-12-12 Panasonic Corp 送風装置
JP2014122779A (ja) * 2012-11-20 2014-07-03 Denso Corp エジェクタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284899A (ja) * 1995-04-13 1996-10-29 Mitsubishi Heavy Ind Ltd 圧縮機
JP2005098664A (ja) * 2003-08-27 2005-04-14 Fuji Koki Corp 気液分離器
JP2006233877A (ja) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd 送風機及びこれを利用する空気調和機
JP2013249734A (ja) * 2012-05-30 2013-12-12 Panasonic Corp 送風装置
JP2014122779A (ja) * 2012-11-20 2014-07-03 Denso Corp エジェクタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053956B2 (en) 2016-02-02 2021-07-06 Denso Corporation Ejector

Also Published As

Publication number Publication date
JP2016033369A (ja) 2016-03-10

Similar Documents

Publication Publication Date Title
JP6048339B2 (ja) エジェクタ
JP5999050B2 (ja) エジェクタ式冷凍サイクルおよびエジェクタ
JP6119489B2 (ja) エジェクタ
JP6119566B2 (ja) エジェクタ
WO2015019564A1 (ja) エジェクタ
JP5962571B2 (ja) エジェクタ
US10077923B2 (en) Ejector
US9512858B2 (en) Ejector
JP5929814B2 (ja) エジェクタ
JP6064862B2 (ja) エジェクタ
WO2014185069A1 (ja) エジェクタ
JP5999071B2 (ja) エジェクタ
JP6036592B2 (ja) エジェクタ
WO2016017098A1 (ja) エジェクタ
WO2016185664A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
WO2015015755A1 (ja) エジェクタ
JP6399009B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6032122B2 (ja) エジェクタ
JP2016133084A (ja) エジェクタ
JP2017015346A (ja) エジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827891

Country of ref document: EP

Kind code of ref document: A1