WO2016016572A1 - Procédé de production in vitro de progéniteurs adipocytaires et d'adipocytes - Google Patents

Procédé de production in vitro de progéniteurs adipocytaires et d'adipocytes Download PDF

Info

Publication number
WO2016016572A1
WO2016016572A1 PCT/FR2015/052085 FR2015052085W WO2016016572A1 WO 2016016572 A1 WO2016016572 A1 WO 2016016572A1 FR 2015052085 W FR2015052085 W FR 2015052085W WO 2016016572 A1 WO2016016572 A1 WO 2016016572A1
Authority
WO
WIPO (PCT)
Prior art keywords
adipocytes
medium
cells
adipocyte
progenitors
Prior art date
Application number
PCT/FR2015/052085
Other languages
English (en)
Inventor
Anne-Claire GUENANTIN
Nolwenn BRIAND
Emilie CAPEL
Corinne VIGOUROUX
Jacqueline Capeau
Original Assignee
Universite Pierre Et Marie Curie (Paris 6)
Assistance Publique - Hôpitaux De Paris
INSERM (Institut National de la Santé et de la Recherche Médicale)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Pierre Et Marie Curie (Paris 6), Assistance Publique - Hôpitaux De Paris, INSERM (Institut National de la Santé et de la Recherche Médicale) filed Critical Universite Pierre Et Marie Curie (Paris 6)
Priority to CA2956768A priority Critical patent/CA2956768A1/fr
Priority to EP15757534.1A priority patent/EP3174972A1/fr
Priority to JP2017504790A priority patent/JP2017522889A/ja
Priority to US15/329,587 priority patent/US20170211043A1/en
Publication of WO2016016572A1 publication Critical patent/WO2016016572A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/02Compounds of the arachidonic acid pathway, e.g. prostaglandins, leukotrienes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/33Insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a new method for the in vitro production of adipocyte progenitors and adipocytes, as well as to therapeutic uses and screening methods using the cells thus produced.
  • Stem cells are defined as cells with the ability to self-renew and differentiate in vitro.
  • Pluripotent stem cells made up of embryonic stem cells (ES) and pluripotency-induced stem cells (iPS), have the capacity to multiply in theory at infinity and make it possible to obtain almost all cell types in vitro.
  • ES embryonic stem cells
  • iPS pluripotency-induced stem cells
  • Pluripotent-induced stem cells were developed in 2007 from human fibroblasts by the Yamanaka team (Takahashi et al, 2007). This type of cells is obtained by transfection of pluripotency genes (such as C-MYC, OCT3 / 4, SOX2 and KLF4) into somatic cells. These cells are then selected for their ability to express OCT3 / 4, and NANOG, two proteins involved in pluripotency (Takahashi et al, 2007, Yu et al, 2007). IPS cells have the same characteristics as ES cells in their morphology, gene expression and epigenetic status. They have the ability to differentiate into the three embryonic leaves, endoderm, ectoderm and mesoderm, in vitro and in vivo.
  • pluripotency genes such as C-MYC, OCT3 / 4, SOX2 and KLF4
  • IPS cells have the same characteristics as ES cells in their morphology, gene expression and epigenetic status. They have the ability to differentiate into the three embryo
  • IPS cells have the advantage of being able to summarize the early stages of development, unlike existing models derived from primary cultures of patient cells. Moreover, they possess all the genetic inheritance of the donor patient, thus constituting an excellent model for studying the pathophysiology of genetic diseases. Indeed, the abnormalities responsible for these pathologies can be expressed at the cellular level at different stages of differentiation of iPS cells in vitro. Finally, iPS cells at different stages of differentiation can test new therapeutic molecules in vitro (Yamanaka, 2010), and are a hope for the development of new cell therapies in the context of regenerative medicine. As a result, these cells constitute a quasi-infinite source of material for the study of normal or pathological cellular functions.
  • the adipocyte is defined as the functional unit of the adipose tissue, organ specialized in the storage of the energy in the form of triglycerides. Adipose tissue is the only energy reserve that can be mobilized in the long term and thus occupies a preponderant place in the control of energy balance in mammals. As a result, a lack of storage of lipids in adipose tissue leads to important metabolic disorders, the prevalence of which is steadily increasing.
  • the adipocyte is also an endocrine cell that produces many factors involved in systemic regulation, such as insulin sensitivity, inflammation, immune functions and blood pressure.
  • adipogenesis from mesenchymal stem cells derived from bone marrow or cells derived from the stromal-vascular fraction of adipose tissue (Pittenger et al., 1999, Zuk et al. 2001).
  • these cell systems have certain limitations such as reduced proliferation capacity, decreased differentiation capacity during passages and variable differentiation potentials.
  • adipocyte differentiation methods from iPS have been developed. However, these are long and complex protocols since they involve a prior stage of differentiation into embryoid bodies (three-dimensional structures made up of the three embryonic layers) or into mesenchymal cells that have limited efficacy (Taura et al.
  • the efficiency of cell differentiation can be increased by the ectopic expression of adipocyte transcript factors (Ahfeldt et al., 2012), but such a protocol does not allow the study of the physiological mechanisms involved during adipocyte differentiation. It therefore appears necessary to develop a simple, rapid and effective protocol allowing the recapitulation of the in vivo physiological differentiation of the adipocyte, that is to say from the mesoderm, by dispensing with the previous obtaining of embryoid bodies. or mesenchymal stem cells.
  • the object of the present invention is to provide a novel process for the in vitro production of adipocyte progenitors and adipocytes.
  • the present invention relates first of all to a process for the in vitro production of adipocyte progenitors comprising
  • Pluripotent stem cells are preferably induced pluripotent stem cells.
  • the mesodermal differentiation medium is preferably a serum-free culture medium comprising one or more morphogens belonging to the TGF- ⁇ superfamily, in particular selected from the group consisting of activin A, activin B, and protein.
  • the mesodermal differentiation medium is a serum-free culture medium comprising (i) a morphogen selected from the group consisting of activin A and activin B, preferably activin A; and (ii) a morphogen selected from the group consisting of BMP-4 protein, BMP-2 protein, TGF- ⁇ , TGF-P2 and TGF-P3, and any combination thereof, preferably BMP-4 protein.
  • the serum-free culture medium is preferably a medium suitable for culturing hematopoietic cells.
  • the pluripotent stem cells are preferably contacted with the mesodermal differentiation medium when the culture has a confluency of about 50 to about 90%.
  • the adipogenic differentiation medium is a culture medium comprising insulin, one of its analogues or IGF-1, a glucocorticoid and a cyclic mono-phosphate adenosine-increasing agent ( CAMP), preferably a culture medium comprising insulin, dexamethasone and 3-isobutyl-1-methylxanthine.
  • CAMP cyclic mono-phosphate adenosine-increasing agent
  • the adipogenic differentiation medium further comprises indomethacin.
  • the present invention also relates to a method for producing in vitro adipocytes comprising contacting the adipocyte progenitors obtained by the process according to the invention with an adipocyte maturation medium until adipocytes are obtained.
  • the adipocyte maturation medium is preferably a culture medium comprising insulin.
  • the present invention also relates to adipocyte progenitors or adipocytes obtained by the method according to the invention, for use in the treatment of lipodystrophy, an abnormality of the glycemic regulation, preferably selected in the group consisting of fasting hyperglycemia, glucose intolerance, diabetes, including type 2 diabetes, and Pinsulin-resistance, or dyslipidemia associated or not with obesity or lipodystrophic syndrome.
  • an abnormality of the glycemic regulation preferably selected in the group consisting of fasting hyperglycemia, glucose intolerance, diabetes, including type 2 diabetes, and Pinsulin-resistance, or dyslipidemia associated or not with obesity or lipodystrophic syndrome.
  • the adipocyte progenitors and / or adipocytes are preferably obtained from induced pluripotent stem cells obtained from somatic cells, preferably fibroblasts, from the subject to be treated.
  • the present invention also relates to a kit for producing in vitro adipocyte progenitors or adipocytes comprising a container containing one or more morphogens belonging to the TGF- ⁇ superfamily, a container containing insulin, one of its analogues or of IGF-1, a glucocorticoid and an intracellular cyclic adenosine monophosphate (cAMP) enhancer and optionally a vessel containing insulin.
  • cAMP cyclic adenosine monophosphate
  • the kit may comprise a first vessel containing activin A and / or BMP-4, and a second vessel containing insulin, dexamethasone and ⁇ , and optionally indomethacin.
  • the present invention also relates to the use of the kit according to the invention for the in vitro production of adipocyte progenitors and / or adipocytes according to the methods of the invention.
  • the present invention also relates to a method for screening molecules stimulating the thermogenic activity of adipocytes comprising
  • FIG. 1 Schematic representation of an embodiment of the two-dimensional adipocyte differentiation method according to the invention from iPS.
  • the differentiation of iPS into mesodermal precursors is induced from D0 to D4 by a differentiation medium consisting of STEMPro34 (+ GlutaMAX + ascorbic acid) in the presence of activin A (25 ng / ml) and BMP4 (10 ng / ml).
  • adipocytes Differentiation in adipocytes is induced on D4 and D8 by culturing the mesodermal progenitors in DMEM / F12 10% S VF, insulin (10 ⁇ g / ml), isobutylmethylxanthine (0.5 mM), dexamethasone (1 ⁇ l) and indomethacin (50 ⁇ l). ). The adipocytes are then maintained in DMEM / F12 10% S VF 1 ⁇ g / ml insulin to allow their maturation.
  • Figure 2 Pluripotent character of iPS cells.
  • A Phase contrast image of a pluripotent iPS colony ( ⁇ ).
  • B Photograph of iPS colonies after wide-field alkaline phosphatase labeling (left panel) or x10 magnification (right panel).
  • C Immuno fluorescence labeling of NANOG, SOX2, OCT4, SSEA3 / 4, TRA-1-60 and TRA-1-81 pluripotency markers.
  • Figure 5 Characterization of adipocytes after 20 days of differentiation.
  • A Photograph of adipocytes after staining with Oil red O in wide field (left), 20x (medium) or 40x (right).
  • B Immuno fluorescence labeling of C / EBPa (high) and GLUT4 (low) markers in adipocytes at 20 days of differentiation. Lipid droplets are labeled with Nile Red and DRAQ5 nuclei.
  • C Protein expression of PPARyl and PPARy2, C / ⁇ p30 / 42, insulin receptor ⁇ subunit (IR- ⁇ ), perilipin 1 and caveolin 1 in iPS cells at D0, D10 and J20. ⁇ -actin is used as a control.
  • N> 3 The phosphorylation of the insulin receptor ⁇ -subunit (IR- ⁇ ) and AKT / PKB was assessed following a short insulin treatment in iPS cells after 20 days of differentiation into using phospho-specific and total antibodies.
  • B Detection of UCP1 expression by Western Blot at days 0, 10 and 20 of differentiation. ⁇
  • Lipid droplets are labeled with Nile Red and DRAQ5 nuclei.
  • E Detection of UCP1 expression by Western Blot under basal conditions or after 6 h of 10 "5 M isoproterenol. ⁇ -actin is presented in depot control.
  • F Labeling of mitotracker® beige adipocytes and in Bodipy in basal condition (high) and after 48h of 8-Br-cAMP (low).
  • Figure 7 Formation of adipose tissue in vivo following grafting adipocytes derived from iPS cells in nude mice.
  • A Schematic representation of grafting adipocytes derived from iPS cells in nude mice.
  • B Macroscopic view of the adipose panniculus formed from adipocytes derived from iPS cells.
  • C Phytoxylin and eosin staining of adipose panniculate formed from adipocytes derived from iPS (left) and MSC (right) cells. Scale bar: 500 ⁇ .
  • the inventors have developed a simple, fast and efficient method for obtaining large quantities of adipocytes from pluripotent stem cells, preferably induced pluripotent stem cells, in only 20 days. They have indeed demonstrated that in the presence of a medium comprising inducers of mesodermal differentiation, the stem cells were able to differentiate directly, that is to say without prior formation of embryoid bodies or mesenchymal stem cells, in mesodermal progenitors able in turn to produce adipocyte progenitors and adipocytes in the presence of an adipogenic cocktail.
  • the present invention relates to a process for the in vitro production of adipocyte progenitors comprising
  • pluripotent stem cells includes embryonic stem cells and reprogrammed somatic cells (or induced pluripotent stem cells).
  • this term refers to cells from a mammal, in particular a mouse, a rat or a primate, and most preferably a human.
  • Embryonic stem cells are derived from the inner cell mass of the blastocyst and have the ability to lead to the formation of all tissues of the body (mesoderm, endoderm, ectoderm), including germ line cells. Pluripotent embryonic stem cells can be assessed by the presence of markers such as OCT3 / 4, NANOG and SOX2 transcription factors and surface markers such as SSEA3 / 4, Tra-1-60 and Tra-1-81. This pluripotency can also be verified in vivo by the formation of teratomas in mice (Rolich et al, 1982). Embryonic stem cells can be obtained without destroying the embryo from which they are derived for example using the technique described by Chung et al. (2008). In a particular embodiment, and for legal or ethical reasons, the embryonic stem cells are non-human embryonic stem cells.
  • reprogrammed somatic cells As used herein, the term "reprogrammed somatic cells”, “induced pluripotent stem cells”, “iPSC” or “iPS” refers to pluripotent cells obtained by genetic reprogramming of differentiated somatic cells. In addition to their morphology and their potential for self-renewal and pluripotency similar to those of embryonic stem cells, iPSCs also exhibit epigenetic reprogramming with an overall methylation profile of histones and gene expression very close to that of embryonic stem cells. IPSCs are particularly positive for pluripotency markers, including alkaline phosphatase staining and the expression of NANOG, SOX2, OCT4 and SSEA3 / 4 proteins.
  • iPSCs can be obtained from human somatic cells transfected with Oct3 / 4, Sox2, Klf4 and c-Myc transcription factors (Takahashi et al, 2007), Oct3 / 4, Sox2, Nanog and Lin28 (Yu , et al., 2007) or with the Oct3 / 4, Sox2 and Klf4 genes (Nakagawa et al, 2008).
  • IPSCs can be obtained from a wide variety of cells such as fibroblasts, B cells, keratinocytes or meningeal membrane cells (Patel et al, 2010).
  • the iPSCs used in the method according to the invention are obtained from fibroblasts, in particular human fibroblasts.
  • the iPSCs are obtained from fibroblasts of a lipodystrophic patient.
  • the method according to the invention comprises a step of culturing pluripotent stem cells as defined above, in an adherent culture system and in a culture medium without serum. These culture conditions differ from those used for embryoid body formation which requires the use of non-adherent culture systems to allow stem cells to aggregate.
  • the adherent culture system that can be used in the process according to the invention may be an adherent monolayer culture system or a feeder cell culture system.
  • the culture system may be in any form suitable for the process according to the invention, in particular in the form of a vial, multi-well plate or can.
  • the adherent culture system is a feeder cell culture system that promotes proliferation and / or controls the differentiation of cells with which they are co-cultured.
  • these feeder cells stimulate the proliferation of cells in culture without inducing their differentiation. They are frequently irradiated to prevent their proliferation and the invasion of the culture of interest.
  • the feeder cells that can be used in the process according to the invention can be easily chosen by those skilled in the art from the various known types such as mouse embryonic fibroblasts (MEF cells) or human foreskin cells (see FIG. patent application EP 2182052).
  • the adherent culture system is an adherent monolayer culture system.
  • This system comprises a solid support, for example glass or plastic, generally coated with a matrix or a substrate promoting the adhesion of the cells.
  • the substrate may be a protein substrate consisting of attachment factors and promoting cell adhesion to the support. These attachment factors may in particular be chosen from poly-L-lysine, collagen, fibronectin, laminin or gelatin.
  • the matrices mimicking the extracellular matrix and likely to be used in the process according to the invention are well known to those skilled in the art and many varieties are commercially available.
  • These matrices include, for example, matrices of Matrigel TM, Geltrex® or other matrices comprising one or more anchoring proteins such as collagen, laminin, fibronectin, elastin, proteoglycans, aminoglycans or vitronectin.
  • 3D matrices hydrogel type can also be used.
  • the matrix is of the Matrigel TM type.
  • Pluripotent stem cells are cultured in a serum-free medium to propagate and maintain cells in an undifferentiated state.
  • a serum-free medium may be, for example, mTESR1 TM medium (STEMCELL Technologies), E8 medium (Life Technologies) or hPSC medium (Promocell).
  • the culture medium used does not comprise serum of animal origin.
  • the cells are preferably regularly transplanted in order to prevent the culture from reaching confluence, that is to say to cover the whole of the available surface. Indeed, confluence induces a stop of proliferation and unwanted metabolic changes.
  • the cells can be subcultured using standard techniques well known to those skilled in the art. In particular, they may be detached from the matrix or support by the action of enzymes such as collagenase IV or by mechanical passage with PBS or any other solution without enzyme containing EDTA (eg ReleSR (Stemcell technologies)) recovered by centrifugation, mechanically dissociated and reseeded in a new cropping system.
  • enzymes such as collagenase IV or by mechanical passage with PBS or any other solution without enzyme containing EDTA (eg ReleSR (Stemcell technologies)) recovered by centrifugation, mechanically dissociated and reseeded in a new cropping system.
  • the pluripotent stem cells cultured on the adherent culture system and in the serum-free medium are brought into contact with a mesodermal differentiation medium until mesodermal progenitors are obtained.
  • cell confluency can be measured or evaluated before the stem cells are brought into contact with the mesodermal differentiation medium.
  • the stem cells are contacted with the mesodermal differentiation medium when the cell culture has a confluency of about 50 to about 90%.
  • the skilled person is familiar with the concept of cell confluence, and is able to evaluate it by any known method.
  • the term “90% confluence” can be defined by the situation in which colonies come into contact with other colonies, while a space representing about 10% of the total area, remains unoccupied. between the colonies.
  • the term “about” refers to a range of values of ⁇ 10% of the specified value. For example, "about 20" includes the ⁇ 10%> of 20, or 18 to 22.
  • the stem cells are brought into contact with the mesodermal differentiation medium, one to three days, preferably two days, after being cultured on the adherent culture system and in the serum-free medium.
  • the contacting is carried out by simple change of the culture medium.
  • this can be performed by subculturing in an adherent culture system as previously described and including the mesodermal differentiation medium.
  • the adherent culture system is a feeder cell culture system as previously described.
  • the feeder cells that can be used can be easily chosen by those skilled in the art from the various known types such as mouse embryonic fibroblasts (MEF cells) or human foreskin cells (see patent application EP 2182052), of preferably in the presence of an inhibitor of the FGF signaling pathway, such as SU5402 (Mohammadi et al., 1997).
  • the cells may be subcultured using standard techniques well known to those skilled in the art as described above, in particular being detached from the matrix or support by the action of enzymes such as collagenase IV, by mechanical passage through PBS. or any other enzyme-free solution containing EDTA (eg ReleSR (Stemcell technologies) or by commercial cellular detachment media such as TrypLE TM Express (Life Technologies), recovered by centrifugation, mechanically dissociated and resuspended in a new culture system.
  • enzymes such as collagenase IV
  • the stem cells can be contacted with the mesodermal differentiation medium as soon as they are cultured on the adherent culture system and for about 4 days.
  • the mesodermal differentiation medium is a culture medium that allows both the survival and the proliferation of the cells but also induces or promotes the differentiation of the cells into mesodermal progenitors. Preferably, this medium prevents or limits the differentiation of cells into other cell types, in particular progenitors of the endoderm or ectoderm.
  • the mesodermal differentiation medium is a serum-free basic culture medium comprising one or more morphogens belonging to the TGF- ⁇ superfamily.
  • the basic culture medium without serum is a culture medium suitable for the proliferation of human hematopoietic cells (CD34 +).
  • This medium may be a minimum medium including in particular mineral salts, amino acids, vitamins and a carbon source essential to the cells; a buffer system to regulate the pH.
  • this medium also comprises bovine serum albumin; transferrin or iron; selenium; insulin or an analogue thereof; and / or a glucocorticoid such as hydrocortisone or dexamethasone.
  • the media which may be used in the process according to the invention comprise, for example, but not limited to, StemPro-34® medium (Invitrogen) or any other medium described in patent application WO 97/033978, the TeSR medium. -E6 TM (StemCell TM technologies), the media described in US Pat. No. 5,945,337, or MethoCult TM medium (StemCell TM technologies).
  • glutamine this amino acid is unstable and must often be added extemporaneously
  • vitamin C which oxidizes rapidly
  • antibiotics it may be necessary or desirable to add glutamine (this amino acid is unstable and must often be added extemporaneously), vitamin C (which oxidizes rapidly) and / or one or more antibiotics.
  • the morphogen (s) belonging to the TGF- ⁇ superfamily are preferably selected from the group consisting of activin A, activin B, protein BMP-4, protein BMP-2, TGF- ⁇ , TGF. -P2 and TGF-P3, and any combination thereof.
  • the mesodermal differentiation medium comprises (i) a morphogen selected from the group consisting of activin A and activin B; and (ii) a morphogen selected from the group consisting of BMP-4 protein, BMP-2 protein, TGF- ⁇ , TGF-P2 and TGF-P3, and any combination thereof.
  • the mesodermal differentiation medium comprises activin A and BMP-4 protein.
  • the medium comprises between 1 and 25 ng / ml of BMP-4, more preferably about 10 ng / ml of BMP-4.
  • the medium comprises between 5 and 100 ng / ml of activin A, more preferably about 25 ng / ml of activin A.
  • the mesodermal differentiation medium comprises about 10 ng / ml of BMP-4 and about 25 ng / ml of activin A.
  • the mesodermal differentiation medium comprises the medium without StemPro-34® complete serum (Invitrogen) enriched in glutamine, or an equivalent culture medium, BMP-4, preferably about 10 ng / mL, activin A, preferably about 25 ng / mL, and optionally ascorbic acid.
  • the pluripotent stem cells are maintained in the differentiation medium until mesodermal progenitors are obtained. During this period, and conventionally, the culture medium can be changed regularly, preferably every few days or every other day.
  • mesodermal progenitors or “mesodermal precursors” refers to cells, preferably human cells, capable of differentiating (without dedifferentiation or prior reprogramming) into the majority of mesoderm tissues, including endothelial cells, adipocytes, cardiomyocytes, osteogenic cells, chondrocytes, mesenchymal cells and hematopoietic cells. These cells are characterized by the expression of the genes BRACHYURY (T BOX) (Gene ID: 6862) and MESP1 (Gene ID: 55897), two genes specific for the early mesoderm. This characteristic differentiates them from mesenchymal stem cells or cells derived from the stroma-vascular fraction of adipose tissue that do not express the BRACHYURY and MESP1 genes ( Figure 3D).
  • BRACHYURY T BOX
  • MESP1 Gene ID: 55897
  • mesodermal progenitors can be easily detected by those skilled in the art by monitoring the expression of BRACHYURY and MESP1 genes. Indeed, as illustrated in the experimental part and in FIG. 3B, these genes are not expressed in pluripotent stem cells. This expression is also correlated with a decrease in the expression of pluripotency markers NANOG and SOX2 (FIG. 3A).
  • the protein expression of BRACHYURY and MESP1 can be easily measured by those skilled in the art by an immunofluorescence method as illustrated in the experimental part and in FIG. 3C.
  • the method according to the invention may comprise an additional step of measuring or evaluating the expression of the gene BRACHYURY eh 'or the gene MESP1.
  • the expression of these markers may be followed by any technique known to those skilled in the art, for example by real-time quantitative PCR.
  • the pluripotent stem cells are brought into contact with the mesodermal differentiation medium for 2 to 5 days, preferably for 3 to 4 days, and very particularly preferably for 4 days.
  • the mesodermal progenitors thus obtained are then brought into contact with an adipogenic differentiation medium until adipocyte progenitors are obtained.
  • this bringing into contact can be carried out by simple change of the culture medium or by subculture in an adherent culture system and comprising the adipogenic differentiation medium.
  • the adherent culture system is a feeder cell culture system as described above.
  • the feeder cells that can be used can be easily chosen by those skilled in the art from the various known types such as mouse embryonic fibroblasts (MEF cells) or human foreskin cells (see patent application EP 2182052), preferably in the presence of an inhibitor of the FGF signaling pathway, such as SU5402 (Mohammadi et al., 1997).
  • the cells may be subcultured using standard techniques well known to those skilled in the art as described above, in particular being detached from the matrix or the support by the action of enzymes such as collagenase IV, by a mechanical passage. with PBS or any other enzyme-free solution containing EDTA (eg ReleSR (Stemcell technologies) or by commercial cellular detachment media such as TrypLE TM Express (Life Technologies), recovered by centrifugation, mechanically dissociated and reseeded in a new culture system
  • the mesodermal progenitors are brought into contact with an adipogenic differentiation medium by simple change of the culture medium.
  • the adipogenic differentiation medium also called adipocyte differentiation medium is a culture medium that allows both the survival and proliferation of mesodermal progenitors but also induces or promotes the differentiation of these cells into adipocyte progenitors.
  • the adipogenic differentiation medium is a culture medium comprising insulin, one of its analogues or IGF-1, a glucocorticoid and a cyclic mono-phosphate adenosine-increasing agent ( CAMP) intracellularly.
  • the adipogenic differentiation medium comprises insulin or one of its analogues, a glucocorticoid and an intracellular cyclic adenosine monophosphate (cAMP) enhancer.
  • Insulin analogues can be selected for example from the group consisting of NPH insulin (Eli Lilly), lispro (Eli Lilly), aspart (Novo Nordisk) and glulisine (Sanofi-Aventis).
  • the glucocorticoid can be selected for example from the group consisting of dexamethasone, betamethasone, cortivazol and hydro cortisone.
  • the glucocorticoid is dexamethasone.
  • the intracellular cyclic adenosine monophosphate (cAMP) enhancer may be any compound known to increase the intracellular concentration of cMap.
  • This agent may especially be selected from the group consisting of phosphodiesterase inhibitors, direct activators of protein kinase A (or cAMP dependent protein kinase) and activators of adenylate cyclase.
  • Phosphodiesterase inhibitors include, but are not limited to, methylated xanthines and derivatives thereof such as 3-isobutyl-1-methylxanthine (IBMX), caffeine, aminophylline, paraxanthine, pentoxifylline, theobromine and theophylline.
  • IBMX 3-isobutyl-1-methylxanthine
  • Direct activators of protein kinase A include, but are not limited to, belinostat (PXD101), adrenaline, glucagon, and cAMP analogues such as 8-Bromo-cAMP.
  • Activators of adenylate cyclase include, but are not limited to, forskolin, glucagon, prostaglandins D2, E1, and 12, carbacycline, dopamine, endothelin 1, L-epinephrine, and parathyroid hormone.
  • the adipogenic differentiation medium is a culture medium comprising insulin, dexamethasone and 3-isobutyl-1-methylxanthine.
  • the medium comprises between 1 and 20 ⁇ g / ml of insulin, more preferably around 10 ⁇ g / ml of insulin.
  • the medium comprises between 0.0001 and 500 mM of IBMX, more preferably between 0.01 and 10 mM of IBMX, and most preferably between 0.1 and 1 mM of IBMX.
  • the medium comprises between about 0.1 mM and about 0.5 mM of IBMX, preferably about 0.5 mM of IBMX.
  • the medium comprises between 0.25 and 100 ⁇ of dexamethasone, more particularly preferably about 1 ⁇ l of dexamethasone.
  • the adipogenic differentiation medium is a culture medium comprising approximately 10 ⁇ g / ml of insulin, approximately 1 ⁇ l of dexamethasone and approximately 0.5 mM of IBMX.
  • the differentiation medium may also comprise one or more additional compounds promoting adipocyte differentiation, such as indomethacin, a compound of the family of thiazolidinediones such as pioglitazone or rosiglitazone, the growth factor FGF21, irisine triiodothyronine, retinoic acid, BMP7 and / or BMP8, in particular indomethacin, a compound of the family Thiazolidinediones such as pioglitazone or rosiglitazone, growth factor FGF21, irisine, triiodothyronine and / or retinoic acid.
  • indomethacin a compound of the family of thiazolidinediones such as pioglitazone or
  • the differentiation medium further comprises indomethacin, preferably 0.01 to 0.5 mM indomethacin, and more preferably about 0.1 mM indomethacin.
  • the differentiation medium further comprises 50 ⁇ l of indomethacin.
  • the adipogenic differentiation medium is a culture medium comprising insulin, preferably about 10 ⁇ g / ml, dexamethasone, preferably about 1 ⁇ l, preferably about 0 ⁇ g / ml. , 5 mM, and indomethacin, preferably about 0.1 mM.
  • the adipogenic differentiation medium is a culture medium comprising insulin, preferably about 10 ⁇ g / ml, dexamethasone, preferably about 1 ⁇ , preferably environ, preferably about 0, 5 mM, and indomethacin, preferably about 0.05 mM.
  • the basic culture medium used in the adipocyte differentiation medium is preferably a basic synthetic minimal medium including in particular the mineral salts, the amino acids, the vitamins and a carbon source indispensable to the cells, and a buffer system for regulate the pH.
  • the media which may be used in the process according to the invention comprise, for example, but not limited to DMEM / F12 medium, DMEM medium, RPMI medium, HAM'S F12 medium, IMDM medium, and Knockout medium.
  • TM DMEM Life Technologies).
  • the medium is preferably supplemented with 2 to 20%, preferably 5 to 15%, of serum, in particular fetal calf serum.
  • adipocyte progenitors refers to proliferative cells, i.e., expressing a cell proliferation marker, preferably Ki67 , which express markers of adipose tissue stem cells including CD44 (Gene ID: 960), CD29 (Gene ID: 3688), PDGFR ⁇ (Gene ID: 5156) and LY6E (Gene ID: 4061) (Zuk, 2013).
  • these cells are negative for the CD31 (Gene ID: 5175) and CD34 (Gene ID: 947) antigens.
  • these cells are able to differentiate (without dedifferentiation or reprogramming previously) into adipocytes.
  • adipocyte progenitors can be easily detected by those skilled in the art by monitoring the expression of adipose tissue stem cell markers such as CD44, CD29, PDGFR ⁇ and LY6E. Indeed, as illustrated in the experimental part and in Figure 3E and F, these markers are only very slightly expressed in the mesodermal progenitors. The expression difference is particularly important for the PDGFR ⁇ marker which has a level of expression in the adipocyte progenitors approximately 8 times greater than in the mesodermal progenitors. The expression of these markers may be followed by any technique known to those skilled in the art, for example by real-time quantitative PCR.
  • the method according to the invention may comprise an additional step of measuring or evaluating the expression of one or more of the markers CD44, CD29, PDGFR ⁇ and LY6E.
  • the mesodermal progenitors are brought into contact with the adipocyte differentiation medium for 2 to 5 days, preferably for 3 to 4 days, and very particularly preferably for 4 days.
  • the method according to the invention may comprise a step of recovering the adipocyte progenitors obtained.
  • This recovery can be performed using conventional techniques well known to those skilled in the art.
  • progenitors can be detached from the matrix or carrier by the action of enzymes such as collagenase IV or a commercial cellular detachment solution such as TryPLE TM Express (Life Technologies). These can then be isolated on the basis of different markers such as CD44 or CD29.
  • the adipocyte progenitors can then be reseeded on matrices mimicking the extracellular matrix as described above and well known to those skilled in the art. Many varieties are commercially available.
  • These matrices may comprise feeder cells such as embryonic mouse fibroblasts (MEF cells) or human foreskin cells (see patent application EP 2182052), preferably in the presence of an inhibitor of the FGF signaling pathway, such as compound SU5402 (Mohammadi et al 1997).
  • the culture system used is preferably an adherent monolayer culture system.
  • This system comprises a solid support, for example glass or plastic, generally coated with a matrix or a substrate promoting the adhesion of the cells.
  • the substrate may be a protein substrate consisting of attachment factors and promoting cell adhesion to the support. These attachment factors can in particular be chosen from poly-L-lysine, collagen, fibronectin, laminin or gelatin.
  • the adipocyte progenitors obtained by the process according to the invention can be brought into contact with an adipocyte maturation medium until adipocytes are obtained.
  • the present invention therefore also relates to a method for producing in vitro adipocytes comprising contacting the adipocyte progenitors obtained by the process according to the invention with an adipocyte maturation medium until adipocytes are obtained.
  • this bringing into contact can be carried out by simple change of the culture medium or by subculture in an adherent culture system as described above and comprising the adipocyte maturation medium.
  • the adipocyte progenitors are brought into contact with an adipocyte maturation medium by simple change of the culture medium.
  • the adipocyte maturation medium is a culture medium that allows both the survival and proliferation of adipocyte progenitors but also induces or promotes the differentiation of these cells into adipocytes.
  • the basic culture medium used in the adipocyte maturation medium may be the same basic culture medium as that used in the adipocyte differentiation medium. Alternatively, it can be different. According to one embodiment, the basic culture medium used in the adipocyte maturation medium is a basic synthetic minimal medium comprising, in particular, the mineral salts, the amino acids, the vitamins and a carbon source indispensable to the cells, and a system buffer to regulate the pH.
  • the media which may be used in the process according to the invention comprise, for example, but not limited to DMEM / F12 medium, DMEM medium, RPMI medium, HAM'S F12 medium, IMDM medium, and Knockout medium. TM DMEM (Life Technologies).
  • This medium is preferably supplemented with 2 to 20%, preferably 5 to 15%, of serum, in particular fetal calf serum.
  • the adipocyte maturation medium comprises, or consists essentially of, a basic culture medium supplemented with insulin, and optionally with serum.
  • the medium comprises 0.1 to 5 ⁇ g / ml of insulin, more preferably about 1 ⁇ g / ml of insulin.
  • the adipocyte progenitors are maintained in the adipocyte maturation medium until adipocytes are obtained. During this period, and conventionally, the culture medium can be changed regularly, preferably every two or three days.
  • adipocytes refers to cells characterized by the gene expression of C / ⁇ (Gene ID: 1051), C / ⁇ (Gene ID: 1052), C / EBPa (Gene ID: 1050) and PPARy (Gene ID: 5468) and by an accumulation of neutral lipids in the form of detectable lipid droplets by red oil staining.
  • Adipocytes may also be characterized by insulin receptor expression (Gene ID: 3667), perilipin 1 (Gene ID 5346), caveolin 1 (Gene ID: 857) or GLUT4 glucose transporter ( Gene ID: 442992).
  • the inventors have observed that the adipocytes obtained by the process according to the invention also express the markers of brown adipocytes such as the genes PGC1 (Gene ID: 10891), P RDM 16 (Gene ID: 63976) and UCP1 (Gene ID: 7350) but also specific markers of beige adipocytes such as TMEM26 (Gene ID: 219623), CITED1 (Gene ID: 4435), CD 137 (GenelD: 3604) and HOXC? (Gene ID: 3225).
  • the markers of brown adipocytes such as the genes PGC1 (Gene ID: 10891), P RDM 16 (Gene ID: 63976) and UCP1 (Gene ID: 7350) but also specific markers of beige adipocytes such as TMEM26 (Gene ID: 219623), CITED1 (Gene ID: 4435), CD 137 (GenelD: 3604) and HOXC? (Gene ID: 3225).
  • adipocytes can be easily detected by those skilled in the art by monitoring the expression of markers specific to adipocytes, brown adipocytes and beige adipocytes as defined above, preferably by monitoring markers C / ⁇ , PPARy, CITED1 and PGCla.
  • the expression of these markers may be followed by any technique known to those skilled in the art, for example by real-time quantitative PCR.
  • the appearance of the adipocytes can be easily detected by staining the cells with the red oil.
  • the method according to the invention may comprise an additional step of measuring or evaluating the expression of one or more of the C / ⁇ , PPARy, CITED1 and PGCla markers and / or monitoring the appearance of adipocytes by staining of cells with red oil.
  • the adipocyte progenitors are brought into contact with the adipocyte maturation medium for 5 to 20 days or for 5 to 15 days, preferably for 10 to 12 days, and very particularly preferably for 12 days.
  • the present invention also relates to adipocyte progenitors and adipocytes obtained by the process according to the invention.
  • composition comprising adipocyte progenitors and / or adipocytes obtained by the method according to the invention, and one or more pharmaceutically acceptable excipients.
  • the pharmaceutically acceptable excipients must be compatible with the cells and may be, for example, a culture medium, a buffer solution or a saline solution.
  • the composition may comprise Matrigel TM or an equivalent excipient.
  • the pharmaceutical composition is suitable for parenteral administration, preferably subcutaneously, particularly for administration directly into adipose tissue.
  • the pharmaceutical composition can be formulated in accordance with standard pharmaceutical practices known to those skilled in the art.
  • the pharmaceutical composition comprises adipocyte progenitors and / or adipocytes obtained by the method according to the invention, encapsulated in a biocompatible matrix.
  • adipocyte progenitors and / or adipocytes obtained by the method according to the invention, encapsulated in a biocompatible matrix.
  • Many encapsulation technologies can be used including those described in WO 91/10425.
  • the pharmaceutical composition may also include one or more additional active compounds, for example, compounds known to enhance cell survival, proliferation, or prevent contamination.
  • the present invention relates to the therapeutic use of the adipocyte progenitors and / or adipocytes obtained by the method according to the invention, in particular for the treatment of lipodystrophies or metabolic disorders.
  • the present invention thus relates to adipocyte progenitors and / or adipocytes obtained by the method according to the invention, for use in the treatment of lipodystrophy or metabolic disorders. It also relates to a pharmaceutical composition according to the invention for use in the treatment of lipodystrophy or metabolic disorders.
  • the present invention also relates to the use of adipocyte progenitors and / or adipocytes obtained by the method according to the invention, for the preparation of a medicament for the treatment or prevention of lipodystrophy or metabolic disorders.
  • the present invention further relates to a method of treating a lipodystrophy or a metabolic disorder comprising administering to the subject to be treated a therapeutically effective amount of adipocyte progenitors and / or adipocytes obtained by the method of the invention.
  • the subject to be treated is human.
  • the term "metabolic disorder” refers to abnormalities in glycemic regulation, including fasting hyperglycemia, glucose intolerance, diabetes, particularly type 2 diabetes, or Pinsulin resistance, or dyslipidemia with or without obesity or lipodystrophy syndrome.
  • a patient may be considered obese when his body mass index is greater than 25, preferably greater than 28, and more preferably greater than 30.
  • Lipodystrophies are disorders characterized by selective loss of adipose tissue from various areas of the body. The extent of fat loss can range from very small areas to the near-total absence of fat tissue throughout the body. Problems encountered by patients may be purely cosmetic or lead to severe metabolic complications, globally proportional to the importance of fat loss.
  • Lipodystrophies are classified according to the generalized or partial character of the fat loss, and the participation or not of known genetic factors. Lipodystrophies of genetic origin are monogenic diseases, either congenital or delayed onset. Several genes responsible for hereditary lipodystrophies have been identified, such as, for example, genes encoding type A, PAGPAT2, caveolin-1, cavin-1, seipin, PPARg, perilipine, CIDEC, or Akt2 (Guénantin). et al 2014). The acquired lipodystrophies may be the result of drug treatments (including antiviral therapies or insulin injections or other drugs) or diseases most often dysimmunitary (eg the Lawrence and Barraquer-Simons syndromes).
  • the main lipodystrophies leading to metabolic disorders are generalized genetic lipodystrophies called CGL for "congenital generalized lipodystrophy” or Berardinelli-Seip syndrome; partial lipodystrophies of genetic origin (FPLD for "familial partial lipodystrophy”); Lawrence-type generalized lipodystrophy syndrome, Barraquer-Simons partial lipodystrophy syndrome, HIV-related lipodystrophy and antiretroviral therapy; multi-systemic syndromes including lipodystrophy such as CANDLE autoinflammatory syndromes (JASP, JMP, or Nakajo syndrome) related to PSMB8 gene mutations, Hutchinson-Gilford progeria and other progeroid syndromes including acro-dysplastic dysplasia; mandibular, related to the mutations of the A / C or ZMPSTE24 laminae, the Werner type progeria linked to mutations of the WR protein, syndromic dwarf
  • somatic cells preferably fibroblasts
  • somatic cells from the patient to be treated are reprogrammed to obtain iPSCs.
  • Adipocyte progenitors and / or adipocytes are then obtained by the method according to the invention, from these iPSCs, before being administered to the patient, preferably by subcutaneous injection.
  • the method of treatment according to the invention therefore comprises the production of adipocyte progenitors and / or adipocytes from induced pluripotent cells obtained from somatic cells of the patient to be treated, and the administration of the adipocyte progenitors and / or adipocytes thus obtained to said patient.
  • the mutation at the origin of lipodystrophy can be detected and corrected according to methods well known to those skilled in the art, for example by homologous recombination or by genetic engineering methods based on ZFN, TALEN, or CRISPR / Cas (Gaj et al, 2013). This correction is preferably performed before the proliferation and differentiation of iPSCs.
  • the adipocyte progenitors and / or adipocytes obtained by the method according to the invention from these "corrected" iPSCs are then administered to the patient.
  • the adipocyte progenitors and / or adipocytes obtained by the process according to the invention can be used in the treatment of lipodystrophies to fill the body areas dug by the loss of adipose tissue.
  • the adipocyte progenitors and / or adipocytes are preferably injected subcutaneously directly into the area to be filled.
  • adipocyte progenitors and / or adipocytes obtained by the process according to the invention are used in the treatment of metabolic disorders, they are preferably injected subcutaneously, in particular directly into the adipose tissue, in order to to increase the proportion of adipocytes exhibiting thermogenic activity or capable of exhibiting this activity, for example after induction by a thermogenic stimulus.
  • the present invention also relates to a method of treating a lipodystrophy or a metabolic disorder comprising administering to a subject, preferably human, a therapeutically effective amount of adipocyte progenitors and / or adipocytes obtained by the method. according to the invention.
  • treatment refers to an improvement or disappearance of symptoms, a slowing of progression of the disease, a cessation of the course of the disease or a disappearance of the disease. This term includes both preventive and curative treatment.
  • therapeutically effective amount refers to an amount sufficient to have an effect on at least one aesthetic (filling) or metabolic symptom of lipodystrophy or metabolic disorder (restoring the metabolic activity of the tissue). adipose).
  • the present invention also relates to a kit for producing in vitro adipocyte progenitors or adipocytes.
  • This kit includes:
  • a second container containing one or more compounds present in the adipogenic differentiation medium as described above, preferably insulin, one of its analogues or IGF-1, a glucocorticoid and an agent increasing the intracellular cyclic adenosine monophosphate (cAMP), and more preferably insulin, dexamethasone, 3-isobutyl-1-methylxanthine, and optionally indomethacin; and
  • one or more compounds present in the adipogenic differentiation medium as described above preferably insulin, one of its analogues or IGF-1, a glucocorticoid and an agent increasing the intracellular cyclic adenosine monophosphate (cAMP), and more preferably insulin, dexamethasone, 3-isobutyl-1-methylxanthine, and optionally indomethacin; and
  • cAMP cyclic adenosine monophosphate
  • a third container containing one or more compounds present in the adipogenic maturation medium as described above, preferably insulin.
  • the kit comprises containers each containing one or more compounds in a concentration or in an amount which facilitates the reconstitution and / or the use of the differentiation and / or maturation medium and the implementation of the process according to the invention. invention.
  • the kit according to the invention may also comprise a container containing a base medium used in the mesodermal differentiation medium as described above, a container containing a base medium used in the adipogenic differentiation medium as described above. or a container containing basic culture medium used in the adipocyte maturation medium as described above.
  • the kit comprises a container containing a mesodermal differentiation medium as described above, a container containing an adipogenic differentiation medium as described above and optionally a container containing an adipocyte maturation medium as described. above.
  • the kit comprises
  • a second container containing insulin, dexamethasone and ⁇ , and optionally a basic culture medium, preferably a basic synthetic minimal medium with or without serum; and
  • a third insulin-containing vessel optionally a third insulin-containing vessel and optionally a basal culture medium, preferably a basic synthetic minimal medium with or without serum.
  • the second container may further comprise indomethacin.
  • the kit according to the invention may also comprise an adherent culture system, in particular in the form of a vial, a multiwell plate or boxes.
  • the kit may also contain an instruction leaflet indicating the methods of preparation and / or use of the differentiation or maturation media for producing in vitro adipocyte progenitors or adipocytes according to the method of the invention.
  • the present invention also relates to the use of the kit according to the invention for the in vitro production of adipocyte progenitors and / or adipocytes according to the methods of the invention.
  • the present invention relates to the use of the adipocyte progenitors and / or adipocytes obtained by the method according to the invention for the screening of molecules of therapeutic interest.
  • the molecules of therapeutic interest may in particular be molecules that activate the beige phenotype of adipocytes, and more particularly molecules that increase the thermogenic activity of adipose tissues. These molecules may especially be useful in the treatment or prevention of metabolic disorders as described above.
  • the present invention therefore relates to a method for screening molecules of interest comprising
  • adipocyte progenitors and / or adipocytes obtained by the process according to the invention into contact with the candidate molecules
  • the present invention relates in particular to a method for screening molecules stimulating the thermogenic activity of adipocytes comprising
  • thermogenic activity of the adipocytes can be evaluated by techniques well known to those skilled in the art, such as, for example, indirect evaluation methods comprising the measurement of the oxygen consumption of the cells (Oxoplate® or Seahorse technologies). .
  • the pluripotent stem cells used to obtain the adipocyte progenitors and / or adipocytes can be obtained from a healthy subject or from a subject having a defined pathology, for example a subject suffering from a metabolic disorder as defined above. All references cited in this specification are incorporated by reference in this application. Other features and advantages of the invention will appear better on reading the following examples given for illustrative and non-limiting.
  • iPS Induced pluripotency-induced human stem cell culture
  • the technique of reprogramming human fibroblasts using iPS is that resulting from the protocol published by Yamanaka et al (Takahashi et al., 2007), modified by the use of a viral vector (Sendai virus).
  • the iPS cells from control subjects were grown on Matrigel TM (hESC Matrigel BD Biosciences Cat # 3542777) and the medium mTESRl TM (STEMCELL TM Technologies Cat No. 05850) has been changed daily.
  • the cells were subjected every 4 days to type IV collagenase (Gibco) (45 min - 37 ° C) at a concentration of 1 mg / ml and then centrifuged at 800 rpm for 4 min.
  • the cells were then resuspended in mTESR1 TM medium and the clones were mechanically isolated using a 5 mL pipette. Clusters of twenty cells were then seeded on a box previously incubated with Matrigel TM.
  • FIG. 1 A schematic representation of an embodiment according to the invention is presented in FIG. 1
  • the iPS cells were seeded on Matrigel TM. After one or two days of culture in mTESRl TM, making it possible to obtain 70% of cell confluence, the cells were placed, at the time defined as J0, in differentiation medium allowing the production of mesodermal progenitors: complete STEMPro34 (Life technologies Cat # 10639011) enriched with GlutaMAX at 2mM (Invitrogen; Cat # 35050061), ascorbic acid at 10 ⁇ g / ml (Sigma; Cat # A4403), BMP4 at 10 ng / ml (R & D Systems; Cat # 314-BP) and activin A at 25 ng / ml (R & D Systems; Cat # 338-AC). This mesodermal induction medium was renewed on D2.
  • the adipocyte differentiation of the mesodermal progenitors was induced by the use of the 10% S VF DMEM / F12 differentiation medium supplemented with 10 ⁇ g / ml of insulin (Sigma Cat # I9278), 0.5 mM of isobutylmethylxanthine (SIGMA, Cat # I5879), 1 ⁇ l of dexamethasone (Sigma Cat # D4902) and 50 ⁇ l of indomethacin (SIGMA Cat # I7378).
  • the culture medium was renewed identically. Then, in order to allow the maturation of the adipocytes, the cells were cultured in DMEM / F12 (10%) SVF supplemented with 1 g / ml of insulin until J20.
  • Anti-rabbit IgG, or anti-mouse IgG secondary antibodies were coupled to Alexa 488 (Invitrogen, 1/000). The preparation was then incubated for 15 minutes with 25 ng / ml of Nile Red (Molecular Probes®-N-1142) and then rinsed 3 times with PBS before being incubated for 5 minutes in DAPI (4'-6-diamidino-2- phenylindole, VWR). After deposition of the mounting liquid (Fluoromount-G TM, Southern Biotech), the cells were observed using a confocal microscope (Leica).
  • the red oil staining was performed on adipocytes after 20 days of differentiation. After rinsing with PBS IX, the cells were fixed in 4% paraformaldehyde (m / v) for 1 h and then incubated for 2 h in a solution of "Oil red O" (Sigma) diluted in isopropanol. The cells were then rinsed 4 times with tap water.
  • RNAs were extracted using the "Nucleospin RNA” kit (Macherey Nagel) according to the manufacturer's recommendations. The concentration of total extracted RNAs as well as their contamination by solvents or salts were evaluated by microspectrophotometry (Nanodrop). Reverse transcription was performed using the "High capacity cDNA reverse transcription kit” kit (Applied Biosystem). Quantitative PCR was then performed by adding 2 cDNA diluted 10-fold, SYBR Green I PCR mix (Roche Diagnostics, including DNA polymerase, dNTPs, 3 mM MgCl2 and SYBR Green fluorescent probe), 0.2 ⁇ l sense primer and 0 , 2 ⁇ of antisense primer (Table 2 below). The reference gene GAPDH was used to normalize the expression of the genes of interest. Table 2: Primers used
  • the iPS were mechanically passed and then seeded on gelatin (Sigma) in a differentiation medium consisting of Knock Out DMEM (Invitrogen), 20% FCS, P / O of non-essential amino acids, 1% Glutamax (Invitrogen), 50 ⁇ l. ⁇ -Mercaptoethanol (Sigma), FGF2 10 ng / ml (Peprotech), Aa2P ImM (Sigma) (P0). After 10 to 15 days of culture, the cells were switched to trypsin (Gibco) and diluted 1/2 (PI). When 90% confluency was reached, the cells were passed and diluted 1/3 (P2). For subsequent passages, the cells were seeded on gelatin at 8000 cells per cm 2. After 6-7 passages, a homogeneous and stable population of MSCs was obtained.
  • the adipocytes were treated or not for 6 h with 5 M isoproterenol (Sigma), and the protein samples were harvested. For longer stimulation, the adipocytes were treated with a non-metabolizable analogue of cMAP, 8-Br-cAMP (Sigma) for 48 h.
  • Live cells at D20 differentiation were incubated with 1 ⁇ of MitoTracker® Red CMXRos (Life Technologies®) for 45 min in the dark at 37 ° C - 5%> C0 2 . After 2 rinses with PBS, the cells were fixed with 3% PFA for 15 minutes at room temperature. The preparation was then incubated for 15 minutes with 1ng / mL of Bodipy 493/503 (Molecular Probes® - D-3922) and then rinsed 3 times with PBS before being incubated for 5 minutes in DAPI (4'-6-diamidino-2-phenylindole, VWR). After deposition of the mounting liquid (Fluoromount-G TM, Southern Biotech), the cells were observed using a confocal microscope (Leica). Western blot
  • the adipocytes were lysed in a suitable volume of lysis buffer (50 mM Tris pH 7.4, 0.27 M sucrose, 1 mM Na-orthovanadate ⁇ , 1 mM EDTA, 1 mM EGTA, 10 mM ⁇ -glycerophosphate, 50 mM mM NaF, 5 mM pyrophosphate, 1% (w / v) Triton X-100, 0.1% (w / v) 2-Meaptoethanol, and protease inhibitors).
  • the total lysates were centrifuged (15,000g, 4 ° C for 10 min) and then stored at -80 ° C until use.
  • Protein concentrations were determined according to the Bradford method with bovine albumin as standard. Samples were run in SDS / PAGE on polyacrylamide gels, were transferred to nitrocellulose membranes (Amersham Biosciences), blocked for 2 h at room temperature in TBS-T buffer (50mM Tris-HCl pH 7.6, 150mM NaCl 0.1 % (v / v) Tween-20) supplemented with 5% (w / v) skim milk or BSA and incubated with the different antibodies specific for the protein of interest (Table 1 above).
  • nitrocellulose membranes were rinsed 3 times 5 min in the TBS-T buffer before being incubated with the secondary antibody coupled with peroxidase.
  • the signals were revealed in chemiluminescence (Pierce-Perbio Biotechnologies) by exposure to autoradiographic films (Kodak).
  • the karyotypes were obtained according to the classical karyotyping methods of the "G-strips" and "R-strips". In vivo adipocytes graft
  • mice were harvested with TrypLE Express (# 12604021 Life Technology) and resuspended in DMEM / F12 / Matrigel medium comprising 10 ⁇ g / ml of insulin, 500 ⁇ l of IBMX, ⁇ of dexamethasone and 50 ⁇ of indomethacin.
  • 10 7 cells were injected subcutaneously into the back of Nude mice FoxNl Nude (Taconic) 6 weeks old. These mice were also injected into the sternum with 3.10 7 mesenchymal stem cells (MSCs) derived from iPS cells or from Matrigel alone as a control. The mice are euthanized 30 days after the transplant.
  • MSCs mesenchymal stem cells
  • Neo-formed human adipose pannicules are excised, fixed in 4% PFA, included in paraffin, and then cut into 4 ⁇ sections. After deparaffmage, the slides are stained in automata. The slides are incubated for 5 min in hematoxylin, rinsed with running water, incubated for 2 min in eosin solution, rinsed with running water, immersed in two successive baths of absolute alcohol and then in toluene before mounting with a resin.
  • the antigenic sites are unmasked according to the primary antibody by heating (15 min at 95 ° C) in a water bath in EDTA buffer pH 8 or pH9 or in the microwave in citrate buffer pH6. Incubation for 5 min in the presence of hydrogen peroxide (3%) allows the inhibition of endogenous peroxidases. The blocking of nonspecific sites is achieved by incubation of the slides for 20 min in DAKO universal serum.
  • the primary antibody (anti-perilipinel Progen Mab to Perilipin / PLIN1 - Cat # 651156), 1/500 dilution in Bond Primary Antibody Diluent (Dako), is incubated for one hour at room temperature. After several successive rinses in Dako wash buffer, the slides are incubated for 30 min with a secondary antibody HRP (anti-guinea pig, 1/100 in Diluent Antibody).
  • HRP anti-guinea pig, 1/100 in Diluent Antibody.
  • the immunohistochemical staining is revealed by 3 5 min incubations with AEC reagent after rinsing the slides (3-amino-9-ethylcarbazole, Vector Laboratories kit). The revelation is stopped by immersing the slides in running water. The slides are then counter-stained with Hemalun and mounted on slides in an aqueous mounting medium (Glycergel Mounting Medium, Dako). Results
  • FIG. 2 shows that the iPS cells used have the expected pluripotency characteristics.
  • the cells are organized into tight colonies with well-defined outlines (Fig. 2A, 2B). They are positive for pluripotency markers such as alkaline phosphatase staining (Fig. 2B) and express the NANOG, SOX2, OCT4, TRA-1-60, TRA-1-81 and SSEA3 / 4 proteins (Fig. 2C). .
  • these cells express the OCT4, NANOG and SOX2 genes at a level comparable to that of embryonic stem cells of the H9 line, attesting to their pluripotent (2D) character.
  • Figure 3 shows the fall in the expression of pluripotency markers OCT4, NANOG and SOX2 during differentiation (Fig. 3A) and the induction of gene expression of BRACHYURY and MESP1, two genes characterizing early mesoderm. when the iPS cells are subjected to the specific medium of mesodermal differentiation (Fig. 3B).
  • the gene expression of BRACHYURY (T BOX) and MESP1 is increased 75-fold after 4 days of differentiation, showing the actual production of mesodermal progenitors.
  • the protein expression of these markers was confirmed by immunofluorescence (Fig. 3C). As expected, the expression of these genes decreases after induction of adipocyte differentiation (J6) (FIG 3B).
  • CD24 decreases during the differentiation in agreement with the commitment towards the adipocyte route (FIG 3E).
  • the markers CD44, CD29, and PDGFRa are coexpressed at protein level at D12 (Fig. 3F).
  • these same cells are positive for the Ki67 marker (Fig. 3F), indicating the presence of a proliferative progenitor population.
  • FIG. 4 shows that the gene expressions of C / EBPa, C / ⁇ , C / ⁇ and PPARy, transcription factors induced during adipocyte differentiation, increase gradually between D8 and D12, after the addition of the adipogenic differentiation cocktail. (J4). This high level of expression is maintained at D20. Similarly, the protein expression of the adipo-specific PPAR ⁇ 2 isoform and C / ⁇ p30 / 42 is observed from the tenth day of differentiation (Fig. 5B and 5C).
  • Figure 5C shows that the expression of proteins playing a major role in the adipocyte such as the insulin receptor (IR: insulin receptor), the proteins associated with lipid droplets such as Perilipinel and Caveolinel (Fig. 5C ) and the GLUT4 glucose transporter (Fig. 5B) is induced during adipocyte cell differentiation.
  • IR insulin receptor
  • Fig. 5C Perilipinel and Caveolinel
  • Fig. 5B the GLUT4 glucose transporter
  • Figure 5A shows red oil staining of adipocytes at different magnifications.
  • the accumulation of lipids is homogeneous over the whole of the culture dish.
  • the cells are organized in "clusters", have a rounded shape and contain several lipid droplets. These cells therefore have a morphology characteristic of the adipocyte in vitro.
  • Figure 5B shows another method of labeling neutral lipids, with concomitant labeling of the nucleus.
  • the images make it possible to observe the eccentric nucleus of the adipocyte, and the characteristic organization of the lipid droplets.
  • Effectiveness of Differentiation Figure 5A shows broad fields of adipocytes whose lipid droplets have been labeled with a neutral lipid dye. These images make it possible to evaluate the effectiveness of the differentiation as being greater than 60%. Indeed, after 20 days of differentiation, 62% ( ⁇ 2% SEM) of the cells express at their nucleus the adipocyte marker C / ⁇ . The adipocytes obtained are then capable of responding to a short insulin treatment by inducing strong phosphorylation of the insulin receptor (IR) ⁇ subunit and its AKT / PK target (Fig. 5D).
  • IR insulin receptor
  • Figure 6A shows that the resulting adipocytes express "classic brown” genes such as PGCla, PRDM16 and UCP1, but do not express the genes specific to mature brown progenitors and adipocytes such as MYF5 and ZIC1.
  • the protein expression of UCP1 can be detected from J10 (Fig. 6B). These cells also express genes specific to beige adipocytes (or "brite") such as TMEM26, CITED1, CD137 andHOXC9 (FIG. 6C).
  • the protein expression of CITED1 can be observed in differentiated adipocytes (Fig. 6D).
  • a high protein induction of UCP1 after ⁇ -adrenergic stimulation is observed.
  • adipose panniculus appears at the injection site of the cells and not at the injection site of Matrigel TM. Histological analysis of adipose panniculates obtained after injection of adipocytes derived from human iPS cells reveals a fully differentiated, organized and vascularized adipose tissue (Fig. 7C, D).
  • tissues obtained following injection with mesenchymal stem cells (MSC) derived from iPS cells have a heterogeneous composition with large areas of fibroblast type cells and a reduced number of adipocytes (Fig. 7C, D).
  • the cells that make up the adipose panniculus formed from adipocytes or MSCs derived from iPS cells have lipid droplets revealed by perilipinel labeling ( Figure 7E). All of these results thus show that the adipocytes obtained according to the invention are capable of forming adipose tissue in vivo.
  • pluripotent stem cells in two dimensions makes it possible to obtain mesodermal progenitors with the capacity to differentiate into adipocyte progenitors and then into adipocytes when they are subjected to an adipogenic cocktail.
  • the adipocytes obtained by the method according to the invention express the transcription factors characteristic of this cell type and accumulate lipids in the form of triglycerides. These adipocytes once grafted are capable of forming adipose pannicules in vivo.
  • this method makes it possible to obtain beige-type human adipocytes hitherto not described in vitro.
  • this method makes it possible to obtain adipocytes in large quantities in only twenty days from the undifferentiated pluripotent strain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

La présente invention concerne un procédé de production in vitro de progéniteurs adipocytaires et d'adipocytesà partir de cellules souches pluripotentes, en particulier de cellules souches pluripotentes induites, ainsi que l'utilisation à des fins thérapeutiques ou 10 de criblage des progéniteurs adipocytaires et adipocytesainsi obtenus.

Description

Procédé de production in vitro de progéniteurs adipocytaires et d'adipocytes
La présente invention se rapporte à un nouveau procédé de production m vitro de progéniteurs adipocytaires et d'adipocytes, ainsi qu'aux utilisations thérapeutiques et méthodes de criblage utilisant les cellules ainsi produites.
ARRIERE-PLAN TECHNOLOGIQUE DE L'INVENTION
Les cellules souches sont définies comme des cellules ayant la capacité de s'auto- renouveler et de se différencier in vitro. Les cellules souches pluripotentes, constituées des cellules souches embryonnaires (ES) et des cellules souches induites à la pluripotence (iPS), ont la capacité de se multiplier en théorie à l'infini et permettent d'obtenir presque tous les types cellulaires in vitro.
Les cellules souches induites à la pluripotence ont été mises au point en 2007 à partir de fïbroblastes humains par l'équipe de Yamanaka (Takahashi et al, 2007). Ce type de cellules est obtenu par transfection des gènes de pluripotence (comme C-MYC, OCT3/4, SOX2 et KLF4) dans des cellules somatiques. Ces cellules sont ensuite sélectionnées pour leur capacité à exprimer OCT3/4, et NANOG, deux protéines impliquées dans la pluripotence (Takahashi et al, 2007; Yu et al, 2007). Les cellules iPS possèdent les mêmes caractéristiques que les cellules ES au niveau de leur morphologie, de leur expression génique et de leur statut épigénétique. Elles ont la capacité de se différencier dans les trois feuillets embryonnaires, endoderme, ectoderme et mésoderme, in vitro et in vivo.
Les cellules iPS possèdent l'avantage de pouvoir récapituler les étapes précoces du développement, contrairement aux modèles existants issus de cultures primaires de cellules de patients. De plus, elles possèdent l'ensemble du patrimoine génétique du patient donneur, constituant donc un excellent modèle pour étudier la physiopathologie des maladies génétiques. En effet, les anomalies responsables de ces pathologies peuvent s'exprimer au niveau cellulaire à différents stades de la différenciation des cellules iPS in vitro. Enfin, les cellules iPS aux différents stades de différenciation permettent de tester de nouvelles molécules thérapeutiques in vitro (Yamanaka, 2010), et sont un espoir pour le développement de nouvelles thérapies cellulaires dans le cadre de la médecine régénérative. En conséquence, ces cellules constituent une source quasi- infinie de matériel pour l'étude des fonctions cellulaires normales ou pathologiques. Cependant, l'obstacle principal pour la compréhension de ces mécanismes est la mise en place de protocoles robustes et efficaces permettant l'obtention de cellules matures d'intérêt. L'adipocyte se définit comme l'unité fonctionnelle du tissu adipeux, organe spécialisé dans le stockage de l'énergie sous forme de triglycérides. Le tissu adipeux constitue la seule réserve d'énergie mobilisable à long terme et occupe de ce fait une place prépondérante dans le contrôle de la balance énergétique chez les mammifères. En conséquence, un défaut de stockage des lipides au sein du tissu adipeux conduit à des désordres métaboliques importants, dont la prévalence en est constante augmentation. De plus, l'adipocyte est également une cellule endocrine qui produit de nombreux facteurs impliqués dans les régulations systémiques, comme celles de la sensibilité à l'insuline, de l'inflammation, des fonctions immunes et de la pression artérielle.
Bien que l'obtention de tissu adipeux humain soit relativement aisée, une intervention invasive sur le patient est nécessaire. De plus, les adipocytes humains matures ainsi prélevés ne peuvent pas être amplifiés et peuvent donc uniquement être maintenus en culture quelques jours.
Différents groupes ont développé des modèles cellulaires humains pour l'étude de l'adipogenèse à partir de cellules souches mésenchymateuses issues de la moelle osseuse ou de cellules issues de la fraction stroma-vasculaire du tissu adipeux (Pittenger et al. 1999; Zuk et al. 2001). Cependant, ces systèmes cellulaires présentent certaines limites telles qu'une capacité de prolifération réduite, une diminution de la capacité de différenciation au cours des passages et des potentiels de différenciation variables. Pour surmonter ces problèmes techniques, différentes méthodes de différenciation adipocytaire à partir d'iPS ont été mises au point. Il s'agit toutefois de protocoles longs et complexes étant donné qu'ils font appel à une étape préalable de différenciation en corps embryoïdes (structures en trois dimensions constituées des trois feuillets embryonnaires) ou en cellules mésenchymateuses qui présente une efficacité limitée (Taura et al, 2009 ; Xiong et al, 2013 ; Noguchi et al, 2013 ; Ahfeld et al., 2012). L'efficacité de la différenciation cellulaire peut être augmentée par l'expression ectopique de facteurs de transcriptions adipocytaires (Ahfeldt et al. 2012), mais un tel protocole ne permet pas l'étude des mécanismes physiologiques mis enjeu au cours de la différenciation adipocytaire. Il apparaît donc nécessaire de développer un protocole simple, rapide et efficace permettant de récapituler la différenciation physiologique in vivo de l'adipocyte, c'est-à- dire à partir du mésoderme, en s 'affranchissant de l'obtention préalable de corps embryoïdes ou de cellules souches mésenchymateuses. RÉSUME DE L'INVENTION
L'objectif de la présente invention est de fournir un nouveau procédé de production in vitro de progéniteurs adipocytaires et d'adipocytes.
La présente invention concerne tout d'abord un procédé de production in vitro de progéniteurs adipocytaires comprenant
- la mise en culture de cellules souches pluripotentes sur un système de culture adhérent et dans un milieu de culture sans sérum ;
- la mise en contact desdites cellules souches pluripotentes avec un milieu de différenciation mésodermique jusqu'à l'obtention de progéniteurs mésodermiques ; et
- la mise en contact desdits progéniteurs mésodermiques avec un milieu de différenciation adipogénique jusqu'à l'obtention de progéniteurs adipocytaires,
et optionnellement la récupération des progéniteurs adipocytaires ainsi obtenus.
Les cellules souches pluripotentes sont de préférence des cellules souches pluripotentes induites.
Le milieu de différenciation mésodermique est, de préférence, un milieu de culture sans sérum comprenant un ou plusieurs morphogènes appartenant à la superfamille du TGF-β, en particulier sélectionnés dans le groupe constitué de l'activine A, l'activine B, la protéine BMP-4, la protéine BMP-2, le TGF-βΙ, le TGF-P2 et le TGF-P3, et une combinaison quelconque de ceux-ci. Selon un mode particulier, le milieu de différenciation mésodermique est un milieu de culture sans sérum comprenant (i) un morphogène sélectionné dans le groupe constitué de l'activine A et l'activine B, de préférence l'activine A ; et (ii) un morphogène sélectionné dans le groupe constitué de la protéine BMP-4, la protéine BMP-2, le TGF-βΙ, le TGF-P2 et le TGF-P3, et une combinaison quelconque de ceux-ci, de préférence la protéine BMP-4.
Le milieu de culture sans sérum est de préférence un milieu adapté à la culture des cellules hématopoïétiques. Les cellules souches pluripotentes sont de préférence mises en contact avec le milieu de différenciation mésodermique lorsque la culture présente une confluence d'environ 50 à environ 90%.
Selon un mode de réalisation, le milieu de différenciation adipogénique est un milieu de culture comprenant de l'insuline, l'un de ses analogues ou de l'IGF-l, un glucocorticoïde et un agent augmentant l'adénosine mono-phosphate cyclique (AMPc) intracellulaire, de préférence un milieu de culture comprenant de l'insuline, de la dexaméthasone et du 3-isobutyl-l-méthylxanthine. De préférence, le milieu de différenciation adipogénique comprend en outre de l'indométacine.
La présente invention concerne également un procédé de production in vitro d'adipocytes comprenant la mise en contact des progéniteurs adipocytaires obtenus par le procédé selon l'invention, avec un milieu de maturation adipocytaire jusqu'à l'obtention d'adipocytes. Le milieu de maturation adipocytaire est de préférence un milieu de culture comprenant de l'insuline.
Selon un autre aspect, la présente invention concerne également des progéniteurs adipocytaires ou des adipocytes obtenus par le procédé selon l'invention, pour une utilisation dans le traitement d'une lipodystrophie, d'une anomalie de la régulation glycémique, de préférence sélectionnée dans le groupe constitué de l'hyperglycémie à jeun, l'intolérance au glucose, le diabète, notamment le diabète de type 2, et Pinsulino- résistance, ou d'une dyslipidémie associées ou non à une obésité ou à un syndrome lipodystrophique.
Les progéniteurs adipocytaires et/ou adipocytes sont de préférence obtenus à partir de cellules souches pluripotentes induites obtenues à partir de cellules somatiques, de préférence des fïbroblastes, provenant du sujet à traiter.
La présente invention concerne également un kit pour produire in vitro des progéniteurs adipocytaires ou des adipocytes comprenant un récipient contenant un ou plusieurs morphogènes appartenant à la superfamille du TGF-β, un récipient contenant de l'insuline, l'un de ses analogues ou de l'IGF-l, un glucocorticoïde et un agent augmentant l'adénosine mono-phosphate cyclique (AMPc) intracellulaire et optionnellement un récipient contenant de l'insuline.
En particulier, le kit peut comprendre un premier récipient contenant de l'activine A et/ou de la BMP-4, et un second récipient contenant de l'insuline, de la dexaméthasone et de ΓΙΒΜΧ, et optionnellement de l'indométacine. La présente invention concerne également l'utilisation du kit selon l'invention pour la production in vitro de progéniteurs adipocytaires et/ou d'adipocytes selon les procédés de l'invention.
Selon un autre aspect, la présente invention concerne également une méthode de criblage de molécules stimulant l'activité thermogénique des adipocytes comprenant
-la mise en contact d'adipocytes obtenus par le procédé selon l'invention avec des molécules candidates, et
- la sélection de molécules stimulant l'activité thermogénique des adipocytes.
BRÈVE DESCRIPTION DES DESSINS Figure 1 : Représentation schématique d'un mode de réalisation de la méthode selon l'invention de différenciation adipocytaire en deux dimensions à partir d'iPS. La différentiation des iPS en précurseurs mésodermiques est induite de JO à J4 par un milieu de différenciation constitué de STEMPro34 (+ GlutaMAX + acide ascorbique) en présence d'activin A (25 ng/ml) et de BMP4 (10ng/ml). La différenciation en adipocytes est induite à J4 et J8 en cultivant les progéniteurs mésodermiques en DMEM/F12 10 % S VF, insuline (10 μg/ml), isobutylméthylxanthine (0,5 mM), dexaméthasone (1 μΜ) et indométacine (50 μΜ). Les adipocytes sont ensuite maintenus en DMEM/F12 10% S VF 1 μg/ml insuline afin de permettre leur maturation.
Figure 2 : Caractère pluripotent des cellules iPS. (A) Image en contraste de phase d'une colonie d'iPS pluripotente (ΙΟχ). (B) Photographie des colonies d'iPS après marquage à la phosphatase alcaline en champ large (panneau de gauche) ou au grossissement xlO (panneau de droite). (C) Marquage en immuno fluorescence des marqueurs de pluripotence NANOG, SOX2, OCT4, SSEA3/4, TRA-1-60 et TRA-1-81. (D) Comparaison de l'expression génique des marqueurs de pluripotence OCT4, NANOG et SOX2 entre les iPS et les cellules souches embryonnaires H9 (n=3).
Figure 3 : Différenciation des iPS en progéniteurs mésodermiques et adipocytaires. Niveau d'expression relative (unités arbitraires) mesuré par PCR quantitative en temps réel de marqueurs spécifiques de la pluripotence NANOG, SOX2 et OCT4 (n=3) (A), du mésoderme, à savoir BRACHYURY (T BOX) et MESPl (B), à 0, 2, 4 jours, et 6 jours de différenciation (n=3). Marquage en immuno fluorescence des progéniteurs adipocytaires à l'aide des anticorps MESPl et BRACHYURY (C). Niveau d'expression relative (unités arbitraires) mesuré par PCR quantitative en temps réel de BRA CHYUR Y (T box) QÎ MESPI (D) au cours de la différenciation des iPS en cellules souches mésenchymateuses (n=3). Niveau d'expression relative (unités arbitraires) mesuré par PCR quantitative en temps réel de PDGFRa, LY6E, CD44, CD29 et CD24. *p<0,05, p déterminé par le test non-paramétrique de Mann-Whitney avec le logiciel Prism GraphPad. (E) (n=3). Marquage en immuno fluorescence des progéniteurs adipocytaires à l'aide des anticorps CD44, PDGFRa et CD29 et Ki67 (F).
Figure 4 : Différenciation des progéniteurs mésodermiques en adipocytes. Niveau d'expression relative (unités arbitraires) mesuré par PCR quantitative en temps réel des quatre facteurs de transcription adipocytaires (A) C/ΕΒΡβ (n=3), (B) C/ΕΒΡδ (n=3), (C) C/EBPa (n=3) et (D) PPARy (n=3), au cours de la différenciation adipocytaire.
Figure 5 : Caractérisation des adipocytes après 20 jours de différenciation. (A) Photographie des adipocytes après coloration à l'Oil red O en champ large (gauche), 20x (milieu) ou 40x (droite). (B) Marquage en immuno fluorescence des marqueurs C/EBPa (haut) et de GLUT4 (bas) dans les adipocytes à 20 jours de différenciation. Les gouttelettes lipidiques sont marquées en Nile Red et les noyaux au DRAQ5. (C) Expression protéique de PPARyl et PPARy2, C/ΕΒΡα p30/42, la sous-unité β du récepteur de l'insuline (IR-β), la perilipine 1 et la cavéoline 1 dans des cellules iPS à J0, J10 et J20. La β-actine est utilisée comme contrôle. (n>3). (D) La phosphorylation de la sous-unité β du récepteur à l'insuline (IR-β) et d'AKT/PKB a été évaluée suite à un court traitement à l'insuline dans des cellules iPS après 20 jours de différenciation en utilisant des anticorps phospho-spécifïques et totaux.
Figure 6 : Obtention d' adipocytes beiges. Expression génique relative des marqueurs d' adipocytes bruns classiques (A) PGCla (n:zz:3), PRDM16 (n::::3) et UCP1 (n=3). (B) Détection de l'expression d'UCPl par Western Blot aux jours 0, 10 et 20 de la différenciation. La β-actine est présentée en contrôle de dépôt. (C) Expression génique relative des marqueurs spécifiques des adipocytes beiges TMEM26, CïTEDl, CD 137 et HOXC9 au cours de la différenciation. (n>3). *p<0,05 vs J4. (D) Marquage en immuno fluorescence du marqueur d'adipocyte beige CITEDl dans les adipocytes à 20 jours de différenciation. Les gouttelettes lipidiques sont marquées en Nile Red et les noyaux au DRAQ5. (E) Détection de l'expression d'UCPl par Western Blot en conditions basales ou après 6h d'isoprotérenol 10"5M. La β-actine est présentée en contrôle de dépôt. (F) Marquage d' adipocytes beiges au Mitotracker® et en Bodipy en condition basale (haut) et après 48h de 8-Br-AMPc (bas). (G) Expression génique des gènes impliqués dans la thermogenèse PGCl , PPARa, PRDM16 et DI02 des cellules iPS après 20 jours de différenciation en condition basale (non traitées) et après 48h de 8- Br-AMPc *p<0,05 vs Basai.
Figure 7 : Formation de tissu adipeux in vivo suite à la greffe des adipocytes dérivés de cellules iPS dans des souris nude. (A) Représentation schématique de la greffe des adipocytes dérivés de cellules iPS dans les souris nude. (B) Vue macroscopique du pannicule adipeux formé à partir des adipocytes dérivées des cellules iPS. (C) Coloration à Phématoxyline et à l'éosine du pannicule adipeux formé à partir des adipocytes dérivés des cellules iPS (gauche) et des MSC (droite). Barre d'échelle : 500μιη. (D) Fort grossissement de la coloration à l'hématoxyline et à l'éosine du pannicule adipeux formé à partir des adipocytes dérivés des cellules iPS (gauche) et des MSC (droite), Barre d'échelle 200 μιη (haut) et 100 μιη (bas). Les flèches indiquent les vaisseaux sanguins. (E) Marquage avec un anticorps anti-perilipine 1 du pannicule adipeux formé à partir des adipocytes dérivés des cellules iPS (gauche) et à partir des MSCs (droite) à différents grossissement. Barre d'échelle 200 μιη (haut) et 100 μιη (bas).
DESCRIPTION DÉTAILLÉE DE L'INVENTION
Les inventeurs ont développé un procédé simple, rapide et efficace permettant d'obtenir de grandes quantités d'adipocytes à partir de cellules souches pluripotentes, de préférence des cellules souches pluripotentes induites, en seulement 20 jours. Ils ont en effet démontré qu'en présence d'un milieu comprenant des inducteurs de la différenciation mésodermique, les cellules souches étaient capables de se différencier directement, c'est-à-dire sans formation préalable de corps embryoïdes ou de cellules souches mésenchymateuses, en progéniteurs mésodermiques capables à leur tour de produire des progéniteurs adipocytaires et des adipocytes en présence d'un cocktail adipogénique.
Les inventeurs ont observé que les adipocytes obtenus par le procédé selon l'invention exprimaient les marqueurs adipocytaires spécifiques et présentaient une morphologie caractéristique de ce type cellulaire. Ils ont également démontré que les cellules obtenues présentaient les caractéristiques des adipocytes de type beige, pour lesquels aucun modèle humain n'a été décrit à ce jour. Ainsi, selon un premier aspect, la présente invention concerne un procédé de production in vitro de progéniteurs adipocytaires comprenant
- la mise en culture de cellules souches pluripotentes dans un système de culture adhérent et dans un milieu de culture sans sérum ;
- la mise en contact desdites cellules souches pluripotentes avec un milieu de différenciation mésodermique jusqu'à l'obtention de progéniteurs mésodermiques ; et
- la mise en contact desdits progéniteurs mésodermiques avec un milieu de différenciation adipogénique jusqu'à l'obtention de progéniteurs adipocytaires.
Tel qu'utilisé dans ce document, le terme « cellules souches pluripotentes» englobe des cellules souches embryonnaires et des cellules somatiques reprogrammées (ou cellules souches pluripotentes induites). De préférence, ce terme se réfère à des cellules provenant d'un mammifère, en particulier une souris, un rat ou un primate, et de manière tout particulièrement préférée, d'un humain.
Les cellules souches embryonnaires sont dérivées de la masse cellulaire interne du blastocyste et ont la capacité de conduire à la formation de tous les tissus de l'organisme (mésoderme, endoderme, ectoderme), y compris aux cellules de la lignée germinale. La pluripotente des cellules souches embryonnaires peut être évaluée par la présence de marqueurs tels que les facteurs de transcription OCT3/4, NANOG et SOX2 et les marqueurs de surface comme SSEA3/4, Tra-1-60 et Tra-1-81. Cette pluripotence peut également être vérifiée in vivo par la formation de tératomes chez la souris (Rossant et al, 1982). Les cellules souches embryonnaires peuvent être obtenues sans destruction de l'embryon dont elles sont issues par exemple à l'aide de la technique décrite par Chung et al. (2008). Dans un mode de réalisation particulier, et pour des raisons légales ou éthiques, les cellules souches embryonnaires sont des cellules souches embryonnaires non humaines.
Tel qu'utilisé dans ce document, le terme « cellules somatiques reprogrammées », « cellules souches pluripotentes induites », « CSPi » ou « iPS » se réfère à des cellules pluripotentes obtenues par reprogrammation génétique de cellules somatiques différenciées. Outre leur morphologie et leur potentiel d' autorenouvellement et de pluripotence similaires à ceux des cellules souches embryonnaires, les CSPi présentent également une reprogrammation épigénétique avec un profil global de méthylation des histones et d'expression des gènes très proche de celui des cellules souches embryonnaires. Les CSPi sont notamment positives pour les marqueurs de pluripotence, notamment la coloration à la phosphatase alcaline et l'expression des protéines NANOG, SOX2, OCT4 et SSEA3/4.
Les procédés permettant l'obtention des CSPi sont bien connus de l'homme du métier et sont notamment décrits dans les articles de Yu, et al. (2007), Takahashi et al. (2007) et Nakagawa et al, (2008). En particulier, les CSPi peuvent être obtenues à partir de cellules somatiques humaines transfectées avec les facteurs de transcription Oct3/4, Sox2, Klf4 et c-Myc (Takahashi et al, 2007), Oct3/4, Sox2, Nanog et Lin28 (Yu, et al, 2007) ou avec les gènes Oct3/4, Sox2 et Klf4 (Nakagawa et al, 2008). Les CSPi peuvent être obtenues à partir d'une large variété de cellules telles que les fïbroblastes, les lymphocytes B, les kératinocytes ou les cellules de la membrane méningée (Patel et al, 2010). De préférence, les CSPi utilisées dans le procédé selon l'invention sont obtenues à partir de fïbroblastes, en particulier des fïbroblastes humains. Selon un mode particulier de réalisation, les CSPi sont obtenues à partir de fïbroblastes d'un patient lipodystrophique.
Le procédé selon l'invention comprend une étape de mise en culture de cellules souches pluripotentes telles que définies ci-dessus, dans un système de culture adhérent et dans un milieu de culture sans sérum. Ces conditions de culture diffèrent de celles utilisées pour la formation de corps embryoïdes qui requiert l'utilisation de systèmes de culture non adhérents afin de permettre aux cellules souches de s'agréger.
Le système de culture adhérent susceptible d'être utilisé dans le procédé selon l'invention peut être un système de culture en monocouche adhérente ou un système de culture sur cellules nourricières.
Le système de culture peut se présenter sous toute forme adaptée au procédé selon l'invention, en particulier sous forme de flacon, plaque multipuits ou boite.
Selon un mode de réalisation, le système de culture adhérent est un système de culture sur cellules nourricières qui favorisent la prolifération et/ou contrôlent la différenciation des cellules avec lesquelles elles sont co-cultivées. De préférence, ces cellules nourricières stimulent la prolifération des cellules en culture sans induire leur différenciation. Elles sont fréquemment irradiées afin de prévenir leur prolifération et l'envahissement de la culture d'intérêt. Les cellules nourricières susceptibles d'être utilisées dans le procédé selon l'invention peuvent être aisément choisies par l'homme du métier parmi les différents types connus tels que les fïbroblastes embryonnaires de souris (cellules MEF) ou des cellules humaines foreskin (cf. la demande de brevet EP 2182052).
Selon un mode de réalisation préféré, le système de culture adhérent est un système de culture en monocouche adhérente. Ce système comprend un support solide, par exemple du verre ou du plastique, généralement revêtu d'une matrice ou d'un substrat favorisant l'adhérence des cellules.
Le substrat peut être un substrat protéique constitué de facteurs d'attachement et favorisant l'adhésion des cellules au support. Ces facteurs d'attachement peuvent notamment être choisis parmi la poly-L-lysine, le collagène, la fibronectine, la laminine ou la gélatine.
Les matrices mimant la matrice extracellulaire et susceptibles d'être utilisées dans le procédé selon l'invention, sont bien connues de l'homme du métier et de nombreuses variétés sont disponibles dans le commerce. Ces matrices comprennent, par exemple, les matrices de type Matrigel™, Geltrex® ou d'autres matrices comprenant une ou plusieurs protéines d'ancrage telles que le collagène, la laminine, la fibronectine, l'élastine, des protéoglycanes, des aminoglycanes ou la vitronectine. Les matrices 3D de type hydrogel peuvent également être utilisées. Selon un mode de réalisation préféré, la matrice est du type Matrigel™.
Les cellules souches pluripotentes sont cultivées dans un milieu sans sérum permettant de propager et maintenir les cellules dans un état indifférencié. De nombreux milieux de ce type sont disponibles dans le commerce et sont bien connus de l'homme du métier (voir par exemple l'article de Chen et al, 201 1). Le milieu de culture sans sérum peut être, par exemple, le milieu mTESRl™ (STEMCELL Technologies), le milieu E8 (Life Technologies) ou le milieu hPSC (Promocell). Selon un mode préféré, le milieu de culture utilisé ne comprend pas de sérum d'origine animal.
Les cellules sont de préférence repiquées régulièrement afin d'empêcher la culture d'atteindre la confluence, c'est-à-dire de recouvrir l'ensemble de la surface disponible. En effet, la confluence induit un arrêt de la prolifération et des changements métaboliques non souhaités. Les cellules peuvent être repiquées en utilisant des techniques classiques bien connues de l'homme du métier. Elles peuvent notamment être détachées de la matrice ou du support par l'action d'enzymes telles que la collagénase IV ou par un passage mécanique au PBS ou tout autre solution sans enzyme contenant de l'EDTA (ex : ReleSR (Stemcell technologies)) récupérées par centrifugation, dissociées mécaniquement et réensemencées dans un nouveau système de culture.
Dans le procédé selon l'invention, les cellules souches pluripotentes cultivées sur le système de culture adhérent et dans le milieu sans sérum, sont mises en contact avec un milieu de différenciation mésodermique jusqu'à l'obtention de progéniteurs mésodermiques.
Optionnellement, la confluence cellulaire peut être mesurée ou évaluée avant que les cellules souches ne soient mises en contact avec le milieu de différenciation mésodermique. De préférence, les cellules souches sont mises en contact avec le milieu de différenciation mésodermique lorsque la culture cellulaire présente une confluence d'environ 50 à environ 90%. L'homme du métier est familier avec la notion de confluence cellulaire, et est capable de l'évaluer par toute méthode connue. A titre d'exemple, le terme « 90% de confluence » peut être défini par la situation dans laquelle des colonies entrent en contact avec d'autres colonies, alors qu'un espace représentant environ 10% de la surface totale, reste non occupé entre les colonies. Tel qu'utilisé ici, le terme « environ » fait référence à une plage de valeurs de ± 10% de la valeur spécifiée. Par exemple, «environ 20» inclut les ± 10%> de 20, ou de 18 à 22.
Selon un mode de réalisation particulier, les cellules souches sont mises en contact avec le milieu de différenciation mésodermique, un à trois jours, de préférence deux jours, après avoir été mises en culture sur le système de culture adhérent et dans le milieu sans sérum.
De manière préférée, la mise en contact est réalisée par simple changement du milieu de culture. De manière alternative, celle-ci peut être effectuée par repiquage dans un système de culture adhérent comme décrit précédemment et comprenant le milieu de différenciation mésodermique.
Selon un mode de réalisation, le système de culture adhérent est un système de culture sur cellules nourricières comme décrit précédemment. Les cellules nourricières susceptibles d'être utilisées peuvent être aisément choisies par l'homme du métier parmi les différents types connus tels que les fïbroblastes embryonnaires de souris (cellules MEF) ou des cellules humaines foreskin (cf. la demande de brevet EP 2182052), de préférence en présence d'un inhibiteur de la voie de signalisation FGF, tel que le composé SU5402 (Mohammadi et al. 1997).
Les cellules peuvent être repiquées en utilisant des techniques classiques bien connues de l'homme du métier comme décrit précédemment, notamment être détachées de la matrice ou du support par l'action d'enzymes telles que la collagénase IV, par un passage mécanique au PBS ou tout autre solution sans enzyme contenant de l'EDTA (ex : ReleSR (Stemcell technologies) ou par l'action d'un milieu de détachement cellulaire commercial tel que TrypLE™ Express (Life Technologies), récupérées par centrifugation, dissociées mécaniquement et réensemencées dans un nouveau système de culture.
De manière alternative, les cellules souches peuvent être mises en contact avec le milieu de différenciation mésodermique dès leur mise en culture sur le système de culture adhérent et durant environ 4 jours.
Le milieu de différenciation mésodermique est un milieu de culture permettant à la fois la survie et la prolifération des cellules mais également induisant ou favorisant la différenciation des cellules en progéniteurs mésodermiques. De préférence, ce milieu prévient ou limite la différenciation des cellules en d'autres types cellulaires, notamment en progéniteurs de l'endoderme ou de l'ectoderme.
Selon un mode de réalisation particulier, le milieu de différenciation mésodermique est un milieu de culture de base sans sérum comprenant un ou plusieurs morphogènes appartenant à la superfamille du TGF-β.
De préférence, le milieu de culture de base sans sérum est un milieu de culture adapté à la prolifération des cellules humaines hématopoïétiques (CD34+). Ce milieu peut être un milieu minimum comprenant notamment les sels minéraux, les acides aminés, les vitamines et une source de carbone indispensables aux cellules ; un système tampon pour réguler le pH. De manière préférée, ce milieu comprend en outre de l'albumine sérique bovine ; de la transferrine ou du fer ; du sélénium ; de l'insuline ou un analogue de celle- ci ; et/ou un glucocorticoïde tel que l'hydrocortisone ou la déxaméthasone.
Les milieux susceptibles d'être utilisés dans le procédé selon l'invention comprennent par exemple, sans y être limités, le milieu StemPro-34® (Invitrogen) ou tout autre milieu décrit dans la demande de brevet WO 97/033978, le milieu TeSR™-E6 (StemCell™ technologies), les milieux décrits dans le brevet US 5,945,337, ou le milieu MethoCult™ (StemCell™ technologies).
Selon le milieu utilisé, il peut être nécessaire ou souhaitable d'ajouter de la glutamine (cet acide aminé est instable et doit souvent être ajouté extemporanément), de la vitamine C (qui s'oxyde rapidement) et/ou un ou plusieurs antibiotiques.
Le ou les morphogènes appartenant à la superfamille du TGF-β sont de préférence sélectionnés dans le groupe constitué de l'activine A, l'activine B, la protéine BMP-4, la protéine BMP-2, le TGF-βΙ, le TGF-P2 et le TGF-P3, et une combinaison quelconque de ceux-ci.
Selon un mode de réalisation, le milieu de différenciation mésodermique comprend (i) un morphogène sélectionné dans le groupe constitué de l'activine A et l'activine B ; et (ii) un morphogène sélectionné dans le groupe constitué de la protéine BMP-4, la protéine BMP-2, le TGF-βΙ, le TGF-P2 et le TGF-P3, et une combinaison quelconque de ceux-ci.
Selon un autre mode de réalisation, le milieu de différenciation mésodermique comprend de l'activine A et la protéine BMP-4.
De préférence, le milieu comprend entre 1 et 25 ng/mL de BMP-4, de manière plus particulièrement préférée environ 10 ng/mL de BMP-4.
De préférence, le milieu comprend entre 5 et 100 ng/mL d'activine A, de manière plus particulièrement préférée environ 25 ng/mL d'activine A.
Selon un mode de réalisation particulièrement préféré, le milieu de différenciation mésodermique comprend environ 10 ng/mL de BMP-4 et environ 25 ng/mL d'activine A. Selon un mode de réalisation particulier, le milieu de différenciation mésodermique comprend le milieu sans sérum StemPro-34® complet (Invitrogen) enrichi en glutamine, ou un milieu de culture équivalent, de la BMP-4, de préférence environ 10 ng/mL, de l'activine A, de préférence environ 25 ng/mL, et optionnellement de l'acide ascorbique.
Les cellules souches pluripotentes sont maintenues dans le milieu de différenciation jusqu'à l'obtention de progéniteurs mésodermiques. Durant cette période, et de manière classique, le milieu de culture peut être changé régulièrement, de préférence tous les jours ou tous les deux jours.
Tel qu'utilisé dans ce document, le terme « progéniteurs mésodermiques » ou « précurseurs mésodermiques » se réfère à des cellules, de préférence des cellules humaines, capables de se différencier (sans dédifférenciation ou reprogrammation préalable) en la majorité des tissus du mésoderme, notamment en cellules endothéliales, adipocytes, cardiomyocytes, cellules ostéogéniques, chondrocytes, cellules mésenchymateuses et cellules hématopoïétiques. Ces cellules se caractérisent par l'expression des gènes BRACHYURY (T BOX) (Gene ID : 6862) et MESP1 (Gene ID : 55897), deux gènes spécifiques du mésoderme précoce. Cette caractéristique les différencie des cellules souches mésenchymateuses ou des cellules issues de la fraction stroma-vasculaires du tissu adipeux qui n'expriment pas les gènes BRACHYURY et MESP1 (Figure 3D).
L'apparition de progéniteurs mésodermiques peut être aisément détectée par l'homme du métier par le suivi de l'expression des gènes BRACHYURY et MESP1. En effet, comme illustré dans la partie expérimentale et la figure 3B, ces gènes ne sont pas exprimés dans les cellules souches pluripotentes. Cette expression est également corrélée avec une diminution de l'expression des marqueurs de pluripotence NANOG et SOX2 (figure 3 A).
L'expression protéique de BRACHYURY et MESP1 peut être aisément mesurée par l'homme du métier par une méthode d'immunofluorescence comme illustrée dans la partie expérimentale et la figure 3C.
Ainsi, optionnellement, le procédé selon l'invention peut comprendre une étape additionnelle consistant à mesurer ou évaluer l'expression du gène BRACHYURY eh 'ou du gène MESP1. L'expression de ces marqueurs peut être suivie par toute technique connue de l'homme du métier, par exemple par PCR quantitative en temps réel.
Selon un mode de réalisation particulier, les cellules souches pluripotentes sont mises en contact avec le milieu de différenciation mésodermique durant 2 à 5 jours, de préférence durant 3 à 4 jours, et de manière tout particulièrement préférée durant 4 jours.
Les progéniteurs mésodermiques ainsi obtenus sont ensuite mis en contact avec un milieu de différenciation adipogénique jusqu'à l'obtention de progéniteurs adipocytaires. Comme précédemment, cette mise en contact peut être réalisée par simple changement du milieu de culture ou par repiquage dans un système de culture adhérent et comprenant le milieu de différenciation adipogénique.
Selon un mode de réalisation, le système de culture adhérent est un système de culture sur cellules nourricières comme décrit ci-dessus. Les cellules nourricières susceptibles d'être utilisées peuvent être aisément choisies par l'homme du métier parmi les différents types connus tels que les fïbroblastes embryonnaires de souris (cellules MEF) ou des cellules humaines foreskin (cf. la demande de brevet EP 2182052), de préférence en présence d'un inhibiteur de la voie de signalisation FGF, tel que le composé SU5402 (Mohammadi et al. 1997).
Les cellules peuvent être repiquées en utilisant des techniques classiques bien connues de l'homme du métier comme décrites ci-dessus, notamment être détachées de la matrice ou du support par l'action d'enzymes telles que la collagénase IV, par un passage mécanique au PBS ou tout autre solution sans enzyme contenant de l'EDTA (ex : ReleSR (Stemcell technologies) ou par l'action d'un milieu de détachement cellulaire commercial tel que TrypLE™ Express (Life Technologies), récupérées par centrifugation, dissociées mécaniquement et réensemencées dans un nouveau système de culture. De préférence, les progéniteurs mésodermiques sont mis en contact avec un milieu de différenciation adipogénique par simple changement du milieu de culture.
Le milieu de différenciation adipogénique également appelé milieu de différenciation adipocytaire est un milieu de culture permettant à la fois la survie et la prolifération des progéniteurs mésodermiques mais également induisant ou favorisant la différenciation de ces cellules en progéniteurs adipocytaires.
Selon un mode de réalisation, le milieu de différenciation adipogénique est un milieu de culture comprenant de l'insuline, l'un de ses analogues ou de l'IGF-l, un glucocorticoïde et un agent augmentant l'adénosine mono-phosphate cyclique (AMPc) intracellulaire. De préférence, le milieu de différenciation adipogénique comprend de l'insuline ou l'un de ses analogues, un glucocorticoïde et un agent augmentant l'adénosine mono-phosphate cyclique (AMPc) intracellulaire.
Les analogues de l'insuline peuvent être sélectionnés par exemple dans le groupe constitué de l'insuline NPH (Eli Lilly), la lispro (Eli Lilly), l'aspart (Novo Nordisk) et la glulisine (Sanofï-Aventis). Le glucocorticoïde peut être sélectionné par exemple dans le groupe constitué de la dexaméthasone, la bétaméthasone, le cortivazol et l'hydro cortisone. De préférence, le glucocorticoïde est la dexaméthasone.
L'agent augmentant l'adénosine mono -phosphate cyclique (AMPc) intracellulaire peut être tout composé connu pour augmenter la concentration intracellulaire d'APMc. Cet agent peut notamment être sélectionné dans le groupe constitué des inhibiteurs de phosphodiestérases, des activateurs directs de la protéine kinase A (ou protéine kinase cAMP dépendante) et des activateurs de l'adénylate cyclase.
Les inhibiteurs de phosphodiestérase comprennent, sans y être limités, des xanthines méthylés et leurs dérivés tels que le 3-isobutyl-l-méthylxanthine (IBMX), la caféine, l'aminophylline, la paraxanthine, la pentoxifylline, la théobromine et la théophylline.
Les activateurs directs de la protéine kinase A comprennent, sans y être limités, le belinostat (PXD101), l'adrénaline, le glucagon, et les analogues de l'AMPc tels que le 8- Bromo-cAMP.
Les activateurs de l'adénylate cyclase comprennent, sans y être limités, la forskoline, le glucagon, les prostaglandines D2, El, et 12, la carbacycline, la dopamine, l'endothéline 1, la L-épinéphrine et l'hormone parathyroïde.
Selon un mode de réalisation préféré, le milieu de différenciation adipogénique est un milieu de culture comprenant de l'insuline, de la dexaméthasone et du 3-isobutyl- 1 -méthylxanthine.
De préférence, le milieu comprend entre 1 et 20 μg/mL d'insuline, de manière plus particulièrement préférée environ 10μg/mL d'insuline.
De préférence, le milieu comprend entre 0,0001 et 500 mM d'IBMX, de manière plus particulièrement préférée entre 0,01 et 10 mM d'IBMX, et de manière tout particulièrement préférée entre 0,1 et 1 mM d'IBMX. Selon un mode de réalisation particulier, le milieu comprend entre environ 0,1 mM et environ 0,5 mM d'IBMX, de préférence environ 0,5 mM d'IBMX.
De préférence le milieu comprend entre 0,25 et 100 μΜ de dexaméthasone, de manière plus particulièrement préférée environ 1 μΜ de dexaméthasone.
Selon un mode de réalisation particulier, le milieu de différenciation adipogénique est un milieu de culture comprenant environ 10 μg/mL d'insuline, environ 1 μΜ de dexaméthasone et environ 0,5 mM d'IBMX. De manière optionnelle, le milieu de différenciation peut également comprendre un ou plusieurs composés additionnels favorisant la différenciation adipocytaire tels que l'indométacine, un composé de la famille des thiazolidinediones tel que la pioglitazone ou la rosiglitazone, le facteur de croissance FGF21 , l'irisine, la triiodothyronine, l'acide rétinoïque, le BMP7 et/ou le BMP8, en particulier l'indométacine, un composé de la famille des thiazolidinediones tel que le pioglitazone ou le rosiglitazone, le facteur de croissance FGF21, l'irisine, la triiodothyronine et/ou l'acide rétinoïque. De préférence, le milieu de différenciation comprend en outre de l'indométacine, de préférence 0,01 à 0,5 mM d'indométacine, et de manière plus particulièrement préférée environ 0,1 mM d'indométacine. Selon un mode de réalisation particulier, le milieu de différenciation comprend en outre de 50 μΜ d'indométacine. Ainsi, selon un mode de réalisation préféré, le milieu de différenciation adipogénique est un milieu de culture comprenant de l'insuline, de préférence environ 10 μg/mL, de la dexaméthasone, de préférence environ 1 μΜ, de ΓΙΒΜΧ, de préférence environ 0,5 mM, et de l'indométacine, de préférence environ 0,1 mM. Selon un autre mode de réalisation préféré, le milieu de différenciation adipogénique est un milieu de culture comprenant de l'insuline, de préférence environ 10 μg/mL, de la dexaméthasone, de préférence environ 1 μΜ, de ΓΙΒΜΧ, de préférence environ 0,5 mM, et de l'indométacine, de préférence environ 0,05 mM.
Le milieu de culture de base utilisé dans le milieu de différenciation adipocytaire est, de préférence, un milieu minimum synthétique de base comprenant notamment les sels minéraux, les acides aminés, les vitamines et une source de carbone indispensables aux cellules, et un système tampon pour réguler le pH. Les milieux susceptibles d'être utilisés dans le procédé selon l'invention comprennent par exemple, sans y être limités, le milieu DMEM/F12, le milieu DMEM, le milieu RPMI, le milieu HAM'S F12, le milieu IMDM, et le milieu Knockout™ DMEM (Life Technologies).
Le milieu est de préférence complémenté avec 2 à 20%, de préférence 5 à 15%, de sérum, en particulier de sérum de veau fœtal.
Les progéniteurs mésodermiques sont maintenus dans le milieu de différenciation adipocytaires jusqu'à l'obtention de progéniteurs adipocytaires. Durant cette période, et de manière classique, le milieu de culture peut être changé régulièrement, de préférence tous les deux ou trois jours. Tel qu'utilisé dans ce document, le terme « progéniteurs adipocytaires », « pré- adipocytaires » ou « cellules souches adipocytaires » se réfère à des cellules prolifératives, c'est-à-dire exprimant un marqueur de prolifération cellulaire, de préférence Ki67, qui expriment les marqueurs des cellules souches du tissu adipeux dont CD44 (Gene ID : 960), CD29 (Gene ID : 3688), PDGFRa (Gene ID : 5156) et LY6E (Gene ID : 4061) (Zuk, 2013). De préférence, ces cellules sont négatives pour les antigènes CD31 (Gene ID : 5175) et CD34 (Gene ID : 947). En présence d'un cocktail adipogénique, ces cellules sont capables de se différencier (sans dédifférenciation ou reprogrammation préalable) en adipocytes.
L'apparition de progéniteurs adipocytaires peut être aisément détectée par l'homme du métier par le suivi de l'expression des marqueurs des cellules souches du tissu adipeux tels que CD44, CD29, PDGFRa et LY6E. En effet, comme illustré dans la partie expérimentale et la figure 3E et F, ces marqueurs ne sont que très faiblement exprimés dans les progéniteurs mésodermiques. La différence d'expression est notamment très importante pour le marqueur PDGFRa qui présente un niveau d'expression dans les progéniteurs adipocytaires environ 8 fois plus important que dans les progéniteurs mésodermiques. L'expression de ces marqueurs peut être suivie par toute technique connue de l'homme du métier, par exemple par PCR quantitative en temps réel.
Ainsi, optionnellement, le procédé selon l'invention peut comprendre une étape additionnelle consistant à mesurer ou évaluer l'expression d'un ou plusieurs des marqueurs CD44, CD29, PDGFRa et LY6E.
Selon un mode de réalisation particulier, les progéniteurs mésodermiques sont mis en contact avec le milieu de différenciation adipocytaire durant 2 à 5 jours, de préférence durant 3 à 4 jours, et de manière tout particulièrement préférée durant 4 jours.
Le procédé selon l'invention peut comprendre une étape de récupération des progéniteurs adipocytaires obtenus. Cette récupération peut être réalisée à l'aide de techniques classiques bien connues de l'homme du métier. Les progéniteurs peuvent notamment être détachées de la matrice ou du support par l'action d'enzymes telles que la collagénase IV ou une solution de détachement cellulaire commerciale telle que TryPLE™ express (Life Technologies). Ceux-ci peuvent ensuite être isolés sur la base de différents marqueurs comme par exemple CD44 ou CD29. Les progéniteurs adipocytaires peuvent ensuite être réensemencés sur des matrices mimant la matrice extracellulaire telles que décrites ci-dessus et bien connues de l'homme du métier. De nombreuses variétés sont disponibles dans le commerce. Ces matrices peuvent comprendre des cellules nourricières telles que des fïbroblastes embryonnaires de souris (cellules MEF) ou des cellules humaines foreskin (cf. la demande de brevet EP 2182052) de préférence en présence d'un inhibiteur de la voie de signalisation FGF, tel que le composé SU5402 (Mohammadi et al. 1997). Le système de culture utilisé est de préférence un système de culture en monocouche adhérente. Ce système comprend un support solide, par exemple du verre ou du plastique, généralement revêtu d'une matrice ou d'un substrat favorisant l'adhérence des cellules. Le substrat peut être un substrat protéique constitué de facteurs d'attachement et favorisant l'adhésion des cellules au support. Ces facteurs d'attachement peuvent notamment être choisis parmi la poly-L- lysine, le collagène, la fibronectine, la laminine ou la gélatine. Alternativement, les progéniteurs adipocytaires obtenus par le procédé selon l'invention peuvent être mis en contact avec un milieu de maturation adipocytaire jusqu'à l'obtention d'adipocytes.
La présente invention concerne donc également un procédé de production in vitro d'adipocytes comprenant la mise en contact des progéniteurs adipocytaires obtenus par le procédé selon l'invention, avec un milieu de maturation adipocytaire jusqu'à l'obtention d'adipocytes.
Comme précédemment, cette mise en contact peut être réalisée par simple changement du milieu de culture ou par repiquage dans un système de culture adhérent comme décrit précédemment et comprenant le milieu de maturation adipocytaire. De préférence les progéniteurs adipocytaires sont mis en contact avec un milieu de maturation adipocytaire par simple changement du milieu de culture.
Le milieu de maturation adipocytaire est un milieu de culture permettant à la fois la survie et la prolifération des progéniteurs adipocytaires mais également induisant ou favorisant la différenciation de ces cellules en adipocytes.
Le milieu de culture de base utilisé dans le milieu de maturation adipocytaire peut être le même milieu de culture de base que celui utilisé dans le milieu de différenciation adipocytaire. De manière alternative, il peut être différent. Selon un mode de réalisation, le milieu de culture de base utilisé dans le milieu de maturation adipocytaire est un milieu minimum synthétique de base comprenant notamment les sels minéraux, les acides aminés, les vitamines et une source de carbone indispensables aux cellules, et un système tampon pour réguler le pH. Les milieux susceptibles d'être utilisés dans le procédé selon l'invention comprennent par exemple, sans y être limités, le milieu DMEM/F12, le milieu DMEM, le milieu RPMI, le milieu HAM'S F12, le milieu IMDM, et le milieu Knockout™ DMEM (Life Technologies).
Ce milieu est de préférence complémenté avec 2 à 20%, de préférence 5 à 15%, de sérum, en particulier de sérum de veau fœtal.
Selon un mode de réalisation préféré, le milieu de maturation adipocytaire comprend, ou consiste essentiellement en, un milieu de culture de base complémenté par de l'insuline, et optionnellement avec du sérum. De préférence, le milieu comprend 0,1 à 5 μg/mL d'insuline, de manière plus particulièrement préférée environ 1 μg/mL d'insuline.
Les progéniteurs adipocytaires sont maintenus dans le milieu de maturation adipocytaire jusqu'à l'obtention d'adipocytes. Durant cette période, et de manière classique, le milieu de culture peut être changé régulièrement, de préférence tous les deux ou trois jours.
Tel qu'utilisé dans ce document, le terme « adipocytes» se réfère à des cellules caractérisées par l'expression génique de C/ΕΒΡβ (Gene ID : 1051), C/ΕΒΡδ (Gene ID : 1052), C/EBPa (Gene ID : 1050) et PPARy (Gene ID : 5468) et par une accumulation de lipides neutres sous forme de gouttelettes lipidiques détectables par une coloration à l'huile rouge. Les adipocytes peuvent être également caractérisés par l'expression du récepteur à l'insuline (Gene ID : 3667), de la périlipine 1 (Gene ID 5346), de la cavéoline 1 (Gene ID : 857) ou du transporteur au glucose GLUT4 (Gene ID : 442992).
Par ailleurs, les inventeurs ont observé que les adipocytes obtenus par le procédé selon l'invention exprimaient également les marqueurs des adipocytes bruns tels que les gènes PGC1 (Gene ID : 10891), P RDM 16 (Gene ID : 63976) et UCP1 (Gene ID : 7350) mais également les marqueurs spécifiques des adipocytes beiges tels que TMEM26 (Gene ID : 219623), CITED1 (Gene ID : 4435), CD 137 (GenelD : 3604) et HOXCÇ (Gene ID : 3225). L'apparition des adipocytes peut être aisément détectée par l'homme du métier par le suivi de l'expression des marqueurs spécifiques des adipocytes, des adipocytes bruns et des adipocytes beiges tels que définis ci-dessus, de préférence par le suivi des marqueurs C/ΕΒΡδ, PPARy, CITED1 et PGCla. L'expression de ces marqueurs peut être suivie par toute technique connue de l'homme du métier, par exemple par PCR quantitative en temps réel. De manière alternative, l'apparition des adipocytes peut être aisément détectée par une coloration des cellules à l'huile rouge.
Ainsi, optionnellement, le procédé selon l'invention peut comprendre une étape additionnelle consistant à mesurer ou évaluer l'expression d'un ou plusieurs des marqueurs C/ΕΒΡδ, PPARy, CITED1 et PGCla et/ou à suivre l'apparition des adipocytes par coloration des cellules à l'huile rouge.
Selon un mode de réalisation particulier, les progéniteurs adipocytaires sont mis en contact avec le milieu de maturation adipocytaire durant 5 à 20 jours ou durant 5 à 15 jours, de préférence durant 10 à 12 jours, et de manière tout particulièrement préférée durant 12 jours.
La présente invention concerne également les progéniteurs adipocytaires et les adipocytes obtenus par le procédé selon l'invention.
Elle concerne également une composition pharmaceutique comprenant des progéniteurs adipocytaires et/ou des adipocytes obtenus par le procédé selon l'invention, et un ou plusieurs excipients pharmaceutiquement acceptables.
Les excipients pharmaceutiquement acceptables doivent être compatibles avec les cellules et peuvent être, par exemple, un milieu de culture, une solution tampon ou une solution saline. En particulier, la composition peut comprendre du Matrigel™ ou un excipient équivalent.
Dans un mode de réalisation préféré, la composition pharmaceutique est appropriée pour une administration parentérale, de préférence par voie sous-cutanée, en particulier pour une administration directement dans le tissu adipeux. La composition pharmaceutique peut être formulée conformément aux pratiques pharmaceutiques standards connues par l'homme de l'art.
Dans un mode de réalisation particulier, la composition pharmaceutique comprend des progéniteurs adipocytaires et/ou des adipocytes obtenus par le procédé selon l'invention, encapsulés dans une matrice biocompatible. De nombreuses technologies d'encapsulation peuvent être utilisées notamment celles décrites dans le document WO 91/10425.
La composition pharmaceutique peut également comprendre un ou plusieurs composés actifs supplémentaires, par exemple, des composés connus pour améliorer la survie des cellules, la prolifération ou de prévenir toute contamination.
Selon encore un autre aspect, la présente invention concerne l'utilisation thérapeutique des progéniteurs adipocytaires et/ou adipocytes obtenus par le procédé selon l'invention, en particulier pour le traitement des lipodystrophies ou de troubles métaboliques.
La présente invention concerne donc les progéniteurs adipocytaires et/ou les adipocytes obtenus par le procédé selon l'invention, pour une utilisation dans le traitement d'une lipodystrophie ou de troubles métaboliques. Elle concerne également une composition pharmaceutique selon l'invention pour une utilisation dans le traitement d'une lipodystrophie ou de troubles métaboliques.
La présente invention concerne également l'utilisation de progéniteurs adipocytaires et/ou d'adipocytes obtenus par le procédé selon l'invention, pour la préparation d'un médicament destiné au traitement ou à la prévention d'une lipodystrophie ou de troubles métaboliques
La présente invention concerne en outre une méthode de traitement d'une lipodystrophie ou d'un trouble métabolique comprenant l'administration au sujet à traiter d'une quantité thérapeutiquement efficace de progéniteurs adipocytaires et/ou adipocytes obtenus par le procédé selon l'invention. De préférence, le sujet à traiter est humain.
Tel qu'utilisé ici, le terme « trouble métabolique » se réfère à des anomalies de la régulation glycémique, notamment l'hyperglycémie à jeun, l'intolérance au glucose, le diabète, notamment le diabète de type 2, ou Pinsulino-résistance, ou à une dyslipidémie associées ou non à une obésité ou à un syndrome lipodystrophique. Un patient peut être considéré comme obèse lorsque son indice de masse corporelle est supérieur à 25, de préférence supérieur à 28, et de manière plus particulièrement préférée supérieur à 30.
Les lipodystrophies sont des troubles caractérisés par une perte sélective de tissu adipeux à partir de diverses régions du corps. L'ampleur de la perte de graisse peut aller de très petites zones à l'absence quasi-totale de tissu adipeux sur l'ensemble du corps. Les problèmes rencontrés par les patients peuvent être purement esthétiques ou mener à des complications métaboliques sévères, globalement proportionnelles à l'importance de la perte adipeuse.
Les lipodystrophies sont classées selon le caractère généralisé ou partiel de la perte adipeuse, et la participation ou non de facteurs génétiques connus. Les lipodystrophies d'origine génétique sont des maladies monogéniques, soit congénitales, soit d'apparition retardée. Plusieurs gènes responsables de lipodystrophies héréditaires ont été identifiés tels que par exemple, les gènes codant pour les lamines de type A, PAGPAT2, la cavéoline-1, la cavine-1, la seipine, PPARg, la périlipine, CIDEC, ou Akt2 (Guénantin et al. 2014). Les lipodystrophies acquises peuvent être la conséquence de traitements médicamenteux (notamment des thérapies antivirales ou des injections d'insuline ou d'autres médicaments) ou de maladies le plus souvent dysimmunitaires (par exemple les syndromes de Lawrence et de Barraquer-Simons).
Les principales lipodystrophies conduisant à des troubles métaboliques (représentant des syndromes lipodystrophiques) sont les lipodystrophies généralisées d'origine génétique appelées CGL pour « congénital generalized lipodystrophy » ou syndrome de Berardinelli-Seip; les lipodystrophies partielles d'origine génétique (FPLD pour « familial partial lipodystrophy »); le syndrome de lipodystrophie généralisée acquise type Lawrence, le syndrome de lipodystrophie partielle de Barraquer-Simons, la lipodystrophie liée à l'infection par le VIH et aux thérapies antirétrovirales ; des syndromes multi-systémiques comportant une lipodystrophie tels que les syndromes auto -inflammatoires type CANDLE (JASP, JMP, ou syndrome de Nakajo) liés à des mutations du gène PSMB8, la progeria de Hutchinson-Gilford et autres syndromes progéroïdes dont la dysplasie acro-mandibulaire, liés aux mutations des lamines A/C ou de ZMPSTE24, la progeria type Werner lié aux mutations de la protéine WR , le nanisme syndromique avec lipoatrophie associée aux mutations de PCYT1A (phosphate cytidylyltransferase 1 alpha), le nanisme microcéphalique asssocié aux mutations de NSMCE2, et d'autres syndromes comportant une lipodystrophie de cause encore inconnue.
Selon un mode de réalisation, des cellules somatiques, de préférence des fîbroblastes, provenant du patient à traiter, sont reprogrammées afin d'obtenir des CSPi. Des progéniteurs adipocytaires et/ou adipocytes sont ensuite obtenus par le procédé selon l'invention, à partir de ces CSPi, avant d'être administrés au patient, de préférence par injection sous-cutanée. Selon un mode de réalisation particulier, la méthode de traitement selon l'invention comprend donc la production de progéniteurs adipocytaires et/ou d'adipocytes à partir de cellules pluripotentes induites obtenues à partir de cellules somatiques du patient à traiter, et l'administration des progéniteurs adipocytaires et/ou adipocytes ainsi obtenus audit patient.
Dans le cas de lipodystrophies causées par une mutation génétique, en particulier pour les lipodystrophies congénitales, la mutation à l'origine de la lipodystrophie peut être détectée et corrigée selon des méthodes bien connues de l'homme du métier, par exemple par recombinaison homologue ou par des méthodes d'ingénierie génétique basées sur ZFN, TALEN, ou CRISPR/Cas (Gaj et al, 2013). Cette correction est de préférence réalisée avant la prolifération et la différenciation des CSPi. Les progéniteurs adipocytaires et/ou adipocytes obtenus par le procédé selon l'invention à partir de ces CSPi « corrigées » sont ensuite administrés au patient.
Les progéniteurs adipocytaires et/ou adipocytes obtenus par le procédé selon l'invention, peuvent être utilisés dans le traitement des lipodystrophies pour combler les zones corporelles creusées par la perte de tissu adipeux. Dans ce cas, les progéniteurs adipocytaires et/ou adipocytes sont de préférence injectés par voie sous-cutanée directement dans la zone à combler.
Lorsque les progéniteurs adipocytaires et/ou adipocytes obtenus par le procédé selon l'invention, sont utilisés dans le traitement de troubles métaboliques, ceux-ci sont de préférence injectés par voie sous-cutanée, en particulier directement dans le tissu adipeux, afin d'augmenter la proportion d'adipocytes présentant une activité thermogénique ou susceptible de présenter cette activité, par exemple après induction par un stimulus thermogénique. La présente invention concerne également une méthode de traitement d'une lipodystrophie ou d'un trouble métabolique comprenant l'administration à un sujet, de préférence humain, d'une quantité thérapeutiquement efficace de progéniteurs adipocytaires et/ou d'adipocytes obtenus par le procédé selon l'invention.
Le terme « traitement » tel qu'utilisé dans ce document, se réfère à une amélioration ou disparition des symptômes, un ralentissement de la progression de la maladie, un arrêt de l'évolution de la maladie ou une disparition de la maladie. Ce terme englobe aussi bien le traitement préventif que curatif. Le terme « quantité thérapeutiquement efficace » tel qu'utilisé ici, se réfère à une quantité suffisante pour avoir un effet sur au moins un symptôme esthétique (comblement) ou métabolique de la lipodystrophie ou du trouble métabolique (restauration de l'activité métabolique du tissu adipeux).
La présente invention concerne également un kit pour produire in vitro des progéniteurs adipocytaires ou des adipocytes.
Ce kit comprend :
- un premier récipient contenant un ou plusieurs composés présents dans le milieu de différenciation mésodermique tel que décrit ci-dessus, de préférence un ou plusieurs morphogènes appartenant à la superfamille TGF-β, en particulier un ou plusieurs morphogènes sélectionnés dans le groupe constitué de l'activine A, l'activine B, la protéine BMP-4, la protéine BMP-2, le TGF-βΙ, le TGF-P2, le TGF-P3 et une combinaison quelconque de ceux-ci,
- un second récipient contenant un ou plusieurs composés présent dans le milieu de différenciation adipogénique tel que décrit ci-dessus, de préférence de l'insuline, un de ses analogues ou de l'IGF-1, un glucocorticoïde et un agent augmentant l'adénosine monophosphate cyclique (AMPc) intracellulaire, et de manière plus particulièrement préférée de l'insuline, de la dexaméthasone, du 3-isobutyl-l-méthylxanthine, et optionnellement de l'indométacine; et
- optionnellement un troisième récipient contenant un ou plusieurs composés présents dans le milieu de maturation adipogénique tel que décrit ci-dessus, de préférence de l'insuline.
De préférence, le kit comprend des récipients contenant chacun un ou plusieurs composés à une concentration ou dans une quantité qui facilite la reconstitution et/ou l'utilisation du milieu de différenciation et/ou de maturation et la mise en œuvre du procédé selon l'invention.
Le kit selon l'invention peut également comprendre un récipient contenant un milieu de base utilisé dans le milieu de différenciation mésodermique tel que décrit ci- dessus, un récipient contenant un milieu de base utilisé dans le milieu de différenciation adipogénique tel que décrit ci-dessus ou un récipient contenant du milieu de culture de base utilisé dans le milieu de maturation adipocytaire tel que décrit ci-dessus. Dans un mode particulier, le kit comprend un récipient contenant un milieu de différenciation mésodermique tel que décrit ci-dessus, un récipient contenant un milieu de différenciation adipogénique tel que décrit ci-dessus et optionnellement un récipient contenant un milieu de maturation adipocytaire tel que décrit ci-dessus.
Selon un autre mode de réalisation particulier, le kit comprend
- un premier récipient contenant de l'activine A et/ou la protéine BMP-4, et optionnellement un milieu de culture de base sans sérum, de préférence adapté à la prolifération des cellules humaines hématopoïétiques;
- un second récipient contenant de l'insuline, de la dexaméthasone et de ΓΙΒΜΧ, et optionnellement un milieu de culture de base, de préférence un milieu minimum synthétique de base avec ou sans sérum ; et
- optionnellement un troisième récipient contenant de l'insuline et optionnellement un milieu de culture de base, de préférence un milieu minimum synthétique de base avec ou sans sérum.
Le second récipient peut en outre comprendre de l'indométacine.
Le kit selon l'invention peut également comprendre un système de culture adhérent, en particulier sous forme de flacon, de plaque multipuits ou de boites.
Le kit peut contenir également une notice d'instructions indiquant les modalités de préparation et/ou d'utilisation des milieux de différenciation ou de maturation pour produire in vitro des progéniteurs adipocytaires ou des adipocytes selon le procédé de l'invention.
La présente invention concerne également l'utilisation du kit selon l'invention pour la production in vitro de progéniteurs adipocytaires et/ou d'adipocytes selon les procédés de l'invention.
Selon un autre aspect, la présente invention concerne l'utilisation des progéniteurs adipocytaires et/ou adipocytes obtenus par le procédé selon l'invention pour le criblage de molécules d'intérêt thérapeutique.
Les molécules d'intérêt thérapeutique peuvent être notamment des molécules activant le phénotype beige des adipocytes, et plus particulièrement des molécules augmentant l'activité thermogénique des tissus adipeux. Ces molécules peuvent notamment être utilisables dans le traitement ou la prévention de troubles métaboliques tels que décrits ci-dessus. La présente invention concerne donc une méthode de criblage de molécules d'intérêt comprenant
-la mise en contact de progéniteurs adipocytaires et/ou d'adipocytes obtenus par le procédé selon l'invention, avec les molécules candidates, et
- la sélection de molécules présentant l'activité recherchée.
La présente invention concerne en particulier une méthode de criblage de molécules stimulant l'activité thermogénique des adipocytes comprenant
-la mise en contact d'adipocytes obtenus par le procédé selon l'invention, avec une ou plusieurs molécules candidates, et
- la sélection des molécules stimulant l'activité thermogénique des adipocytes.
L'activité thermogénique des adipocytes peut être évaluée par des techniques bien connues de l'homme du métier, telles que, par exemple, des méthodes d'évaluation indirectes comprenant la mesure de la consommation en oxygène des cellules (technologies Oxoplate® ou Seahorse).
Selon la nature des molécules recherchées, les cellules souches pluripotentes utilisées pour obtenir les progéniteurs adipocytaires et/ou adipocytes, peuvent être obtenues à partir d'un sujet sain ou à partir d'un sujet présentant une pathologie définie, par exemple un sujet atteint d'un trouble métabolique tel que défini ci-dessus. Toutes les références citées dans cette description sont incorporées par référence dans la présente demande. D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture des exemples suivants donnés à titre illustratif et non limitatif.
EXEMPLES Matériel et méthodes
Culture des cellules souches humaines à pluripotence induite (iPS)
La technique de reprogrammation des fîbroblastes humains en iPS utilisée est celle issue du protocole publié par Yamanaka et al (Takahashi et al, 2007), modifié par l'utilisation d'un vecteur viral (virus Sendaï). Les cellules iPS issues de sujets témoins ont été cultivées sur Matrigel™ (hESC Matrigel BD Biosciences Cat n°3542777) et le milieu de propagation mTESRl™ (STEMCELL™ Technologies Cat n°05850) a été changé quotidiennement. Les cellules ont été soumises tous les 4 jours à la collagénase de type IV (Gibco) (45 min - 37°C) à la concentration de 1 mg/ml puis centrifugées à 800 rpm pendant 4 min. Les cellules ont ensuite été resuspendues en milieu mTESRl™ et les clones ont été isolés mécaniquement à l'aide d'une pipette de 5 mL. Des amas d'une vingtaine de cellules ont ensuite été ensemencés sur une boite préalablement incubée avec du Matrigel™.
Différenciation adipocytaire
Une représentation schématique d'un mode de réalisation selon l'invention est présentée dans la Figure 1.
Après décollement enzymatique et dissociation mécanique, les cellules iPS ont été ensemencées sur Matrigel™. Après un ou deux jours de culture en mTESRl™, permettant d'obtenir 70% de confluence cellulaire, les cellules ont été placées, au temps défini comme J0, en milieu de différenciation permettant l'obtention de progéniteurs mésodermiques : STEMPro34 complet (Life technologies; Cat#10639011) enrichi en GlutaMAX à 2mM (Invitrogen; Cat#35050061), acide ascorbique à 10 μg/mL (Sigma; Cat#A4403), BMP4 à 10 ng/ml (R&D Systems; Cat#314-BP) et activine A à 25 ng/ml (R&D Systems; Cat#338-AC). Ce milieu d'induction mésodermique a été renouvelé à J2.
A J4, la différenciation adipocytaire des progéniteurs mésodermiques a été induite par l'utilisation du milieu de différenciation DMEM/F12 10% S VF supplémenté par 10 μg/ml d'insuline (Sigma Cat#I9278), 0,5 mM d'isobutylméthylxanthine (SIGMA, Cat#I5879), 1 μΜ de dexaméthasone (Sigma Cat#D4902) et 50 μΜ d'indométacine (SIGMA Cat#I7378). A J7, le milieu de culture a été renouvelé à l'identique. Ensuite, afin de permettre la maturation des adipocytes, les cellules ont été cultivées en DMEM/F12 10%) SVF supplémenté par ^g/ml d'insuline jusqu'à J20.
Immunofluorescence
Les cellules ont été fixées avec du PFA 3 % pendant 15 minutes à température ambiante. Les sites non spécifiques ont été bloqués en incubant les cellules dans du PBS- BSA 3%. La préparation cellulaire a été incubée en présence d'un anticorps monoclonal ou polyclonal spécifique de la protéine d'intérêt (Tableau 1 ci-dessous), dilué dans une solution de PBS, 0.1 % Triton X100 ou 0,1% saponine, 3% BSA 3 %. Le complexe protéine-anticorps ainsi formé a été détecté en incubant les cellules 1 heure à température ambiante à l'abri de la lumière avec un anticorps secondaire qui est couplé de manière covalente à un fluorochrome et dilué dans une solution de PBS, 0.01% triton X100 ou de saponine, 3% BSA. Les anticorps secondaires anti-IgG de lapin, ou anti-IgG de souris ont été couplés à l'Alexa 488 (Invitrogen, l/1000ème). La préparation a ensuite été incubée 15 minutes avec 25 ng/mL de Nile Red (Molecular Probes® - N-1142) puis rincée 3 fois au PBS avant d'être incubée 5 minutes dans du DAPI (4'-6 diamidino-2-phénylindole, VWR). Après dépôt du liquide de montage (Fluoromount-G™, Southern Biotech), les cellules ont été observées grâce à un microscope confocal (Leica).
Tableau 1 : Anticorps utilisés
Anticorps Référence
OCT4 Bovision 3576
SOX2 Milipore AB5603
NANOG Cell signaling D73G4
SSEA3/4 R&D MAB1435
TRA-1-60 MAB4360 - Millipore
TRA-1-81 MAB4381 - Millipore
MESP1 Abcam Ab77013
T BOX R&D AF2085
CD29 BD Biosciences PE 555443
CD44 BD Biosciences PE 550989
PDGFRA Cell signaling D1E1E
KI67 AbCam Abl5580
C/EBPA Santa Cruz 14A4
GLUT4 Santa Cruz H61
PPARg Santa Cruz 7273
IRB Santa Cruz 29B4
PERILIPIN1 Progen GP29
CAVEOLIN1 BD Biosciences 610059 P-PY Santa Cruz PY99
P-A T Santa Cruz Ser473
A T Santa Cruz H136
UCP1 Abcam 23841
CITED1 Cell signaling 5H6
BACTIN Sigma A5441
Coloration à l 'alcaline phosphatase
Les cellules ont été fixées avec de l'éthanol 95% pendant 15 minutes à température ambiante. Après 3 rinçages au PBS les cellules ont ensuite été incubées pendant 5 minutes à 37% - 5% C02 avec une solution de SIGMAFAST™ BCPI®/NBT (Cat#B5655).
Coloration des lipides neutres à l 'huile rouge
La coloration à l'huile rouge a été effectuée sur des adipocytes après 20 jours de différenciation. Après rinçage au PBS IX, les cellules ont été fixées dans du paraformaldéhyde 4% (m/v) pendant lh puis incubées pendant 2 h dans une solution d' «Oil red O» (Sigma) diluée dans l'isopropanol. Les cellules ont ensuite été rincées 4 fois à l'eau du robinet.
PCR quantitative en temps réel
Les ARNs totaux ont été extraits à l'aide du kit « Nucleospin RNA» (Macherey Nagel) selon les recommandations du fabricant. La concentration des ARNs totaux extraits ainsi que leur contamination par des solvants ou des sels ont été évaluées par microspectrophotométrie (Nanodrop). La transcription inverse a été réalisée à l'aide du kit « High capacity cDNA reverse transcription kit » (Applied Biosystem). La PCR quantitative a ensuite été réalisée en ajoutant 2
Figure imgf000031_0001
d'ADNc dilués 10 fois, 10 de mix de PCR SYBR Green I (Roche Diagnostics, incluant l'ADN polymérase, les dNTPs, 3 mM de MgC12 et la sonde fluorescente SYBR Green), 0,2 μΜ d'amorce sens et 0,2 μΜ d'amorce anti-sens (Tableau 2 ci-dessous). Le gène de référence GAPDH a été utilisé pour normaliser l'expression des gènes d'intérêt. Tableau 2 : Amorces utilisées
Gène Amorce Sens Antisens
atgcctcacacggagactgt cagggctgtcctgaataagc
NANOG
(SEQ ID NO : 1) (SEQ ID NO : 2) gggggaatggaccttgtatag gcaaagctcctaccgtacca
SOX2
(SEQ ID NO : 3) (SEQ ID NO : 4) gcttcaagaacatgtgtaagctg agggtttccgctttgcat
OCT3/4
(SEQ ID NO : 5) (SEQ ID NO : 6) gctgtgacaggtacccaacc catgcaggtgagttgtcagaa
T BOX
(SEQ ID NO : 7) (SEQ ID NO : 8) ctgttggagacctggatgc cgtcagttgtcccttgtcac
MESP1
(SEQ ID NO : 9) (SEQ ID NO : 10)
Gacatcagcgcctacatcg ggctgtgctggaacaggt
C/EBPa
(SEQ ID NO : 11) (SEQ ID NO : 12) ggacataggagcgcaaagaa ggacataggagcgcaaagaa
C/ΕΒΡδ
(SEQ ID NO : 13) (SEQ ID NO : 14) ccagccccctcactaatagc ccctgctctgagctgtcg
C/ΕΒΡβ
(SEQ ID NO : 15) (SEQ ID NO : 16) cagtggggatgtctcataa cttttggcatactctgtgat
PPARy
(SEQ ID NO : 17) (SEQ ID NO : 18) ccacctgagtgagattgtgg tcttcaggaagtccaggtgaa
PDGFRa
(SEQ ID NO : 19) (SEQ ID NO : 20) gccatcctctccagaatgaa gcaggagaagcacatcagc
LY6E
(SEQ ID NO : 21) (SEQ ID NO : 22)
Cgatgccatcatgcaagt acaccagcagccgtgtaac
CD29
(SEQ ID NO : 23) (SEQ ID NO : 24) tgccgctttgcaggtgtat ggcctccgtccgagaga
CD44
(SEQ ID NO : 25) (SEQ ID NO : 26)
Tgagagggccaagcaaag ataaatcacacggcgctctt
PGCl
(SEQ ID NO : 27) (SEQ ID NO : 28) tggctgcttctggactca atattatttacaacgtcaccgtcact
PRDM16
(SEQ ID NO : 29) (SEQ ID NO : 30)
Tgaaggccaccatgtatgag caggaaccgcagcagact
CIDEA
(SEQ ID NO : 31) (SEQ ID NO : 32) ctcaccgcagggaaagaa ggttgcccaatgaatactgc
UCP1
(SEQ ID NO : 33) (SEQ ID NO : 34) accggacttggagtcagaga Cagtttcgccacctgaaaac
CITED1
(SEQ ID NO : 35) (SEQ ID NO : 36) ttgcaccatgagacccagt tgctggtattctgtgatgttcc
TMEM26
(SEQ ID NO : 37) (SEQ ID NO : 38) agccacatcgctcagacac gcccaatacgaccaaatcc
GAPDH
(SEQ ID NO : 39) (SEQ ID NO : 40)
Atgctggacccaacacaaat tctttcactttgccaaacacc
PPIA
(SEQ ID NO : 41) (SEQ ID NO : 42) agctgttacaacatagtagccac tcctgcaatgatcttgtcctct
CD137
(SEQ ID NO : 43) (SEQ ID NO : 44) gcagcaagcacaaagagga cgtctggtacttggtgtaggg
HOXC9
(SEQ ID NO : 45) (SEQ ID NO : 46)
PPARa gcactggaactggatgacag tttagaaggccaggacgatct
(SEQ ID NO : 47) (SEQ ID NO : 48)
cctcctcgatgcctacaaac gctggcaaagtcaagaaggt
DI02
(SEQ ID NO : 49) (SEQ ID NO : 50)
MYF5 ctatagcctgccgggaca tggaccagacaggactgttacat
(SEQ ID NO : 51) (SEQ ID NO : 52)
PAX7 gaaaacccaggcatgttcag gcggctaatcgaactcactaa
(SEQ ID NO : 53) (SEQ ID NO : 54)
tgaagaacatgtgagaggtttgac gaaaactgaatctccattccacaa
CD24
(SEQ ID NO : 55) (SEQ ID NO : 56)
Différenciation des iPS en cellules souches mésenchymateuses (MSCs)
Les iPS ont été passées mécaniquement puis ensemencées sur gélatine (Sigma) dans un milieu de différenciation composé de Knock Out DMEM (Invitrogen), 20% SVF, P/o d'acides aminés non essentiels, 1% Glutamax (Invitrogen), 50 μΜ β-Mercaptoethanol (Sigma), FGF2 10 ng/ml (Peprotech), Aa2P ImM (Sigma) (P0). Après 10 à 15 jours de culture, les cellules ont été passées à la trypsine (Gibco) et diluées au 1/2 (PI). Lorsque 90%) de confluence ont été atteints, les cellules ont été passées et diluées au 1/3 (P2). Pour les passages suivants, les cellules ont été ensemencées sur gélatine à raison de 8000 cellules par cm2. Après 6 à 7 passages, une population homogène et stable de MSCs a été obtenue.
Stimulation β-adrénergique des adipocytes
Les adipocytes ont été traités ou non pendant 6h à l'isoprotérenol 10 5 M (Sigma), puis les échantillons protéiques ont été récoltés. Pour une stimulation plus longue, les adipocytes ont été traités par un analogue non métabolisable de l'APMc, le 8-Br-AMPc (Sigma) pendant 48h.
Marquages des adipocytes au Mitotracker
Les cellules vivantes à J20 de différentiation ont été incubées avec 1 μΜ de MitoTracker® Red CMXRos (Life technologies®) pendant 45min à l'obscurité à 37°C - 5%> de C02. Après 2 rinçages au PBS, les cellules ont été fixées au PFA 3 % pendant 15 minutes à température ambiante. La préparation a ensuite été incubée 15 minutes avec lng/mL de Bodipy 493/503 (Molecular Probes® - D-3922) puis rincée 3 fois au PBS avant d'être incubée 5 minutes dans du DAPI (4'-6 diamidino-2-phénylindole, VWR). Après dépôt du liquide de montage (Fluoromount-G™, Southern Biotech), les cellules ont été observées grâce à un microscope à confocal (Leica). Western Blot
Les adipocytes ont été lysés dans un volume approprié de tampon de lyse (50 mM Tris pH 7,4, 0,27 M saccharose, 1 mM Na-orthovanadate ρΗΙΟ, 1 mM EDTA, 1 mM EGTA, 10 mM β-glycérophosphate, 50 mM NaF, 5 mM pyrophosphate, 1% (w/v) Triton X-100, 0,1 % (w/v) 2-Pmecaptoéthanol, et inhibiteurs de protéases). Les lysats totaux ont été centrifugés (15 000g, 4°C pendant 10 mn) puis stockés à -80°C jusqu'à utilisation. Les concentrations en protéines ont été déterminées selon la méthode de Bradford avec l'albumine bovine pour standard. Les échantillons ont migré en SDS/PAGE sur des gels de polyacrylamide, ont été transférés sur des membranes de nitrocellulose (Amersham Biosciences), bloqués 2 h à température ambiante dans du tampon TBS-T (50mM Tris- HC1 pH 7.6, 150mM NaCl 0.1% (v/v) Tween-20) additionné de 5% (m/v) de lait écrémé ou BSA et incubés avec les différents anticorps spécifiques de la protéine d'intérêt (Tableau 1 ci-dessus).
Les membranes de nitrocellulose ont été rincées 3 fois 5 mn dans le tampon TBS- T avant d'être incubées avec l'anticorps secondaire couplé à la peroxydase. Les signaux ont été révélés en chemiluminescence (Pierce-Perbio Biotechnologies) par exposition sur des films autoradiographiques (Kodak).
Caryotypage standard
Les caryotypes ont été obtenus selon les méthodes classiques de caryotypage des « Bandes G » et des « Bandes R ». Greffe d' adipocytes in vivo
A 18 jours de culture, les cellules ont été récoltées avec du TrypLE Express (#12604021 Life Technologie) et resuspendues dans du milieu DMEM/F12/Matrigel comprenant 10 μg/mL d'insuline, 500 μΜ d'IBMX, ΙμΜ de dexaméthasone et 50 μΜ d'indométacine. 107 cellules ont été injectées en sous-cutanée dans le dos de souris Nude FoxNlNu (Taconic) âgées de 6 semaines. Ces souris ont également été injectées au niveau du sternum avec 3.107 cellules souches mésenchymateuses (CSM) dérivées de cellules iPS ou du Matrigel seul comme contrôle. Les souris sont euthanasiées 30 jours après la greffe. Coloration à l 'hématoxyline et à l 'éosine (HE)
Les pannicules adipeux humains néo formés sont excisés, fixés dans 4% PFA, inclus en paraffine, puis coupés en sections de 4μιη. Après déparaffmage, les lames sont colorées dans des automates. Les lames sont incubées 5 min dans l'hématoxyline, rincées à l'eau courante, incubées 2 min dans une solution d'éosine, rincées à l'eau courante, plongées dans deux bains successifs d'alcool absolu puis dans le toluène avant leur montage avec une résine.
Immunomarquage avec anticorps anti-perilipinel : Immunohistochimie
Après déparaffmage, les sites antigéniques sont démasqués en fonction de l'anticorps primaire par chauffage (15 min à 95 °C) au bain-marie dans du tampon EDTA pH 8 ou pH9 ou au micro-onde dans du tampon citrate pH6. Une incubation de 5 min en présence de peroxyde d'hydrogène (3%) permet l'inhibition des peroxydases endogènes. Le blocage des sites non spécifiques est réalisé par incubation des lames 20 min dans du sérum universel DAKO.
L'anticorps primaire (anti-perilipinel Progen Mab to Perilipin/PLINl - Cat #651156), dilution 1/500 dans du Bond Primary Antibody Diluent (Dako), est incubé pendant une heure à température ambiante. Après plusieurs rinçages successifs dans du tampon de lavage Dako, les lames sont incubées 30 min avec un anticorps secondaire HRP (anti-guinea pig, 1/100 dans du Diluent Antibody). Le marquage immunohistochimique est révélé par 3 incubations de 5 min avec du réactif AEC après rinçage des lames (3-amino-9-ethylcarbazole, kit Vector Laboratories). La révélation est arrêtée en plongeant les lames dans de l'eau courante. Les lames sont ensuite contre- colorées avec de l'Hemalun et montées sur lamelles en milieu de montage aqueux (Glycergel mounting médium, Dako). Résultats
Caractère pluripotent de la lignée d'iPS utilisée
La figure 2 montre que les cellules iPS utilisées présentent les caractères de pluripotence attendus. Les cellules sont organisées en colonies serrées aux contours bien définis (Fig. 2A, 2B). Elles sont positives pour les marqueurs de pluripotence comme la coloration à la phosphatase alcaline (fïg. 2B) et expriment les protéines NANOG, SOX2, OCT4, TRA-1-60, TRA-1-81 et SSEA3/4 (fig. 2C). De plus, ces cellules expriment les gènes OCT4, NANOG et SOX2 à un niveau comparable à celui des cellules souches embryonnaires de la lignée H9, attestant de leur caractère pluripotent (fïg. 2D). Obtention de progéniteurs mésodermiques et adipocytaires
La figure 3 montre la chute de l'expression de marqueurs de pluripotence OCT4, NANOG et SOX2 au cours de la différenciation (fïg. 3 A) et l'induction de l'expression génique de BRACHYURY et MESP1, deux gènes caractérisant le mésoderme précoce, lorsque les cellules iPS sont soumises au milieu spécifique de différenciation mésodermique (fig. 3B). L'expression génique de BRACHYURY (T BOX) et de MESP1 est augmentée de 75 fois après 4 jours de différenciation, montrant la production effective de progéniteurs mésodermiques. L'expression protéique de ces marqueurs a été confirmée par immuno fluorescence (fig. 3C). Comme attendu, l'expression de ces gènes diminue après induction de la différenciation adipocytaire (J6) (fig. 3B). Afin d'attester du caractère spécifique de l'expression de BRACHYURY et MESP1 dans les progéniteurs mésodermiques, l'expression de ces mêmes marqueurs a été analysée au cours de la différenciation de cellules iPS en cellules souches mésenchymateuses (MSC) (fig. 3D). Ces marqueurs ne sont pas exprimés dans les MSC et les progéniteurs mésodermiques obtenus par la méthode selon l'invention sont différents des MSC. Ces progéniteurs mésodermiques se différencient ensuite en progéniteurs adipocytaires exprimant certains marqueurs décrits pour les cellules souches du tissu adipeux humain. En effet, entre 4 et 12 jours de différenciation, l'expression des gènes PDGFRa, LY6E, CD44 et CD29 augmente (fig. 3E). En parallèle, l'expression de CD24 diminue au cours de la différenciation en concordance avec l'engagement vers la voie adipocytaire (fig. 3E). Les marqueurs CD44, CD29, et PDGFRa sont coexprimés au niveau protéique à J12 (fïg. 3F). De plus, ces mêmes cellules sont positives pour le marqueur Ki67 (fïg. 3F), signant la présence d'une population progénitrice proliférative.
Différenciation dipoçytaire
L'expression des gènes adipocytaires spécifiques est mesurée au cours de la différenciation. La figure 4 montre que les expressions géniques de C/EBPa, C/ΕΒΡβ, C/ΕΒΡδ et PPARy, facteurs de transcription induits au cours de la différenciation adipoçytaire, augmentent progressivement entre J8 et J12, après l'addition du cocktail de différenciation adipogénique (J4). Ce niveau d'expression élevé est maintenu à J20. De la même manière l'expression protéique de l'isoforme adipo-spécifïque PPARy2 et de C/ΕΒΡα p30/42 est observée à partir du dixième jour de différenciation (fïg. 5B et 5C). La figure 5C montre que l'expression de protéines jouant un rôle majeur dans l'adipocyte tel que le récepteur de l'insuline (IR : insulin Receptor), les protéines associées aux gouttelettes lipidiques telles que la Périlipinel et la Cavéolinel (fïg. 5C) et le transporteur de glucose GLUT4 (fïg. 5B) est induite lors de la différenciation des cellules adipoçytaire. Q ^n n_d^adi^ocytes
La figure 5A montre une coloration à l'huile rouge des adipocytes à différents grossissements. L'accumulation de lipides est homogène sur l'ensemble de la boite de culture. Les cellules sont organisées en « clusters », présentent une forme arrondie et contiennent plusieurs gouttelettes lipidiques. Ces cellules présentent donc une morphologie caractéristique de l'adipocyte in vitro.
La figure 5B présente une autre méthode de marquage des lipides neutres, avec marquage concomitant du noyau. Les images permettent d'observer le noyau excentré de l'adipocyte, et l'organisation caractéristique des gouttelettes lipidiques.
Efficacité de la différenciation La figure 5 A montre des champs larges d' adipocytes dont les gouttelettes lipidiques ont été marquées par un colorant des lipides neutres. Ces images permettent d'évaluer l'efficacité de la différenciation comme étant supérieure à 60%. En effet, après 20 jours de différenciation, 62% (±2% SEM) des cellules expriment à leur noyau le marqueur adipocytaire C/ΕΒΡα. Les adipocytes obtenus sont alors capables de répondre à un court traitement à l'insuline en induisant une forte phosphorylation de la sous-unité a du récepteur à l'insuline (IR) et de sa cible AKT/PK (fig. 5D).
Obtention d 'adipocytes beiges
La figure 6A montre que les adipocytes obtenus expriment des gènes du « brun classique » comme PGCla, PRDM16 et UCP1, mais n'expriment pas les gènes spécifiques de progéniteurs et d'adipocytes bruns matures tels que MYF5 et ZIC1. L'expression protéique d'UCPl peut-être détectée à partir de J10 (fig. 6B). Ces cellules expriment aussi des gènes spécifiques des adipocytes beiges (ou « brite ») comme TMEM26, CITED1, CD 137 etHOXC9 (fig. 6C). L'expression protéique de CITED1 peut être observée dans les adipocytes différenciés (fig. 6D). De plus, on observe une forte induction protéique d'UCPl après stimulation β-adrénergique. Cette forte induction est une des principales caractéristiques des adipocytes beiges (fig. 6E). En accord avec ce résultat, une stimulation avec le 8-Br-AMPc montre une augmentation du nombre de mitochondries dans les adipocytes beiges après 48h (fig. 6F) et de l'expression des gènes impliqués dans la thermogenèse tels que PGCla, PRDM16, PPARa et DI02 (fig. 6G). Ainsi, tous ces résultats montrent que les adipocytes dérivés des cellules humaines iPS ont un phénotype de type beige.
Formation de tissu adipeux in vivo
Après 18 jours de culture sur Matrigel™ en présence en présence d'un milieu de différenciation adipogénique, 107 cellules sont injectées en sous-cutané dans le dos de souris immunodéfïcientes âgées de six semaines (fig. 7A). Des MSC ou du Matrigel™ seul sont injectés au niveau du sternum des mêmes souris comme contrôle (n=3). Après 30 jours, un pannicule adipeux apparaît au niveau du site d'injection des cellules et non au niveau du site d'injection du Matrigel™. L'analyse histologique des pannicules adipeux obtenus après injection des adipocytes dérivés des cellules iPS humaines révèle un tissu adipeux complètement différencié, organisé et vascularisé (fig. 7C, D). En revanche, les tissus obtenus suite à l'injection par des cellules souches mésenchymateuses (MSC) dérivées de cellules iPS, présentent une composition hétérogène avec de larges zones de cellules de type fïbroblastique et un nombre réduit d' adipocytes (fig. 7C, D). Les cellules qui composent le pannicule adipeux formé à partir des adipocytes ou des MSC dérivés des cellules iPS présentent des gouttelettes lipidiques révélées par le marquage à la perilipinel (fig. 7E). L'ensemble de ces résultats montrent ainsi que les adipocytes obtenus selon l'invention sont capables de former du tissu adipeux in vivo.
Conclusion
La différenciation de cellules souches pluripotentes en deux dimensions permet l'obtention de progéniteurs mésodermiques ayant la capacité de se différencier en progéniteurs adipocytaires puis en adipocytes lorsqu'ils sont soumis à un cocktail adipogénique. Les adipocytes obtenus par la méthode selon l'invention expriment les facteurs de transcriptions caractéristiques de ce type cellulaire et accumulent des lipides sous forme de triglycérides. Ces adipocytes une fois greffés sont capables de former des pannicules adipeux in vivo. De plus, les inventeurs ont démontré que cette méthode permet d'obtenir des adipocytes humain de type beige jusqu'alors non décrits in vitro. Enfin, cette méthode permet d'obtenir des adipocytes en grande quantité en seulement vingt jours à partir de la souche pluripotente indifférenciée.
REFERENCES BIBLIOGRAPHIQUES
Ahfeldt et al. Nat Cell Biol. 2012 Jan 15;14(2):209-19
Chen et al. Nat Methods. 2011 May;8(5):424-9.
Chung et al. Cell Stem Cell. 2008 Feb 7 ; 2(2) : 113-7
Gaj et al. Trends in Biotech. Volume 31, Issue 7, July 2013, Pages 397-405
Guenantin et al. Semin Cell Dev Biol. 2014 May;29C: 148-157
Mohammadi et al. Science. 1997;276:955-960
Patel et al. Stem Cell Rev. Sep 2010; 6(3): 367-380.
Pittenger et al. Science. 1999 Apr 2;284(5411): 143-7.
Rossant et al, J Embryol Exp Morphol 1982 ; 70 :90-l 12
Takahashi, et al. (2007). Cell 131 (5): 861-872
Yamanaka, Cell Stem Cell, 2010. 7(1): p. 1-2. Yu et al, 2007 Science 318 (5858): 1917-1920
Zuk et al. Tissue Eng, 2001. 7(2): p. 211-28.
Zuk, 2013, ISRN Stem Cells, vol. 2013, Article ID 713959. Taura et al, FEBS Lett. 2009 Mar 18;583(6):1029-33
Xiong et al, Aging (Albany NY). 2013 Apr;5(4):288-303
Noguchi et al, Stem Cells Dev. 2013 Nov l;22(21):2895-905

Claims

REVENDICATIONS
1. Procédé de production in vitro de progéniteurs adipocytaires comprenant
- la mise en culture de cellules souches pluripotentes sur un système de culture adhérent et dans un milieu de culture sans sérum ;
- la mise en contact desdites cellules souches pluripotentes avec un milieu de différenciation mésodermique jusqu'à l'obtention de progéniteurs mésodermiques ; et
- la mise en contact desdits progéniteurs mésodermiques avec un milieu de différenciation adipogénique jusqu'à l'obtention de progéniteurs adipocytaires,
et optionnellement la récupération des progéniteurs adipocytaires ainsi obtenus.
2. Procédé selon la revendication 1, dans lequel les cellules souches pluripotentes sont des cellules souches pluripotentes induites.
3. Procédé selon la revendication 1 ou 2, dans lequel le milieu de différenciation mésodermique est un milieu de culture sans sérum comprenant un ou plusieurs morphogènes appartenant à la superfamille du TGF-β, de préférence sélectionnés dans le groupe constitué de l'activine A, l'activine B, la protéine BMP-4, la protéine BMP-2, le TGF-βΙ , le TGF-P2 et le TGF-P3, et une combinaison quelconque de ceux-ci.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le milieu de différenciation mésodermique est un milieu de culture sans sérum comprenant
(i) un morphogène sélectionné dans le groupe constitué de l'activine A et l'activine B, de préférence l'activine A ; et
(ii) un morphogène sélectionné dans le groupe constitué de la protéine BMP-4, la protéine BMP-2, le TGF-βΙ, le TGF-P2 et le TGF-P3, et une combinaison quelconque de ceux-ci, de préférence la protéine BMP-4.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le milieu de culture sans sérum est un milieu adapté à la culture des cellules hématopoïétiques.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les cellules souches pluripotentes sont mises en contact avec le milieu de différenciation mésodermique lorsque la culture présente une confluence d'environ 50 à environ 90%.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le milieu de différenciation adipogénique est un milieu de culture comprenant de l'insuline, l'un de ses analogues ou de l'IGF-1, un glucocorticoïde et un agent augmentant l'adénosine mono-phosphate cyclique (AMPc) intracellulaire.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le milieu de différenciation adipogénique comprend de l'insuline, de la dexaméthasone et du 3- isobutyl- 1 -méthylxanthine.
9. Procédé selon la revendication 7 ou 8, dans lequel le milieu de différenciation adipogénique comprend en outre de l'indométacine.
10. Procédé de production in vitro d'adipocytes comprenant la mise en contact des progéniteurs adipocytaires obtenus par le procédé selon les revendications 1 à 9, avec un milieu de maturation adipocytaire jusqu'à l'obtention d'adipocytes.
11. Procédé selon la revendication 10, dans lequel le milieu de maturation adipocytaire est un milieu de culture comprenant de l'insuline.
12. Progéniteurs adipocytaires obtenus par le procédé selon l'une quelconque des revendications 1 à 9 ou adipocytes obtenus par le procédé selon la revendication 10 ou
11, pour une utilisation dans le traitement d'une lipodystrophie.
13. Progéniteurs adipocytaires obtenus par le procédé selon l'une quelconque des revendications 1 à 9 ou adipocytes obtenus par le procédé selon la revendication 10 ou 11, pour une utilisation dans le traitement d'une anomalie de la régulation glycémique, de préférence sélectionnée dans le groupe constitué de l'hyperglycémie à jeun, l'intolérance au glucose, le diabète, notamment le diabète de type 2, et l'insulino- résistance, ou dans le traitement d'une dyslipidémie associées ou non à une obésité ou à un syndrome lipodystrophique.
14. Progéniteurs adipocytaires obtenus par le procédé selon l'une quelconque des revendications 1 à 9 ou adipocytes obtenus par le procédé selon la revendication 10 ou
11, pour une utilisation selon la revendication 12 ou 13, où les cellules souches pluripotentes utilisées pour la production in vitro des progéniteurs adipocytaires ou des adipocytes sont des cellules souches pluripotentes induites obtenues à partir de cellules somatiques, de préférence des fïbroblastes, provenant du sujet à traiter.
15. Kit pour produire in vitro des progéniteurs adipocytaires ou des adipocytes comprenant :
- un premier récipient contenant un ou plusieurs morphogènes appartenant à la superfamille du TGF-β;
- un second récipient contenant (i) de l'insuline, l'un de ses analogues ou de l'IGF-1, (ii) un glucocorticoïde et (iii) un agent augmentant l'adénosine mono-phosphate cyclique (AMPc) intracellulaire et
- optionnellement un troisième récipient contenant de l'insuline.
16. Kit selon la revendication 15, dans lequel
- le premier récipient contient de l'activine A et/ou de la BMP-4, et
- le second récipient contient de l'insuline, de la dexaméthasone et de ΓΙΒΜΧ, et optionnellement de l'indométacine.
17. Utilisation du kit selon la revendication 15 ou 16 pour la production in vitro de progéniteurs adipocytaires par le procédé selon l'une quelconque des revendications 1 à 9 ou d'adipocytes par le procédé selon la revendication 10 ou 11.
18. Méthode de criblage de molécules stimulant l'activité thermogénique des adipocytes comprenant
-la mise en contact d'adipocytes obtenus par le procédé selon la revendication 10 ou 11, avec une ou plusieurs molécules candidates, et
- la sélection de molécules stimulant l'activité thermogénique des adipocytes.
PCT/FR2015/052085 2014-07-29 2015-07-28 Procédé de production in vitro de progéniteurs adipocytaires et d'adipocytes WO2016016572A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2956768A CA2956768A1 (fr) 2014-07-29 2015-07-28 Procede de production in vitro de progeniteurs adipocytaires et d'adipocytes
EP15757534.1A EP3174972A1 (fr) 2014-07-29 2015-07-28 Procédé de production in vitro de progéniteurs adipocytaires et d'adipocytes
JP2017504790A JP2017522889A (ja) 2014-07-29 2015-07-28 脂肪前駆細胞及び脂肪細胞のインビトロにおける作製のための方法
US15/329,587 US20170211043A1 (en) 2014-07-29 2015-07-28 Method for in vitro production of adipocyte progenitors and adipocytes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1457357 2014-07-29
FR1457357A FR3024462A1 (fr) 2014-07-29 2014-07-29 Procede de production in vitro de progeniteurs adipocytaires et d'adipocytes

Publications (1)

Publication Number Publication Date
WO2016016572A1 true WO2016016572A1 (fr) 2016-02-04

Family

ID=52130348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052085 WO2016016572A1 (fr) 2014-07-29 2015-07-28 Procédé de production in vitro de progéniteurs adipocytaires et d'adipocytes

Country Status (6)

Country Link
US (1) US20170211043A1 (fr)
EP (1) EP3174972A1 (fr)
JP (1) JP2017522889A (fr)
CA (1) CA2956768A1 (fr)
FR (1) FR3024462A1 (fr)
WO (1) WO2016016572A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592004B (zh) * 2019-09-27 2023-06-06 南京市妇幼保健院 一种诱导人iPSCs或ESCs分化为棕色脂肪细胞的方法
JPWO2021181591A1 (fr) * 2020-03-12 2021-09-16
US20230332102A1 (en) * 2020-08-18 2023-10-19 Tosoh Corporation Method for inducing differentiation of pluripotent stem cells into ectodermal, mesodermal, and endodermal cells
CN113493764B (zh) * 2021-07-27 2023-01-24 新乡医学院 一种体外诱导小鼠耳朵间充质干细胞分化为脂肪细胞的方法
CN114736851B (zh) * 2022-01-28 2024-04-12 南京周子未来食品科技有限公司 一种用于制备植物基脂肪培养肉的方法
WO2023163983A1 (fr) * 2022-02-22 2023-08-31 The Regents Of The University Of Michigan Cellules de sertoli artificielles et leur méthode de production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010037130A2 (fr) * 2008-09-29 2010-04-01 The General Hospital Corporation Compositions et procédés de génération de cellules adipocytes reprogrammées et leurs procédés d’utilisation
US20100150885A1 (en) * 2005-06-01 2010-06-17 Joslin Diabetes Center, Inc. Methods and compositions for inducing brown adipogenesis
WO2013082106A1 (fr) * 2011-12-02 2013-06-06 The General Hospital Corporation Différenciation en adipocytes bruns
WO2014026201A1 (fr) * 2012-08-10 2014-02-13 The Trustees Of Columbia University In The City Of New York Micro-tissus adipeux bruns injectables pour le traitement et la prévention de l'obésité et du diabète
EP2703481A1 (fr) * 2011-04-27 2014-03-05 National Center for Global Health and Medicine Adipocytes bruns dérivés de cellules souches pluripotentes, agrégat cellulaire dérivé de cellules souches pluripotentes, leur procédé de production, thérapie cellulaire et thérapie médicale associées

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756628B1 (fr) * 1994-04-29 2007-11-14 Curis, Inc. Recepteurs de surface de cellule morphogenes specifiques d'une proteine et leurs usages
US7763466B2 (en) * 2002-05-17 2010-07-27 Mount Sinai School Of Medicine Of New York University Mesoderm and definitive endoderm cell populations
EP1725654B1 (fr) * 2004-03-19 2019-05-01 Asterias Biotherapeutics, Inc. Procede destine a preparer des preparations cardiomyocytes haute purete utilisees dans la medecine regenerative
CA2725208A1 (fr) * 2008-05-06 2009-11-12 Joslin Diabetes Center, Inc. Procedes et compositions pour induire une adipogenese brune
JP5902092B2 (ja) * 2009-10-19 2016-04-13 セルラー ダイナミクス インターナショナル, インコーポレイテッド 心筋細胞の生成
WO2011115308A1 (fr) * 2010-03-18 2011-09-22 Kyoto University Méthode d'induction de la différenciation de cellules souches pluripotentes en cellules mésodermiques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100150885A1 (en) * 2005-06-01 2010-06-17 Joslin Diabetes Center, Inc. Methods and compositions for inducing brown adipogenesis
WO2010037130A2 (fr) * 2008-09-29 2010-04-01 The General Hospital Corporation Compositions et procédés de génération de cellules adipocytes reprogrammées et leurs procédés d’utilisation
EP2703481A1 (fr) * 2011-04-27 2014-03-05 National Center for Global Health and Medicine Adipocytes bruns dérivés de cellules souches pluripotentes, agrégat cellulaire dérivé de cellules souches pluripotentes, leur procédé de production, thérapie cellulaire et thérapie médicale associées
WO2013082106A1 (fr) * 2011-12-02 2013-06-06 The General Hospital Corporation Différenciation en adipocytes bruns
WO2014026201A1 (fr) * 2012-08-10 2014-02-13 The Trustees Of Columbia University In The City Of New York Micro-tissus adipeux bruns injectables pour le traitement et la prévention de l'obésité et du diabète

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AHFELDT T ET AL: "Programming human pluripotent stem cells into white and brown adipocytes", NATURE CELL BIOLOGY, vol. 14, no. 2, January 2012 (2012-01-01), pages 209 - 219, XP055055708, ISSN: 1465-7392, DOI: 10.1038/ncb2411 *
NOGUCHI M ET AL: "In Vitro Characterization and Engraftment of Adipocytes Derived from Human Induced Pluripotent Stem Cells and Embryonic Stem Cells", STEM CELLS AND DEVELOPMENT, vol. 22, no. 21, November 2013 (2013-11-01), pages 2895 - 2905, XP055186721, ISSN: 1547-3287, DOI: 10.1089/scd.2013.0113 *
TAURA D ET AL: "Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells", FEBS LETTERS, vol. 583, no. 6, 18 March 2009 (2009-03-18), pages 1029 - 1033, XP025973312, ISSN: 0014-5793, [retrieved on 20090227], DOI: 10.1016/J.FEBSLET.2009.02.031 *

Also Published As

Publication number Publication date
JP2017522889A (ja) 2017-08-17
CA2956768A1 (fr) 2016-02-04
FR3024462A1 (fr) 2016-02-05
US20170211043A1 (en) 2017-07-27
EP3174972A1 (fr) 2017-06-07

Similar Documents

Publication Publication Date Title
US9732322B2 (en) Compositions for mesoderm derived ISL1+ multipotent cells (IMPs), epicardial progenitor cells (EPCs) and multipotent C56C cells (C56Cs) and methods of producing and using same
EP3174972A1 (fr) Procédé de production in vitro de progéniteurs adipocytaires et d&#39;adipocytes
EP1527161B1 (fr) Cellules souches issues de tissu adipeux et cellules differenciees issues de ces cellules
CA2639068C (fr) Procede de culture de cellules issues du tissu adipeux et leurs applications
EP2318520B1 (fr) Compositions pour des cellules multipotentes isl1+ issues du mésoderme (imps), des cellules progénitrices épicardiques (epcs) et des cellules cxcr4+cd56+ multipotentes (c56cs) et leurs procédés d&#39;utilisation
EP3060652B1 (fr) Production in vitro de cellules souches d&#39;intestin antérieur
EP3327118B1 (fr) Procédé d&#39;induction de cellules endothéliales vasculaires
KR20160099079A (ko) SC-β 세포 및 조성물 그리고 그 생성 방법
KR20150119427A (ko) 다능성 줄기세포로부터 간세포 및 담관세포의 생성 방법
AU2015267148A1 (en) Methods and systems for converting precursor cells into gastric tissues through directed differentiation
JP7367992B2 (ja) 多能性幹細胞由来腸管オルガノイドの作製法
Ackermann et al. Isolation and investigation of presumptive murine lacrimal gland stem cells
WO2010088735A1 (fr) Procédé de production de cellules progénitrices à partir de cellules différenciées
US20130122589A1 (en) Targeted differentiation of stem cells
NZ716860A (en) Methods and compositions for generating epicardium cells
JP2018512886A (ja) 真正膵臓前駆細胞の単離
WO2023106122A1 (fr) Procédé de production de cellules de crête neurale spécialisées pour la différenciation en lignée mésenchymateuse
JP2013511974A (ja) ヒト胚性幹細胞の分化のための組成物および方法
Honda et al. N-cadherin is a useful marker for the progenitor of cardiomyocytes differentiated from mouse ES cells in serum-free condition
Şişli et al. Regulatory role of apelin receptor signaling in migration and differentiation of mouse embryonic stem cell-derived mesoderm cells and mesenchymal stem/stromal cells
US11857697B2 (en) Compositions and methods for obtaining 3-dimensional lung-like epithelium and related uses thereof
Vaissié Alternatives to “native human islets” for research in vitro and in vivo: pseudo-islets and pancreatic endocrine cells from pluripotent stem cells–the role of progerin in differentiation and maturation
Wilschut et al. Derivation of Engrafting Skeletal Muscle Precursors from Human Embryonic Stem Cells Using Serum-Free Methods
Kärner Directed differentiation of human embryonic stem cells: A model for early bone development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504790

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2956768

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15329587

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015757534

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015757534

Country of ref document: EP