WO2016015342A1 - 发射机及干扰消除方法 - Google Patents

发射机及干扰消除方法 Download PDF

Info

Publication number
WO2016015342A1
WO2016015342A1 PCT/CN2014/083574 CN2014083574W WO2016015342A1 WO 2016015342 A1 WO2016015342 A1 WO 2016015342A1 CN 2014083574 W CN2014083574 W CN 2014083574W WO 2016015342 A1 WO2016015342 A1 WO 2016015342A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
feedback
channel
cancellation
transmit
Prior art date
Application number
PCT/CN2014/083574
Other languages
English (en)
French (fr)
Inventor
谢环
周小敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14899048.4A priority Critical patent/EP3145144B1/en
Priority to CN201480003559.8A priority patent/CN105493458B/zh
Priority to KR1020177001136A priority patent/KR101882307B1/ko
Priority to JP2017503938A priority patent/JP6475320B2/ja
Priority to PCT/CN2014/083574 priority patent/WO2016015342A1/zh
Priority to CA2953002A priority patent/CA2953002C/en
Publication of WO2016015342A1 publication Critical patent/WO2016015342A1/zh
Priority to US15/398,499 priority patent/US9794090B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • H04L25/03847Shaping by selective switching of amplifying elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a transmitter and an interference cancellation method. Background technique
  • MIMO Multiple-Input Multiple-Output
  • the transmitter used usually includes multiple transmit channels and one feedback channel.
  • Each transmitting channel in the transmitter is isolated by means of cavity isolation or spatial shielding such as increasing physical distance to reduce interference between the transmitting channels.
  • the signal of the transmitting channel will leak into the feedback channel, that is, the signal of the transmitting channel will interfere with the feedback channel, and the interference signal on the feedback channel will cause interference to the transmitting channel, resulting in distortion of the transmitted signal.
  • the embodiment of the invention provides a transmitter and an interference cancellation method to solve the problem that the transmission signal is easily distorted in the prior art.
  • an embodiment of the present invention further provides a transmitter, including: a feedback cancellation module, a first digital predistorter DPD, and a power amplifier PA; the first DPD and the PA are located at the transmitter a transmitting channel, and the first DPD is connected to the PA; the feedback cancellation module is located on a feedback channel of the transmitter, and the feedback cancellation module is respectively associated with the PA and the first DPD connection;
  • the feedback cancellation module is configured to perform interference cancellation on the signal of the feedback channel according to the feedback cancellation signal, acquire the first mixed signal, and send the signal to the first DPD, where the feedback pair
  • the cancellation signal is a signal obtained according to a feedback interference signal collected when the feedback channel is in an idle state
  • the first DPD is configured to be configured according to the first mixed signal and the first transmitting channel a baseband signal is subjected to linear predistortion processing to generate a first predistortion signal;
  • the PA is configured to: after the signal to be transmitted is amplified, transmit through an antenna, where the to-be-transmitted signal is the first pre-distortion signal or a signal obtained according to the first pre-distortion signal.
  • the transmitter further includes: a control switch; the feedback cancellation module is connected to the PA by using the control switch, the control switch The state includes connecting to the PA;
  • the feedback cancellation module is configured to acquire a signal of the feedback channel when the control switch is connected to the PA, and perform interference cancellation on a signal of the feedback channel according to the feedback cancellation signal. Obtaining the first mixed signal and transmitting to the first DPD.
  • the state of the control switch further includes grounding or floating, and when the state of the control switch is grounded or suspended, The feedback channel is in the no-load state;
  • the feedback cancellation module is further configured to acquire the feedback cancellation signal by collecting the feedback interference signal of the feedback channel when the state of the control switch is grounded or suspended.
  • the state of the control switch further includes grounding or floating, and when the state of the control switch is grounded or suspended, The feedback channel is in the no-load state;
  • the first DPD is further configured to perform linear pre-distortion on the baseband signal before the first baseband signal on the first transmit channel to generate a second pre-distortion signal, before generating the first pre-distortion signal, And sending to the feedback cancellation module;
  • the feedback cancellation module is further configured to collect the feedback interference signal of the feedback channel when the state of the control switch is grounded or floating, according to the feedback interference signal and the first DPD transmission
  • the cross-correlation between the second pre-distortion signals obtains a first parameter
  • the feedback cancellation signal is obtained according to the first parameter and the second pre-distortion signal.
  • the transmitter further includes: a transmit cancellation module, where the transmit cancellation module is located in the first a transmitting channel, and the first DPD is connected to the PA by the transmitting cancellation module; the transmitting cancellation module is configured to generate, according to the first transmit cancellation signal, the first DPD The first pre-distortion signal performs interference cancellation to obtain the signal to be transmitted;
  • the first transmit cancellation signal is: according to the first transmit channel, the transmitter is A signal obtained by an interference signal generated by interference of other transmission channels other than the first transmission channel.
  • the transmitting cancellation module is connected to the feedback cancellation module, the transmitter further includes: a second DPD, a second DPD is located on the second transmit channel of the transmitter and is coupled to the transmit cancellation module; the second transmit channel is any one of the transmitters except the first transmit channel aisle;
  • the feedback cancellation module is further configured to send the first mixed signal to the transmit cancellation module;
  • the second DPD is configured to generate a predistortion signal according to the second baseband signal, and send the predistortion signal to the transmit cancellation module; wherein the second baseband signal is a baseband signal of the second transmit channel;
  • the cancellation module is specifically configured to: before the interference cancellation of the first predistortion signal according to the first transmit cancellation signal, the first mixed signal sent according to the feedback cancellation module and the first
  • the cross-correlation of the predistortion signal generated by the two DPD acquires a second parameter, and acquires the first transmit cancellation signal according to the second parameter and the predistortion signal generated by the second DPD.
  • the transmitter further includes: a transmit cancellation module, where the transmit cancellation module is located in the first transmission On the channel, and the transmitting cancellation module is connected to the PA through the first DPD; the transmitting cancellation module is configured to perform a third on the first transmitting channel according to the second transmitting cancellation signal
  • the baseband signal performs interference cancellation, obtains the first baseband signal, and transmits the first baseband signal to the first DPD;
  • the second transmit cancellation signal is a signal obtained according to an interference signal generated by the first transmit channel being interfered by the transmit channel other than the first transmit channel in the transmitter.
  • the transmitting cancellation module is connected to the feedback cancellation module
  • the feedback cancellation module is further configured to send the first mixed signal to the transmit cancellation module;
  • the transmitting cancellation module is further configured to acquire, according to the cross-correlation between the first mixed signal and the second baseband signal sent by the feedback cancellation module, before performing interference cancellation on the third baseband signal a third parameter, and acquiring the second hair according to the third parameter and the second baseband signal a second cancellation signal is a baseband signal of a second transmission channel in the transmitter; the second transmission channel is any one of the transmitters except the first transmission channel A launch channel.
  • an embodiment of the present invention further provides an interference cancellation method, including:
  • the signal to be transmitted is amplified and transmitted through an antenna, and the signal to be transmitted is the first predistortion signal or a signal obtained according to the first predistortion signal.
  • the method before the interference cancellation of the signal of the feedback channel according to the feedback cancellation signal, the method further includes:
  • the feedback cancellation signal is acquired by collecting the feedback interference signal of the feedback channel.
  • the performing interference cancellation on the signal of the feedback channel according to the feedback cancellation signal Previously it also included:
  • the feedback channel When the feedback channel is in an idle state, collecting the feedback interference signal of the feedback channel, and obtaining a first parameter according to a cross-correlation between the feedback interference signal and the second predistortion signal; Obtaining, by the first parameter and the second predistortion signal, the feedback cancellation signal, wherein the second predistortion signal is performed according to a baseband signal before transmitting the first baseband signal on the first transmission channel Predistorted signal produced by linear predistortion.
  • the no-load state includes: floating or grounding.
  • the method before the transmitting the signal to be transmitted and the transmitting method by using the antenna, the method further includes: And performing interference cancellation on the first pre-distortion signal according to the first transmit cancellation signal to obtain the to-be-transmitted signal;
  • the first transmit cancellation signal is a signal obtained according to an interference signal generated by the first transmit channel of the transmitter being interfered by a transmit channel other than the first transmit channel.
  • the method before performing the interference cancellation on the first pre-distortion signal according to the first transmit cancellation signal, the method further includes:
  • the second transmitting channel is any one of the transmitters except the first transmitting channel.
  • the first mixing signal and the first transmitting channel are first Before the baseband signal is linearly predistorted, it also includes:
  • the performing interference cancellation on the third baseband signal on the first transmit channel according to the second transmit cancellation signal Previously it also included:
  • the second transmitting channel is any one of the transmitters except the first transmitting channel, and the second baseband signal is a baseband signal of the second transmitting channel.
  • the transmitter and the interference cancellation method provided by the embodiment of the present invention use the feedback cancellation module to perform interference cancellation on the signal of the feedback channel according to the feedback cancellation signal before performing the pre-distortion processing on the first DPD, because the feedback cancellation
  • the signal is a signal obtained from the feedback interference signal, thereby
  • the interference signal that leaks the first transmission channel to the feedback channel can be eliminated to prevent the feedback interference signal from causing interference to the first transmission channel, and reduce the distortion of the transmission signal on the first transmission channel.
  • FIG. 1 is a schematic structural diagram of a transmitter according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of another transmitter according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of another transmitter according to Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural diagram of another transmitter according to Embodiment 4 of the present invention.
  • FIG. 5 is a flowchart of an interference cancellation method according to Embodiment 5 of the present invention.
  • FIG. 6 is a flowchart of another interference cancellation method according to Embodiment 5 of the present invention
  • FIG. 7 is a schematic structural diagram of another transmitter according to Embodiment 6 of the present invention.
  • FIG. 8 is a flowchart of another interference cancellation method according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic structural diagram of still another transmitter according to Embodiment 7 of the present invention.
  • FIG. 10 is a flowchart of still another interference cancellation method according to Embodiment 7 of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the transmitter may be a transmitter of a network device or user equipment.
  • the transmitter includes at least one transmitting channel and at least one feedback channel, wherein the feedback channel may specifically be a transmission channel formed by a wired connection between the input end and the output end of the transmitting channel, for transmitting a feedback signal corresponding to the transmitting channel.
  • FIG. 1 is a schematic structural diagram of a transmitter according to Embodiment 1 of the present invention.
  • launch The machine 100 includes: a feedback cancellation module 101, a first digital predistorter (DPD) 102, and a power amplifier (PA) 103.
  • the first DPD 102 and the PA 103 are located on the first transmit channel TX1 of the transmitter 100, and the first DPD 102 is connected to the PA 103.
  • the feedback cancellation module 101 is located on the feedback channel of the transmitter 100, and the feedback cancellation module 101 is connected to the PA 103 and the first DPD 102, respectively.
  • the feedback cancellation module 101 is configured to perform interference cancellation on the feedback channel signal according to the feedback cancellation signal, acquire the first mixed signal, and output the first mixed signal to the first DPD 102.
  • the feedback cancellation signal is a signal obtained according to a feedback interference signal collected when the feedback channel is in an idle state.
  • the first DPD 102 is configured to perform linear predistortion processing according to the first mixed signal and the first baseband signal of the first transmit channel to generate a first predistortion signal.
  • the PA 103 is configured to: after the signal to be transmitted is amplified, transmit through an antenna, where the signal to be transmitted is the first predistortion signal or a signal obtained according to the first predistortion signal.
  • the foregoing transmitter includes one or more transmission channels. Since the processing principle of each transmission channel in the transmitter is the same, for convenience of description, the following only explains the interference cancellation of the first transmission channel in the transmitter. Description.
  • the power needs to be amplified by the PA 103 to achieve a corresponding signal power value.
  • the signal is power amplified and operates in a nonlinear region of the PA 103. Due to the nonlinearity of the nonlinear region, distortion products such as harmonic distortion caused by amplitude distortion, phase distortion, and intermodulation distortion are generated.
  • the signal output by the PA 103 is typically fed back to the first DPD 102 and linearly compensated by the first DPD 102 using a predistortion technique.
  • the signal output from the PA 103 can be coupled to the feedback channel by configuring the coupler to reduce the signal power of the feedback channel, thereby reducing the feedback cancellation module.
  • the strength of the signal processing increases the processing speed.
  • the PA 103 performs a power amplification operation on the analog signal, and the first DPD 102 linearly optimizes the digital signal.
  • the feedback channel may further include: an analog to digital converter (ADC). Passing a digital to analog converter between the first DPD 102 and the PA 103 Referred to as DAC) connection.
  • ADC analog to digital converter
  • the ADC may exist in the feedback channel in three different forms: first, the ADC may be integrated in the feedback cancellation module 101 as software and/or hardware; second, the ADC may Independent of the feedback cancellation module 101, located between the PA 103 and the feedback cancellation module 101; third, the ADC can also be independent of the feedback cancellation module 101, between the feedback cancellation module 101 and the first DPD 102 .
  • the signal output from the PA 103 can be analog-to-digital converted, so that the feedback cancellation module 101 performs interference cancellation on the digital signal.
  • the first and second forms are only different in the specific location of the ADC.
  • the feedback cancellation module 101 can perform analog-to-digital conversion on the signal after the feedback interference cancellation.
  • the feedback cancellation module 101 may also process the analog signal, and convert the analog signal into a digital signal after processing.
  • the feedback cancellation module 101 can process the digital signal, gP, and feedback on the feedback channel.
  • the cancellation module 101 and the PA 103 can be specifically connected through an ADC.
  • the signal of the feedback channel may include: a feedback signal corresponding to the first transmission channel, and an interference signal generated by the feedback channel being interfered by the first transmission channel; and further, the method may further include: the feedback channel being transmitted by the feedback channel An interference signal generated by interference of other transmission channels other than the first transmission channel. That is to say, at this time, the signal of the feedback channel is a mixed signal formed by a plurality of signals.
  • the feedback signal corresponding to the first transmitting channel refers to a signal that is output from the power amplifier of the first transmitting channel to the feedback channel, for example, a signal coupled to the feedback channel.
  • the feedback cancellation signal may be a signal obtained according to a feedback interference signal collected when the feedback channel is in an idle state. For example, if the feedback channel is only corresponding to the first transmission channel, when the feedback channel is in the no-load state, the feedback signal corresponding to the first transmission channel does not exist on the feedback channel, and the signal on the feedback channel is the first one.
  • the interference signal other than the feedback signal corresponding to the transmission channel, and thus the feedback interference signal can be obtained according to the interference signal collected when the feedback channel is in an idle state.
  • the above-mentioned feedback channel in the no-load state can be implemented by the feedback channel being disconnected from the transmitting channel or the feedback channel being grounded, which is not limited herein.
  • the feedback cancellation signal may directly be the feedback interference signal, or may be an inverted signal of the feedback interference signal.
  • the feedback interference signal may be an analog signal, and the feedback cancellation signal may also be a digital signal generated according to the feedback interference signal. If the feedback cancellation signal is the feedback interference signal, the feedback cancellation module 101 performs interference cancellation on the feedback channel signal according to the feedback cancellation signal. Specifically, when the feedback channel is connected to the PA 103 of the first transmitting channel, the signal of the feedback channel is signal-decomposed, and the feedback cancellation signal is subtracted, thereby obtaining the first mixed signal.
  • the feedback cancellation module 101 performs interference cancellation on the feedback channel signal according to the feedback cancellation signal. Specifically, the feedback cancellation signal is added to the signal of the feedback channel to obtain the first mixed signal.
  • the first mixed signal at least does not include: an interference signal generated by the feedback channel being interfered by the first transmission channel.
  • the feedback cancellation module 101 may be an integrated circuit or a chip that can implement the above functions, or may be a processor that integrates the above functions.
  • the transmitter provided by the embodiment of the present invention uses the feedback cancellation module to cancel the interference of the signal of the feedback channel before performing the pre-distortion processing on the first DPD, thereby successfully eliminating the interference of the first transmission channel to the feedback channel.
  • the interference signal on the feedback channel is prevented from causing interference to the first transmitting channel, and the distortion of the transmitted signal on the first transmitting channel is greatly reduced.
  • embodiments of the present invention are applicable to systems such as mobile communication networks, fixed wireless access networks, wireless data transmission, and radar.
  • the interference cancellation scheme for the other transmission channels in the transmitter is similar to the above structure.
  • the transmitter includes at least two transmit channels and one feedback channel
  • the feedback channel may include a feedback cancellation module, and may also include at least two feedback cancellation modules.
  • a feedback cancellation module similar to the feedback cancellation module described above may be employed, and the one feedback cancellation module is also associated with DPD and PA on other transmission channels. connection.
  • the feedback cancellation module respectively performs interference cancellation on the feedback channel according to the feedback cancellation signal corresponding to the respective transmission channel, so as to eliminate the interference of each transmission channel to the one feedback channel.
  • the feedback channel of the transmitter includes at least two feedback cancellation modules
  • at least two feedback cancellation modules respectively correspond to one transmission channel
  • any one of the feedback cancellation modules corresponds to DPD and PA connections for the transmit channel.
  • the at least two feedback cancellation modules are the same as the feedback cancellation module described above.
  • FIG. 2 is a schematic structural diagram of another transmitter according to Embodiment 2 of the present invention.
  • the transmitter 100 further includes: a control switch 201.
  • the feedback cancellation module 101 can be coupled to the PA 103 via a control switch 201, and the state of the control switch 201 can include a connection to the PA 103.
  • the feedback cancellation module 101 is specifically configured to acquire a signal of the feedback channel when the control switch 201 is connected to the PA 103, and perform interference cancellation on the signal of the feedback channel according to the feedback cancellation signal to obtain the first mixed signal. And sent to the first DPD 102.
  • the state of the control switch 201 further includes grounding or floating, and when the state of the control switch 201 is grounded or floating, the feedback channel is in an idle state.
  • the feedback cancellation module 101 is further configured to acquire the feedback cancellation signal by collecting the feedback interference signal of the feedback channel when the state of the control switch 201 is grounded or floating.
  • control switch 201 can be a single-pole multi-state switch, and the control switch
  • the single-pole switch of 201 is switched to the 1-state, and the connection between the feedback cancellation module 101 and the PA 103 is realized, so that the feedback cancellation module 101 acquires the signal of the feedback channel; the single-knife of the control switch 201 is switched to the 2-state, and grounding or The signal is suspended, so that the feedback cancellation module 101 acquires the feedback cancellation signal by collecting the feedback interference signal of the feedback channel.
  • the feedback interference signal may be an interference signal collected by the feedback cancellation module 101 when the state of the control switch 201 is grounded or left floating.
  • the first DPD 102 is further configured to perform linear predistortion processing on the baseband signal before the first baseband signal on the first transmit channel to generate a second predistortion signal before generating the first predistortion signal. And sent to the feedback cancellation module 101.
  • the feedback cancellation module 101 is further configured to collect the feedback interference signal of the feedback channel when the state of the control switch 201 is grounded or floating, according to the feedback interference signal and the second predistortion signal sent by the first DPD 102.
  • the cross-correlation obtains the first parameter, and according to the first parameter and the first The second predistortion signal acquires the feedback cancellation signal.
  • the signal of the feedback channel when the feedback channel is in an idle state, the signal of the feedback channel does not include a feedback signal corresponding to any of the transmitting channels.
  • the transmitter includes more than two transmitting channels, and the feedback channel corresponds to the two or more transmitting channels. If the feedback channel is in an idle state, the signal on the feedback channel includes the feedback channel. In addition to the interference signal generated by the interference of the first transmission channel, the interference signal generated by the feedback channel being interfered by other transmission channels is also included. Since the interference channel generated by the feedback channel interfered by the first transmission channel and the signal transmitted by the first transmission channel both include signals of the same data packet or similar data packets, the signal similarity is higher and the cross-correlation is higher. Big.
  • the feedback cancellation module 101 may generate the second predistortion before the first predistortion signal according to the first DPD 102.
  • a cross-correlation between the signal and the signal of the feedback channel, the signal of the feedback channel is decomposed into an interference signal generated by the feedback channel being interfered by the first transmission channel, and the feedback channel is generated by interference of other transmission channels
  • the feedback cancellation module 101 can obtain the feedback cancellation signal by multiplying the first parameter and the second predistortion signal.
  • the feedback cancellation signal and the interference cancellation on the feedback channel may be iteratively executed according to a preset period.
  • the baseband signal before the first baseband signal on the first transmission channel may be the first The baseband signal in the previous period of the current period on the transmission channel, then the second predistortion signal is the predistortion signal generated by the first DPD 102 in the previous period. That is, the second predistortion signal described above may be a predistortion signal generated by the first DPD 102 in the previous cycle.
  • the transmitter provided by the embodiment of the invention is more accurate by adjusting the feedback interference signal when the control switch is adjusted to be suspended or grounded, so that the determined feedback cancellation signal is more accurate, thereby better ensuring the feedback cancellation module.
  • the interference cancellation is more thorough and more accurate, improving the linearity of the signal and reducing nonlinear distortion.
  • Embodiment 3 of the present invention provides another kind on the basis of the embodiment shown in FIG. 1 or FIG. 2 above.
  • FIG. 3 is a schematic structural diagram of another transmitter according to Embodiment 3 of the present invention.
  • the embodiment shown in FIG. 3 is specifically illustrated by a transmitter obtained by combining a transmit cancellation module with the embodiment shown in FIG. 1.
  • the transmitter 100 further includes a transmit cancellation module 301.
  • the transmit cancellation module 301 is located on the first transmit channel, and the first DPD 102 can be coupled to the PA 103 via the transmit cancellation module 301.
  • the transmit cancellation module 301 is configured to perform interference cancellation on the first predistortion signal generated by the first DPD 102 according to the first transmit cancellation signal, acquire a signal to be transmitted, and send the to-be-transmitted signal to the PA 103.
  • the first transmit cancellation signal is obtained by acquiring an interference signal generated by interference of the first transmission channel by other transmission channels other than the first transmission channel in the transmitter.
  • the first transmit cancellation signal may be directly a transmit interference signal or an inverted signal of the transmit interference signal.
  • the transmit interference signal can include an interference signal generated by the first transmit channel being interfered by the transmit channel other than the first transmit channel in the transmitter.
  • the transmit cancellation module 301 performs interference cancellation on the first pre-distortion signal according to the first transmit cancellation signal to obtain a signal to be transmitted, which may include:
  • the first transmit cancellation signal is the transmit interference signal
  • the first predistortion signal is signal-decomposed, and the first transmit cancellation signal is subtracted to obtain the to-be-transmitted signal
  • the first transmit cancellation signal is an inverted signal of the transmit interference signal
  • the foregoing interference interference signal may be an analog signal, which is not limited herein.
  • the transmitting cancellation module performs interference cancellation on the pre-distortion signal on the first transmitting channel according to the first transmitting cancellation signal, and can successfully cancel other transmitting channels in the transmitter except the first transmitting channel.
  • the interference to the first transmitting channel reduces the interference of the first transmitting channel, thereby reducing the distortion of the transmitted signal on the first transmitting channel.
  • the transmit cancellation module 301 is connected to the feedback cancellation module 101, and the transmitter 100 further includes a second DPD 302, and the second DPD 302 is located on the second transmission channel of the transmitter 100, and Connected to the transmit cancellation module 301.
  • the second transmit channel is any one of the transmitters 100 other than the first transmit channel.
  • the feedback cancellation module 101 is further configured to send the first mixed signal to the transmit cancellation module 301.
  • a second DPD 302 configured to generate a predistortion signal according to the second baseband signal, and send the signal to the transmit The cancellation module 301; wherein the second baseband signal is a baseband signal of the second transmission channel.
  • the transmit cancellation module 301 is specifically configured to generate the first mixed signal and the second DPD 302 according to the feedback cancellation module 101 before performing interference cancellation on the first predistortion signal according to the first transmit cancellation signal.
  • the cross-correlation of the predistortion signal acquires a second parameter, and the first transmit cancellation signal is obtained according to the second parameter and the predistortion signal generated by the second DPD 302.
  • the first transmission channel is interfered by the other transmission channels except the first transmission channel, that is, the transmission interference signal passes through the interference signal.
  • the PA 103 of the first transmitting channel is transmitted to the feedback channel of the transmitter, such that the signal of the feedback channel further includes: the transmitting interference signal. That is to say, the first mixed signal generated by the feedback cancellation block 101 after the interference cancellation of the signal of the feedback channel further includes the transmitted interference signal.
  • the pre-distortion of the transmit interference signal and other transmit channels in the transmitter because the transmit interference signal is an interference signal generated by the first transmit channel being interfered by the transmit channel other than the first transmit channel in the transmitter.
  • the signal that is, the predistortion signal generated by the second DPD 302
  • the signal includes the same or similar data packets. Since the difference between the signals of the same or similar packets is small, the cross-correlation is high. Therefore, the transmit interference signal is obtained from the first mixed signal according to the cross-correlation between the first mixed signal and the predistortion signal generated by the second DPD 302, and then the transmit interference signal is determined to be generated by the second DPD 302.
  • the relative coefficient of the predistortion signal ie the second parameter.
  • the transmit cancellation module 301 can multiply the second parameter and the pre-distortion signal generated by the second DPD 203 to obtain the first transmit cancellation signal.
  • the first transmit cancellation signal can be determined more accurately by the above method, thereby better ensuring that the interference cancellation performed by the transmit cancellation module is more thorough and accurate, improving the linearity of the signal, and reducing the nonlinearity. distortion.
  • a similar control switch similar to that in the foregoing Embodiment 2 may be disposed between the feedback cancellation module 101 and the PA 103, and the feedback channel is unloaded by controlling the grounding or floating of the switch.
  • the state is connected to the PA 103 through the control switch, and the connection between the feedback cancellation module 101 and the PA 103 is implemented, and details are not described herein again.
  • Embodiment 4 of the present invention provides another transmitter based on the embodiment shown in FIG. 1 or FIG. 2 above.
  • FIG. 4 is a schematic structural diagram of another transmitter according to Embodiment 4 of the present invention.
  • the picture The embodiment shown in Fig. 4 is specifically exemplified by a transmitter obtained by combining the transmitting cancellation module with the above-described embodiment shown in Fig. 1.
  • the transmitter 100 further includes a transmit cancellation module 401.
  • the transmit cancellation module 401 is located on the first transmit channel and is connected to the PA 103 through the first DPD 102.
  • a transmit cancellation module 401 configured to perform interference cancellation on the third baseband signal on the first transmit channel according to the second transmit cancellation signal, obtain the first baseband signal, and send the first baseband signal to the first A DPD 102.
  • the second transmit cancellation signal may be a signal obtained according to an interference signal generated by the first transmit channel being interfered by the transmit channel other than the first transmit channel in the transmitter.
  • the location of the transmitting cancellation module on the first transmitting channel in the transmitter is different, and the interference cancellation signal is used to cancel different signals according to the second transmitting cancellation signal.
  • the transmit cancellation module performs interference pre-cancellation through the pre-distortion signal generated by the first DPD, that is, the first pre-distortion signal; and in the embodiment of the present invention, the transmit cancellation module The interference cancellation may be performed on the baseband signal before the second DPD generates a predistortion signal according to the second transmit cancellation signal.
  • the transmission cancellation module 401 is also connected to the feedback cancellation module 101.
  • the feedback cancellation module 101 is further configured to send the first mixed signal to the transmit cancellation module 401.
  • the transmit cancellation module 401 is further configured to obtain a third parameter according to the cross-correlation between the first mixed signal and the second baseband signal sent by the feedback cancellation module 101 before performing interference cancellation on the third baseband signal, and Obtaining the second transmit cancellation signal according to the third parameter and the second baseband signal; wherein the second baseband signal is a baseband signal of a second transmit channel in the transmitter; the second transmit channel is the transmitter Any one of the transmitting channels except the first transmitting channel.
  • the first transmission channel is interfered by the other transmission channels except the first transmission channel, that is, the transmission interference signal passes through the interference signal.
  • the PA 103 of the first transmit channel is transmitted to the feedback channel of the transmitter such that the signal of the feedback channel further includes the transmit interference signal. That is, the first mixed signal generated by the feedback cancellation module 101 after the interference cancellation of the signal of the feedback channel further includes: the transmission interference signal.
  • the first mixed signal is generated because the transmit interference signal is an interference signal generated by the first transmit channel being interfered by the transmit channel other than the first transmit channel in the transmitter.
  • the baseband signal with the other transmit channels in the transmitter i.e., the second baseband signal includes the same or similar data packets.
  • the transmit interference signal is obtained from the first mixed signal according to the cross-correlation between the first mixed signal and the second baseband signal, and then the relative coefficient of the transmit interference signal and the second baseband signal is determined, that is, the Third coefficient.
  • the transmit cancellation module 401 can multiply the third parameter and the second baseband signal to obtain the second transmit cancellation signal.
  • the transmitter provided by the embodiment of the present invention, before the linear pre-distortion of the first DPD according to the second transmit cancellation signal by the transmit cancellation module, before the other transmit channels except the first transmit channel
  • the interference of a transmitting channel is eliminated, the distortion of the transmitted signal on the first transmitting channel is mitigated, the linearity of the transmitted signal is ensured, and the second transmitting pair is also determined by a specific second transmitting cancellation signal determining scheme.
  • the cancellation signal is more accurate, so as to better ensure that the interference cancellation by the transmitting cancellation module is more thorough and accurate, improve the linearity of the signal, and reduce the nonlinear distortion.
  • a similar control switch similar to that in the foregoing Embodiment 2 may be disposed between the feedback cancellation module 101 and the PA 103, and the feedback channel is unloaded by controlling the grounding or floating of the switch.
  • the state is connected to the PA 103 through the control switch, and the connection between the feedback cancellation module 101 and the PA 103 is implemented, and details are not described herein again.
  • Embodiment 4 of the present invention further provides an interference cancellation method.
  • the method can be performed by a transmitter as described in any of the above embodiments.
  • FIG. 5 is a flow chart of an interference cancellation method according to Embodiment 5 of the present invention. The method is specifically as follows.
  • Step 501 Acquire a signal of the feedback channel when a feedback channel in the transmitter is connected to the first transmit channel in the transmitter.
  • Step 502 Perform interference cancellation on the signal of the feedback channel according to the feedback cancellation signal, and obtain the first mixed signal.
  • the feedback cancellation signal is a signal obtained according to a feedback interference signal collected when the feedback channel is in an idle state.
  • Step 503 Perform, according to the first mixed signal and the first baseband signal of the first transmit channel Linear predistortion processing to generate a first predistortion signal.
  • Step 504 Amplify the signal to be transmitted and transmit it through an antenna, where the signal to be transmitted is the first predistortion signal or a signal obtained according to the first predistortion signal.
  • the method further includes:
  • Step 502a When the feedback channel is in an idle state, collecting the feedback interference signal of the feedback channel, and obtaining a first parameter according to a cross-correlation between the feedback interference signal and the second predistortion signal.
  • Step 502b Acquire the feedback cancellation signal according to the first parameter and the second predistortion signal.
  • the second predistortion signal is a predistortion signal generated by linear predistortion based on the baseband signal before the first baseband signal on the first transmit channel.
  • the method may further include: collecting the feedback channel when the feedback channel is in an idle state.
  • the feedback interference signal acquires the feedback cancellation signal.
  • the no-load state comprises: floating or grounded.
  • the method further includes:
  • Step 504a Perform interference cancellation on the first pre-distortion signal according to the first transmit cancellation signal to obtain the to-be-transmitted signal.
  • the first transmit cancellation signal is a signal obtained according to an interference signal generated by the first transmission channel of the transmitter being interfered by a transmission channel other than the first transmission channel.
  • the method before the interference cancellation of the first predistortion signal according to the first transmit cancellation signal in step 504a, the method further includes:
  • Step 504b Acquire a second parameter according to a cross-correlation between the first mixed signal and a predistortion signal generated in the second transmit channel.
  • Step 504c Acquire the first transmit cancellation signal according to the second parameter and a predistortion signal generated in the second transmit channel.
  • the second transmitting channel is any one of the transmitters except the first transmitting channel aisle.
  • FIG. 6 is a flowchart of another interference cancellation method according to Embodiment 5 of the present invention. As shown in FIG. 6, the method further includes: before the performing the linear predistortion processing according to the first mixed signal and the first baseband signal of the first transmitting channel, in the foregoing method, the method further comprising:
  • Step 601 Perform interference cancellation on the third baseband signal on the first transmit channel according to the second transmit cancellation signal, to obtain the first baseband signal.
  • the transmit cancellation signal is a signal obtained according to an interference signal generated by the first transmission channel being interfered by the transmitter other than the first transmission channel.
  • the method further includes:
  • Step 601a Acquire a second parameter according to a cross-correlation between the first mixed signal and the second baseband signal.
  • Step 601b Acquire the second transmit cancellation signal according to the second parameter and the second baseband signal.
  • the second transmit channel is any one of the transmitters except the first transmit channel, and the second baseband signal is a baseband signal of the second transmit channel.
  • the embodiment of the invention further provides a transmitter and an interference cancellation method.
  • the transmitter includes two transmitting channels and one feedback channel as an example.
  • FIG. 7 is a schematic structural diagram of another transmitter according to Embodiment 6 of the present invention.
  • the transmitter 700 shown in FIG. 7 includes a first transmit channel TX1, a second transmit channel ⁇ 2, and a feedback channel, where the baseband signal of the first transmit channel TX1 is a first baseband signal, and the second transmit channel ⁇ 2
  • the baseband signal is a second baseband signal.
  • the transmitter 700 includes: a first DPD 701.
  • the first transmit cancellation module 702 and the first PA 703, and the first DPD 701, the first transmit cancellation module 702, and the first PA 703 are both located on the first transmit channel TX1, and are sequentially connected.
  • the transmitter 700 further includes: a second DPD 704, a second transmit cancellation module 705, and a second PA 706, and the second DPD 704, the second transmit cancellation module 705, and the second PA 706 are both located in the second transmit channel TX2. Up, and connect in order.
  • the feedback channel of the transmitter 700 includes: a first feedback cancellation module 707 and a second feedback cancellation module 708.
  • Transmitter 700 also includes a control switch 709.
  • the first feedback cancellation module 707 is connected to the first transmit cancellation module 702 and the first DPD 701
  • the second feedback cancellation module 708 is connected to the second transmit cancellation module 705 and the second DPD 704.
  • the first transmit cancellation module 702 is also coupled to the second DPD 704.
  • the second transmit cancellation module 705 is also coupled to the first DPD 701.
  • the control switch 709 is a single-pole 3-state switch, which includes three states. If the state of the control switch 709 is 1 state, the first feedback cancellation module 707 is connected to the first PA 703 through the control switch 709; if the state of the control switch 709 is 2 state, the first feedback cancellation module 707 and the second The feedback cancellation module 708 can be grounded or suspended by the control switch 709, and the feedback channel is in an idle state; if the state of the control switch 709 is 3, the second feedback cancellation module 708 can pass the control switch 709 and the Two PA 706 connections.
  • FIG. 8 is a flowchart of another interference cancellation method according to Embodiment 6 of the present invention.
  • the method is performed by the transmitter shown in Fig. 7, and the state of the feedback channel can be switched by adjusting the state of the control switch.
  • the method can include the following steps:
  • Step 801 Adjust the control switch 709 to the second state, the first feedback cancellation module 707 generates a first feedback cancellation signal according to the first feedback interference signal generated by the first feedback channel interference of the acquired feedback channel, and second The feedback cancellation module 708 generates a second feedback cancellation signal according to the acquired second feedback interference signal generated by the feedback channel being interfered by the second transmission channel.
  • the first feedback cancellation signal may be generated by the first feedback cancellation module 707 according to the baseband signal before the first baseband signal on the first transmission channel according to the first DPD 701 on the first transmission channel.
  • the second feedback cancellation signal may be generated by the second feedback cancellation module 708 according to the baseband signal before the second baseband signal on the second transmission channel by the second DPD 704 on the second transmission channel.
  • Predistortion signal when control switch 709 is in 2-state The second feedback of the feedback channel interferes with the cross-correlation of the signal, and obtains a third parameter, which is then generated according to the third parameter and the baseband signal of the second DPD 704 according to the second baseband signal on the second transmit channel. The signal acquired by the predistortion signal.
  • the first feedback cancellation signal may further be that the first feedback cancellation module 707 first bases the baseband signal according to the first transmission channel, that is, the first baseband signal, and the control channel 709 is in a 2-state state. A cross-correlation between the feedback interference signals, the first parameter is obtained, and then the signal obtained according to the first parameter and the first baseband signal is obtained.
  • the second feedback cancellation signal may be the second feedback cancellation module 708 according to the baseband signal of the second transmission channel, that is, the second baseband signal, and the control channel 709 is in the 2-state. The second feedback interferes with the cross-correlation of the signal, and acquires a third parameter, and then a signal obtained according to the third parameter and the second baseband signal.
  • Step 802 Adjust the control switch 709 to the 1 state, the first feedback cancellation module 707 acquires the signal output by the first PA 703, and performs feedback interference cancellation on the signal output by the first PA 703 according to the first feedback cancellation signal.
  • the first mixed signal is obtained.
  • Step 803 The first DPD 701 generates a first predistortion signal according to the first mixed signal and the first baseband signal.
  • Step 804 The first transmit cancellation module 702 performs modeling to obtain a second parameter according to the cross-correlation between the first mixed signal and the predistortion signal output by the second DPD 704, according to the second parameter and the second The predistortion signal output by the DPD 704 acquires the first transmit cancellation signal.
  • the predistortion signal output by the second DPD 704 may be a predistortion signal generated by the second DPD 704 based on the second baseband signal.
  • Step 805 The first transmit cancellation module 702 performs interference cancellation on the first pre-distortion signal according to the first transmit cancellation signal, generates a first to-be-transmitted signal, and performs amplification by using the first PA 703 to transmit.
  • Step 806 Adjust the control switch 709 to the 3 state, the second feedback cancellation module 708 acquires the signal output by the second PA 706, and performs feedback interference cancellation on the signal output by the second PA 706 according to the second feedback cancellation signal. A second mixed signal is obtained.
  • Step 807 The second DPD 704 generates a second predistortion signal according to the second mixed signal and the second baseband signal.
  • Step 808 The second transmit cancellation module 705 performs modeling to obtain a fourth parameter according to the cross-correlation between the second mixed signal and the predistortion signal output by the first DPD 701, and according to the fourth The parameter and the predistortion signal output by the first DPD 701 acquire the second transmit cancellation signal.
  • Step 809 The second transmit cancellation module 705 performs interference cancellation on the second pre-distortion signal according to the second transmit cancellation signal to generate a second to-be-transmitted signal, and performs amplification by using the second PA 706 to transmit.
  • the embodiment of the present invention is explained by a transmitter having two transmitting channels and one feedback channel, the embodiment of the present invention can also be applied to a transmitter having more than two transmitting channels and one feedback channel. .
  • a transmitter having more than two transmit channels and one feedback channel only an adaptive modification of the embodiment of the present invention can be implemented.
  • FIG. 9 is a schematic structural diagram of still another transmitter according to Embodiment 7 of the present invention.
  • the transmitter 900 shown in FIG. 9 includes a first transmit channel TX1, a second transmit channel ⁇ 2, and a feedback channel, where the baseband signal of the first transmit channel TX1 includes a first baseband signal and a third baseband signal, and the second transmit The baseband signal of channel ⁇ 2 includes a second baseband signal and a fourth baseband signal.
  • the transmitter 900 includes a first transmit cancellation module 901, a first DPD 902, and a first 903 903.
  • the first transmit cancellation module 901, the first DPD 902, and the first ⁇ 903 are both located on the first transmit channel TX1, and are sequentially connected.
  • the transmitter 900 further includes a second transmit cancellation module 904, a second DPD 905, and a second UI 906.
  • the second transmit cancellation module 904, the second DPD 905, and the second UI 906 are both located on the second transmit channel ⁇ 2 and are sequentially connected.
  • the feedback channel of the transmitter 900 includes: a first feedback cancellation module 907 and a second feedback cancellation module 908.
  • Transmitter 900 also includes a control switch 909.
  • the first feedback cancellation module 907 is coupled to the first transmit cancellation module 901 and the first DPD 902
  • the second feedback cancellation module 908 is coupled to the second transmit cancellation module 904 and the second DPD 904.
  • the first transmit cancellation module 901 is also coupled to the second transmit cancellation module 904 to receive the second baseband signal output by the second transmit cancellation module 904.
  • the second transmit cancellation module 904 is also coupled to the first transmit cancellation module 901 to receive the first baseband signal output by the first transmit cancellation module 901.
  • the control switch 909 is a single-pole 3-state switch, that is, includes three states. If the state of the control switch 909 is 1 state, the first feedback cancellation module 907 is connected to the first 903 903 through the control switch 909. If the state of the control switch 909 is 2, the first feedback cancellation module 907 and the second feedback cancellation module 908 can be grounded or suspended by the control switch 909, and the feedback channel is in an idle state; The state of the switch 909 is a 3-state, and the second feedback cancellation module 908 can be connected to the second PA 906 through the control switch 909.
  • FIG. 10 is a flowchart of still another interference cancellation method according to Embodiment 7 of the present invention. Performed by the transmitter shown in Figure 9, the method includes the following steps:
  • Step 1001 Adjusting the control switch 909 to the second state, the first feedback cancellation module 907 generates a first feedback cancellation signal according to the first feedback interference signal generated by the acquired feedback channel being interfered by the first transmission channel, and second The feedback cancellation module 908 generates a second feedback cancellation signal according to the acquired second feedback interference signal generated by the feedback channel being interfered by the second transmission channel.
  • the first feedback cancellation signal may be generated by the first feedback cancellation module 907 according to the baseband signal before the first baseband signal on the first transmission channel according to the first DPD 902 on the first transmission channel.
  • a predistortion signal, and a cross correlation between the first feedback interference signal of the feedback channel when the control switch 909 is in a state of 2 acquiring a first parameter, and then according to the first parameter and the first DPD 902 according to the first A signal obtained from a predistortion signal generated by the baseband signal preceding the first baseband signal on the transmit channel.
  • the second feedback cancellation signal may be generated by the second feedback cancellation module 908 according to the baseband signal before the second baseband signal on the second transmission channel according to the second DPD 905 on the second transmission channel.
  • a predistortion signal and a cross correlation of the second feedback interference signal of the feedback channel when the control switch 909 is in a state of 2, acquiring a third parameter, and then according to the third parameter and the second DPD 905 according to the second transmission channel A signal obtained by a predistortion signal generated by the baseband signal before the second baseband signal.
  • the first feedback cancellation signal may be: the first feedback cancellation module 907 first according to the first baseband signal of the first transmission channel, and the first feedback interference signal of the feedback channel when the control switch 909 is in a 2-state
  • the inter-correlation, the first parameter is obtained, and then the signal obtained according to the first parameter and the first baseband signal is obtained.
  • the second feedback cancellation signal may further be the second feedback cancellation module 908 according to the second baseband signal of the second transmission channel, and the second feedback interference of the feedback channel when the control switch 909 is in the 2-state.
  • the cross-correlation of the signal, the third parameter is obtained, and then the signal obtained according to the third parameter and the second baseband signal is obtained.
  • Step 1002 Adjust the control switch 909 to the 1 state, the first feedback cancellation module 907 acquires the signal output by the first PA 903, and outputs the signal to the first PA 903 according to the first feedback cancellation signal.
  • the feedback interference cancellation is performed to obtain the first mixed signal.
  • Step 1003 The first transmit cancellation module 901 performs modeling to obtain a second parameter according to the cross-correlation between the first mixed signal and the second baseband signal, according to the second parameter and the second baseband signal, Obtaining the first transmit cancellation signal.
  • Step 1004 The first transmit cancellation module 901 performs interference cancellation on the third baseband signal according to the first transmit cancellation signal to generate the first baseband signal.
  • Step 1005 The first DPD 902 generates a first predistortion signal according to the first mixed signal and the first baseband signal, and uses the first predistortion signal as the first to be transmitted signal, and is amplified by the first PA 903. Launch.
  • Step 1006 Adjust the control switch 909 to the 3 state, the second feedback cancellation module 908 acquires the signal output by the second PA 906, and performs feedback interference cancellation on the signal output by the second PA 906 according to the second feedback cancellation signal. A second mixed signal is obtained.
  • Step 1007 The second transmit cancellation module 904 performs modeling to obtain a fourth parameter according to the cross-correlation between the second mixed signal and the first baseband signal, according to the fourth parameter and the first baseband signal, Obtaining the first transmit cancellation signal.
  • Step 1008 The second transmit cancellation module 904 performs interference cancellation on the fourth baseband signal according to the second transmit cancellation signal to generate the second baseband signal.
  • Step 1009 The second DPD 905 generates a second predistortion signal according to the second mixed signal and the second baseband signal, and uses the second predistortion signal as the second to be transmitted signal, and is amplified by the second PA 906. Launch.
  • the embodiment of the present invention is explained by a transmitter having two transmitting channels and one feedback channel, the embodiment of the present invention may also be applied to a transmitter having more than two transmitting channels and one feedback channel. situation. For the case of a transmitter having more than two transmit channels and one feedback channel, only an adaptive modification of the embodiment of the present invention can be implemented.
  • the feedback cancellation module and the transmission cancellation module may be implemented by integrating an integrated circuit or a chip corresponding to the function of the corresponding module, or may be implemented by combining a memory and a processor. If the feedback cancellation module and the transmission cancellation module are combined with a memory and a processor, the feedback cancellation module and the transmission cancellation module may include at least one memory and A processor, wherein the memory can store computer execution instructions for implementing a function of the corresponding module for being invoked and executed by a processor connected thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供一种发射机及干扰消除方法。本发明实施例提供的发射包括:反馈对消模块、第一数字预失真器DPD和功率放大器PA;该反馈对消模块位于该发射机的反馈通道上,且该反馈对消模块分别与该PA及该第一DPD连接;该反馈对消模块用于根据反馈对消信号对该反馈通道的信号进行干扰对消,获取第一混合信号,并发送至该第一DPD;该第一DPD用于根据该第一混合信号及该第一发射通道上的第一基带信号进行线性预失真处理,产生第一预失真信号;该PA用于将待发射信号放大后通过天线进行发射,该待发射信号为该第一预失真信号或者根据该第一预失真信号获得的信号。本发明实施例可减小发射信号的失真。

Description

发射机及干扰消除方法 技术领域
本发明实施例涉及通信技术, 尤其涉及一种发射机及干扰消除方法。 背景技术
为提高链路的传输性能及通信系统的吞吐量, 多输入多输出 (Multiple-Input Multiple-Output, 简称 MIMO) 技术逐渐发展成为无线通信 领域的关键技术之一, 通过近几年的持续发展, MIMO技术将越来越多地应 用于各种无线通信系统。
在 MIMO技术中,采用的发射机通常包括多个发射通道及一个反馈通道。 发射机中的各发射通道通过腔体隔离或增加物理距离等空间屏蔽的方式进行 隔离, 以降低发射通道间的干扰。 然而, 发射通道的信号会泄漏到反馈通道 中, 即发射通道的信号会对反馈通道造成干扰, 反馈通道上的干扰信号会对 发射通道造成干扰, 从而导致发射信号的失真。 发明内容
本发明实施例提供一种发射机及干扰消除方法, 以解决现有技术中易造 成发射信号失真的问题。
第一方面, 本发明实施例还提供一种发射机, 包括: 反馈对消模块、 第 一数字预失真器 DPD和功率放大器 PA; 所述第一 DPD和所述 PA位于所述 发射机的第一发射通道上, 且所述第一 DPD与所述 PA连接; 所述反馈对消 模块位于所述发射机的反馈通道上, 且所述反馈对消模块分别与所述 PA及 所述第一 DPD连接;
其中, 所述反馈对消模块, 用于根据反馈对消信号, 对所述反馈通道的 信号进行干扰对消, 获取第一混合信号, 并发送至所述第一 DPD; 其中, 所 述反馈对消信号为根据所述反馈通道处于空载状态时采集的反馈干扰信号获 得的信号;
所述第一 DPD, 用于根据所述第一混合信号及所述第一发射通道上的第 一基带信号进行线性预失真处理, 产生第一预失真信号;
所述 PA, 用于将待发射信号放大后通过天线进行发射, 所述待发射信号 为所述第一预失真信号或者根据所述第一预失真信号获得的信号。
根据第一方面, 在第一方面的第一种可能实现的方式中, 所述发射机还 包括: 控制开关; 所述反馈对消模块通过所述控制开关与所述 PA连接, 所 述控制开关的状态包括与所述 PA连接;
所述反馈对消模块, 具体用于在所述控制开关与所述 PA连接时, 获取 所述反馈通道的信号, 并根据所述反馈对消信号, 对所述反馈通道的信号进 行干扰对消, 获取所述第一混合信号, 并发送至所述第一 DPD。
根据第一方面的第一种可能实现的方式, 在第二种可能实现的方式中, 所述控制开关的状态还包括接地或悬空, 且当所述控制开关的状态为接地或 悬空时, 所述反馈通道处于所述空载状态;
所述反馈对消模块, 还用于在所述控制开关的状态为接地或悬空时, 通 过采集所述反馈通道的所述反馈干扰信号获取所述反馈对消信号。
根据第一方面的第一种可能实现的方式, 在第三种可能实现的方式中, 所述控制开关的状态还包括接地或悬空, 且当所述控制开关的状态为接地或 悬空时, 所述反馈通道处于所述空载状态;
所述第一 DPD, 还用于在产生所述第一预失真信号之前, 对所述第一发 射通道上所述第一基带信号之前的基带信号进行线性预失真, 产生第二预失 真信号, 并发送给所述反馈对消模块;
所述反馈对消模块, 还用于在所述控制开关的状态为接地或悬空时采集 所述反馈通道的所述反馈干扰信号, 根据所述反馈干扰信号与所述第一 DPD 发送的所述第二预失真信号之间的互相关性获得第一参数, 并根据所述第一 参数及所述第二预失真信号, 获取所述反馈对消信号。
根据第一方面至第一方面的第三种可能实现的方式, 在第四种可能实现 的方式中, 所述发射机还包括: 发射对消模块, 所述发射对消模块位于所述 第一发射通道上, 且所述第一 DPD通过所述发射对消模块与所述 PA连接; 所述发射对消模块, 用于根据第一发射对消信号, 对所述第一 DPD产生 的所述第一预失真信号进行干扰对消, 获得所述待发射信号;
其中, 所述第一发射对消信号为: 根据所述第一发射通道被所述发射机 中除所述第一发射通道之外的其他发射通道干扰而产生的干扰信号获得的信 号。
根据第一方面的第四可能实现的方式, 在第五种可能实现的方式中, 所 述发射对消模块与所述反馈对消模块连接, 所述发射机还包括: 第二 DPD , 所述第二 DPD位于所述发射机的第二发射通道上,且与所述发射对消模块连 接; 所述第二发射通道为所述发射机中除所述第一发射通道之外的任一发射 通道;
所述反馈对消模块, 还用于将所述第一混合信号发送至所述发射对消模 块;
所述第二 DPD, 用于根据第二基带信号产生预失真信号, 并发送给所述 发射对消模块; 其中, 所述第二基带信号为所述第二发射通道的基带信号; 所述发射对消模块, 具体用于在根据所述第一发射对消信号对所述第一 预失真信号进行干扰对消之前, 根据所述反馈对消模块发送的所述第一混合 信号与所述第二 DPD产生的预失真信号的互相关性获取第二参数,并根据所 述第二参数及所述第二 DPD产生的预失真信号,获取所述第一发射对消信号。
根据第一方面的第四可能实现的方式中任意一种, 在第六种可能实现的 方式中, 所述发射机还包括: 发射对消模块, 所述发射对消模块位于所述第 一发射通道上, 且所述发射对消模块通过所述第一 DPD与所述 PA连接; 所述发射对消模块, 用于根据第二发射对消信号, 对所述第一发射通道 上的第三基带信号进行干扰对消, 获得所述第一基带信号, 并将所述第一基 带信号发送给所述第一 DPD;
其中, 所述第二发射对消信号为根据所述第一发射通道被所述发射机中 除所述第一发射通道之外的其他发射通道干扰而产生的干扰信号获得的信号。
根据第一方面的第六种可能实现的方式, 在第七种可能实现的方式中, 所述发射对消模块与所述反馈对消模块连接;
所述反馈对消模块, 还用于将所述第一混合信号发送至所述发射对消模 块;
所述发射对消模块, 还用于在对所述第三基带信号进行干扰对消之前, 根据所述反馈对消模块发送的所述第一混合信号与第二基带信号的互相关性 获取第三参数, 并根据所述第三参数及所述第二基带信号, 获取所述第二发 射对消信号; 其中, 所述第二基带信号为所述发射机中第二发射通道的基带 信号; 所述第二发射通道为所述发射机中除所述第一发射通道之外的任一发 射通道。
第二方面, 本发明实施例还提供一种干扰消除方法, 包括:
在发射机中的反馈通道与所述发射机中的第一发射通道连接时, 获取所 述反馈通道的信号;
根据反馈对消信号, 对所述反馈通道的信号进行干扰对消, 获取第一混 合信号; 其中, 所述反馈对消信号为根据所述反馈通道处于空载状态时采集 的反馈干扰信号获得的信号;
根据所述第一混合信号及所述第一发射通道的第一基带信号进行线性预 失真处理, 产生第一预失真信号;
将待发射信号进行放大后通过天线进行发射, 所述待发射信号为所述第 一预失真信号或者根据所述第一预失真信号获得的信号。
根据第二方面, 在第二方面的第一种可能实现的方式中, 所述根据反馈 对消信号, 对所述反馈通道的信号进行干扰对消之前, 还包括:
在所述反馈通道为空载状态时, 通过采集所述反馈通道的所述反馈干扰 信号获取所述反馈对消信号。
根据第二方面或第二方面的第一种可能实现的方式, 在第二方面的第二 种可能实现的方式中, 所述根据反馈对消信号, 对所述反馈通道的信号进行 干扰对消之前, 还包括:
在所述反馈通道为空载状态时,采集所述反馈通道的所述反馈干扰信号, 并根据所述反馈干扰信号与第二预失真信号之间的互相关性获得第一参数; 根据所述第一参数及所述第二预失真信号, 获取所述反馈对消信号, 其 中, 所述第二预失真信号为根据所述第一发射通道上传输所述第一基带信号 之前的基带信号进行线性预失真所产生的预失真信号。
根据第二方面至第二方面的第二种可能实现的方式中任意一种, 在第三 种可能实现的方式中, 所述空载状态包括: 悬空或接地。
根据第二方面至第二方面的第三种可能实现的方式中任意一种, 在第四 种可能实现的方式中, 所述将待发射信号进行放大后通过天线进行发射方法 之前, 还包括: 根据第一发射对消信号, 对所述第一预失真信号进行干扰对消, 获得所 述待发射信号;
其中, 所述第一发射对消信号为根据所述发射机中所述第一发射通道被 除所述第一发射通道之外的发射通道干扰而产生的干扰信号获得的信号。
根据第二方面的第四种可能实现的方式, 在第五种可能实现的方式中, 所述根据第一发射对消信号, 对所述第一预失真信号进行干扰对消之前, 还 包括:
根据所述第一混合信号与所述第二发射通道中产生的预失真信号的互相 关性, 获取第二参数;
根据所述第二参数及所述第二发射通道中产生的预失真信号, 获取所述 第一发射对消信号;
其中, 所述第二发射通道为所述发射机中除所述第一发射通道之外的任 一发射通道。
根据第二方面至第二方面的第三种可能实现的方式中任意一种, 在第六 种可能实现的方式中, 所述根据所述第一混合信号及所述第一发射通道的第 一基带信号进行线性预失真处理之前, 还包括:
根据第二发射对消信号, 对所述第一发射通道上的第三基带信号进行干 扰对消, 获得所述第一基带信号; 其中, 所述第二发射对消信号为根据所述 第一发射通道被所述发射机中除所述第一发射通道之外的其他发射通道干扰 而产生的干扰信号获得的信号。
根据第二方面的第六种可能实现的方式, 在第七种可能实现的方式中, 所述根据第二发射对消信号, 对所述第一发射通道上的第三基带信号进行干 扰对消之前, 还包括:
根据所述第一混合信号与第二基带信号的互相关性, 获取第二参数; 根据所述第二参数及所述第二基带信号, 获取所述第二发射对消信号; 其中, 所述第二发射通道为所述发射机中除所述第一发射通道之外的任 一发射通道, 所述第二基带信号为所述第二发射通道的基带信号。
本发明实施例提供的发射机及干扰消除方法,通过在该第一 DPD进行先 行预失真处理之前, 采用反馈对消模块根据反馈对消信号对反馈通道的信号 进行干扰消除, 由于该反馈对消信号为根据反馈干扰信号获得的信号, 从而 可将该第一发射通道泄漏至该反馈通道的干扰信号进行消除, 避免反馈干扰 信号对该第一发射通道造成干扰, 降低该第一发射通道上发射信号失真度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一所提供的一种发射机的结构示意图;
图 2为本发明实施例二所提供的另一种发射机的结构示意图;
图 3为本发明实施例三所提供的另一种发射机的结构示意图;
图 4为本发明实施例四所提供的另一种发射机的结构示意图
图 5为本发明实施例五所提供的一种干扰消除方法的流程图;
图 6为本发明实施例五所提供的另一种干扰消除方法的流程图; 图 7为本发明实施例六所提供的另一种发射机的结构示意图;
图 8为本发明实施例六所提供的另一种干扰消除方法的流程图; 图 9为本发明实施例七所提供的又一种发射机的结构示意图;
图 10为本发明实施例七所提供的又一种干扰消除方法的流程图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
在本发明各实施例中, 发射机可以为网络设备或用户设备的发射机。 发 射机包括至少一个发射通道和至少一个反馈通道, 其中, 反馈通道具体可以 为发射通道的输入端与输出端的有线连接所形成的传输通道, 用于传输发射 通道对应的反馈信号。
图 1为本发明实施例一所提供的一种发射机的结构示意图。 其中, 发射 机 100包括: 反馈对消模块 101、 第一数字预失真器(Digital Predistorter, 简 称 DPD) 102和功率放大器(Power Amplifier, 简称 PA) 103。 第一 DPD 102 和 PA 103位于发射机 100的第一发射通道 TX1上,且第一 DPD 102与 PA 103 连接。
反馈对消模块 101, 位于发射机 100的反馈通道上, 且反馈对消模块 101 分别与 PA 103及第一 DPD 102连接。
反馈对消模块 101, 用于根据反馈对消信号, 对该反馈通道的信号进行 干扰对消, 获取第一混合信号, 并将该第一混合信号输出至第一 DPD 102。 其中, 该反馈对消信号为根据该反馈通道位于空载状态时采集的反馈干扰信 号获得的信号。
第一 DPD 102, 用于根据该第一混合信号及该第一发射通道的第一基带 信号进行线性预失真处理, 产生第一预失真信号。
PA 103, 用于将待发射信号放大后通过天线进行发射, 该待发射信号为 该第一预失真信号或者根据该第一预失真信号获得的信号。
具体地, 上述发射机包括一个或两个以上的发射通道, 由于发射机中每 个发射通道的处理原理相同, 为方便描述, 以下仅针对该发射机中的第一发 射通道的干扰消除进行解释说明。
在无线通信系统中, 为达到信号的发射需求, 需通过 PA 103将功率进行 放大, 从而达到对应的信号功率值。 然而, 对信号进行功率放大, 多工作在 PA 103 的非线性区域, 由于该非线性区域的非线性将产生诸如由幅度失真、 相位失真所引起的谐波失真, 及互调失真等失真产物。 因而, 为避免发射通 道中功率放大所引起的非线性失真, 通常将 PA 103输出的信号反馈至第一 DPD 102, 并通过第一 DPD 102采用预失真技术进行线性补偿。
可选地, 由于经过 PA 103进行功率放大之后的信号, 功率较大, 可通过 配置耦合器将 PA 103输出的信号耦合到上述反馈通道,降低反馈通道的信号 功率, 从而降低该反馈对消模块的信号处理强度, 提高处理速度。
可选地, 在通常情况下, PA 103对模拟信号进行功率放大的操作, 第一 DPD 102对数字信号进行线性优化处理。 进一歩地, 在发射机 100中, 该反 馈通道上还可以包括: 模数转换器(analog to digital converter, 简称 ADC) 。 在第一 DPD 102与 PA 103之间通过数模转换器 ( digital to analog converter, 简称 DAC) 连接。
具体地,该 ADC可以作为三种不同的形式存在于该反馈通道中:第一种, 该 ADC可作为软件和 /或硬件的形式集成在反馈对消模块 101中; 第二种, 该 ADC可独立于反馈对消模块 101, 位于 PA 103与反馈对消模块 101之间 存在;第三种,该 ADC还可独立于反馈对消模块 101,位于反馈对消模块 101 及第一 DPD 102之间。 对于, 第一种及第二种形式的 ADC, 均可将 PA 103 输出的信号进行模数转换, 从而使得反馈对消模块 101针对数字信号进行干 扰消除。 该第一种及该第二种形式, 仅在于该 ADC所在的具体的位置不同。
对于第三种形式的 ADC, 可以将反馈对消模块 101进行反馈干扰对消之 后的信号进行模数转换。 gP, 反馈对消模块 101也可以是针对模拟信号进行 处理, 在处理之后将该模拟信号转换为数字信号即可。
需要指出的是, 对于模拟信号的处理及传输过程本身, 易产生次级干扰 信号, 因而, 本发明实施例中, 反馈对消模块 101可以针对数字信号进行处 理, gP,在反馈通道上,反馈对消模块 101与 PA 103之间具体可以通过 ADC 连接。
其中,上述反馈通道的信号可以包括:该第一发射通道对应的反馈信号、 该反馈通道被该第一发射通道干扰而产生的干扰信号; 进一歩地, 还可以包 括: 该反馈通道被该发射机中除该第一发射通道之外的其他发射通道干扰而 产生的干扰信号。 也就是说, 此时, 该反馈通道的信号为多种信号所形成的 混合信号。 需要说明的是, 第一发射通道对应的反馈信号指的就是第一发射 通道上功率放大器输出的信号反馈至该反馈通道上的信号, 例如, 耦合至该 反馈通道上的信号。
其中, 该反馈对消信号可以为根据所述反馈通道处于空载状态时采集的 反馈干扰信号获得的信号。 例如, 假设该反馈通道仅与第一发射通道对应, 当该反馈通道处于空载状态时, 该反馈通道上不存在该第一发射通道对应的 反馈信号, 该反馈通道上的信号为除第一发射通道对应的反馈信号之外的干 扰信号, 因而该反馈干扰信号可以根据该反馈通道处于空载状态时采集的干 扰信号获得。
其中, 上述反馈通道处于空载状态可以通过反馈通道与发射通道断开或 反馈通道接地来实现, 此处不予限制。 具体地, 该反馈对消信号可以直接为该反馈干扰信号, 也可以为该反馈 干扰信号的反相信号。 此外, 该反馈干扰信号可以为模拟信号, 该反馈对消 信号还可以为根据该反馈干扰信号产生的数字信号。 其中, 若该反馈对消信 号为该反馈干扰信号, 则反馈对消模块 101根据该反馈对消信号, 对该反馈 通道的信号进行干扰对消。 具体地, 当该反馈通道与第一发射通道的 PA 103 连接时, 将该反馈通道的信号进行信号分解, 并减去该反馈对消信号, 从而 获得该第一混合信号。 若该反馈对消信号为该反馈干扰信号的反相信号, 则 反馈对消模块 101根据该反馈对消信号,对该反馈通道的信号进行干扰对消。 具体地, 将该反馈对消信号与该反馈通道的信号进行相加, 从而获得该第一 混合信号。 其中, 该第一混合信号至少不包括: 该反馈通道被该第一发射通 道干扰而产生的干扰信号。 需要说明的是, 反馈对消模块 101可以为可实现 上述功能的集成电路或芯片, 也可以为集成上述功能的处理器。
本发明实施例所提供的发射机,通过在第一 DPD进行先行预失真处理之 前, 采用反馈对消模块对反馈通道的信号进行干扰消除, 成功消除了第一发 射通道对该反馈通道的干扰, 从而避免了反馈信道上的干扰信号对该第一发 射通道造成干扰, 大大降低了该第一发射通道上发射信号失真度。
需要说明的是, 本发明实施例在移动通信网络、 固定无线接入网、 无线 数据传输及雷达等系统中, 均可适用。
虽然, 本发明实施例仅示出针对第一发射通道的干扰消除的方案, 对于 发射机中其他的发射通道的干扰消除方案, 与上述结构类似。 若该发射机中 包括至少两个发射通道及一个反馈通道, 那么该反馈通道上可以包括一个反 馈对消模块, 也可以包括至少两个的反馈对消模块。
举例说明如下:
在发射机的反馈通道上包括一个反馈对消模块的情况下, 可以采用一个 与上述反馈对消模块类似的反馈对消模块, 且该一个反馈对消模块还与其他 发射通道上的 DPD及 PA连接。 该一个反馈对消模块分别根据各自发射通道 对应的反馈对消信号, 对该反馈通道的信号进行干扰对消, 以消除各发射通 道对该一个反馈通道的干扰。
在发射机的反馈通道上包括至少两个反馈对消模块的情况下, 至少两个 反馈对消模块分别与一个发射通道对应, 其中任意一个反馈对消模块与对应 发射通道的 DPD及 PA连接。 其中, 至少两个反馈对消模块与上述反馈对消 模块相同。
实施例二
图 2为本发明实施例二所提供的另一种发射机的结构示意图。 在图 1所 示实施例的基础上, 发射机 100还包括: 控制开关 201。 反馈对消模块 101 可以通过控制开关 201与 PA 103连接, 控制开关 201的状态可以包括与 PA 103连接。
反馈对消模块 101, 具体用于在控制开关 201与 PA 103连接时, 获取该 反馈通道的信号, 并根据该反馈对消信号, 对该反馈通道的信号进行干扰消 除, 获取该第一混合信号, 并发送至第一 DPD 102。
优选的, 控制开关 201的状态还包括接地或悬空, 且当控制开关 201的 状态为接地或悬空时, 该反馈通道处于空载状态。
反馈对消模块 101, 还用于在控制开关 201 的状态为接地或悬空时, 通 过采集该反馈通道的该反馈干扰信号获取该反馈对消信号。
具体地, 如图 2所示, 控制开关 201可以为单刀多态开关, 将控制开关
201的单刀切换至 1态, 实现了反馈对消模块 101与 PA 103的连接, 使得该 反馈对消模块 101获取该反馈通道的信号; 将控制开关 201的单刀切换至 2 态, 可实现接地或悬空, 从而可使得反馈对消模块 101通过采集该反馈通道 的该反馈干扰信号获取该反馈对消信号。
举例来说, 假设该反馈通道仅与第一发射通道对应, 若该控制开关 201 的状态为接地或悬空时, 该反馈通道的信号为除该第一发射通道对应的反馈 信号之外的干扰信号, 也就是该反馈通道被该第一发射通道干扰而产生的干 扰信号, 即该反馈干扰信号。 因而, 该反馈干扰信号可以为反馈对消模块 101 在控制开关 201的状态为接地或悬空时采集的干扰信号。
可选的, 第一 DPD 102, 还用于在产生该第一预失真信号之前, 对该第 一发射通道上该第一基带信号之前的基带信号进行线性预失真处理, 产生第 二预失真信号, 并发送给反馈对消模块 101。
反馈对消模块 101, 还用于在控制开关 201 的状态为接地或悬空时采集 该反馈通道的该反馈干扰信号, 根据该反馈干扰信号与第一 DPD 102发送的 该第二预失真信号之间的互相关性获得第一参数, 并根据该第一参数及该第 二预失真信号, 获取该反馈对消信号。
需要说明的是, 参见图 1所示实施例, 当反馈通道处于空载状态时, 该 反馈通道的信号并不包括任一发射通道对应的反馈信号。
假设该发射机中包括两个以上发射通道, 且该反馈通道与该两个以上的 发射通道对应, 若该反馈通道处于空载状态, 则在该反馈通道上的信号中, 除了包括该反馈通道被该第一发射通道干扰而产生的干扰信号之外, 还包括 该反馈通道被其他发射通道干扰而产生的干扰信号。 由于该反馈通道被该第 一发射通道干扰而产生的干扰信号以及该第一发射通道传输的信号均包括同 一数据包或相似数据包的信号, 因而其信号的相似度较高, 互相关性较大。 因此, 当第一发射通道传输的信号为该第一 DPD 102产生的预失真信号时, 反馈对消模块 101可以根据该第一 DPD 102生成该第一预失真信号之前所生 成的第二预失真信号, 与该反馈通道的信号之间的互相关性, 将该反馈通道 的信号分解为该反馈通道被该第一发射通道干扰而产生的干扰信号, 及该反 馈通道被其他发射通道干扰而产生的干扰信号, 继而获取该反馈通道被该第 一发射通道干扰而产生的干扰信号与该第二预失真信号的相对系数, 即该第 一参数。
此时, 反馈对消模块 101可以通过将该第一参数及该第二预失真信号进 行相乘所获得该反馈对消信号。
需要说明的是, 上述反馈对消信号以及反馈通道上的干扰对消均可以按 照预设的周期迭代执行, 此时, 上述第一发射通道上第一基带信号之前的基 带信号可以为该第一发射通道上当前周期的上一个周期内的基带信号,那么, 该第二预失真信号即为上一个周期该第一 DPD 102所生成的预失真信号。 也 就是说, 上述该第二预失真信号, 可以为上一个周期第一 DPD 102所生成的 预失真信号。
本发明实施例提供的发射机, 通过在控制开关调整至悬空或接地时所获 取的该反馈干扰信号更精确, 使得确定的反馈对消信号更精确, 从而更好地 保证反馈对消模块所进行的干扰消除更彻底, 更精确, 提高信号的线性度, 降低非线性失真。
实施例三
本发明实施例三在上述图 1或图 2所示实施例的基础上, 提供了另一种 发射机。 图 3为本发明实施例三所提供的另一种发射机结构示意图。 该图 3 所示的实施例具体通过将发射对消模块与图 1所示实施例进行结合所获得的 发射机进行举例说明。如图 3所示,该发射机 100还包括:发射对消模块 301。 发射对消模块 301位于第一发射通道上, 且第一 DPD 102可通过发射对消模 块 301与 PA 103连接。
发射对消模块 301, 用于根据第一发射对消信号, 对第一 DPD 102产生 的第一预失真信号进行干扰对消, 获取待发射信号, 并将该待发射信号发送 至 PA 103。
其中, 该第一发射对消信号为根据第一发射通道被该发射机中除第一发 射通道之外的其他发射通道干扰而产生的干扰信号获得信号。
具体地, 该第一发射对消信号可以直接为发射干扰信号, 也可以为该发 射干扰信号的反相信号。 该发射干扰信号可以包括该第一发射通道被该发射 机中除该第一发射通道之外的其他发射通道干扰而产生的干扰信号。
进一歩地, 发射对消模块 301根据该第一发射对消信号对该第一预失真 信号进行干扰对消, 获得待发射信号, 可以包括:
若该第一发射对消信号为该发射干扰信号, 则将该第一预失真信号进行 信号分解, 并减去该第一发射对消信号, 获得该待发射信号; 或者,
若该第一发射对消信号为该发射干扰信号的反相信号, 则将该第一发射 对消信号与该第一预失真信号进行相加, 获得该待发射信号。
需要说明的是, 上述发射干扰信号可以为模拟信号, 此处不予限制。 本发明实施例中, 发射对消模块根据第一发射对消信号对第一发射通道 上的预失真信号进行干扰消除, 能够成功消除该发射机中除该第一发射通道 之外的其他发射通道对该第一发射通道的干扰,降低该第一发射通道的干扰, 从而降低该第一发射通道上发射信号的失真度。
进一歩地, 上述发射机 100中, 发射对消模块 301与反馈对消模块 101 连接, 且发射机 100还包括第二 DPD 302, 第二 DPD 302位于发射机 100的 第二发射通道上,且与发射对消模块 301连接。该第二发射通道为发射机 100 中除第一发射通道之外的任一发射通道。
反馈对消模块 101还用于将该第一混合信号发送至发射对消模块 301。 第二 DPD 302, 用于根据第二基带信号产生预失真信号, 并发送给发射 对消模块 301 ; 其中, 该第二基带信号为该第二发射通道的基带信号。
发射对消模块 301具体用于在根据该第一发射对消信号对该第一预失真 信号进行干扰对消之前, 根据反馈对消模块 101发送的该第一混合信号与第 二 DPD 302产生的预失真信号的互相关性获取第二参数, 并根据该第二参数 及第二 DPD 302产生的预失真信号, 获取该第一发射对消信号。
具体地, 由于 PA 103与反馈对消模块 101连接时, 该第一发射通道被该 发射机中除该第一发射通道外的其他发射通道干扰产生的干扰信号, 即该发 射干扰信号会通过该第一发射通道的 PA 103传输至该发射机的反馈通道,从 而使得该反馈通道的信号还包括: 该发射干扰信号。 也就是说, 反馈对消模 块 101对该反馈通道的信号进行干扰消除后所生成的该第一混合信号还包括 该发射干扰信号。 由于该发射干扰信号为该第一发射通道被该发射机中除该 第一发射通道外的其他发射通道干扰而产生的干扰信号, 那么该发射干扰信 号与该发射机中其他发射通道的预失真信号, 也就是该第二 DPD 302产生的 预失真信号包括相同或类似数据包。 由于相同或类似数据包的信号之间的差 距比较小, 互相关性较高。 因而可根据该第一混合信号与该第二 DPD 302产 生的预失真信号的互相关性, 从该第一混合信号中获取该发射干扰信号, 继 而确定该发射干扰信号, 与第二 DPD 302产生的预失真信号的相对系数, 即 该第二参数。
此时, 发射对消模块 301可以将该第二参数及第二 DPD 203产生的预失 真信号进行相乘获得该第一发射对消信号。
本发明实施例中,通过上述方法能够更加精确地确定第一发射对消信号, 从而更好地保证发射对消模块所进行的干扰消除更彻底, 更精确, 提高信号 的线性度, 降低非线性失真。
需要说明的是, 在本实施例方案中, 反馈对消模块 101与 PA 103之间还 可设置类似上述实施例二中类似的控制开关, 通过控制开关的接地或悬空实 现该反馈通道的空载状态, 通过该控制开关与该 PA 103连接, 实现该反馈对 消模块 101与该 PA 103的连接, 此处不再赘述。
实施例四
本发明实施例四在上述图 1或图 2所示实施例的基础上, 提供了另一种 发射机。 图 4为本发明实施例四所提供的另一种发射机的结构示意图。 该图 4所示实施例具体通过将发射对消模块与上述图 1所示实施例进行结合所获 得的发射机进行举例说明。 如图 4所示, 该发射机 100还包括发射对消模块 401。 其中, 发射对消模块 401位于该第一发射通道上, 且通过第一 DPD 102 与 PA 103连接。
发射对消模块 401, 用于根据第二发射对消信号, 对该第一发射通道上 的第三基带信号进行干扰对消, 获得该第一基带信号, 并将该第一基带信号 发送给第一 DPD 102。
其中, 该第二发射对消信号可以为根据该第一发射通道被该发射机中除 该第一发射通道之外的其他发射通道干扰而产生的干扰信号获得的信号。
本发明实施例与上述实施例三方案中发射对消模块在该发射机内部该第 一发射通道上的位置不同, 其根据该第二发射对消信号分别对不同的信号进 行干扰消除。在上述实施例三方案中, 该发射对消模块通过对该第一 DPD产 生的预失真信号, 也就是该第一预失真信号进行干扰预消除; 而在本发明实 施例中该发射对消模块可根据该第二发射对消信号在该第一 DPD 产生预失 真信号之前, 对基带信号进行干扰预消除。
进一歩地, 如上所述方案中, 发射对消模块 401还与反馈对消模块 101 连接。
反馈对消模块 101, 还用于将该第一混合信号发送至发射对消模块 401。 发射对消模块 401, 还用于在对该第三基带信号进行干扰对消之前, 根 据反馈对消模块 101发送的该第一混合信号与第二基带信号的互相关性获取 第三参数,并根据该第三参数及该第二基带信号,获取该第二发射对消信号; 其中, 该第二基带信号为该发射机中第二发射通道的基带信号; 该第二发射 通道为该发射机中除该第一发射通道之外的任一发射通道。
具体地, 由于 PA 103与反馈对消模块 101连接时, 该第一发射通道被该 发射机中除该第一发射通道外的其他发射通道干扰产生的干扰信号, 即该发 射干扰信号会通过该第一发射通道的 PA 103传输至该发射机的反馈通道,从 而使得该反馈通道的信号还包括该发射干扰信号。 也就是说, 反馈对消模块 101 对该反馈通道的信号进行干扰消除后所生成的该第一混合信号还包括: 该发射干扰信号。 由于该发射干扰信号为该第一发射通道被该发射机中除该 第一发射通道外的其他发射通道干扰而产生的干扰信号, 那么该第一混合信 号与该发射机中其他发射通道的基带信号, 即该第二基带信号包括相同或类 似数据包。 由于相同或类似数据包的信号之间的差距比较小, 也就是互相关 性较高。 因而可根据该第一混合信号与该第二基带信号的互相关性, 从该第 一混合信号中获取该发射干扰信号, 继而确定该发射干扰信号与该第二基带 信号的相对系数, 即该第三系数。
此时,发射对消模块 401可以将该第三参数及该第二基带信号进行相乘, 获得该第二发射对消信号。
本发明实施例提供的发射机, 通过发射对消模块根据第二发射对消信号 将第一 DPD进行线性预失真之前将该发射机中除该第一发射通道之外的其 他发射通道对该第一发射通道的干扰进行消除, 减轻该第一发射通道上的发 射信号的失真, 保证该发射信号的线性度, 同时还通过具体的第二发射对消 信号的确定方案可使得该第二发射对消信号更精确, 从而更好地保证发射对 消模块所进行的干扰消除更彻底, 更精确, 提高信号的线性度, 降低非线性 失真。
需要说明的是, 在本实施例方案中, 反馈对消模块 101与 PA 103之间还 可设置类似上述实施例二中类似的控制开关, 通过控制开关的接地或悬空实 现该反馈通道的空载状态, 通过该控制开关与该 PA 103连接, 实现该反馈对 消模块 101与该 PA 103的连接, 此处不再赘述。
实施例五
本发明实施例四还提供一种干扰消除方法。 该方法可由上述任一实施例 所述的发射机执行。 图 5为本发明实施例五所提供的一种干扰消除方法的流 程图。 该方法具体如下所述。
歩骤 501、在发射机中的反馈通道与该发射机中的第一发射通道连接时, 获取该反馈通道的信号。
歩骤 502、 根据反馈对消信号, 对该反馈通道的信号进行干扰对消, 获 取第一混合信号。
其中, 该反馈对消信号为根据该反馈通道处于空载状态时采集的反馈干 扰信号获得的信号。
其中, 空载状态可以参见图 1所示实施例中的相关描述。
歩骤 503、 根据该第一混合信号及该第一发射通道的第一基带信号进行 线性预失真处理, 产生第一预失真信号。
歩骤 504、 将待发射信号进行放大后通过天线进行发射, 该待发射信号 为该第一预失真信号或者根据该第一预失真信号获得的信号。
本发明实施例可由上述实施例所述的发射机执行, 其具体的实现过程及 有益效果, 与上述实施例类似, 在此不再赘述。
进一歩地, 在上述实施例中歩骤 502中根据该反馈对消信号, 对该反馈 通道的信号进行干扰对消之前, 该方法还包括:
歩骤 502a、 在该反馈通道为空载状态时, 采集该反馈通道的该反馈干扰 信号, 并根据该反馈干扰信号与第二预失真信号之间的互相关性获得第一参 数。
歩骤 502b、根据该第一参数及该第二预失真信号,获取该反馈对消信号。 其中, 该第二预失真信号为根据该第一发射通道上该第一基带信号之前 的基带信号进行线性预失真所产生的预失真信号。
可选的, 在该歩骤 502中根据该反馈对消信号, 对该反馈通道的信号进 行干扰对消之前, 该方法还可包括: 在该反馈通道为空载状态时, 通过采集 该反馈通道的该反馈干扰信号获取该反馈对消信号。
在如上所述方案中, 其中该空载状态包括: 悬空或接地。
进一歩地, 在上述方案的中歩骤 504中将待发射信号进行放大后通过天 线进行发射之前, 还包括:
歩骤 504a、根据第一发射对消信号,对该第一预失真信号进行干扰对消, 获得该待发射信号。
其中, 该第一发射对消信号为根据该发射机中该第一发射通道被除该第 一发射通道之外的发射通道干扰而产生的干扰信号获得的信号。
进一歩地, 在如上所述方案中, 歩骤 504a中根据第一发射对消信号, 对 该第一预失真信号进行干扰对消之前, 还包括:
歩骤 504b、 根据该第一混合信号与该第二发射通道中产生的预失真信号 的互相关性, 获取第二参数。
歩骤 504c、 根据该第二参数及该第二发射通道中产生的预失真信号, 获 取该第一发射对消信号。
其中, 该第二发射通道为该发射机中除该第一发射通道之外的任一发射 通道。
需要指出的是, 上述获取第一发射对消信号的具体实现方式可以参看图
2所示实施例中的相关描述, 不再赘述。
可替代地, 该实施例还提供一种干扰消除方法。 图 6为本发明实施例五 所提供的另一种干扰消除方法的流程图。 如图 6所示, 该方法在如上所述方 案中歩骤 503根据该第一混合信号及该第一发射通道的第一基带信号进行线 性预失真处理之前, 还包括:
歩骤 601、 根据第二发射对消信号, 对该第一发射通道上的第三基带信 号进行干扰对消, 获得该第一基带信号。
其中, 该发射对消信号为根据该第一发射通道被该发射机中除该第一发 射通道之外的其他发射通道干扰而产生的干扰信号获得的信号。
进一歩地, 在该歩骤 601 中根据第二发射对消信号, 对该第一发射通道 上的第三基带信号进行干扰对消之前, 还包括:
歩骤 601a、 根据该第一混合信号与第二基带信号的互相关性, 获取第二 参数。
歩骤 601b、 根据该第二参数及该第二基带信号, 获取该第二发射对消信 号。
其中, 该第二发射通道为该发射机中除该第一发射通道之外的任一发射 通道, 该第二基带信号为该第二发射通道的基带信号。
需要指出的是, 上述获取第二发射对消信号的具体实现方式可以参看图
3所示实施例中的相关描述, 不再赘述。
本发明实施例可由上述实施例所述的发射机执行, 其具体的实现过程及 有益效果, 与上述实施例类似, 在此不再赘述。
实施例六
本发明实施例还提供一种发射机及干扰消除方法。 具体地, 以发射机包 括两个发射通道及一个反馈通道为例说明。 图 7为本发明实施例六所提供的 另一种发射机的结构示意图。
如图 7所示的发射机 700包括第一发射通道 TX1、第二发射通道 ΤΧ2及 一个反馈通道, 其中, 该第一发射通道 TX1的基带信号为第一基带信号, 该 第二发射通道 ΤΧ2的基带信号为第二基带信号。发射机 700包括:第一 DPD 701、 第一发射对消模块 702及第一 PA 703, 且第一 DPD 701、 第一发射对 消模块 702及第一 PA 703均位于该第一发射通道 TX1上, 且依次连接。 发 射机 700还包括: 第二 DPD 704、 第二发射对消模块 705及第二 PA 706, 且 第二 DPD 704、第二发射对消模块 705及第二 PA 706均位于该第二发射通道 TX2上,且依次连接。发射机 700的反馈通道上包括:第一反馈对消模块 707 及第二反馈对消模块 708。发射机 700还包括控制开关 709。第一反馈对消模 块 707与第一发射对消模块 702及第一 DPD 701连接,第二反馈对消模块 708 与第二发射对消模块 705及第二 DPD 704连接。 第一发射对消模块 702还与 第二 DPD 704连接。 第二发射对消模块 705还与第一 DPD 701连接。
其中, 控制开关 709为单刀 3态开关, 即包括 3种状态。若控制开关 709 的状态为 1态,则第一反馈对消模块 707通过控制开关 709与第一 PA 703连 接; 若控制开关 709的状态为 2态, 则第一反馈对消模块 707及第二反馈对 消模块 708均可通过控制开关 709接地或悬空, 此时该反馈通道处于空载状 态; 若控制开关 709的状态为 3态, 则第二反馈对消模块 708可通过控制开 关 709与第二 PA 706连接。
图 8为本发明实施例六所提供的另一种干扰消除方法的流程图。 该方法 由图 7所示的发射机来执行, 具体可以通过调整控制开关的状态来实现反馈 通道的状态切换。 该方式可以包括如下歩骤:
歩骤 801、 将控制开关 709调整至 2态, 第一反馈对消模块 707根据获 取到的反馈通道被第一发射通道干扰所产生的第一反馈干扰信号生成第一反 馈对消信号, 第二反馈对消模块 708根据获取到的该反馈通道被第二发射通 道干扰而产生的第二反馈干扰信号生成第二反馈对消信号。
具体地, 该第一反馈对消信号, 可以是第一反馈对消模块 707先根据该 第一发射通道上第一 DPD 701根据该第一发射通道上该第一基带信号之前的 基带信号所产生的预失真信号, 与控制开关 709为 2态时该反馈通道的该第 一反馈干扰信号之间的互相关性, 获取第一参数, 继而根据该第一参数及第 一 DPD 701根据该第一发射通道上该第一基带信号之前的基带信号所产生的 预失真信号所获得的信号。 同理, 该第二反馈对消信号, 可以是第二反馈对 消模块 708根据该第二发射通道上第二 DPD 704根据该第二发射通道上该第 二基带信号之前的基带信号所产生的预失真信号, 与控制开关 709为 2态时 该反馈通道的该第二反馈干扰信号的互相关性, 获取第三参数, 继而根据该 第三参数及第二 DPD 704根据该第二发射通道上该第二基带信号之前的基带 信号所产生的预失真信号所获取的信号。
该第一反馈对消信号, 还可以是第一反馈对消模块 707先根据该第一发 射通道的基带信号, 即该第一基带信号, 及控制开关 709为 2态时该反馈通 道的该第一反馈干扰信号之间的互相关性, 获取第一参数, 继而根据该第一 参数及该第一基带信号所获得的信号。 同理, 该第二反馈对消信号, 还可以 是第二反馈对消模块 708根据该第二发射通道的基带信号即该第二基带信号, 及控制开关 709为 2态时该反馈通道的该第二反馈干扰信号的互相关性, 获 取第三参数, 继而根据该第三参数及该第二基带信号所获取的信号。
歩骤 802、 将控制开关 709调整至 1态, 第一反馈对消模块 707获取第 一 PA 703输出的信号, 根据该第一反馈对消信号对第一 PA 703输出的信号 进行反馈干扰消除, 获得第一混合信号。
歩骤 803、 第一 DPD 701根据该第一混合信号及该第一基带信号生成第 一预失真信号。
歩骤 804、 第一发射对消模块 702根据该第一混合信号及第二 DPD 704 输出的预失真信号之间的互相关性, 进行建模获取第二参数, 根据该第二参 数及第二 DPD 704输出的预失真信号, 获取该第一发射对消信号。
该第二 DPD 704输出的预失真信号可以为该第二 DPD 704根据该第二基 带信号产生的预失真信号。
歩骤 805、 第一发射对消模块 702根据该第一发射对消信号对该第一预 失真信号进行干扰对消, 生成第一待发射信号, 并通过第一 PA 703进行放大 后进行发射。
歩骤 806、 将控制开关 709调整至 3态, 第二反馈对消模块 708获取第 二 PA 706输出的信号, 根据该第二反馈对消信号对第二 PA 706输出的信号 进行反馈干扰消除, 获得第二混合信号。
歩骤 807、 第二 DPD 704根据该第二混合信号及该第二基带信号生成第 二预失真信号。
歩骤 808、 第二发射对消模块 705根据该第二混合信号与第一 DPD 701 输出的预失真信号之间的互相关性, 进行建模获取第四参数, 并根据该第四 参数及第一 DPD 701输出的预失真信号, 获取该第二发射对消信号。
歩骤 809、 第二发射对消模块 705根据该第二发射对消信号对该第二预 失真信号进行干扰对消, 生成第二待发射信号, 并通过第二 PA 706进行放大 后进行发射。
本发明实施例通过具体的实例进行解释说明, 其有益效果, 与上述实施 例类似, 在此不再赘述。
需要说明的是, 虽然本发明实施例以具有两个发射通道及一个反馈通道 的发射机进行解释说明, 但本发明实施例还可适用具有大于两个发射通道及 一个反馈通道的发射机的情形。 对于具有大于两个发射通道及一个反馈通道 的发射机的情形, 只需对本发明实施例进行适应性的修改即可实现。
实施例七
本发明实施例还提供了另一种发射机及干扰消除方法。 具体以发射机包 括两个发射通道及一个反馈通道为例进行解释说明。 图 9为本发明实施例七 所提供的又一种发射机的结构示意图。
如图 9所示的发射机 900包括第一发射通道 TX1、第二发射通道 ΤΧ2及 一个反馈通道, 其中, 第一发射通道 TX1的基带信号包括第一基带信号及第 三基带信号, 第二发射通道 ΤΧ2的基带信号包括第二基带信号及第四基带信 号。发射机 900包括:第一发射对消模块 901、第一 DPD902及第一 ΡΑ 903。 第一发射对消模块 901、第一 DPD 902及第一 ΡΑ 903均位于该第一发射通道 TX1上,且依次连接。发射机 900还包括:第二发射对消模块 904、第二 DPD 905及第二 ΡΑ 906。第二发射对消模块 904、第二 DPD 905及第二 ΡΑ 906均 位于该第二发射通道 ΤΧ2上, 且依次连接。 发射机 900的反馈通道上包括: 第一反馈对消模块 907及第二反馈对消模块 908。 发射机 900还包括控制开 关 909。 第一反馈对消模块 907与第一发射对消模块 901及第一 DPD 902连 接, 第二反馈对消模块 908与第二发射对消模块 904及第二 DPD 904连接。 第一发射对消模块 901还与第二发射对消模块 904连接, 以接收第二发射对 消模块 904输出的第二基带信号。 第二发射对消模块 904还与第一发射对消 模块 901连接, 以接收第一发射对消模块 901输出的第一基带信号。
其中, 控制开关 909为单刀 3态开关, 即包括 3种状态。若控制开关 909 的状态为 1态,则第一反馈对消模块 907通过控制开关 909与第一 ΡΑ 903连 接; 若控制开关 909的状态为 2态, 则第一反馈对消模块 907及第二反馈对 消模块 908均可通过控制开关 909接地或悬空, 此时该反馈通道处于空载状 态; 若控制开关 909的状态为 3态, 则第二反馈对消模块 908可通过控制开 关 909与第二 PA 906连接。
图 10为本发明实施例七所提供的又一种干扰消除方法的流程图。 由图 9 所示的发射机执行, 该方法包括如下歩骤:
歩骤 1001、 将控制开关 909调整至 2态, 第一反馈对消模块 907根据获 取到的反馈通道被第一发射通道干扰而产生的第一反馈干扰信号生成第一反 馈对消信号, 第二反馈对消模块 908根据获取到的该反馈通道被第二发射通 道干扰而产生的第二反馈干扰信号生成第二反馈对消信号。
具体地, 该第一反馈对消信号, 可以是第一反馈对消模块 907先根据该 第一发射通道上第一 DPD 902根据该第一发射通道上该第一基带信号之前的 基带信号所产生的预失真信号, 及控制开关 909为 2态时该反馈通道的该第 一反馈干扰信号之间的互相关性, 获取第一参数, 继而根据该第一参数及第 一 DPD 902根据该第一发射通道上该第一基带信号之前的基带信号所产生的 预失真信号所获得的信号。 同理, 该第二反馈对消信号, 可以是第二反馈对 消模块 908根据该第二发射通道上第二 DPD 905根据该第二发射通道上该第 二基带信号之前的基带信号所产生的预失真信号, 及控制开关 909为 2态时 该反馈通道的该第二反馈干扰信号的互相关性, 获取第三参数, 继而根据该 第三参数及第二 DPD 905根据该第二发射通道上该第二基带信号之前的基带 信号所产生的预失真信号所获取的信号。
该第一反馈对消信号, 还可以是第一反馈对消模块 907先根据该第一发 射通道的第一基带信号, 及控制开关 909为 2态时该反馈通道的该第一反馈 干扰信号之间的互相关性, 获取第一参数, 继而根据该第一参数及该第一基 带信号所获得的信号。 同理, 该第二反馈对消信号, 还可以是第二反馈对消 模块 908根据该第二发射通道的第二基带信号, 及控制开关 909为 2态时该 反馈通道的该第二反馈干扰信号的互相关性, 获取第三参数, 继而根据该第 三参数及该第二基带信号所获取的信号。
歩骤 1002、 将控制开关 909调整至 1态, 第一反馈对消模块 907获取第 一 PA 903输出的信号, 根据该第一反馈对消信号对第一 PA 903输出的信号 进行反馈干扰消除, 获得第一混合信号。
歩骤 1003、 第一发射对消模块 901根据该第一混合信号及该第二基带信 号之间的互相关性, 进行建模获取第二参数, 根据该第二参数及该第二基带 信号, 获取该第一发射对消信号。
歩骤 1004、 第一发射对消模块 901根据该第一发射对消信号对第三基带 信号进行干扰对消, 生成该第一基带信号。
歩骤 1005、第一 DPD 902根据该第一混合信号及该第一基带信号生成第 一预失真信号,将该第一预失真信号作为第一待发射信号,并通过第一 PA 903 进行放大后进行发射。
歩骤 1006、 将控制开关 909调整至 3态, 第二反馈对消模块 908获取第 二 PA 906输出的信号, 根据该第二反馈对消信号对第二 PA 906输出的信号 进行反馈干扰消除, 获得第二混合信号。
歩骤 1007、 第二发射对消模块 904根据该第二混合信号及该第一基带信 号之间的互相关性, 进行建模获取第四参数, 根据该第四参数及该第一基带 信号, 获取该第一发射对消信号。
歩骤 1008、 第二发射对消模块 904根据该第二发射对消信号对第四基带 信号进行干扰对消, 生成该第二基带信号。
歩骤 1009、第二 DPD 905根据该第二混合信号及该第二基带信号生成第 二预失真信号,将该第二预失真信号作为第二待发射信号,并通过第二 PA 906 进行放大后进行发射。
本发明实施例通过具体的实例进行解释说明, 其有益效果, 与上述实施 例类似, 在此不再赘述。
需要说明的是, 虽然, 本发明实施例以具有两个发射通道及一个反馈通 道的发射机进行解释说明, 然本发明实施例还可适用具有大于两个发射通道 及一个反馈通道的发射机的情形。 对于具有大于两个发射通道及一个反馈通 道的发射机的情形, 只需对本发明实施例进行适应性的修改即可实现。
本发明实施例中任一所述的反馈对消模块及发射对消模块具体可以通过 集成上述对应模块功能的集成电路或芯片来实现, 也可以通过存储器与处理 器结合的方式来实现。 若该反馈对消模块与发射对消模块为存储器与处理器 的结合的方式, 则该反馈对消模块及发射对消模块可包括至少一个存储器及 处理器, 该些存储器中可存储实现对应模块功能的计算机执行指令, 以供与 之连接的处理器进行调用并执行。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要 求 书
1、 一种发射机, 其特征在于, 包括: 反馈对消模块、 第一数字预失真器 DPD和功率放大器 PA; 所述第一 DPD和所述 PA位于所述发射机的第一发 射通道上, 且所述第一 DPD与所述 PA连接; 所述反馈对消模块位于所述发 射机的反馈通道上, 且所述反馈对消模块分别与所述 PA及所述第一 DPD连 接;
其中, 所述反馈对消模块, 用于根据反馈对消信号, 对所述反馈通道的 信号进行干扰对消, 获取第一混合信号, 并发送至所述第一 DPD; 其中, 所 述反馈对消信号为根据所述反馈通道处于空载状态时采集的反馈干扰信号获 得的信号;
所述第一 DPD, 用于根据所述第一混合信号及所述第一发射通道上的第 一基带信号进行线性预失真处理, 产生第一预失真信号;
所述 PA, 用于将待发射信号放大后通过天线进行发射, 所述待发射信号 为所述第一预失真信号或者根据所述第一预失真信号获得的信号。
2、 根据权利要求 1所述的发射机, 其特征在于, 所述发射机还包括: 控 制开关; 所述反馈对消模块通过所述控制开关与所述 PA连接, 所述控制开 关的状态包括与所述 PA连接;
所述反馈对消模块, 具体用于在所述控制开关与所述 PA连接时, 获取 所述反馈通道的信号, 并根据所述反馈对消信号, 对所述反馈通道的信号进 行干扰对消, 获取所述第一混合信号, 并发送至所述第一 DPD。
3、 根据权利要求 2所述的发射机, 其特征在于, 所述控制开关的状态还 包括接地或悬空, 且当所述控制开关的状态为接地或悬空时, 所述反馈通道 处于所述空载状态;
所述反馈对消模块, 还用于在所述控制开关的状态为接地或悬空时, 通 过采集所述反馈通道的所述反馈干扰信号获取所述反馈对消信号。
4、 根据权利要求 2所述的发射机, 其特征在于, 所述控制开关的状态还 包括接地或悬空, 且当所述控制开关的状态为接地或悬空时, 所述反馈通道 处于所述空载状态;
所述第一 DPD, 还用于在产生所述第一预失真信号之前, 对所述第一发 射通道上所述第一基带信号之前的基带信号进行线性预失真, 产生第二预失 真信号, 并发送给所述反馈对消模块;
所述反馈对消模块, 还用于在所述控制开关的状态为接地或悬空时采集 所述反馈通道的所述反馈干扰信号, 根据所述反馈干扰信号与所述第一 DPD 发送的所述第二预失真信号之间的互相关性获得第一参数, 并根据所述第一 参数及所述第二预失真信号, 获取所述反馈对消信号。
5、 根据权利要求 1-4中任一项所述的发射机, 其特征在于, 所述发射机 还包括: 发射对消模块, 所述发射对消模块位于所述第一发射通道上, 且所 述第一 DPD通过所述发射对消模块与所述 PA连接;
所述发射对消模块, 用于根据第一发射对消信号, 对所述第一 DPD产生 的所述第一预失真信号进行干扰对消, 获得所述待发射信号;
其中, 所述第一发射对消信号为: 根据所述第一发射通道被所述发射机 中除所述第一发射通道之外的其他发射通道干扰而产生的干扰信号获得的信 号。
6、 根据权利要求 5所述的发射机, 其特征在于, 所述发射对消模块与所 述反馈对消模块连接, 所述发射机还包括: 第二 DPD, 所述第二 DPD位于 所述发射机的第二发射通道上, 且与所述发射对消模块连接; 所述第二发射 通道为所述发射机中除所述第一发射通道之外的任一发射通道;
所述反馈对消模块, 还用于将所述第一混合信号发送至所述发射对消模 块;
所述第二 DPD, 用于根据第二基带信号产生预失真信号, 并发送给所述 发射对消模块; 其中, 所述第二基带信号为所述第二发射通道的基带信号; 所述发射对消模块, 具体用于在根据所述第一发射对消信号对所述第一 预失真信号进行干扰对消之前, 根据所述反馈对消模块发送的所述第一混合 信号与所述第二 DPD产生的预失真信号的互相关性获取第二参数,并根据所 述第二参数及所述第二 DPD产生的预失真信号,获取所述第一发射对消信号。
7、 根据权利要求 1-4中任一项所述的发射机, 其特征在于, 还包括: 发 射对消模块, 所述发射对消模块位于所述第一发射通道上, 且所述发射对消 模块通过所述第一 DPD与所述 PA连接;
所述发射对消模块, 用于根据第二发射对消信号, 对所述第一发射通道 上的第三基带信号进行干扰对消, 获得所述第一基带信号, 并将所述第一基 带信号发送给所述第一 DPD;
其中, 所述第二发射对消信号为根据所述第一发射通道被所述发射机中 除所述第一发射通道之外的其他发射通道干扰而产生的干扰信号获得的信号。
8、 根据权利要求 7所述的发射机, 其特征在于, 所述发射对消模块与所 述反馈对消模块连接;
所述反馈对消模块, 还用于将所述第一混合信号发送至所述发射对消模 块;
所述发射对消模块, 还用于在对所述第三基带信号进行干扰对消之前, 根据所述反馈对消模块发送的所述第一混合信号与第二基带信号的互相关性 获取第三参数, 并根据所述第三参数及所述第二基带信号, 获取所述第二发 射对消信号; 其中, 所述第二基带信号为所述发射机中第二发射通道的基带 信号; 所述第二发射通道为所述发射机中除所述第一发射通道之外的任一发 射通道。
9、 一种干扰消除方法, 其特征在于, 包括:
在发射机中的反馈通道与所述发射机中的第一发射通道连接时, 获取所 述反馈通道的信号;
根据反馈对消信号, 对所述反馈通道的信号进行干扰对消, 获取第一混 合信号; 其中, 所述反馈对消信号为根据所述反馈通道处于空载状态时采集 的反馈干扰信号获得的信号;
根据所述第一混合信号及所述第一发射通道的第一基带信号进行线性预 失真处理, 产生第一预失真信号;
将待发射信号进行放大后通过天线进行发射, 所述待发射信号为所述第 一预失真信号或者根据所述第一预失真信号获得的信号。
10、根据权利要求 9所述的方法,其特征在于,所述根据反馈对消信号, 对所述反馈通道的信号进行干扰对消之前, 还包括:
在所述反馈通道为空载状态时, 通过采集所述反馈通道的所述反馈干扰 信号获取所述反馈对消信号。
11、 根据权利要求 9或 10所述的方法, 其特征在于, 所述根据反馈对消 信号, 对所述反馈通道的信号进行干扰对消之前, 还包括:
在所述反馈通道为空载状态时,采集所述反馈通道的所述反馈干扰信号, 并根据所述反馈干扰信号与第二预失真信号之间的互相关性获得第一参数; 根据所述第一参数及所述第二预失真信号, 获取所述反馈对消信号, 其 中, 所述第二预失真信号为根据所述第一发射通道上所述第一基带信号之前 的基带信号进行线性预失真所产生的预失真信号。
12、 根据权利要求 9-11中任一项所述的方法, 其特征在于, 所述空载状 态包括: 悬空或接地。
13、 根据权利要求 9-12中任一项所述的方法, 其特征在于, 所述将待发 射信号进行放大后通过天线进行发射之前, 还包括:
根据第一发射对消信号, 对所述第一预失真信号进行干扰对消, 获得所 述待发射信号;
其中, 所述第一发射对消信号为根据所述发射机中所述第一发射通道被 除所述第一发射通道之外的发射通道干扰而产生的干扰信号获得的信号。
14、 根据权利要求 13所述的方法, 其特征在于, 所述根据第一发射对消 信号, 对所述第一预失真信号进行干扰对消之前, 还包括:
根据所述第一混合信号与所述第二发射通道中产生的预失真信号的互相 关性, 获取第二参数;
根据所述第二参数及所述第二发射通道中产生的预失真信号, 获取所述 第一发射对消信号;
其中, 所述第二发射通道为所述发射机中除所述第一发射通道之外的任 一发射通道。
15、 根据权利要求 9-12中任一项所述的方法, 其特征在于, 所述根据所 述第一混合信号及所述第一发射通道的第一基带信号进行线性预失真处理之 m , 还包括:
根据第二发射对消信号, 对所述第一发射通道上的第三基带信号进行干 扰对消, 获得所述第一基带信号; 其中, 所述第二发射对消信号为根据所述 第一发射通道被所述发射机中除所述第一发射通道之外的其他发射通道干扰 而产生的干扰信号获得的信号。
16、 根据权利要求 15所述的方法, 其特征在于, 所述根据第二发射对消 信号, 对所述第一发射通道上的第三基带信号进行干扰对消之前, 还包括: 根据所述第一混合信号与第二基带信号的互相关性, 获取第二参数; 根据所述第二参数及所述第二基带信号, 获取所述第二发射对消信号; 其中, 所述第二发射通道为所述发射机中除所述第一发射通道之外的任 一发射通道, 所述第二基带信号为所述第二发射通道的基带信号。
PCT/CN2014/083574 2014-08-01 2014-08-01 发射机及干扰消除方法 WO2016015342A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14899048.4A EP3145144B1 (en) 2014-08-01 2014-08-01 Transmitter and interference eliminating method
CN201480003559.8A CN105493458B (zh) 2014-08-01 2014-08-01 发射机及干扰消除方法
KR1020177001136A KR101882307B1 (ko) 2014-08-01 2014-08-01 송신기 및 간섭 상쇄 방법
JP2017503938A JP6475320B2 (ja) 2014-08-01 2014-08-01 送信機および干渉キャンセル方法
PCT/CN2014/083574 WO2016015342A1 (zh) 2014-08-01 2014-08-01 发射机及干扰消除方法
CA2953002A CA2953002C (en) 2014-08-01 2014-08-01 Transmitter and interference cancellation method
US15/398,499 US9794090B2 (en) 2014-08-01 2017-01-04 Transmitter and interference cancellation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083574 WO2016015342A1 (zh) 2014-08-01 2014-08-01 发射机及干扰消除方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/398,499 Continuation US9794090B2 (en) 2014-08-01 2017-01-04 Transmitter and interference cancellation method

Publications (1)

Publication Number Publication Date
WO2016015342A1 true WO2016015342A1 (zh) 2016-02-04

Family

ID=55216694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083574 WO2016015342A1 (zh) 2014-08-01 2014-08-01 发射机及干扰消除方法

Country Status (7)

Country Link
US (1) US9794090B2 (zh)
EP (1) EP3145144B1 (zh)
JP (1) JP6475320B2 (zh)
KR (1) KR101882307B1 (zh)
CN (1) CN105493458B (zh)
CA (1) CA2953002C (zh)
WO (1) WO2016015342A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9860052B2 (en) * 2015-07-30 2018-01-02 National Instruments Corporation Digital predistortion for full-duplex radio
EP3679664B1 (en) * 2017-09-06 2021-11-03 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for antenna array calibration with interference reduction
CN111492609A (zh) * 2017-10-20 2020-08-04 天波网络有限责任公司 光纤反向信道调制解调器管理系统
US11184065B2 (en) 2017-10-31 2021-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Orthogonal training signals for transmission in an antenna array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110571A (zh) * 2007-08-30 2008-01-23 京信通信系统(中国)有限公司 数字预失真功率放大器及其实现方法
CN101534133A (zh) * 2008-03-10 2009-09-16 中国移动通信集团公司 一种无线收发信机
CN102098247A (zh) * 2010-11-27 2011-06-15 武汉虹信通信技术有限责任公司 高效率、高线性直放站系统及其高效率和高线性实现方法
CN102143108A (zh) * 2011-03-17 2011-08-03 电子科技大学 一种改进的自适应预失真技术

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327709B1 (en) * 1998-12-22 2001-12-04 General Instruments Corporation Method and apparatus for filtering interference and nonlinear distortions
JP2001352261A (ja) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd 送信装置及びそのアイソレーション調整方法
SE0102885D0 (en) * 2001-08-28 2001-08-28 Ericsson Telefon Ab L M Calibration of an adaptive signal conditioning systern
US20070142000A1 (en) * 2005-12-15 2007-06-21 Stefan Herzinger Hybrid polar transmission apparatus for a radio transmission system
WO2008102943A1 (en) * 2007-02-23 2008-08-28 Airpoint Repeating system and method for cancellation of feedback interference signal with pre-distortion function
KR100879335B1 (ko) * 2007-02-23 2009-01-19 (주)에어포인트 전치 왜곡 기능을 구비한 귀환간섭신호 제거 중계 시스템및 그 방법
JP4866388B2 (ja) * 2008-05-22 2012-02-01 富士通株式会社 歪補償装置および歪補償方法
US8542768B2 (en) * 2009-12-21 2013-09-24 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US8699620B1 (en) * 2010-04-16 2014-04-15 Marvell International Ltd. Digital Predistortion for nonlinear RF power amplifiers
US8750410B2 (en) * 2010-09-22 2014-06-10 Texas Instruments Incorporated Multi-band power amplifier digital predistortion system and method
CN103563251B (zh) * 2011-05-30 2017-04-05 日本电气株式会社 Vswr测量电路、无线通信装置以及vswr测量方法
US9059786B2 (en) * 2011-07-07 2015-06-16 Vecima Networks Inc. Ingress suppression for communication systems
US8615204B2 (en) * 2011-08-26 2013-12-24 Qualcomm Incorporated Adaptive interference cancellation for transmitter distortion calibration in multi-antenna transmitters
US8817859B2 (en) * 2011-10-14 2014-08-26 Fadhel Ghannouchi Digital multi-band predistortion linearizer with nonlinear subsampling algorithm in the feedback loop
CN102594749A (zh) * 2012-02-28 2012-07-18 中兴通讯股份有限公司 一种数字预失真处理方法及装置
EP2654210B1 (en) * 2012-04-16 2014-05-14 Alcatel Lucent Cross-talk cancellation in a multiband transceiver
CN103001900B (zh) 2012-12-11 2015-08-05 华为技术有限公司 发射机的发射通道间干扰消除方法及装置
US9577592B2 (en) * 2013-02-22 2017-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for controlling a power amplifier configured to use nonlinearity correction and a power amplifier system
US9385762B2 (en) * 2013-05-22 2016-07-05 Telefonaktiebolaget L M Ericsson (Publ) Linearization of intermodulation bands for concurrent dual-band power amplifiers
US8982995B1 (en) * 2013-11-05 2015-03-17 Microelectronics Technology Inc. Communication device and method of multipath compensation for digital predistortion linearization
US8718178B1 (en) * 2013-11-08 2014-05-06 Qualcomm Incorporated Selection of non-linear interference cancelation (NLIC) input

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110571A (zh) * 2007-08-30 2008-01-23 京信通信系统(中国)有限公司 数字预失真功率放大器及其实现方法
CN101534133A (zh) * 2008-03-10 2009-09-16 中国移动通信集团公司 一种无线收发信机
CN102098247A (zh) * 2010-11-27 2011-06-15 武汉虹信通信技术有限责任公司 高效率、高线性直放站系统及其高效率和高线性实现方法
CN102143108A (zh) * 2011-03-17 2011-08-03 电子科技大学 一种改进的自适应预失真技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3145144A4 *

Also Published As

Publication number Publication date
JP2017527183A (ja) 2017-09-14
EP3145144A1 (en) 2017-03-22
KR20170018436A (ko) 2017-02-17
KR101882307B1 (ko) 2018-07-25
CN105493458B (zh) 2019-01-08
US9794090B2 (en) 2017-10-17
CA2953002A1 (en) 2016-02-04
CN105493458A (zh) 2016-04-13
CA2953002C (en) 2019-01-22
EP3145144A4 (en) 2017-06-21
US20170118047A1 (en) 2017-04-27
JP6475320B2 (ja) 2019-02-27
EP3145144B1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
KR101581470B1 (ko) 디지털적으로 구성가능한 적응 선형화를 갖는 최소 피드백 무선 구조
US10727896B2 (en) Tower top device and passive intermodulation cancellation method
CN106341089B (zh) 闭环数字预失真电路及相关方法、设备
WO2016132237A1 (en) Method to improve active antenna system performance in the presence of mutual coupling
CN107005266A (zh) 全双工无线电设备
WO2012176119A2 (en) Centralized adaptor architecture for power amplifier linearizations in advanced wireless communication systems
US8843088B2 (en) Minimum feedback radio architecture with digitally configurable adaptive linearization
WO2016015342A1 (zh) 发射机及干扰消除方法
CN109428610B (zh) 反馈电路单元、rof无线发射机及消除非线性失真的方法
US20180083658A1 (en) Multiplexing an rf signal with a control signal and/or a feedback signal
WO2017185750A1 (zh) 模拟预失真系统、收发信机和通信设备
CN102204200A (zh) 数字模拟预失真处理装置和信号发射系统及信号发射方法
WO2014172849A1 (zh) 发射机和用于信号发射的方法
US10892788B2 (en) Low complexity MIMO digital pre-distortion
CN104580043A (zh) 一种数字预失真系统及其方法
WO2016026070A1 (zh) 信号处理装置、射频拉远单元和基站
US20220303020A1 (en) Central unit, remote unit, small cell system, and communication method
KR20130143726A (ko) 분산형 피드백 아키텍처를 포함한 무선 통신들
CN103826256A (zh) 基于c-ran架构的lte无线专网的能耗检测方法
WO2011088780A1 (zh) 提高输出性能的方法和系统及室外单元和室内单元
US11329688B2 (en) Single-chip digital pre-distortion (DPD) device implemented using radio frequency transceiver integrated circuit with integrated DPD function
TWI429208B (zh) 射頻前端電路
CN113346930A (zh) 用于多天线系统中的面向波束的前馈架构系统及方法
CN115642881A (zh) 信号处理方法和信号处理装置
CN111492589A (zh) 辐射杂散信号的对消方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480003559.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899048

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014899048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014899048

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2953002

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177001136

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017503938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE