WO2016015602A1 - 一种基于数字总线的空调器翅片总成自动胀管系统 - Google Patents

一种基于数字总线的空调器翅片总成自动胀管系统 Download PDF

Info

Publication number
WO2016015602A1
WO2016015602A1 PCT/CN2015/085003 CN2015085003W WO2016015602A1 WO 2016015602 A1 WO2016015602 A1 WO 2016015602A1 CN 2015085003 W CN2015085003 W CN 2015085003W WO 2016015602 A1 WO2016015602 A1 WO 2016015602A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin assembly
coordinate
tooling
tube
fin
Prior art date
Application number
PCT/CN2015/085003
Other languages
English (en)
French (fr)
Inventor
郝新浦
Original Assignee
徐州德坤电气科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州德坤电气科技有限公司 filed Critical 徐州德坤电气科技有限公司
Priority to US15/500,805 priority Critical patent/US20170225219A1/en
Priority to JP2017505242A priority patent/JP6303069B2/ja
Publication of WO2016015602A1 publication Critical patent/WO2016015602A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/022Making the fins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/20Storage arrangements; Piling or unpiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • B21D53/085Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal with fins places on zig-zag tubes or parallel tubes

Definitions

  • the invention relates to an automatic expansion tube system, in particular to a digital bus-based air conditioner fin assembly automatic expansion tube system suitable for an air conditioner radiator and a condenser fin expansion tube process, belonging to the technical field of air conditioner manufacturing .
  • the surface of the heat exchange device that needs to perform heat transfer increases the heat exchange surface area of the heat exchange device by increasing the heat transfer surface of the heat exchange device, and the heat exchange efficiency is improved.
  • the metal piece having this function is called a fin.
  • the air conditioner There are two main heat exchangers in the air conditioner, namely the radiator and the condenser.
  • the working medium of one of the two heat exchangers is a refrigerant and the other side is air.
  • the air side adopts a compact arrangement of heat exchange area, and most of the air conditioners use a compact tube-fin heat exchanger.
  • the fins of the compact tube-fin heat exchanger are generally provided with a plurality of mounting holes which can be matched with the outer diameter of the copper tube.
  • the manufacturing process generally begins by stamping the fins and then inserting the long "U”-shaped copper tubes side by side.
  • the mounting holes on the fins are finally expanded at the open end of the long "U”-shaped copper tube.
  • the short "U”-shaped copper tube is installed and welded to each length "U”.
  • the copper pipes are connected in turn, that is, all the long "U” copper pipes are connected into one channel.
  • the fins are generally thin, they are easily deformed after extrusion or collision, which in turn affects the appearance and quality of the product. Careful handling is required when manually moving, which inevitably prolongs the operation time and the product quality is unstable.
  • the present invention provides an air conditioner fin assembly automatic expansion system based on a digital bus, which can realize automatic operation, reduce the influence of human factors on the production schedule, and at the same time protect the fin assembly.
  • the fins are not squeezed or deformed by other reasons, thereby ensuring product quality.
  • the digital bus-based air conditioner fin assembly automatic expansion system includes a tube expander, a fin assembly take-up device, a fin-and-carry tool, an interactive exchange tray, a controlled material trolley, and an electronic control.
  • the tube expander comprises a tube indenter and an automatic indexing locking tool
  • the automatic indexing and locking tool comprises a front tooling surface and a rear tooling surface
  • the expansion tube indenter is located above the rear tooling surface
  • the surface has a buckle mechanism I and a locking mechanism, and the rotation center of the automatic index locking tool is located at the center thereof, and a rotation control mechanism is arranged therein;
  • the fin assembly taking device is disposed in front of the expander, and includes an X coordinate driving mechanism in the horizontal direction, a Y coordinate driving mechanism in the front and rear horizontal direction, a Z coordinate driving mechanism in the vertical direction, and a mechanical arm.
  • the robot arm includes a coordinate rotation mechanism assembly and a code acquisition robot mounted on the coordinate rotation mechanism assembly.
  • the coordinate rotation mechanism assembly is provided with a mounting seat, and the coordinate rotation mechanism assembly comprises an A coordinate rotation mechanism which is a rotation axis of the rotation axis along the horizontal axis.
  • the coding robot has a joint control mechanism inside, a sensor is arranged on the front side, and the back surface is fixedly mounted on the mounting seat;
  • the fins are disposed between the tube expander and the fin assembly taking device, and include a track, a traveling chassis and an indexing work frame, and the track is longitudinally fixedly connected to the ground.
  • the walking chassis is erected on the track, and a longitudinal driving mechanism and a rotating driving mechanism are arranged inside.
  • the indexing workbench includes a front working surface and a rear working surface, and is integrally mounted on the traveling chassis and connected with the rotating driving mechanism of the traveling chassis, the front working surface and the rear working front and rear are symmetrically arranged with respect to the rotation axis, the front working surface and The rear working surface is provided with a buckle mechanism II, the buckle mechanism II and the buckle mechanism I are dislocated in space, and the spacing of the buckle mechanism II in the X coordinate direction is the same as the spacing of the buckle mechanism I in the X coordinate direction. ;
  • the interactive exchange tray is provided at least in two parts, and has a groove structure matched with the fin assembly, and the external lateral dimension is matched with the spacing dimension in the X coordinate direction of the buckle mechanism II on the fin assembly tool. And the groove structure is outwardly engaged on the front working surface and the rear working surface of the indexing work frame, and the latching mechanism III is arranged on the interactive exchange tray;
  • the controlled material trolley is arranged at least two pieces, one for feeding and one for discharging, respectively, stopping near the fin assembly taking device;
  • the electronic control device comprises an industrial control computer, a power supply circuit, a counting circuit, a fin assembly grabbing feeding circuit, a fin accompanying tooling control circuit, a tube expanding machine control circuit, and a fin assembly grasping and discharging a code discharging circuit.
  • the industrial control computer is electrically connected to the sensor, and the industrial control computer is electrically connected with the X-coordinate driving mechanism, the Y-coordinate driving mechanism, the Z-coordinate driving mechanism and the A-coordinate rotating mechanism in the coordinate rotating mechanism assembly, respectively, and the industrial control computer separately and walking
  • the longitudinal driving mechanism inside the chassis is electrically connected with the rotary driving mechanism, and the industrial control computer is electrically connected with the expansion control system.
  • the fin assembly coding device further includes a support frame, the support frame is longitudinally disposed directly in front of the expander, and the bottom portion thereof is fixedly mounted on the ground, and the top portion of the top portion is provided along the front and rear directions.
  • a guide rail arranged in parallel in the coordinate direction, a beam is arranged on the guide rail in the X coordinate direction, and a driving mechanism is arranged on the beam;
  • the mechanical arm is mounted on the beam, the mechanical arm further comprises a sliding rail mounted on the beam in the Z coordinate direction, the sliding rail is provided with a lifting mechanism and a lateral traveling mechanism, and the coordinate rotating mechanism assembly is mounted on the sliding rail Bottom end of the rail;
  • the controlled material trolley is disposed inside the support frame;
  • the industrial control computer of the electronic control device is electrically connected to the drive mechanism, the industrial control computer is electrically connected to the lift mechanism, and the industrial control computer is electrically connected to the lateral travel mechanism.
  • the interactive exchange tray is arranged in three pieces, and the third piece is snapped onto the rear tooling surface of the automatic index locking tooling.
  • the mounting seat further includes a C coordinate rotation mechanism;
  • the electronic control device further includes a fin assembly pattern recognition circuit, and the industrial control computer is electrically connected to the C coordinate rotation mechanism.
  • the code taking robots are arranged side by side with a plurality of gripping mechanisms, and the electronic control device further comprises a sequential gripping circuit.
  • the front end of the stopping position of the controlled material trolley that is, the limit position of the controlled material trolley, is provided with a contact switch, and the electronic control device further includes a starting circuit, The point switch is electrically connected to the power circuit.
  • a limit mechanism is disposed at both ends of the track.
  • the controlled material trolley is a track trolley or a digital pallet.
  • the digital bus-based air conditioner fin assembly auto-expansion system adopts a mechanical arm to grasp and stack the fin assembly, so the degree of automation is high, the equipment utilization rate is high, and the productivity is relatively high. High, and human factors have less impact on production schedule; due to the provision of fin-and-roll tooling and interactive exchange trays, the expanded tube fin assembly is first placed in the interactive exchange tray after being picked up. Inside, and then transported through the fins, the interactive exchange tray protects the fin assembly throughout the transportation and stamping process, preventing the fin assembly from being squeezed or other during the stamping and loading and unloading process.
  • the reason is deformation, and thus the product quality is ensured; since the robot arm is provided with an X coordinate drive mechanism, a Y coordinate drive mechanism, a Z coordinate drive mechanism, an A coordinate rotation mechanism, and a C coordinate rotation mechanism, the five coordinate control can be performed according to the program setting.
  • the code manipulator realizes the adaptive grasping of the fin assembly, further automating and further ensuring the precise operation of the fin assembly in the process of loading and unloading Prevent bump fin assembly, to ensure product quality.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a partial enlarged view of the portion of the code taking robot of Figure 1;
  • FIG. 3 is a schematic structural view of the present invention when a frame type split body is used to control a mechanical arm structure;
  • Figure 4 is a partial enlarged view of a portion of the code taking robot of Figure 3;
  • tube expander 1.1, expansion tube head, 1.2, automatic index locking tooling, 1.3, front tooling surface, 1.4, rear tooling surface, 1.5, buckle mechanism I, 2, fin assembly Code device, 2.1, support frame, 2.2, guide rail, 2.3, beam, 2.4, drive mechanism, 2.5, mechanical arm, 2.6, slide rail, 2.7, lifting mechanism, 2.8, lateral travel mechanism, 2.9, coordinate rotation mechanism assembly, 2.10, mount, 2.11, A coordinate rotation mechanism, 2.12, C coordinate rotation mechanism, 2.13, code acquisition manipulator, 2.14, joint control mechanism, 3, fin accompanying tooling, 3.1, track, 3.2, walking chassis, 3.3, Indexing workbench, 3.4, front working face, 3.5, rear working face, 3.6, buckle mechanism II, 3.7, limit mechanism, 4. interactive exchange tray, 4.1, buckle mechanism III, 5, controlled material trolley 6, electric control device, 7, fin assembly.
  • the digital bus-based air conditioner fin assembly automatic expansion tube system includes a tube expanding machine 1, a fin assembly taking device 2, a fin accompanying tooling 3, an interactive exchange tray 4 , the controlled material trolley 5 and the electric control device 6 (the following description is in the direction in which the tube expander 1 is located in the automatic expansion tube system of the copper tube mouth of the entire air conditioner fin assembly, and the horizontal direction is the X coordinate, The horizontal direction is the Y coordinate, the vertical direction is the Z coordinate, the direction rotated along the horizontal axis is the A coordinate, and the direction rotated along the vertical axis is the C coordinate).
  • the tube expander 1 comprises a tube indenter 1.1 and an automatic indexing tooling 1.2.
  • the automatic indexing tooling 1.2 comprises a front tooling surface 1.3 and a rear tooling surface 1.4, and the expansion tube indenter 1.1 is located above the rear tooling surface 1.4.
  • the position, the front tooling surface 1.3 and the rear tooling surface 1.4 are respectively provided with a buckle mechanism I1.5 and a locking mechanism.
  • the automatic indexing locking tooling 1.2 is internally provided with a rotation control mechanism, and the rotation center is located at the center thereof, and can be along the rotation center Rotate and position 180° in the front and rear direction.
  • the fin assembly taking device 2 is disposed in front of the expander 1, including an X coordinate driving mechanism in the horizontal direction, a Y coordinate driving mechanism in the horizontal direction, and a vertical direction.
  • the Z coordinate drive mechanism and the robot arm 2.5, the robot arm 2.5 includes a coordinate rotation mechanism assembly 2.9 and a code acquisition robot 2.13 mounted on the coordinate rotation mechanism assembly 2.9.
  • the coordinate rotation mechanism assembly 2.9 is provided with a mounting base 2.10, and the coordinate rotation mechanism assembly 2.9 includes an A coordinate rotation mechanism 2.11 which is a rotation axis of the rotation axis along the horizontal axis, and the mounting base 2.10 can be an axis of rotation along the axis in the X coordinate direction. Freely rotate and position within the range of °
  • the coding robot 2.13 is internally provided with a joint control mechanism 2.14, a sensor is provided on the front side, and the back surface is fixedly mounted on the mount 2.10.
  • the fins are disposed between the tube expander 1 and the fin assembly picking device 2, including the track 3.1, the traveling chassis 3.2 and the indexing frame 3.3, and the track 3.1 is longitudinally fixedly connected to the ground;
  • the chassis 3.2 is erected on the track 3.1, and is internally provided with a longitudinal driving mechanism and a rotary driving mechanism.
  • the longitudinal driving mechanism can drive the traveling chassis 3.2 to move forward and backward on the track 3.1.
  • the indexing frame 3.3 includes the front working surface 3.4 and the rear.
  • the working surface 3.5 is integrally mounted on the traveling chassis 3.2 and connected to the rotating driving mechanism of the traveling chassis 3.2.
  • the front working surface 3.4 and the rear working surface 3.5 are symmetrically arranged on the rotation axis, and the front working surface 3.4 and the rear working surface 3.5 are provided.
  • the buckle mechanism II3.6 is provided on the upper side, in order to prevent interference, the buckle mechanism II3.6 and the buckle mechanism I1.5 are dislocated in space, and the spacing of the buckle mechanism II3.6 in the X coordinate direction and the buckle mechanism
  • the pitch of I1.5 in the X coordinate direction is the same, and the rotary drive mechanism can drive the indexing work frame 3.3 to rotate and position 180° along its rotation axis.
  • the interactive exchange tray 4 is provided at least in two pieces, and is internally provided with a groove structure matched with the fin assembly 7, and the external lateral dimension and the X coordinate direction of the buckle mechanism II3.6 on the fin pallet 3 The upper spacing is matched and the groove structure is outwardly engaged on the front working surface 3.4 and the rear working surface 3.5 of the indexing work frame 3.3.
  • the interactive exchange tray 4 is provided with a buckle mechanism III4.1, the buckle The mechanism III4.1 can snap the fin assembly 7 into the groove structure inside the interactive exchange tray 4.
  • the controlled material trolley 5 is disposed at least two pieces, respectively resting on the inner side or the outer side of the fin assembly take-up device 2, one for feeding and one for discharging.
  • the electronic control device 6 includes an industrial control computer, a power supply circuit, a counting circuit, a fin assembly grabbing and feeding circuit, a fin accompanying tooling control circuit, a tube expander control circuit, and a fin assembly for picking and placing the material.
  • the industrial control computer is electrically connected to the sensor, and the industrial control computer is electrically connected with the X coordinate drive mechanism, the Y coordinate drive mechanism, the Z coordinate drive mechanism and the A coordinate rotation mechanism 2.11 in the coordinate rotation mechanism assembly 2.9, respectively, and the industrial control computer.
  • the electrical drive is electrically connected to the longitudinal drive mechanism and the rotary drive mechanism inside the travel chassis 3.2, and the industrial control computer is electrically connected to the expansion control system.
  • the working principle of the automatic expansion tube system of the air conditioner fin assembly based on the digital bus as shown in Fig. 1, the controlled material trolleys 5 are respectively disposed on the outer side of the fin assembly taking device 2, and the left side is fed The direction and the right side are the discharge direction.
  • the controlled material trolley on the left is the feed material trolley, and the assembly of the tube to be expanded according to the set quantity is transferred from the previous process to the air conditioner wing.
  • the feeding assembly of the sheet assembly is set to the parking station; the fin assembly taking device 2 works, and the assembly of the tube to be expanded is placed in the interactive exchange tray 4 of the fin assembly 3, and the fins are carried.
  • the tooling 3 transports the interactive exchange tray 4 together with the to-be-expanded fin assembly to the automatic index locking tooling 1.2 of the expander 1 for expansion;
  • the controlled material trolley on the right is the discharge material trolley, parked in the out
  • the material setting station, the fin assembly that completes the expansion process is captured by the fin assembly taking device 2, and then placed on the discharge material trolley. After the number of stacks reaches the set value, the discharge material trolley goes down. Process flow.
  • the robot arm 2.5 When the system is not started (ie, at the zero position), the robot arm 2.5 is positioned in front of the automatic index locking tooling 1.2 as shown in FIG. 1, and the coded robot 2.13 is in a stagnant state facing downward, and the fins are placed in the tooling 3 Track 3.1 front end position;
  • the digital bus-based air conditioner fin assembly automatic expansion system power circuit is started, and the system starts to work.
  • the industrial control computer issues an instruction to start the work of the fin assembly grabbing feeding circuit: the X coordinate driving mechanism, the Y coordinate driving mechanism, the Z coordinate driving mechanism and the A coordinate rotating mechanism 2.11, the mechanical arm 2.5 operates according to a predetermined program and coordinates.
  • the front side of the code-picking robot 2.13 faces the to-be-expanded tube fin assembly placed on the feeding material trolley according to the set quantity code, is located directly above the tube-expanding fin assembly, and the counting circuit starts to work synchronously;
  • the joint control mechanism 2.14 works to make the coded robot 2.13 open, grab the first tube to be expanded, and after the grab, the arm 2.5 works to make the coder 2.13 rise a certain distance, that is, the first tube to be expanded
  • the fin assembly is separated from the underlying tube fin assembly, and the coded robot 2.13 is moved to the zero position.
  • the A-coordinate rotation mechanism 2.11 works to rotate the code-picking robot 2.13 in the A coordinate system by 90°, that is, the code-picking robot 2.13 together with the first piece of the tube-expanding fin assembly being grasped is in a vertical state to be expanded toward the tube end.
  • the Y coordinate drive mechanism works, the coder robot 2.13 moves backwards, pushes the first tube to be expanded and fits in the fins In the interactive exchange tray 4 on the front working surface 3.4 of the tooling 3, then the joint control mechanism 2.14 works to make the code acquisition robot 2.13 open, and the Y coordinate drive mechanism works to move the code acquisition robot 2.13 forward to the zero position, completing the first block. Grasping and feeding of the expansion tube fin assembly;
  • the industrial control computer sends a signal to start the work of the fin-on-work tool control loop: the longitudinal drive mechanism and the rotary drive mechanism inside the travel chassis 3.2 work simultaneously, and the fin-mounted work tool 3 moves rearward while the indexing work frame 3.3 is clockwise.
  • the interactive exchange tray 4 on the front working surface 3.4 of the indexing work frame 3.3 is snapped into the front tooling surface 1.3 of the automatic index locking tooling 1.2, and at the same time, the tube expander control circuit starts to work, and the automatic indexing lock tooling 1.2 is
  • the locking mechanism of the front work surface 1.3 works to lock the interactive exchange tray 4 that is inserted into the front work surface 1.3, and then the fins are moved forward to the zero position with the work tool 3, and the front working surface 3.4 and the first load
  • the interactive exchange tray 4 of the block expansion tube fin assembly is disengaged to complete the transfer of the first tube expansion fin assembly;
  • the tube expander control circuit continues to work: the automatic index locking tooling 1.2 rotates 180° clockwise or counterclockwise along the tooling center to carry the interactive exchange tray 4 and the front of the first tube expansion fin assembly.
  • the tooling surface 1.3 is rotated to be positioned directly below the expansion tube indenter 1.1. At this time, the fin assembly grabs the loading circuit to work again.
  • the robot arm 2.5 grabs the second tube expansion tube fin assembly and Grasping it into the interactive exchange tray 4 on the rear working surface 3.5 of the fin-on tooling 3 and returning to the zero position again, completing the grasping and feeding of the second tube-expanding fin assembly;
  • the control circuit works again, and the fin-on tooling 3 moves backward while the indexing frame 3.3 rotates 180° counterclockwise or clockwise, so that the rear working surface 3.5 carries the interactive exchange tray 4 and the second tube to be expanded.
  • the assembly faces the expander 1 and engages the interactive exchange tray 4 carrying the second expanded tube fin assembly into the rear tooling surface 1.4 of the automatic index locking tooling 1.2, automatically indexing the locking tooling 1.2
  • the working mechanism of the rear work surface 1.4 locks the interactive exchange of the snap-in Locking disc 4, and the fins accompanying tooling 3 moves forward again to the zero position, to complete the assembly a second transport block to be expanding fins;
  • the expansion tube head 1.1 is dropped to the set distance, and the first tube expansion tube fin assembly is expanded.
  • the expansion tube head is raised by 1.1, and the automatic index locking tooling 1.2 is along the tooling center.
  • the locking mechanism of the front tooling surface 1.3 is released and released, and the expansion tube of the first expansion tube fin assembly is completed;
  • the rear working surface 3.5 of the fin-and-carrying tooling 3 faces the tube expanding machine 1, and the industrial control computer sends a signal to make the fin accompanying tooling control circuit work again, and the fins are moved to the set position with the tooling 3, and the rear working surface is 3.5.
  • the interactive exchange tray 4 carrying the first expanded tube fin assembly is snapped, and then moved forward by 180° clockwise or counterclockwise, and the rear working surface 3.5 carries the interactive exchange tray 4 facing the robot arm 2.5 ;
  • the fin assembly grabs the blanking code and puts the loop to work: the coder robot 2.13 starts to move from the zero position, and the joint control mechanism 2.14 works to make the coded robot 2.13 open, grabbing the first expanded tube fin assembly;
  • the robot arm 2.5 After grabbing, the robot arm 2.5 returns to the zero position.
  • the X coordinate driving mechanism, the Y coordinate driving mechanism, the Z coordinate driving mechanism and the A coordinate rotating mechanism 2.11 work, and the mechanical arm 2.5 operates according to a predetermined program and coordinates, so that the code is taken.
  • the robot 2.13 together with the first expanded tube fin assembly that is grasped faces the tray of the discharging material trolley, and according to the information fed back from the counting circuit to the set height, the joint control mechanism 2.14 works to make the coding robot 2.13 open.
  • the first expanded tube fin assembly falls on the tray of the discharging material trolley, and the mechanical arm 2.5 then returns to the zero position to complete the grabbing and discharging of the first expanded tube fin assembly;
  • the fin assembly grabs the loading circuit again, and the robot arm 2.5 grabs the third tube expansion fin assembly and grasps it on the interactive exchange tray 4 on the rear working surface 3.5 of the fin pallet 3
  • the fin-on-work tool control circuit works again, and the fin-and-carrying tool 3 moves backward while the indexing frame 3.3 counterclockwise Or rotate 180° clockwise so that the rear face 3.5 carries the interactive exchange tray 4 and the third tube-expanding fin assembly facing the tube expander 1, and will carry the third tube-expanding fin assembly
  • the interactive exchange tray 4 is snapped into the front tooling surface 1.3 of the automatic index locking tooling 1.2, and the locking mechanism of the front tooling surface 1.3 on the automatic index locking tooling 1.2 works to lock the stuck interactive exchange tray 4
  • the fin-on tooling 3 moves forward to the zero position again, completes the transfer of the third tube-expanding fin assembly, waits for the expansion process to be completed,
  • the mechanical arm 2.5 of the fin assembly taking device 2 may adopt a multi-joint centralized control robot as shown in FIG. 1 , or may adopt a frame-type split control robot, or adopt other forms of mechanical arms due to
  • the control of the multi-joint robotic arm of the first scheme is centralized control, and its precise coordinate control is complicated. It requires a large amount of calculations by the industrial control computer, complicated software control procedures, high manufacturing cost, heavy computer control burden, and easy emergence. Fault; the second scheme adopts split control, that is, several coordinate systems are separately controlled, the control is relatively simple and direct, and it is not easy to cause a fault, so the second scheme is preferred.
  • the fin assembly picking device 2 further includes a support frame 2.1, and the support frame 2.1 is longitudinally disposed directly in front of the expander 1,
  • the bottom is fixedly mounted on the ground, and the top and rear direction of the top is provided with a guide rail 2.2 arranged in parallel along the Y coordinate direction.
  • a cross member 2.3 is arranged on the X coordinate direction, and the drive mechanism 2.4 is arranged on the cross member 2.3, and the drive mechanism 2.4 can be driven.
  • the beam 2.3 moves back and forth on the guide rail 2.2;
  • the mechanical arm 2.5 is mounted on the beam 2.3, and the mechanical arm 2.5 further includes a sliding rail 2.6 mounted on the beam 2.3 in the Z coordinate direction.
  • the sliding rail 2.6 is provided with a lifting mechanism 2.7 and a lateral traveling mechanism 2.8, and the lifting mechanism 2.7 And the lateral running mechanism 2.8 can make the whole robot arm 2.5 realize the up and down movement in the Z-axis direction and the left-right movement in the X-axis direction on the beam 2.3, and the coordinate rotation mechanism assembly 2.9 is installed at the bottom end of the slide rail 2.6;
  • the controlled material trolley 5 is disposed inside the support frame 2.1;
  • the industrial control computer of the electronic control device 6 is electrically connected to the driving mechanism 2.4, controls the movement of the beam 2.3 in the Y coordinate direction, the industrial control computer is electrically connected with the lifting mechanism 2.7, and controls the lifting and lowering of the sliding rail 2.6 in the Z coordinate direction.
  • the industrial control computer is electrically connected to the lateral traveling mechanism 2.8 to control the movement of the slide rail 2.6 in the X coordinate direction.
  • the system starts to work after being exchanged.
  • the fin assembly tool 3 is only used for its front working surface 3.4 or rear working surface 3.5.
  • One working surface and the other working surface are in an idle state. Therefore, in order to improve equipment utilization and further improve efficiency, as a further improvement of the present invention, the interactive exchange tray 4 is set to three pieces, and the third piece is set.
  • the mounting base 2.10 is further provided with a C coordinate rotating mechanism 2.12, and the mounting seat 2.10 itself can be freely 360° in a direction perpendicular to the rotating axis of the A coordinate rotating mechanism 2.11.
  • Rotating and positioning; the electronic control device 6 further includes a fin assembly pattern recognition circuit, the industrial control computer is electrically connected with the C coordinate rotation mechanism 2.12, and the expansion robot fin 2.13 grasps the expansion tube fin assembly or has been inflated.
  • the fin assembly pattern recognition circuit works, and the sensor on the front side of the coder 2.13 captures the shape and position information of the tube fin assembly to be fed back to the industrial control computer, and the coded robot 2.13 is based on the wing.
  • the position information and shape information of the slice assembly pattern recognition loop feedback C coordinate rotation mechanism 2.12 work, automatically adjust its position to achieve adaptive capture.
  • the pick-up robot 2.14 is arranged side by side with a plurality of gripping mechanisms, and the electric control device 6 further includes sequential gripping. Take the loop, for the fin assembly with different width and size, according to the feedback of the fin assembly pattern recognition loop, the code acquisition robot 2.14 can realize the side-by-side capture, and the code is placed in sequence.
  • the front end of the stopping position of the controlled material trolley 5, that is, the controlled material is received.
  • the limit position of the trolley 5 is set to a contact switch.
  • the electric control device 6 further includes a starting circuit, and the contact switch is electrically connected with the power supply circuit.
  • a limit mechanism 3.7 is provided at both ends of the track 3.1. .
  • the controlled material trolley 5 can be manually operated or digitally operated. Since the latter is more automated, the influence of human factors can be further reduced. Therefore, the latter is preferred, that is, as a preferred embodiment of the present invention,
  • the controlled material trolley 5 is a digital track trolley or a digital pallet.
  • the digital railcar or the digital pallet conforms to the digital bus factory specification, and can be connected with the digital bus of the factory to realize centralized digital management, that is, the fin assembly completed in the previous process. It can be transported to the setting station of the automatic expansion tube system of the copper pipe mouth of the air conditioner fin assembly by digitally controlled track trolley or digital pallet carried by the conveyor belt.
  • the fin assembly of the expansion process can also be digitized.
  • the controlled trolley or the digital pallet carried by the conveyor belt is transported to the station in the next process.
  • the air conditioning device fin assembly copper pipe port automatic expansion tube system is a digital control unit, which can be seamlessly connected with the factory digital bus to realize centralized digital management.
  • the digital bus-based air-conditioner fin assembly automatic expansion system has high automation degree, high equipment utilization rate, high productivity, and human factors have little influence on the production schedule; interactive exchange in the whole transportation and stamping process
  • the tray 4 always protects the fin assembly, preventing the fin assembly from being deformed during the pressing and loading and unloading process, or deformation due to other reasons, thereby ensuring product quality; the code acquisition robot 2.13 can be realized according to the program setting.
  • the self-propelled fin assembly is further automated to further ensure the precise operation of the fin assembly during the process of loading and unloading, preventing the fin assembly from colliding and ensuring product quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Automatic Assembly (AREA)

Abstract

基于数字总线的空调器翅片总成自动胀管系统,包括胀管机(1)、翅片总成取码装置(2)、翅片随行工装(3)、交互式交换托盘(4)、受控物料小车(5)和电控装置(6),翅片总成取码装置(2)包括X坐标驱动机构、Y坐标驱动机构、Z坐标驱动机构和包括坐标旋转机构总成(2.9)和取码机械手(2.13)的机械臂(2.5);翅片随行工装(3)设置于胀管机(1)与翅片总成取码装置(2)之间;交互式交换托盘(4)至少为两件,卡装在随行工装(3)上;受控物料小车(5)至少为两件,分别停靠于翅片总成取码装置(2)的内侧或外侧。本系统能够实现自动化操作,降低人为因素对生产进度的影响,同时可以保护翅片总成免被挤压或其他原因造成形变,保证产品质量。

Description

一种基于数字总线的空调器翅片总成自动胀管系统 Technical Field
本发明涉及一种自动胀管系统,具体是一种适用于空调器的散热器、冷凝器翅片胀管工序的基于数字总线的空调器翅片总成自动胀管系统,属于空调制造技术领域。
Background Art
通常在需要进行热传递的换热装置表面通过增加导热性较强的金属片,增大换热装置的换热表面积,提高换热效率,具有此功能的金属片称之为翅片。
空调器中有两个主要换热器,即散热器和冷凝器,这两大换热器的一侧工作介质是制冷剂,另一侧是空气,为了强化换热器的传热,一般在空气侧采取紧凑布置换热面积,空调器大多采用紧凑管翅式换热器。
紧凑管翅式换热器的翅片上一般设有多个能与铜管外径配合的安装孔,制作过程一般是先将翅片冲压成型,然后将长“U”型铜管并排穿入多个翅片上的安装孔,最后在长“U”型铜管的开口端进行胀管,长“U”型铜管内部烘干后再安装并焊接短“U”型铜管将各个长“U”型铜管依次连通,即将全部长“U”型铜管连通成一个通道。
目前空调器制造商在散热器和冷凝器的翅片铜管口胀管工序上依然大量使用人工作业,即将插管后的翅片总成一个一个地人工搬放到胀管机的工装上,再操作自动转位锁定工装将翅片总成夹紧定位后操作胀管机进行胀管,完成胀管后,再人工一个一个取下码放、转移到下道工序。
这些传统的生产方式存在以下缺陷:
1.虽然胀管机已实现自动化操作,但取放翅片总成仍采用人工操作,因此设备自动化程度低,设备利用率低,产能低;
2.由于取放翅片总成采用人工操作,因此操作人员责任心、情绪等人为因素对生产进度的影响较大;
3.由于翅片一般比较薄,挤压或者碰撞后极易变形,进而影响产品外观及质量,人工操作搬放时需小心谨慎,无形中延长了操作时间,且产品质量不稳定。
Technical Solution
针对上述现有技术存在的问题,本发明提供一种基于数字总线的空调器翅片总成自动胀管系统,能够实现自动化操作,降低人为因素对生产进度的影响,同时可以保护翅片总成在冲压、上下料过程中翅片不被挤压或因其他原因造成形变,进而保证产品质量。
为了实现上述目的,本基于数字总线的空调器翅片总成自动胀管系统包括胀管机、翅片总成取码装置、翅片随行工装、交互式交换托盘、受控物料小车和电控装置;
所述的胀管机包括胀管压头和自动转位锁定工装,自动转位锁定工装包括前工装面和后工装面,胀管压头位于后工装面的上方位置,前工装面和后工装面上均设有卡扣机构Ⅰ和锁紧机构,自动转位锁定工装的旋转中心位于其中心位置,内部设有旋转控制机构;
所述的翅片总成取码装置设置在胀管机的前方,包括左右水平方向的X坐标驱动机构、前后水平方向的Y坐标驱动机构、竖直方向的Z坐标驱动机构和机械臂, 机械臂包括坐标旋转机构总成和安装在坐标旋转机构总成上的取码机械手,
坐标旋转机构总成上设有安装座,坐标旋转机构总成包括沿水平轴线为旋转轴旋转方向的A坐标旋转机构,
取码机械手内部设置关节控制机构,正面设置有传感器,背面固定安装在安装座上;
所述的翅片随行工装设置于胀管机与翅片总成取码装置之间,包括轨道、行走底架和转位工装架,轨道纵向固定连接于地面,
行走底架架设在轨道上,内部设有纵向驱动机构和旋转驱动机构,
转位工装架包括前工作面和后工作面,整体安装在行走底架上、并与行走底架的旋转驱动机构连接,前工作面和后工作面前后对称于旋转轴线设置,前工作面和后工作面上均设有卡扣机构Ⅱ,卡扣机构Ⅱ与卡扣机构Ⅰ空间错位设置,且卡扣机构Ⅱ在X坐标方向上的间距与卡扣机构Ⅰ在X坐标方向上的间距相同;
所述的交互式交换托盘至少设置为两件,内部设有与翅片总成配合的凹槽结构,外部横向尺寸与翅片随行工装上的卡扣机构Ⅱ的X坐标方向上的间距尺寸配合、并分别凹槽结构向外卡接在转位工装架的前工作面和后工作面上,交互式交换托盘上设有卡扣机构Ⅲ;
所述的受控物料小车至少设置为两件,一个用来进料,一个用来出料,分别停靠于翅片总成取码装置的附近;
所述的电控装置包括工业控制计算机、电源回路、计数回路、翅片总成抓取上料回路、翅片随行工装控制回路,胀管机控制回路和翅片总成抓取下料码放回路等,工业控制计算机与传感器电连接,工业控制计算机分别与坐标旋转机构总成内的X坐标驱动机构、Y坐标驱动机构、Z坐标驱动机构和A坐标旋转机构电连接,工业控制计算机分别与行走底架内部的纵向驱动机构和旋转驱动机构电连接,工业控制计算机与胀管机电控系统电连接。
作为本发明的优选方案,所述的翅片总成取码装置还包括支撑框架,支撑框架纵向设置于胀管机的正前方,其底部固定安装于地面,其顶部前后方向上设有沿Y坐标方向平行设置的导轨,在导轨上X坐标方向上架设有横梁,横梁上设有驱动机构;
所述的机械臂安装在横梁上,机械臂还包括沿Z坐标方向上安装在横梁上的滑轨,滑轨上设置有升降机构和横向行走机构,所述的坐标旋转机构总成安装在滑轨底端;
所述的受控物料小车设置于支撑框架内部;
所述的电控装置的工业控制计算机与驱动机构电连接,工业控制计算机与升降机构电连接,工业控制计算机与横向行走机构电连接。
作为本发明的进一步改进方案,所述的交互式交换托盘设置为三件,第三件卡接在自动转位锁定工装的后工装面上。
作为本发明的进一步改进方案,所述是安装座内还设有C坐标旋转机构;所述的电控装置还包括翅片总成模式识别回路,工业控制计算机与C坐标旋转机构电连接。
作为本发明的进一步改进方案,所述的取码机械手上并排设置多个抓取机构,所述的电控装置还包括顺序抓取回路。
作为本发明的进一步改进方案,所述的受控物料小车的停靠位置的前端、即承接所述的受控物料小车的极限位置设置触点开关,所述的电控装置还包括启动回路,触点开关与电源回路电连接。
作为本发明的进一步改进方案,所述的轨道两端均设置限位机构。
作为本发明的进一步改进方案,所述的受控物料小车是轨道小车或数字化托盘。
Advantageous Effects
与现有技术相比,本基于数字总线的空调器翅片总成自动胀管系统由于采用机械臂对翅片总成进行抓取与码放,因此自动化程度高、设备利用率较高、产能较高,且人为因素对生产进度的影响较小;由于设置有翅片随行工装和交互式交换托盘,因此待胀管翅片总成在上料时被抓取后先被放入交互式交换托盘内,再经翅片随行工装进行运输,在整个运输及冲压过程中交互式交换托盘始终对翅片总成进行保护,防止翅片总成在冲压、上下料过程中翅片被挤压或其他原因造成形变,进而保证产品质量;由于机械臂设置有X坐标驱动机构、Y坐标驱动机构、Z坐标驱动机构、A坐标旋转机构及C坐标旋转机构五坐标控制,因此可以根据程序设定使取码机械手实现自适应抓取翅片总成,进一步实现自动化的同时进一步保证翅片总成在上、下料的过程中的精确操作,防止翅片总成磕碰,保证产品质量。
Description of Drawings
图1是本发明的结构示意图;
图2是图1中的取码机械手部分局部放大图;
图3是本发明采用框架式分体控制机械臂结构时的结构示意图;
图4是图3中的取码机械手部分局部放大图。
图中:1、胀管机,1.1、胀管压头,1.2、自动转位锁定工装,1.3、前工装面,1.4、后工装面,1.5、卡扣机构Ⅰ,2、翅片总成取码装置,2.1、支撑框架,2.2、导轨,2.3、横梁,2.4、驱动机构,2.5、机械臂,2.6、滑轨,2.7、升降机构,2.8、横向行走机构,2.9、坐标旋转机构总成,2.10、安装座,2.11、A坐标旋转机构,2.12、C坐标旋转机构,2.13、取码机械手,2.14、关节控制机构,3、翅片随行工装,3.1、轨道,3.2、行走底架,3.3、转位工装架,3.4、前工作面,3.5、后工作面,3.6、卡扣机构Ⅱ,3.7、限位机构,4、交互式交换托盘,4.1、卡扣机构Ⅲ,5、受控物料小车,6、电控装置,7、翅片总成。
Mode for Invention
下面结合附图对本发明做进一步说明。
如图1至图4所示,本基于数字总线的空调器翅片总成自动胀管系统包括胀管机1、翅片总成取码装置2、翅片随行工装3、交互式交换托盘4、受控物料小车5和电控装置6(以下描述以胀管机1在整个空调器翅片总成铜管口全自动胀管系统中所在的方向为后方,以左右水平方向为X坐标,以前后水平方向为Y坐标,以竖直方向为Z坐标,以沿水平轴线为旋转轴旋转的方向为A坐标,以沿竖直轴线为旋转轴旋转的方向为C坐标)。
所述的胀管机1包括胀管压头1.1和自动转位锁定工装1.2,自动转位锁定工装1.2包括前工装面1.3和后工装面1.4,胀管压头1.1位于后工装面1.4的上方位置,前工装面1.3和后工装面1.4上均设有卡扣机构Ⅰ1.5和锁紧机构,自动转位锁定工装1.2内部设有旋转控制机构,旋转中心位于其中心位置,可沿旋转中心前后方向180°旋转并定位。
为了缩短物料取码的距离,所述的翅片总成取码装置2设置在胀管机1的前方,包括左右水平方向的X坐标驱动机构、前后水平方向的Y坐标驱动机构、竖直方向的Z坐标驱动机构和机械臂2.5,机械臂2.5包括坐标旋转机构总成2.9和安装在坐标旋转机构总成2.9上的取码机械手2.13,
坐标旋转机构总成2.9上设有安装座2.10,坐标旋转机构总成2.9包括沿水平轴线为旋转轴旋转方向的A坐标旋转机构2.11,安装座2.10可以沿X坐标方向上的轴线为旋转轴90°范围内自由旋转并定位,
取码机械手2.13内部设置关节控制机构2.14,正面设置有传感器,背面固定安装在安装座2.10上。
所述的翅片随行工装3设置于胀管机1与翅片总成取码装置2之间,包括轨道3.1、行走底架3.2和转位工装架3.3,轨道3.1纵向固定连接于地面;行走底架3.2架设在轨道3.1上,内部设有纵向驱动机构和旋转驱动机构,纵向驱动机构可以驱动行走底架3.2在轨道3.1上前后移动并定位;转位工装架3.3包括前工作面3.4和后工作面3.5,整体安装在行走底架3.2上、并与行走底架3.2的旋转驱动机构连接,前工作面3.4和后工作面3.5前后对称于旋转轴线设置,前工作面3.4和后工作面3.5上均设有卡扣机构Ⅱ3.6,为防止干涉,卡扣机构Ⅱ3.6与卡扣机构Ⅰ1.5空间错位设置,且卡扣机构Ⅱ3.6在X坐标方向上的间距与卡扣机构Ⅰ1.5在X坐标方向上的间距相同,旋转驱动机构可以驱动转位工装架3.3沿其旋转轴线180°旋转并定位。
所述的交互式交换托盘4至少设置为两件,内部设有与翅片总成7配合的凹槽结构,外部横向尺寸与翅片随行工装3上的卡扣机构Ⅱ3.6的X坐标方向上的间距尺寸配合、并分别凹槽结构向外卡接在转位工装架3.3的前工作面3.4和后工作面3.5上,交互式交换托盘4上设有卡扣机构Ⅲ4.1,卡扣机构Ⅲ4.1可以将翅片总成7卡接在交互式交换托盘4内部的凹槽结构内。
所述的受控物料小车5至少设置为两件,分别停靠于翅片总成取码装置2附近的内侧或外侧,一个用来进料,一个用来出料。
所述的电控装置6包括工业控制计算机、电源回路、计数回路、翅片总成抓取上料回路、翅片随行工装控制回路,胀管机控制回路和翅片总成抓取下料码放回路等,工业控制计算机与传感器电连接,工业控制计算机分别与坐标旋转机构总成2.9内的X坐标驱动机构、Y坐标驱动机构、Z坐标驱动机构和A坐标旋转机构2.11电连接,工业控制计算机分别与行走底架3.2内部的纵向驱动机构和旋转驱动机构电连接,工业控制计算机与胀管机电控系统电连接。
本基于数字总线的空调器翅片总成自动胀管系统的工作原理:以图1所示,受控物料小车5分别设置于翅片总成取码装置2的外侧,以左方为进料方向、右方为出料方向为例,即左方的受控物料小车为进料物料小车,载着按设定数量码放的待胀管翅片总成自上道工序流转到本空调器翅片总成的进料设定停放工位;翅片总成取码装置2工作,抓取待胀管翅片总成放入翅片随行工装3上的交互式交换托盘4内,翅片随行工装3将交互式交换托盘4连同待胀管翅片总成运输至胀管机1的自动转位锁定工装1.2上进行胀管;右方的受控物料小车为出料物料小车,停放在出料设定工位,完成胀管工序的翅片总成被翅片总成取码装置2抓取后码放到出料物料小车上,码放数量达到设定值后,出料物料小车往下道工序流转。
系统未启动时(即零位置时),机械臂2.5定位在如图1所示的自动转位锁定工装1.2的前方的位置,取码机械手2.13正面向下处于停滞状态,翅片随行工装3位于轨道3.1前端位置;
当载着待胀管翅片总成的进料物料小车及空载的出料物料小车就位时,本基于数字总线的空调器翅片总成自动胀管系统电源回路启动,系统开始工作,工业控制计算机发出指令使翅片总成抓取上料回路开始工作:X坐标驱动机构、Y坐标驱动机构、Z坐标驱动机构及A坐标旋转机构2.11工作,机械臂2.5按照预定程序及计算坐标动作,使取码机械手2.13的正面面对进料物料小车上的按设定数量码放的待胀管翅片总成、位于待胀管翅片总成正上方,计数回路同步开始工作;
关节控制机构2.14工作使取码机械手2.13张开,抓取第一块待胀管翅片总成,抓取后,机械臂2.5工作使取码机械手2.13上升一定距离,即第一块待胀管翅片总成与下面的待胀管翅片总成脱离,同时,取码机械手2.13右移至零位置, A坐标旋转机构2.11工作使取码机械手2.13在A坐标系内旋转90°,即取码机械手2.13连同被抓取的第一块待胀管翅片总成处于待胀管端向上的竖直状态、且正对着翅片随行工装3的正前方位置;然后Y坐标驱动机构工作、取码机械手2.13向后方移动,将第一块待胀管翅片总成推入并卡接在翅片随行工装3前工作面3.4上的交互式交换托盘4内,然后关节控制机构2.14工作使取码机械手2.13张开、Y坐标驱动机构工作使取码机械手2.13向前方移动至零位置,完成第一块待胀管翅片总成的抓取上料;
同时,工业控制计算机发出信号使翅片随行工装控制回路开始工作:行走底架3.2内部的纵向驱动机构和旋转驱动机构同时工作,翅片随行工装3向后方移动的同时转位工装架3.3顺时针或者逆时针旋转180°,使前工作面3.4载着交互式交换托盘4及第一块待胀管翅片总成面向胀管机1,当翅片随行工装3后移至设定位置时,转位工装架3.3的前工作面3.4上的交互式交换托盘4卡入自动转位锁定工装1.2的前工装面1.3内,同时,胀管机控制回路开始工作,自动转位锁定工装1.2上的前工装面1.3的锁紧机构工作,将卡入前工装面1.3内的交互式交换托盘4锁紧,然后翅片随行工装3向前移动至零位置,其前工作面3.4与载着第一块待胀管翅片总成的交互式交换托盘4脱离,完成第一块待胀管翅片总成的转运;
胀管机控制回路继续工作:自动转位锁定工装1.2沿工装中心原地顺时针或者逆时针旋转180°,使其载着交互式交换托盘4及第一块待胀管翅片总成的前工装面1.3旋转至胀管压头1.1的正下方定位,此时,翅片总成抓取上料回路再次工作,同上所述,机械臂2.5抓取第二块待胀管翅片总成并将其抓放在翅片随行工装3的后工作面3.5上的交互式交换托盘4内后再次回零位置,完成第二块待胀管翅片总成的抓取上料;翅片随行工装控制回路再次工作,翅片随行工装3向后方移动的同时转位工装架3.3逆时针或者顺时针旋转180°,使后工作面3.5载着交互式交换托盘4及第二块待胀管翅片总成面向胀管机1,并将载着第二块待胀管翅片总成的交互式交换托盘4卡入自动转位锁定工装1.2的后工装面1.4内,自动转位锁定工装1.2上的后工装面1.4的锁紧机构工作,将卡入的交互式交换托盘4锁紧,然后翅片随行工装3再次向前移动至零位置,完成第二块待胀管翅片总成的转运;
同时胀管压头1.1落下至设定距离,对第一块待胀管翅片总成进行胀管,胀管工序完成后,胀管压头1.1升起,自动转位锁定工装1.2沿工装中心原地逆时针或者顺时针旋转180°后其前工装面1.3的锁紧机构泄压松开,完成第一块待胀管翅片总成的胀管;
此时,翅片随行工装3的后工作面3.5面向胀管机1,工业控制计算机发出信号使翅片随行工装控制回路再次工作,翅片随行工装3后移至设定位置,后工作面3.5将载有第一块已胀管翅片总成的交互式交换托盘4卡接,然后前移同时顺时针或逆时针旋转180°,后工作面3.5载着交互式交换托盘4面向机械臂2.5;
翅片总成抓取下料码放回路开始工作:取码机械手2.13由零位开始移动,同时关节控制机构2.14工作使取码机械手2.13张开,抓取第一块已胀管翅片总成;
抓取后,机械臂2.5回到零位,同时,X坐标驱动机构、Y坐标驱动机构、Z坐标驱动机构及A坐标旋转机构2.11工作,机械臂2.5按照预定程序及计算坐标动作,使取码机械手2.13连同被抓取的第一块已胀管翅片总成面对出料物料小车的托盘,根据计数回路反馈的信息至设定高度时,关节控制机构2.14工作使取码机械手2.13张开,第一块已胀管翅片总成即落在出料物料小车的托盘上,机械臂2.5随即回到零位完成第一块已胀管翅片总成的抓取下料码放;
翅片总成抓取上料回路再次工作,机械臂2.5抓取第三块待胀管翅片总成并将其抓放在翅片随行工装3的后工作面3.5上的交互式交换托盘4内后再次回零位置,完成第三块待胀管翅片总成的抓取上料;翅片随行工装控制回路再次工作,翅片随行工装3向后方移动的同时转位工装架3.3逆时针或者顺时针旋转180°,使后作面3.5载着交互式交换托盘4及第三块待胀管翅片总成面向胀管机1,并将载着第三块待胀管翅片总成的交互式交换托盘4卡入自动转位锁定工装1.2的前工装面1.3内,自动转位锁定工装1.2上的前工装面1.3的锁紧机构工作,将卡入的交互式交换托盘4锁紧,然后翅片随行工装3再次向前移动至零位置,完成第三块待胀管翅片总成的转运,等待胀管工序完成,以此类推,直至将进料物料小车上的待胀管翅片总成全部完成胀管工序并码放在出料物料小车上。
所述的翅片总成取码装置2的机械臂2.5可以采用如图1所示的多关节集中控制机械臂,也可以采用框架式分体控制机械臂,或者采用其他形式的机械臂,由于第一种方案的多关节机械臂的控制是集中控制,其精准的坐标控制较复杂,需经过工业控制计算机大量的计算、软件控制程序复杂,且制造成本较高,电脑控制负担重,易出现故障;第二种方案采用分体控制,即几个坐标系分别控制,控制相对简单、直接,不易出现故障,因此优选第二种方案,
即,作为本发明的优选方案,如图3、图4所示,所述的翅片总成取码装置2还包括支撑框架2.1,支撑框架2.1纵向设置于胀管机1的正前方,其底部固定安装于地面,其顶部前后方向上设有沿Y坐标方向平行设置的导轨2.2,在导轨2.2上X坐标方向上架设有横梁2.3,横梁2.3上设有驱动机构2.4,驱动机构2.4可以驱动横梁2.3在导轨2.2上前后移动;
所述的机械臂2.5安装在横梁2.3上,机械臂2.5还包括沿Z坐标方向上安装在横梁2.3上的滑轨2.6,滑轨2.6上设置有升降机构2.7和横向行走机构2.8,升降机构2.7和横向行走机构2.8可以使整个机械臂2.5在横梁2.3上实现Z轴方向上的上下升降运动及X轴方向上的左右移动,所述的坐标旋转机构总成2.9安装在滑轨2.6底端;
所述的受控物料小车5设置于支撑框架2.1内部;
所述的电控装置6的工业控制计算机与驱动机构2.4电连接,控制横梁2.3在Y坐标方向上的移动,工业控制计算机与升降机构2.7电连接,控制滑轨2.6在Z坐标方向上的升降,工业控制计算机与横向行走机构2.8电连接,控制滑轨2.6在X坐标方向上的移动。
由于如上所述的只设置两件交互式交换托盘4、且分别凹槽结构向外卡接在转位工装架3.3的前工作面3.4和后工作面3.5上时,系统开始工作后,在交换第三块待胀管翅片总成和第二块已胀管翅片总成之后的交换过程中,翅片随行工装3在进行交换时只使用其前工作面3.4或后工作面3.5其中的一个工作面,另一工作面是处于空闲状态,因此,为了提高设备利用率,进一步提高效率,作为本发明的进一步改进方案,所述的交互式交换托盘4设置为三件,第三件卡接在自动转位锁定工装1.2的后工装面1.4上,这样设置,使翅片随行工装3在交换的过程中其前工作面3.4和后工作面3.5上始终卡接有交互式交换托盘4,两个工作面得到充分利用,效率较高。
理想状态下,来自上道工序的待胀管翅片总成是在进料物料小车码放整齐的,如果码放不整齐或者位置错位,易出现抓取及上料位置不正确的现象,为了进一步实现智能化,作为本发明的进一步改进方案,所述的安装座2.10内还设有C坐标旋转机构2.12,安装座2.10自身可以沿垂直于A坐标旋转机构2.11旋转轴的方向上360°范围内自由旋转并定位;所述的电控装置6还包括翅片总成模式识别回路,工业控制计算机与C坐标旋转机构2.12电连接,在取码机械手2.13抓取待胀管翅片总成或已胀管翅片总成时,翅片总成模式识别回路工作,取码机械手2.13正面上的传感器捕获待胀管翅片总成的形状及位置信息并反馈给工业控制计算机,取码机械手2.13根据翅片总成模式识别回路反馈的位置信息和形状信息C坐标旋转机构2.12工作,自动调整自身位置,实现自适应抓取。
为了实现不同型号、尺寸的翅片总成的通用性,作为本发明的进一步改进方案,所述的取码机械手2.14上并排设置多个抓取机构,所述的电控装置6还包括顺序抓取回路,针对宽度尺寸不同的翅片总成,根据翅片总成模式识别回路的反馈,取码机械手2.14可以实现并排依次抓取,码放时依次码放。
为了实现自动启动本空调器翅片总成铜管口全自动胀管系统,作为本发明的进一步改进方案,所述的受控物料小车5的停靠位置的前端、即承接所述的受控物料小车5的极限位置设置触点开关,所述的电控装置6还包括启动回路,触点开关与电源回路电连接,当进料物料小车、出料物料小车同时就位,即均完成闭合触点开关,开启系统电源回路,系统开始工作,实现智能操作。
在翅片随行工装3运行的过程中,为了防止因程序异常或设备故障造成行走底架3.2滑出轨道3.1,作为本发明的进一步改进方案,所述的轨道3.1两端均设置限位机构3.7。
所述的受控物料小车5可以采用人工推行操作,也可以采用数字化操作,由于后者自动化程度更高,可进一步降低人为因素的影响,因此优选后者,即,作为本发明的优选方案,所述的受控物料小车5是数字化轨道小车或数字化托盘,数字化轨道小车或数字化托盘符合数字总线工厂规范,可以与工厂的数字总线连接实现集中数字化管理,即上道工序完成的翅片总成可以通过数字化控制的轨道小车或输送带承载的数字化托盘运输至本空调器翅片总成铜管口全自动胀管系统的设定工位,完成胀管工序的翅片总成也可以通过数字化控制的轨道小车或输送带承载的数字化托盘运输至下道工序的工位。
本空调器翅片总成铜管口全自动胀管系统是数字化控制单元,可以与工厂的数字总线无缝连接实现集中数字化管理。
本基于数字总线的空调器翅片总成自动胀管系统自动化程度高、设备利用率较高、产能较高,且人为因素对生产进度的影响较小;在整个运输及冲压过程中交互式交换托盘4始终对翅片总成进行保护,防止翅片总成在冲压、上下料过程中翅片被挤压或其他原因造成形变,进而保证产品质量;可以根据程序设定使取码机械手2.13实现自适应抓取翅片总成,进一步实现自动化的同时进一步保证翅片总成在上、下料的过程中的精确操作,防止翅片总成磕碰,保证产品质量。

Claims (8)

  1. 一种基于数字总线的空调器翅片总成自动胀管系统,包括胀管机(1)、受控物料小车(5)和电控装置(6),胀管机(1)包括胀管压头(1.1)和自动转位锁定工装(1.2),自动转位锁定工装(1.2)包括前工装面(1.3)和后工装面(1.4),胀管压头(1.1)位于后工装面(1.4)的上方位置,前工装面(1.3)和后工装面(1.4)上均设有锁紧机构,自动转位锁定工装(1.2)内部设有旋转控制机构,旋转中心位于其中心位置;受控物料小车(5)至少设置为两件,一个用来进料,一个用来出料;电控装置(6)包括工业控制计算机、电源回路和胀管机控制回路,工业控制计算机与胀管机电控系统电连接,其特征在于,
    所述的胀管机(1)的前工装面(1.3)和后工装面(1.4)上还均设有卡扣机构Ⅰ(1.5),
    还包括翅片总成取码装置(2)、翅片随行工装(3)和交互式交换托盘(4),
    翅片总成取码装置(2)设置在胀管机(1)的前方,包括左右水平方向的X坐标驱动机构、前后水平方向的Y坐标驱动机构、竖直方向的Z坐标驱动机构和机械臂(2.5), 机械臂(2.5)包括坐标旋转机构总成(2.9)和安装在坐标旋转机构总成(2.9)上的取码机械手(2.13),
    坐标旋转机构总成(2.9)上设有安装座(2.10),坐标旋转机构总成(2.9)包括沿水平轴线为旋转轴旋转方向的A坐标旋转机构(2.11),
    取码机械手(2.13)内部设置关节控制机构(2.14),正面设置有传感器,背面固定安装在安装座(2.10)上;
    翅片随行工装(3)设置于胀管机(1)与翅片总成取码装置(2)之间,包括轨道(3.1)、行走底架(3.2)和转位工装架(3.3),
    轨道(3.1)纵向固定连接于地面,
    行走底架(3.2)架设在轨道(3.1)上,内部设有纵向驱动机构和旋转驱动机构,
    转位工装架(3.3)包括前工作面(3.4)和后工作面(3.5),整体安装在行走底架(3.2)上、并与行走底架(3.2)的旋转驱动机构连接,前工作面(3.4)和后工作面(3.5)前后对称于旋转轴线设置,前工作面(3.4)和后工作面(3.5)上均设有卡扣机构Ⅱ(3.6),卡扣机构Ⅱ(3.6)与卡扣机构Ⅰ(1.5)空间错位设置,且卡扣机构Ⅱ(3.6)在X坐标方向上的间距与卡扣机构Ⅰ(1.5)在X坐标方向上的间距相同;
    交互式交换托盘(4)至少设置为两件,内部设有与翅片总成(7)配合的凹槽结构,外部横向尺寸与翅片随行工装(3)上的卡扣机构Ⅱ(3.6)的X坐标方向上的间距尺寸配合、并分别凹槽结构向外卡接在转位工装架(3.3)的前工作面(3.4)和后工作面(3.5)上,交互式交换托盘(4)上设有卡扣机构Ⅲ(4.1);
    所述的两件受控物料小车(5)分别停靠于翅片总成取码装置的附近;
    所述的电控装置(6)还包括计数回路、翅片总成抓取上料回路、翅片随行工装控制回路和翅片总成抓取下料码放回路等,工业控制计算机与传感器电连接,工业控制计算机分别与X坐标驱动机构、Y坐标驱动机构、Z坐标驱动机构和A坐标旋转机构(2.11)电连接,工业控制计算机分别与行走底架(3.2)内部的纵向驱动机构和旋转驱动机构电连接。
  2. 根据权利要求1所述的基于数字总线的空调器翅片总成自动胀管系统,其特征在于,所述的翅片总成取码装置(2)还包括支撑框架(2.1),支撑框架(2.1)纵向设置于胀管机(1)的正前方,其底部固定安装于地面,其顶部前后方向上设有沿Y坐标方向平行设置的导轨(2.2),在导轨(2.2)上X坐标方向上架设有横梁(2.3),横梁(2.3)上设有驱动机构(2.4);
    所述的机械臂(2.5)安装在横梁(2.3)上,机械臂(2.5)还包括沿Z坐标方向上安装在横梁(2.3)上的滑轨(2.6),滑轨(2.6)上设置有升降机构(2.7)和横向行走机构(2.8),所述的坐标旋转机构总成(2.9)安装在滑轨(2.6)底端;
    所述的受控物料小车(5)设置于支撑框架(2.1)内部;
    所述的电控装置(6)的工业控制计算机与驱动机构(2.4)电连接,工业控制计算机与升降机构(2.7)电连接,工业控制计算机与横向行走机构(2.8)电连接。
  3. 根据权利要求1或2所述的基于数字总线的空调器翅片总成自动胀管系统,其特征在于,所述的交互式交换托盘(4)设置为三件,第三件卡接在自动转位锁定工装(1.2)的后工装面(1.4)上。
  4. 根据权利要求1或2所述的基于数字总线的空调器翅片总成自动胀管系统,其特征在于,所述的安装座(2.10)内还设有C坐标旋转机构(2.12);
    所述的电控装置(6)还包括翅片总成模式识别回路,工业控制计算机与C坐标旋转机构(2.13)电连接。
  5. 根据权利要求1或2所述的基于数字总线的空调器翅片总成自动胀管系统,其特征在于,所述的取码机械手(2.14)上并排设置多个抓取机构,所述的电控装置(6)还包括顺序抓取回路。
  6. 根据权利要求1或2所述的基于数字总线的空调器翅片总成自动胀管系统,其特征在于,所述的受控物料小车(5)的停靠位置的前端、即承接所述的受控物料小车(5)的极限位置设置触点开关,所述的电控装置(6)还包括启动回路,触点开关与电源回路电连接。
  7. 根据权利要求1或2所述的基于数字总线的空调器翅片总成自动胀管系统,其特征在于,所述的轨道(3.1)两端均设置限位机构(3.7)。
  8. 根据权利要求1或2所述的基于数字总线的空调器翅片总成自动胀管系统,其特征在于,所述的受控物料小车(5)是数字化轨道小车或数字化托盘。
PCT/CN2015/085003 2014-08-01 2015-07-24 一种基于数字总线的空调器翅片总成自动胀管系统 WO2016015602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/500,805 US20170225219A1 (en) 2014-08-01 2015-07-24 Air conditioner fin assembly automatic tube expansion system based on digital bus
JP2017505242A JP6303069B2 (ja) 2014-08-01 2015-07-24 デジタルバスに基づく空調設備フィンアセンブリの自動管膨張システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410372916.X 2014-08-01
CN201410372916.XA CN104289621B (zh) 2014-08-01 2014-08-01 一种基于数字总线的空调器翅片总成自动胀管系统

Publications (1)

Publication Number Publication Date
WO2016015602A1 true WO2016015602A1 (zh) 2016-02-04

Family

ID=52309699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085003 WO2016015602A1 (zh) 2014-08-01 2015-07-24 一种基于数字总线的空调器翅片总成自动胀管系统

Country Status (4)

Country Link
US (1) US20170225219A1 (zh)
JP (1) JP6303069B2 (zh)
CN (1) CN104289621B (zh)
WO (1) WO2016015602A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695216A (zh) * 2017-09-22 2018-02-16 徐州德坤电气科技有限公司 一种翅片总成自动胀管系统支撑钢板置入单元
CN113460680A (zh) * 2021-07-08 2021-10-01 中电鹏程智能装备有限公司 一种多工位自动芯片上下料装置
CN113857368A (zh) * 2021-09-18 2021-12-31 珠海格力智能装备有限公司 胀管机
CN114147473A (zh) * 2021-12-21 2022-03-08 浙江兰溪市恒创数控机床有限公司 一种散热片的组装设备及其使用方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289621B (zh) * 2014-08-01 2018-05-01 徐州德坤电气科技有限公司 一种基于数字总线的空调器翅片总成自动胀管系统
CN105526220B (zh) * 2015-12-31 2019-07-02 徐州德坤电气科技有限公司 一种空调两器钣金件自动粘贴海绵单元及其使用方法
CN108855732B (zh) * 2015-12-31 2020-08-25 徐州德坤电气科技有限公司 一种具有自动喷涂单元的智能钣金件生产系统
CN106475487B (zh) * 2016-10-13 2018-09-18 上海蜀工自动化科技有限公司 散热器翅片收集机
CN107626836A (zh) * 2017-09-22 2018-01-26 徐州德坤电气科技有限公司 一种空调器翅片总成自动胀管系统
CN107855430B (zh) * 2017-09-22 2019-04-05 徐州德坤电气科技有限公司 一种翅片总成自动胀管系统支撑钢板置入单元的控制方法
CN107598010B (zh) * 2017-09-22 2019-02-05 徐州德坤电气科技有限公司 一种空调器翅片总成自动胀管系统的控制方法
CN107649600B (zh) * 2017-09-22 2019-02-05 徐州德坤电气科技有限公司 一种自动胀管系统三工位翅片总成取码单元的控制方法
CN107804021A (zh) * 2017-12-01 2018-03-16 中国科学院合肥物质科学研究院 一种冲压机器人上下料搬运系统
CN110480295B (zh) * 2019-07-31 2024-02-13 浩德重工科技(江苏)有限公司 一种网架连杆自动焊接生产系统的螺栓自动置入单元
CN112296656B (zh) * 2020-10-22 2022-04-08 南京国佑智能化系统有限公司 一种无需补管工序的空调热交换器自动穿管方法及生产线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320985A (ja) * 1999-05-07 2000-11-24 Mitsubishi Heavy Ind Ltd チューブ拡管装置及びチューブ位置検出方法
CN101947602A (zh) * 2010-09-03 2011-01-19 中山市奥美森工业有限公司 全自动胀管机
CN201799530U (zh) * 2010-09-03 2011-04-20 中山市奥美森工业有限公司 一种全自动胀管机的旋转机构
CN204035402U (zh) * 2014-08-01 2014-12-24 徐州德坤电气科技有限公司 基于数字总线的空调器翅片总成自动胀管系统
CN204035380U (zh) * 2014-08-01 2014-12-24 徐州德坤电气科技有限公司 翅片自动胀管系统工装机构及交互式交换托盘
CN204035378U (zh) * 2014-08-01 2014-12-24 徐州德坤电气科技有限公司 翅片自动胀管系统自动转位锁定工装及随行工装
CN104289621A (zh) * 2014-08-01 2015-01-21 徐州德坤电气科技有限公司 一种基于数字总线的空调器翅片总成自动胀管系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511219U (zh) * 1978-06-30 1980-01-24
US4228573A (en) * 1979-06-29 1980-10-21 General Motors Corporation Method for assembling heat exchangers
JPH0626742B2 (ja) * 1985-09-13 1994-04-13 株式会社日立製作所 熱交換器の製造装置
JPH04309426A (ja) * 1991-04-04 1992-11-02 Mitsubishi Electric Corp 熱交換器の製造方法及び製造装置
US6176006B1 (en) * 1999-09-21 2001-01-23 Burr Oak Tool And Gauge Company, Inc. Rod lock and unlock mechanism for a mechanical tube expander
US20060099064A1 (en) * 2004-11-08 2006-05-11 Yaron Anaki On-the-fly robotic stacking system for flat glass
JP4953010B2 (ja) * 2006-09-13 2012-06-13 株式会社ダイフク 基板収納用の収納容器
JP2011115877A (ja) * 2009-12-02 2011-06-16 Canon Inc 双腕ロボット
US20130287532A1 (en) * 2012-04-27 2013-10-31 Shenzhen China Star Optoelectronics Technology Co., Ltd. Transporting Device for Substrate
DE102012013030A1 (de) * 2012-06-29 2014-04-24 Liebherr-Verzahntechnik Gmbh Vorrichtung zum automatischen Entnehmen von in einem Behälter angeordneten Werkstücken
CN202862210U (zh) * 2012-11-08 2013-04-10 山东省科学院自动化研究所 太阳能玻璃管码放机械手
US9896289B2 (en) * 2013-03-14 2018-02-20 Southwall Technologies Inc. Automated film pickup and placement method for insulating glass units
CN203246889U (zh) * 2013-04-22 2013-10-23 郝新浦 翅片总成取出码垛机械手
CN203245591U (zh) * 2013-04-27 2013-10-23 郝新浦 翅片组穿管过程中使用的双层旋转工位转换工作台
WO2016022426A1 (en) * 2014-08-05 2016-02-11 Corning Incorporated End-of-arm tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320985A (ja) * 1999-05-07 2000-11-24 Mitsubishi Heavy Ind Ltd チューブ拡管装置及びチューブ位置検出方法
CN101947602A (zh) * 2010-09-03 2011-01-19 中山市奥美森工业有限公司 全自动胀管机
CN201799530U (zh) * 2010-09-03 2011-04-20 中山市奥美森工业有限公司 一种全自动胀管机的旋转机构
CN204035402U (zh) * 2014-08-01 2014-12-24 徐州德坤电气科技有限公司 基于数字总线的空调器翅片总成自动胀管系统
CN204035380U (zh) * 2014-08-01 2014-12-24 徐州德坤电气科技有限公司 翅片自动胀管系统工装机构及交互式交换托盘
CN204035378U (zh) * 2014-08-01 2014-12-24 徐州德坤电气科技有限公司 翅片自动胀管系统自动转位锁定工装及随行工装
CN104289621A (zh) * 2014-08-01 2015-01-21 徐州德坤电气科技有限公司 一种基于数字总线的空调器翅片总成自动胀管系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695216A (zh) * 2017-09-22 2018-02-16 徐州德坤电气科技有限公司 一种翅片总成自动胀管系统支撑钢板置入单元
CN113460680A (zh) * 2021-07-08 2021-10-01 中电鹏程智能装备有限公司 一种多工位自动芯片上下料装置
CN113460680B (zh) * 2021-07-08 2023-05-16 中电鹏程智能装备有限公司 一种多工位自动芯片上下料装置
CN113857368A (zh) * 2021-09-18 2021-12-31 珠海格力智能装备有限公司 胀管机
CN114147473A (zh) * 2021-12-21 2022-03-08 浙江兰溪市恒创数控机床有限公司 一种散热片的组装设备及其使用方法

Also Published As

Publication number Publication date
JP6303069B2 (ja) 2018-03-28
JP2017527443A (ja) 2017-09-21
US20170225219A1 (en) 2017-08-10
CN104289621A (zh) 2015-01-21
CN104289621B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2016015602A1 (zh) 一种基于数字总线的空调器翅片总成自动胀管系统
WO2001026440A1 (fr) Dispositif et procede destines a transferer/maintenir des elements en forme de feuille
CN104148533B (zh) 一种基于数字总线的翅片总成铜管口全自动胀管系统
JP6420269B2 (ja) シェルフ型ロボットを備えたプログレッシブ冷間成型機、工具自動交換据え付け装置及び工具カセットの自動交換方法
CN104668931B (zh) 一种翅片总成小u形管无序自动抓管插管系统
CN215469497U (zh) 一种模块化的柔性自动化生产线
CN104668930B (zh) 一种基于数字总线的翅片总成小u形管自动插管系统
CN106938767A (zh) 智能化多节点集群组合式工件拾取搬运装置和方法
CN214109309U (zh) 一种面向汽车门连接件螺母焊接的上下料系统
WO1994009950A1 (en) Double arm robot operating method
CN107695216B (zh) 一种翅片总成自动胀管系统支撑钢板置入单元
CN204035403U (zh) 基于数字总线的翅片总成铜管口全自动胀管系统
CN207724330U (zh) 一种物料抓取机构
CN204035402U (zh) 基于数字总线的空调器翅片总成自动胀管系统
CN215207842U (zh) 线头打结装置及绕线系统
CN107649599B (zh) 一种自动胀管系统三工位翅片总成取码单元
CN209753726U (zh) 一种移料系统、分料系统及制造d接管的生产线
CN111376014B (zh) 一种卡扣及隔音棉装配设备
CN107598010A (zh) 一种空调器翅片总成自动胀管系统的控制方法
CN107649600A (zh) 一种自动胀管系统三工位翅片总成取码单元的控制方法
US20230347528A1 (en) Multi-tool gripper head of a sorting apparatus and operating method thereof
CN107626836A (zh) 一种空调器翅片总成自动胀管系统
CN220509990U (zh) 一种晶圆自动化换料篮设备
CN217530219U (zh) 一种机床加工岛
CN219990474U (zh) 一种坩埚搬运装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15827566

Country of ref document: EP

Kind code of ref document: A1