WO2016015219A1 - 收发信机 - Google Patents

收发信机 Download PDF

Info

Publication number
WO2016015219A1
WO2016015219A1 PCT/CN2014/083217 CN2014083217W WO2016015219A1 WO 2016015219 A1 WO2016015219 A1 WO 2016015219A1 CN 2014083217 W CN2014083217 W CN 2014083217W WO 2016015219 A1 WO2016015219 A1 WO 2016015219A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filter
frequency
channel
mixer
Prior art date
Application number
PCT/CN2014/083217
Other languages
English (en)
French (fr)
Inventor
杨博
蔡华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/083217 priority Critical patent/WO2016015219A1/zh
Priority to CN201480080913.7A priority patent/CN106664106B/zh
Priority to EP14898474.3A priority patent/EP3197057B1/en
Publication of WO2016015219A1 publication Critical patent/WO2016015219A1/zh
Priority to US15/416,800 priority patent/US9967116B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/14Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices

Definitions

  • Embodiments of the present invention relate to wireless communication technologies, and in particular, to a transceiver. Background technique
  • Figure 1 shows an ultra-wideband receiver architecture with a distributed architecture.
  • the received radio frequency signal ( ⁇ ⁇ ) is sequentially fed back to each of the amplified frequency conversion links in parallel relationship (the labels are: 230-1, 230-2, ... , 230- ⁇ ), and the local oscillator signal (Local Oscillator signal, referred to as: LO signal) is also sequentially fed back to each mixer (Mixer) (labeled in the figure: 235-1, 235-2, ..., 235- The local oscillator port of n), the received RF signal (3 ⁇ 4 relie(0) and LO signal) form a traveling-wave relationship to realize a wideband receiver scheme.
  • the architecture works over a wide frequency band Communication performance is low.
  • Embodiments of the present invention provide a transceiver that automatically configures a working frequency of a transceiver according to different frequency requirements to maintain high wireless communication performance while achieving ultra-wide bandwidth.
  • an embodiment of the present invention provides a transmitter, including:
  • a baseband control device (21) for generating a baseband signal
  • the up-converting device (22) is connected to the baseband control device (21) for up-converting the baseband signal generated by the baseband control device (21) to obtain an intermediate frequency signal;
  • At least two RF channels (23) arranged in parallel, one side of the at least two RF channels (23)
  • the second switch (S2) is connected in series with the up-converting device (22), the at least two radio frequency channels (23) collectively cover the entire frequency band of the radio frequency signal, and each radio frequency channel covers the radio frequency signal a frequency band for converting, amplifying and filtering the intermediate frequency signal obtained by the up-converting device (22) to obtain a radio frequency signal corresponding to a part of the frequency band;
  • the RF signal obtained by the connected RF channel is sent out.
  • the up-converting device (22) includes: an in-phase modulation channel (221), and a quadrature modulation channel (222) disposed in parallel with the in-phase modulation channel (221) And a synthesizer (223); wherein
  • the in-phase modulation channel (221) is connected to the baseband control device (21) for up-converting the baseband signal generated by the baseband control device (21) to obtain an in-phase intermediate frequency signal;
  • the quadrature modulation channel (222) is connected to the baseband control device (21) for up-converting a baseband signal generated by the baseband control device (21) to obtain an orthogonal intermediate frequency signal;
  • the first end of the synthesizer (223) is connected to the output end of the in-phase modulation channel (221), and the second end of the synthesizer (223) is connected to the output end of the quadrature modulation channel (222).
  • the third end of the synthesizer (223) is used as an output of the up-converting device (22), and the synthesizer (223) is used for the in-phase intermediate frequency signal obtained by the in-phase modulation channel (221) and the positive
  • the orthogonal intermediate frequency signals obtained by the intermodulation channel (222) are combined to obtain the intermediate frequency signal.
  • the in-phase modulation channel (221) includes: a first digital-to-analog converter (2211) and a first digital-to-analog converter (2211) having a first filter (2212) and a first modulator (2213) arranged in series, wherein an input end of the first digital-to-analog converter (2211) and the baseband control device (21) a connection, configured to convert the baseband signal generated by the baseband control device (21) into a first analog signal, an input end of the first filter (2212) and the first digital-to-analog converter The output end of (2211) is connected to filter the first analog signal converted by the first digital-to-analog converter (2211) to obtain a first filtered signal, where the first modulator (2213) One end is connected to the output of the first filter (2212), the second end of the first modulator (2213) is connected to a frequency divider (26), and the frequency divider (26) is used for The
  • the quadrature modulation channel (222) includes: a second digital-to-analog converter (2221) and a second filter (2222) and a second modulator (2223) arranged in series with the second digital-to-analog converter (2221)
  • the input end of the second digital-to-analog converter (2221) is connected to the baseband control device (21) for converting the baseband signal generated by the baseband control device (21) into a second An analog signal
  • an input end of the second filter (2222) is connected to an output end of the second digital-to-analog converter (2221), and is configured to convert the second digital-to-analog converter (2221)
  • the second analog signal is filtered to obtain a second filtered signal
  • the first end of the second modulator (2223) is connected to the output end of the second filter (2222), and the second modulator (2223)
  • the second end is coupled to the frequency divider (26), the frequency divider (26) is configured to provide a second modulation signal to the second modulator (2223)
  • any one of the first to the second possible implementation manners of the first aspect in a third possible implementation manner of the first aspect, is a superheterodyne structure link (23-1), the superheterodyne structure link (23-1), comprising:
  • a first mixer (231) the first end of the first mixer (231) is connected to an output end of the up-converting device (22) through the second switch (S2), a second end of a mixer (231) is coupled to the phase locked loop (28) via a third switch (S3) and a fourth switch (S4) for receiving a first phase from the phase locked loop (28) a local oscillator signal, the first mixer (231) is configured to obtain the intermediate frequency signal obtained by the up-converting device (22) according to the first local oscillation signal provided by the phase-locked loop (28) Performing frequency conversion to obtain a signal after frequency conversion;
  • An output of (231) is connected to amplify the frequency-converted signal output by the first mixer (231) to obtain an amplified signal;
  • An output of (232) is connected to filter the amplified signal obtained by the first amplifier (232) to obtain a radio frequency signal, and an output end of the third filter (233) serves as the radio frequency The output of the channel (23).
  • At least one of the at least two radio frequency channels is a zero intermediate frequency structure link (23-2),
  • the zero-IF structure link (23-2) includes:
  • an input of the second amplifier (234) is connected to an output of the up-converting device (22) through the second switch (S2) for the up-converting device (22) obtaining the obtained intermediate frequency signal to obtain an amplified signal;
  • a fourth filter (235) an input of the fourth filter (235) coupled to an output of the second amplifier (234) for the amplification of the second amplifier (234)
  • the subsequent signal is filtered to obtain a radio frequency signal corresponding to a portion of the frequency band, and an output end of the fourth filter (235) serves as an output end of the radio frequency channel (23).
  • the transmitter further includes:
  • the auxiliary channel (32) includes: a sending auxiliary channel (311), where
  • the sending auxiliary channel (311) includes: a third digital-to-analog converter (3111) and a fifth filter (3112) and a second mixer (3113) arranged in series with the third digital-to-analog converter (3111) a third amplifier (3114) and a sixth filter (3115), wherein
  • the input end of the third digital-to-analog converter (3111) is connected to the baseband control device (21) for performing digital-to-analog conversion of the frequency point configuration information transmitted by the baseband control device (21).
  • An input end of the fifth filter (3112) is connected to an output end of the third digital-to-analog converter (3111) for the third simulation obtained by the third digital-to-analog converter (3111)
  • the signal is filtered to obtain a third filtered signal
  • the first end of the second mixer (3113) is connected to the output end of the fifth filter (3112), and the second end of the second mixer (3113) is connected to the auxiliary channel voltage controlled oscillator. (3116) connection, the auxiliary A channel voltage controlled oscillator (3116) is configured to provide a second local oscillator signal to the second mixer (3113), and the second mixer (3113) is configured to be used according to the auxiliary channel voltage controlled oscillator ( 3116)
  • the second local oscillation signal is provided, and the third filtered signal obtained by the fifth filter (3112) is frequency-converted to obtain a frequency-converted signal;
  • An input end of the third amplifier (3114) is connected to an output end of the second mixer (3113) for amplifying the frequency-converted signal obtained by the second mixer (3113) , getting the amplified signal;
  • An input end of the sixth filter (3115) is connected to an output end of the third amplifier (3114), and is configured to filter the amplified signal obtained by the third amplifier (3114) to obtain a pre- Transmitting a signal, or controlling a selection of the at least two radio frequency channels (23) and a control signal corresponding to the selection of the local oscillator source, the output of the sixth filter (3115) serving as the transmission auxiliary channel (311)
  • the output is connected to the antenna (33).
  • the auxiliary channel (32) further includes: a receiving auxiliary channel (312), where The receiving auxiliary channel (312) includes: an analog to digital converter (3121) and the analog to digital converter
  • the output end of the analog-to-digital converter (3121) is connected to the baseband control device (21), and is configured to perform analog-to-digital conversion on the fourth filtered signal obtained by filtering the seventh filter (3122) to obtain converted Signal and transmitted to the baseband control device (21);
  • An output end of the seventh filter (3122) is connected to an input end of the analog-to-digital converter (3121), and is configured to filter the frequency-converted signal obtained by frequency conversion of the third mixer (3123).
  • the fourth filtered signal is transmitted to the analog to digital converter (3121);
  • a first end of the third mixer (3123) is connected to an input end of the seventh filter (3122), and a second end of the third mixer (3121) is connected to the fourth amplifier (
  • the output of the third mixer (3121) is connected to the auxiliary channel voltage controlled oscillator (3116), and the auxiliary channel voltage controlled oscillator (3116) is used to
  • the third mixer (3121) provides a third local oscillator signal, and the third mixer (3121) is configured to perform frequency conversion processing on the amplified signal obtained by amplifying the fourth amplifier (3124).
  • An input end of the fourth amplifier (3124) is connected to an output end of the eighth filter (3125), and is configured to amplify the filtered signal obtained by the eighth filter (3125) to obtain Amplified signal;
  • An input end of the eighth filter (3125) is connected to the antenna (33), and an input end of the eighth filter (3125) serves as an input end of the receiving auxiliary channel (312) for The signal received by the antenna (33) is filtered to obtain a filtered signal.
  • an embodiment of the present invention provides a receiver, including: at least two radio frequency channels (41), a frequency down device (42), a baseband control device (43), and a first switch (S6), which are disposed in parallel, a second switch (S7) and an antenna (45); wherein
  • the antenna (45) is connected in series with an input end of a radio frequency channel of the at least two radio frequency channels (41) through the first switch (S6) for receiving a radio frequency signal sent by the transmitter, and Transmitting the radio frequency signal to a radio frequency channel connected to the antenna (45);
  • the at least two radio frequency channels (41) are configured to frequency-convert, amplify, and filter radio frequency signals of the corresponding frequency bands in the radio frequency signal received by the antenna (45) to obtain an intermediate frequency signal, where the at least two The RF channel (41) collectively covers the entire frequency band of the RF signal, and each RF channel covers
  • the frequency reducing device (42) is connected to the output end of the RF channel connected to the antenna (45) of the at least two RF channels (41) through the second switch (S7),
  • the intermediate frequency signal obtained by the RF channel (41) is down-converted to a pre-processed signal of the baseband control device (43).
  • the frequency reducing device (42) includes: an in-phase demodulation channel (421), and a quadrature demodulation channel disposed in parallel with the in-phase demodulation channel (421) (422) and a resolver (423); wherein
  • the decomposer (423) is configured to decompose the intermediate frequency signal obtained by the radio frequency channel (41) into an in-phase intermediate frequency signal and an orthogonal intermediate frequency signal, and the first end of the decomposer (423) serves as the down frequency
  • An input end of the device (42) a second end of the resolver (423) is connected to an input end of the in-phase demodulation channel (421), and a third end of the resolver (423) is connected to the orthogonal solution Adjusting the input end of the channel (422);
  • the in-phase demodulation channel (421) is coupled to the baseband control device (43) for down-converting the in-phase intermediate frequency signal obtained by the resolver (423) to obtain an in-phase baseband signal, and The same phase baseband signal is transmitted to the baseband control device (43);
  • the quadrature demodulation channel (422) is coupled to the baseband control device (43) for
  • the quadrature intermediate frequency signal obtained by the decimation device (423) is down-converted to obtain an orthogonal baseband signal, and the orthogonal baseband signal is transmitted to the baseband control device (43).
  • the in-phase demodulation channel (421) includes: a first analog-to-digital converter (4211) and a first filter (4212) and a first demodulator (4213) arranged in series by the first analog-to-digital converter (4211), wherein the first end of the first demodulator (4213) serves as the in-phase An input end of the demodulation channel (421), a second end of the first demodulator (4213) is coupled to a frequency divider (46), and the frequency divider (46) is configured to perform the first demodulation
  • the first demodulation signal is provided by the first demodulator (4213) for using the first demodulated signal provided by the frequency divider (46), for the resolver (423) Obtaining the obtained in-phase intermediate frequency signal to obtain an in-phase demodulated signal; an input end of the first filter (4212) is connected to an output end of the first demodulator (4213), the first filter (4212) for filtering the in
  • the quadrature demodulation channel (422) includes: a second analog to digital converter (4221) and a second filter (4222) and a second demodulator disposed in series with the second analog to digital converter (4221) (4223), wherein the first end of the second demodulator (4223) serves as an input end of the orthogonal demodulation channel (422), and the second end of the second demodulator (4223)
  • the frequency divider (46) is connected, the frequency divider (46) is further configured to provide a second demodulation signal to the second demodulator (4223), and the second demodulator (4223) Demodulating the orthogonal intermediate frequency signal obtained by the decomposer (423) to obtain a quadrature demodulated signal by using the second demodulated signal provided by the frequency divider (46), where a phase difference between the second demodulated signal and the first demodulated signal is a preset value, and a signal input to the frequency divider (46) is provided by at least one phase locked loop (48); the second filtering The input of the
  • At least one of the at least two radio frequency channels is a super-heterodyne structure link (41-1), and the super-heterodyne structure link (41-1)
  • the third filter (411) and the first amplifier (412) are sequentially connected, and an input end of the third filter (411) serves as an input end of the radio frequency channel (41), and the third The filter (411) is configured to filter a radio frequency signal of the corresponding part of the radio frequency signal received by the antenna (45) to obtain a third filtered signal;
  • An input of the first amplifier (412) is coupled to an output of the third filter (411), and the first amplifier (412) is configured to obtain the third filter (411)
  • the third filtered signal is amplified to obtain a first amplified signal
  • a first end of the first mixer (413) is connected to an output of the first amplifier (412), and a second end of the first mixer (413) is passed through a third switch (S8) and a fourth switch (S9) coupled to the phase locked loop (48) for receiving the phase locked loop (48) to provide a first local oscillator signal, the output of the first mixer (413) passing through a second switch (S7) coupled to an input of the frequency down device (42), the first mixer (413) for the first local oscillator provided in accordance with the phase locked loop (48) a signal, the first amplified signal obtained by the first amplifier (412) is frequency-converted to obtain the intermediate frequency signal.
  • At least one of the at least two radio frequency channels is a zero intermediate frequency structure link (41-2), where
  • the zero intermediate frequency structure link (41-2) includes: a fourth filter (414) and a second amplifier (415); wherein, the fourth filter (414) and the second amplifier (415) are compliant a secondary connection, an input of the fourth filter (414) serving as an input of the radio frequency channel (41), and a fourth filter (414) for receiving the radio frequency received by the antenna (45)
  • the radio frequency signal of the corresponding part of the signal is filtered to obtain a fourth filtered signal;
  • An input of the second amplifier (415) is coupled to an output of the fourth filter (414), and the second amplifier (415) is configured to obtain the fourth filter (414)
  • the fourth filtered signal is amplified to obtain the intermediate frequency signal, and an output end of the second amplifier (415) is connected to an input end of the frequency reducing device (42) through the second switch (S7).
  • the receiver further includes:
  • the auxiliary channel (52) includes: a receiving auxiliary channel (521), wherein the receiving auxiliary channel (521) comprising: a digital-to-analog converter (5211) and a fifth filter (5212), a second mixer (5213), a third amplifier (5214) and a series arrangement with the digital-to-analog converter (5211) a sixth filter (5215); an output of the digital-to-analog converter (5211) is coupled to the baseband control device (43), an input of the digital-to-analog converter (5211) and the fifth filter The output of (5212) is connected, and the digital-to-analog converter (5211) is configured to perform digital-to-analog conversion on the fifth filtered signal obtained by the fifth filter (5212) to obtain a converted signal, and transmit the converted signal to the Baseband control device (43);
  • An input end of the fifth filter (5212) is connected to an output end of the second mixer (5213), and is configured to filter the converted signal obtained by the second mixer (5213) The fifth filtered signal;
  • a first end of the second mixer (5213) is coupled to an output of the third amplifier (5214), and a second end of the second mixer (5213) is coupled to an auxiliary channel voltage controlled oscillator ( 5216) connected, the auxiliary channel voltage controlled oscillator (5216) is configured to provide a second local oscillator signal to the second mixer (5213), and the second mixer (5213) is configured to The second local oscillation signal provided by the auxiliary channel voltage controlled oscillator (5216), and the amplified signal amplified by the third amplifier (5214) is frequency-converted to obtain the frequency-converted signal;
  • An input end of the third amplifier (5214) is connected to an output end of the sixth filter (5215), and is configured to perform amplification on the filtered signal obtained by filtering the sixth filter (5215) to obtain The amplified signal;
  • An input end of the sixth filter (5215) serves as an input end of the receiving auxiliary channel (521), and is connected to the antenna (53) for receiving the radio frequency signal received by the antenna (53) Filtering is performed to obtain the filtered signal.
  • the auxiliary channel (52) further includes: a sending auxiliary channel (522), where
  • the sending auxiliary channel (522) includes: a third analog to digital converter (5221) and a seventh filter (5222) and a third mixer (5223) arranged in series with the third analog to digital converter (5221) ), a fourth amplifier (5224) and an eighth filter (5225);
  • the input end of the third analog-to-digital converter (5221) is connected to the baseband control device (43) for performing analog-to-digital conversion on the pre-transmitted signal or control signal acquired by the baseband control device (43) to obtain a digital signal.
  • the control signal is that the baseband control device (43) controls selection of the at least two radio frequency channels (41) and a control signal corresponding to the selection of the local oscillator source;
  • An input end of the seventh filter (5222) is connected to an output end of the third analog-to-digital converter (5221) for performing the digital signal obtained by the third analog-to-digital converter (5221) Filtering to obtain a sixth filtered signal;
  • the first end of the third mixer (5223) is connected to the output end of the seventh filter (5222), and the second end of the third mixer (5223) is connected to the auxiliary channel voltage controlled oscillator. (5216) connected, the auxiliary channel voltage controlled oscillator (5216) is configured to provide a third local oscillator signal to the third mixer (5223), and the third mixer (5223) is used for The sixth filtered signal obtained by the seventh filter (5222) is frequency-converted to obtain a frequency-converted signal;
  • An input end of the fourth amplifier (5224) is connected to an output end of the third mixer (5223), and is used for frequency conversion of the third mixer (5223) to obtain the converted signal to be amplified. , getting the amplified signal;
  • An input end of the eighth filter (5225) is connected to an output end of the fourth amplifier (5224), and an output end of the eighth filter (5225) is used as an output end of the transmission auxiliary channel (522) Connected to the antenna (53), the eighth filter (5225) is configured to filter the amplified signal obtained by the fourth amplifier (5224) to obtain that the antenna (53) is to be sent out. signal of.
  • each radio frequency channel covers a frequency range and operates at different working frequency points, and achieves ultra-wide bandwidth while maintaining high wireless communication performance.
  • Figure 1 shows an ultra-wideband receiver architecture with a distributed structure
  • Embodiment 1 of a transmitter of the present invention is a schematic structural view of Embodiment 1 of a transmitter of the present invention
  • 3 is a schematic structural diagram of Embodiment 2 of a transmitter of the present invention
  • Embodiment 1 of a receiver according to the present invention is a schematic structural diagram of Embodiment 1 of a receiver according to the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a receiver according to the present invention.
  • FIG. 6 is a schematic diagram of a frequency point configuration process between transceivers according to the present invention.
  • FIG. 7 is a diagram showing an example of using an ultra-wideband antenna according to the present invention.
  • Figure 8 is a diagram showing an example of using multiple antennas in the present invention.
  • Figure 9 is a schematic structural view of a third embodiment of the transmitter of the present invention.
  • Embodiment 3 of a receiver according to the present invention is a schematic structural diagram of Embodiment 3 of a receiver according to the present invention.
  • 11 is an example of a wireless communication system for a microwave point-to-point application according to the present invention.
  • Figure 12 is a scene diagram of mobile communication
  • Figure 13 is a typical application scenario for communication between objects. detailed description
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of a transmitter according to the present invention.
  • the embodiment of the present invention provides a transmitter.
  • the transmitter 20 includes a baseband control device 21, an up-converter device 22, a plurality of RF channels 23 arranged in parallel, an antenna 24, and first switches S1 and Two switches S2.
  • the baseband control device 21 is configured to generate a baseband signal; the upconversion device 22 is coupled to the baseband control device 21 for upconverting the baseband signal generated by the baseband control device 21 to obtain an intermediate frequency signal; and passing one side of the at least two radio frequency channels 23
  • the second switch S2 is connected in series with the up-converting device 22, and at least two RF channels 23 collectively cover the entire frequency band of the RF signal, and each RF channel covers a different frequency band in the RF signal, and is used for the up-converting device (22)
  • the obtained intermediate frequency signal is frequency-converted, amplified and filtered to obtain a radio frequency signal corresponding to a part of the frequency band;
  • the antenna 24 is connected in series with the output end of one of the at least two RF channels 23 through the first switch S1, and is used for the antenna
  • the RF signal obtained by the 24 connected RF channels is sent out.
  • a wireless transmitter capable of achieving wide frequency coverage can be realized without increasing the difficulty of hardware implementation.
  • At least two RF channels 23 are used to support RF signal changes in different frequency bands. Frequency amplification and filtering function, which separates the RF channels of different frequency bands from the physical structure, is advantageous for hardware implementation.
  • Antenna 24 may be an ultra wideband antenna for transmitting signals transmitted by at least two radio frequency channels 23.
  • the first switch S1 is used for the connection of the antenna 24 to a different radio frequency channel 23.
  • each radio frequency channel covers a frequency range, operates at different working frequency points, and maintains high wireless communication performance while realizing ultra-wide bandwidth; It can also minimize the difficulty of hardware implementation and achieve greater benefits in terms of performance.
  • the number of the antennas 24 may be one or plural.
  • the plurality of antennas 24 cooperate with their corresponding RF channels in at least two RF channels 23 to ensure that each antenna 24 performs well in its operating frequency band, and multiple RF channels
  • the correspondence between the plurality of antennas 23 and the plurality of antennas 24 may be one-to-one, or may be many-to-one or one-to-many, and the present invention is not limited thereto.
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of the transmitter of the present invention.
  • the embodiment of the present invention is improved on the basis of the embodiment shown in FIG. 2.
  • the up-converting device 22 may include: an in-phase modulation channel 221, an orthogonal modulation channel 222 disposed in parallel with the in-phase modulation channel 221, and a composite 223.
  • the in-phase modulation channel 221 is connected to the baseband control device 21 for up-converting the baseband signal generated by the baseband control device 21 to obtain an in-phase intermediate frequency signal;
  • the orthogonal modulation channel 222 is connected to the baseband control device 21 for the baseband control device.
  • the baseband signal generated by 21 is up-converted to obtain an orthogonal intermediate frequency signal; the first end of the synthesizer 223 is connected to the output end of the in-phase modulation channel 221, and the second end of the synthesizer 223 is connected to the output end of the orthogonal modulation channel 222, and the input is orthogonal.
  • the intermediate frequency signal, the third end of the synthesizer 223 is used as an output end of the up-converting device 22, and the synthesizer 223 is configured to synthesize the in-phase intermediate frequency signal obtained by the in-phase modulation channel 221 and the orthogonal intermediate frequency signal obtained by the orthogonal modulation channel (222). , get the intermediate frequency signal.
  • the in-phase modulation channel 221 may include: a first digital-to-analog converter 2211 and a first filter 2212 and a first modulator 2213 disposed in series with the first digital-to-analog conversion 2211.
  • the input end of the first digital-to-analog converter 2211 is connected to the baseband control device 21 for converting the baseband signal generated by the baseband control device 21 into a first analog signal, and the input end of the first filter 2212 and the first digital-analog
  • the output of the converter 2211 is connected to filter the first analog signal converted by the first digital-to-analog converter 2211 to obtain a first filtered signal.
  • the first end of the first modulator 2213 and the first filter 2212 The output terminal is connected, the second end of the first modulator 2213 is connected to the frequency divider 26, and the frequency divider 26 is configured to provide the first modulator 2213 with a first modulated signal, the third end of the first modulator 2213 and the composite
  • the first end of the device 223 is connected to the first modulator 2213 for modulating the first filtered signal obtained by filtering the first filter 2212 to obtain an in-phase intermediate frequency signal by using the first modulated signal provided by the frequency divider 26.
  • the quadrature modulation channel 222 can include a second digital to analog converter 2221 and a second filter 2222 and a second modulator 2223 disposed in series with the second digital to analog converter 2221.
  • the input end of the second digital-to-analog converter 2221 is connected to the baseband control device 21 for converting the baseband signal generated by the baseband control device 21 into a second analog signal; the input end of the second filter 2222 and the second digital mode
  • the output of the converter 2221 is connected to filter the second analog signal converted by the second digital-to-analog converter 2221 to obtain a second filtered signal; the output of the first end of the second modulator 2223 and the output of the second filter 2222
  • the second terminal of the second modulator 2223 is connected to the frequency divider 26, and the frequency divider 26 is configured to provide a second modulation signal to the second modulator 2223, the phase of the second modulation signal and the first modulation signal.
  • the difference is a preset value (which may be, for example, 90°)
  • the third end of the second modulator 2223 is connected to the second end of the synthesizer 223, and the second modulator 2223 is used to provide the use of the frequency divider 26.
  • the second modulated signal is modulated by the second filtered signal obtained by filtering the second filter 2222 to obtain an orthogonal intermediate frequency signal, wherein the signal input to the frequency divider 26 is provided by at least one phase locked loop 28.
  • the phase-locked loop 28 is a phase-locked loop including a plurality of voltage controlled oscillators 281 (Voltage Controlled Oscillator, VCO for short).
  • the VC0 of the appropriate frequency band can be selected according to different frequency configuration to provide a local oscillator signal for the link frequency conversion.
  • the phase locked loop 28 further includes a phase detector (Phase Detector, PD: 282) and a loop filter 283.
  • the phase detector 282 detects the phase difference between the input signals, and converts the detected phase difference signal into a voltage signal output, and the signal is filtered by the loop filter 283 to form a control voltage of the voltage controlled oscillator.
  • the frequency of the output voltage of the voltage controlled oscillator 281 is controlled.
  • At least two RF channels 23 include a certain number of super-heterodyne structure links and zero-IF structure links.
  • at least one of the at least two radio frequency channels is a superheterodyne structure link 23-1.
  • the superheterodyne structure link 23-1 may include: a first mixer 231, the first end of the first mixer 231 is connected to the output of the up-converting device 22 through the second switch S2, the first mixing The second end of the 231 is connected to the phase locked loop 28 through the third switch S3 and the fourth switch S4 for receiving the first local oscillation signal from the phase locked loop 28, and the first mixer 231 is configured to be based on the phase lock.
  • the intermediate frequency signal obtained by the up-converting device 22 is frequency-converted to obtain a frequency-converted signal; the first amplifier 232, the input end of the first amplifier 232 is connected to the output end of the first mixer 231, and is used for the first mixing
  • the frequency-converted signal outputted by the device 231 is amplified to obtain an amplified signal; and, the third filter 233, the input end of the third filter 233 is connected to the output end of the first amplifier 232, and is used to obtain the first amplifier 232.
  • the amplified signal is filtered to obtain a radio frequency signal, and the output end of the third filter 233 serves as an output end of the radio frequency channel 23.
  • the zero intermediate frequency structure link 23-2 may include: a second amplifier 234, the input end of the second amplifier 234 is connected to the output of the up-converting device 23 through the second switch S2, and is used for the intermediate frequency obtained by the up-converting device 22.
  • the signal is amplified to obtain an amplified signal; the fourth filter 235, the input end of the fourth filter 235 is connected to the output end of the second amplifier 234, and is used for filtering the amplified signal obtained by the second amplifier 234.
  • the output end of the fourth filter 235 serves as the output end of the RF channel 23.
  • the transmitter 20 may further include: an auxiliary channel 32 connected to the baseband control device 21 for transmitting frequency point configuration information and system information with the baseband control device 21, and the baseband control device 21 may also be used.
  • the selection of the at least two RF channels 23 and the selection of the corresponding local oscillator source are controlled by the frequency point configuration information.
  • the system information includes various system information used by the communication system where the transmitter 20 is used for networking, and the source of the frequency configuration information may be implemented in various forms, such as an upper layer software configuration.
  • the transmitter 20 may further include: an antenna 33 connected to the auxiliary channel 32 for transmitting a signal transmitted by the auxiliary channel 32 or receiving a signal sent by another device through its own auxiliary channel, And transmitted to the baseband control device 21 through the auxiliary channel 32.
  • the antenna 33 may be the same antenna as the antenna 24, or the antenna 33 may be an antenna unique to the auxiliary channel 32 for transmitting signals from the auxiliary channel 32 and/or transmitting signals received thereto to the auxiliary channel 32.
  • the auxiliary channel 32 may include: a sending auxiliary channel 311, where the sending auxiliary channel 311 may include: a third digital-to-analog converter 3111 and a fifth filter 3112 and a second set in series with the third digital-to-analog converter 3111
  • the mixer 3113, the third amplifier 3114, and the sixth filter 3115 may include:
  • the input end of the third digital-to-analog converter 3111 is connected to the baseband control device 21, and is used for performing digital-to-analog conversion of the frequency point configuration information transmitted by the baseband control device 21 to obtain a third analog signal;
  • the input end of the fifth filter 3112 is connected to the output end of the third digital-to-analog converter 3111, and is used for filtering the third analog signal obtained by the third digital-to-analog converter 3111 to obtain a third filtered signal;
  • the second mixer 3113 The first end is connected to the output of the fifth filter 3112, the second end of the second mixer 3113 is connected to the auxiliary channel voltage controlled oscillator 3116, and the auxiliary channel voltage controlled oscillator 3116 can be used for the second mixing.
  • the device 3113 provides a second local oscillator signal, and the second mixer (3113) can be used to frequency convert the third filtered signal obtained by the fifth filter 3112 according to the second local oscillator signal provided by the auxiliary channel voltage controlled oscillator 3116. Obtaining the converted signal; the input end of the third amplifier 3114 is connected to the output end of the second mixer 3113, and is used for amplifying the converted signal obtained by the second mixer 3113 to obtain an amplified signal; The input of the sixth filter 3115 is connected to the output of the third amplifier 3114 for filtering the amplified signal obtained by the third amplifier 3114 to obtain a pre-transmitted signal or controlling the selection of at least two RF channels 23. Which controls the local oscillator signal corresponding to the selected output terminal of the sixth filter 3115 as a transmission output end of the auxiliary passage 311, is connected to the antenna 33.
  • the auxiliary channel 32 may further include: a receiving auxiliary channel 312.
  • the receiving auxiliary channel 312 may include: an analog-to-digital converter 3121 and a seventh filter 3122, a third mixer 3123, a fourth amplifier 3124, and an eighth filter 3125 which are disposed in series with the analog-to-digital converter 3121.
  • the output of the analog-to-digital converter 3121 is connected to the baseband control device 21, and is used for performing analog-to-digital conversion on the fourth filtered signal obtained by filtering the seventh filter 3122, and transmitting the converted signal to the baseband control device 21;
  • the output of the seventh filter 3122 is connected to the input end of the analog-to-digital converter 3121, and is used for filtering the frequency-converted signal obtained by the third mixer 3123 to obtain the fourth filtered signal, and transmitting the modulus to the modulus.
  • the first end of the third mixer 3123 is connected to the input end of the seventh filter 3122, and the second end of the third mixer 3121 is connected to the output end of the fourth amplifier 3124, the third mixer The third end of the 3121 is connected to the auxiliary channel voltage controlled oscillator 3116.
  • the auxiliary channel voltage controlled oscillator 3116 can be used to provide the third local oscillator signal to the third mixer 3121, and the third mixer 3121 can be used for
  • the four amplifiers 3124 amplify and process the amplified signals, perform frequency conversion processing, and transmit the converted frequency converted signals to the seventh filter 3122; the input terminals of the fourth amplifier 3124 and The output end of the eighth filter 3125 is connected to amplify the filtered signal obtained by the eighth filter 3125 to obtain the amplified signal; the input end of the eighth filter 3125 is connected to the antenna 33, and the eighth filtering
  • the input of the device 3125 serves as an input of the receiving auxiliary channel 312 for filtering the signal received by the antenna 33 to obtain the filtered signal.
  • auxiliary channel 32 can also be used to transmit service data.
  • the working frequency of the auxiliary channel 32 may be an unlicensed frequency band or a frequency band corresponding to a specific service, which is not limited by the present invention.
  • the embodiment of the present invention adopts an architecture of at least two radio frequency channels, each of which covers a frequency range, thereby minimizing the difficulty of hardware design, and obtaining a large profit in performance; setting at the transmitter end
  • the special auxiliary channel can transmit the frequency point configuration information in real time, and automatically complete the frequency configuration of the signal transmitting end.
  • the auxiliary channel also serves as a service transmission channel for transmitting service data and realizing efficient use of the channel;
  • the combination of superheterodyne structure and zero-IF structure can reduce system complexity under the premise of ensuring high performance of the system. Switching to RF channel and local oscillator source can make good use of baseband control device. Controls the switch to provide intelligent frequency switching.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a receiver according to the present invention.
  • the embodiment of the present invention provides a receiver.
  • the receiver 40 includes at least two RF channels 41, a frequency down device 42, a baseband control device 43, a first switch S6, and a second switch. S7 and antenna 45.
  • the antenna 45 is connected in series with the input end of one of the at least two radio frequency channels through the first switch S6, and is configured to receive the radio frequency signal sent by the transmitter, and transmit the radio frequency signal to the antenna 45.
  • the RF channel 41 is configured to frequency-convert, amplify, and filter the RF signal of the corresponding part of the RF signal received by the antenna 45 to obtain an intermediate frequency signal, and at least two RF channels 41 collectively cover the entire RF signal. a frequency band, and each of the RF channels 41 covers a different frequency band of the RF signal; the frequency reducing device 42 is connected to the output of the RF channel of the at least two RF channels 41 and connected to the antenna 45 through the second switch S7.
  • the intermediate frequency signal obtained by the RF channel 41 is down-converted to a pre-processed signal of the baseband control device 43.
  • the receiver 40 in this embodiment operates in correspondence with the transmitter in the above embodiment. After the transmitter sends the ultra-wideband signal, the receiver 40 receives the ultra-wideband signal, and performs corresponding processing on the ultra-wideband signal by using the above components. For example, the down-converting device 42 performs the lowering of the intermediate frequency signal (IQ modulation signal). Frequency processing, and so on, will not be repeated here.
  • the intermediate frequency signal IQ modulation signal
  • each radio frequency channel covers a frequency range, operates at different working frequency points, and maintains high wireless communication performance while realizing ultra-wide bandwidth; It can also minimize the difficulty of hardware implementation and achieve greater benefits in terms of performance.
  • the number of the antennas 45 may be one or multiple.
  • the multiple antennas 45 cooperate with their corresponding RF channels in the at least two RF channels 41 to ensure that each antenna 45 performs well in its working frequency band, and at least two RF channels 41 and multiple
  • the correspondence between the antennas 45 may be one-to-one, or may be many-to-one or one-to-many, and the present invention does not limit them.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a receiver according to the present invention.
  • the embodiment of the present invention is improved on the basis of the embodiment shown in FIG. 4.
  • the frequency down device 42 may include: an in-phase demodulation channel 421, and a quadrature demodulation channel disposed in parallel with the in-phase demodulation channel 421. 422 and resolver 423.
  • the decomposer 423 is configured to decompose the intermediate frequency signal obtained by the radio frequency channel 41 into an in-phase demodulation intermediate frequency signal and a quadrature demodulation intermediate frequency signal, and the first end of the decomposer 423 is used as an input end of the frequency reducing device 42, and the decomposer 423
  • the second end is connected to the input end of the in-phase demodulation channel 421
  • the third end of the decomposer 423 is connected to the input end of the quadrature demodulation channel 422
  • the in-phase demodulation channel 421 is connected to the baseband control device 43 for obtaining the resolver 423
  • the in-phase demodulated intermediate frequency signal is down-converted to obtain an in-phase baseband signal, and the in-phase baseband signal is transmitted to the baseband control device 43.
  • the quadrature demodulation channel 422 is connected to the baseband control device 43 for obtaining the positive decomposer 423.
  • the demodulated intermediate frequency signal is down-converted to obtain an orthogonal baseband signal, and the orthogonal baseband signal is transmitted to the baseband control device 43.
  • the in-phase demodulation channel 421 may include: a first analog to digital converter 4211 and a first filter 4212 and a first demodulator 4213 disposed in series with the first analog to digital converter 4211.
  • the first end of the first demodulator 4213 serves as an input end of the in-phase demodulation channel 421, the second end of the first demodulator 4213 is connected to the frequency divider 46, and the frequency divider 46 can be used for the first solution.
  • the modulator 4213 provides a first demodulated signal, and the first demodulator 4213 can be configured to demodulate the in-phase intermediate frequency signal obtained by the demultiplexer 423 using the first demodulated signal provided by the frequency divider 46 to obtain an in-phase demodulated signal.
  • the input end of the first filter 4212 is connected to the output end of the first demodulator 4213, and the first filter 4212 can be used to filter the in-phase demodulated signal obtained by the first demodulator 4213 to obtain a first filtered signal;
  • the input end of the first analog-to-digital converter 4211 is connected to the output end of the first filter 4212, and is used for performing analog-to-digital conversion on the first filter 4212 to obtain an in-phase baseband signal, and the first analog-to-digital converter 4211 The output is connected to the baseband control unit 43.
  • the quadrature demodulation channel 422 may include a second analog to digital converter 4221 and a second filter 4222 and a second demodulator 4223 arranged in series with the second analog to digital converter 421.
  • the first end of the second demodulator 4223 serves as an input of the quadrature demodulation channel 422, and the second end of the second demodulator 4223 and the frequency division
  • the processor 46 is connected, the frequency divider 46 can also be used to provide a second demodulation signal to the second demodulator 4223, and the second demodulator 4223 can be used to decompose the second demodulated signal provided by the frequency divider 46.
  • the quadrature intermediate frequency signal obtained by the unit 423 is demodulated to obtain a quadrature demodulated signal, wherein a phase difference between the second demodulated signal and the first demodulated signal is a preset value, and the signal input to the frequency divider 46 is Provided by at least one phase locked loop 48; the input of the second filter 4222 is coupled to the output of the second demodulator 4223, and the second filter 4222 can be used for quadrature demodulation of the second demodulator 4223
  • the signal is filtered to obtain a second filtered signal; the input of the second analog to digital converter 4221 is coupled to the output of the second filter 4222, and the second analog to digital converter 4221 can be used to obtain a second filtering of the second filter 4222.
  • the signal is subjected to analog-to-digital conversion to obtain an orthogonal baseband signal, and the output of the second analog-to-digital converter 4221 is connected to the baseband control unit 43.
  • the phase-locked loop 48 may include a plurality of VC0481, a phase detector (Phase Detector, PD: 482) and a loop filter 483.
  • the VCO of the appropriate frequency band may be selected according to different frequency configuration.
  • the phase detector 482 detects the phase difference between the input signals, and converts the detected phase difference signal into a voltage signal output, and the signal is filtered by the loop filter 483 to form a control voltage of the voltage controlled oscillator.
  • the frequency of the output voltage of the voltage controlled oscillator 481 is controlled.
  • At least two radio frequency channels include a certain number of superheterodyne structure links and zero intermediate frequency structure links.
  • at least one of the at least two radio frequency channels is a super-heterodyne structure link 41-1
  • the super-heterodyne structure link 41-1 may include: a third filter 411, a first amplifier 412, and a first Mixer 413.
  • the third filter 411 and the first amplifier 412 are sequentially connected, the input end of the third filter 411 is used as an input end of the radio frequency channel 41, and the third filter 411 is used for the corresponding part of the radio frequency signal received by the antenna 45.
  • the RF signal of the frequency band is filtered to obtain a third filtered signal; the input end of the first amplifier 412 is connected to the output end of the third filter 411, and the first amplifier 412 can be used to perform the third filtered signal obtained by the third filter 411.
  • the phase-locked loop 48 is connected, and can be used for receiving the phase-locked loop 48 to provide a first local oscillator signal, and the output of the first mixer 413 is connected to the input end of the down-converting device 42 through the second switch S7, the first mixing
  • the device 413 can be configured to perform frequency conversion on the first amplified signal obtained by the first amplifier 412 according to the first local oscillation signal provided by the phase locked loop 48 to obtain an intermediate frequency signal. number.
  • the zero intermediate frequency structure link 41-2 can include: a fourth filter (414) and a second amplifier (415).
  • the fourth filter 414 is sequentially connected to the second amplifier 415, the input of the fourth filter 414 is used as an input terminal of the RF channel 41, and the fourth filter 414 can be used for the RF signal received by the antenna 45.
  • the RF signal corresponding to the partial frequency band is filtered to obtain a fourth filtered signal; the input end of the second amplifier 415 is connected to the output end of the fourth filter 414, and the second amplifier 415 can be used to obtain the fourth filter 414.
  • the four filtered signals are amplified to obtain an intermediate frequency signal, and the output of the second amplifier 415 is connected to the input terminal of the frequency down device 42 via the second switch S7.
  • the receiver 40 may further include: an auxiliary channel 52 connected to the baseband control device 43 for transmitting frequency point configuration information and system information with the baseband control device 43, the baseband control device 43 It can also be used to control the selection of at least two RF channels and the selection of the corresponding local oscillator source by the frequency point configuration information.
  • the receiver 40 may further include: an antenna 53.
  • the antenna 53 is coupled to the auxiliary channel 52 for transmitting signals from the auxiliary channel 52 or for receiving signals from other devices through its own auxiliary channel and for transmission to the baseband control device 43 via the auxiliary channel 52.
  • the system information includes various system information used by the communication system where the receiver 40 is located for networking, and the source of the frequency configuration information may be implemented in various forms, such as an upper layer software configuration, etc.;
  • the antenna 45 is the same antenna, or the antenna 53 is an antenna unique to the auxiliary channel 52 for transmitting a signal transmitted from the auxiliary channel 52, and/or transmitting the received signal to the auxiliary channel 52.
  • the auxiliary channel 52 can include: a receiving auxiliary channel 521.
  • the receiving auxiliary channel 521 may include: a digital-to-analog converter 5211 and a fifth filter 5212, a second mixer 5213, a third amplifier 5214, and a sixth filter 5215 which are disposed in series with the digital-to-analog converter 5211.
  • the output of the digital-to-analog converter 5211 is connected to the baseband control unit 43, the input of the digital-to-analog converter 5211 is connected to the output of the fifth filter 5212, and the digital-to-analog converter 5211 can be used for the fifth filter 5212.
  • the fifth filtered signal is digital-to-analog converted to obtain a converted signal, and is transmitted to the baseband control device 43.
  • the input end of the fifth filter 5212 is connected to the output end of the second mixer 5213, and can be used for the second hybrid.
  • the frequency-converted signal obtained by the frequency converter 5213 is filtered to obtain the fifth filtered signal; the first end of the second mixer 5213 is connected to the output end of the third amplifier 5214, The second end of the second mixer 5213 is connected to the auxiliary channel voltage controlled oscillator 5216, and the auxiliary channel voltage controlled oscillator 5216 can be used to provide the second local oscillator signal to the second mixer 5213, the second mixer 5213 can be used to convert the amplified signal obtained by the third amplification 5214) according to the second local oscillation signal provided by the auxiliary channel voltage controlled oscillator 5216, to obtain a frequency converted signal; the input end of the third amplifier 5214 Connected to the output of the sixth filter 5215, the filtered signal obtained by filtering the sixth filter 5215 is amplified to obtain an amplified signal; the input end of the sixth filter 5215 is used as the receiving auxiliary channel 521.
  • the input terminal is connected to the antenna 53 and is configured to filter the RF signal received by the antenna 53 to obtain a filtered
  • the auxiliary channel 52 may further include: a sending auxiliary channel 522, wherein the sending auxiliary channel 522 may include: a third analog to digital converter 5221 and a seventh filter 5222 arranged in series with the third analog to digital converter 5221.
  • the third mixer 5223, the fourth amplifier 5224, and the eighth filter 5225 may include: a third analog to digital converter 5221 and a seventh filter 5222 arranged in series with the third analog to digital converter 5221.
  • the input end of the third analog-to-digital converter 5221 is connected to the baseband control device 43 and can be used for analog-to-digital conversion of the pre-transmitted signal or control signal acquired by the baseband control device 43 to obtain a digital signal.
  • the control signal is the baseband control device 43. Controlling the selection of at least two RF channels 41 and their selected control signals corresponding to the local oscillator source; the input of the seventh filter 5222 is coupled to the output of the third analog to digital converter 5221, and may be used for the third modulus
  • the digital signal obtained by the converter 5221 is filtered to obtain a sixth filtered signal; the first end of the third mixer 5223 is connected to the output end of the seventh filter 5222, and the second end of the third mixer 5223 is connected to the auxiliary channel.
  • the voltage controlled oscillator 5216 is connected, the auxiliary channel voltage controlled oscillator 5216 can be used to provide a third local oscillator signal to the third mixer 5223, and the third mixer 5223 can be used for the seventh filter 5222.
  • the sixth filtered signal is frequency-converted to obtain a frequency-converted signal;
  • the input end of the fourth amplifier 5224 is connected to the output end of the third mixer 5223, and can be used for the third mixing
  • the inverter 5223 converts the frequency-converted signal to obtain an amplified signal;
  • the input end of the eighth filter 5225 is connected to the output end of the fourth amplifier 5224, and the output end of the eighth filter 5225 serves as the output of the transmission auxiliary channel 522.
  • the terminal is connected to the antenna 53, and the eighth filter 5225 can be used to filter the amplified signal obtained by the fourth amplifier 5224 to obtain a signal to be transmitted by the antenna 53.
  • the auxiliary channel 52 described above can also be used to transmit service data.
  • the working frequency of the auxiliary channel 52 may be an unlicensed frequency band or a frequency band corresponding to a specific service, which is not limited by the present invention.
  • the embodiment of the present invention adopts an architecture of at least two radio frequency channels, each of which covers a frequency range, thereby minimizing the difficulty of hardware design, and obtaining a large profit in performance; setting at the receiver end
  • the special auxiliary channel can transmit the frequency point configuration information in real time, and automatically complete the frequency configuration of the ultra-wideband signal transmitting end.
  • the auxiliary channel also serves as a service transmission channel for transmitting service data and realizing efficient use of the channel;
  • the scheme of combining the super-heterodyne structure and the zero-IF structure in the channel can minimize the system complexity under the premise of ensuring high performance of the system.
  • Switching the RF channel and the local oscillator source can make good use of the baseband.
  • the control unit controls the switch to provide intelligent frequency switching.
  • the transmitter 20 acquires frequency point configuration information.
  • the baseband control device 21 in the transmitter 20 acquires the frequency point information that needs to be operated and issues a frequency point configuration information transmission request.
  • the transmitter 20 sends the frequency point configuration information to the receiver 40.
  • the transmitter 20 transmits the frequency point configuration information through the transmission auxiliary channel 311, and correspondingly, the reception auxiliary channel 312 of the receiver 40 receives the frequency point configuration information.
  • the receiver 40 performs frequency allocation.
  • the baseband control device 43 in the receiver 40 processes the frequency point configuration information and completes the frequency allocation of the receiver 40. During the configuration process, the baseband control device 43 controls the first switch S6 and the second switch S7 to select the correct receiving RF channel (RF channel) according to the frequency point configuration information, and simultaneously controls the third switch S8, the fourth switch S9 and the fifth switch S10. The correct local oscillator signal is sent to the selected receive RF channel.
  • the baseband control device 43 controls the first switch S6 and the second switch S7 to select the correct receiving RF channel (RF channel) according to the frequency point configuration information, and simultaneously controls the third switch S8, the fourth switch S9 and the fifth switch S10.
  • the correct local oscillator signal is sent to the selected receive RF channel.
  • the receiver 40 sends the frequency point configuration feedback information to the transmitter 20.
  • the baseband control device 43 After the receiver 40 receives the RF channel configuration, the baseband control device 43 requests the transmission of the terminal frequency configuration feedback information and transmits it to the transmitter 20 through the transmission auxiliary channel 521 of the receiver 40.
  • the transmitter 20 performs frequency point configuration.
  • the transmitter 20 After the transmitter 20 receives the configuration information of the receiver 40, the transmitter 20 completes its own frequency allocation.
  • the frequency point replacement configuration is automatically completed according to the frequency point configuration flow shown in FIG. 6.
  • the working frequency of the auxiliary channel can be unauthorized.
  • the (Unlicensed) frequency band can also be a frequency band for a specific service transmission.
  • the auxiliary channel can also serve as a service transmission channel, that is, the auxiliary channel can complete the transmission of frequency points or management information at the same time, and also serves as a transmission channel of service data, which is effective.
  • the use of RF channel resources are examples of RF channel resources.
  • FIG. 7 is an exemplary diagram of an ultra-wideband antenna according to the present invention.
  • Figure 8 is a diagram showing an example of the use of multiple antennas in the present invention.
  • the UWB antenna 71 in the transceiver 70 covers all frequency bands of the UWB signal.
  • the scheme is simple in structure, but the performance of the UWB antenna 71 is difficult to maintain good performance over a wide frequency range.
  • the scheme shown improves it.
  • each antenna 81 covers a range of frequencies of the ultra-wideband signal, which ensures that each antenna 81 maintains good performance in the frequency band in which it operates.
  • transceiver 80 selects to switch on different antennas 81 via switch S11.
  • FIG. 9 is a schematic structural diagram of Embodiment 3 of the transmitter of the present invention.
  • Figure 10 is a block diagram showing the structure of the third embodiment of the receiver of the present invention.
  • the schemes shown in Figures 9 and 10 are the transmitting end and the receiving end of an ultra-wideband signal, respectively.
  • the embodiment of the present invention is a transmitter covering a range of 6 to 100 GHz, and the number of radio frequency channels is three, wherein the radio frequency channel 91 is used to cover a frequency range of 66 to 100 GHz, and the radio frequency channel 92 is used for Covering the frequency range of 33 ⁇ 66GHz, the RF channel 93 covers the frequency range of 6 ⁇ 33GHz; the RF channel 91 and the RF channel 92 adopt a superheterodyne architecture due to the higher operating frequency, and adopt two frequency conversions in the link to achieve frequency coverage, RF Channel 93 is a zero-IF structure link that amplifies and filters the signal from IQ modulator 94.
  • phase-locked loop 95 contains three VCOs, namely: VC01, VC02, and VC03, where VC01 covers frequency 6 ⁇ 33GHz, VC02 covers 30 ⁇ 60GHz, VC03 covers 60 ⁇ 100GHz, these VCOs provide the second local oscillator signal for each first RF channel through switches S3 and S4, and provide the first modulator for 94 by the 1/K divider 96. A local oscillator signal.
  • Table 1 shows the frequency configuration relationship of the transmitter shown in Figure 9, including RF channel selection, VCO selection, and divider divider factor selection.
  • the embodiment of the present invention is a receiver covering a range of 6 to 100 GHz, and the number of radio frequency channels is three, wherein the radio frequency channel 101 is used to cover a frequency range of 66 to 100 GHz, and the radio frequency channel 102 is used for Covering the frequency range of 33 ⁇ 66GHz, the RF channel 103 covers the frequency range of 6 ⁇ 33GHz; the RF channel 101 and the RF channel 102 adopt a superheterodyne architecture due to the higher operating frequency, and adopt two frequency conversions in the link to achieve frequency coverage, RF
  • the channel 103 is a zero-IF structure link;
  • the phase-locked loop 105 includes three VCOs, namely: VC04, VC05, and VC06, wherein VC04 covers a frequency of 6 to 33 GHz, VC05 covers 30 to 60 GHz, and VC06 covers 60 to 100 GHz. These VCOs provide a second local oscillator signal for each of the RF channels via switches S8 and S9, and a
  • Table 2 shows the frequency configuration relationship of the receiver shown in Figure 10, including RF channel selection,
  • the ultra-wideband signal processing method and device of the embodiment of the present invention can be applied to the following scenarios (that is, the ultra-wideband signal processing system of the embodiment of the present invention may be the following enumerated systems): microwave point-to-point or point-to-multipoint high-capacity transmission system, mobile communication Access to the network system and the communication system between Device to Device (D2D).
  • 11 is an example of a wireless communication system for a microwave point-to-point application according to the present invention, wherein a wireless communication system is applied to a transceiver at an antenna 1 and communicates through an antenna beam 2;
  • FIG. 12 is a scene diagram of a mobile communication, and is used in a communication system. Communication is performed on the base station and the user equipment (UE);
  • FIG. 13 is a typical application scenario of communication between objects, in which broadband wireless communication between the car 1 and the car 2 is provided. .
  • the switches used in any embodiment of the present invention are digitally controlled, and only the baseband control device issues relevant control commands, and the control switch is turned on to a certain channel, so that The corresponding channel is opened, and then the data is transmitted through the channel (the different channels correspond to different working frequencies), so that the receiver or the transmitter has the function of automatically switching over a wide operating frequency range; other switches are connected to the antenna.
  • the switch similar in function, is used to select the antenna suitable for the working frequency band.
  • the VCO part of the switch allows the VCO operating in different frequency bands to access the link.
  • the switch is used in any embodiment of the present invention.
  • the first transceiver and the receiver in the first embodiment can be set independently of each other, or can be integrated, and the present invention does not perform the same. limit.

Abstract

一种收发信机,发信机包括:基带控制装置(21);升频装置(22),与基带控制装置(21)连接,用于将基带控制装置(21)生成的基带信号升频得到中频信号;并联设置的至少两个射频通道(23),通过第二开关(S2)与升频装置(22)连接,用于对中频信号进行变频、放大和滤波,获得其对应部分频段的射频信号;天线(24),通过第一开关(S1)与至少两个射频通道(23)中任一射频通道的输出端串联连接,用于将该射频通道所获得的射频信号发送出去。通过并联设置至少两个射频通道,每射频通道覆盖一段频率范围,工作于不同的工作频点,在实现超宽带宽的同时,保持较高的无线通信性能。

Description

技术领域
本发明实施例涉及无线通信技术, 尤其涉及一种收发信机。 背景技术
随着社会的不断发展, 人们对无线通信业务容量的需求也在持续增加。 无线通信从 2G发展到 3G再发展到 4G, 业务容量的提升始终是最重要的内 容, 因此, 要求支撑大业务容量的无线收发信机具有宽带化的特点。 而传统 的无线通信通常工作在低于 6GHz的无线频谱, 很难再满足持续增长的业务 容量的需求; 另外, 对于无线频谱, 世界各国都对其有严格并且清晰的划分, 往往还存在较大的差异。 因此, 适配各国的频谱划分的超宽带无线通信的发 展备受关注。
图 1为一种具有分布式结构的超宽带接收机架构。 如图 1所示, 在该结 构中, 将接收到的射频信号 (ν ο)依次反馈到各条成并联关系的放大变频链 路(图中标号为: 230-1、 230-2,……, 230-η),并且本振信号(Local Oscillator signal, 简称: LO signal)也依次反馈到各混频器 (Mixer) (图中标号为: 235-1、 235-2, ……, 235-n) 的本振端口, 接收的射频信号 (¾„(0)以及本振信号 (LO signal)分别构成行波关系从而实现宽带的接收机方案。 然而, 该架构在较宽 的频带上工作时通信性能较低。 发明内容
本发明实施例提供一种收发信机, 根据不同的频率需求自动的配置收发 信机的工作频点, 以在实现超宽带宽的同时, 保持较高的无线通信性能。
第一方面, 本发明实施例提供一种发信机, 包括:
基带控制装置 (21), 用于生成基带信号;
升频装置 (22), 与所述基带控制装置 (21)连接, 用于将所述基带控制装置 (21)生成的所述基带信号升频得到中频信号;
并联设置的至少两个射频通道 (23), 所述至少两个射频通道 (23)的一侧通 过第二开关 (S2)与所述升频装置 (22)串联连接, 所述至少两个射频通道 (23)共 同覆盖射频信号的整个频段, 且每一射频通道覆盖所述射频信号中互异的部 分频段, 用于对所述升频装置 (22)得到的中频信号进行变频、放大和滤波, 获 得其对应部分频段的射频信号;
天线 (24),所述天线 (24)通过第一开关 (S1),与所述至少两个射频通道 (23) 中的一个射频通道的输出端串联连接,用于将与所述天线 (24)连接的射频通道 所获得的射频信号发送出去。
在第一方面的第一种可能的实现方式中,所述升频装置 (22)包括: 同相调 制通道 (221)、与所述同相调制通道 (221)并联设置的正交调制通道 (222)及合成 器 (223); 其中,
所述同相调制通道 (221), 与所述基带控制装置 (21)连接, 用于对所述基 带控制装置 (21)生成的所述基带信号进行升频得到同相中频信号;
所述正交调制通道 (222), 与所述基带控制装置 (21)连接, 用于对所述基 带控制装置 (21)生成的基带信号进行升频得到正交中频信号;
所述合成器 (223)的第一端连接所述同相调制通道 (221)的输出端, 所述合 成器 (223)的第二端连接所述正交调制通道 (222)的输出端, 所述合成器 (223) 的第三端作为所述升频装置 (22)的输出端, 所述合成器 (223)用于对所述同相 调制通道 (221)得到的同相中频信号和所述正交调制通道 (222)得到的正交中 频信号进行合成, 获得所述中频信号。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实 现方式中, 所述同相调制通道 (221)包括: 第一数模转化器 (2211)及与所述第 一数模转化器 (2211)串联设置的第一滤波器 (2212)和第一调制器 (2213),其中, 所述第一数模转化器 (2211)的输入端与所述基带控制装置 (21)连接, 用于将所 述基带控制装置 (21)生成的所述基带信号转化为第一模拟信号,所述第一滤波 器 (2212)的输入端与所述第一数模转化器 (2211)的输出端连接, 用于对所述第 一数模转化器 (2211)转化得到的所述第一模拟信号进行滤波得到第一滤波信 号, 所述第一调制器 (2213)的第一端与所述第一滤波器 (2212)的输出端连接, 所述第一调制器 (2213)的第二端与分频器 (26)连接, 所述分频器 (26)用于向所 述第一调制器(2213 )提供第一调制信号, 所述第一调制器 (2213)的第三端与 所述合成器 (223)的第一端连接, 用于使用所述分频器 (26)提供的所述第一调 制信号,对所述第一滤波器 (2212)滤波得到的所述第一滤波信号进行调制得到 所述同相中频信号;
所述正交调制通道 (222)包括: 第二数模转化器 (2221)及与所述第二数模 转化器 (2221)串联设置的第二滤波器 (2222)和第二调制器 (2223), 其中, 所述 第二数模转化器 (2221)的输入端与所述基带控制装置 (21)连接, 用于将所述基 带控制装置 (21)生成的所述基带信号转化为第二模拟信号, 所述第二滤波器 (2222)的输入端与所述第二数模转化器 (2221)的输出端连接, 用于对所述第二 数模转化器 (2221)转化得到的所述第二模拟信号进行滤波得到第二滤波信号, 所述第二调制器 (2223)的第一端与所述第二滤波器 (2222)的输出端连接, 所述 第二调制器 (2223)的第二端与所述分频器 (26)连接, 所述分频器 (26)用于向所 述第二调制器 (2223 ) 提供第二调制信号, 所述第二调制信号与所述第一调 制信号的相位差为预设值,所述第二调制器 (2223)的第三端与所述合成器 (223) 的第二端连接,用于使用所述分频器 (26)提供的所述第二调制信号,对所述第 二滤波器 (2222)滤波得到的所述第二滤波信号进行调制得到所述正交中频信 号, 其中, 输入所述分频器 (26) 的信号是由至少一个锁相环 (28)提供的。
结合第一方面、第一方面的第一种至第二种可能的实现方式中任意一种, 在第一方面的第三种可能的实现方式中, 所述至少两个射频通道中至少一个 为超外差结构链路 (23-1 ) , 所述超外差结构链路 (23-1 ) , 包括:
第一混频器 (231),所述第一混频器 (231)的第一端通过所述第二开关 (S2), 与所述升频装置 (22)的输出端连接, 所述第一混频器 (231)的第二端通过第三 开关 (S3)和第四开关 (S4), 与锁相环 (28)连接, 用于接收来自所述锁相环 (28) 提供第一本振信号, 所述第一混频器 (231)用于根据所述锁相环 (28)提供的所 述第一本振信号,对所述升频装置 (22)得到的所述中频信号进行变频得到变频 后的信号;
第一放大器 (232), 所述第一放大器 (232 ) 的输入端与所述第一混频器
( 231 ) 的输出端相连, 用于对所述第一混频器 (231 ) 输出的所述变频后的 信号进行放大得到放大后的信号; 及
第三滤波器 (233), 所述第三滤波器 (233)的输入端与所述第一放大器
( 232 ) 的输出端相连, 用于对所述第一放大器 (232 ) 得到的所述放大后的 信号进行滤波得到射频信号, 所述第三滤波器(233 ) 的输出端作为所述射频 通道 (23)的输出端。
结合第一方面的第三种可能的实现方式, 在第一方面的第四种可能的实 现方式中, 所述至少两个射频通道中至少一个为零中频结构链路 (23-2) , 所述零中频结构链路 (23-2) 包括:
第二放大器 (234),所述第二放大器 (234)的输入端通过所述第二开关 (S2), 与所述升频装置 (22)的输出端连接, 用于对所述升频装置 (22)得到的所述中频 信号进行放大得到放大后的信号;
第四滤波器 (235),所述第四滤波器 (235)的输入端与所述第二放大器 (234) 的输出端连接, 用于对所述第二放大器 (234)得到的所述放大后的信号进行滤 波得到其对应部分频段的射频信号, 所述第四滤波器 (235)的输出端作为所述 射频通道 (23)的输出端。
结合第一方面、第一方面的第一种至第四种可能的实现方式中任意一种, 在第一方面的第五种可能的实现方式中, 所述发信机还包括:
辅助通道 (32), 与所述基带控制装置 (21)连接, 用于和所述基带控制装置 (21)之间传输频点配置信息及系统信息, 所述基带控制装置 (21)还用于通过所 述频点配置信息控制所述至少两个射频通道 (23)的选择及其对应本振源的选 择。
结合第一方面的第五种可能的实现方式, 在第一方面的第六种可能的实 现方式中, 所述辅助通道 (32)包括: 发送辅助通道 (311), 其中,
所述发送辅助通道 (311)包括: 第三数模转化器 (3111)及与所述第三数模 转化器 (3111)串联设置的第五滤波器 (3112)、 第二混频器 (3113)、 第三放大器 (3114)和第六滤波器 (3115), 其中,
所述第三数模转化器 (3111)的输入端与所述基带控制装置 (21)连接, 用于 将所述基带控制装置 (21)传输来的所述频点配置信息进行数模转化得到第三 模拟信号;
所述第五滤波器 (3112)的输入端与所述第三数模转化器 (3111)的输出端 连接,用于对所述第三数模转化器 (3111)得到的所述第三模拟信号进行滤波得 到第三滤波信号;
所述第二混频器 (3113)的第一端与所述第五滤波器 (3112)的输出端连接, 所述第二混频器 (3113)的第二端与辅助通道压控振荡器 (3116)连接, 所述辅助 通道压控振荡器 (3116)用于向所述第二混频器 (3113)提供第二本振信号, 所述 第二混频器 (3113)用于根据所述辅助通道压控振荡器 (3116)提供的所述第二 本振信号,对所述第五滤波器 (3112)得到的所述第三滤波信号进行变频得到变 频后的信号;
所述第三放大器 (3114)的输入端与所述第二混频器 (3113)的输出端相连, 用于对所述第二混频器 (3113)得到的所述变频后的信号进行放大,得到放大后 的信号;
所述第六滤波器 (3115)的输入端与所述第三放大器 (3114)的输出端相连, 用于对所述第三放大器 (3114)得到的所述放大后的信号进行滤波,得到预发送 信号,或控制所述至少两个射频通道 (23)的选择及其对应本振源的选择的控制 信号, 所述第六滤波器 (3115)的输出端作为所述发送辅助通道 (311)的输出端, 与天线 (33)相连。
结合第一方面的第五种或第六种可能的实现方式, 在第一方面的第七种 可能的实现方式中, 所述辅助通道 (32)还包括: 接收辅助通道 (312), 其中, 所述接收辅助通道 (312)包括: 模数转化器 (3121)及与所述模数转化器
(3121)串联设置的第七滤波器 (3122)、 第三混频器 (3123)、 第四放大器 (3124) 和第八滤波器 (3125), 其中,
所述模数转化器 (3121)的输出端与所述基带控制装置 (21)连接, 用于将所 述第七滤波器 (3122)滤波得到的第四滤波信号进行模数转化得到转化后的信 号, 并传输给所述基带控制装置 (21);
所述第七滤波器 (3122)的输出端与所述模数转化器 (3121)的输入端连接, 用于将所述第三混频器 (3123)变频得到的变频后的信号进行滤波得到所述第 四滤波信号并传输给所述模数转化器 (3121);
所述第三混频器 (3123)的第一端与所述第七滤波器 (3122)的输入端连接, 所述第三混频器 (3121)的第二端与所述第四放大器 (3124)的输出端连接, 所述 第三混频器 (3121)的第三端与辅助通道压控振荡器 (3116)连接, 所述辅助通道 压控振荡器 (3116)用于向所述第三混频器 (3121)提供第三本振信号, 所述第三 混频器 (3121)用于将所述第四放大器 (3124)放大处理得到的所述放大后的信 号, 进行变频处理, 并将变频得到的变频后的信号传输给所述第七滤波器 (3122); 所述第四放大器 (3124)的输入端与所述第八滤波器 (3125)的输出端连接, 用于将所述第八滤波器 (3125)得到的所述滤波后的信号进行放大,得到放大后 的信号;
所述第八滤波器 (3125)的输入端与所述天线 (33)相连, 所述第八滤波器 (3125)的输入端作为所述接收辅助通道 (312)的输入端, 用于将所述天线 (33) 接收的信号进行滤波得到滤波后的信号。
第二方面, 本发明实施例提供一种收信机, 包括: 并联设置的至少两个 射频通道 (41)、降频装置 (42)、基带控制装置 (43)、第一开关 (S6)、第二开关 (S7) 及天线 (45); 其中,
所述天线 (45)通过所述第一开关 (S6), 与所述至少两个射频通道 (41)中一 射频通道的输入端串联连接, 用于接收发信机发送的射频信号, 并将所述射 频信号传输给与所述天线 (45)连接的射频通道;
所述至少两个射频通道 (41), 用于将所述天线 (45)接收的所述射频信号中 其对应部分频段的射频信号进行变频、 放大和滤波, 得到中频信号, 所述至 少两个射频通道 (41)共同覆盖所述射频信号的整个频段,且每一射频通道覆盖
(41)所述射频信号中互异的部分频段;
所述降频装置 (42)通过所述第二开关 (S7), 与所述至少两个射频通道 (41) 中的、 与所述天线 (45)连接的射频通道的输出端连接, 用于将该射频通道 (41) 得到的所述中频信号降频为所述基带控制装置 (43)的预处理信号。
在第二方面的第一种可能的实现方式中,所述降频装置 (42)包括: 同相解 调通道 (421)、与所述同相解调通道 (421)并联设置的正交解调通道 (422)及分解 器 (423); 其中,
所述分解器 (423)用于将所述射频通道 (41)得到的所述中频信号分解为同 相中频信号和正交中频信号,所述分解器 (423)的第一端作为所述降频装置 (42) 的输入端, 所述分解器 (423)的第二端连接所述同相解调通道 (421)的输入端, 所述分解器 (423)的第三端连接所述正交解调通道的输入端 (422);
所述同相解调通道 (421), 与所述基带控制装置 (43)连接, 用于将所述分 解器 (423)得到的所述同相中频信号进行降频得到同相基带信号, 并将所述同 相基带信号传输给所述基带控制装置 (43);
所述正交解调通道 (422), 与所述基带控制装置 (43)连接, 用于将所述分 解器 (423)得到的所述正交中频信号进行降频得到正交基带信号, 并将所述正 交基带信号传输给所述基带控制装置 (43)。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的实 现方式中, 所述同相解调通道 (421)包括: 第一模数转化器 (4211)及与所述第 一模数转化器 (4211)串联设置的第一滤波器 (4212)和第一解调器 (4213),其中, 所述第一解调器 (4213)的第一端作为所述同相解调通道 (421)的输入端, 所述 第一解调器 (4213)的第二端与分频器 (46)连接, 所述分频器 (46)用于向所述第 一解调器 (4213)提供第一解调信号, 所述第一解调器 (4213)用于使用所述分频 器 (46)提供的所述第一解调信号, 对所述分解器 (423)得到的所述同相中频信 号进行解调得到同相解调信号;所述第一滤波器 (4212)的输入端与所述第一解 调器 (4213)的输出端连接,所述第一滤波器 (4212)用于对所述第一解调器 (4213) 得到的所述同相解调信号进行滤波得到第一滤波信号; 所述第一模数转化器 (4211)的输入端与所述第一滤波器 (4212)的输出端连接, 用于对所述第一滤波 器 (4212)得到所述第一滤波信号进行模数转化得到所述同相基带信号,所述第 一模数转化器 (4211)的输出端与所述基带控制装置 (43)连接;
所述正交解调通道 (422)包括: 第二模数转化器 (4221)及与所述第二模数 转化器 (4221)串联设置的第二滤波器 (4222)和第二解调器 (4223), 其中, 所述 第二解调器 (4223)的第一端作为所述正交解调通道 (422)的输入端, 所述第二 解调器 (4223)的第二端与所述分频器 (46)连接, 所述分频器 (46)还用于向所述 第二解调器 (4223)提供第二解调信号, 所述第二解调器 (4223)用于使用所述分 频器 (46)提供的所述第二解调信号, 对所述分解器 (423)得到的所述正交中频 信号进行解调得到正交解调信号, 其中, 所述第二解调信号与所述第一解调 信号的相位差为预设值, 输入所述分频器 (46)的信号是由至少一个锁相环 (48) 提供的; 所述第二滤波器 (4222)的输入端与所述第二解调器 (4223)的输出端连 接, 所述第二滤波器 (4222)用于对所述第二解调器 (4223)得到的所述正交解调 信号进行滤波得到第二滤波信号;所述第二模数转化器 (4221)的输入端与所述 第二滤波器 (4222)的输出端连接, 所述第二模数转化器 (4221)用于对所述第二 滤波器 (4222)得到所述第二滤波信号进行模数转化得到所述正交基带信号,所 述第二模数转化器 (4221)的输出端与所述基带控制装置 (43)连接。
结合第二方面、第二方面的第一种至第二种可能的实现方式中任意一种, 在第二方面的第三种可能的实现方式中, 所述至少两个射频通道中至少一个 为超外差结构链路 (41-1),所述超外差结构链路 (41-1)包括:第三滤波器 (411)、 第一放大器 (412)和第一混频器 (413); 其中,
所述第三滤波器 (411)和所述第一放大器 (412)顺次连接, 所述第三滤波器 (411)的输入端作为所述射频通道 (41)的输入端, 所述第三滤波器 (411)用于对 所述天线 (45)接收的所述射频信号中其对应部分频段的射频信号进行滤波得 到第三滤波信号;
所述第一放大器 (412)的输入端与所述第三滤波器 (411)的输出端连接, 所 述第一放大器 (412)用于对所述第三滤波器 (411)得到的所述第三滤波信号进 行放大, 得到第一放大信号;
所述第一混频器 (413)的第一端与所述第一放大器 (412)的输出端连接, 所 述第一混频器 (413)的第二端通过第三开关 (S8)和第四开关 (S9), 与锁相环 (48) 连接, 用于接收所述锁相环 (48)提供第一本振信号, 所述第一混频器 (413)的 输出端通过所述第二开关 (S7), 与所述降频装置 (42)的输入端连接, 所述第一 混频器 (413)用于根据所述锁相环 (48)提供的所述第一本振信号, 对所述第一 放大器 (412)得到的所述第一放大信号进行变频得到所述中频信号。
结合第二方面的第三种可能的实现方式, 在第二方面的第四种可能的实 现方式中, 所述至少两个射频通道中至少一个为零中频结构链路 (41-2), 所述 零中频结构链路 (41-2)包括: 第四滤波器 (414)和第二放大器 (415); 其中, 所述第四滤波器 (414)与所述第二放大器 (415)的顺次连接, 所述第四滤波 器 (414)的输入端作为所述射频通道 (41)的输入端, 所述第四滤波器 (414)用于 对所述天线 (45)接收的所述射频信号中其对应部分频段的射频信号进行滤波 得到第四滤波信号;
所述第二放大器 (415)的输入端与所述第四滤波器 (414)与的输出端连接, 所述第二放大器 (415)用于对所述第四滤波器 (414)得到的所述第四滤波信号 进行放大, 得到所述中频信号, 所述第二放大器 (415)的输出端通过所述第二 开关 (S7), 与所述降频装置 (42)的输入端连接。
结合第二方面、第二方面的第一种至第四种可能的实现方式中任意一种, 在第二方面的第五种可能的实现方式中, 所述收信机还包括:
辅助通道 (52), 与所述基带控制装置 (43)连接, 用于和所述基带控制装置 (43)之间传输频点配置信息及系统信息, 所述基带控制装置 (43)还用于通过所 述频点配置信息控制所述至少两个射频通道的选择及其对应本振源的选择。
结合第二方面的第五种可能的实现方式, 在第二方面的第六种可能的实 现方式中, 所述辅助通道 (52)包括: 接收辅助通道 (521), 其中, 所述接收辅 助通道 (521)包括:数模转化器 (5211)及与所述数模转化器 (5211)串联设置的第 五滤波器 (5212)、 第二混频器 (5213)、 第三放大器 (5214)和第六滤波器 (5215); 所述数模转化器 (5211)的输出端与所述基带控制装置 (43)连接, 所述数模 转化器 (5211)的输入端与所述第五滤波器 (5212)的输出端连接, 所述数模转化 器 (5211)用于对所述第五滤波器 (5212)得到的第五滤波信号进行数模转化得 到转化后的信号, 并传输给所述基带控制装置 (43);
所述第五滤波器 (5212)的输入端与所述第二混频器 (5213)的输出端连接, 用于对所述第二混频器 (5213)得到的变频后的信号进行滤波得到所述第五滤 波信号;
所述第二混频器 (5213)的第一端与所述第三放大器 (5214)的输出端连接, 所述第二混频器 (5213)的第二端与辅助通道压控振荡器 (5216)连接, 所述辅助 通道压控振荡器 (5216)用于向所述第二混频器 (5213)提供第二本振信号, 所述 第二混频器 (5213)用于根据所述辅助通道压控振荡器 (5216)提供的所述第二 本振信号, 对所述第三放大器 (5214)放大得到的放大后的信号, 进行变频, 得 到所述变频后的信号;
所述第三放大器 (5214)的输入端与所述第六滤波器 (5215)的输出端相连, 用于对所述第六滤波器 (5215)滤波得到的滤波后的信号,进行放大,得到所述 放大后的信号;
所述第六滤波器 (5215)的输入端作为所述接收辅助通道 (521)的输入端, 与所述天线 (53)相连,用于对所述天线 (53)所接收的所述射频信号,进行滤波, 得到所述滤波后的信号。
结合第二方面的第五种或第六种可能的实现方式, 在第二方面的第七种 可能的实现方式中, 所述辅助通道 (52)还包括: 发送辅助通道 (522), 其中, 所述发送辅助通道 (522)包括: 第三模数转化器 (5221)及与所述第三模数转化 器 (5221)串联设置的第七滤波器 (5222)、第三混频器 (5223)、第四放大器 (5224) 和第八滤波器 (5225); 所述第三模数转化器 (5221)的输入端与所述基带控制装置 (43)连接, 用于 对基带控制装置 (43)获取的预发送信号或控制信号进行模数转化,得到数字信 号, 所述控制信号为所述基带控制装置 (43)控制所述至少两个射频通道 (41)的 选择及其对应本振源的选择的控制信号;
所述第七滤波器 (5222)的输入端与所述第三模数转化器 (5221)的输出端 连接,用于对所述第三模数转化器 (5221)得到的所述数字信号进行滤波,得到 第六滤波信号;
所述第三混频器 (5223)的第一端与所述第七滤波器 (5222)的输出端连接, 所述第三混频器 (5223)的第二端与辅助通道压控振荡器 (5216)连接, 所述辅助 通道压控振荡器 (5216)用于向所述第三混频器 (5223)提供第三本振信号, 所述 第三混频器 (5223)用于对所述第七滤波器 (5222)得到的所述第六滤波信号进 行变频得到变频后的信号;
所述第四放大器 (5224)的输入端与所述第三混频器 (5223)的输出端相连, 用于对所述第三混频器 (5223)变频得到所述变频后的信号进行放大,得到放大 后的信号;
所述第八滤波器 (5225)的输入端与所述第四放大器 (5224)的输出端相连, 所述第八滤波器 (5225)的输出端作为所述发送辅助通道 (522)的输出端, 与所 述天线 (53)相连, 所述第八滤波器 (5225)用于对所述第四放大器 (5224)得到的 所述放大后的信号进行滤波得到所述天线 (53)将要发送出去的信号。
本发明实施例通过并联设置至少两个射频通道, 每射频通道覆盖一段频 率范围, 工作于不同的工作频点, 在实现超宽带宽的同时, 保持较高的无线 通信性能。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为一种具有分布式结构的超宽带接收机架构;
图 2为本发明发信机实施例一的结构示意图; 图 3为本发明发信机实施例二的结构示意图;
图 4为本发明收信机实施例一的结构示意图;
图 5为本发明收信机实施例二的结构示意图;
图 6为本发明收发信机之间频点配置流程示意图;
图 7为本发明采用超宽带天线的示例图;
图 8为本发明采用多天线的示例图;
图 9为本发明发信机实施例三的结构示意图;
图 10为本发明收信机实施例三的结构示意图;
图 11为本发明无线通信系统用于微波点对点应用的示例;
图 12为移动通信的场景图;
图 13是物与物之间通信的一个典型的应用场景。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明发信机实施例一的结构示意图。 本发明实施例提供一种发 信机, 如图 2所示, 发信机 20包括基带控制装置 21、 升频装置 22、 并联设 置的多个射频通道 23、 天线 24及第一开关 S1和第二开关 S2。
其中, 基带控制装置 21用于生成基带信号; 升频装置 22与基带控制装 置 21连接, 用于将基带控制装置 21生成的基带信号升频得到中频信号; 至 少两个射频通道 23的一侧通过第二开关 S2与升频装置 22串联连接,至少两 个射频通道 23共同覆盖射频信号的整个频段,且每一射频通道覆盖射频信号 中互异的部分频段,用于对升频装置 (22)得到的中频信号进行变频、放大和滤 波, 获得其对应部分频段的射频信号; 天线 24通过第一开关 S1 , 与至少两 个射频通道 23中一个射频通道的输出端串联连接, 用于将与天线 24连接的 射频通道所获得的射频信号发送出去。
在本发明实施例中, 能在不增加硬件实现难度的情况下, 实现广的频率 覆盖范围的无线发信机。至少两个射频通道 23用于支持不同频段射频信号变 频放大和滤波功能, 通过这样将不同频段的射频通道从物理结构上单独分开 有利于硬件的实现。天线 24可以为超宽带天线, 用于发送由至少两个射频通 道 23传送的信号。 第一开关 S1用于天线 24与不同的射频通道 23的连接。
本发明实施例中, 并联设置至少两个射频通道, 每个射频通道覆盖一段 频率范围, 工作于不同的工作频点, 在实现超宽带宽的同时, 保持较高的无 线通信性能; 另外, 这样还可以最大化的降低硬件实现难度, 并在性能上能 获得较大的收益。
可选地, 天线 24的数目可以为一个, 也可以为多个。 当天线 24的数目 为多个时, 该多个天线 24与至少两个射频通道 23中其对应的射频通道协同 工作, 以保证每一天线 24在其工作频段内性能良好, 且多个射频通道 23与 多个天线 24的对应关系可以为一对一, 也可以为多对一或一对多, 本发明不 对其进行限制。
以下列举具体的实施例对本发明实施例所提供发信机进行详细介绍。 图 3为本发明发信机实施例二的结构示意图。 该发明实施例在图 2所示 实施例的基础上进行改进, 如图 3所示, 升频装置 22可以包括: 同相调制通 道 221、 与同相调制通道 221并联设置的正交调制通道 222及合成器 223。其 中, 同相调制通道 221与基带控制装置 21连接, 用于对基带控制装置 21生 成的基带信号进行升频得到同相中频信号; 正交调制通道 222与基带控制装 置 21连接, 用于对基带控制装置 21生成的基带信号进行升频得到正交中频 信号; 合成器 223的第一端连接同相调制通道 221的输出端, 合成器 223的 第二端连接正交调制通道 222的输出端, 输入正交中频信号, 合成器 223的 第三端作为升频装置 22的输出端,合成器 223用于对同相调制通道 221得到 的同相中频信号和正交调制通道 (222)得到的正交中频信号进行合成, 获得中 频信号。
其中, 同相调制通道 221可以包括: 第一数模转化器 2211及与第一数模 转化 2211串联设置的第一滤波器 2212和第一调制器 2213。 其中, 第一数模 转化器 2211的输入端与基带控制装置 21连接,用于将基带控制装置 21生成 的基带信号转化为第一模拟信号,第一滤波器 2212的输入端与第一数模转化 器 2211的输出端连接, 用于对第一数模转化器 2211转化得到的第一模拟信 号进行滤波得到第一滤波信号,第一调制器 2213的第一端与第一滤波器 2212 的输出端连接, 第一调制器 2213的第二端与分频器 26连接, 分频器 26用于 向第一调制器 2213提供第一调制信号, 第一调制器 2213的第三端与合成器 223的第一端连接, 第一调制器 2213用于使用分频器 26提供的第一调制信 号, 对第一滤波器 2212 滤波得到的第一滤波信号进行调制得到同相中频信 号。
正交调制通道 222可以包括:第二数模转化器 2221及与第二数模转化器 2221串联设置的第二滤波器 2222和第二调制器 2223。 其中, 第二数模转化 器 2221的输入端与基带控制装置 21连接,用于将基带控制装置 21生成的基 带信号转化为第二模拟信号; 第二滤波器 2222 的输入端与第二数模转化器 2221 的输出端连接, 用于对第二数模转化器 2221转化得到的第二模拟信号 进行滤波得到第二滤波信号; 第二调制器 2223 的第一端与第二滤波器 2222 的输出端连接, 第二调制器 2223的第二端与分频器 26连接, 分频器 26用于 向第二调制器 2223提供第二调制信号,该第二调制信号与上述第一调制信号 的相位差为预设值 (该预设值例如可以为 90° ) , 第二调制器 2223 的第三 端与合成器 223的第二端连接, 第二调制器 2223用于使用分频器 26提供的 第二调制信号,对第二滤波器 2222滤波得到的第二滤波信号进行调制得到正 交中频信号, 其中, 输入分频器 26的信号是由至少一个锁相环 28提供的。 该锁相环 28为包括多个压控振荡器 281 (Voltage Controlled Oscillator, 简称: VCO) 的锁相环, 可以根据不同的频点配置情况选择合适频段的 VC0 给链 路变频提供本振信号。另外,锁相环 28还包括鉴相器(Phase Detector, 简称: PD) 282和环路滤波器 283。其中, 鉴相器 282检测其输入信号之间的相位差, 并将检测出的相位差信号转换成电压信号输出, 该信号经环路滤波器 283 滤 波后形成压控振荡器的控制电压, 对压控振荡器 281输出信号的频率实施控 制。
需要说明的是,至少两个射频通道 23包含一定数量的超外差结构链路和 零中频结构链路。 gP, 至少两个射频通道中至少一个为超外差结构链路 23-1。 该超外差结构链路 23-1可以包括: 第一混频器 231, 第一混频器 231的第一 端通过第二开关 S2, 与升频装置 22的输出端连接, 第一混频器 231的第二 端通过第三开关 S3和第四开关 S4, 与锁相环 28连接, 用于接收来自锁相环 28提供第一本振信号, 第一混频器 231用于根据锁相环 28提供的第一本振 信号, 对升频装置 22得到的中频信号进行变频得到变频后的信号; 第一放大 器 232, 第一放大器 232的输入端与第一混频器 231的输出端相连, 用于对 第一混频器 231输出的变频后的信号进行放大得到放大后的信号; 及, 第三 滤波器 233, 第三滤波器 233的输入端与第一放大器 232的输出端相连, 用 于对第一放大器 232得到的放大后的信号进行滤波得到射频信号, 第三滤波 器 233的输出端作为射频通道 23的输出端。
另外, 至少两个射频通道中至少一个为零中频结构链路 23-2。 该零中频 结构链路 23-2可以包括: 第二放大器 234, 第二放大器 234的输入端通过第 二开关 S2, 与升频装置 23的输出端连接, 用于对升频装置 22得到的中频信 号进行放大得到放大后的信号; 第四滤波器 235, 第四滤波器 235 的输入端 与第二放大器 234的输出端连接, 用于对第二放大器 234得到的放大后的信 号进行滤波得到其对应部分频段的射频信号, 第四滤波器 235的输出端作为 射频通道 23的输出端。
此外, 发信机 20还可以包括: 辅助通道 32, 该辅助通道 32与基带控制 装置 21连接, 用于和基带控制装置 21之间传输频点配置信息及系统信息, 基带控制装置 21还可以用于通过频点配置信息控制至少两个射频通道 23的 选择及其对应本振源的选择。其中, 上述系统信息包括发信机 20所在的通信 系统用于组网时的各种系统信息等,频点配置信息的来源可有多种实现形式, 例如上层软件配置, 等等。
可选地, 发信机 20还可以包括: 天线 33, 该天线 33与辅助通道 32连 接, 用于发送辅助通道 32传来的信号, 或接收其它设备通过其自身的辅助通 道发来的信号, 并通过辅助通道 32传输给基带控制装置 21。 天线 33可以与 天线 24为同一天线, 或, 天线 33为辅助通道 32所独有的天线, 用于发送辅 助通道 32传来的信号, 和 /或, 将其接收的信号传输给辅助通道 32。
实现上述功能的辅助通道可以有多种形式, 这里仅列举示例对其进行说 明。 例如, 辅助通道 32可以包括: 发送辅助通道 311, 其中, 该发送辅助通 道 311可以包括: 第三数模转化器 3111及与第三数模转化器 3111串联设置 的第五滤波器 3112、第二混频器 3113、第三放大器 3114和第六滤波器 3115。
其中, 第三数模转化器 3111的输入端与基带控制装置 21连接, 用于将 基带控制装置 21传输来的频点配置信息进行数模转化得到第三模拟信号;第 五滤波器 3112的输入端与第三数模转化器 3111的输出端连接, 用于对第三 数模转化器 3111得到的第三模拟信号进行滤波得到第三滤波信号;第二混频 器 3113的第一端与第五滤波器 3112的输出端连接,第二混频器 3113的第二 端与辅助通道压控振荡器 3116连接, 辅助通道压控振荡器 3116可以用于向 第二混频器 3113提供第二本振信号, 第二混频器 (3113)可以用于根据辅助通 道压控振荡器 3116提供的第二本振信号, 对第五滤波器 3112得到的第三滤 波信号进行变频得到变频后的信号;第三放大器 3114的输入端与第二混频器 3113的输出端相连, 用于对第二混频器 3113得到的变频后的信号进行放大, 得到放大后的信号; 第六滤波器 3115的输入端与第三放大器 3114的输出端 相连, 用于对第三放大器 3114得到的放大后的信号进行滤波, 得到预发送信 号, 或控制至少两个射频通道 23的选择及其对应本振源的选择的控制信号, 第六滤波器 3115的输出端作为发送辅助通道 311的输出端,与天线 33相连。
进一歩地, 辅助通道 32还可以包括: 接收辅助通道 312。 其中, 接收辅 助通道 312可以包括: 模数转化器 3121及与模数转化器 3121串联设置的第 七滤波器 3122、 第三混频器 3123、 第四放大器 3124和第八滤波器 3125。
其中, 模数转化器 3121的输出端与基带控制装置 21连接, 用于将第七 滤波器 3122滤波得到的第四滤波信号进行模数转化得到转化后的信号,并传 输给基带控制装置 21 ; 第七滤波器 3122的输出端与模数转化器 3121的输入 端连接, 用于将第三混频器 3123变频得到的变频后的信号进行滤波, 得到上 述第四滤波信号, 并传输给模数转化器 3121 ; 第三混频器 3123 的第一端与 第七滤波器 3122的输入端连接,第三混频器 3121的第二端与第四放大器 3124 的输出端连接,第三混频器 3121的第三端与辅助通道压控振荡器 3116连接, 辅助通道压控振荡器 3116可以用于向第三混频器 3121提供第三本振信号, 第三混频器 3121可以用于将第四放大器 3124放大处理得到的放大后的信号, 进行变频处理, 并将变频得到的变频后的信号传输给第七滤波器 3122; 第四 放大器 3124的输入端与第八滤波器 3125的输出端连接, 用于将第八滤波器 3125 得到的滤波后的信号进行放大, 得到上述放大后的信号; 第八滤波器 3125的输入端与天线 33相连, 第八滤波器 3125的输入端作为接收辅助通道 312的输入端, 用于将天线 33接收的信号进行滤波得到上述滤波后的信号。
补充说明的是, 上述辅助通道 32还可以用于传输业务数据。 可选地, 辅 助通道 32的工作频率可以为非授权频段, 也可以为具体业务对应的频段, 本 发明不对其进行限制。
本发明实施例采用至少两个射频通道的架构, 每个射频通道覆盖一段频 率范围, 这样最大化的降低的硬件设计的难度, 并在性能上能获得较大的收 益; 在发信机端设置专门的辅助信道, 可以实时的传输频点配置信息, 自动 完成信号发送端的频率配置, 同时, 该辅助信道还兼做业务传输通道, 用来 传输业务数据, 实现通道的高效利用; 在射频通道中采用超外差结构与零中 频结构结合的方案,能在保证系统较高性能的前提下最大的降低系统复杂度; 采用开关对射频通道以及本振源进行切换, 可以很好的利用基带控制装置对 开关进行控制, 提供智能的频率切换。
图 4为本发明收信机实施例一的结构示意图。 本发明实施例提供一种收 信机, 如图 4所示, 收信机 40包括并联设置的至少两个射频通道 41、 降频 装置 42、 基带控制装置 43、 第一开关 S6、 第二开关 S7及天线 45。
其中, 天线 45通过第一开关 S6, 与至少两个射频通道中一射频通道 41 的输入端串联连接, 用于接收发信机发送的射频信号, 并将该射频信号传输 给与天线 45连接的射频通道;至少两个射频通道 41用于将天线 45接收的射 频信号中其对应部分频段的射频信号进行变频、放大和滤波, 得到中频信号, 至少两个射频通道 41 共同覆盖上述射频信号的整个频段, 且每一射频通道 41覆盖该射频信号中互异的部分频段; 降频装置 42通过第二开关 S7, 与至 少两个射频通道 41中的、 与天线 45连接的射频通道的输出端连接, 用于将 该射频通道 41得到的中频信号降频为基带控制装置 43的预处理信号。
该实施例中的收信机 40与上述实施例中的发信机对应工作。发信机发出 超宽带信号之后, 收信机 40接收该超宽带信号, 并采用上述各部件对该超宽 带信号进行相应处理, 例如, 降频装置 42执行对中频信号 (IQ调制信号) 的降频处理, 等等, 此处不再一一赘述。
本发明实施例中, 并联设置至少两个射频通道, 每个射频通道覆盖一段 频率范围, 工作于不同的工作频点, 在实现超宽带宽的同时, 保持较高的无 线通信性能; 另外, 这样还可以最大化的降低硬件实现难度, 并在性能上能 获得较大的收益。
可选地, 天线 45的数目可以为一个, 也可以为多个。 当天线 45的数目 为多个时, 该多个天线 45与至少两个射频通道 41中其对应的射频通道协同 工作, 以保证每一天线 45 在其工作频段内性能良好, 且至少两个射频通道 41 与多个天线 45 的对应关系可以为一对一, 也可以为多对一或一对多, 本 发明不对其进行限制。
以下列举具体的实施例对本发明实施例所提供的收信机进行详细介绍。 图 5为本发明收信机实施例二的结构示意图。 该发明实施例在图 4所示 实施例的基础上进行改进, 如图 5所示, 降频装置 42可以包括: 同相解调通 道 421、 与同相解调通道 421并联设置的正交解调通道 422及分解器 423。
其中,分解器 423用于将射频通道 41得到的中频信号分解为同相解调中 频信号和正交解调中频信号,分解器 423的第一端作为降频装置 42的输入端, 分解器 423的第二端连接同相解调通道 421的输入端, 分解器 423的第三端 连接正交解调通道 422的输入端;同相解调通道 421与基带控制装置 43连接, 用于将分解器 423得到的同相解调中频信号进行降频, 得到同相基带信号, 并将该同相基带信号传输给基带控制装置 43; 正交解调通道 422与基带控制 装置 43连接, 用于将分解器 423得到的正交解调中频信号进行降频, 得到正 交基带信号, 并将该正交基带信号传输给基带控制装置 43。
进一歩地, 同相解调通道 421可以包括: 第一模数转化器 4211及与第一 模数转化器 4211串联设置的第一滤波器 4212和第一解调器 4213。 其中, 第 一解调器 4213的第一端作为同相解调通道 421的输入端, 第一解调器 4213 的第二端与分频器 46连接,分频器 46可以用于向第一解调器 4213提供第一 解调信号,该第一解调器 4213可以用于使用分频器 46提供的第一解调信号, 对分解器 423得到的同相中频信号进行解调得到同相解调信号; 第一滤波器 4212的输入端与第一解调器 4213的输出端连接, 第一滤波器 4212可以用于 对第一解调器 4213得到的同相解调信号进行滤波得到第一滤波信号;第一模 数转化器 4211的输入端与第一滤波器 4212的输出端连接, 用于对第一滤波 器 4212得到第一滤波信号进行模数转化得到同相基带信号,第一模数转化器 4211的输出端与基带控制装置 43连接。
正交解调通道 422可以包括:第二模数转化器 4221及与第二模数转化器 4221串联设置的第二滤波器 4222和第二解调器 4223。其中,第二解调器 4223 的第一端作为正交解调通道 422的输入端,第二解调器 4223的第二端与分频 器 46连接, 分频器 46还可以用于向第二解调器 4223提供第二解调信号, 第 二解调器 4223可以用于使用分频器 46提供的第二解调信号, 对分解器 423 得到的正交中频信号进行解调得到正交解调信号, 其中, 该第二解调信号与 上述第一解调信号的相位差为预设值,输入分频器 46的信号是由至少一个锁 相环 48提供的;第二滤波器 4222的输入端与第二解调器 4223的输出端连接, 第二滤波器 4222可以用于对第二解调器 4223得到的正交解调信号进行滤波 得到第二滤波信号; 第二模数转化器 4221的输入端与第二滤波器 4222的输 出端连接, 第二模数转化器 4221可以用于对第二滤波器 4222得到第二滤波 信号进行模数转化, 得到正交基带信号, 第二模数转化器 4221的输出端与基 带控制装置 43连接。
另夕卜, 锁相环 48可以包括多个 VC0481、鉴相器(Phase Detector, 简称: PD ) 482 和环路滤波器 483, 可以根据不同的频点配置情况选择合适频段的 VCO给链路变频提供本振信号。 其中, 鉴相器 482检测其输入信号之间的相 位差, 并将检测出的相位差信号转换成电压信号输出, 该信号经环路滤波器 483滤波后形成压控振荡器的控制电压, 对压控振荡器 481输出信号的频率 实施控制。
需要说明的是, 至少两个射频通道包含一定数量的超外差结构链路和零 中频结构链路。 换句话说, 就是至少两个射频通道中至少一个为超外差结构 链路 41-1, 该超外差结构链路 41-1可以包括: 第三滤波器 411、 第一放大器 412和第一混频器 413。
其中, 第三滤波器 411和第一放大器 412顺次连接, 第三滤波器 411的 输入端作为射频通道 41的输入端, 第三滤波器 411用于对天线 45接收的射 频信号中其对应部分频段的射频信号进行滤波得到第三滤波信号; 第一放大 器 412的输入端与第三滤波器 411的输出端连接, 第一放大器 412可以用于 对第三滤波器 411得到的第三滤波信号进行放大, 得到第一放大信号; 第一 混频器 413的第一端与第一放大器 412的输出端连接, 第一混频器 413的第 二端通过第三开关 S8和第四开关 S9, 与锁相环 48连接, 可以用于接收锁相 环 48提供第一本振信号, 第一混频器 413的输出端通过第二开关 S7, 与降 频装置 42的输入端连接, 第一混频器 413可以用于根据锁相环 48提供的第 一本振信号, 对第一放大器 412得到的第一放大信号进行变频, 得到中频信 号。
此外, 至少两个射频通道中至少一个为零中频结构链路 41-2。 该零中频 结构链路 41-2可以包括: 第四滤波器 (414)和第二放大器 (415)。其中, 第四滤 波器 414与第二放大器 415的顺次连接, 第四滤波器 414的输入端作为射频 通道 41的输入端, 第四滤波器 414可以用于对天线 45接收的射频信号中其 对应部分频段的射频信号进行滤波得到第四滤波信号; 第二放大器 415的输 入端与第四滤波器 414的输出端连接, 所述第二放大器 415可以用于对第四 滤波器 414得到的第四滤波信号进行放大, 得到中频信号, 第二放大器 415 的输出端通过第二开关 S7, 与降频装置 42的输入端连接。
在上述基础上, 收信机 40还可以包括: 辅助通道 52, 该辅助通道 52与 基带控制装置 43连接, 用于和基带控制装置 43之间传输频点配置信息及系 统信息,基带控制装置 43还可以用于通过频点配置信息控制至少两个射频通 道的选择及其对应本振源的选择。
可选地, 收信机 40还可以包括: 天线 53。 该天线 53与辅助通道 52连 接, 用于发送辅助通道 52传来的信号, 或接收其它设备通过其自身的辅助通 道发来的信号, 并通过辅助通道 52传输给基带控制装置 43。 其中, 上述系 统信息包括收信机 40所在的通信系统用于组网时的各种系统信息等,频点配 置信息的来源可有多种实现形式, 例如上层软件配置, 等等; 天线 53可以与 天线 45为同一天线, 或, 天线 53为辅助通道 52所独有的天线, 用于发送辅 助通道 52传来的信号, 和 /或, 将其接收的信号传输给辅助通道 52。
实现上述功能的辅助通道可以有多种形式, 这里仅列举示例对其进行说 明。 例如, 辅助通道 52可以包括: 接收辅助通道 521。 其中, 接收辅助通道 521可以包括: 数模转化器 5211及与数模转化器 5211 串联设置的第五滤波 器 5212、 第二混频器 5213、 第三放大器 5214和第六滤波器 5215。
数模转化器 5211的输出端与基带控制装置 43连接,数模转化器 5211的 输入端与第五滤波器 5212的输出端连接, 数模转化器 5211可以用于对第五 滤波器 5212得到的第五滤波信号进行数模转化, 得到转化后的信号, 并传输 给基带控制装置 43 ; 第五滤波器 5212的输入端与第二混频器 5213的输出端 连接, 可以用于对第二混频器 5213得到的变频后的信号进行滤波, 得到上述 第五滤波信号;第二混频器 5213的第一端与第三放大器 5214的输出端连接, 第二混频器 5213的第二端与辅助通道压控振荡器 5216连接, 该辅助通道压 控振荡器 5216可以用于向第二混频器 5213提供第二本振信号, 第二混频器 5213可以用于根据辅助通道压控振荡器 5216提供的第二本振信号, 对第三 放大 5214)放大得到的放大后的信号, 进行变频, 得到变频后的信号; 第三放 大器 5214的输入端与第六滤波器 5215的输出端相连,用于对第六滤波器 5215 滤波得到的滤波后的信号, 进行放大, 得到放大后的信号; 第六滤波器 5215 的输入端作为接收辅助通道 521的输入端, 与天线 53相连, 用于对天线 53 所接收的射频信号, 进行滤波, 得到滤波后的信号。
在上述基础上, 辅助通道 52还可以包括: 发送辅助通道 522, 其中, 发 送辅助通道 522可以包括: 第三模数转化器 5221及与第三模数转化器 5221 串联设置的第七滤波器 5222、 第三混频器 5223、 第四放大器 5224和第八滤 波器 5225。
第三模数转化器 5221的输入端与基带控制装置 43连接, 可以用于对基 带控制装置 43获取的预发送信号或控制信号进行模数转化, 得到数字信号, 该控制信号为基带控制装置 43控制至少两个射频通道 41的选择及其对应本 振源的选择的控制信号; 第七滤波器 5222的输入端与第三模数转化器 5221 的输出端连接, 可以用于对第三模数转化器 5221得到的数字信号进行滤波, 得到第六滤波信号; 第三混频器 5223的第一端与第七滤波器 5222的输出端 连接, 第三混频器 5223的第二端与辅助通道压控振荡器 5216连接, 该辅助 通道压控振荡器 5216可以用于向第三混频器 5223提供第三本振信号, 第三 混频器 5223可以用于对第七滤波器 5222得到的第六滤波信号进行变频, 得 到变频后的信号; 第四放大器 5224的输入端与第三混频器 5223的输出端相 连, 可以用于对第三混频器 5223变频得到变频后的信号进行放大, 得到放大 后的信号; 第八滤波器 5225的输入端与第四放大器 5224的输出端相连, 第 八滤波器 5225的输出端作为发送辅助通道 522的输出端, 与天线 53相连, 第八滤波器 5225可以用于对第四放大器 5224得到的所述放大后的信号进行 滤波, 得到天线 53将要发送出去的信号。
补充说明的是, 上述辅助通道 52还可以用于传输业务数据。 可选地, 辅 助通道 52的工作频率可以为非授权频段, 也可以为具体业务对应的频段, 本 发明不对其进行限制。 本发明实施例采用至少两个射频通道的架构, 每个射频通道覆盖一段频 率范围, 这样最大化的降低的硬件设计的难度, 并在性能上能获得较大的收 益; 在收信机端设置专门的辅助信道, 可以实时的传输频点配置信息, 自动 完成超宽带信号发送端的频率配置, 同时, 该辅助信道还兼做业务传输通道, 用来传输业务数据, 实现通道的高效利用; 在射频通道中采用超外差结构与 零中频结构结合的方案, 能在保证系统较高性能的前提下最大的降低系统复 杂度; 采用开关对射频通道以及本振源进行切换, 可以很好的利用基带控制 装置对开关进行控制, 提供智能的频率切换。
以下结合图 3所示的发信机 20及图 5所示的收信机 40说明二者的交互。 具体地, 如图 6所示:
5601、 发信机 20获取频点配置信息。
具体地, 发信机 20中的基带控制装置 21获取需要工作的频点信息并发 出频点配置信息发送请求。
5602、 发信机 20发送频点配置信息给收信机 40。
具体地, 发信机 20通过发送辅助通道 311发送频点配置信息, 对应地, 收信机 40的接收辅助通道 312接收频点配置信息。
5603、 收信机 40进行频点配置。
收信机 40中的基带控制装置 43处理频点配置信息并完成收信机 40的频 点配置。 配置过程中基带控制装置 43根据频点配置信息控制第一开关 S6和 第二开关 S7选择正确的接收射频通道(射频通道) , 同时控制第三开关 S8、 第四开关 S9和第五开关 S10将正确的本振信号送到选定的接收射频通道上。
5604、 收信机 40发送频点配置反馈信息给发信机 20。
收信机 40接收射频通道配置完成之后, 基带控制装置 43请求发送接收 端频点配置反馈信息并通过收信机 40的发送辅助通道 521发送给发信机 20。
S605、 发信机 20进行频点配置。
发信机 20接收到收信机 40配置完成信息后,发信机 20完成自身的频点 配置。
S606、 发信机 20和收信机 40建立通信。
当发信机中的基带控制装置接收到频点更换的信息时, 按图 6所示的频 点配置流程自动的完成频点的更换配置。 辅助通道的工作频率可以为非授权 (Unlicensed)频段, 也可以为具体某一业务传输的频段, 同时辅助通道可以 兼做业务传输通道, 即该辅助通道同时完成频点或者管理信息的传输, 也作 为业务数据的传输通道, 这样有效的利用了射频通道资源。
本发明实施例的发信机和收信机的天线方案如图 7和图 8所示。 其中, 图 7为本发明采用超宽带天线的示例图。图 8为本发明采用多天线的示例图。 如图 7所示, 收发信机 70中超宽带天线 71覆盖超宽带信号的所有频段, 该 方案结构简单, 但超宽带天线 71 的性能很难在宽的频率范围内保持好的性 能, 采用图 8所示的方案对其进行改进。 如图 8所示, 在收发信机 80中, 每 个天线 81覆盖超宽带信号的一段频率范围, 这样可以保证每个天线 81都在 其工作的频段内保持好的性能。可选地, 收发信机 80通过开关 S11选择接通 不同的天线 81。
图 9为本发明发信机实施例三的结构示意图。图 10为本发明收信机实施 例三的结构示意图。其中, 图 9和图 10所示方案分别为一超宽带信号的发送 端和接收端。
如图 9所示, 该发明实施例为一个覆盖 6~100GHz的发信机, 射频通 道的个数为 3个, 其中, 射频通道 91用于覆盖 66~100GHz的频率范围, 射频通道 92用于覆盖 33~66GHz频率范围, 射频通道 93覆盖 6~33GHz 频率范围;射频通道 91和射频通道 92由于工作频率较高采用超外差架构, 在链路中采用两次变频从而达到频率覆盖范围, 射频通道 93 为零中频结 构链路, 将来自于 IQ调制器 94的信号进行放大和滤波; 此外, 锁相环 95 包含 3个 VCO , 分别为: VC01、 VC02和 VC03 , 其中, VC01覆盖频 率 6~33GHz, VC02覆盖 30~60GHz, VC03覆盖 60~100GHz, 这些 VCO 通过开关 S3、 S4为每条第一射频通道提供第二本振信号, 通过 1/K分频 器 96为 IQ调制器 94提供第一本振信号。
表 1 频率配置关系
Figure imgf000024_0001
表 1给出了图 9所示的发信机的频率配置关系, 包括射频通道选择、 VCO选择和分频器分频系数选择等。
如图 10所示, 该发明实施例为一个覆盖 6~100GHz的收信机, 射频通 道的个数为 3个, 其中, 射频通道 101用于覆盖 66~100GHz的频率范围, 射频通道 102用于覆盖 33~66GHz频率范围,射频通道 103覆盖 6~33GHz 频率范围; 射频通道 101和射频通道 102由于工作频率较高采用超外差架 构, 在链路中采用两次变频从而达到频率覆盖范围, 射频通道 103为零中 频结构链路; 此外, 锁相环 105包含 3个 VCO , 分别为: VC04、 VC05 和 VC06 ,其中, VC04覆盖频率 6~33GHz, VC05覆盖 30~60GHz, VC06 覆盖 60~100GHz, 这些 VCO通过开关 S8和 S9为每条射频通道提供第二 本振信号, 通过 1/K分频器 106为 IQ调制器 104提供第一本振信号。
表 2 频率配置关系
Figure imgf000025_0001
表 2给出了图 10所示的收信机的频率配置关系, 包括射频通道选择、
VCO选择和分频器分频系数选择等。
本发明实施例的超宽带信号处理方法和设备可以应用于如下场景 (即本 发明实施例的超宽带信号处理系统可以为以下列举系统) : 微波点对点或者 点对多点大容量传输系统、 移动通信接入网络系统及物与物 (Device to Device, 简称: D2D) 之间的通信系统等。 图 11为本发明无线通信系统用于 微波点对点应用的示例, 其中无线通信系统应用于天线 1处的收发信机, 并 通过天线波束 2进行通信; 图 12为移动通信的场景图, 通信系统用于基站 (Base Station) 和用户设备 (UE) 端, 进行通信; 图 13是物与物之间通信 的一个典型的应用场景, 在该应用场景中提供汽车 1与汽车 2之间的宽带无 线通信。
需要说明的是, 本发明任一实施例中所采用的开关均为数字控制的, 只 需基带控制装置发出相关控制指令, 控制开关接通到某一通道上面去, 这样 便使相应通道打通, 进而通过该通道发送数据 (不同通道对应不同的工作频 率) , 从而达到收信机或发信机具有较宽的工作频率范围自动切换的功能; 其它开关如与天线连接的开关, 作用类似, 用于选择适合该工作频段的天线; 同理, VCO部分的开关使工作在不同频段的 VCO接入到链路中去。 其中, 上述开关是指本发明任一实施例中所采用的开关, 例如实施例一中的第一开 上述发信机和收信机可以相互独立设置, 也可以集成设置, 本发明不对 其进行限制。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种发信机, 其特征在于, 包括:
基带控制装置 (21), 用于生成基带信号;
升频装置 (22), 与所述基带控制装置 (21)连接, 用于将所述基带控制装置 (21)生成的所述基带信号升频得到中频信号;
并联设置的至少两个射频通道 (23), 所述至少两个射频通道 (23)的一侧通 过第二开关 (S2)与所述升频装置 (22)串联连接, 所述至少两个射频通道 (23)共 同覆盖射频信号的整个频段, 且每一射频通道覆盖所述射频信号中互异的部 分频段, 用于对所述升频装置 (22)得到的中频信号进行变频、放大和滤波, 获 得其对应部分频段的射频信号;
天线 (24),所述天线 (24)通过第一开关 (S1),与所述至少两个射频通道 (23) 中的一个射频通道的输出端串联连接,用于将与所述天线 (24)连接的射频通道 所获得的射频信号发送出去。
2、根据权利要求 1所述的发信机, 其特征在于, 所述升频装置 (22)包括: 同相调制通道 (221)、与所述同相调制通道 (221)并联设置的正交调制通道 (222) 及合成器 (223); 其中,
所述同相调制通道 (221), 与所述基带控制装置 (21)连接, 用于对所述基 带控制装置 (21)生成的所述基带信号进行升频得到同相中频信号;
所述正交调制通道 (222), 与所述基带控制装置 (21)连接, 用于对所述基 带控制装置 (21)生成的所述基带信号进行升频得到正交中频信号;
所述合成器 (223)的第一端连接所述同相调制通道 (221)的输出端, 所述合 成器 (223)的第二端连接所述正交调制通道 (222)的输出端, 所述合成器 (223) 的第三端作为所述升频装置 (22)的输出端, 所述合成器 (223)用于对所述同相 调制通道 (221)得到的同相中频信号和所述正交调制通道 (222)得到的正交中 频信号进行合成, 获得所述中频信号。
3、 根据权利要求 2所述的发信机, 其特征在于,
所述同相调制通道 (221)包括: 第一数模转化器 (2211)及与所述第一数模 转化器 (2211)串联设置的第一滤波器 (2212)和第一调制器 (2213), 其中, 所述 第一数模转化器 (2211)的输入端与所述基带控制装置 (21)连接, 用于将所述基 带控制装置 (21)生成的所述基带信号转化为第一模拟信号, 所述第一滤波器 (2212)的输入端与所述第一数模转化器 (2211)的输出端连接, 用于对所述第一 数模转化器 (2211)转化得到的所述第一模拟信号进行滤波得到第一滤波信号, 所述第一调制器 (2213)的第一端与所述第一滤波器 (2212)的输出端连接, 所述 第一调制器 (2213)的第二端与分频器 (26)连接, 所述分频器 (26)用于向所述第 一调制器(2213 )提供第一调制信号, 所述第一调制器 (2213)的第三端与所述 合成器 (223)的第一端连接, 所述第一调制器 (2213)用于使用所述分频器 (26) 提供的所述第一调制信号,对所述第一滤波器 (2212)滤波得到的所述第一滤波 信号进行调制得到所述同相中频信号;
所述正交调制通道 (222)包括: 第二数模转化器 (2221)及与所述第二数模 转化器 (2221)串联设置的第二滤波器 (2222)和第二调制器 (2223), 其中, 所述 第二数模转化器 (2221)的输入端与所述基带控制装置 (21)连接, 用于将所述基 带控制装置 (21)生成的所述基带信号转化为第二模拟信号, 所述第二滤波器 (2222)的输入端与所述第二数模转化器 (2221)的输出端连接, 用于对所述第二 数模转化器 (2221)转化得到的所述第二模拟信号进行滤波得到第二滤波信号, 所述第二调制器 (2223)的第一端与所述第二滤波器 (2222)的输出端连接, 所述 第二调制器 (2223)的第二端与所述分频器 (26)连接, 所述分频器 (26)用于向所 述第二调制器 (2223)提供第二调制信号,所述第二调制信号与所述第一调制信 号的相位差为预设值, 所述第二调制器 (2223)的第三端与所述合成器 (223)的 第二端连接, 所述第二调制器 (2223)用于使用所述分频器 (26)提供的所述第二 调制信号,对所述第二滤波器 (2222)滤波得到的所述第二滤波信号进行调制得 到所述正交中频信号, 其中, 输入所述分频器 (26 ) 的信号是由至少一个锁 相环 (28)提供的。
4、 根据权利要求 1-3任一项所述的发信机, 其特征在于, 所述至少两个 射频通道中至少一个为超外差结构链路 (23-1)所述超外差结构链路 (23-1), 包 括:
第一混频器 (231),所述第一混频器 (231)的第一端通过所述第二开关 (S2), 与所述升频装置 (22)的输出端连接, 所述第一混频器 (231)的第二端通过第三 开关 (S3)和第四开关 (S4), 与锁相环 (28)连接, 用于接收来自所述锁相环 (28) 提供第一本振信号, 所述第一混频器 (231)用于根据所述锁相环 (28)提供的所 述第一本振信号,对所述升频装置 (22)得到的所述中频信号进行变频得到变频 后的信号;
第一放大器 (232),所述第一放大器 (232)的输入端与所述第一混频器 (231) 的输出端相连, 用于对所述第一混频器 (231)输出的所述变频后的信号进行放 大得到放大后的信号; 及
第三滤波器 (233),所述第三滤波器 (233)的输入端与所述第一放大器 (232) 的输出端相连, 用于对所述第一放大器 (232)得到的所述放大后的信号进行滤 波得到射频信号, 所述第三滤波器 (233)的输出端作为所述射频通道 (23)的输 出端。
5、 根据权利要求 4所述的发信机, 其特征在于, 所述至少两个射频通道 中至少一个为零中频结构链路 (23-2), 所述零中频结构链路 (23-2)包括:
第二放大器 (234),所述第二放大器 (234)的输入端通过所述第二开关 (S2), 与所述升频装置 (22)的输出端连接, 用于对所述升频装置 (22)得到的所述中频 信号进行放大得到放大后的信号;
第四滤波器 (235),所述第四滤波器 (235)的输入端与所述第二放大器 (234) 的输出端连接, 用于对所述第二放大器 (234)得到的所述放大后的信号进行滤 波得到其对应部分频段的射频信号, 所述第四滤波器 (235)的输出端作为所述 射频通道 (23)的输出端。
6、 根据权利要求 1-5任一项所述的发信机, 其特征在于, 所述发信机还 包括:
辅助通道 (32), 与所述基带控制装置 (21)连接, 用于和所述基带控制装置
(21)之间传输频点配置信息及系统信息, 所述基带控制装置 (21)还用于通过所 述频点配置信息控制所述至少两个射频通道 (23)的选择及其对应本振源的选 择。
7、根据权利要求 6所述的发信机, 其特征在于, 所述辅助通道 (32)包括: 发送辅助通道 (311), 其中,
所述发送辅助通道 (311)包括: 第三数模转化器 (3111)及与所述第三数模 转化器 (3111)串联设置的第五滤波器 (3112)、 第二混频器 (3113)、 第三放大器 (3114)和第六滤波器 (3115), 其中,
所述第三数模转化器 (3111)的输入端与所述基带控制装置 (21)连接, 用于 将所述基带控制装置 (21)传输来的所述频点配置信息进行数模转化得到第三 模拟信号;
所述第五滤波器 (3112)的输入端与所述第三数模转化器 (3111)的输出端 连接,用于对所述第三数模转化器 (3111)得到的所述第三模拟信号进行滤波得 到第三滤波信号;
所述第二混频器 (3113)的第一端与所述第五滤波器 (3112)的输出端连接, 所述第二混频器 (3113)的第二端与辅助通道压控振荡器 (3116)连接, 所述辅助 通道压控振荡器 (3116)用于向所述第二混频器 (3113)提供第二本振信号, 所述 第二混频器 (3113)用于根据所述辅助通道压控振荡器 (3116)提供的所述第二 本振信号,对所述第五滤波器 (3112)得到的所述第三滤波信号进行变频得到变 频后的信号;
所述第三放大器 (3114)的输入端与所述第二混频器 (3113)的输出端相连, 用于对所述第二混频器 (3113)得到的所述变频后的信号进行放大,得到放大后 的信号;
所述第六滤波器 (3115)的输入端与所述第三放大器 (3114)的输出端相连, 用于对所述第三放大器 (3114)得到的所述放大后的信号进行滤波,得到预发送 信号,或控制所述至少两个射频通道 (23)的选择及其对应本振源的选择的控制 信号, 所述第六滤波器 (3115)的输出端作为所述发送辅助通道 (311)的输出端, 与天线 (33)相连。
8、 根据权利要求 6或 7所述的发信机, 其特征在于, 所述辅助通道 (32) 还包括: 接收辅助通道 (312), 其中, 所述接收辅助通道 (312)包括: 模数转化 器 (3121)及与所述模数转化器 (3121)串联设置的第七滤波器 (3122)、 第三混频 器 (3123)、 第四放大器 (3124)和第八滤波器 (3125);
所述模数转化器 (3121)的输出端与所述基带控制装置 (21)连接, 用于将所 述第七滤波器 (3122)滤波得到的第四滤波信号进行模数转化得到转化后的信 号, 并传输给所述基带控制装置 (21);
所述第七滤波器 (3122)的输出端与所述模数转化器 (3121)的输入端连接, 用于将所述第三混频器 (3123)变频得到的变频后的信号进行滤波,得到所述第 四滤波信号, 并传输给所述模数转化器 (3121);
所述第三混频器 (3123)的第一端与所述第七滤波器 (3122)的输入端连接, 所述第三混频器 (3121)的第二端与所述第四放大器 (3124)的输出端连接, 所述 第三混频器 (3121)的第三端与辅助通道压控振荡器 (3116)连接, 所述辅助通道 压控振荡器 (3116)用于向所述第三混频器 (3121)提供第三本振信号, 所述第三 混频器 (3121)用于将所述第四放大器 (3124)放大处理得到的所述放大后的信 号, 进行变频处理, 并将变频得到的变频后的信号传输给所述第七滤波器 (3122);
所述第四放大器 (3124)的输入端与所述第八滤波器 (3125)的输出端连接, 用于将所述第八滤波器 (3125)得到的所述滤波后的信号进行放大,得到放大后 的信号;
所述第八滤波器 (3125)的输入端与所述天线 (33)相连, 所述第八滤波器 (3125)的输入端作为所述接收辅助通道 (312)的输入端, 用于将所述天线 (33) 接收的信号进行滤波得到滤波后的信号。
9、 一种收信机, 其特征在于, 包括: 并联设置的至少两个射频通道 (41)、 降频装置 (42)、 基带控制装置 (43)、 第一开关 (S6)、 第二开关 (S7)及天线 (45); 其中,
所述天线 (45)通过所述第一开关 (S6), 与所述至少两个射频通道 (41)中一 射频通道的输入端串联连接, 用于接收发信机发送的射频信号, 并将所述射 频信号传输给与所述天线 (45)连接的射频通道;
所述至少两个射频通道 (41), 用于将所述天线 (45)接收的所述射频信号中 其对应部分频段的射频信号进行变频、 放大和滤波, 得到中频信号, 所述至 少两个射频通道 (41)共同覆盖所述射频信号的整个频段,且每一射频通道覆盖
(41)所述射频信号中互异的部分频段;
所述降频装置 (42)通过所述第二开关 (S7), 与所述至少两个射频通道 (41) 中的、 与所述天线 (45)连接的射频通道的输出端连接, 用于将该射频通道 (41) 得到的所述中频信号降频为所述基带控制装置 (43)的预处理信号。
10、根据权利要求 9所述的收信机,其特征在于,所述降频装置 (42)包括: 同相解调通道 (421)、与所述同相解调通道 (421)并联设置的正交解调通道 (422) 及分解器 (423); 其中,
所述分解器 (423)用于将所述射频通道 (41)得到的所述中频信号分解为同 相中频信号和正交中频信号,所述分解器 (423)的第一端作为所述降频装置 (42) 的输入端, 所述分解器 (423)的第二端连接所述同相解调通道 (421)的输入端, 所述分解器 (423)的第三端连接所述正交解调通道的输入端 (422); 所述同相解调通道 (421), 与所述基带控制装置 (43)连接, 用于将所述分 解器 (423)得到的所述同相中频信号进行降频, 得到同相基带信号, 并将所述 同相基带信号传输给所述基带控制装置 (43);
所述正交解调通道 (422), 与所述基带控制装置 (43)连接, 用于将所述分 解器 (423)得到的所述正交中频信号进行降频, 得到正交基带信号, 并将所述 正交基带信号传输给所述基带控制装置 (43)。
11、 根据权利要求 10所述的收信机, 其特征在于,
所述同相解调通道 (421)包括: 第一模数转化器 (4211)及与所述第一模数 转化器 (4211)串联设置的第一滤波器 (4212)和第一解调器 (4213), 其中, 所述 第一解调器 (4213)的第一端作为所述同相解调通道 (421)的输入端, 所述第一 解调器 (4213)的第二端与分频器 (46)连接, 所述分频器 (46)用于向所述第一解 调器 (4213)提供第一解调信号,所述第一解调器 (4213)用于使用所述分频器 (46) 提供的所述第一解调信号, 对所述分解器 (423)得到的所述同相中频信号进行 解调得到同相解调信号; 所述第一滤波器 (4212)的输入端与所述第一解调器 (4213)的输出端连接, 所述第一滤波器 (4212)用于对所述第一解调器 (4213)得 到的所述同相解调信号进行滤波得到第一滤波信号; 所述第一模数转化器 (4211)的输入端与所述第一滤波器 (4212)的输出端连接, 用于对所述第一滤波 器 (4212)得到所述第一滤波信号进行模数转化得到所述同相基带信号,所述第 一模数转化器 (4211)的输出端与所述基带控制装置 (43)连接;
所述正交解调通道 (422)包括: 第二模数转化器 (4221)及与所述第二模数 转化器 (4221)串联设置的第二滤波器 (4222)和第二解调器 (4223), 其中, 所述 第二解调器 (4223)的第一端作为所述正交解调通道 (422)的输入端, 所述第二 解调器 (4223)的第二端与所述分频器 (46)连接, 所述分频器 (46)还用于向所述 第二解调器 (4223)提供第二解调信号, 所述第二解调器 (4223)用于使用所述分 频器 (46)提供的所述第二解调信号, 对所述分解器 (423)得到的所述正交中频 信号进行解调得到正交解调信号, 其中, 所述第二解调信号与所述第一解调 信号的相位差为预设值, 输入所述分频器 (46)的信号是由至少一个锁相环 (48) 提供的; 所述第二滤波器 (4222)的输入端与所述第二解调器 (4223)的输出端连 接, 所述第二滤波器 (4222)用于对所述第二解调器 (4223)得到的所述正交解调 信号进行滤波得到第二滤波信号;所述第二模数转化器 (4221)的输入端与所述 第二滤波器 (4222)的输出端连接, 所述第二模数转化器 (4221)用于对所述第二 滤波器 (4222)得到所述第二滤波信号进行模数转化得到所述正交基带信号,所 述第二模数转化器 (4221)的输出端与所述基带控制装置 (43)连接。
12、 根据权利要求 9-11任一项所述的收信机, 其特征在于, 所述至少两 个射频通道中至少一个为超外差结构链路 (41-1), 所述超外差结构链路 (41-1) 包括: 第三滤波器 (411)、 第一放大器 (412)和第一混频器 (413); 其中,
所述第三滤波器 (411)和所述第一放大器 (412)顺次连接, 所述第三滤波器 (411)的输入端作为所述射频通道 (41)的输入端, 所述第三滤波器 (411)用于对 所述天线 (45)接收的所述射频信号中其对应部分频段的射频信号进行滤波得 到第三滤波信号;
所述第一放大器 (412)的输入端与所述第三滤波器 (411)的输出端连接, 所 述第一放大器 (412)用于对所述第三滤波器 (411)得到的所述第三滤波信号进 行放大, 得到第一放大信号;
所述第一混频器 (413)的第一端与所述第一放大器 (412)的输出端连接, 所 述第一混频器 (413)的第二端通过第三开关 (S8)和第四开关 (S9), 与锁相环 (48) 连接, 用于接收所述锁相环 (48)提供第一本振信号, 所述第一混频器 (413)的 输出端通过所述第二开关 (S7), 与所述降频装置 (42)的输入端连接, 所述第一 混频器 (413)用于根据所述锁相环 (48)提供的所述第一本振信号, 对所述第一 放大器 (412)得到的所述第一放大信号进行变频, 得到所述中频信号。
13、 根据权利要求 12所述的收信机, 其特征在于, 所述至少两个射频通 道中至少一个为零中频结构链路 (41-2), 所述零中频结构链路 (41-2)包括: 第 四滤波器 (414)和第二放大器 (415); 其中,
所述第四滤波器 (414)与所述第二放大器 (415)的顺次连接, 所述第四滤波 器 (414)的输入端作为所述射频通道 (41)的输入端, 所述第四滤波器 (414)用于 对所述天线 (45)接收的所述射频信号中其对应部分频段的射频信号进行滤波 得到第四滤波信号;
所述第二放大器 (415)的输入端与所述第四滤波器 (414)与的输出端连接, 所述第二放大器 (415)用于对所述第四滤波器 (414)得到的所述第四滤波信号 进行放大, 得到所述中频信号, 所述第二放大器 (415)的输出端通过所述第二 开关 (S7), 与所述降频装置 (42)的输入端连接。
14、 根据权利要求 9-13任一项所述的收信机, 其特征在于, 所述收信机 还包括:
辅助通道 (52), 与所述基带控制装置 (43)连接, 用于和所述基带控制装置 (43)之间传输频点配置信息及系统信息, 所述基带控制装置 (43)还用于通过所 述频点配置信息控制所述至少两个射频通道的选择及其对应本振源的选择。
15、 根据权利要求 14所述的收信机, 其特征在于, 所述辅助通道 (52)包 括:接收辅助通道 (521),其中,所述接收辅助通道 (521)包括:数模转化器 (5211) 及与所述数模转化器 (5211)串联设置的第五滤波器 (5212)、第二混频器 (5213)、 第三放大器 (5214)和第六滤波器 (5215);
所述数模转化器 (5211)的输出端与所述基带控制装置 (43)连接, 所述数模 转化器 (5211)的输入端与所述第五滤波器 (5212)的输出端连接, 所述数模转化 器 (5211)用于对所述第五滤波器 (5212)得到的第五滤波信号进行数模转化得 到转化后的信号, 并传输给所述基带控制装置 (43);
所述第五滤波器 (5212)的输入端与所述第二混频器 (5213)的输出端连接, 用于对所述第二混频器 (5213)得到的变频后的信号进行滤波得到所述第五滤 波信号;
所述第二混频器 (5213)的第一端与所述第三放大器 (5214)的输出端连接, 所述第二混频器 (5213)的第二端与辅助通道压控振荡器 (5216)连接, 所述辅助 通道压控振荡器 (5216)用于向所述第二混频器 (5213)提供第二本振信号, 所述 第二混频器 (5213)用于根据所述辅助通道压控振荡器 (5216)提供的所述第二 本振信号, 对所述第三放大器 (5214)放大得到的放大后的信号, 进行变频, 得 到所述变频后的信号;
所述第三放大器 (5214)的输入端与所述第六滤波器 (5215)的输出端相连, 用于对所述第六滤波器 (5215)滤波得到的滤波后的信号,进行放大,得到所述 放大后的信号;
所述第六滤波器 (5215)的输入端作为所述接收辅助通道 (521)的输入端, 与所述天线 (53)相连,用于对所述天线 (53)所接收的所述射频信号,进行滤波, 得到所述滤波后的信号。
16、 根据权利要求 14或 15所述的收信机, 其特征在于, 所述辅助通道 (52)还包括: 发送辅助通道 (522), 其中, 所述发送辅助通道 (522)包括: 第三 模数转化器 (5221)及与所述第三模数转化器 (5221)串联设置的第七滤波器 (5222)、 第三混频器 (5223)、 第四放大器 (5224)和第八滤波器 (5225);
所述第三模数转化器 (5221)的输入端与所述基带控制装置 (43)连接, 用于 对基带控制装置 (43)获取的预发送信号或控制信号进行模数转化,得到数字信 号, 所述控制信号为所述基带控制装置 (43)控制所述至少两个射频通道 (41)的 选择及其对应本振源的选择的控制信号;
所述第七滤波器 (5222)的输入端与所述第三模数转化器 (5221)的输出端 连接,用于对所述第三模数转化器 (5221)得到的所述数字信号进行滤波,得到 第六滤波信号;
所述第三混频器 (5223)的第一端与所述第七滤波器 (5222)的输出端连接, 所述第三混频器 (5223)的第二端与辅助通道压控振荡器 (5216)连接, 所述辅助 通道压控振荡器 (5216)用于向所述第三混频器 (5223)提供第三本振信号, 所述 第三混频器 (5223)用于对所述第七滤波器 (5222)得到的所述第六滤波信号进 行变频得到变频后的信号;
所述第四放大器 (5224)的输入端与所述第三混频器 (5223)的输出端相连, 用于对所述第三混频器 (5223)变频得到所述变频后的信号进行放大,得到放大 后的信号;
所述第八滤波器 (5225)的输入端与所述第四放大器 (5224)的输出端相连, 所述第八滤波器 (5225)的输出端作为所述发送辅助通道 (522)的输出端, 与所 述天线 (53)相连, 所述第八滤波器 (5225)用于对所述第四放大器 (5224)得到的 所述放大后的信号进行滤波得到所述天线 (53)将要发送出去的信号。
PCT/CN2014/083217 2014-07-29 2014-07-29 收发信机 WO2016015219A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/083217 WO2016015219A1 (zh) 2014-07-29 2014-07-29 收发信机
CN201480080913.7A CN106664106B (zh) 2014-07-29 2014-07-29 收发信机
EP14898474.3A EP3197057B1 (en) 2014-07-29 2014-07-29 Transceiver
US15/416,800 US9967116B2 (en) 2014-07-29 2017-01-26 Transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083217 WO2016015219A1 (zh) 2014-07-29 2014-07-29 收发信机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/416,800 Continuation US9967116B2 (en) 2014-07-29 2017-01-26 Transceiver

Publications (1)

Publication Number Publication Date
WO2016015219A1 true WO2016015219A1 (zh) 2016-02-04

Family

ID=55216586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083217 WO2016015219A1 (zh) 2014-07-29 2014-07-29 收发信机

Country Status (4)

Country Link
US (1) US9967116B2 (zh)
EP (1) EP3197057B1 (zh)
CN (1) CN106664106B (zh)
WO (1) WO2016015219A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600143A (zh) * 2018-10-18 2019-04-09 中国航空无线电电子研究所 30MHz~2GHz多通道宽频段通用化综合射频模块
CN112087797A (zh) * 2019-06-13 2020-12-15 南京芯奇点半导体有限公司 用于数据传输和接收的方法、通信设备和计算机可读介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948409B2 (en) * 2016-09-20 2018-04-17 Infineon Technologies Ag Phase and amplitude signal sensing circuit for radio frequency (RF) transmitters
EP3602830B1 (en) 2017-03-28 2021-06-23 Qualcomm Incorporated Range-based transmission parameter adjustment
US10305611B1 (en) * 2018-03-28 2019-05-28 Qualcomm Incorporated Proximity detection using a hybrid transceiver
CN110995309B (zh) * 2019-11-26 2021-06-18 北京振兴计量测试研究所 多波段电子对抗射频收发装置及方法
CN113328769B (zh) * 2020-02-28 2022-09-02 上海华为技术有限公司 数据处理方法及其设备
CN113364472B (zh) * 2020-03-04 2023-08-22 鹤壁天海电子信息系统有限公司 一种发射机、接收机及通信设备
WO2021184371A1 (zh) * 2020-03-20 2021-09-23 华为技术有限公司 一种接收装置、发射装置及信号处理方法
CN112398777B (zh) * 2020-10-21 2023-02-03 中交航信(上海)科技有限公司 甚高频数据交换系统
CN114301511B (zh) * 2021-12-08 2024-04-16 北京微纳星空科技有限公司 一种高速上注数据的处理方法、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7392026B2 (en) * 2005-04-04 2008-06-24 Freescale Semiconductor, Inc. Multi-band mixer and quadrature signal generator for a multi-mode radio receiver
CN101316105A (zh) * 2008-06-11 2008-12-03 苏州中科半导体集成技术研发中心有限公司 多标准多模无线收发器
CN101588184A (zh) * 2009-07-14 2009-11-25 北京天碁科技有限公司 基于多频段的射频收信方法及收信机
CN101873148A (zh) * 2009-04-23 2010-10-27 鸿富锦精密工业(深圳)有限公司 射频模块及应用该射频模块的无线通信装置
US20120201330A1 (en) * 2003-06-10 2012-08-09 Shared Spectrum Company Method and system for transmitting signals with reduced spurious emissions
CN102882539A (zh) * 2011-07-14 2013-01-16 苹果公司 用于同时接收不同频带中的射频传输的无线电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118810A (en) * 1997-05-08 2000-09-12 Ericsson, Inc. Multi-channel base station/terminal design covering complete system frequency range
US6584090B1 (en) * 1999-04-23 2003-06-24 Skyworks Solutions, Inc. System and process for shared functional block CDMA and GSM communication transceivers
US7792513B2 (en) 2007-09-19 2010-09-07 The Regents Of The University Of California Distributed RF front-end for UWB receivers
US8014791B2 (en) * 2008-06-30 2011-09-06 Intelligent Sciences, Ltd. Method and system for determining position of a wireless electronic device within a volume

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201330A1 (en) * 2003-06-10 2012-08-09 Shared Spectrum Company Method and system for transmitting signals with reduced spurious emissions
US7392026B2 (en) * 2005-04-04 2008-06-24 Freescale Semiconductor, Inc. Multi-band mixer and quadrature signal generator for a multi-mode radio receiver
CN101316105A (zh) * 2008-06-11 2008-12-03 苏州中科半导体集成技术研发中心有限公司 多标准多模无线收发器
CN101873148A (zh) * 2009-04-23 2010-10-27 鸿富锦精密工业(深圳)有限公司 射频模块及应用该射频模块的无线通信装置
CN101588184A (zh) * 2009-07-14 2009-11-25 北京天碁科技有限公司 基于多频段的射频收信方法及收信机
CN102882539A (zh) * 2011-07-14 2013-01-16 苹果公司 用于同时接收不同频带中的射频传输的无线电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600143A (zh) * 2018-10-18 2019-04-09 中国航空无线电电子研究所 30MHz~2GHz多通道宽频段通用化综合射频模块
CN109600143B (zh) * 2018-10-18 2020-10-27 中国航空无线电电子研究所 30MHz~2GHz多通道宽频段通用化综合射频模块
CN112087797A (zh) * 2019-06-13 2020-12-15 南京芯奇点半导体有限公司 用于数据传输和接收的方法、通信设备和计算机可读介质

Also Published As

Publication number Publication date
CN106664106A (zh) 2017-05-10
US9967116B2 (en) 2018-05-08
EP3197057A4 (en) 2017-07-26
EP3197057B1 (en) 2019-06-19
US20170149588A1 (en) 2017-05-25
EP3197057A1 (en) 2017-07-26
CN106664106B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2016015219A1 (zh) 收发信机
US11044704B2 (en) Method and system for WiFi access point utilizing full spectrum capture (FSC)
JP3564480B2 (ja) 複数の無線通信端末間で通信を行う無線通信方法及びシステム
US9125183B2 (en) Compact transceiver architecture for achieving device to device (D2D) communication using uplink and downlink carrier frequencies
US20210195478A1 (en) Configuration of nfrp trigger frame for ndp feedback report procedure
US11031962B2 (en) Carrier aggregated signal transmission and reception
US20150244548A1 (en) Frequency adjustment of signals
US8396418B2 (en) Microwave relay receiving method and apparatus, microwave relay transmitting method and apparatus, and microwave relay node
JP2003501847A (ja) 改良型無線トランシーバ及び信号変換方法
US20180123749A1 (en) Waveform for internet-of-things data transfer
US20140334635A1 (en) 7GHz Professional Wireless Microphone System
CN117652112A (zh) 用于超可靠无线时间敏感网络的Wi-Fi上的增强冗余
WO2014190750A1 (zh) 射频拉远单元及iq数据处理方法、系统、计算机存储介质
WO2016174805A1 (ja) 無線アクセスシステム及びその制御方法
JP2006191409A (ja) 送受信回路、送信回路及び受信回路
WO2016123751A1 (zh) 分布式基站及信号传输方法
CN107343328B (zh) 一种分布式基站系统
JP2009147485A (ja) 無線機及びこれを用いた無線通信方法
US20140286458A1 (en) Receiving apparatus and receiving method
US20180098183A1 (en) Neighbor awareness networking in dynamic frequency selection channels
TWI761640B (zh) 用於傳輸和接收載波聚合訊號的射頻積體晶片和無線通訊裝置
EP3488630A1 (en) Lwa enhancements for tri-band (2.4 ghz, 5 ghz, and 60 ghz) wi-fi equipment
CN115484603A (zh) 用于多链路设备转换的消息完整性码计算
CN115397032A (zh) 多链路设备(mld)的随机化介质接入控制(mac)地址

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014898474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898474

Country of ref document: EP