WO2016009770A1 - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
WO2016009770A1
WO2016009770A1 PCT/JP2015/067283 JP2015067283W WO2016009770A1 WO 2016009770 A1 WO2016009770 A1 WO 2016009770A1 JP 2015067283 W JP2015067283 W JP 2015067283W WO 2016009770 A1 WO2016009770 A1 WO 2016009770A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
recess
bracket
core
Prior art date
Application number
PCT/JP2015/067283
Other languages
French (fr)
Japanese (ja)
Inventor
智則 佐々木
祐弥 井沢
清 上辻
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016009770A1 publication Critical patent/WO2016009770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors

Definitions

  • the present invention relates to a rotor, and more particularly to a rotor including a rotor core and a bracket.
  • an outer rotor of a double rotor motor includes, for example, a cylindrical outer rotor core in which a plurality of annular steel plates are laminated and a shaft for transmitting rotation of the outer rotor, as described in Patent Document 1. And having a bracket.
  • a positioning pin is used, or a center hole or a magnet hole of the outer rotor core is used.
  • the conventional positioning method has a problem that it cannot be accurately positioned.
  • the present invention has been made to solve such problems, and an object thereof is to provide a rotor in which a rotor core and a bracket are accurately positioned.
  • the rotor according to the present invention includes a cylindrical rotor core and a bracket having a shaft.
  • the rotor core is formed with a recess recessed in the axial direction with respect to one end face, and the bracket is inserted into the recess.
  • the bracket is attached to the rotor core so that the shaft and the rotor core are coaxial by inserting the insertion portion into the recess.
  • the bracket is attached to the rotor core so that the shaft and the rotor core are coaxial by inserting the insertion portion of the bracket into the concave portion that is recessed in the axial direction with respect to one end surface of the rotor core. And the bracket can be accurately positioned.
  • FIG. 3 is a plan view of a rotor core of the rotor according to Embodiment 1.
  • FIG. FIG. 6 is a plan view of a rotor core according to a modification of the rotor according to the first embodiment.
  • FIG. 10 is a cross-sectional view of another modification of the rotor according to the first embodiment.
  • FIG. 10 is a cross-sectional view of still another modification of the rotor according to the first embodiment.
  • FIG. 10 is a plan view of a rotor core of still another modified example of the rotor according to the first embodiment. It is sectional drawing of the double rotor motor provided with the rotor which concerns on Embodiment 2.
  • FIG. 2 is a plan view of a rotor core of the rotor according to Embodiment 1.
  • the rotor 1 includes a cylindrical rotor core 3 in which a plurality of annular steel plates 2 are stacked and a columnar center hole 5 is formed so as to penetrate in the axial direction. And a bracket 4 provided so as to cover one end face 3a.
  • the bracket 4 includes a circular substrate 11 having the same diameter as the outer diameter of the rotor core 3, a cylindrical shaft 12 provided coaxially with the substrate 11 and perpendicular to the substrate 11, and the shaft 11 opposite to the shaft 12.
  • a cylindrical side wall portion 13 is provided on the side along the periphery of the substrate 11 and has the same outer diameter as the substrate 11. That is, the side wall portion 13 has a cylindrical shape concentric with the shaft 12.
  • the rotor core 3 is provided with a recess 20 that is recessed in the axial direction with respect to the end surface 3a. As shown in FIG. 2, the recess 20 is formed along the outer peripheral surface of the rotor core 3. The thickness of the recess 20 in the radial direction of the rotor core 3 is the same as the thickness of the side wall 13 (see FIG. 1) of the bracket 4 (see FIG. 1). Inside the rotor core 3, a plurality of magnets 21 are provided inside the rotor core 3 in the radial direction of the rotor core 3 so as to extend in the axial direction of the rotor core 3. That is, the recess 20 has an annular shape concentric with the rotor core 3.
  • the bracket 4 is provided so as to cover the end surface 3 a of the rotor core 3 so that the side wall portion 13 is inserted into the recess 20.
  • the bracket 4 since the side wall part 13 is inserted in the recessed part 20, it comprises an insertion part. Since the substrate 11 is in contact with the end surface 3 a, the bracket 4 can be fixed with respect to the axial direction of the rotor core 3. Instead of this configuration, the bracket 4 can be fixed with respect to the axial direction of the rotor core 3 even if the end surface 13 a of the side wall 13 is in contact with the bottom 20 a of the recess 20. Both configurations, that is, a configuration in which the substrate 11 is in contact with the end surface 3 a and the end surface 13 a of the side wall portion 13 is in contact with the bottom portion 20 a of the recess 20.
  • the side wall portion 13 is coaxial with the shaft, and Since the recess 20 is coaxial with the rotor core 3, if the bracket 4 is provided so as to cover the end surface 3a of the rotor core 3 by inserting the side wall portion 13 into the recess 20 formed along the outer peripheral surface of the rotor core 3, The shaft 12 and the rotor core 3 are easily coaxial.
  • the bracket 4 is attached to the rotor core 3 so that the shaft 12 and the rotor core 3 are coaxial. Since it is attached, the rotor core 3 and the bracket 4 can be accurately positioned.
  • the recess 20 is continuously formed along the outer peripheral surface of the rotor core 3, but is not limited to this embodiment.
  • a recess 22 that is partially recessed with respect to the end surface 3 a along the outer peripheral surface of the rotor core 3 may be used.
  • the insertion portion provided in the bracket 4 can be inserted into the recess 22 along the peripheral edge of the substrate 11 of the bracket 4 instead of the complete cylindrical side wall portion 13 as in the first embodiment. Only the shaped member needs to be provided.
  • the number of the recesses 22 may be one, but in order to firmly fix the bracket 4 to the rotor core 3, it is preferable to form two or more recesses 22.
  • the two concave portions 22 at positions symmetrical with respect to the center of the rotor core 3, the dynamic balance of the bracket 4 can be improved.
  • the recess 20 is formed by cutting the end surface 3a of the rotor core 3 in the axial direction, but the present invention is not limited to this embodiment.
  • a cylindrical protrusion 30 may be fixed along the center hole 5 perpendicular to the end surface 3a, and the recess 23 may be formed by the protrusion 30 and the end surface 3a.
  • the end face 30 a of the protrusion 30 becomes the end face of the rotor core 3, and the original end face 3 a becomes the bottom of the recess 23.
  • the recess 20 is formed along the outer peripheral surface of the rotor core 3, but is not limited to this embodiment.
  • the recess 24 may be formed by cutting out the inner peripheral surface 3 b of the rotor core 3 along the center hole 5.
  • the recess formed by cutting out the inner peripheral surface 3 b of the rotor core 3 along the center hole 5 does not have to be a perfect annular shape, and is partially curved in an arc shape along the center hole 5. It may be a concave portion.
  • the concave portion is not limited to being formed along the outer peripheral surface and the inner peripheral surface 3b of the rotor core 3. As shown in FIG. 6, in the region where the magnet 21 does not exist between the outer peripheral surface and the inner peripheral surface 3 b of the rotor core 3, the recess 25 is recessed with respect to the end surface 3 a and concentric with the center hole 5. Also good.
  • the recess 25 may not be a perfect annular shape, and may be a recess partially curved concentrically with the center hole 5.
  • the curved concave portion is not limited to a shape curved in an annular shape, and no matter how curved, if the concave portion becomes coaxial with the rotor core 3 by inserting the insertion portion into the concave portion. Good.
  • the recesses 20 and 22 to 25 are provided in order to position the rotor core 3 and the bracket 4 with high precision.
  • the existing recesses for example, a recess for reducing torque ripple and a skew are provided. You may utilize the recessed part for an effect.
  • Embodiment 2 the configuration of a rotor according to Embodiment 2 of the present invention will be described.
  • the same reference numerals as those in FIGS. 1 to 6 are the same or similar components, and detailed description thereof is omitted.
  • the rotor according to the second embodiment of the present invention is an outer rotor of a double rotor motor with respect to the first embodiment.
  • FIG. 7 shows a cross-sectional view of a double rotor motor 40 provided with the rotor according to the second embodiment of the present invention as the outer rotor 41.
  • the double rotor motor 40 is provided so as to be rotatable between a cylindrical stator 43, an inner rotor 42 that is a second rotor rotatably provided inside the stator 43, and the inner rotor 42 and the stator 43.
  • the outer rotor 41 is provided.
  • a magnet (not shown) is provided on the outer rotor core 44 of the outer rotor 41, and coils (not shown) are wound around the inner rotor core 45 of the inner rotor 42 and the stator core 46 of the stator 43, respectively.
  • the stator core 46 having a larger outer diameter has a larger amount of coil to be wound. Therefore, the height from the end face 46a of the coil end 48 protruding from the end face 46a of the stator core 46 protrudes from the end face 45a of the inner rotor core 45. It becomes higher than the height from the end surface 45 a of the coil end 47.
  • the axial length h 2 of the inner rotor core 45 is equal to the axial length h of the stator core 46. longer than 1 (h 1 ⁇ h 2) . That is, in the double rotor motor 40, the end surface 45a protrudes in the axial direction, and the end surface 46a is recessed in the axial direction.
  • the axial length of the outer rotor core 44 and the inner rotor core 45 are each h 2, each of the end faces 44a and 45a are flush with.
  • the end face of the stator core 46 The number of magnetic fluxes that wraps around the coil wound around the stator core 46 from the magnet located at the portion ⁇ h of the outer rotor core 44 that protrudes in the axial direction from 46a is small. That is, the portion ⁇ h contributes little to the motor performance when viewed from the stator 43 side.
  • the recess 50 is preferably formed along the outer peripheral surface of the outer rotor core 44, and the bottom 50 a of the recess 50 is formed so as to be flush with the end surface 46 a of the stator core 46.
  • the outer rotor core 44 is longer in the axial direction than the stator core 46.
  • the stator core 46 is longer in the axial direction than the outer rotor core 44, the outer rotor core 44 is longer. What is necessary is just to form along the inner peripheral surface. All the modifications in the first embodiment can also be applied to the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A bracket (4) is provided so as to cover an end surface (3a) of a rotor core (3) by allowing the side wall portion (13) thereof to be inserted into a recess portion (20). A shaft (12) is provided coaxially with a substrate (11) and the side wall portion (13) is provided along the peripheral edge of the substrate (11), so that the side wall portion (13) is coaxial with the shaft. Further, since the recess portion (20) is coaxial with the rotor core (3), if the bracket (4) is provided so as to cover the end surface (3a) of the rotor core (3) by allowing the side wall portion (13) to be inserted into the recess portion (20) formed along the outer circumferential surface of the rotor core (3), the shaft (12) and the rotor core (3) easily become coaxial with each other.

Description

ロータRotor
 この発明は、ロータに係り、特に、ロータコア及びブラケットを備えるロータに関する。 The present invention relates to a rotor, and more particularly to a rotor including a rotor core and a bracket.
 一般的にダブルロータモータのアウターロータは、例えば特許文献1に記載されるように、複数の円環状の鋼板を積層させた円筒形状のアウターロータコアと、アウターロータの回転を伝達するためのシャフトを有するブラケットとを有している。アウターロータコアとブラケットとを同軸に位置決めするために、従来は、位置決めピンを用いたり、アウターロータコアの中心穴または磁石穴を利用したりしている。 Generally, an outer rotor of a double rotor motor includes, for example, a cylindrical outer rotor core in which a plurality of annular steel plates are laminated and a shaft for transmitting rotation of the outer rotor, as described in Patent Document 1. And having a bracket. In order to position the outer rotor core and the bracket coaxially, conventionally, a positioning pin is used, or a center hole or a magnet hole of the outer rotor core is used.
特開2004-72945号公報JP 2004-72945 A
 しかしながら、従来の位置決め方法では、精度よく位置決めができないといった問題点があった。 However, the conventional positioning method has a problem that it cannot be accurately positioned.
 この発明はこのような問題点を解決するためになされたもので、ロータコアとブラケットとを精度よく位置決めしたロータを提供することを目的とする。 The present invention has been made to solve such problems, and an object thereof is to provide a rotor in which a rotor core and a bracket are accurately positioned.
 この発明に係るロータは、円筒形状のロータコアと、シャフトを有するブラケットとを備え、ロータコアには、一方の端面に対して軸方向に窪んだ凹部が形成され、ブラケットには、凹部に挿入する挿入部が設けられ、凹部に挿入部を挿入することにより、シャフトとロータコアとが同軸となるようにブラケットがロータコアに取り付けられる。 The rotor according to the present invention includes a cylindrical rotor core and a bracket having a shaft. The rotor core is formed with a recess recessed in the axial direction with respect to one end face, and the bracket is inserted into the recess. The bracket is attached to the rotor core so that the shaft and the rotor core are coaxial by inserting the insertion portion into the recess.
 この発明によれば、ロータコアの一方の端面に対して軸方向に窪んだ凹部にブラケットの挿入部を挿入することにより、シャフトとロータコアとが同軸となるようにブラケットがロータコアに取り付けられるので、ロータコアとブラケットとを精度よく位置決めすることができる。 According to this invention, the bracket is attached to the rotor core so that the shaft and the rotor core are coaxial by inserting the insertion portion of the bracket into the concave portion that is recessed in the axial direction with respect to one end surface of the rotor core. And the bracket can be accurately positioned.
この発明の実施の形態1に係るロータの断面図である。It is sectional drawing of the rotor which concerns on Embodiment 1 of this invention. 実施の形態1に係るロータのロータコアの平面図である。3 is a plan view of a rotor core of the rotor according to Embodiment 1. FIG. 実施の形態1に係るロータの変形例のロータコアの平面図である。FIG. 6 is a plan view of a rotor core according to a modification of the rotor according to the first embodiment. 実施の形態1に係るロータの別の変形例の断面図である。FIG. 10 is a cross-sectional view of another modification of the rotor according to the first embodiment. 実施の形態1に係るロータのさらに別の変形例の断面図である。FIG. 10 is a cross-sectional view of still another modification of the rotor according to the first embodiment. 実施の形態1に係るロータのさらに別の変形例のロータコアの平面図である。FIG. 10 is a plan view of a rotor core of still another modified example of the rotor according to the first embodiment. 実施の形態2に係るロータを備えたダブルロータモータの断面図である。It is sectional drawing of the double rotor motor provided with the rotor which concerns on Embodiment 2. FIG.
 以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1.
 図1に示されるように、ロータ1は、複数の円環状の鋼板2を積層させて軸方向に貫通するように円柱形状の中心穴5が形成された円筒形状のロータコア3と、ロータコア3の一方の端面3aを覆うように設けられたブラケット4とを備えている。ブラケット4は、ロータコア3の外径と同じ直径を有する円形状の基板11と、基板11と同軸に基板11に対して垂直に設けられた円筒形状のシャフト12と、基板11に関してシャフト12と反対側に基板11の周縁に沿って設けられ、基板11の直径と同じ外径を有する円筒形状の側壁部13とを備えている。つまり、側壁部13は、シャフト12と同心状の円筒形状を有している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1 FIG.
As illustrated in FIG. 1, the rotor 1 includes a cylindrical rotor core 3 in which a plurality of annular steel plates 2 are stacked and a columnar center hole 5 is formed so as to penetrate in the axial direction. And a bracket 4 provided so as to cover one end face 3a. The bracket 4 includes a circular substrate 11 having the same diameter as the outer diameter of the rotor core 3, a cylindrical shaft 12 provided coaxially with the substrate 11 and perpendicular to the substrate 11, and the shaft 11 opposite to the shaft 12. A cylindrical side wall portion 13 is provided on the side along the periphery of the substrate 11 and has the same outer diameter as the substrate 11. That is, the side wall portion 13 has a cylindrical shape concentric with the shaft 12.
 ロータコア3には、端面3aに対して軸方向に窪んだ凹部20が設けられている。図2に示されるように、凹部20は、ロータコア3の外周面に沿って形成されている。ロータコア3の径方向に関する凹部20の厚さは、ブラケット4(図1参照)の側壁部13(図1参照)の厚さと同じである。ロータコア3の内部には、凹部20よりもロータコア3の径方向内側に、複数の磁石21がロータコア3の軸方向に延びるように設けられている。つまり、凹部20は、ロータコア3と同心状の円環形状を有している。 The rotor core 3 is provided with a recess 20 that is recessed in the axial direction with respect to the end surface 3a. As shown in FIG. 2, the recess 20 is formed along the outer peripheral surface of the rotor core 3. The thickness of the recess 20 in the radial direction of the rotor core 3 is the same as the thickness of the side wall 13 (see FIG. 1) of the bracket 4 (see FIG. 1). Inside the rotor core 3, a plurality of magnets 21 are provided inside the rotor core 3 in the radial direction of the rotor core 3 so as to extend in the axial direction of the rotor core 3. That is, the recess 20 has an annular shape concentric with the rotor core 3.
 図1に示されるように、ブラケット4は、側壁部13を凹部20に挿入するようにして、ロータコア3の端面3aを覆うように設けられている。ここで、側壁部13は凹部20に挿入されるので、挿入部を構成する。基板11が端面3aに接していることにより、ブラケット4はロータコア3の軸方向に関して固定することができる。この構成の代わりに、側壁部13の端面13aが凹部20の底部20aに接するような構成にしても、ブラケット4をロータコア3の軸方向に関して固定することができる。両方の構成、すなわち、基板11が端面3aに接すると共に側壁部13の端面13aが凹部20の底部20aに接するような構成でもよい。 As shown in FIG. 1, the bracket 4 is provided so as to cover the end surface 3 a of the rotor core 3 so that the side wall portion 13 is inserted into the recess 20. Here, since the side wall part 13 is inserted in the recessed part 20, it comprises an insertion part. Since the substrate 11 is in contact with the end surface 3 a, the bracket 4 can be fixed with respect to the axial direction of the rotor core 3. Instead of this configuration, the bracket 4 can be fixed with respect to the axial direction of the rotor core 3 even if the end surface 13 a of the side wall 13 is in contact with the bottom 20 a of the recess 20. Both configurations, that is, a configuration in which the substrate 11 is in contact with the end surface 3 a and the end surface 13 a of the side wall portion 13 is in contact with the bottom portion 20 a of the recess 20.
 ここで、シャフト12が基板11と同軸に設けられていることと、側壁部13が基板11の周縁に沿って設けられていることとからすると、側壁部13はシャフトと同軸であり、かつ、凹部20はロータコア3と同軸であるので、ロータコア3の外周面に沿って形成された凹部20に側壁部13を挿入するようにしてブラケット4をロータコア3の端面3aを覆うように設ければ、シャフト12とロータコア3とが容易に同軸となる。 Here, from the fact that the shaft 12 is provided coaxially with the substrate 11 and that the side wall portion 13 is provided along the periphery of the substrate 11, the side wall portion 13 is coaxial with the shaft, and Since the recess 20 is coaxial with the rotor core 3, if the bracket 4 is provided so as to cover the end surface 3a of the rotor core 3 by inserting the side wall portion 13 into the recess 20 formed along the outer peripheral surface of the rotor core 3, The shaft 12 and the rotor core 3 are easily coaxial.
 このように、ロータコア3の端面3aに対して軸方向に窪んだ凹部20にブラケット4の側壁部13を挿入することにより、シャフト12とロータコア3とが同軸となるようにブラケット4がロータコア3に取り付けられるので、ロータコア3とブラケット4とを精度よく位置決めすることができる。 Thus, by inserting the side wall 13 of the bracket 4 into the recess 20 that is recessed in the axial direction with respect to the end surface 3a of the rotor core 3, the bracket 4 is attached to the rotor core 3 so that the shaft 12 and the rotor core 3 are coaxial. Since it is attached, the rotor core 3 and the bracket 4 can be accurately positioned.
 実施の形態1では、凹部20は、ロータコア3の外周面に沿って連続的して形成されていたが、この形態に限定するものではない。例えば図3に示されるように、ロータコア3の外周面に沿って部分的に端面3aに対して窪んだ凹部22であってもよい。この場合には、ブラケット4に設けられる挿入部は、実施の形態1のような完全な円筒形状の側壁部13ではなく、ブラケット4の基板11の周縁部に沿って、凹部22に挿入可能な形状の部材のみを設ける必要がある。尚、ロータコア3とブラケット4との位置決めの観点からは、凹部22は1つでもよいが、ブラケット4をロータコア3にしっかりと固定するためには、凹部22は2つ以上形成することが好ましい。例えば、2つの凹部22を、ロータコア3の中心に対して対称な位置に設けることにより、ブラケット4の動バランスをよくすることができる。 In the first embodiment, the recess 20 is continuously formed along the outer peripheral surface of the rotor core 3, but is not limited to this embodiment. For example, as shown in FIG. 3, a recess 22 that is partially recessed with respect to the end surface 3 a along the outer peripheral surface of the rotor core 3 may be used. In this case, the insertion portion provided in the bracket 4 can be inserted into the recess 22 along the peripheral edge of the substrate 11 of the bracket 4 instead of the complete cylindrical side wall portion 13 as in the first embodiment. Only the shaped member needs to be provided. From the viewpoint of positioning the rotor core 3 and the bracket 4, the number of the recesses 22 may be one, but in order to firmly fix the bracket 4 to the rotor core 3, it is preferable to form two or more recesses 22. For example, by providing the two concave portions 22 at positions symmetrical with respect to the center of the rotor core 3, the dynamic balance of the bracket 4 can be improved.
 実施の形態1では、ロータコア3の端面3aを軸方向に切り欠くことによって凹部20を形成していたが、この形態に限定するものではない。図4に示されるように、端面3aに垂直に中心穴5に沿って円筒形状の突起部30を固定して、突起部30及び端面3aにより凹部23を形成してもよい。この場合、ロータコア3の端面3aに突起部30を取り付けたことにより、突起部30の端面30aがロータコア3の端面となり、元々の端面3aは、凹部23の底部となる。 In Embodiment 1, the recess 20 is formed by cutting the end surface 3a of the rotor core 3 in the axial direction, but the present invention is not limited to this embodiment. As shown in FIG. 4, a cylindrical protrusion 30 may be fixed along the center hole 5 perpendicular to the end surface 3a, and the recess 23 may be formed by the protrusion 30 and the end surface 3a. In this case, by attaching the protrusion 30 to the end face 3 a of the rotor core 3, the end face 30 a of the protrusion 30 becomes the end face of the rotor core 3, and the original end face 3 a becomes the bottom of the recess 23.
 実施の形態1では、凹部20は、ロータコア3の外周面に沿って形成されていたが、この形態に限定するものではない。図5に示されるように、中心穴5に沿ってロータコア3の内周面3bを切り欠くことにより形成された凹部24であってもよい。また、中心穴5に沿ってロータコア3の内周面3bを切り欠くことにより形成された凹部は、完全な円環形状でなくてもよく、中心穴5に沿って部分的に円弧状に湾曲した凹部であってもよい。 In the first embodiment, the recess 20 is formed along the outer peripheral surface of the rotor core 3, but is not limited to this embodiment. As shown in FIG. 5, the recess 24 may be formed by cutting out the inner peripheral surface 3 b of the rotor core 3 along the center hole 5. Further, the recess formed by cutting out the inner peripheral surface 3 b of the rotor core 3 along the center hole 5 does not have to be a perfect annular shape, and is partially curved in an arc shape along the center hole 5. It may be a concave portion.
 さらに、凹部は、ロータコア3の外周面及び内周面3bに沿って形成されることに限定するものではない。図6に示されるように、ロータコア3の外周面と内周面3bとの間の磁石21の存在しない領域に、端面3aに対して窪むと共に中心穴5と同心状の凹部25であってもよい。凹部25も、完全な円環形状でなくてもよく、中心穴5に同心状に部分的に湾曲した凹部であってもよい。さらに、湾曲した凹部とは、円環形状に湾曲した形状に限定するものではなく、どのように湾曲していても、挿入部が凹部に挿入することにより、凹部がロータコア3と同軸となればよい。 Furthermore, the concave portion is not limited to being formed along the outer peripheral surface and the inner peripheral surface 3b of the rotor core 3. As shown in FIG. 6, in the region where the magnet 21 does not exist between the outer peripheral surface and the inner peripheral surface 3 b of the rotor core 3, the recess 25 is recessed with respect to the end surface 3 a and concentric with the center hole 5. Also good. The recess 25 may not be a perfect annular shape, and may be a recess partially curved concentrically with the center hole 5. Further, the curved concave portion is not limited to a shape curved in an annular shape, and no matter how curved, if the concave portion becomes coaxial with the rotor core 3 by inserting the insertion portion into the concave portion. Good.
 実施の形態1では、凹部20及び22~25はそれぞれ、ロータコア3とブラケット4とを精度よく位置決めするために設けられたものであるが、既存の凹部、例えば、トルクリップル低減用の凹部やスキュー効果用の凹部を利用してもよい。 In the first embodiment, the recesses 20 and 22 to 25 are provided in order to position the rotor core 3 and the bracket 4 with high precision. However, the existing recesses, for example, a recess for reducing torque ripple and a skew are provided. You may utilize the recessed part for an effect.
実施の形態2.
 次に、この発明の実施の形態2に係るロータの構成を示す。尚、実施の形態2において、図1~6の参照符号と同一の符号は、同一又は同様な構成要素であるので、その詳細な説明は省略する。
 この発明の実施の形態2に係るロータは、実施の形態1に対して、ダブルロータモータのアウターロータとなるものである。
Embodiment 2. FIG.
Next, the configuration of a rotor according to Embodiment 2 of the present invention will be described. In the second embodiment, the same reference numerals as those in FIGS. 1 to 6 are the same or similar components, and detailed description thereof is omitted.
The rotor according to the second embodiment of the present invention is an outer rotor of a double rotor motor with respect to the first embodiment.
 図7には、この発明の実施の形態2に係るロータをアウターロータ41として備えるダブルロータモータ40の断面図が示されている。ダブルロータモータ40は、円筒形状のステータ43と、ステータ43の内部で回転可能に設けられた第2のロータであるインナーロータ42と、インナーロータ42とステータ43との間に回転可能に設けられたアウターロータ41とを備えている。 FIG. 7 shows a cross-sectional view of a double rotor motor 40 provided with the rotor according to the second embodiment of the present invention as the outer rotor 41. The double rotor motor 40 is provided so as to be rotatable between a cylindrical stator 43, an inner rotor 42 that is a second rotor rotatably provided inside the stator 43, and the inner rotor 42 and the stator 43. The outer rotor 41 is provided.
 アウターロータ41のアウターロータコア44には、図示しない磁石が設けられ、インナーロータ42のインナーロータコア45及びステータ43のステータコア46にはそれぞれ、図示しないコイルが巻かれている。通常、外径の大きいステータコア46の方が、巻かれるコイルの量が多いため、ステータコア46の端面46aから突出するコイルエンド48の端面46aからの高さは、インナーロータコア45の端面45aから突出するコイルエンド47の端面45aからの高さよりも高くなる。このため、ダブルロータモータ40の端部において、コイルエンド47,48それぞれの位置を面一にしようとすると、インナーロータコア45の軸方向の長さh2が、ステータコア46の軸方向の長さh1よりも長くなる(h1<h2)。すなわち、ダブルロータモータ40において、端面45aは軸方向に突出し、端面46aは軸方向に窪んだ構成となる。一方、アウターロータコア44及びインナーロータコア45の軸方向の長さはそれぞれh2であり、それぞれの端面44a及び45aは面一となっている。 A magnet (not shown) is provided on the outer rotor core 44 of the outer rotor 41, and coils (not shown) are wound around the inner rotor core 45 of the inner rotor 42 and the stator core 46 of the stator 43, respectively. Usually, the stator core 46 having a larger outer diameter has a larger amount of coil to be wound. Therefore, the height from the end face 46a of the coil end 48 protruding from the end face 46a of the stator core 46 protrudes from the end face 45a of the inner rotor core 45. It becomes higher than the height from the end surface 45 a of the coil end 47. Therefore, when the positions of the coil ends 47 and 48 are made flush with each other at the end of the double rotor motor 40, the axial length h 2 of the inner rotor core 45 is equal to the axial length h of the stator core 46. longer than 1 (h 1 <h 2) . That is, in the double rotor motor 40, the end surface 45a protrudes in the axial direction, and the end surface 46a is recessed in the axial direction. On the other hand, the axial length of the outer rotor core 44 and the inner rotor core 45 are each h 2, each of the end faces 44a and 45a are flush with.
 アウターロータコア44内の磁石と、ステータコア46に巻かれたコイルとの間において、軸方向に平行な向きの磁束数は、軸方向に垂直な向きの磁束数と比べて少ないため、ステータコア46の端面46aよりも軸方向に突出したアウターロータコア44の部分Δhに位置する磁石からステータコア46に巻かれたコイルに回り込む磁束数は少ない。すなわち、当該部分Δhは、ステータ43側から見ると、モータ性能への寄与は小さい。一方、インナーロータコア45の端面45aとアウターロータコア44の端面44aとは面一であるので、両者間では、全長に渡ってモータ性能に寄与する。したがって、上記モータ性能の観点から、凹部50は、アウターロータコア44の外周面に沿って形成され、凹部50の底部50aは、ステータコア46の端面46aと面一となるように形成することが好ましい。 Since the number of magnetic fluxes in the direction parallel to the axial direction between the magnet in the outer rotor core 44 and the coil wound around the stator core 46 is smaller than the number of magnetic fluxes in the direction perpendicular to the axial direction, the end face of the stator core 46 The number of magnetic fluxes that wraps around the coil wound around the stator core 46 from the magnet located at the portion Δh of the outer rotor core 44 that protrudes in the axial direction from 46a is small. That is, the portion Δh contributes little to the motor performance when viewed from the stator 43 side. On the other hand, the end face 45a of the inner rotor core 45 and the end face 44a of the outer rotor core 44 are flush with each other, and thus contribute to the motor performance over the entire length. Therefore, from the viewpoint of the motor performance, the recess 50 is preferably formed along the outer peripheral surface of the outer rotor core 44, and the bottom 50 a of the recess 50 is formed so as to be flush with the end surface 46 a of the stator core 46.
 このように、ダブルロータモータ40のアウターロータ41についても、凹部50にブラケット4(図1参照)の側壁部13(図1参照)を挿入することにより、実施の形態1と同様の原理で、アウターロータコア44とブラケットとを精度よく位置決めすることができる。 Thus, also for the outer rotor 41 of the double rotor motor 40, by inserting the side wall portion 13 (see FIG. 1) of the bracket 4 (see FIG. 1) into the recess 50, the same principle as in the first embodiment, The outer rotor core 44 and the bracket can be accurately positioned.
 実施の形態2では、アウターロータコア44の方がステータコア46よりも軸方向の長さが長かったが、ステータコア46の方がアウターロータコア44よりも軸方向の長さが長い場合には、アウターロータコア44の内周面に沿って形成すればよい。
 また、実施の形態1におけるすべての変形例は、実施の形態2においても適用可能である。
In the second embodiment, the outer rotor core 44 is longer in the axial direction than the stator core 46. However, when the stator core 46 is longer in the axial direction than the outer rotor core 44, the outer rotor core 44 is longer. What is necessary is just to form along the inner peripheral surface.
All the modifications in the first embodiment can also be applied to the second embodiment.

Claims (4)

  1.  円筒形状のロータコアと、
     シャフトを有するブラケットと
    を備え、
     前記ロータコアには、一方の端面に対して軸方向に窪んだ凹部が形成され、
     前記ブラケットには、前記凹部に挿入する挿入部が設けられ、
     前記凹部に前記挿入部を挿入することにより、前記シャフトと前記ロータコアとが同軸となるように前記ブラケットが前記ロータコアに取り付けられるロータ。
    A cylindrical rotor core;
    A bracket having a shaft,
    The rotor core is formed with a recess recessed in the axial direction with respect to one end face,
    The bracket is provided with an insertion portion to be inserted into the recess,
    A rotor in which the bracket is attached to the rotor core so that the shaft and the rotor core are coaxial with each other by inserting the insertion portion into the recess.
  2.  前記凹部は前記ロータコアと同軸となるように湾曲し、前記挿入部は前記シャフトと同軸となるように湾曲している、請求項1に記載のロータ。 The rotor according to claim 1, wherein the concave portion is curved so as to be coaxial with the rotor core, and the insertion portion is curved so as to be coaxial with the shaft.
  3.  前記ロータは、ステータと、該ステータの内部で回転可能に設けられた第2のロータと
    の間に設けられる、請求項1または2に記載のロータ。
    3. The rotor according to claim 1, wherein the rotor is provided between a stator and a second rotor that is rotatably provided inside the stator.
  4.  前記ステータのステータコアの端面と前記第2のロータの第2のロータコアの端面とは面一ではなく、
     前記ロータのロータコアの端面は、前記ステータのステータコアの端面または前記第2のロータの第2のロータコアの端面のうち、軸方向に突出した方の端面と面一であり、
     前記凹部の底部は、前記ステータのステータコアの端面または前記第2のロータの第2のロータコアの端面のうち、軸方向に窪んだ方の端面と面一である、請求項3に記載のロータ。
    The end surface of the stator core of the stator and the end surface of the second rotor core of the second rotor are not flush with each other,
    The end surface of the rotor core of the rotor is flush with the end surface of the stator core of the stator or the end surface of the second rotor core of the second rotor that protrudes in the axial direction.
    4. The rotor according to claim 3, wherein a bottom portion of the recess is flush with an end surface of the stator core of the stator or the end surface of the second rotor core of the second rotor that is recessed in the axial direction.
PCT/JP2015/067283 2014-07-16 2015-06-16 Rotor WO2016009770A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014145769A JP2016025669A (en) 2014-07-16 2014-07-16 Rotor
JP2014-145769 2014-07-16

Publications (1)

Publication Number Publication Date
WO2016009770A1 true WO2016009770A1 (en) 2016-01-21

Family

ID=55078271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067283 WO2016009770A1 (en) 2014-07-16 2015-06-16 Rotor

Country Status (2)

Country Link
JP (1) JP2016025669A (en)
WO (1) WO2016009770A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072962A (en) * 2002-08-09 2004-03-04 Kokusan Denki Co Ltd Outer rotor type motor
JP2013126295A (en) * 2011-12-14 2013-06-24 Toyota Motor Corp Rotating electric machine
WO2014003871A2 (en) * 2012-06-29 2014-01-03 General Electric Company Electric machine and systems comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072962A (en) * 2002-08-09 2004-03-04 Kokusan Denki Co Ltd Outer rotor type motor
JP2013126295A (en) * 2011-12-14 2013-06-24 Toyota Motor Corp Rotating electric machine
WO2014003871A2 (en) * 2012-06-29 2014-01-03 General Electric Company Electric machine and systems comprising the same

Also Published As

Publication number Publication date
JP2016025669A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5310872B2 (en) Rotor
JP6274475B2 (en) Rotor, rotating electric machine, and method of manufacturing rotor
US9059611B2 (en) Stator core
JP6461381B2 (en) Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
JP6385588B2 (en) Rotor and rotating electric machine
WO2017195498A1 (en) Rotor and rotary electric machine
JP2007135371A (en) Rotor for rotating electric machine
JP2014007833A (en) Rotor and electric motor
JP2018057155A (en) Rotator of rotating electrical machine
US11056938B2 (en) Rotor and motor
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JP2014225935A (en) Permanent magnet type rotary electric machine
WO2016009770A1 (en) Rotor
WO2016174889A1 (en) Stator core and stator for rotary electric machine, and rotary electric machine
JP2014131480A (en) Rotary machine
JP2014082804A (en) Electric motor with stator and rotor
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP2011172335A (en) Electric motor
WO2011152074A1 (en) Core for dynamo-electric machine, and dynamo-electric machine
JP2017046386A (en) Permanent magnet electric motor
JP2007259514A (en) Rotating electric machine for employing divided stator iron core
WO2018131402A1 (en) Permanent magnet embedded rotor and electric motor equipped with same
WO2017175461A1 (en) Axial gap rotary electric machine
JP2011166934A (en) Electric motor
JP7188588B2 (en) Rotor and rotor manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821559

Country of ref document: EP

Kind code of ref document: A1