WO2016010136A1 - 有機発光素子 - Google Patents
有機発光素子 Download PDFInfo
- Publication number
- WO2016010136A1 WO2016010136A1 PCT/JP2015/070510 JP2015070510W WO2016010136A1 WO 2016010136 A1 WO2016010136 A1 WO 2016010136A1 JP 2015070510 W JP2015070510 W JP 2015070510W WO 2016010136 A1 WO2016010136 A1 WO 2016010136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- general formula
- organic light
- emitting device
- organic
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 248
- 230000003111 delayed effect Effects 0.000 claims abstract description 107
- 150000001875 compounds Chemical class 0.000 claims description 173
- 239000004065 semiconductor Substances 0.000 claims description 63
- 238000002347 injection Methods 0.000 claims description 39
- 239000007924 injection Substances 0.000 claims description 39
- 230000002269 spontaneous effect Effects 0.000 claims description 5
- 239000011368 organic material Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 167
- 125000001424 substituent group Chemical group 0.000 description 55
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 47
- 230000000903 blocking effect Effects 0.000 description 36
- 125000003118 aryl group Chemical group 0.000 description 34
- 229910052760 oxygen Inorganic materials 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 28
- 229910052717 sulfur Inorganic materials 0.000 description 25
- 230000005284 excitation Effects 0.000 description 24
- 125000004122 cyclic group Chemical group 0.000 description 22
- 125000004986 diarylamino group Chemical group 0.000 description 20
- 230000005525 hole transport Effects 0.000 description 20
- FTZXDZQJFKXEGW-UHFFFAOYSA-N 3-(9,9-dimethylacridin-10-yl)xanthen-9-one Chemical compound C12=CC=CC=C2C(C)(C)C2=CC=CC=C2N1C1=CC=C2C(=O)C3=CC=CC=C3OC2=C1 FTZXDZQJFKXEGW-UHFFFAOYSA-N 0.000 description 18
- -1 bis (4-methoxyphenyl) amino Chemical group 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 18
- 239000000203 mixture Substances 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 238000000295 emission spectrum Methods 0.000 description 11
- 230000002441 reversible effect Effects 0.000 description 10
- 125000000732 arylene group Chemical group 0.000 description 9
- 239000012044 organic layer Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 125000004093 cyano group Chemical group *C#N 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 238000005424 photoluminescence Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 0 CCc1nc(*)nc(*)n1 Chemical compound CCc1nc(*)nc(*)n1 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000005401 electroluminescence Methods 0.000 description 5
- 125000006575 electron-withdrawing group Chemical group 0.000 description 5
- 230000005281 excited state Effects 0.000 description 5
- 230000005283 ground state Effects 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 238000001296 phosphorescence spectrum Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000000990 laser dye Substances 0.000 description 4
- 125000005647 linker group Chemical group 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 125000004556 carbazol-9-yl group Chemical group C1=CC=CC=2C3=CC=CC=C3N(C12)* 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000005549 heteroarylene group Chemical group 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- FXKMXDQBHDTQII-UHFFFAOYSA-N 9-phenyl-3,6-bis(9-phenylcarbazol-3-yl)carbazole Chemical compound C1=CC=CC=C1N1C2=CC=C(C=3C=C4C5=CC(=CC=C5N(C=5C=CC=CC=5)C4=CC=3)C=3C=C4C5=CC=CC=C5N(C=5C=CC=CC=5)C4=CC=3)C=C2C2=CC=CC=C21 FXKMXDQBHDTQII-UHFFFAOYSA-N 0.000 description 1
- PNTSLZNDRCCXDP-UHFFFAOYSA-N C(c1ccccc1)[n+]1c(-c2ccccc2)nc(-c(cc2)ccc2-[n]2c(ccc(C(C3)C=CC(N4)=C3C3C4=CC=CC3)c3)c3c3ccccc23)[n-]1 Chemical compound C(c1ccccc1)[n+]1c(-c2ccccc2)nc(-c(cc2)ccc2-[n]2c(ccc(C(C3)C=CC(N4)=C3C3C4=CC=CC3)c3)c3c3ccccc23)[n-]1 PNTSLZNDRCCXDP-UHFFFAOYSA-N 0.000 description 1
- UJAXHLIAKWKIKT-UHFFFAOYSA-N C1C=C(c(cc(cc2)-c(cc3)cc(C4C5=CC=CC4)c3N5c(cc3)ccc3-c3nc(-c4ccccc4)nc(-c4ccccc4)c3)c2N2c3ccccc3)C2=CC1 Chemical compound C1C=C(c(cc(cc2)-c(cc3)cc(C4C5=CC=CC4)c3N5c(cc3)ccc3-c3nc(-c4ccccc4)nc(-c4ccccc4)c3)c2N2c3ccccc3)C2=CC1 UJAXHLIAKWKIKT-UHFFFAOYSA-N 0.000 description 1
- VJBNGUJWRYEXJW-UHFFFAOYSA-N CC(C)(C)C(C=C1)=CCC1c1nnc(-c(cc2)ccc2-c2ccccc2)[o]1 Chemical compound CC(C)(C)C(C=C1)=CCC1c1nnc(-c(cc2)ccc2-c2ccccc2)[o]1 VJBNGUJWRYEXJW-UHFFFAOYSA-N 0.000 description 1
- JVCKIYXBTHVSIX-UHFFFAOYSA-N CC1C=CC([n](c(cccc2)c2c2c3)c2ccc3-c(cc2c3c4ccc(-c(cc5)cc(c6ccccc66)c5[n]6-c5ccccc5)c3)ccc2[n]4-c(cc2)ccc2-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)=CC1 Chemical compound CC1C=CC([n](c(cccc2)c2c2c3)c2ccc3-c(cc2c3c4ccc(-c(cc5)cc(c6ccccc66)c5[n]6-c5ccccc5)c3)ccc2[n]4-c(cc2)ccc2-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)=CC1 JVCKIYXBTHVSIX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000004653 anthracenylene group Chemical group 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001555 benzenes Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- SPSZZBJNYTUXQR-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c(cc2)ccc2-[N-]2c(ccc(-c(cc3)cc(c4ccccc44)c3[n]4-c(cc3)ccc3-c3nc(-c4ccccc4)nc(-c4ccccc4)n3)c3)c3c3ccccc23)nc(-c2ccccc2)n1 Chemical compound c(cc1)ccc1-c1nc(-c(cc2)ccc2-[N-]2c(ccc(-c(cc3)cc(c4ccccc44)c3[n]4-c(cc3)ccc3-c3nc(-c4ccccc4)nc(-c4ccccc4)n3)c3)c3c3ccccc23)nc(-c2ccccc2)n1 SPSZZBJNYTUXQR-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004558 phenazin-5-yl group Chemical group C1=CC=CC=2N(C3=CC=CC=C3NC12)* 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/36—Structure or shape of the active region; Materials used for the active region comprising organic materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/86—Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/36—Radicals substituted by singly-bound nitrogen atoms
- C07D213/38—Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/79—Acids; Esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D251/00—Heterocyclic compounds containing 1,3,5-triazine rings
- C07D251/02—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
- C07D251/12—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D251/14—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
- C07D251/24—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/14—Ortho-condensed systems
- C07D491/147—Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
- H10K50/121—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1022—Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1096—Heterocyclic compounds characterised by ligands containing other heteroatoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/041—Optical pumping
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/20—Delayed fluorescence emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/156—Hole transporting layers comprising a multilayered structure
Definitions
- the present invention relates to an organic light emitting device having high luminous efficiency.
- organic light-emitting devices organic semiconductor lasers
- ASE spontaneous emission amplified light
- Patent Document 1 describes BSB-CN (1,4-dini-trile-2,5-bis (4- (bis (4-methoxyphenyl) amino) styryl) benzene) and Ace-CBP (bis (4- An organic semiconductor laser having a co-deposited film of carbazoylphenyl) acetylene) as an active layer is disclosed.
- BSB-CN is a fluorescent material
- Ace-CBP functions as a host material. This document describes that ASE oscillation was observed from this organic semiconductor thin film.
- Patent Document 2 discloses an organic semiconductor laser having an organic layer containing an organic host compound, an organic light emitting compound, and an organic dopant compound, and the excitation triplet energy of the organic dopant compound is the excitation triplet of the organic host compound and the organic light emitting compound. It is specified that the excited singlet energy of the organic light emitting material is lower than the excited singlet energy of the organic host compound.
- the organic dopant compound functions as a “triplet manager” that traps triplet excitons generated in the organic layer, thereby suppressing the accumulation of triplet excitons. It is described that deactivation of singlet excitons can be suppressed.
- the organic semiconductor lasers described in Patent Documents 1 and 2 cannot sufficiently increase the light emission efficiency for the following reasons. That is, in an active layer (light emitting layer) made of a fluorescent material that emits ASE and a host material, when energy is applied from the outside, the host material mainly absorbs the energy and transitions to an excited singlet state. Term energy is transferred to the fluorescent material. The fluorescent material that has received energy and transitioned to the excited singlet state then returns to the ground state while emitting ASE. On the other hand, triplet excitons are also generated in the light emitting layer due to intersystem crossing from the excited singlet state.
- the organic semiconductor laser described in Patent Document 2 uses an organic dopant compound that captures triplet excitons, it has an adverse effect due to the accumulation of triplet excitons that occurs in a two-component system of a fluorescent material and a host material. Can be reduced.
- the triplet exciton trapped in the organic dopant compound does not contribute to the ASE radiation, so that the excited triplet energy is eventually wasted, and in principle the emission efficiency can be made 100%.
- the formation probability is statistically 25% for singlet excitons and 75% for triplet excitons. The loss of not using the excited triplet energy is a large percentage.
- Patent Document 1 describes an active layer made of BSB-CN as a fluorescent material and Ace-CBP as a host material
- Patent Document 2 describes an organic host compound and an organic light-emitting compound as well as a triplet.
- An organic layer composed of an organic dopant compound that traps excitons is described.
- the present inventors have further studied the light emission characteristics of an organic light emitting device including a host material, a delayed fluorescent material, and a light emitting material, and further aimed to provide an organic light emitting device having high light emission efficiency.
- the host material with use of the delayed fluorescent material and light emitting material, by defining the relationship between the lowest excited singlet energy level E S1 between the materials, the organic light emitting element It has been found that both the excited singlet energy and the excited triplet energy generated inside can be efficiently contributed to light emission, and an organic light emitting device having high light emission efficiency can be provided. Based on these findings, the present inventors have provided the following present invention as means for solving the above problems.
- An organic light emitting device comprising a host material, a delayed fluorescent material, and a light emitting material satisfying the following formula (1).
- the delayed fluorescent material an organic light-emitting device according to a difference Delta] E st in energy between the lowest excited triplet state of lowest excited singlet state and 77K are equal to or less than 0.3 eV [1] .
- the delayed fluorescent material an organic light-emitting device according to [1], wherein the difference Delta] E st in energy between the lowest excited triplet state of lowest excited singlet state and 77K is less than 0.08eV .
- the delayed fluorescent material has any one of [1] to [3], wherein a rate constant k RISC from the lowest excited triplet state to the lowest excited singlet state is 10 5 / s or more.
- the organic light emitting device according to item.
- the light emitting material emits fluorescence when returning from the lowest excited singlet energy level to the ground energy level, [1] to [4], Organic light emitting device.
- the organic light-emitting device according to any one of [1] to [5], wherein the light-emitting material emits spontaneous emission amplified light.
- the organic light-emitting element according to any one of [1] to [6], wherein the content of the delayed fluorescent material is smaller than the content of the host material.
- the organic light-emitting device according to any one of [1] to [7], wherein the light-emitting material contains two or more compounds.
- the organic light-emitting device which includes a light-emitting layer including a host material, a delayed fluorescent material, and a light-emitting material that satisfy the formula (1).
- the organic light-emitting device of the present invention includes a host material, a delayed fluorescent material, and a light-emitting material, and has a very high light emission efficiency because the relationship between the lowest excited singlet energy levels between the materials is defined.
- the luminescent material is an organic laser dye that emits ASE
- the threshold energy or threshold current density required for the emission of the ASE can be reduced, and an organic semiconductor laser excellent in ASE characteristics can be obtained. Can be realized.
- FIG. 2 is an emission spectrum of the photoexcited organic light emitting device produced in Example 1. It is a graph which shows the relationship between the excitation energy and the half value width FWHM of the light emission peak of the photoexcitation organic light emitting element produced in Example 1 and Comparative Example 1.
- 3 is a graph showing a relationship between excitation energy and emission peak intensity of the photoexcited organic light emitting device of Example 1.
- 6 is a graph showing the relationship between excitation energy and emission peak intensity of the photoexcited organic light emitting device of Comparative Example 1.
- 4 is an emission spectrum of a photoexcited organic light emitting device of Comparative Example 2.
- 6 is a graph showing a relationship between excitation energy and emission peak intensity of a photoexcited organic light emitting device of Comparative Example 2.
- 2 is an emission spectrum of carrier injection type organic light emitting devices of Example 2 and Comparative Example 3.
- 6 is a graph showing voltage-current density characteristics of carrier injection type organic light emitting devices of Example 2 and Comparative Example 3.
- 6 is a graph showing current density-external quantum efficiency characteristics of carrier injection type organic light emitting devices of Example 1 and Comparative Example 3.
- a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of the hydrogen atoms are 2 H. (Deuterium D) may be used.
- the organic light emitting device of the present invention includes a host material, a delayed fluorescent material, and a light emitting material that satisfy the following formula (1).
- E S1 (H)> E S1 (F)> E S1 (D) E S1 (H) represents the lowest excited singlet energy level of the host material
- E S1 (F) represents the lowest excited singlet energy level of the delayed fluorescent material
- E S1 (D) represents light emission. Represents the lowest excited singlet energy level of a material.
- the “delayed fluorescent material” in the present invention can cross back to the excited singlet state after transitioning to the excited triplet state, and emits fluorescence when returning from the excited singlet state to the ground state.
- Such an organic light emitting device includes a host material, a delayed fluorescent material, and a light emitting material, and the minimum excited singlet energy levels E S1 (H), E S1 (F), and E S1 (D) of each material are as described above.
- filling Formula (1) the energy provided from the outside is converted into light efficiently, and high luminous efficiency can be obtained. This is thought to be due to the following reasons.
- FIG. 1 shows an estimated energy transfer mechanism of the organic light-emitting device of the present invention.
- FIG. 1 schematically shows an estimated energy transfer mechanism, and the transfer path of the lowest excited singlet energy level E S1 and excitons of each material is not limited to this. As shown in FIG.
- the host material mainly absorbs energy and transitions from the ground state to the excited singlet state.
- the excited singlet of the host material since the lowest excited singlet energy levels E S1 (H), E S1 (F), and E S1 (D) of the material satisfy the above formula (1), the excited singlet of the host material
- the term energy is transferred to the delayed fluorescent material and the light emitting material by a Forster mechanism (FRET) or the like, and the excited singlet energy of the delayed fluorescent material is transferred to the light emitting material.
- FRET Forster mechanism
- an excited triplet state also occurs due to an intersystem crossing from the excited singlet state to the excited triplet state, but since the delayed fluorescent material is included, the triplet excited state is singlet in the delayed fluorescent material.
- the excited state intersects with the inverse term, and the energy of the excited singlet state generated by the inverse term crossing also moves to the light emitting material. For this reason, the excited triplet energy indirectly contributes to light emission, and the light emission efficiency can be drastically improved as compared with the configuration not including the delayed fluorescent material.
- carriers are injected into an organic light emitting element to emit light, singlet excitons and triplet excitons are formed at a ratio of 1: 3 by carrier injection.
- the energy of the triplet exciton indirectly contributes to light emission via the reverse intersystem crossing in. For this reason, the energy of triplet excitons formed at a rate of 75% can be efficiently used for light emission, and a much higher light emission efficiency can be obtained as compared with a configuration not including a delayed fluorescent material.
- light emission is mainly caused by the light emitting material, but part of the light emission may be light emission from the host material and the delayed fluorescent material.
- the light emission includes fluorescent light emission, delayed fluorescent light emission, and spontaneous emission amplified light (ASE).
- the organic light emitting device of the present invention satisfies the above formula (1), the types and combinations of the host material, the delayed fluorescent material, and the light emitting material are not particularly limited.
- the present invention will be described more specifically with reference to preferred specific examples. However, the scope of the present invention should not be construed as being limited by the description based on the following specific examples.
- the delayed fluorescent material is not particularly limited, but is preferably a thermally activated delayed fluorescent material that crosses from the excited singlet state to the excited triplet state by back-crossing by absorption of thermal energy. Thermally activated delayed fluorescent material absorbs the heat generated by the device and crosses the reverse triplet from the excited triplet state to the excited singlet relatively easily and efficiently contributes to the emission of the excited triplet energy. Can do.
- Delayed fluorescent material is preferably energy difference Delta] E st at the lowest excited triplet state energy and 77K in the lowest excited singlet state is less than 0.3 eV, more preferably less 0.2 eV, 0 More preferably, it is 0.1 eV or less, and even more preferably 0.08 eV or less.
- the crossing between the reverse triplets from the excited triplet state to the excited singlet state occurs relatively easily, and the excited triplet energy can efficiently contribute to light emission. .
- the delayed fluorescent material preferably has a rate constant k RISC of cross-reverse crossing from the lowest excited triplet state to the lowest excited singlet state, preferably 10 3 / s or more, and more preferably 10 4 / s or more. More preferably, it is more preferably 10 5 / s or more.
- k RISC rate constant k RISC
- the delayed fluorescent material is not particularly limited as long as it can emit delayed fluorescence.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- the entire specification of the publication including the description of paragraphs 0008 to 0048 and 0095 to 0133 of WO2013 / 154064 is cited herein as a part of this specification.
- at least one of R 1 ⁇ R 5 represents a cyano group
- at least one of R 1 ⁇ R 5 represents a group represented by the following general formula (111)
- the remaining R 1 to R 5 each represents a hydrogen atom or a substituent.
- R 21 to R 28 each independently represents a hydrogen atom or a substituent.
- ⁇ A> R 25 and R 26 together form a single bond.
- ⁇ B> R 27 and R 28 together represent an atomic group necessary for forming a substituted or unsubstituted benzene ring.
- R 1 to R 5 is preferably a group represented by any one of the following general formulas (112) to (115).
- R 31 to R 38 each independently represents a hydrogen atom or a substituent.
- R 41 to R 46 each independently represents a hydrogen atom or a substituent.
- R 51 to R 62 each independently represents a hydrogen atom or a substituent.
- R 71 to R 80 each independently represents a hydrogen atom or a substituent.
- Preferred examples of the delayed fluorescent material include the following compounds.
- 0 to 1 of R 1 to R 5 are cyano groups
- 1 to 5 of R 1 to R 5 are groups represented by the following general formula (132)
- the rest R 1 to R 5 are a hydrogen atom or a substituent other than those described above.
- R 11 to R 20 each independently represents a hydrogen atom or a substituent.
- R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 And R 20 may be bonded to each other to form a cyclic structure.
- L 12 represents a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
- R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , R 61 to R 65 , R 71 to R 79 , R 81 R 90 each independently represents a hydrogen atom or a substituent.
- L 13 to L 18 each independently represents a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
- [3] The compound according to [1] or [2], wherein R 3 in the general formula (131) is a cyano group.
- [4] The compound according to any one of [1] to [3], wherein R 1 and R 4 in the general formula (131) are a group represented by the general formula (132).
- [5] The compound according to any one of [1] to [4], wherein L 12 in the general formula (132) is a phenylene group.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- the entire specification of the publication including the descriptions of paragraphs 0007 to 0047 and 0073 to 0085 of WO2013 / 011954, is cited herein as a part of the specification of the present application.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 17 are each independently a hydrogen atom or an electron-donating group, One represents an electron donating group.
- R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom or an electron withdrawing group having no unshared electron pair at the ⁇ -position.
- Z is a single bond, at least one of R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 does not have an unshared electron pair at the ⁇ -position. It is a group. ]
- D1 to D3 represent aryl groups substituted with the following electron donating groups
- A1 to A5 represent the following electron withdrawing groups
- H represents a hydrogen atom
- Ph represents a phenyl group.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- the entire specification of the publication including the descriptions of paragraphs 0007 to 0033 and 0059 to 0066 of WO 2013/011955 is cited herein as a part of the specification of the present application.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom or an electron-donating group, and at least one of Represents an electron donating group.
- R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom or an electron withdrawing group, and at least one represents an electron withdrawing group.
- D1 to D10 represent unsubstituted electron donating groups having the following skeleton.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- the entire specification of the publication including the descriptions of paragraphs 0008 to 0071 and 0118 to 0133 of WO2013 / 081088 is cited herein as a part of the specification of the present application.
- any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
- Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
- R 1 to R 8 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 8 represents a substituted or unsubstituted diarylamino group or a substituted or unsubstituted carbazolyl group.
- the compound represented by the general formula (161) includes at least two carbazole structures in the molecule.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula. Further, the entire specification of the publication including paragraphs 0009 to 0046 and 0093 to 0134 of JP2013-256490A is cited herein as a part of the specification of the present application.
- Ar 1 to Ar 3 each independently represents a substituted or unsubstituted aryl group, and at least one represents an aryl group substituted with a group represented by the following general formula (172) .
- R 1 to R 8 each independently represents a hydrogen atom or a substituent.
- Z represents O, S, O ⁇ C or Ar 4 —N
- Ar 4 represents a substituted or unsubstituted aryl group.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good. ]
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- the entire specification of the gazette including paragraphs 0008 to 0020 and 0038 to 0040 of JP 2013-116975 A is cited herein as a part of the specification of the present application.
- R 1 , R 2 , R 4 to R 8 , R 11 , R 12 and R 14 to R 18 each independently represent a hydrogen atom or a substituent.
- Preferred examples of the delayed fluorescent material include the following compounds.
- a compound represented by the following general formula (191) Ar 1 represents a substituted or unsubstituted arylene group, and Ar 2 and Ar 3 each independently represent a substituted or unsubstituted aryl group.
- R 1 to R 8 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 8 is a substituted or unsubstituted diarylamino group.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
- R 1 to R 8 and R 11 to R 24 each independently represent a hydrogen atom or a substituent, and at least one of R 1 to R 8 is a substituted or unsubstituted diarylamino group It is.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 11 and R 12 , R 12 and R 13 , R 13 And R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 21 and R 22 , R 23 and R 24 are bonded to each other.
- a ring structure may be formed.
- At least one of R 1 to R 4 in the general formula (192) is a substituted or unsubstituted diarylamino group, and at least one of R 5 to R 8 is a substituted or unsubstituted diarylamino group [7] The compound according to [7]. [9] The compound according to [8], wherein R 3 and R 6 in the general formula (192) are substituted or unsubstituted diarylamino groups.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- the entire specification of the publication including the descriptions of paragraphs 0007 to 0032 and 0079 to 0084 of WO 2013/133359 is cited herein as a part of the specification of the present application.
- Z 1 , Z 2 and Z 3 each independently represent a substituent.
- Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each independently represent a substituted or unsubstituted aryl group.
- Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5, and Ar 6 are all the same, and are collectively referred to as Ar.
- R 1 to R 10 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 10 is a substituted or unsubstituted aryl group, substituted or unsubstituted A substituted diarylamino group, or a substituted or unsubstituted 9-carbazolyl group.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 And R 10 may be bonded to each other to form a cyclic structure.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- the entire specification of the gazette including the descriptions in paragraphs 0007 to 0041 and 0060 to 0069 of JP 2014-9352 A is cited herein as a part of the specification of the present application.
- R 1 to R 4 each independently represents a hydrogen atom or a substituted or unsubstituted (N, N-diarylamino) aryl group, and at least one of R 1 to R 4 is substituted or It represents an unsubstituted (N, N-diarylamino) aryl group.
- Two aryl groups constituting the diarylamino part of the (N, N-diarylamino) aryl group may be linked to each other.
- W 1 , W 2 , X 1 , X 2 , Y 1 , Y 2 , Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom.
- m 1 to m 4 each independently represents 0, 1 or 2.
- Preferred examples of the delayed fluorescent material include compounds represented by the following general formula.
- R 1 to R 6 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 6 represents a substituted or unsubstituted (N, N-diarylamino) aryl group Represents. Two aryl groups constituting the diarylamino part of the (N, N-diarylamino) aryl group may be linked to each other.
- X 1 to X 6 and Y 1 to Y 6 each independently represent a carbon atom or a nitrogen atom.
- n 1 , n 2 , p 1 , p 2 , q 1 and q 2 each independently represents 0, 1 or 2.
- Preferred examples of the delayed fluorescent material include the following compounds.
- 1 to 4 of A 1 to A 7 represent N, and the rest each independently represents CR.
- R represents a non-aromatic group.
- Ar 1 to Ar 3 each independently represents a substituted or unsubstituted arylene group.
- Z represents a single bond or a linking group.
- the general formula (252) 1 to 4 of A 1 to A 7 represent N, and the rest each independently represents CR.
- R represents a non-aromatic group.
- Ar 1 represents a substituted or unsubstituted arylene group.
- R 11 to R 14 and R 17 to R 20 each independently represents a hydrogen atom or a substituent.
- R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 17 and R 18 , R 18 and R 19 , and R 19 and R 20 may be bonded to each other to form a cyclic structure.
- Z 1 represents a single bond or a linking group having 1 or 2 linking chain long atoms.
- R represents a non-aromatic group.
- Ar 1 represents a substituted or unsubstituted arylene group.
- Y represents a substituted or unsubstituted carbazol-9-yl group, a substituted or unsubstituted 10H-phenoxazin-10-yl group, a substituted or unsubstituted 10H-phenothiazin-10-yl group, or a substituted or unsubstituted 10H -Represents a phenazin-5-yl group.
- Y in the general formula (253) is a group represented by any of the following general formulas (254) to (257).
- R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , and R 61 to R 65 are each independently a hydrogen atom or a substituent. Represents a group.
- R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 31 and R 32 , R 32 and R 33 , R 33 And R 34 , R 35 and R 36 , R 36 and R 37 , R 37 and R 38 , R 41 and R 42 , R 42 and R 43 , R 43 and R 44 , R 45 and R 46 , R 46 and R 47 , R47 and R48 , R51 and R52 , R52 and R53 , R53 and R54 , R55 and R56 , R56 and R57 , R57 and R58 , R61 and R62 , R 62 and R 63 , R 63 and R 64 , R 64 and R 65 , R 54 and R 61 , and R 55 and R 65 may be bonded to each other to form a cyclic structure.
- R 21 ′ to R 24 ′ and R 27 ′ to R 30 each independently represents a hydrogen atom or a substituent, and at least one of R 23 ′ and R 28 ′ is a substituent. is there.
- R 21 ′ and R 22 ′ , R 22 ′ and R 23 ′ , R 23 ′ and R 24 ′ , R 27 ′ and R 28 ′ , R 28 ′ and R 29 ′ , and R 29 ′ and R 30 ′ are bonded to each other.
- a ring structure may be formed.
- R 23 ′ and R 28 ′ are a substituted or unsubstituted diarylamino group or a substituted or unsubstituted carbazol-9-yl group [ 5].
- Y in the general formula (253) is a group represented by the general formula (255).
- Preferred examples of the delayed fluorescent material include the following compounds.
- X represents an oxygen atom or a sulfur atom
- R 1 to R 8 each independently represent a hydrogen atom or a substituent.
- at least one of R 1 to R 8 is each independently a group represented by any one of the following general formulas (262) to (266).
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , and R 7 and R 8 may be bonded to each other to form a cyclic structure.
- L 20 , L 30 , L 40 , L 50 , and L 60 each independently represent a single bond or a divalent linking group, and L 20 , L 30 , L 40 , It is bonded to the ring skeleton of the general formula (261) via L 50 and L 60 .
- R 21 to R 28 , R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , and R 61 to R 68 each independently represent a hydrogen atom or a substituent.
- At least one of R 3 and R 6 in the general formula (261) is a group represented by any one of the general formulas (262) to (266) [1] Compound described in 1. [3] The compound according to [2], wherein R 3 and R 6 in the general formula (261) are groups represented by any one of the general formulas (262) to (266). [4] The compound according to [2], wherein at least one of R 3 and R 6 in the general formula (261) is a group represented by the general formula (263). [5] The compound according to claim 2, wherein at least one of R 3 and R 6 in the general formula (261) is a group represented by the general formula (262).
- R 21 to R 28 , R 31 to R 38 , R 41 to R 48 , R 51 to R 58 , and R 61 to R 68 in the general formulas (262) to (266) is a substituent.
- the compound according to any one of [1] to [5], which is [7] At least one of R 23 , R 26 , R 33 , R 36 , R 43 , R 46 , R 53 , R 56 , R 63 , R 66 in the general formulas (262) to (266) is a substituent.
- Preferred examples of the delayed fluorescent material include the following compounds.
- R 1 to R 10 each independently represents a hydrogen atom or a substituent. However, at least one of R 1 to R 10 is each independently a group represented by the following general formula (272).
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R 10 are bonded to each other Thus, a ring structure may be formed.
- R 11 to R 20 each independently represents a hydrogen atom or a substituent.
- R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 And R 20 may be bonded to each other to form a cyclic structure.
- Ph represents a substituted or unsubstituted phenylene group.
- n1 represents 0 or 1.
- Ph represents a substituted or unsubstituted phenylene group.
- n1 represents 0 or 1.
- At least one of R 1 to R 5 in the general formula (271) and at least one of R 6 to R 10 are groups represented by the general formula (272), The compound according to [1] or [2].
- the compound according to [3], wherein R 3 and R 8 in the general formula (271) are a group represented by the general formula (272).
- [5] The compound according to any one of [1] to [4], wherein the group represented by the general formula (272) is a group represented by the general formula (274) .
- Preferred examples of the delayed fluorescent material include the following compounds.
- X represents an oxygen atom or a sulfur atom.
- R 1 to R 8 each independently represents a hydrogen atom or a substituent. However, at least one of R 1 to R 8 is each independently a group represented by any one of the following general formulas (282) to (287).
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R 1 are bonded to each other Thus, a ring structure may be formed.
- R 9 represents a substituent.
- R 9 contains an atom having a lone electron pair that does not form a single bond with a boron atom
- the atom may be coordinated with the boron atom to form a cyclic structure.
- L 12 to L 17 each independently represents a single bond or a divalent linking group
- * represents a bonding site to the benzene ring in the general formula (281).
- R 11 to R 20 , R 21 to R 28 , R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 are each independently hydrogen Represents an atom or substituent.
- Preferred examples of the delayed fluorescent material include the following compounds.
- X represents O, S, N—R 11 , C ⁇ O, C (R 12 ) (R 13 ) or Si (R 14 ) (R 15 ), and Y represents O, S Or represents N—R 16 .
- Ar 1 represents a substituted or unsubstituted arylene group, and Ar 2 represents an aromatic ring or a heteroaromatic ring.
- R 1 to R 8 and R 11 to R 16 each independently represents a hydrogen atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
- X represents O, S, N—R 11 , C ⁇ O, C (R 12 ) (R 13 ) or Si (R 14 ) (R 15 )
- Y represents O, S Or represents N—R 16 .
- Ar 2 represents an aromatic ring or a heteroaromatic ring.
- R 1 to R 8 , R 11 to R 16 and R 21 to R 24 each independently represent a hydrogen atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 21 and R 22 , R 23 and R 24 are respectively They may be bonded to each other to form a cyclic structure.
- the compound according to [1], wherein the compound represented by the general formula (291) is a compound represented by the following general formula (293).
- X represents O, S, N—R 11 , C ⁇ O, C (R 12 ) (R 13 ) or Si (R 14 ) (R 15 ), and Y represents O, S Or represents N—R 16 .
- R 1 to R 8 , R 11 to R 16 , R 21 to R 24 and R 31 to R 34 each independently represents a hydrogen atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 21 and R 22 , R 23 and R 24 , R 31 And R 32 , R 32 and R 33 , R 33 and R 34 may be bonded to each other to form a cyclic structure.
- Y is O, S or N—R 16 and R 16 is a substituted or unsubstituted aryl group .
- R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted group having 1 to 10 carbon atoms.
- Preferred examples of the delayed fluorescent material include the following compounds.
- a compound represented by the following general formula (301) (D) n-A [In General Formula (301), D represents a group represented by the following General Formula (302), and A represents an n-valent group including a structure represented by the following General Formula (303). n represents an integer of 1 to 8. ]
- Z 1 represents O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ), N—Ar 3 or a single bond
- 21 to R 24 each independently represents an alkyl group having 1 to 8 carbon atoms
- Ar 3 represents a substituted or unsubstituted aryl group.
- R 1 to R 8 each independently represents a hydrogen atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
- Z 1 is a single bond
- at least one of R 1 to R 8 represents a substituted or unsubstituted diarylamino group.
- Y represents O, S, or N—Ar 4
- Ar 4 represents a substituted or unsubstituted aryl group.
- Z 1 in the general formula (302) represents O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ) or a single bond Compound.
- Z 1 in the general formula (302) represents N—Ar 3 .
- a in the general formula (301) has a structure represented by the following general formula (304).
- Y represents O, S or N—Ar 4
- Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aromatic group.
- n in the general formula (301) is an integer of 1 to 4.
- R 1 to R 8 and R 11 to R 18 each independently represents a hydrogen atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 11 and R 12 , R 12 and R 13 , R 13 And R 14 , R 15 and R 16 , R 16 and R 17 , and R 17 and R 18 may be bonded to each other to form a cyclic structure.
- n1 and n2 each independently represents an integer of 0 to 8, and the sum of n1 and n2 is 1 to 8.
- Z 1 and Z 2 in formula (305) are each independently O, S, N—Ar 3 or a single bond.
- Y in the general formula (305) is O or N—Ar 4 .
- Z 1 represents O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ), N—Ar 3 or a single bond; 21 to R 24 each independently represents an alkyl group having 1 to 8 carbon atoms, and Ar 3 represents a substituted or unsubstituted aryl group.
- Ar 1 ′ represents a substituted or unsubstituted arylene group.
- Ar 2 ′ represents a substituted or unsubstituted aryl group.
- R 1 to R 8 and R 11 to R 18 each independently represents a hydrogen atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 11 and R 12 , R 12 and R 13 , R 13 And R 14 , R 15 and R 16 , R 16 and R 17 , and R 17 and R 18 may be bonded to each other to form a cyclic structure.
- Z 1 and Z 2 in the general formula (307) are the same, Ar 1 ′′ and Ar 2 ′′ are the same, R 1 and R 14 are the same, and R 2 and R 13 are the same.
- R 3 and R 12 are the same, R 4 and R 11 are the same, R 5 and R 18 are the same, R 6 and R 17 are the same, R 7 and R 16 are the same Wherein R 8 and R 15 are the same, [10].
- the compound according to [10] or [11], wherein Z 1 and Z 2 in the general formula (307) are each independently O, S or N—Ar 3 .
- the molecular weight of the delayed fluorescent material is, for example, preferably 1500 or less, more preferably 1200 or less, when it is intended to use a light emitting layer containing the delayed fluorescent material formed by vapor deposition. More preferably, it is 1000 or less, and still more preferably 800 or less.
- the lower limit of the molecular weight is, for example, the molecular weight of the minimum compound represented by these general formulas if the delayed fluorescent material is represented by the above general formula.
- coating method even if it is a comparatively large molecular weight, it can use preferably regardless of molecular weight.
- the host material is an organic compound having a minimum excited singlet energy level higher than that of the delayed fluorescent material and the light emitting material, and has a function of transporting carriers and a function of confining the energy of the light emitting material in the light emitting material.
- the light emitting material can efficiently convert the energy generated by the recombination of holes and electrons in the molecule and the energy received from the host material and the delayed fluorescent material into light emission.
- a high organic light emitting device can be realized.
- the host material is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents emission of longer wavelengths, and has a high glass transition temperature. Below, the preferable compound which can be used as a host material is mentioned. Note that R and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent. n represents an integer of 3 to 5.
- the light-emitting material is a light-emitting body having a lower minimum excited singlet energy level than the host material and the delayed fluorescent material.
- the light-emitting material receives the energy from the excited singlet state host material and the delayed fluorescent material and the delayed fluorescent material that has crossed the reverse triplet state into the excited singlet state and transitions to the excited singlet state. Then, it emits light when returning to the ground state.
- the light emitting material is not particularly limited as long as it can receive light from the host material and the delayed fluorescent material as described above, and emits fluorescence when returning from the lowest excited singlet energy level to the ground energy level. It is preferable that Moreover, the emitted light may contain delayed fluorescence or phosphorescence in addition to fluorescence.
- the luminescent material may be a so-called laser dye that emits spontaneous emission amplified light (ASE).
- ASE spontaneous emission amplified light
- this organic light-emitting device can function as an organic semiconductor laser.
- the organic semiconductor laser to which the present invention is applied has low threshold energy and threshold current density required for ASE radiation, and can obtain excellent ASE characteristics.
- Two or more luminescent materials may be used as long as the relationship of the formula (1) is satisfied. For example, a desired color can be emitted by using two or more kinds of light emitting materials having different emission colors. Below, the preferable compound which can be used as a luminescent material is mentioned.
- the following compound (C545T) can be used suitably.
- the content of each material included in the light emitting layer is not particularly limited, but the content of the delayed fluorescent material is preferably smaller than the content of the host material. Thereby, higher luminous efficiency can be obtained.
- the content W1 of the host material is 15% by weight or more
- the content W2 of the delayed fluorescent material is preferably 5.0% by weight or more and 50% by weight or less
- the content W3 of the light emitting material is 0.5% by weight or more. It is preferably 5.0% by weight or less.
- the host material, the delayed fluorescent material, and the light emitting material constitute the light emitting layer in a mixed state in the same layer.
- the light emitting layer may have a single layer configuration, or may have a multilayer configuration including a plurality of layers having different composition ratios and thicknesses of the respective materials.
- characteristics such as driving voltage and external quantum efficiency can be changed in various ways, and the characteristics of the organic light emitting element can be adjusted to the optimum one according to the application.
- Examples of the multi-layered light emitting layer include those in which the content of the delayed fluorescent material is changed in each layer.
- the light emitting layer has an intermediate layer and upper and lower layers provided above and below the intermediate layer.
- the light emitting layer has a three-layer structure in which the concentration of the delayed fluorescent material in the intermediate layer is lower than the concentration of the delayed fluorescent material in the upper layer and the lower layer.
- the light emitting layer may be composed of only the host material, the delayed fluorescent material and the light emitting material, or may contain other organic materials. Examples of other organic materials include a hole transport material and an electron transport material. As the hole transport material and the electron transport material, the following hole transport material and electron transport material used in the hole transport layer and the electron transport layer can be referred to, respectively.
- the organic light emitting device of the present invention may be a photoexcited organic light emitting device in which an excited state is generated by irradiation of excitation light, or a carrier injection type organic light emitting device in which an excited state is generated by carrier injection. Also good. Specifically, an organic photoluminescence element (organic PL element) and an organic electroluminescence element (organic EL element) can be exemplified. Further, the organic light emitting device of the present invention may be a photoexcited organic semiconductor laser or a carrier injection organic semiconductor laser that uses the laser dye as described above as a light emitting material. The organic light emitting device of the present invention can realize high luminous efficiency in any system. In particular, when the present invention is applied to an organic semiconductor laser, the threshold energy and threshold current density required for ASE radiation are reduced, and excellent ASE characteristics can be obtained.
- the photoexcited organic light emitting device has a structure in which at least a light emitting layer is formed on a substrate. Further, the carrier injection type organic light emitting device has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
- the organic layer has at least a light-emitting layer containing a host material, a delayed fluorescent material, and a light-emitting material satisfying the above formula (1), and may consist of only the light-emitting layer, or one or more layers in addition to the light-emitting layer It may have an organic layer.
- Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
- the hole transport layer may be a hole injection / transport layer having a hole injection function
- the electron transport layer may be an electron injection / transport layer having an electron injection function.
- FIG. 2 A specific structure example of a carrier injection type organic light emitting device is shown in FIG. In FIG. 2, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode.
- FIG. 2 is a substrate
- 2 is an anode
- 3 is a hole injection layer
- 4 is a hole transport layer
- 5 is a light emitting layer
- 6 an electron transport layer
- 7 is a cathode.
- the above description can be referred to for the functions and specific examples of the host material, the delayed fluorescent material, and the light emitting material that constitute the light emitting layer. Below, each other member and each layer are demonstrated. The description of the substrate and the light emitting layer also applies to the substrate and the light emitting layer of the organic photoluminescence element.
- the organic light emitting device of the present invention is preferably supported on a substrate.
- the substrate is not particularly limited and may be any substrate that has been conventionally used in organic light-emitting elements.
- a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
- an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) is preferably used.
- electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
- conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
- an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
- a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
- wet film-forming methods such as a printing system and a coating system, can also be used.
- the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
- cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- the light emission luminance is advantageously improved.
- a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
- the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
- the injection layer can be provided as necessary.
- the hole blocking layer has a function of an electron transport layer in a broad sense.
- the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
- the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
- the electron blocking layer has a function of transporting holes in a broad sense.
- the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
- the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
- the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
- the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
- a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
- an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
- the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
- the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
- hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
- the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
- the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
- Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- each organic layer is not particularly limited, and it may be produced by either a dry process or a wet process.
- preferable materials that can be used for the organic light emitting device are shown below.
- the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function.
- R, R ′, and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent.
- X represents a carbon atom or a hetero atom forming a ring skeleton
- n represents an integer of 3 to 5
- Y represents a substituent
- m represents an integer of 0 or more.
- the organic light emitting device manufactured by the above method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
- the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
- the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
- the organic light-emitting device of the present invention can be applied to any of a single device, a device having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
- the host material comprises a delayed fluorescent material and light emitting material, by the relationship of the lowest excited singlet energy level E S1 between the materials is defined, an organic luminescence emission efficiency is greatly improved An element is obtained.
- the organic light emitting device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
- organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
- Photonics C11347), source meter (Ceethley: 2400 series), semiconductor parameter analyzer (Agilent Technology: E5273A), optical power meter measuring device (Newport: 1930C), optical spectrometer ( Ocean Optics: USB2000), Spectroradiometer (Topcon: SR-3), Streak Camera (C4334, Hamamatsu Photonics) and Multichannel Detector (Hamamatsu Photonics: PMA-11) It was performed using.
- the vertical axis represents light emission and the horizontal axis represents wavelength.
- a tangent line was drawn with respect to the fall of the emission spectrum on the short wave side, and a wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
- a value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ES1 .
- Conversion formula: E S1 [eV] 1239.85 / ⁇ edge
- the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
- the tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
- ⁇ p represents the transient decay time of the immediate fluorescence component
- ⁇ d represents the transient decay time of the delayed fluorescence component
- ⁇ prompt represents the quantum efficiency of the immediate fluorescence component
- ⁇ delayed represents the quantum of the delayed fluorescence component.
- the transient decay time ⁇ p of the immediate fluorescence component and the transient decay time ⁇ d of the delayed fluorescence component can be measured by a streak camera.
- Quantum efficiency phi delayed quantum efficiency phi prompt and delayed fluorescence component immediate fluorescence component, using the absolute quantum yield measurement device, after obtaining the ⁇ PL the total, measured time-resolved integrated value of the emission spectrum by the streak camera Can be measured.
- the rate constant k ISC is 2.0 ⁇ 10 7 / s
- the rate constant k RISC of the reverse intersystem crossing from the lowest excited triplet state to the lowest excited singlet state is 4.6 ⁇ 10 5 / s.
- mCBP, ACRXTN, and C545T were co-deposited from different evaporation sources under a vacuum degree of 5 ⁇ 10 ⁇ 5 Pa or less, and the concentration of ACRXTN was 6.0 wt% and C545T.
- a thin film having a concentration of 1% by weight was formed to a thickness of 100 nm to obtain a photoexcited organic semiconductor laser.
- Example 1 Production of a photoexcited organic semiconductor laser using mCBP (host material) and C545T (light emitting material) When forming a thin film, the same process as in Example 1 was performed except that an ACRXTN deposition source was not used. Then, a photoexcited organic semiconductor laser having a thin film made of mCBP and C545T (1 wt%) was produced.
- Example 1 The characteristics of the organic semiconductor lasers manufactured in Example 1 and Comparative Example 1 were evaluated.
- the organic semiconductor laser of Example 1 is irradiated with excitation light having a wavelength of 337 nm and a pulse width of 0.8 ⁇ s, and the result of observation of the change in light intensity over time with a streak camera is shown in FIG.
- FIG. 4 shows the change in light intensity over time observed for the organic semiconductor laser of Comparative Example 1 under the same conditions.
- FIG. 3 in the organic semiconductor laser of Example 1, an immediate emission component was observed and a delayed emission component was observed in the range of 2.0 to 10 ⁇ s. Moreover, these emission spectra were in agreement with the emission spectrum of C545T.
- the organic semiconductor laser of Comparative Example 1 no delayed light emission component was observed in the range of 2.0 to 10 ⁇ s.
- the fact that the delayed emission component was observed only with the organic semiconductor laser of Example 1 indicates that the excited triplet energy generated in ACRXTN has moved to C545T via the crossing between inverse terms.
- the photoluminescence quantum efficiency of the organic semiconductor laser of Example 1 was 86 ⁇ 3%, of which the photoluminescence quantum efficiency of the immediate emission component was 74% and the photoluminescence quantum efficiency of the delayed emission component was 12%. It was. From this, it was found that the excited singlet energy delivered via the reverse crossing of ACRXTN contributed to 10% or more of the singlet exciton radiated and deactivated by C545T.
- the photoluminescence quantum efficiency of the organic semiconductor laser of Comparative Example 1 was 81 ⁇ 3%.
- FIG. 6 shows the relationship between the excitation energy and the half-value width FWHM of the emission peak for the organic semiconductor laser of Example 1
- FIG. 7 shows the relationship between the excitation energy and the emission peak intensity.
- FIG. 6 shows the relationship between the excitation energy measured under the same conditions as in Example 1 and the half-value width FWHM of the emission peak for the organic semiconductor laser of Comparative Example 1
- FIG. 8 shows the relationship between the excitation energy and the emission peak intensity.
- the emission peak and emission peak intensity are the emission peak and emission peak intensity at 535 nm, respectively.
- the half-value width FWHM of the emission peak sharply decreases and the light emission occurs at an excitation energy of 1.0 ⁇ J / cm 2 or more. The peak intensity increased rapidly, and ASE could be confirmed.
- the threshold energy E th at which the emission peak intensity rapidly changes is 0.8 ⁇ 0.3 ⁇ J / cm 2
- the threshold value of the organic semiconductor laser of Comparative Example 1 is energy E th was large as 1.2 ⁇ 0.3 ⁇ J / cm 2.
- FIG. 9 shows an emission spectrum of the produced organic semiconductor laser with 377 nm excitation light
- FIG. 10 shows a relationship between excitation energy and emission peak intensity.
- this organic semiconductor laser light emission and delayed light emission component derived from C545T having a photoluminescence quantum efficiency of 80 ⁇ 3% were observed.
- the delayed emission component is presumed to be based on the fact that the excited triplet energy of FIrpic moves to C545T to generate singlet excitons.
- FIG. 10 in the organic semiconductor laser of Comparative Example 2, even if the excitation energy was 100 ⁇ J / cm 2 or more, no sudden change in emission peak intensity was observed. This is presumably because singlet-triplet annihilation or triplet-triplet annihilation occurred, and C545T singlet excitons and FIrpic triplet excitons disappeared.
- Example 2 Production of Carrier Injection Organic Semiconductor Laser Using mCBP (Host Material), ACRXTN (Delayed Fluorescent Material), and C545T (Luminescent Material)
- ITO indium tin oxide
- Each thin film was laminated on the formed glass substrate by a vacuum deposition method at a vacuum degree of 5.0 ⁇ 10 ⁇ 5 Pa or less.
- HATCN was formed on ITO with a thickness of 10 nm
- Tris-PCz was formed thereon with a thickness of 20 nm.
- C545T, ACRXTN, and mCBP were co-evaporated from different vapor deposition sources to form a first light-emitting layer having a thickness of 20 nm, a second light-emitting layer having a thickness of 5 nm, and a third light-emitting layer having a thickness of 15 nm in this order.
- the first light-emitting layer has a C545T concentration of 1% by weight and ACRXTN concentration of 20% by weight
- the second light-emitting layer has a C545T concentration of 1% by weight
- the layer had a C545T concentration of 1 wt% and an ACRXTN concentration of 20 wt%.
- T2T was formed to a thickness of 10 nm
- BPyTP2 was formed thereon to a thickness of 20 nm.
- lithium fluoride (LiF) was vacuum-deposited at 0.8 nm
- aluminum (Al) was evaporated at a thickness of 100 nm to form a cathode, thereby obtaining a carrier injection type organic semiconductor laser.
- Example 3 Production of current injection type organic semiconductor laser using mCBP (host material) and C545T (light emitting material) Instead of forming the first light emitting layer to the third light emitting layer, C545T and mCBP were co-evaporated.
- a carrier injection type organic semiconductor laser was manufactured in the same manner as in Example 2 except that one light emitting layer having a thickness of 40 nm was formed. Here, the concentration of C545T in the light emitting layer was 1% by weight.
- the element characteristics of the organic semiconductor lasers manufactured in Example 2 and Comparative Example 3 were evaluated. The emission spectrum of each organic semiconductor laser is shown in FIG. 11, the voltage-current density characteristic is shown in FIG. 12, and the current density-external quantum efficiency characteristic is shown in FIG.
- the right scale in FIG. 13 shows the rate of increase in external quantum efficiency of Example 2 relative to Comparative Example 3.
- Both the organic semiconductor laser of Example 2 and the organic semiconductor laser of Comparative Example 3 were observed to emit green light derived from C545T, but the organic semiconductor laser of Example 2 was compared with the organic semiconductor laser of Comparative Example 3.
- An external quantum efficiency of 6 times or more was obtained. Since the increase rate of the external quantum efficiency of Example 2 with respect to Comparative Example 3 is high even in a high current region, it was found that Exciton annihilation was suppressed in Example 2.
- the maximum internal quantum efficiency was calculated to be 33 to 50% for the organic semiconductor laser of Example 2 and 5 to 7.5% for the organic EL element of Comparative Example 2.
- This maximum internal quantum efficiency corresponds to 38 to 58% and 6 to 9% of exciton generation efficiency, respectively. From the value of the exciton generation efficiency, it was shown that triplet excitons generated by ACRXTN greatly contributed to the number of singlet excitons in C545T in the organic semiconductor laser of Example 2. Further, when the threshold current density was determined using the threshold energy Eth and the maximum exciton generation efficiency, the organic semiconductor laser of Example 2 was 186 to 280 A / cm 2 , and the organic semiconductor laser of Comparative Example 3 was 1.8 to It was 2.69 KA / cm 2 . From this, it was found that in the carrier injection type system, the threshold for optical amplification is significantly reduced by adding ACRXTN.
- the organic light emitting device of the present invention has high luminous efficiency, it can be applied to various devices such as an organic semiconductor laser, a display device, and a lighting device. For this reason, this invention has high industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
- Indole Compounds (AREA)
- Semiconductor Lasers (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Pyridine Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
すなわち、ASEを放射する蛍光材料とホスト材料からなる活性層(発光層)では、外部からエネルギーが付与されると、主としてホスト材料がエネルギーを吸収して励起一重項状態に遷移し、その励起一重項エネルギーが蛍光材料に移動する。エネルギーを受けて励起一重項状態に遷移した蛍光材料は、その後、ASEを放射しつつ基底状態に戻る。一方、発光層では、励起一重項状態からの項間交差により三重項励起子も生じる。ここで、三重項励起子の緩和過程は一重項励起子の緩和過程に比べて生じ難いため、三重項励起子は一重項励起子に比べて寿命が長く、活性層にエネルギーが付与されている間に蓄積してしまう。そして、三重項励起子が蓄積した発光層では、三重項励起子による励起子エネルギーの吸収や一重項-三重項消滅(STA)が生じ易くなり、ASEに寄与し得るエネルギーが損失してしまう。このような理由から、特許文献1に記載の、二成分系の有機半導体レーザーでは発光効率の向上に限界があり、ASE発振に要する閾値も大きな値になってしまう。
鋭意検討を進めた結果、本発明者らは、ホスト材料、遅延蛍光材料及び発光材料を用いるとともに、各材料間の最低励起一重項エネルギー準位ES1の関係を規定することにより、有機発光素子内で生じた励起一重項エネルギーと励起三重項エネルギーの両方を発光に効率よく寄与させることができ、高い発光効率を有する有機発光素子を提供できることを見出した。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
式(1) ES1(H)>ES1(F)>ES1(D)
(上式において、ES1(H)は前記ホスト材料の最低励起一重項エネルギー準位を表し、ES1(F)は前記遅延蛍光材料の最低励起一重項エネルギー準位を表し、ES1(D)は前記発光材料の最低励起一重項エネルギー準位を表す。)
[2] 前記遅延蛍光材料は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.3eV以下であることを特徴とする[1]に記載の有機発光素子。
[3] 前記遅延蛍光材料は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.08eV以下であることを特徴とする[1]に記載の有機発光素子。
[4] 前記遅延蛍光材料は、最低励起三重項状態から最低励起一重項状態への速度定数kRISCが105/s以上であることを特徴とする[1]~[3]のいずれか1項に記載の有機発光素子。
[5] 前記発光材料は、最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射するものであることを特徴とする[1]~[4]のいずれか1項に記載の有機発光素子。
[6] 前記発光材料は、自然放出増幅光を放射するものである[1]~[5]のいずれか1項に記載の有機発光素子。
[7] 前記遅延蛍光材料の含有量が前記ホスト材料の含有量よりも小さいことを特徴とする[1]~[6]のいずれか1項に記載の有機発光素子。
[8] 前記発光材料として2種以上の化合物を含むことを特徴とする[1]~[7]のいずれか1項に記載の有機発光素子。
[9] 前記式(1)を満たすホスト材料、遅延蛍光材料及び発光材料を含む発光層を有する[1]~[8]のいずれか1項に記載の有機発光素子。
[10] 前記発光層は、複数の層からなる多層構成である[9]に記載の有機発光素子。
[11] 前記発光層を構成する複数の層は、遅延蛍光材料の含有量が異なる[10]に記載の有機発光素子。
[12] 光励起型有機発光素子である[1]~[11]のいずれか1項に記載の有機発光素子。
[13] 有機半導体レーザーであることを特徴とする[1]~[12]のいずれか1項に記載の有機発光素子。
[14] キャリア注入型有機半導体レーザーである[13]に記載の有機発光素子。
本発明の有機発光素子は、下記式(1)を満たすホスト材料、遅延蛍光材料及び発光材料を含むことを特徴とする。
式(1) ES1(H)>ES1(F)>ES1(D)
上式において、ES1(H)はホスト材料の最低励起一重項エネルギー準位を表し、ES1(F)は遅延蛍光材料の最低励起一重項エネルギー準位を表し、ES1(D)は発光材料の最低励起一重項エネルギー準位を表す。
また、本発明における「遅延蛍光材料」は、励起三重項状態に遷移した後、励起一重項状態に逆項間交差することができ、励起一重項状態から基底状態に戻るときに蛍光を放射する有機化合物のことを言う。なお、励起三重項状態から励起一重項状態への逆項間交差により生じる光の寿命は、通常の蛍光(即時蛍光)やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。このため、このような蛍光を「遅延蛍光」と称する。
図1に、本発明の有機発光素子の推定されるエネルギー移動機構を示す。なお、図1は、推定されるエネルギー移動機構を模式的に示すものであり、各材料の最低励起一重項エネルギー準位ES1や励起子の移動経路はこれに限るものではない。
図1に示すように、この有機発光素子は、例えば励起光が照射されると、主としてホスト材料がエネルギーを吸収して基底状態から励起一重項状態に遷移する。ここで、この有機発光素子では、材料の最低励起一重項エネルギー準位ES1(H),ES1(F),ES1(D)が上記式(1)を満たすため、ホスト材料の励起一重項エネルギーは遅延蛍光材料と発光材料にフェルスター機構(FRET)等で移動し、さらに遅延蛍光材料の励起一重項エネルギーは発光材料に移動する。このエネルギーを受けて励起一重項状態に遷移した発光材料は、その後、蛍光を放射しながら基底状態に戻る。
このとき、有機発光素子では、励起一重項状態から励起三重項状態への項間交差によって励起三重項状態も生じるが、遅延蛍光材料を含むため、この遅延蛍光材料で三重項励起状態が一重項励起状態に逆項間交差し、この逆項間交差によって生じた励起一重項状態のエネルギーも発光材料に移動する。このため、励起三重項エネルギーが間接的に発光に寄与し、遅延蛍光材料を含まない構成に比べて発光効率を飛躍的に向上させることができる。
また、有機発光素子にキャリアを注入して発光させる場合には、キャリアの注入によって一重項励起子と三重項励起子が1:3の割合で形成されるが、この場合にも、遅延蛍光材料における逆項間交差を経由して、三重項励起子のエネルギーが間接的に発光に寄与する。このため、75%の割合で形成される三重項励起子のエネルギーを効率よく発光に利用することができ、遅延蛍光材料を含まない構成に比べて格段に高い発光効率を得ることができる。
なお、本発明の有機発光素子において、発光は主として発光材料から生じるが、発光の一部はホスト材料および遅延蛍光材料からの発光であってもかまわない。また、この発光は蛍光発光、遅延蛍光発光および自然放出増幅光(ASE)を含む。
(遅延蛍光材料)
遅延蛍光材料としては、特に限定されないが、熱エネルギーの吸収によって励起一重項状態から励起三重項状態に逆項間交差する熱活性化型の遅延蛍光材料であることが好ましい。熱活性化型の遅延蛍光材料は、デバイスが発する熱を吸収して励起三重項状態から励起一重項へ比較的容易に逆項間交差し、その励起三重項エネルギーを効率よく発光に寄与させることができる。
好ましい遅延蛍光材料として下記一般式で表される化合物を挙げることができる。また、WO2013/154064号公報の段落0008~0048および0095~0133の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
<A> R25およびR26は一緒になって単結合を形成する。
<B> R27およびR28は一緒になって置換もしくは無置換のベンゼン環を形成するのに必要な原子団を表す。]
[1] 下記一般式(131)で表される化合物。
[2] 前記一般式(132)で表される基が、下記一般式(133)~(138)のいずれかで表される基であることを特徴とする[1]に記載の化合物。
[3] 一般式(131)のR3が、シアノ基であることを特徴とする[1]または[2]に記載の化合物。
[4] 一般式(131)のR1とR4が前記一般式(132)で表される基であることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] 前記一般式(132)のL12が、フェニレン基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] 前記一般式(132)で表される基が、前記一般式(133)で表される基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[7] 前記一般式(133)のL13が、1,3-フェニレン基であることを特徴とする[6]に記載の化合物。
[8] 前記一般式(132)で表される基が、前記一般式(134)で表される基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[9] 前記一般式(134)のL14が、1,4-フェニレン基であることを特徴とする[8]に記載の化合物。
[10] 前記一般式(132)で表される基が、前記一般式(138)で表される基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[11] 前記一般式(132)のL18が、1,4-フェニレン基である[10]に記載の化合物。
[1] 下記一般式(191)で表される化合物。
[2] 一般式(191)のR1~R4の少なくとも1つが置換もしくは無置換のジアリールアミノ基であって、R5~R8の少なくとも1つが置換もしくは無置換のジアリールアミノ基であることを特徴とする[1]に記載の化合物。
[3] 一般式(191)のR3およびR6が置換もしくは無置換のジアリールアミノ基であることを特徴とする[2]に記載の化合物。
[4] 一般式(191)のR1~R8の少なくとも1つが置換もしくは無置換のジフェニルアミノ基であることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] 一般式(191)のAr2およびAr3が各々独立に置換もしくは無置換のフェニル基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] 一般式(191)のAr1が各々独立に置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基、または置換もしくは無置換のアントラセニレン基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[7] 下記一般式(192)で表される構造を有することを特徴とする[1]に記載の化合物。
[8] 一般式(192)のR1~R4の少なくとも1つが置換もしくは無置換のジアリールアミノ基であって、R5~R8の少なくとも1つが置換もしくは無置換のジアリールアミノ基であることを特徴とする[7]に記載の化合物。
[9] 一般式(192)のR3およびR6が置換もしくは無置換のジアリールアミノ基であることを特徴とする[8]に記載の化合物。
[1]下記一般式(201)で表される化合物。
[2]前記一般式(201)のR3およびR6の少なくとも一つが置換もしくは無置換のカルバゾリル基である[1]の化合物。
[3]前記カルバゾリル基が、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基または4-カルバゾリル基である[1]または[2]に記載の化合物。
[4]前記カルバゾリル基が、カルバゾール環構造中の窒素原子に置換基を有する[1]~[3]のいずれか一つの化合物。。
[5]前記一般式(201)のAr1、Ar2およびAr3の少なくとも一つが、ベンゼン環またはナフタレン環である[1]~[4]のいずれか一つの化合物。
[7]前記一般式(201)のAr1、Ar2およびAr3がベンゼン環である[1]~[6]のいずれか一つの化合物。
[1] 下記一般式(251)で表される化合物。
[2] 前記一般式(251)で表される化合物が下記一般式(252)で表される構造を有することを特徴とする[1]に記載の化合物。
[3] 前記一般式(251)で表される化合物が下記一般式(253)で表される構造を有することを特徴とする[1]に記載の化合物。
[4] 前記一般式(253)のYが下記一般式(254)~(257)のいずれかで表される基であることを特徴とする[3]に記載の化合物。
[5] 前記一般式(253)のYが下記一般式(258)で表される基であることを特徴とする[3]に記載の化合物。
[6] 一般式(258)において、R23’とR28’の少なくとも一方は置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾール-9-イル基であることを特徴とする[5]に記載の化合物。
[7] 前記一般式(253)のYが前記一般式(255)で表される基であることを特徴とする[4]に記載の化合物。
[1] 下記一般式(261)で表される化合物。
[2] 前記一般式(261)のR3またはR6のうちの少なくとも1つが、前記一般式(262)~(266)のいずれかで表される基であることを特徴とする[1]に記載の化合物。
[3] 前記一般式(261)のR3とR6が、前記一般式(262)~(266)のいずれかで表される基であることを特徴とする[2]に記載の化合物。
[4] 前記一般式(261)のR3またはR6のうちの少なくとも1つが、前記一般式(263)で表される基であることを特徴とする[2]に記載の化合物。
[5] 前記一般式(261)のR3またはR6のうちの少なくとも1つが、前記一般式(262)で表される基であることを特徴とする請求項2に記載の化合物。
[6] 前記一般式(262)~(266)のR21~R28、R31~R38、R41~R48、R51~R58、R61~R68の少なくとも1つが、置換基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[7] 前記一般式(262)~(266)のR23、R26、R33、R36、R43、R46、R53、R56、R63、R66の少なくとも1つが、置換基であることを特徴とする[6]に記載の化合物。
[8] 前記置換基が、前記一般式(262)~(266)のいずれかで表される基であることを特徴とする[7]に記載の化合物。
[9] 前記一般式(262)~(266)のLが、単結合であることを特徴とする[1]~[8]のいずれか1項に記載の化合物。
[10] 前記一般式(261)のXが、酸素原子であることを特徴とする[1]~[9]のいずれか1項に記載の化合物。
[1] 下記一般式(271)で表される化合物。
[3] 一般式(271)のR1~R5のうちの少なくとも1つと、R6~R10のうちの少なくとも1つが、前記一般式(272)で表される基であることを特徴とする[1]または[2]に記載の化合物。
[4] 一般式(271)のR3とR8が、前記一般式(272)で表される基であることを特徴とする[3]に記載の化合物。
[5] 前記一般式(272)で表される基が、前記一般式(274)で表される基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] 前記一般式(272)で表される基が、前記一般式(273)で表される基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[7] 前記一般式(273)のR21~R24、R27~R30の少なくとも1つが置換基であることを特徴とする[6]に記載の化合物。
[8] 前記置換基が、前記一般式(273)~(278)のいずれかで表される基であることを特徴とする[7]に記載の化合物。
[9] 前記一般式(273)のR23およびR28の少なくとも1つが前記置換基であることを特徴とする[8]に記載の化合物。
[1] 下記一般式(281)で表される化合物からなる化合物。
[2] 一般式(281)のR1~R8の少なくとも1つが前記一般式(283)~(287)のいずれかで表される基であることを特徴とする[1]に記載の化合物。
[3] 一般式(281)のR1~R8の少なくとも1つが前記一般式(283)で表される基である場合に、前記一般式(283)のR21~R28のうち少なくとも1つは置換基であることを特徴とする[1]または[2]に記載の化合物。
[4] 一般式(281)のR2、R3、R6、およびR7の少なくとも1つが前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] 一般式(281)のR3およびR6の少なくとも1つが前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[4]に記載の化合物。
[6] 一般式(281)のR3とR6が、各々独立に前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[5]に記載の化合物。
[7] 前記一般式(282)のR11~R20の少なくとも1つ、前記一般式(283)のR21~R28の少なくとも1つ、前記一般式(284)のR31~R38の少なくとも1つと、R3aおよびR3bの少なくとも1つ、前記一般式(285)のR41~R48の少なくとも1つ、前記一般式(286)のR51~R58の少なくとも1つ、および前記一般式(287)のR61~R68の少なくとも1つが置換基であることを特徴とする[1]~[6]のいずれか1項に記載の化合物。
[8] 前記一般式(282)のR13およびR18の少なくとも一方、前記一般式(283)のR23およびR26の少なくとも一方、前記一般式(284)のR33およびR36の少なくとも一方と、R3aおよびR3bの少なくとも一方、前記一般式(285)のR43およびR46の少なくとも一方、前記一般式(286)のR53およびR56の少なくとも一方、並びに前記一般式(287)のR63およびR66の少なくとも一方が置換基であることを特徴とする[7]に記載の化合物。
[9] 前記一般式(282)のR13およびR18の少なくとも一方、前記一般式(283)のR23およびR26の少なくとも一方、前記一般式(284)のR33およびR36の少なくとも一方と、R3aおよびR3bの少なくとも一方、前記一般式(285)のR43およびR46の少なくとも一方、前記一般式(286)のR53およびR56の少なくとも一方、並びに前記一般式(287)のR63およびR66の少なくとも一方が、前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[8]に記載の化合物。
[10] 前記一般式(282)~(287)のL12~L17が、単結合であることを特徴とする[1]~[9]のいずれか1項に記載の化合物。
[11] 一般式(281)のXが、酸素原子であることを特徴とする[1]~[10]のいずれか1項に記載の化合物。
[12] 一般式(281)のR9が、下記一般式(a)で表される基であることを特徴とする[1]~[11]のいずれか1項に記載の化合物。
[13] 前記一般式(a)のR9aとR9eが置換基であることを特徴とする[12]に記載の化合物。
[14] 一般式(281)のR1~R8の少なくとも1つが前記一般式(284)で表される基であることを特徴とする[1]~[13]のいずれか1項に記載の化合物。
[15] 一般式(281)のR3とR6、またはR2とR7が、前記一般式(284)で表される基であることを特徴とする[1]~[4]、[7]~[14]のいずれか1項に記載の化合物。
[16] 前記一般式(284)のR3aとR3bが、置換基であることを特徴とする[14]または[15]に記載の化合物。
[17] 前記置換基が、炭素数1~15のアルキル基またはフェニル基であることを特徴とする[14]~[16]のいずれか1項に記載の化合物。
[18] 前記一般式(284)のR3aとR3bが互いに結合して環状構造を形成していることを特徴とする[14]~[16]のいずれか1項に記載の化合物。
[1] 下記一般式(291)で表される化合物。
[2] 前記一般式(291)で表される化合物が、下記一般式(292)で表される化合物であることを特徴とする[1]に記載の化合物。
[3] 前記一般式(291)で表される化合物が、下記一般式(293)で表される化合物であることを特徴とする[1]に記載の化合物。
[4] XがOまたはSであることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] YがO、SまたはN-R16であって、R16が置換もしくは無置換のアリール基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] R1~R8が、各々独立に水素原子、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、または炭素数3~12の置換もしくは無置換のヘテロアリール基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[1] 下記一般式(301)で表される化合物。
一般式(301)
(D)n-A
[一般式(301)において、Dは下記一般式(302)で表される基であり、Aは下記一般式(303)で表される構造を含むn価の基を表す。nは1~8のいずれかの整数を表す。]
[3] 一般式(302)のZ1が、N-Ar3を表す[1]に記載の化合物。
[5] 一般式(301)のnが1~4のいずれかの整数であることを特徴とする[1]~[4]のいずれか一項に記載の化合物。
[7] 一般式(305)のZ1およびZ2が各々独立にO、S、N-Ar3または単結合であることを特徴とする[6]に記載の化合物。
[8] 一般式(305)のYがOまたはN-Ar4であることを特徴とする[6]または[7]に記載の化合物。
[11] 一般式(307)のZ1とZ2が同一であり、Ar1”とAr2”が同一であり、R1とR14が同一であり、R2とR13が同一であり、R3とR12が同一であり、R4とR11が同一であり、R5とR18が同一であり、R6とR17が同一であり、R7とR16が同一であり、R8とR15が同一であることを特徴とする[10]に記載の化合物。
[12] 一般式(307)のZ1とZ2が各々独立にO、SまたはN-Ar3であることを特徴とする[10]または[11]に記載の化合物。
また、発光層を塗布法で成膜する場合には、比較的大きな分子量のものであっても分子量を問わずに好ましく用いることができる。
ホスト材料は、遅延蛍光材料及び発光材料よりも最低励起一重項エネルギー準位が大きい有機化合物であり、キャリアの輸送を担う機能や発光材料のエネルギーを該発光材料中に閉じ込める機能を有する。これにより、発光材料は、分子内でホールと電子とが再結合することによって生じたエネルギー、および、ホスト材料および遅延蛍光材料から受け取ったエネルギーを効率よく発光に変換することができ、発光効率が高い有機発光素子を実現することができる。
ホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。以下に、ホスト材料として用いることができる好ましい化合物を挙げる。なお、以下の例示化合物の構造式におけるR、R1~R10は、各々独立に水素原子または置換基を表す。nは3~5の整数を表す。
発光材料は、ホスト材料および遅延蛍光材料よりも最低励起一重項エネルギー準位が小さい発光体である。発光材料は、励起一重項状態のホスト材料および遅延蛍光材料と、励起三重項状態から逆項間交差して励起一重項状態になった遅延蛍光材料からエネルギーを受け取って励起一重項状態に遷移し、その後基底状態に戻るときに発光する。発光材料としては、このようにホスト材料および遅延蛍光材料からエネルギーを受け取って発光し得るものであれば特に限定されないが、最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射するものであることが好ましい。また、発光する光は、蛍光の他に、遅延蛍光やりん光を含んでいても構わない。また、発光材料は、自然放出増幅光(ASE)を放射する、いわゆるレーザー色素であってもよい。発光材料としてレーザー色素を用いることにより、この有機発光素子を有機半導体レーザーとして機能させることができる。本発明を適用した有機半導体レーザーは、ASE放射に要する閾値エネルギーや閾値電流密度が低く、優れたASE特性を得ることができる。
発光材料は、式(1)の関係を満たすものであれば2種以上を用いてもよい。例えば、発光色が異なる2種以上の発光材料を併用することにより、所望の色を発光させることが可能になる。
以下に、発光材料として用いることができる好ましい化合物を挙げる。
発光層に含まれる各材料の含有量は、特に限定されないが、遅延蛍光材料の含有量はホスト材料の含有量よりも小さいことが好ましい。これにより、より高い発光効率を得ることができる。具体的には、ホスト材料の含有量W1と遅延蛍光材料の含有量W2と発光材料の含有量W3の合計重量を100重量%としたとき、ホスト材料の含有量W1は15重量%以上、99.9重量%以下であることが好ましく、遅延蛍光材料の含有量W2は5.0重量%以上、50重量%以下であることが好ましく、発光材料の含有量W3は0.5重量%以上、5.0重量%以下であることが好ましい。
ホスト材料、遅延蛍光材料及び発光材料は、例えば、同一の層に混在した状態で発光層を構成する。発光層は、単層構成であってもよいし、各材料の組成比や厚さが異なる複数の層から構成された多層構成であってもよい。発光層を多層構成とすることにより、駆動電圧や外部量子効率等の特性を多様に変化させることができ、有機発光素子の特性を用途に合わせて最適なものに調整することができる。多層構成の発光層は、例えば、各層で遅延蛍光材料の含有量を変えたものを挙げることができ、具体的には、中間層と、該中間層の上下に設けられた上層及び下層を有し、中間層の遅延蛍光材料の濃度が上層及び下層の遅延蛍光材料化の濃度よりも低い3層構成の発光層であることが好ましい。
発光層は、ホスト材料、遅延蛍光材料及び発光材料のみから構成されていてもよいし、この他の有機材料を含んでいてもよい。この他の有機材料としては、例えば正孔輸送材料、電子輸送材料等を挙げることができる。正孔輸送材料、電子輸送材料としては、下記の正孔輸送層および電子輸送層で用いる正孔輸送材料、電子輸送材料をそれぞれ参照することができる。
本発明の有機発光素子は、励起光の照射によって励起状態が生成される光励起型有機発光素子であってもよいし、キャリアの注入によって励起状態が生成されるキャリア注入型有機発光素子であってもよい。具体的には、それぞれ、有機フォトルミネッセンス素子(有機PL素子)、有機エレクトロルミネッセンス素子(有機EL素子)を挙げることができる。また、本発明の有機発光素子は、上記したようなレーザー色素を発光材料として使用する光励起型有機半導体レーザーやキャリア注入型有機半導体レーザーであってもよい。本発明の有機発光素子は、いずれの方式である場合にも、高い発光効率を実現することができる。特に、有機半導体レーザーに本発明を適用した場合には、ASE放射に要する閾値エネルギーや閾値電流密度が低減し、優れたASE特性を得ることができる。
以下において、キャリア注入型有機発光素子の各部材および各層について説明する。なお、発光層を構成するホスト材料、遅延蛍光材料及び発光材料の機能および具体例については、上記の説明を参照することができる。以下では、その他の各部材および各層について説明する。また、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
本発明の有機発光素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機発光素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
有機発光素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機発光素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
(1)最低励起一重項エネルギー準位ES1
測定対象化合物をSi基板上に蒸着して試料を作製し、常温(300K)でこの試料の蛍光スペクトルを測定した。蛍光スペクトルは、縦軸を発光、横軸を波長とした。この発光スペクトルの短波側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
換算式:ES1[eV]=1239.85/λedge
発光スペクトルの測定には、励起光源に窒素レーザー(Lasertechnik Berlin社製、MNL200)を検出器には、ストリークカメラ(浜松ホトニクス社製、C4334)を用いた。
一重項エネルギーES1と同じ試料を77[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
換算式:ET1[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
最低励起一重項状態から最低励起三重項状態への項間交差の速度定数kISCおよび最低励起三重項状態から最低励起一重項状態への逆項間交差の速度定数kRISCは、下記式(1)~(5)により求めた。
即時蛍光成分の過渡減衰時間τpと遅延蛍光成分の過渡減衰時間τdは、ストリークカメラにより測定することができる。
即時蛍光成分の量子効率φpromptと遅延蛍光成分の量子効率φdelayedは、絶対量子収率測定装置を用い、totalのΦPLを求めた後、ストリークカメラにより時間分解された発光スペクトルの積分値を測定することにより測定することができる。
(実施例1) mCBP(ホスト材料)、ACRXTN(遅延蛍光材料)及びC545T(発光材料)を用いた光励起型有機半導体レーザーの作製
発光層の材料として下記の化合物を準備した。
石英基板上に真空蒸着法にて、真空度5×10-5Pa以下の条件にてmCBPとACRXTNとC545Tとを異なる蒸着源から共蒸着し、ACRXTNの濃度が6.0重量%、C545Tの濃度が1重量%である薄膜を100nmの厚さで形成して光励起型有機半導体レーザーとした。
薄膜を形成する際、ACRXTNの蒸着源を用いないこと以外は実施例1と同様の工程を行い、mCBPとC545T(1重量%)からなる薄膜を有する光励起型有機半導体レーザーを作製した。
実施例1の有機半導体レーザーについて、波長337nm、パルス幅0.8μsの励起光を照射し、ストリークカメラにて経時的な光強度変化を観測した結果を図3に示す。また、比較例1の有機半導体レーザーについて、同様の条件で観測した経時的な光強度変化を図4に示す。図3に示すように、実施例1の有機半導体レーザーでは、即時発光成分が観測されるとともに、2.0~10μsの範囲で遅延発光成分が観測された。また、これらの発光スペクトルはC545Tの発光スペクトルと一致していた。一方、比較例1の有機半導体レーザーでは、2.0~10μsの範囲に遅延発光成分が観測されなかった。実施例1の有機半導体レーザーのみで遅延発光成分が観測されたことは、ACRXTNで生じた励起三重項エネルギーが逆項間交差を経由してC545Tに移動したことを示すものである。また、実施例1の有機半導体レーザーのフォトルミネッセンス量子効率は86±3%であり、このうち、即時発光成分のフォトルミネッセンス量子効率は74%、遅延発光成分のフォトルミネッセンス量子効率は12%であった。このことから、ACRXTNの逆項間交差を経由して受け渡された励起一重項エネルギーは、C545Tで放射失活した一重項励起子の10%以上に寄与していたことがわかった。なお、比較例1の有機半導体レーザーのフォトルミネッセンス量子効率は81±3%であった。
さらに、導波管の損失係数は、実施例1の有機半導体レーザーで11±1/cm、比較例1の有機半導体レーザーで10±1/cmであった。この結果から、ACRXTNの三重項励起子は、C545Tの光増幅過程に悪影響を及ぼさないことがわかった。
薄膜を形成する際、ACRXTNの代わりにFIrpicを用いること以外は実施例1と同様の工程を行い、mCBPとFIrpic(6重量%)とC545T(1重量%)からなる薄膜を有する光励起型有機半導体レーザーを作製した。
(実施例2) mCBP(ホスト材料)、ACRXTN(遅延蛍光材料)、C545T(発光材料)を用いたキャリア注入型有機半導体レーザーの作製
膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-5Pa以下で積層した。まず、ITO上にHATCNを10nmの厚さに形成し、その上にTris-PCzを20nmの厚さに形成した。次に、C545TとACRXTNとmCBPとを異なる蒸着源から共蒸着し、厚さ20nmの第1発光層、厚さ5nmの第2発光層及び厚さ15nmの第3発光層を順に形成した。この時、第1発光層はC545Tの濃度を1重量%、ACRXTNの濃度を20重量%とし、第2発光層はC545Tの濃度を1重量%、ACRXTNの濃度を6重量%とし、第3発光層はC545Tの濃度を1重量%、ACRXTNの濃度を20重量%とした。次に、T2Tを10nmの厚さに形成し、その上にBPyTP2を20nmの厚さに形成した。さらに、フッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、キャリア注入型有機半導体レーザーとした。
第1発光層~第3発光層を形成する代わりに、C545TとmCBPを共蒸着して厚さ40nmの発光層を1層形成すること以外は、実施例2と同様にしてキャリア注入型有機半導体レーザーを製造した。ここで、発光層のC545Tの濃度は1重量%とした。
実施例2および比較例3で製造した有機半導体レーザーについて素子特性を評価した。
各有機半導体レーザーの発光スペクトルを図11に示し、電圧-電流密度特性を図12に示し、電流密度-外部量子効率特性を図13に示した。図13の右目盛りは比較例3に対する実施例2の外部量子効率の増加率を示している。
実施例2の有機半導体レーザーと比較例3の有機半導体レーザーは、いずれもC545Tに由来する緑色発光が観測されたが、実施例2の有機半導体レーザーでは、比較例3の有機半導体レーザーに比べて6倍以上の外部量子効率が得られた。比較例3に対する実施例2の外部量子効率の増加率は高電流域でも高くなっていることから、実施例2では励起子消滅が抑制されていることがうかがえた。また、最大内部量子効率を計算したところ、実施例2の有機半導体レーザーで33~50%、比較例2の有機EL素子で5~7.5%であった。この最大内部量子効率は、それぞれ励起子生成効率の38~58%、6~9%に対応する。この励起子生成効率の値から、実施例2の有機半導体レーザーではACRXTNで生成された三重項励起子がC545Tでの一重項励起子の数に大きく寄与していることが示された。
また、閾値エネルギーEthと最大励起子生成効率を用いて閾値電流密度を求めたところ、実施例2の有機半導体レーザーで186~280A/cm2、比較例3の有機半導体レーザーで1.8~2.69KA/cm2であった。このことから、キャリア注入型の系においては、ACRXTNの添加により、光増幅のための閾値が大幅に低下することがわかった。
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 陰極
Claims (14)
- 下記式(1)を満たすホスト材料、遅延蛍光材料及び発光材料を含むことを特徴とする有機発光素子。
式(1) ES1(H)>ES1(F)>ES1(D)
(上式において、ES1(H)は前記ホスト材料の最低励起一重項エネルギー準位を表し、ES1(F)は前記遅延蛍光材料の最低励起一重項エネルギー準位を表し、ES1(D)は前記発光材料の最低励起一重項エネルギー準位を表す。) - 前記遅延蛍光材料は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.3eV以下であることを特徴とする請求項1に記載の有機発光素子。
- 前記遅延蛍光材料は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.08eV以下であることを特徴とする請求項1に記載の有機発光素子。
- 前記遅延蛍光材料は、最低励起三重項状態から最低励起一重項状態への速度定数kRISCが105/s以上であることを特徴とする請求項1~3のいずれか1項に記載の有機発光素子。
- 前記発光材料は、最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射するものであることを特徴とする請求項1~4のいずれか1項に記載の有機発光素子。
- 前記発光材料は、自然放出増幅光を放射するものである請求項1~5のいずれか1項に記載の有機発光素子。
- 前記遅延蛍光材料の含有量が前記ホスト材料の含有量よりも小さいことを特徴とする請求項1~6のいずれか1項に記載の有機発光素子。
- 前記発光材料として2種以上の化合物を含むことを特徴とする請求項1~7のいずれか1項に記載の有機発光素子。
- 前記式(1)を満たすホスト材料、遅延蛍光材料及び発光材料を含む発光層を有する請求項1~8のいずれか1項に記載の有機発光素子。
- 前記発光層は、複数の層からなる多層構成である請求項9に記載の有機発光素子。
- 前記発光層を構成する複数の層は、前記遅延蛍光材料の含有量が異なる請求項10に記載の有機発光素子。
- 光励起型有機発光素子である請求項1~11のいずれか1項に記載の有機発光素子。
- 有機半導体レーザーである請求項1~12のいずれか1項に記載の有機発光素子。
- キャリア注入型有機半導体レーザーである請求項13に記載の有機発光素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15822630.8A EP3171421B1 (en) | 2014-07-18 | 2015-07-17 | Organic light-emitting element |
US15/327,328 US20170163010A1 (en) | 2014-07-18 | 2015-07-17 | Organic light-emitting element |
KR1020177004112A KR102196821B1 (ko) | 2014-07-18 | 2015-07-17 | 유기 발광 소자 |
CN201580038597.1A CN106537630B (zh) | 2014-07-18 | 2015-07-17 | 有机发光元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-148182 | 2014-07-18 | ||
JP2014148182A JP6482782B2 (ja) | 2014-07-18 | 2014-07-18 | 有機発光素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016010136A1 true WO2016010136A1 (ja) | 2016-01-21 |
Family
ID=55078622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070510 WO2016010136A1 (ja) | 2014-07-18 | 2015-07-17 | 有機発光素子 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170163010A1 (ja) |
EP (1) | EP3171421B1 (ja) |
JP (1) | JP6482782B2 (ja) |
KR (1) | KR102196821B1 (ja) |
CN (1) | CN106537630B (ja) |
WO (1) | WO2016010136A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106997926A (zh) * | 2016-01-26 | 2017-08-01 | 昆山工研院新型平板显示技术中心有限公司 | 一种白光量子点电致发光器件 |
WO2021157642A1 (ja) * | 2020-02-04 | 2021-08-12 | 株式会社Kyulux | ホスト材料、組成物および有機発光素子 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6781534B2 (ja) * | 2014-07-31 | 2020-11-04 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
US10873050B2 (en) | 2016-03-29 | 2020-12-22 | Sharp Kabushiki Kaisha | Organic EL display device and organic EL display device manufacturing method |
KR20190045299A (ko) * | 2016-09-06 | 2019-05-02 | 가부시키가이샤 큐럭스 | 유기 발광 소자 |
KR102250191B1 (ko) | 2017-03-06 | 2021-05-10 | 삼성전자주식회사 | 발광 장치 |
JP2018174279A (ja) * | 2017-03-31 | 2018-11-08 | 国立大学法人九州大学 | 有機半導体レーザー素子 |
JP2019140188A (ja) * | 2018-02-07 | 2019-08-22 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び電子機器 |
JP7325731B2 (ja) * | 2018-08-23 | 2023-08-15 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
CN109411634B (zh) * | 2018-08-31 | 2019-12-24 | 昆山国显光电有限公司 | 一种有机电致发光器件和显示装置 |
EP3975279B1 (en) * | 2018-10-15 | 2024-03-13 | Samsung Display Co., Ltd. | Organic electroluminescent device emitting blue light |
KR20210095933A (ko) * | 2018-11-30 | 2021-08-03 | 가부시키가이샤 큐럭스 | 막의 제조 방법, 유기 반도체 소자의 제조 방법 및 유기 반도체 소자 |
US20220238815A1 (en) * | 2019-05-20 | 2022-07-28 | Idemitsu Kosan Co.,Ltd. | Organic electroluminescent element, compound, and electronic appliance |
KR20210096495A (ko) | 2020-01-28 | 2021-08-05 | 삼성전자주식회사 | 유기 발광 소자 |
CN111725410A (zh) * | 2020-06-10 | 2020-09-29 | 武汉华星光电半导体显示技术有限公司 | 一种有机发光膜层、oled显示面板及显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012099241A1 (ja) * | 2011-01-20 | 2012-07-26 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
WO2012133188A1 (ja) * | 2011-03-25 | 2012-10-04 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
WO2014013947A1 (ja) * | 2012-07-20 | 2014-01-23 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
WO2015002213A1 (ja) * | 2013-07-03 | 2015-01-08 | 国立大学法人九州大学 | 発光材料、遅延蛍光体、有機発光素子および化合物 |
JP5669163B1 (ja) * | 2013-08-14 | 2015-02-12 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
WO2015098975A1 (ja) * | 2013-12-26 | 2015-07-02 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子および電子機器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW518768B (en) * | 2000-05-22 | 2003-01-21 | Showa Denko Kk | Organic electroluminescent device and light-emitting material |
JP2006265172A (ja) | 2005-03-24 | 2006-10-05 | Japan Science & Technology Agency | 新規カルバゾール誘導体並びにそれを用いた有機エレクトロルミネッセンス素子および有機半導体レーザー素子 |
JP5213405B2 (ja) * | 2007-10-04 | 2013-06-19 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
EP2511360A4 (en) * | 2009-12-07 | 2014-05-21 | Nippon Steel & Sumikin Chem Co | Organic light-emitting material and organic light-emitting element |
US8654806B2 (en) | 2011-10-27 | 2014-02-18 | The Regents Of The University Of Michigan | Organic semiconductor lasers by triplet managers |
DE102012021174A1 (de) * | 2011-10-27 | 2013-06-27 | The Regents Of The University Of Michigan | Organische Halbleiterlaser mit Tripleit-Manager |
JP6113993B2 (ja) * | 2012-10-03 | 2017-04-12 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
-
2014
- 2014-07-18 JP JP2014148182A patent/JP6482782B2/ja active Active
-
2015
- 2015-07-17 US US15/327,328 patent/US20170163010A1/en not_active Abandoned
- 2015-07-17 WO PCT/JP2015/070510 patent/WO2016010136A1/ja active Application Filing
- 2015-07-17 CN CN201580038597.1A patent/CN106537630B/zh active Active
- 2015-07-17 KR KR1020177004112A patent/KR102196821B1/ko active IP Right Grant
- 2015-07-17 EP EP15822630.8A patent/EP3171421B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012099241A1 (ja) * | 2011-01-20 | 2012-07-26 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
WO2012133188A1 (ja) * | 2011-03-25 | 2012-10-04 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
WO2014013947A1 (ja) * | 2012-07-20 | 2014-01-23 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
WO2015002213A1 (ja) * | 2013-07-03 | 2015-01-08 | 国立大学法人九州大学 | 発光材料、遅延蛍光体、有機発光素子および化合物 |
JP5669163B1 (ja) * | 2013-08-14 | 2015-02-12 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
WO2015098975A1 (ja) * | 2013-12-26 | 2015-07-02 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子および電子機器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3171421A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106997926A (zh) * | 2016-01-26 | 2017-08-01 | 昆山工研院新型平板显示技术中心有限公司 | 一种白光量子点电致发光器件 |
WO2021157642A1 (ja) * | 2020-02-04 | 2021-08-12 | 株式会社Kyulux | ホスト材料、組成物および有機発光素子 |
Also Published As
Publication number | Publication date |
---|---|
JP6482782B2 (ja) | 2019-03-13 |
EP3171421A1 (en) | 2017-05-24 |
KR102196821B1 (ko) | 2020-12-30 |
EP3171421A4 (en) | 2018-03-14 |
CN106537630B (zh) | 2020-03-31 |
KR20170036706A (ko) | 2017-04-03 |
CN106537630A (zh) | 2017-03-22 |
JP2016025209A (ja) | 2016-02-08 |
EP3171421B1 (en) | 2023-01-25 |
US20170163010A1 (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016010136A1 (ja) | 有機発光素子 | |
JP5669163B1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6513565B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6095643B2 (ja) | 発光材料および有機発光素子 | |
JP7182774B2 (ja) | 発光素子 | |
WO2018117179A1 (ja) | 有機発光素子、それに用いられる発光材料および遅延蛍光体 | |
JP6494079B2 (ja) | 有機発光素子 | |
JP6567504B2 (ja) | 有機発光素子 | |
WO2017115833A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2016130231A (ja) | 化合物、混合物、発光層、有機発光素子およびアシストドーパント | |
WO2016111196A1 (ja) | 化合物、混合物、発光層、有機発光素子およびアシストドーパント | |
JP7040442B2 (ja) | 有機エレクトロルミネッセンス材料及びこれを用いた有機エレクトロルミネッセンス素子 | |
JP7337369B2 (ja) | 有機発光素子、積層体および発光方法 | |
TW202039770A (zh) | 分解抑制劑、薄膜、雷射振盪元件及雷射色素之分解抑制方法 | |
JP2018111751A (ja) | 発光材料、化合物および有機発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15822630 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15327328 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177004112 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015822630 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015822630 Country of ref document: EP |