WO2016009572A1 - 洋上構造物の施工方法、及び、洋上構造物 - Google Patents

洋上構造物の施工方法、及び、洋上構造物 Download PDF

Info

Publication number
WO2016009572A1
WO2016009572A1 PCT/JP2014/075360 JP2014075360W WO2016009572A1 WO 2016009572 A1 WO2016009572 A1 WO 2016009572A1 JP 2014075360 W JP2014075360 W JP 2014075360W WO 2016009572 A1 WO2016009572 A1 WO 2016009572A1
Authority
WO
WIPO (PCT)
Prior art keywords
offshore
upper structure
lower structure
offshore structure
arm
Prior art date
Application number
PCT/JP2014/075360
Other languages
English (en)
French (fr)
Inventor
拓樹 中村
Original Assignee
三井海洋開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井海洋開発株式会社 filed Critical 三井海洋開発株式会社
Priority to KR1020167034581A priority Critical patent/KR101998104B1/ko
Priority to CN201480080579.5A priority patent/CN106794887B/zh
Priority to SG11201700388SA priority patent/SG11201700388SA/en
Priority to EP14897522.0A priority patent/EP3170730B1/en
Priority to ES14897522T priority patent/ES2739854T3/es
Priority to CA2955399A priority patent/CA2955399C/en
Priority to US15/326,245 priority patent/US10377450B2/en
Publication of WO2016009572A1 publication Critical patent/WO2016009572A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/003Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for for transporting very large loads, e.g. offshore structure modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/20Adaptations of chains, ropes, hawsers, or the like, or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/502Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/18Buoys having means to control attitude or position, e.g. reaction surfaces or tether
    • B63B22/20Ballast means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/08Arrangement of ship-based loading or unloading equipment for cargo or passengers of winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/36Arrangement of ship-based loading or unloading equipment for floating cargo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B75/00Building or assembling floating offshore structures, e.g. semi-submersible platforms, SPAR platforms or wind turbine platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/20Adaptations of chains, ropes, hawsers, or the like, or of parts thereof
    • B63B2021/203Mooring cables or ropes, hawsers, or the like; Adaptations thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B2021/505Methods for installation or mooring of floating offshore platforms on site
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2207/00Buoyancy or ballast means
    • B63B2207/02Variable ballast or buoyancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for constructing an offshore structure such as a spar type equipped with a wind power generator or the like, and an offshore structure portion.
  • TLP tension leg platform
  • the spar in the case of a spar-type offshore structure, the spar is an offshore structure that floats upright like a fishing float, and most of the floating body is submerged due to the injection of ballast water. .
  • This spar can support a heavy superstructure with relatively little shaking.
  • the floating body In a spar-type offshore structure equipped with wind power generation facilities, the floating body is flooded with a depth of about 40 m to 80 m, and the floating body portion is a large structure of about 1000 t (tons) or more.
  • a horizontal axis wind turbine or a vertical axis wind turbine using wind power is arranged on the surface of the water surface, and the tidal force
  • a floating fluid power utilization system in which a horizontal axis water turbine or a vertical axis water wheel using the above is disposed below the water surface and the horizontal axis water wheel or the vertical axis water wheel is used as a ballast.
  • this spar-type offshore wind power generation facility is installed at an offshore installation location, for example, as described in Japanese Patent Application Laid-Open No. 2012-201219, the floating body, which is a lower structure, is placed in a sideways state. Floating on the sea, towed by towed ship, or carrying a floating body on a trolley and transporting it to the offshore installation site, adjusting the ballast after floating the floating body, making the floating body upright, and adjusting draft And a floating body mooring process that stabilizes the floating body by installing one deck of the mooring cable to the floating body, and anchoring the other end to an anchor set on the sea floor.
  • a construction method for offshore wind power generation equipment is provided in which a tower that has been transported to an offshore installation location by a trolley or the like is suspended by a crane ship and this tower is installed on the top of a floating body.
  • This construction method allows easy and safe construction on the ocean, and in order to ensure stability in strong winds or waves, a tower standing on the floating body is installed above the floating body.
  • a mass damper is installed on a tower or a crane hanging jig that suspends the tower to control the swing of the tower, and the swing of the floating body is controlled by a control moment gyro installed inside the floating body.
  • the present invention has been made in view of the above-described situation, and the object thereof is to safely operate offshore without using a crane ship in a method for constructing a spar type offshore structure equipped with a wind power generator or the like.
  • An object is to provide an offshore structure construction method and an offshore structure that can be moored at an installation location.
  • the offshore structure construction method of the present invention includes a manufacturing process for dividing an offshore structure into an upper structure and a lower structure, and a part or all of the lower structure.
  • the upper structure and the lower structure are integrated on the ocean, the upper structure lifted by a crane or the like with respect to the lower structure arranged on the ocean. Is suspended from the lower structure to the lower structure, and the upper structure and the lower structure are joined.
  • the upper structure is On the other hand, the lower structure which is partly or entirely in the water is lifted by a hanging rope or the like, and the upper structure and the lower structure are combined.
  • the raising of the lower structure can be easily performed by pulling up the suspension rope, draining the ballast water of the lower structure, detaching the ballast of the lower structure, or the like.
  • the upper structure lifted by a conventional crane or the like is not suspended from the lower structure, but mounted in a state where the upper structure is held by a pair of arm-shaped structures.
  • the upper structure is lowered by sinking a part of the transport ship, and the upper structure and the lower structure are combined.
  • a part or all of the upper structure is below the surface of the water with the upper structure placed on the transport ship or fixed on the ocean with a transport ship or towing ship. Since the lower structure that requires relatively little force to move is raised, it is not necessary to move the upper structure in the vertical direction with many parts or all on the water surface and the large force required for vertical movement. It can be moored safely at an offshore installation location without using a crane ship.
  • the joint work on the ocean is an environment where the upper structure is mounted and fixed on a carrier ship, the lower structure is pressed against the upper structure and fixed, and the overall inertia is large and shaking is minimized. It is possible to safely supply the personnel and power necessary for joining work and the like from the transport ship.
  • the upper structure is lowered by sinking a part of the transport ship while the upper structure is placed on the transport ship while the lower structure is fixed or moored. Without using a crane ship, the upper structure and the lower structure can be combined safely at an offshore installation location.
  • the lower structure when the lower structure is lifted in the lifting step, it is configured using a winch mounted on a transport ship that moves at least one of the upper structure or the lower structure. Because the substructure is lifted without using an offshore crane ship, construction costs can be saved.
  • the offshore structure construction method is such that the joining step is integrated with the lower structure in a state where the upper structure is held by the pair of arm-shaped structures of the carrier ship.
  • the superstructure standing upright, including a ballast tank, and projecting from the bow or stern hull end toward the stern.
  • a descent process in which the structure is suspended from the carrier ship on a suspension rope and lowered into the water, and after the joining process, the integrated upper structure and lower structure are lowered from the carrier ship and floated on the ocean. Effects can be achieved as the follows configured to include a floating process.
  • a carrier ship equipped with a pair of arm-like structures provided with a ballast tank and protruding from the bow or stern hull end toward the stern direction while the upper structure is in an upright state. Since it is mounted, a crane ship or a large crane is not required when the superstructure is mounted on a transport ship.
  • the upper structure since the upper structure is transported in an upright state, the work of bringing the upper structure into an upright state at sea is eliminated, and a crane ship and a large crane on the transport ship are not required.
  • the lower structure can be transported in an upright state like the upper structure, and there is no need to shift from the lying state to the vertical state on the ocean, compared with the case of transporting in the lying state. It can be simplified.
  • the offshore structure is levitated by the ballast water operation on the carrier ship side, and the carrier ship is pulled out. Since the offshore structure can be lowered from the transport ship, a crane ship and a large crane are not required even in this ascent process.
  • the ballast is installed at the installation location.
  • the vertical state can be relatively easily achieved by using only a relatively small crane or winch.
  • the superstructure is equipped with equipment that needs to avoid submergence such as wind power generation facilities, when it was transported in a laid-down state, it was changed from a laid-down state to a vertical state on the installation site or on a transport ship. Since it is necessary to assemble the windmill above, a large crane on a crane ship or a transport ship is required.
  • the superstructure can be transported after completion of the assembly of the superstructure on land and after a trial run, etc., and the superstructure is mounted and fixed on a transport ship at the offshore joint work.
  • the substructure is pressed against and fixed to the main body, and the entire inertia is large and the shaking can be minimized.
  • power and workers necessary for the joining work can be safely supplied from the transport ship.
  • the bottomed offshore structure when the lower structure is configured to bottom on the water bottom in the descending step, the bottomed offshore structure does not perform mooring with a mooring line instead of a floating body type. It is a construction method suitable for objects.
  • the mooring line may be a tension leg platform (TLP) using tendons instead of anchor chains or ropes.
  • the mooring which connects between the said upper structure or the said lower structure, and a mooring base with a mooring line after the said conveyance process and before the said joining process.
  • the cable connection process when the connection part of the mooring cable on the offshore structure side is on the lower structure side, the mooring line connection work is performed before the joining process in which the upper structure and the lower structure are integrated. Therefore, since the lower structure is connected to the mooring line and is in a stable state during the joining process, the joining work can be easily performed.
  • a mooring line connection step for connecting the upper structure and the mooring base with a mooring line is provided after the carrying step and before the joining step, the upper structure is mounted on the carrying ship. Although it is stable, the joining work can be performed at a stage where the burden of the lower structure is not applied to the arm-like structure of the transport ship.
  • a mooring line connecting step for connecting the integrated upper structure, the lower structure, and the mooring base with a mooring line is provided after the joining step.
  • the connecting part of the mooring line on the offshore structure side is on the lower structure side
  • the connection work between the lower structure and the mooring line is not on the water but on the surface of the water, and the upper and lower structures are mounted and fixed on the carrier ship. Since it can be performed in a safe environment, the connection work can be performed efficiently.
  • the mooring line connection work may be performed after the ascent process.
  • the offshore structure of the present invention for achieving the above object is an offshore structure that is arranged on the sea by joining the upper structure and the lower structure, and the upper structure is in an upright state.
  • the upper structure is upright and can be mounted from the side so that it can be mounted on a transport ship with a ballast tank and a pair of arm-like structures protruding from the hull edge of the bow or stern toward the stern.
  • the pair of arm-like structures that slide is received and configured to include an engaging portion that can be placed on the pair of arm-like structures.
  • the upper structure of the offshore structure remains in an upright state, includes the ballast tank, and the pair of arm-shaped structures protruded from the bow or stern hull end toward the bow stern. Therefore, the construction method for the offshore structure can be carried out, and the same effects as the construction method for the offshore structure can be obtained.
  • the offshore structure has a structure in which the center of buoyancy is above the center of gravity, the upper structure mainly consists of the upper part of the water, and the lower structure mainly includes the submerged part.
  • the upper structure and the lower structure of the spar type offshore structure are configured to be connectable.
  • the offshore structure can be easily disassembled, and the removal work is facilitated. Therefore, even after the offshore structure is installed, it can be easily moved and discarded.
  • the upper structure alone should be easily separated and brought home and re-installed after repair. It can be done easily.
  • the construction method of the present invention is particularly effective. Even an offshore structure can be easily installed at an offshore installation location by using the construction method of the present invention.
  • the upper limit of the amount of protrusion that the bottom of the offshore structure protrudes below the bottom of the carrier ship it is about 100 m as a realistic design at the present stage, but about 400 m is sufficiently possible, In the future, it may be 1000m class.
  • the substructure has ballast water injection and drainage equipment for draining as well as water for ballast water, or has ballast injection and drainage equipment for discharging solid ballast as well as injection.
  • the ballast water injection and drainage equipment or the ballast water injection and drainage equipment, or the ballast water injection and drainage equipment, or the ballast water injection and drainage equipment Since the lower structure can be easily levitated by using the discharge facility, the offshore structure can be easily removed, and the offshore structure can be easily moved and discarded.
  • the engaging portion is formed by an overhanging portion that extends in the horizontal direction in three or more directions from the upper structure, and a connection site for connecting a mooring line is provided in the overhanging portion.
  • This overhanging part can be used to mount the superstructure on the transport ship, and to connect, adjust, and inspect the mooring lines at the connection site.
  • diving work is not required, and mooring line connection work and the like can be easily performed.
  • the mooring line connection operation and the like are relatively easy.
  • the offshore structure is moored by a mooring line, and a connecting portion for connecting the mooring line is an arm supported by the offshore structure so that one end side thereof can swing only around a horizontal axis.
  • a connecting portion for connecting the mooring line is an arm supported by the offshore structure so that one end side thereof can swing only around a horizontal axis.
  • the offshore structure has a problem that the restoring moment due to the mooring force of the mooring line acting in the turning direction, that is, the peristaltic motion in the horizontal plane (hereinafter referred to as torsion), is the direction in which the torsion is restored.
  • This torsion occurs when the offshore structure is equipped with a vertical axis windmill, and is directly related to the power generation torque, and when the offshore structure is equipped with a horizontal axis windmill. Occurs directly in relation to turning and maintaining a horizontal axis wind turbine upwind against wind power.
  • the connecting portion is provided at a position where the distance (mounting radius) from the central axis in the vertical direction of the offshore structure is large. Therefore, the restoring moment due to the mooring force of the mooring line acting in the direction to return torsion can be increased. As a result, the entire offshore structure can be prevented from swinging (turning motion) that returns when twisted in the turning direction.
  • connection part when the connection part is provided at a position where the attachment radius is small as in the conventional technique, the displacement amount at the position of the connection part is small when the offshore structure swings around the horizontal axis (tilt with respect to the vertical axis). The variation in mooring force of the mooring line is also reduced, and the allowable range for the inclination of this offshore structure is wide. At this time, since the amount of displacement at the position of the connecting portion increases, there is a problem that the mooring force of the mooring line fluctuates and the allowable range for the inclination of the offshore structure becomes narrow.
  • the arm is supported on the upper structure so as to be swingable only around the horizontal axis on one end side, thereby reducing the restraint due to the mooring force of the mooring line, and against the inclination of the offshore structure.
  • the allowable range can be widened.
  • This arm may be provided on the upper structure side of the offshore structure or on the lower structure side.
  • the arm is provided.
  • the attachment radius of the connection part increases, the amount of change in the mooring direction of the mooring line at the connection part accompanying torsion of the offshore structure increases. Since the increase in the amount of change in the mooring direction can be accommodated, damage to the connection site and the mooring line can be prevented.
  • FIG. 1 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state immediately before the upper structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 2 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state in which the upper structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 3 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and the upper structure mounted on the transport ship in the mounting process is moved on the deck. It is a figure which shows a state.
  • FIG. 1 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state immediately before the upper structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 2 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state in which the upper
  • FIG. 4 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state immediately before the lower structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 5 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state in which the lower structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 6 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, in which the lower structure mounted on the transport ship in the mounting process is moved on the deck. It is a figure which shows a state.
  • FIG. 5 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state immediately before the lower structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 5 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state in which the
  • FIG. 7 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and is a diagram illustrating a state in which the transport ship starts operation in the transport process.
  • FIG. 8 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state where the transport ship has arrived at the offshore installation place in the transport process.
  • FIG. 9 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state in which the lower structure is moved to the stern on the transport ship in the descent process. It is.
  • FIG. 10 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and is a diagram showing a state in which the lower structure is lowered from the transport ship in the lowering process.
  • FIG. 11 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention. The state of the lower structure in the underwater maintenance process and the lower structure on the transport ship in the movement process. It is a figure which shows the state which moves an object to a stern.
  • FIG. 12 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows the state in which the lower structure is raised in the ascending process and the state in the joining process.
  • FIG. 13 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state where the offshore structure is being unloaded from the carrier ship in the ascent process.
  • FIG. 14 is a schematic diagram for explaining the offshore structure construction method according to the first embodiment of the present invention, and shows a state after the mooring line connecting step.
  • FIG. 15 is a schematic diagram for explaining the construction method of the offshore structure according to the first embodiment of the present invention, and shows a state after construction.
  • FIG. 16 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows a state immediately before the upper structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 17 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows a state immediately before the lower structure is mounted on the transport ship in the mounting process. is there.
  • FIG. 18 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and is a diagram illustrating a state in which the transport ship starts operation in the transport process.
  • FIG. 19 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows a state in which the lower structure is lowered from the transport ship in the lowering process. is there.
  • FIG. 20 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention.
  • FIG. 21 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows the state in which the lower structure is raised in the ascending process and the state in the joining process.
  • FIG. 22 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows a state where the offshore structure is being unloaded from the carrier ship in the ascent process.
  • FIG. 23 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows a state after the mooring line connecting step.
  • FIG. 21 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows the state in which the lower structure is raised in the ascending process and the state in the joining process.
  • FIG. 22 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows a state where the offshore structure is being unloaded from the carrier ship in the ascent process.
  • FIG. 24 is a schematic diagram for explaining the construction method of the offshore structure according to the second embodiment of the present invention, and shows a state after construction.
  • FIG. 25 is a schematic diagram illustrating a state after the offshore structure according to the embodiment of the present invention is moored.
  • FIG. 26 is a schematic diagram showing the configuration of the arm.
  • FIG. 27 is a schematic diagram showing a state after an offshore structure according to another embodiment of the present invention is moored.
  • FIG. 28 is a schematic diagram showing a state after the offshore structure of the prior art is moored.
  • an offshore structure construction method and an offshore structure will be described.
  • a vertical axis wind turbine that uses wind power is disposed on the surface of the water, and a vertical axis turbine that uses tidal power is disposed below the surface of the water, so that a horizontal axis turbine or
  • the offshore structure of a floating fluid power utilization system using a vertical axis water wheel as a ballast is described as an example.
  • the present invention is not necessarily limited to this offshore structure, and the upper structure is not necessarily limited to this offshore structure. It can be applied to offshore structures that integrate objects and substructures.
  • the offshore structure 10 of the first embodiment illustrated here is an offshore structure that is arranged on the ocean by joining an upper structure 11 and a lower structure 12.
  • the upper structure 11 includes a vertical axis windmill 11a having a rotating shaft 11aa and a vertical blade 11ab, and a windmill support portion 11b that supports the vertical axis windmill 11a.
  • the lower structure 12 includes a vertical axis water turbine.
  • the lower part of the annular ring that protrudes in an annular shape at the lower part of the support column is the engaging part 11ba, but the upper part of the insertion hole that allows the insertion of the arm-like structure 23 may be used as the engaging part. .
  • the offshore structure 10A of the second embodiment is different in that the lower structure 12A is not provided with a vertical axis turbine and is constituted by a weight.
  • the shape of the offshore structure 10A is substantially the same as the shape known as a spar-type offshore structure.
  • the transport ship 20 includes a deck 21 on which the upper structure 11 can be mounted in an upright state, a navigation bridge 22, a propulsion engine, Propeller and other propulsion devices and fuel tanks are provided. Also, equipped with a ballast tank, it is possible to adjust the draft and trim (tilt in the bow-stern direction) of the hull when loading and unloading a heavy load and moving the load in the bow direction. It is configured to control the movement between the ballast water and the ballast tank.
  • the stern comprises a pair of arm-like structures 23 projecting from the bow or stern end of the stern toward the stern direction (in FIGS. 1 to 14 and 16 to 23, the stern to the stern direction).
  • the pair of arm-like structures 23 are arranged facing the left and right sides of the stern in a U shape with the stern side released as viewed from above.
  • a pair of arm-like structures 23 is provided below the engaging portion 11ba of the upper structure 11 placed on the quay wall 1 from the U-shaped opening side.
  • the pair of arm-like structures 23 is inserted below the engaging portion 11ba. Then, by discharging ballast water from a ballast tank (not shown), the stern side of the transport ship 20 or the entire transport ship 20 is levitated so that the pair of arm-like structures 23 abut against the engaging portion 11ba, The upper structure 11 is lifted from the quay 1 by supporting the weight of the upper structure 11 with the arm-shaped structure 23, and the upper structure 11 is mounted on the transport ship 20.
  • the lowermost part of the offshore structure 10 is configured to protrude 3 m or more below the lowermost part of the transport ship 20.
  • the construction method of the present invention is particularly effective due to the limitation of the water depth of a general harbor facility.
  • the upper limit of the protrusion amount at which the lowermost part of the offshore structure 10 protrudes below the lowermost part of the transport ship 20 it is about 100 m as a realistic design at the present stage, but about 400 m is sufficiently possible. In the future, there may be a 1000m class.
  • the construction method of the offshore structure of the first embodiment is a construction method when the first offshore structure 10 is installed on the ocean at the installation location, and is as shown in FIGS.
  • the offshore structure construction method according to the second embodiment is a method for installing the offshore structure 10A according to the second embodiment on the ocean at the installation site, as shown in FIGS. It is a thing.
  • the construction method of this offshore structure includes a manufacturing process, a mounting process, a transporting process, a descending process, an underwater maintenance process, a moving process, and an assembling process of either one or both of an ascending process or a descending process, It includes a joining process, a levitation process, and a mooring line connection process.
  • the offshore structure 10 is divided into an upper structure 11 and a lower structure 12 to be manufactured.
  • the upper structure 11 and the lower structure 12 are manufactured on the quay 1 so that they can be easily transferred to sea transportation because they are accompanied by movement to an offshore installation location. Since the water depth up to the seabed (or bottom) 2 at this place is relatively shallow, it is difficult to tow the water from the quay 1 to the water with the upper structure 11 and the lower structure 12 integrated into a vertical state.
  • the transport ship 20 is moved backward to bring the arm-like structure 23 into the engaging portion 11ba. Insert underneath.
  • the ballast water is drained, the height of the arm-like structure 23 is increased, the arm-like structure 23 comes into contact with the lower side of the engaging portion 11ba, and further rises to form an arm-like shape.
  • the upper structure 11 is held by the structure 23 and the upper structure 11 is separated from the quay. Thereby, the upper structure 11 is mounted on the arm-like structure 23 of the transport ship 20.
  • the upper structure 11 is mounted on the transport ship 20 having the ballast tank and the pair of arm-shaped structures 23 in the upright state. In addition, no crane ship or large crane is required.
  • the upper structure 11 is moved in the bow direction of the transport ship 20. In this state, leave the quay 1 where the upper structure 11 was placed, and go to the quay where the lower structure 12 is placed, as shown in FIG.
  • the substructure 12 is mounted on the transport ship 20 as shown in FIGS.
  • the upper structure 11 and the lower structure 12 may be mounted on separate transport ships 20 and 20 one by one according to the carrying capacity of the transport ship 20 and, if necessary, both the upper structure 11 and the lower structure 12. May be mounted on the same carrier 20 at the same time.
  • the upper structure 11 and the lower structure 12 are installed on the ocean by a transport ship 20 as shown in FIG. Transport to. This movement is performed by self-propulsion of the carrier ship 20.
  • the lower structure 12 When the transport ship 20 reaches the offshore installation location, as shown in FIG. 9 to FIG. 10, the lower structure 12 is suspended from the transport ship 20 to the suspension line 50 and lowered into the water in the descending process. If the water depth at the offshore installation location is relatively shallow, it is placed on the seabed (or bottom) 3. In this suspension, the lower structure 12 is submerged by injecting ballast water into the lower structure 12 or mounting other ballast, and the lower structure 12 is suspended by the suspension rope 50 to maintain a substantially vertical state.
  • the underwater weight of the lower structure 12 is set to a ballast amount that balances with the buoyancy, the load applied to the suspension line 50 can be remarkably reduced, so that it is provided on the transport ship 20 without requiring a large crane. Since the crane capacity of the winch and the crane truck 40 used is sufficient, it is not necessary to provide a large crane on the transport ship 20. A winch provided on the transport ship 20 can be used, or a commercially available crane truck 40 can be installed. It is sufficient to do this (the drawing shows the case of using a crane vehicle). If the winch has insufficient capacity, it can be dealt with by increasing the capacity to a capacity sufficient for construction.
  • the upper structure 11 is moved to an upper part of the lower structure 12 maintained in the upright state. This movement of the upper structure 11 moves the upper structure 11 onto the arm-like structure 23 on the transport ship 20, and further controls the position of the transport ship 20, so that the upper structure 11 is positioned above the lower structure 12.
  • the object 11 is arranged.
  • the lower structure 12 is raised and disposed below the upper structure 11.
  • the raising of the lower structure 12 can be easily performed by pulling up the suspension line 50 by the winch or the crane vehicle 40, draining the ballast water in the upper structure 11, and separating the ballast.
  • a part or all of the upper structure 11 is moved up and down with the upper structure 11 placed on the transport ship 20 or fixed on the ocean with the transport ship 20 or a towed ship. Since the lower structure 12 that requires a relatively small force is raised, it is not necessary to move the upper structure 10 in a vertical direction that has a large part or all on the water surface and a large force required for vertical movement. It can be moored safely at an offshore installation location without using a crane ship.
  • the upper structure 11 is submerged in a state where the upper structure 11 is held by the pair of arm-like structures 23 to sink the upper structure. 11 is lowered and the upper structure 11 and the lower structure 12 are united.
  • the upper structure 11 is lowered by sinking a part of the transport ship 20 while the upper structure 11 is placed on the transport ship 20 while the lower structure 12 is fixed or moored.
  • the upper structure 11 and the lower structure 12 can be safely combined at an offshore installation place without using a crane ship.
  • the lower structure 12 is configured to land on the water bottom 3, it is a construction method suitable for a bottomed offshore structure that is not moored by a mooring line rather than a floating body.
  • the structure 10 can be safely held at the installation location.
  • the mooring line may be a tension leg platform (TLP) using tendons instead of anchor chains or ropes.
  • a lowering process for lowering the upper structure 11 and an ascending process for raising the lower structure 12 may be used in combination. In this case, both may be performed simultaneously, but it is preferable to prioritize one over the other for the convenience of positioning.
  • the upper side of the lower structure 12 is brought into contact with or slightly separated from the lower side of the upper structure 11 by this merging step, the upper side of the lower structure 12 is moved to the lower side of the upper structure 11 in the joining step. Then, the lower structure 12 is integrated with the upper structure 11 by welding, bolting, fitting and pinning.
  • the upper structure 11 Since the upper structure 11 remains in an upright state during the mounting process and the joining process, there is no work for bringing the upper structure 11 into an upright state from lying down on the ocean. A large crane is not required. Therefore, since the equipment provided in the upper structure 11 does not fall sideways, these equipment can be installed in the upper structure 11 or inspected during land construction. Therefore, installation work of equipment on the ocean can be omitted, and work efficiency can be improved.
  • the upper structure is mounted and fixed on a transport ship, and the lower structure is pressed against the upper structure and fixed. In addition, it is possible to safely supply personnel and power necessary for joining work and the like from the transport ship.
  • the integrated upper structure 11 and the lower structure 12, ie, the offshore structure 10 are lowered
  • the stern is lowered by adjusting the ballast of the carrier ship 20 and the arm-like structure 23 is lowered so that the offshore structure 10 is floated. 20 is advanced, and the arm-like structure 23 is pulled away from the offshore structure 10.
  • the integrated upper structure 11 and lower structure 12 are lowered from the transport ship 20, a part of the transport ship 20 is submerged.
  • the 12 postures can be easily floated on the ocean while maintaining a vertical state.
  • the ballast can be lifted by removing or separating the ballast.
  • the mooring line 30 connects the integrated upper structure 11, the lower structure 12, and the mooring base 31 after the ascending step.
  • this mooring line connecting step is provided after the joining step, when the connecting portion 32 of the mooring line 30 on the offshore structure 10 side is on the lower structure 12 side during connection work, the connection between the lower structure 12 and the mooring line 30 is performed. Work on the water surface, not underwater. L. Therefore, the joining work can be performed efficiently.
  • connection portion 32 of the mooring line 30 on the offshore structure 10 side is on the lower structure 12 side.
  • the connection portion 32 is on the upper structure 11 side, the upper structure is mounted on the carrier ship and is stable, but is joined at a stage where the burden of the lower structure is not applied to the arm-like structure of the carrier ship. Work can be done.
  • the construction method of the offshore structure of the second embodiment is different from the construction method of the offshore structure of the first embodiment in terms of the method and effect of mounting and transporting the lower structure 12A of the offshore structure 10A. The only difference is the others.
  • the offshore structure construction method of the second embodiment can be used when mooring the offshore structure 10A of the second embodiment as shown in FIG.
  • the mounting and transport of the upper structure 11A in the manufacturing process and the mounting process are the same as the construction method of the offshore structure in the first embodiment, but first, the lower structure 12A.
  • the loading in the loading process and the transportation in the transportation process are performed in a lying state.
  • the offshore structure, the moving process, the joining process, the floating process, and the mooring line connecting process after the substructure 12A is brought into the vertical state are the offshore structure of the first embodiment. It is the same as the construction method.
  • the upper structures 11 and 11A and the lower structures 12 and 12A are offshore.
  • the upper structure suspended by a crane or the like is suspended from the lower structure 12, 12A to the lower structure 12, 12A with respect to the lower structure 12, 12A arranged on the ocean.
  • the upper structure 11, 11A and the lower structure 12, 12A are joined, but conversely, the upper structure 11, 11A is partially or entirely submerged with a suspension rope or the like.
  • a certain lower structure 12, 12A is raised, and the upper structure 11, 11A and the lower structure 12, 12A are joined.
  • the substructures 12 and 12A are in the water at the time of installation, even if they are mounted on the transport ship 20 in a lying state or towed by a towing ship in a lying state, By installing ballast water or other ballasts at the installation site, it is possible to achieve a vertical state relatively easily by using only a relatively small crane or winch.
  • the upper structures 11 and 11A are equipped with devices such as wind power generation equipment that need to avoid submersion, when transported in a lying state as in the prior art, the offshore or transport ship at the installation site Since it is necessary to make it into a vertical state from a horizontal state on 20, a crane ship and a large crane on a transport ship are required.
  • the upper structures 11 and 11A of the offshore structures 10 and 10A are in an upright state, and include a ballast tank, and ship from the bow or stern hull end. Since it can be mounted on the transport ship 20 provided with a pair of arm-like structures 23 projecting in the direction of success, the construction method for the offshore structure can be implemented, and the same effects as the construction method for the offshore structure can be performed. Can be obtained.
  • FIG. 10A, 10B, and 10C have structures whose buoyancy centers are above the center of gravity, and these upper structures 11, 11A, 11B, and 11C mainly consist of the upper part of the water, and the lower structures 12, 12A and 12B12C are mainly composed of a submerged portion.
  • These upper structures 11, 11A, 11B, and 11C and the lower structures 12, 12A, 12B, and 12C are connected to be separable and separable.
  • This “mainly” means, for example, 70% or more, preferably 80% or more.
  • This connectable configuration facilitates the installation of the offshore structures 10, 10A, 10B, 10C, and the separable configuration facilitates the removal of the offshore structures 10, 10A, 10B, 10C.
  • the offshore structures 10, 10A, 10B, and 10C can be easily moved and discarded.
  • the mooring is connected to the lower structure, if there is a serious failure in the upper structure, it is easy to separate only the upper structure and take it home and re-install it after repair. Can be done.
  • these upper structures 11, 11A, 11B, and 11C are assembled at least generally in an upright state on land and transported in an upright state.
  • the lower structures 12, 12A, 12B, and 12C are It is configured to have a mechanism for erecting after transportation to the offshore installation location of the offshore structures 10, 10A, 10B, 10C or to a sea area with sufficient water depth.
  • connection site 14 of the mooring line 30 on the offshore structures 10, 10A, 10B, and 10C side is connected to the upper structures 11, 11A, 11B, and 11C.
  • the work and inspection at the connection site 14 are carried out on the water, preferably on the water surface W.W. L. It is preferable to be configured so that it can be performed near.
  • ballast water injection and drainage equipment that drains not only the ballast water but also the lower structures 12, 12A, 12B, 12C, or A ballast injection and discharge facility (not shown) for discharging solid ballast as well as injection, a ballast water injection and drainage facility, or a structure capable of temporarily mounting a ballast injection and discharge facility may be provided.
  • these substructures 12, 12A, 12B, and 12C may have facilities for pouring and draining ballast water, or facilities for injecting and discharging solid ballast, or structures for installing such facilities. preferable.
  • a pump, an air lift, or extrusion by injection of compressed air can be used.
  • a discharge method of solid ballast a slurry pump, an ejector, and an air lift can be used at the time of removal using powdery, powdery solid or slurry.
  • heavy solids or slurries can be easily discharged by using an air lift system in which a gas is mixed into a liquid and the solid mixed in the liquid is lifted with a mixed gas of the liquid and the gas using a gas levitation force.
  • the lower structures 12, 12A, 12B, and 12C can be easily levitated, so that the upper structures 11, 11A, 11B, and 11C and the lower structures 12, 12A, 12B, and 12C on the ocean are obtained.
  • the ballast is discharged (by deballasting), and in the reverse procedure at the time of installation,
  • the offshore structure 10 can be easily disassembled and removed. Thereby, the difficulty accompanying the movement and disposal of the offshore structures 10, 10A, 10B, 10C can be overcome.
  • the conventional spar type floating structure of the prior art performs the ballasting work by stuffing solid ballast that cannot be discharged such as heavy concrete or iron ore that will be combined and integrated as oxidation progresses. Even if the water depth is shallow, it is difficult to remove offshore structures and they cannot be moved. In addition, because the draft is so large that it is not possible to move to a shallow water depth, it is a problem of environmental pollution to submerge and dispose of an unnecessary offshore structure on the high sea water. As in the present invention, it is possible to deballast and make it possible to easily move the offshore structures 10, 10A, 10B, and 10C, which is a great merit in terms of measures against environmental pollution problems.
  • An engaging portion 11ba for placing the upper structure 11A on the pair of arm-like structures 23 is formed by an overhanging portion 13 projecting in the horizontal direction in three or more directions from the upper structure 10A.
  • projection part 13 is provided.
  • the overhang portion 13 is configured to be a part that can be used for safety during assembly work in an upright state on land.
  • the overhanging portion 13 projecting in three or more directions on the upper structure 11A, and to provide the connection portion 14 of the mooring line 30 at a position where the overhanging portion 13 becomes water during mooring work.
  • the overhanging portion 13 is connected to the water surface W.D. L. Water surface W.W. L.
  • the connection work of the mooring line 30 is relatively easy.
  • An offshore structure 10B shown in FIG. 25 is a vertically long structure including an upper structure 11B and a lower structure 12B.
  • a weight 12Ba is provided below the lower structure 12B, and a buoyant body 12Bb is provided above the weight 12Ba. It is configured.
  • the offshore structure 10C shown in FIG. 27 is composed of an upper structure 11C and a lower structure 12C, and is configured by providing a weight 12Ca below the lower structure 12C and a buoyancy body 12Cb above it.
  • This weight 12Ca is a water wheel that also serves as a weight, and is wider than the lower structure 12B of the vertically long offshore structure 10B.
  • the upper structure 11C includes a vertical axis windmill.
  • the offshore structures 10B and 10C are moored by the mooring cable 30, and the arm 15 is provided on the offshore structures 10B and 10C.
  • one end side of the arm 15 is capable of swinging only around the horizontal axis, and the rotary shaft 15a of the arm 15 is connected to the offshore structure 10B, 10C (in FIG. 26, the upper structure 11B of the offshore structure 10B). ) And is rotatably supported.
  • a connection portion 14 for connecting the mooring line 30 is provided on the other end side of the arm 15.
  • the arm 15 may be provided on the upper structures 11B and 11C side of the offshore structures 10B and 10C, or may be provided on the lower structures 12B and 12C side.
  • the connecting member 17 such as a chain stopper is located at a distance (attachment from the central axis in the vertical direction of the offshore structure 10X. Since the (radius) is provided at a small position, the offshore structure 10X acts in a turning direction, that is, in a direction in which the twist ⁇ is restored to the swing (hereinafter referred to as torsion) ⁇ in the horizontal plane.
  • torsion a direction in which the twist ⁇ is restored to the swing
  • This torsion ⁇ is generated in direct relation to the power generation torque when the offshore structure 10X is equipped with a vertical axis windmill, and the offshore structure 10X is equipped with a horizontal axis windmill. If this is the case, it will occur directly in relation to the turning of the horizontal axis windmill to the windward against the wind and its maintenance.
  • the arm 15 is interposed so that the connecting portion 14 is separated from the central axis in the vertical direction of the offshore structures 10B and 10C by the arm 15.
  • the offshore structures 10B and 10C are tilted (peristed around the horizontal axis) ⁇ at the position of the connection site 14. Since the displacement amount due to the inclination ⁇ becomes large, the mooring force of the mooring line 30 also fluctuates, and the allowable range for the inclination ⁇ of the offshore structures 10B and 10C becomes narrow.
  • the offshore structure 10B 10C, the arm 15 can be swung only around the horizontal axis at one end, as shown in FIGS. 25 to 27, that is, can be tilted offshore structures 10B and 10C (upper structures 11B and 11C in the figure). Therefore, the fluctuation of the mooring force of the mooring line 30 can be reduced, and the allowable range for the inclination ⁇ of the offshore structures 10B and 10C can be widened.
  • a peristaltic portion (not shown) that can be swung around the vertical axis is provided on the other end side of the arm 15, and a connecting portion 14 for connecting the mooring line 30 is provided on the peristaltic portion.
  • the peristaltic portion can be easily configured with a member that can be swung around the vertical axis, for example, a member that has a rotation axis in the vertical direction and is rotatable around the rotation axis.
  • the peristaltic portion that can be swung around the vertical axis can cope with an increase in the amount of change in the mooring direction of the mooring line 30 and can prevent the connection site 14 and the mooring line 30 from being damaged.
  • an intermediate buoy (intermediate floating body) 16 is provided on the other end side of the arm 15, the vertical movement of the offshore structures 10B and 10C can be absorbed by the peristaltic movement of the arm 15 around the horizontal axis. With respect to the vertical movement of 10C, the movement of the connecting portion 14 provided in the intermediate buoy 16 and the movement of the mooring line 30 connected to the connecting portion 14 can be remarkably reduced.
  • the offshore structure 10C has a hinge 15a (rotating shaft that can be swung around a horizontal axis) 15a that is rotatable in the vertical direction on the base side, is supported by the offshore structure 10C, and a fixed portion of the mooring line 30 on the tip side.
  • a mooring arm 15 having a (connection part) 14 is provided, and the offshore structure 10C is a floating mooring system for mooring using this.
  • a plurality of mooring lines 30 connected to the tip side of the mooring arm 15 may be provided, and a buoyancy portion (intermediate buoy 16) is provided on the tip side of the mooring arm 15. Or you may have a weight part.
  • the offshore structure 10C itself has a buoyancy body 12Cb that generates buoyancy, and the offshore structure 10C has a weight 12Ca in the water to maintain a vertical posture when moored.
  • the weight 12Cb is a water wheel, and has a windmill on the buoyancy body 12Cb.
  • the mounting radius of the pivot (rotating shaft of the arm 15) 15a that allows only the vertical rotation (tilt) ⁇ is small, the restoring force due to the mooring force with respect to the tilt ⁇ of the offshore structure 10C can be reduced. Therefore, since the attachment radius of the connection portion 14 to which the connection member 17 such as a chain stopper is attached is large, the restoring force by the mooring force with respect to the torsion (turning) ⁇ is large, in other words, the mooring of the mooring with respect to the torsion (turning) ⁇ . It has the feature of high rigidity.
  • the buoyancy required for the buoyant body 12Cb of the offshore structure 10C can be standardized regardless of the water depth or the like.
  • the buoyancy body 12Cb of the offshore structure 10C can be turned together with the water wheel 12Ca.
  • the joint portion between the buoyancy body 12Cb and the water wheel 12ba can be greatly simplified, and the diameter of the water wheel 12Ca can be increased.
  • the allowable swing angle is greater than that of the rubber bearing and the buoyant body 12Cb does not turn together with the water wheel 12Ca, the water wheel 12Ca, the arm 15, and the intermediate buoy 16 do not rotate together even when the limit angle is reached. Since it becomes a contact between things, it becomes easy to respond
  • the offshore structure construction method and the offshore structure of the present invention in the construction method of a spar type offshore structure equipped with a wind power generator or the like, it is possible to safely install the offshore structure without using a crane ship. Since it can be moored in the sea, it can be widely used for many offshore structures and construction methods.

Abstract

 洋上構造物10を上部構造物11と下部構造物12に分割して製造する製造工程と、下部構造物12の一部又は全部を水中に直立状態に維持する水中維持工程と、この直立状態に維持した下部構造物12の上方部位に、上部構造物11を移動する移動工程と、下部構造物12を上昇させて、上部構造物11の下側に配置する上昇工程、又は、上部構造物11を一対の腕状構造物23に保持した状態で搭載した運搬船20の一部を沈めることにより、上部構造物11を下降させて、下部構造物12の上側に配置する下降工程のどちらか一方又は両方の合体工程と、下部構造物12を上部構造物11に一体化する接合工程とを含んで洋上構造物の施工方法を構成する。これにより、風力発電装置等を搭載したスパー型等の洋上構造物の施工方法において、クレーン船を使用することなく、安全に洋上設置場所に係留する。

Description

洋上構造物の施工方法、及び、洋上構造物
 本発明は、風力発電装置等を搭載したスパー型等の洋上構造物の施工方法、及び洋上構造部に関するものである。
 水深の深い海域で、洋上構造物に風力発電設備を搭載する場合に、セミサブ型あるいはテンションレグプラットフォーム(TLP)等が考えられるが、これらの場合には、陸上で一体的に組み立て、試運転を行ってから設置場所に曳航して、係留システムにより係留されることになる。
 一方、スパー型の洋上構造物の場合は、スパーは魚釣りの釣浮きのように直立状態で浮いている洋上構造体であり、バラスト水の注水等により浮体の大部分は海面下に沈んでいる。このスパーは、動揺が比較的少なく、重い上部構造を支持することができる。風力発電設備を備えたスパー型の洋上構造物では、仮に浮体の吃水が約40m~80mと深く、また、浮体部分が約1000t(トン)以上の大きな構造物となる。
 このスパー型の洋上構造物としては、例えば、国際公開第2013/065826号パンフレットに記載されているように、風力を利用する水平軸風車又は垂直軸風車を水面上部分に配置すると共に、潮流力を利用する水平軸水車又は垂直軸水車を水面下に配置して、水平軸水車又は垂直軸水車をバラストとして使用する浮体式流体力利用システムが提供されている。
 このスパー型の洋上風力発電設備を、洋上設置場所に設置する場合に、例えば、日本出願の特開2012-201219号公報に記載されているように、下部構造物である浮体を横向きの状態で海上に浮かべて、曳航船により曳航し、又は、浮体を台船に搭載して、洋上設置場所まで運搬する運搬工程と、浮体を浮かべてからバラスト調整して、浮体を起立状態にし、喫水調整をする浮体立設工程と、浮体にデッキを設置するとともに、浮体に係留索の一端を繋ぎ止め、他端を海底に沈設したアンカーに繋ぎ留めて浮体の安定化を図る浮体係留工程と、別途、台船等で洋上設置場所に運搬してきたタワーを、クレーン船で吊り下げて、このタワーを浮体の上部に設置するタワー設置工程を行う洋上風力発電設備の施工方法が提供されている。
 この施工方法では、洋上での容易かつ安全な施工を行なえるようにするとともに、強風または波浪時に安定性を確保するために、浮体の上に立設するタワーを、浮体の上部に設置する際に、タワー又はタワーを吊り下げるクレーンの吊り治具にマスダンパを設置して、タワーの搖動を制御するとともに、浮体の内部に設置されたコントロールモーメントジャイロによって、浮体の搖動を制御している。
 このような浮体を係留し、この係留された浮体に、タワーをクレーン船で吊り下げて、一体化する場合には、使用料が高いクレーン船が必要になる上に、クレーン船で吊り下げたタワーが、風の影響を受け易く、タワーと浮体の搖動を制御する必要が生じるなど、タワー設置工事が難航するという問題がある。
 一方、例えば、日本出願の特開平10-236385号公報に記載されているように、コンテナクレーン等の大型貨物を、バラスト水の注排水による船体浮力を利用して安全に、かつ、効率的に揚げ卸しするために、バラストタンクを備え、かつ、船体端部から船尾方向に向けて突出させた一対の腕状構造物を備えた運搬船にバラスト水を注排水し、このバラスト水の注排水による船体浮力を利用して大型貨物の揚げ卸しを行う大型貨物の揚げ卸し方法が提案されている(例えば、特許文献3参照)。
国際公開第2013/065826号パンフレット 日本出願の特開2012-201219号公報 日本出願の特開平10-236385号公報
 本発明は、上記の状況を鑑みてなされたものであり、その目的は、風力発電装置等を搭載したスパー型等の洋上構造物の施工方法において、クレーン船を使用することなく、安全に洋上設置場所に係留できる洋上構造物の施工方法、及び洋上構造物を提供することにある。
 上記の目的を達成するための本発明の洋上構造物の施工方法は、洋上構造物を上部構造物と下部構造物に分割して製造する製造工程と、前記下部構造物の一部又は全部を水中に直立状態に維持する水中維持工程と、この直立状態に維持した前記下部構造物の上方部位に、前記上部構造物を移動する移動工程と、前記下部構造物を上昇させて、前記上部構造物の下側に配置する上昇工程、又は、前記上部構造物を一対の腕状構造物に保持した状態で搭載した運搬船の一部を沈めることにより、前記上部構造物を下降させて、前記下部構造物の上側に配置する下降工程のどちらか一方又は両方の合体工程と、前記下部構造物を前記上部構造物に一体化する接合工程とを含むことを特徴とする方法である。
 つまり、本発明の施工方法では、従来技術では、洋上で上部構造物と下部構造物を一体化する場合には、洋上に配置された下部構造物に対して、クレーン等で吊り上げた上部構造物を、下部構造物の上から下部構造物に吊り下ろして、上部構造物と下部構造物を接合しているのに対して、逆に、本発明の合体工程の上昇工程では、上部構造物に対して、吊下げ索などで一部又は全部が水中にある下部構造物を上昇させて、上部構造物と下部構造物を合体する。なお、この下部構造物の上昇は、吊下げ索の引き上げや、下部構造物のバラスト水の排水や、下部構造物のバラストの切り離しなどによって容易に行うことができる。
 また、本発明の合体工程の下降工程では、従来技術のクレーン等で吊り上げた上部構造物を下部構造物に吊り下ろすのではなく、上部構造物を一対の腕状構造物に保持した状態で搭載した運搬船の一部を沈めることにより、上部構造物を下降させて、上部構造物と下部構造物を合体する。
 この方法によれば、合体工程の上昇工程では、上部構造物を運搬船上に載置した状態や、運搬船若しくは曳航船等により洋上に固定した状態で、一部又は全部が水面下にあって上下移動に要する力が比較的少なくて済む下部構造物を上昇させるので、多くの部分又は全部が水面上にあって上下移動に要する力が大きな上部構造物を上下方向に移動させる必要がなくなるので、クレーン船を使用することなく、安全に洋上設置場所に係留できる。また、洋上での接合作業を、上部構造物が運搬船に搭載されて固定され、その上部構造物に下部構造物が押し当てられて固定され、全体の慣性が大きく揺れが最小限になった環境で安全に行うとともに、接合作業等に必要な人員や動力を運搬船から安全に供給することができる。
 また、合体工程の下降工程では、下部構造物を固定又は係留した状態で、上部構造物を運搬船上に載置した状態のまま、運搬船の一部を沈めることにより上部構造物を下降させるので、クレーン船を使用することなく、安全に洋上設置場所で上部構造物と下部構造物を合体できる。
 上記の洋上構造物の施工方法において、前記上昇工程における前記下部構造物の上昇を、前記上部構造物又は前記下部構造物の少なくとも一方を移動する運搬船に搭載したウインチを用いて行うように構成すると、洋上クレーン船を使用することなく、下部構造物の上昇を行うので、工費を節約できる。
 また、上記の洋上構造物の施工方法は、前記接合工程が、前記上部構造物を前記運搬船の前記一対の腕状構造物に保持した状態で、前記下部構造物を前記上部構造物に一体化する工程であり、前記製造工程と前記水中維持工程の間に、前記上部構造物を直立状態のまま、バラストタンクを備え、かつ、船首又は船尾の船体端部から船首尾方向に向けて突出させた一対の腕状構造物を備えた運搬船に搭載する搭載工程と、前記運搬船により、前記上部構造物と前記下部構造物の一方ずつ又は両方を同時に洋上設置場所に運搬する運搬工程と、前記下部構造物を前記運搬船から吊下げ索に吊り下げて水中に降ろす降下工程とを含むと共に、前記接合工程の後に、一体化した前記上部構造物と下部構造物を前記運搬船から降ろして、洋上に浮かべる浮上工程とを含んで構成されると次のような効果を奏することができる。
 つまり、搭載工程で、上部構造物を直立状態のまま、バラストタンクを備え、かつ、船首又は船尾の船体端部から船首尾方向に向けて突出させた一対の腕状構造物を備えた運搬船に搭載するので、上部構造物を運搬船に搭載する際に、クレーン船や大型クレーンが不要になる。
 また、上部構造物を直立状態のまま運搬するので、洋上で上部構造物を直立状態にする作業が無くなり、クレーン船や運搬船上の大型クレーンが不要となる。一方、下部構造物は、上部構造物と同様に直立状態で運搬することも可能で、横倒し状態で運搬する場合に比べて、洋上における横倒し状態から垂直状態への移行作業がなくなるので、作業を簡略化できる。
 更に、浮上工程でも、一体化した上部構造物と下部構造物を運搬船から降ろして、洋上に浮かべる際に、運搬船側のバラスト水操作で、洋上構造物を浮上させて、運搬船を引く抜くことで、洋上構造物を運搬船から降ろすことができるので、この浮上工程でも、クレーン船や大型クレーンが不要になる。
 なお、下部構造物は全部もしくはその殆どの部分が設置時には水中に入った状態になるので、横倒し状態で運搬船に搭載したり、横倒し状態で曳航船によって曳航したりしても、設置場所でバラスト水の注水やその他のバラストの搭載等により、比較的小さなクレーンやウインチなどのみの使用で比較的容易に垂直状態にすることができる。一方、上部構造物は風力発電設備など水没を回避する必要がある機器が搭載されているので、横倒し状態で運搬された場合には、設置場所の洋上又は運搬船上で横倒し状態から垂直状態にした上で風車組立等を行う必要があるため、クレーン船や運搬船上の大型クレーンが必要となる。
 これに対し、本発明では、上部構造の組立を陸上で完成し、試運転などを済ませてから運搬でき、また、洋上での接合作業は上部構造物が運搬船に搭載し固定され、その上部構造物に下部構造物が押し当てられて固定され、全体の慣性が大きく揺れが最小限になった安全な状態で行うことができる。また、接合作業に必要な動力や作業員を安全に運搬船から供給することができる。
 また、上記の洋上構造物の施工方法で、前記浮上工程において、一体化した前記上部構造物と前記下部構造物を前記運搬船から降ろす際に、前記運搬船の一部を沈めるように構成すると、一体化した上部構造物と下部構造物の姿勢を垂直状態に保持したまま、容易に洋上に浮かべることができるようになる。
 また、上記の洋上構造物の施工方法で、前記降下工程において、前記下部構造物を水底に着底させるように構成すると、浮体式ではなく係留索による係留を行わない、着底式の洋上構造物の場合に適した工法となる。また、浮体式であって係留索による係留を行う場合であっても、気象海象が荒い場合や潮流がある場合などでは、水底に一時的に着底して、仮置きすることで、洋上構造物を安全に設置場所に位置保持できるようになる。なお、係留索として、アンカーチェーンやロープ等ではなくテンドンを使用したテンションレグプラットフォーム(TLP)であってもよい。
 そして、上記の洋上構造物の施工方法において、前記運搬工程の後で、かつ、前記接合工程の前に、前記上部構造物または前記下部構造物と係留基部との間を係留索で接続する係留索接続工程を設けると、洋上構造物側の係留索の接続部が下部構造物側にある場合に、上部構造物と下部構造物が一体化される接合工程前に、係留索接続作業が行われるので、接合工程時に、下部構造物が係留索に接続されて安定した状態になっているので、接合作業を容易に行うことができるようになる。または、前記運搬工程の後で、かつ、前記接合工程の前に、前記上部構造物と係留基部との間を係留索で接続する係留索接続工程を設けると、前記上部構造物が運搬船に搭載されて安定しているが、下部構造物による負担が運搬船の腕状構造物にかかっていない段階で接合作業を行うことができる。
 あるいは、上記の洋上構造物の施工方法において、前記接合工程の後に、一体化した前記上部構造物と前記下部構造物と、係留基部との間を係留索で接続する係留索接続工程を設けると、洋上構造物側の係留索の接続部が下部構造物側にある場合に、下部構造物と係留索の接続作業を水中では無く水面上で、かつ上下構造物が運搬船に搭載・固定された安全な環境で行うことができるので、接続作業を効率よく行うことができるようになる。なお、係留索の接続にあたって運搬船やその椀上構造物が障害となる場合には、係留索の接続作業は、浮上工程の後であってもよい。
 そして、上記の目的を達成するための本発明の洋上構造物は、上部構造物と下部構造物を接合して洋上に配置される洋上構造物であって、前記上部構造物は、直立状態のまま、バラストタンクと船首又は船尾の船体端部から船首尾方向に向けて突出させた一対の腕状構造物を備えた運搬船に搭載可能なように、上部構造物が直立状態で、横方向からスライドしてくる前記一対の腕状構造物を受け入れて、前記一対の腕状構造物の上に載置できる係合部を備えて構成される。
 この構成によれば、洋上構造物の上部構造物が、直立状態のまま、バラストタンクを備え、かつ、船首又は船尾の船体端部から船首尾方向に向けて突出させた一対の腕状構造物を備えた運搬船に搭載できるので、上記の洋上構造物の施工方法を実施でき、上記の洋上構造物の施工方法と同様な作用効果を得ることができる。
 また、上記の洋上構造物において、前記洋上構造物は浮力中心が重心より上にある構造体を持ち、前記上部構造物は主として水上部からなり、前記下部構造物は主として没水部からなり、前記上部構造物と前記下部構造物とは結合及び分離可能に接続されると、スパー型の洋上構造物の上部構造物と下部構造物が結合可能に構成されるので、洋上構造物の設置が容易となり、また、上部構造物と下部構造物が分離可能に構成されるので、洋上構造物を容易に分解でき、撤去作業が容易となる。従って、洋上構造物を設置した後でも、移動や廃棄を容易に行うことができる。また、係留索が下部構造物に接続されている場合には、上部構造物に重大な故障があった場合等に、上部構造物のみを容易に分離して持ち帰り、修復後に再設置することを容易に行うことができる。
 上記の洋上構造物において、前記上部構造物と前記下部構造物を一体にして立てて運搬船に搭載した場合に前記洋上構造物の最下部が前記運搬船の最下部より下に3m以上突出する構成の場合には、上部構造物と下部構造物を一体にして直立した状態で運搬船に搭載することは通常の水深の港湾では困難であるので本発明の施工方法が特に有効であり、このような縦長の洋上構造物でも本発明の施工方法を用いることで洋上設置場所に容易に設置できるようになる。なお、洋上構造物の最下部が運搬船の最下部より下に突出する突出量の上限に関しては、現段階における現実的な設計としては100m程度となるが、400m位は十分に可能性があり、将来的には1000m級もあり得る。
 上記の洋上構造物において、前記下部構造物はバラスト水の注水のみならず排水するバラスト水注水及び排水設備を有するか、若しくは、固体バラストを注入のみならず排出するバラスト注入及び排出設備を有するか、又は、前記バラスト水注水及び排水設備、若しくは、前記バラスト注入及び排出設備を一時的に取り付け可能な構造を有して構成されると、これらのバラスト水注水及び排水設備、若しくは、バラスト注入及び排出設備を使用して、下部構造物を容易に浮上させることができるので、洋上構造物の撤去作業が容易となり、洋上構造物の移動や廃棄を容易に行うことができるようになる。
 上記の洋上構造物において、前記係合部が前記上部構造物から3方向以上で水平方向に張り出した張出部で形成されると共に、該張出部に係留索を接続する接続部位が設けられると、この張出部で上部構造物の運搬船への搭載作業や、接続部位での係留索の接続作業や調整作業や点検作業を行うことができ、特に、係留作業時に、この張出部が水上にあるように構成すると潜水作業が不要になり、係留索の接続作業等を容易に行うことができるようになる。また、係留作業時にこの張出部が水面下ではあるが、水面近傍にあるように構成すると、係留索の接続作業等が比較的容易となる。
 上記の洋上構造物において、前記洋上構造物が係留索で係留されると共に、該係留索を接続する接続部位が、一端側が水平軸回りのみに搖動可能に前記洋上構造物に支持されるアームの他端側に設けられると、次のような効果を発揮できる。
 つまり、スパー型の洋上構造物の従来技術の係留においては、チェーンストッパー等の接続部材は洋上構造物の垂直方向の中心軸からの距離(取り付け半径)が小さい位置に設けられているために、洋上構造物が旋回方向に即ち水平面内の搖動(以下、捩じりという)に対して、捩じりを元に戻す方向に作用する係留索の係留力による復元モーメントが小さくなるという問題がある。この捩じりは、洋上構造物が垂直軸風車を搭載している場合には、発電トルクに直接的に関係して発生し、また、洋上構造物が水平軸風車を搭載している場合には、水平軸風車を風力に抗して風上に向ける旋回時やその維持に直接的に関係して発生する。
 この従来技術の構成に対して、この構成では、アームを介在させることで、このアームの分だけ接続部位を洋上構造物の垂直方向の中心軸からの距離(取り付け半径)が大きい位置に設けることができるので、捩じりを元に戻す方向に作用する係留索の係留力による復元モーメントを大きくすることができる。その結果、洋上構造物全体が、旋回方向に捩れては戻る搖動(旋回運動)を抑制できるようになる。
 また、従来技術のように、接続部位を取り付け半径が小さい位置に設けると、洋上構造物の水平軸回りの搖動(鉛直軸に対する傾斜)の際に接続部位の位置における変位量は小さくなるため、係留索の係留力の変動も小さくなり、この洋上構造物の傾斜に対する許容範囲が広いが、一方、この構成のように、接続部位を取り付け半径が大きい位置に設けると、洋上構造物の傾斜の際に、接続部位の位置における変位量が大きくなるため、係留索の係留力の変動も大きくなり、洋上構造物の傾斜に対する許容範囲が狭くなってしまうという問題がある。
 これに対して、この構成では、アームを、一端側において水平軸回りのみに搖動可能に上部構造物に支持することにより、係留索の係留力による拘束を小さくして、洋上構造物の傾斜に対する許容範囲を広くすることができる。なお、このアームは洋上構造物の上部構造物側に設けてもよく、下部構造物側に設けてもよい。
 上記の洋上構造物において、前記アームの他端側に鉛直軸周りに搖動可能な搖動部が設けられると共に、該搖動部に前記係留索を接続する前記接続部位が設けられると、アームを設けて接続部位の取り付け半径が大きくなることに伴って、洋上構造物の捩じりに伴う接続部位における係留索の係留方向の変化量が大きくなるが、この鉛直軸周りに搖動可能な搖動部により、この係留方向の変化量の増大に対応できるようになるので、接続部位及び係留索の損傷を防止できる。
以上に説明したように、本発明の洋上構造物の施工方法、及び洋上構造物によれば、風力発電装置等を搭載したスパー型の洋上構造物の施工方法において、クレーン船を使用することなく、安全に洋上設置場所に係留できる。
図1は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における上部構造物を運搬船に搭載する直前の状態を示す図である。 図2は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における上部構造物を運搬船に搭載している状態を示す図である。 図3は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における運搬船に搭載した上部構造物を甲板上に移動している状態を示す図である。 図4は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における下部構造物を運搬船に搭載する直前の状態を示す図である。 図5は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における下部構造物を運搬船に搭載している状態を示す図である。 図6は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における運搬船に搭載した下部構造物を甲板上に移動している状態を示す図である。 図7は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、運搬工程における運搬船が運航を開始する状態を示す図である。 図8は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、運搬工程における運搬船が洋上設置場所に着いた状態を示す図である。 図9は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、降下工程における運搬船上で下部構造物を船尾に移動する状態を示す図である。 図10は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、降下工程における下部構造物を運搬船から降下した状態を示す図である。 図11は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、水中維持工程における下部構造物の状態と移動工程における運搬船上で下部構造物を船尾に移動する状態を示す図である。 図12は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、上昇工程における下部構造物を上昇させた状態と、接合工程における状態を示す図である。 図13は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、浮上工程における洋上構造物を運搬船から降ろしている状態を示す図である。 図14は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、係留索接続工程後の状態を示す図である。 図15は、本発明に係る第1の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、施工後の状態を示す図である。 図16は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における上部構造物を運搬船に搭載する直前の状態を示す図である。 図17は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、搭載工程における下部構造物を運搬船に搭載する直前の状態を示す図である。 図18は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、運搬工程における運搬船が運航を開始する状態を示す図である。 図19は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、降下工程における下部構造物を運搬船から降下している状態を示す図である。 図20は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、水中維持工程における下部構造物の状態と移動工程における運搬船上で下部構造物を船尾に移動した状態を示す図である。 図21は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、上昇工程における下部構造物を上昇させた状態と、接合工程における状態を示す図である。 図22は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、浮上工程における洋上構造物を運搬船から降ろしている状態を示す図である。 図23は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、係留索接続工程後の状態を示す図である。 図24は、本発明に係る第2の実施の形態の洋上構造物の施工方法を説明するための模式的な図で、施工後の状態を示す図である。 図25は、本発明に係る実施の形態の洋上構造物の係留後の状態を示す模式的な図である。 図26は、アームの構成を示す模式的な図である。 図27は、本発明に係る他の実施の形態の洋上構造物の係留後の状態を示す模式的な図である。 図28は、従来技術の洋上構造物の係留後の状態を示す模式的な図である。
 以下、本発明に係る実施の形態の洋上構造物の施工方法、及び洋上構造物について説明する。この実施の形態の説明では、洋上構造物としては、風力を利用する垂直軸風車を水面上部分に配置すると共に、潮流力を利用する垂直軸水車を水面下に配置して、水平軸水車又は垂直軸水車をバラストとして使用する浮体式流体力利用システムの洋上構造物を例に説明しているが、本発明は、必ずしも、この洋上構造物に限定する必要はなく、その他の洋上で上部構造物と下部構造物を一体化する洋上構造物に適用できる。
 図1~図15に示すように、ここで例示する第1の実施の形態の洋上構造物10は、上部構造物11と下部構造物12を接合して洋上に配置される洋上構造物である。上部構造物11は、回転軸11aaと垂直羽根11abを有する垂直軸風車11aとこの垂直軸風車11aを支持する風車支持部11bを備えて構成される。また、下部構造物12は、垂直軸水車を備えて構成される。
 この上部構造物11の風車支持部11bには直立状態のまま運搬船20に搭載可能なように、上部構造物11が直立状態で、横方向からスライドしてくる運搬船20に設けられた一対の腕状構造物23を受け入れて、その一対の腕状構造物23の上に載置できる係合部11baを備えて構成される。なお、ここでは、支柱の下部の円環状に突出して設けた円環の下部がこの係合部11baとなるが、腕状構造物23の挿入を許す挿入孔の上部を係合部としてもよい。
 図16~図24に示すように、第2の実施の形態の洋上構造物10Aは、下部構造物12Aが垂直軸水車を備えておらず、錘で構成されている点が異なる。この洋上構造物10Aの形状の方が、スパー型の洋上構造物として周知の形状とほぼ同じ形状となる。
 また、運搬船20は、図1~図14及び図16~図23に示すように、上部構造物11を直立状態で搭載できる甲板21と、航海用の船橋22と、図示しないが、推進機関やプロペラ等の推進装置や燃料タンクを備える。また、バラストタンクを備え、重量の大きい運搬物を搭載及び降ろすとき、及び、運搬物を船首方向に移動するときに、船体の喫水やトリム(船首尾方向の傾斜)を調整することができるようにバラスト水を注排水及びバラストタンクの相互間の移動を制御できるように構成される。
 更に、船首又は船尾の船体端部から船首尾方向(図1~図14及び図16~図23では、船尾から船尾方向)に向けて突出させた一対の腕状構造物23を備えて構成される。この一対の腕状構造物23は、上から見て、船尾側が解放されたU字形状に、船尾の左右に向かい合って配置される。
 そして、図1~図2に示すように、このU字形状の開口部側から、岸壁1上の載置された上部構造物11の係合部11baの下側に一対の腕状構造物23を挿入しながら後退して、一対の腕状構造物23を係合部11baの下側に入れる。そして、図示しないバラストタンクからバラスト水を排出することで運搬船20の船尾側又は運搬船20全体を浮上させることで、一対の腕状構造物23を係合部11baに当接し、更には、一対の腕状構造物23で上部構造物11の重量を支えて、上部構造物11を岸壁1から浮き上がらせて、上部構造物11を運搬船20に搭載する。
 また、図13に示すように、洋上で運搬物(図13では上部構造物)11を降ろすときは、船体の船尾側を沈下させて、運搬物を浮上させて、船体を前進させて、運搬物の係合部から一対の腕状構造物23を抜き出すことにより、運搬物を洋上に降ろす。
 そして、この上部構造物11と下部構造物12を一体にして立てて運搬船に搭載した場合に洋上構造物10の最下部が運搬船20の最下部より下に3m以上突出するように構成された場合、一般的な港湾施設の水深の制約から本発明の施工方法が特に有効である。なお、洋上構造物10の最下部が運搬船20の最下部より下に突出する突出量の上限に関しては、現段階における現実的な設計としては100m程度となるが、400m位は十分に可能性があり、将来的には1000m級もあり得る。
 次に、本発明の実施の形態の洋上構造物の施工方法について、図面を参照しながら説明する。この第1の実施の形態の洋上構造物の施工方法は、第1の洋上構造物10を設置場所の洋上に設置する際の工法であり、図1~図15に示すようなものである。また、第2の実施の形態の洋上構造物の施工方法は、第2の実施の形態の洋上構造物10Aを設置場所の洋上に設置する際の工法であり、図16~図24に示すようなものである。
 最初に、第1の実施の形態の洋上構造物の施工方法について説明する。この洋上構造物の施工方法は、製造工程と、搭載工程と、運搬工程と、降下工程と、水中維持工程と、移動工程と、上昇工程又は下降工程のどちらか一方又は両方の合体工程と、接合工程と、浮上工程と、係留索接続工程を含んでいる。
 この製造工程では、洋上構造物10を上部構造物11と下部構造物12に分割して製造する。一般的には、図1に示すように、上部構造物11と下部構造物12は、洋上設置場所への移動を伴うので、海上輸送に容易に移行できるように岸壁1で製造されるが、この場所の海底(または水底)2までの水深は比較的浅いので、岸壁1から上部構造物11と下部構造物12を一体にして垂直状態のまま、水中に降ろして、曳航することは難しい。
 そのため、製造工程に続く搭載工程では、図1に示すように、上部構造物11を直立状態のまま、運搬船20に搭載するこの搭載工程では、この上部構造物11を運搬船20に搭載する際には、運搬船20にバラスト水を注水して運搬船20の船尾の左右一対の腕状構造物23の高さが上部構造物11の係合部11baの下側になるようにバラスト調整する。
 次に、図2に示すように、腕状構造物23の高さが係合部11baの下側になっている状態で、運搬船20を後進させて、腕状構造物23を係合部11baの下側に挿入する。挿入し終わったら、バラスト水を排水して、腕状構造物23の高さを高くして、腕状構造物23が係合部11baの下側に当接し、さらに、上昇して、腕状構造物23で上部構造物11を保持し、上部構造物11を岸壁から離間する。これにより、上部構造物11は、運搬船20の腕状構造物23上に搭載されたことになる。
 この搭載工程では、上部構造物11を直立状態のまま、バラストタンクを備え、かつ、一対の腕状構造物23を備えた運搬船20に搭載するので、上部構造物11を運搬船20に搭載する際に、クレーン船や大型クレーンが不要になる。
 次に、図3に示すように、上部構造物11を運搬船20の船首方向に移動する。この状態で、上部構造物11が置かれていた岸壁1を離れて、図4に示すように、下部構造物12が置かれている岸壁に行き、上部構造物11の搭載と同様にして、図4~図7に示すように下部構造物12を運搬船20に搭載する。
 この上部構造物11と下部構造物12は、運搬船20の搭載能力や、必要に応じて、一方ずつ別々の運搬船20、20に搭載してもよく、上部構造物11と下部構造物12の両方を同時に同じ運搬船20に搭載してもよい。
 搭載工程で、この上部構造物11と下部構造物12を搭載した後は、次の運搬工程で、図8に示すように、運搬船20により、上部構造物11と下部構造物12を洋上設置場所に運搬する。この移動は、運搬船20の自航により行う。
 運搬船20が洋上設置場所に到達すると、降下工程で、図9~図10に示すように、下部構造物12を直立状態のまま運搬船20から吊下げ索50に吊り下げて水中に降ろす。洋上設置場所の水深が比較的浅い場合は、海底(または水底)3に載置する。この吊下げは、下部構造物12にバラスト水の注水又はその他のバラストの搭載により、下部構造物12を沈下させると共に、吊下げ索50で吊下げて略垂直状態を保つ。
 このとき、下部構造物12の水中重量は浮力と釣り合う程度のバラスト量にしておくことで、吊下げ索50に加わる荷重を著しく小さくできるので、大きなクレーンを必要とすることなく、運搬船20に設けられているウインチやクレーン車40などのクレーン能力で十分となるので、運搬船20に大型のクレーンを設ける必要はなく、運搬船20に設けられているウインチを使用したり、市販のクレーン車40を搭載したりすることで十分となる(図面ではクレーン車を使用する場合を示している)。なお、ウインチの容量が足りない場合はその容量を施工に十分な容量に大きくしておくことで対応できる。
 このように下部構造物12は直立状態で運搬すると横倒し状態で運搬する場合に比べて、洋上における横倒し状態から垂直状態への移行作業がなくなるので、作業を簡略化できる。
 次の水中維持工程では、下部構造物12の一部又は全部を水中に直立状態に維持する。次の移動工程では、図11に示すように、この直立状態に維持した下部構造物12の上方部位に上部構造物11を移動する。この上部構造物11の移動は、運搬船20上で上部構造物11を腕状構造物23の上に移動し、更に、運搬船20の位置を制御して、下部構造物12の上方部位に上部構造物11が配置されるようにする。
 この配置が完了した後、合体工程で上昇工程を行う場合には、この上昇工程では、図12に示すように、吊下げ索50などで吊下げられたりして一部又は全部が水中にある下部構造物12を上昇させて、上部構造物11の下側に配置する。この下部構造物12の上昇は、ウインチ又はクレーン車40による吊下げ索50の引き上げや、上部構造物11におけるバラスト水の排水や、バラストの切り離し等により容易に行うことができる。
 この上昇工程の方法によれば、上部構造物11を運搬船上20に載置した状態や、運搬船20若しくは曳航船等により洋上に固定した状態で、一部又は全部が水面下にあって上下移動に要する力が比較的少なくて済む下部構造物12を上昇させるので、多くの部分又は全部が水面上にあって上下移動に要する力が大きな上部構造物10を上下方向に移動させる必要がなくなるので、クレーン船を使用することなく、安全に洋上設置場所に係留できる。
 また、合体工程で下降工程を行う場合には、この下降工程では、上部構造物11を一対の腕状構造物23に保持した状態で搭載した運搬船20の一部を沈めることにより、上部構造物11を下降させて、上部構造物11と下部構造物12を合体する。
 この下降工程では、下部構造物12を固定又は係留した状態で、上部構造物11を運搬船20上に載置した状態のまま、運搬船20の一部を沈めることにより上部構造物11を下降させるので、クレーン船を使用することなく、安全に洋上設置場所で上部構造物11と下部構造物12を合体できる。
 また、この下降工程において、下部構造物12を水底3に着底させるように構成すると、浮体式ではなく係留索による係留を行わない、着底式の洋上構造物の場合に適した工法となる。また、浮体式であって係留索による係留を行う場合であっても、気象海象が荒い場合や潮流がある場合などでは、水底3に一時的に着底して、仮置きすることで、洋上構造物10を安全に設置場所に位置保持できるようになる。なお、係留索として、アンカーチェーンやロープ等ではなくテンドンを使用したテンションレグプラットフォーム(TLP)であってもよい。
 更に、上部構造物11を下降させる下降工程と下部構造物12を上昇させる上昇工程の両方を組み合わせて使用してもよい。この場合は、両者を同時に実施してもよいが、位置決めの都合から、一方を他方に優先させることが好ましい。
 この合体工程により、下部構造物12の上側が上部構造物11の下側に当接またはわずかに離間した距離になると、接合工程で、下部構造物12の上側が上部構造物11の下側に対して位置決めして、溶接、ボルト締め、嵌合とピン止め等により、下部構造物12を上部構造物11に一体化する。
 この搭載工程から接合工程の間、一貫して上部構造物11は直立状態のままであるので、洋上で横倒し状態から上部構造物11を直立状態にする作業が無くなり、クレーン船や運搬船20上の大型クレーンが不要となる。従って、上部構造物11に設ける機器類が横倒し状態になることがないので、陸上工事で、これらの機器類を上部構造物11に設置したり、検査したりすることができる。従って、洋上における機器類の設置作業を省略でき、作業効率を向上することができる。また、上部構造物が運搬船に搭載し固定され、その上部構造物に下部構造物が押し当てられて固定され、全体の慣性が大きく揺れが最小限になった環境で接合作業等を行うことができるとともに、接合作業等に必要な人員や動力を運搬船から安全に供給することができる。
 そして、この接合工程が終了すると、浮上工程で、一体化した上部構造物11と下部構造物12、即ち、洋上構造物10を運搬船20から降ろして、洋上に浮かべる。この浮上工程では、水面W.L.に浮く状態に調整された洋上構造物10に対して、運搬船20のバラスト調整により、船尾を沈下させて、腕状構造物23を下降させて、洋上構造物10が浮くようにした後、運搬船20を前進させて、洋上構造物10から、腕状構造物23を引き離す。
 この浮上工程でも、一体化した上部構造物11と下部構造物12を運搬船20から降ろして、洋上に浮かべる際に、運搬船20側のバラスト水操作で、洋上構造物10を浮上させて、運搬船20を引く抜くことで、洋上構造物10を運搬船20から降ろすことができるので、この浮上工程でも、クレーン船や大型クレーンが不要になる。
 また、この浮上工程において、一体化した上部構造物11と下部構造物12を運搬船20から降ろす際に、運搬船20の一部を沈めるように構成すると、一体化した上部構造物11と下部構造物12の姿勢を垂直状態に保持したまま、容易に洋上に浮かべることができるようになる。なお、下部構造物にバラストが残っている場合には、バラストを抜くか切り離すことによって浮上させることもできる。
 次に、係留索接続工程で、浮上工程の後に、一体化した上部構造物11と下部構造物12と、係留基部31との間を係留索30で接続する。この係留索接続工程を接合工程の後に設けると、洋上構造物10側の係留索30の接続部32が接続作業時に下部構造物12側にある場合に、下部構造物12と係留索30の接続作業を水中では無く水面W.L.の上で行うことができるので、接合作業を効率よく行うことができるようになる。
 一方、係留索接続工程を上部構造物11と下部構造物12が一体化される接合工程前に設けると、洋上構造物10側の係留索30の接続部32が下部構造物12側にある場合に、接合工程時に、下部構造物12が係留索30に接続されて安定した状態になっているので、接合作業を容易に行うことができるようになる。あるいは、接続部32が上部構造物11側にある場合に、上部構造物が運搬船に搭載されて安定しているが、下部構造物による負担が運搬船の腕状構造物にかかっていない段階で接合作業を行うことができる。
 次に、第2の実施の形態の洋上構造物の施工方法について説明する。この第2の実施の形態の洋上構造物の施工方法は、第1の実施の形態の洋上構造物の施工方法とは、洋上構造物10Aの下部構造物12Aの搭載と運搬の方法と効果が異なるだけで、他は同じである。
 より詳細には、この第2の実施の形態の洋上構造物の施工方法においては、図24に示すような第2の実施の形態の洋上構造物10Aを洋上に係留する際に用いることができ、図16に示すように、製造工程と、搭載工程における上部構造物11Aの搭載及び運搬は、第1の実施の形態の洋上構造物の施工方法と同じであるが、まず、下部構造物12Aの搭載工程における搭載及び運搬工程における運搬では、図17及び図18に示すように、横倒し状態で行われる。
 そのため、降下工程においては、図19に示すように、下部構造物12Aを横倒し状態で運搬船20から降ろし、垂直状態にする作業が必要になる。この作業は、下部構造物12Aの水中重量が少ない状態で行うことができるので、大型クレーンを必要とせず、市販のクレーン車40で、下部構造物12Aの上部となる側を吊り上げると共に、バラスト水の注水やバラストの積み込みにより、下部側を沈めることにより、容易に行うことができる。
 下部構造物12Aを垂直状態にした後の水中維持工程、移動工程、接合工程、浮上工程、及び係留索接続工程は、図20~図24に示すように、第1の実施の形態の洋上構造物の施工方法と同じである。
 従って、本発明の第1及び第2の実施の形態の洋上構造物の施工方法及び洋上構造物10、10Aでは、従来技術では、洋上で上部構造物11、11Aと下部構造物12、12Aを一体化する場合には、洋上に配置された下部構造物12、12Aに対して、クレーン等で吊り上げた上部構造物を、下部構造物12、12Aの上から下部構造物12、12Aに吊り下ろして、上部構造物11、11Aと下部構造物12、12Aを接合しているのに対して、逆に、上部構造物11、11Aに対して、吊下げ索などで一部又は全部が水中にある下部構造物12、12Aを上昇させて、上部構造物11、11Aと下部構造物12、12Aを接合する。
 これらの洋上構造物の施工方法によれば、上部構造物11、11Aを運搬船20上に載置した状態や、運搬船20若しくは曳航船等により洋上に固定した状態で、一部又は全部が水面下にあって上下移動に要する力が比較的少なくて済む下部構造物12、12Aを上昇させるので、多くの部分又は全部が水面上にあって上下移動に要する力が大きな上部構造物11、11Aを上下方向に移動させる必要がなくなるので、クレーン船を使用することなく、安全に洋上設置場所に係留できる。また、上部構造物が運搬船に搭載されて固定され、その上部構造物に下部構造物が押し当てられて固定され、全体の慣性が大きく揺れが最小限になった環境で接合作業等を行うことができるとともに、接合作業等に必要な人員や動力を運搬船から安全に供給することができる。
 なお、下部構造物12、12Aは全部もしくはその殆どの部分が設置時には水中に入った状態になるので、横倒し状態で運搬船20に搭載したり、横倒し状態で曳航船によって曳航したりしても、設置場所でバラスト水の注水やその他のバラストの搭載等により、比較的小さなクレーンやウインチなどのみの使用で比較的容易に垂直状態にすることができる。一方、上部構造物11、11Aは風力発電設備など水没を回避する必要がある機器が搭載されているので、従来技術のように、横倒し状態で運搬された場合には、設置場所の洋上又は運搬船20上で横倒し状態から垂直状態にする必要があるため、クレーン船や運搬船上の大型クレーンが必要となる。
 上記の構成の洋上構造物10、10Aによれば、洋上構造物10、10Aの上部構造物11、11Aが、直立状態のまま、バラストタンクを備え、かつ、船首又は船尾の船体端部から船首尾方向に向けて突出させた一対の腕状構造物23を備えた運搬船20に搭載できるので、上記の洋上構造物の施工方法を実施でき、上記の洋上構造物の施工方法と同様な作用効果を得ることができる。
 次に、図15、及び、図24~図27を参照しながら、洋上構造物10、10A、10B、10Cの構成について説明する。これらの洋上構造物10、10A、10B、10Cは浮力中心が重心より上にある構造体を持ち、これらの上部構造物11、11A、11B、11Cは主として水上部からなり、下部構造物12、12A、12B12Cは主として没水部からなる。これらの上部構造物11、11A、11B、11Cと下部構造物12、12A、12B、12Cとは結合及び分離可能に接続される。なお、この「主として」は例えば、70%以上、好ましくは80%以上のことを言う。
 この結合可能の構成により、洋上構造物10、10A、10B、10Cの設置が容易となり、また、分離可能の構成により、洋上構造物10、10A、10B、10Cの撤去作業が容易となるので、洋上構造物10、10A、10B、10Cの移動や廃棄を容易に行うことができる。また、係留が下部構造物に接続されている場合には、上部構造物に重大な故障があった場合等に、上部構造物のみを容易に分離して持ち帰り、修復後に再設置することを容易に行うことができる。
 また、これらの上部構造物11、11A、11B、11Cは、陸上で正立した状態で少なくとも概ねの組み立てをおこない、正立した状態で運搬するが、下部構造物12、12A、12B、12Cは洋上構造物10、10A、10B、10Cの洋上設置場所又は十分な水深のある海域まで運搬の後、正立させる仕組みを持つように構成される。
 これらの洋上構造物10、10A、10B、10Cを係留する場合には、この洋上構造物10、10A、10B、10C側の係留索30の接続部位14を上部構造物11、11A、11B、11Cに設けて、この接続部位14における作業や点検を水上、好ましくは水面W.L.の近くで行うことができるように構成することが好ましい。
 また、これらの洋上構造物10、10A、10B、10Cにおいて、下部構造物12、12A、12B、12Cに、バラスト水の注水のみならず排水するバラスト水注水及び排水設備(図示しない)、若しくは、固体バラストを注入のみならず排出するバラスト注入及び排出設備(図示しない)、又は、バラスト水注水及び排水設備、若しくは、バラスト注入及び排出設備を一時的に取り付け可能な構造を備えて構成することが好ましい。つまり、これらの下部構造物12、12A、12B、12Cは、バラスト水を注排水する設備を持つか、または、固体バラストを注入・排出する設備またはそのような設備を設置できる構造を持つことが好ましい。
 このバラスト水を排出する方法としては、ポンプ、エアリフト、若しくは圧縮空気の注入による押し出しを用いることができる。また、固体バラストの排出方法としては、粉状、粉状の固体若しくはスラリーを用いて、これらの撤去時には、スラリーポンプ、エジェクター、エアリフトを用いることができる。なお、液体に気体を混入して気体の浮上力を用いて液体に混入した固体を液体と気体との混合ガスでエアリフト管内を上昇させるエアリフト方式を使用すると重たい固体若しくはスラリーも容易に排出できる。
 これにより、下部構造物12、12A、12B、12Cを容易に浮上させることができるようになるので、洋上での上部構造物11、11A、11B、11Cと下部構造物12、12A、12B、12Cとの結合作業を容易にでき、更に、洋上構造物10、10A、10B、10Cを洋上設置場所から撤去する際に、バラストを排出して(デバラストをして)、設置時の逆手順で、容易に洋上構造物10を分解して撤去することができるようになる。これにより、洋上構造物10、10A、10B、10Cの移動や廃棄に伴う困難性を克服できる。
 なお、従来技術の通常のスパー型の浮体式構造物では、重コンクリートや酸化が進むと結合して一体化してしまう鉄鉱石などの排出不能の固体バラストを詰め込むことでバラスト作業をするため、設置場所の水深が浅くても、洋上構造物の撤去工事が困難であり、移動することができない。また、喫水が大きいために水深が浅い所に移動できないからといって、不要になった洋上構造物を水深の深い公海上で水没及び投棄することは環境汚染の問題がある。本発明のように、デバラスト可能に構成して洋上構造物10、10A、10B、10Cを容易に移動できるようにすることは、環境汚染の問題への対策上大きなメリットとなる。
 また、図24に示すように、洋上構造物10Aにおいて、上部構造物11Aを直立状態のまま運搬船20に搭載する際に、運搬船20に設けられた一対の腕状構造物23を受け入れて、その一対の腕状構造物23の上に上部構造物11Aを載置するための係合部11baを上部構造物10Aから3方向以上で水平方向に張り出した張出部13で形成する。また、更に、張出部13に係留索30を接続する接続部位14を設ける。更には、この張出部13が陸上での正立した状態での組み立て作業時の安全のために利用できる部位となるように構成することが好ましい。
 つまり、上部構造物11Aに3方向以上に張り出した張出部13を設けると共に、この張出部13において係留作業時に水上になる位置に係留索30の接続部位14を設けることが好ましい。これにより、この張出部13で上部構造物11Aの運搬船20への搭載作業や、接続部位14での係留索30の接続作業や調整作業や点検作業を行うことができようになる。特に、係留作業時に、この張出部13が水上にあるときは潜水作業が不要になり、これらの係留索30の接続作業等を容易に行うことができる。また、係留作業時にこの張出部13が水面W.L.より下ではあるが、水面W.L.の近傍にあるときは、係留索30の接続作業等が比較的容易となる。
 また、図25に示す洋上構造物10Bは、上部構造物11Bと下部構造物12Bとからなる縦長の構造物であり、下部構造物12Bの下部に錘12Baをその上側に浮力体12Bbを設けて構成されている。一方、図27に示す洋上構造物10Cは、上部構造物11Cと下部構造物12Cとからなり、下部構造物12Cの下部に錘12Caをその上側に浮力体12Cbを設けて構成されているが、この錘12Caは、錘を兼ねた水車であり、縦長の洋上構造物10Bの下部構造物12Bに比べると幅広になっている。また、上部構造物11Cは、垂直軸風車を備えて構成されている。
 そして、図25~図27に示すように、洋上構造物10B、10Cにおいて、洋上構造物10B、10Cを係留索30で係留すると共に、洋上構造物10B、10Cにアーム15を設ける。このアーム15の一端側は、図26に示すように、水平軸回りのみに搖動可能に、アーム15の回転軸15aを洋上構造物10B、10C(図26では洋上構造物10Bの上部構造物11B)の挿入孔11Baに挿入して回転可能に支持する。また、係留索30を接続する接続部位14を、このアーム15の他端側に設ける。なお、このアーム15は洋上構造物10B、10Cの上部構造物11B、11C側に設けてもよく、下部構造物12B、12C側に設けてもよい。
 これにより、図28に示すような、つまり、スパー型の洋上構造物10Xの従来技術の係留においては、チェーンストッパー等の接続部材17は洋上構造物10Xの垂直方向の中心軸からの距離(取り付け半径)が小さい位置に設けられているために、洋上構造物10Xが旋回方向に即ち水平面内の搖動(以下、捩じりという)Ψに対して、捩じりΨを元に戻す方向に作用する係留索30の係留力による復元モーメントが小さくなるという問題を解決できる。この捩じりΨは、洋上構造物10Xが垂直軸風車を搭載している場合には、発電トルクに直接的に関係して発生し、また、洋上構造物10Xが水平軸風車を搭載している場合には、水平軸風車を風力に抗して風上に向ける旋回時やその維持に直接的に関係して発生する。
 これに対して、図25~図27の洋上構造物10B、10Cでは、アーム15を介在させることで、このアーム15の分だけ接続部位14を洋上構造物10B、10Cの垂直方向の中心軸からの距離(取り付け半径)が大きい位置に設けることができ、捩じりΨを元に戻す方向に作用する係留索30の係留力による復元モーメントを大きくすることができるので、洋上構造物10B,10Cの全体が、旋回方向に捩れては戻る搖動(旋回運動)を抑制できるようになる。
 また、図28に示す従来技術の洋上構造物10Xのように、接続部位14を取り付け半径が小さい位置に設けると、洋上構造物10Xの水平軸回りの搖動(傾斜)θの際に接続部位14の位置における搖動による変位量は小さくなるため、係留索30の係留力の変動が小さくなり、この洋上構造物10Xの水平軸回りの搖動θに対する許容範囲が広い。
 一方、図25及び図27に示すように接続部位14を取り付け半径が大きい位置に設けると、洋上構造物10B、10Cの傾斜(水平軸回りの搖動)θの際に、接続部位14の位置における傾斜θによる変位量が大きくなるため、係留索30の係留力の変動も大きくなり、洋上構造物10B、10Cの傾斜θに対する許容範囲が狭くなってしまうが、これに対して、洋上構造物10B、10Cでは、アーム15を、図25~図27に示すように、一端側において水平軸回りのみに搖動可能、即ち、傾斜可能に洋上構造物10B、10C(図では上部構造物11B,11C)に支持しているので、これにより、係留索30の係留力の変動を小さくして、洋上構造物10B、10Cの傾斜θに対する許容範囲を広くすることができる。
 更に、アーム15の他端側に鉛直軸周りに搖動可能な搖動部(図示しない)を設けると共に、この搖動部に係留索30を接続する接続部位14を設ける。この搖動部は鉛直軸周りに搖動可能な部材、例えば、鉛直方向に回転軸を持ってこの回転軸周りに回転可能に設けられた部材等で容易に構成できる。これにより、アーム15を設けて接続部位14の取り付け半径が大きくなることに伴って、洋上構造物10B、10Cの捩じり(旋回方向の搖動)Ψに伴う接続部位14における係留索30の係留方向の変化量が大きくなるが、この鉛直軸周りに搖動可能な搖動部により、この係留索30の係留方向の変化量の増大に対応でき、接続部位14及び係留索30の損傷を防止できる。
 また、アーム15の他端側に中間ブイ(中間浮体)16を設けると、洋上構造物10B、10Cの上下方向の動きをアーム15の水平軸回りの搖動で吸収できるので、洋上構造物10B、10Cの上下方向の動きに対して、仲介ブイ16に設けられた接続部位14の動きとこの接続部位14に接続される係留索30の動きを著しく小さくすることができる。
 そして、水深等によって異なる係留力の上下方向成分はこの中間ブイ16の浮き沈みによる浮力の変化で吸収できるので、洋上構造物10B、10Cの浮力体10Bb、10Cbで必要とする浮力を、設置場所の水深等によらずに標準化することができる。
 この洋上構造物10Cでは、根本側に上下方向に回転可能なヒンジ(水平軸周りに搖動可能な回転軸)15aを有して洋上構造物10Cに支持され、先端側に係留索30の固定部(接続部位)14を持つ係留アーム15を備えており、この洋上構造物10Cは、これを利用して係留する浮体係留システムである。
 また、この洋上構造物10Cの構成では、この係留アーム15の先端側に接続される係留索30は複数であってもよく、また、この係留アーム15の先端側に浮力部(中間ブイ16)または錘部を持ってもよい。更に、洋上構造物10C自身も浮力を発生する浮力体12Cbを持ち、また、洋上構造物10Cが係留時の垂直姿勢を保つために、水中に錘12Caを持つ。また、この錘12Cbは水車であり、浮力体12Cbの上に風車を持つ。
 これにより、上下方向の回転(傾斜)θのみを許容するピボット(アーム15の回転軸)15aの取付半径が小さいことで、洋上構造物10Cの傾斜θに関しての係留力による復元力を小さくできる一方で、チェーンストッパー等の接続部材17を取り付ける接続部位14の取り付け半径が大きいため、捩じり(旋回)Ψに対する係留力による復元力が大きい、言い換えれば、捩じり(旋回)Ψに対する係留の剛性が高いという特徴と有している。
 また、係留の下向き力には中間ブイ16が対抗することで、洋上構造物10Cの浮力体12Cbに必要な浮力は水深等によらず、標準化できるという特徴がある。
 また、洋上構造物10Cの浮力体12Cbは水車12Caと共に旋回させることもできる。その場合、浮力体12Cbと水車12baとの取り合い部を大幅に簡略化でき、また、水車12Caの大径化が可能となる。またゴム部材によって取り外し自在又は回動可能に支持する、耐久性に難のあるゴム支承を廃止することができるようになる。また、許容搖動角度をゴム支承よりも大きく取り易く、また浮力体12Cbが水車12Caと共に旋回しない場合には、限界角度に達したときにも水車12Caとアーム15、中間ブイ16が一緒に回転しないもの同士の接触になるため、構造的に対応し易くなる。
本発明の洋上構造物の施工方法、及び洋上構造物によれば、風力発電装置等を搭載したスパー型等の洋上構造物の施工方法において、クレーン船を使用することなく、安全に洋上設置場所に係留できるので、多くの洋上構造物及びその施工方法に広く利用できる。
10、10A、10B、10C、10X 洋上構造物
11、11A、11B、11C、11X 上部構造物
12、12A、12B、12C、12X 下部構造物
12Ba、12Ca、12Xa 錘
12Bb、12Cb、12Xb 浮力体
13 張出部
14 接続部位
15 アーム
15a 回転軸
16 中間ブイ
20 運搬船
21 甲板
22 船橋
23 腕状構造物
30 係留索
31 係留基部
32 係留索の接続部
40 クレーン車
50 吊下げ索

Claims (14)

  1.  洋上構造物を上部構造物と下部構造物に分割して製造する製造工程と、
     前記下部構造物の一部又は全部を水中に直立状態に維持する水中維持工程と、
     この直立状態に維持した前記下部構造物の上方部位に、前記上部構造物を移動する移動工程と、
     前記下部構造物を上昇させて、前記上部構造物の下側に配置する上昇工程、又は、前記上部構造物を一対の腕状構造物に保持した状態で搭載した運搬船の一部を沈めることにより、前記上部構造物を下降させて、前記下部構造物の上側に配置する下降工程のどちらか一方又は両方の合体工程と、
     前記下部構造物を前記上部構造物に一体化する接合工程とを
     含むことを特徴とする洋上構造物の施工方法。
  2.  前記上昇工程における前記下部構造物の上昇を、前記上部構造物又は前記下部構造物の少なくとも一方を移動する運搬船に搭載したウインチを用いて行うことを特徴とする請求項1に記載の洋上構造物の施工方法。
  3.  前記接合工程が、前記上部構造物を前記運搬船の前記一対の腕状構造物に保持した状態で、前記下部構造物を前記上部構造物に一体化する工程であり、
     前記製造工程と前記水中維持工程の間に、
     前記上部構造物を直立状態のまま、バラストタンクを備え、かつ、船首又は船尾の船体端部から船首尾方向に向けて突出させた一対の腕状構造物を備えた運搬船に搭載する搭載工程と、
     前記運搬船により、前記上部構造物と前記下部構造物の一方ずつ又は両方を同時に洋上設置場所に運搬する運搬工程と、
     前記下部構造物を前記運搬船から吊下げ索に吊り下げて水中に降ろす降下工程とを含むと共に、
     前記接合工程の後に、一体化した前記上部構造物と下部構造物を前記運搬船から降ろして、洋上に浮かべる浮上工程とを含む
    ことを特徴とする請求項1又は2に記載の洋上構造物の施工方法。
  4.  前記浮上工程において、一体化した前記上部構造物と前記下部構造物を前記運搬船から降ろす際に、前記運搬船の一部を沈めることを特徴とする請求項3に記載の洋上構造物の施工方法。
  5.  前記降下工程において、前記下部構造物を水底に着底させることを特徴とする請求項3又は4に記載の洋上構造物の施工方法。
  6.  前記運搬工程の後で、かつ、前記接合工程の前に、前記上部構造物または前記下部構造物と係留基部との間を係留索で接続する係留索接続工程を設けたことを特徴とする請求項3~5のいずれか1項に記載の洋上構造物の施工方法。
  7.  前記接合工程の後に、一体化した前記上部構造物または前記下部構造物と、係留基部との間を係留索で接続する係留索接続工程を設けたことを特徴とする請求項3~5のいずれか1項に記載の洋上構造物の施工方法。
  8.  上部構造物と下部構造物を接合して洋上に配置される洋上構造物であって、前記上部構造物は、直立状態のまま、バラストタンクと船首又は船尾の船体端部から船首尾方向に向けて突出させた一対の腕状構造物を備えた運搬船に搭載可能なように、上部構造物が直立状態で、横方向からスライドしてくる前記一対の腕状構造物を受け入れて、前記一対の腕状構造物の上に載置できる係合部を備えたことを特徴とする洋上構造物。
  9.  前記洋上構造物は浮力中心が重心より上にある構造体を持ち、前記上部構造物は主として水上部からなり、前記下部構造物は主として没水部からなり、前記上部構造物と前記下部構造物とは結合及び分離可能に接続されることを特徴とする請求項8に記載の洋上構造物。
  10.  前記上部構造物と前記下部構造物を一体にして立てて運搬船に搭載した場合に前記洋上構造物の最下部が前記運搬船の最下部より下に3m以上突出することを特徴とする請求項8又は9に記載の洋上構造物。
  11.  前記下部構造物はバラスト水の注水のみならず排水するバラスト水注水及び排水設備を有するか、若しくは、固体バラストを注入のみならず排出するバラスト注入及び排出設備を有するか、又は、前記バラスト水注水及び排水設備、若しくは、前記バラスト注入及び排出設備を一時的に取り付け可能な構造を有して構成されることを特徴とする請求項8~10のいずれか1項に記載の洋上構造物。
  12.  前記係合部が前記上部構造物から3方向以上で水平方向に張り出した張出部で形成されると共に、該張出部に係留索を接続する接続部位が設けられることを特徴とする請求項8~11のいずれか1項に記載の洋上構造物。
  13. 前記洋上構造物が係留索で係留されると共に、該係留索を接続する接続部位が、一端側が水平軸回りのみに搖動可能に前記洋上構造物に支持されるアームの他端側に設けられることを特徴とする請求項8~12のいずれか1項に記載の洋上構造物。
  14.  前記アームの前記他端側に鉛直軸周りに搖動可能な搖動部が設けられると共に、該搖動部に前記係留索を接続する前記接続部位が設けられることを特徴とする請求項13に記載の洋上構造物。
PCT/JP2014/075360 2014-07-17 2014-09-25 洋上構造物の施工方法、及び、洋上構造物 WO2016009572A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167034581A KR101998104B1 (ko) 2014-07-17 2014-09-25 해상 구조물의 시공 방법
CN201480080579.5A CN106794887B (zh) 2014-07-17 2014-09-25 海上构造物的施工方法及海上构造物
SG11201700388SA SG11201700388SA (en) 2014-07-17 2014-09-25 Method of constructing an offshore structure, and offshore structure
EP14897522.0A EP3170730B1 (en) 2014-07-17 2014-09-25 Method for constructing an offshore structure
ES14897522T ES2739854T3 (es) 2014-07-17 2014-09-25 Método para construir una estructura marina
CA2955399A CA2955399C (en) 2014-07-17 2014-09-25 Method of constructing an offshore structure, and offshore structure
US15/326,245 US10377450B2 (en) 2014-07-17 2014-09-25 Method of constructing an offshore structure, and offshore structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014146734A JP5750537B1 (ja) 2014-07-17 2014-07-17 洋上構造物の施工方法
JP2014-146734 2014-07-17

Publications (1)

Publication Number Publication Date
WO2016009572A1 true WO2016009572A1 (ja) 2016-01-21

Family

ID=53638013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075360 WO2016009572A1 (ja) 2014-07-17 2014-09-25 洋上構造物の施工方法、及び、洋上構造物

Country Status (10)

Country Link
US (1) US10377450B2 (ja)
EP (1) EP3170730B1 (ja)
JP (1) JP5750537B1 (ja)
KR (1) KR101998104B1 (ja)
CN (1) CN106794887B (ja)
CA (1) CA2955399C (ja)
ES (1) ES2739854T3 (ja)
PT (1) PT3170730T (ja)
SG (1) SG11201700388SA (ja)
WO (1) WO2016009572A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051124B1 (en) * 2015-01-30 2018-06-27 Adwen GmbH Method of operating a wind turbine without grid connection and wind turbine
JP6079836B1 (ja) * 2015-08-06 2017-02-15 Jfeエンジニアリング株式会社 水中構造物用構造体の水中配置構造及び水中搬送方法
JP6334479B2 (ja) * 2015-08-26 2018-05-30 株式会社三井E&Sホールディングス 洋上風車の架設方法
CN108223291B (zh) * 2016-12-12 2020-04-14 浙江海洋大学 一种Spar浮式海上风流发电平台
DE102017124412A1 (de) * 2017-10-19 2019-04-25 Innogy Se Soft-Soft Gründung für Offshore-Bauwerke
CN108016575A (zh) * 2018-01-03 2018-05-11 中交第三航务工程局有限公司 一种浮式风机及tlp平台运输安装一体船及其运输安装方法
BR112020021889A2 (pt) * 2018-04-27 2021-01-26 Horton Do Brasil Tecnologia Offshore Ltda. turbinas de vento offshore e métodos para implementar e instalar mesmos
CN108626078B (zh) * 2018-05-28 2020-06-09 江苏海上龙源风力发电有限公司 一种海上风机Spar型浮式基础驳船助运扶装工艺
WO2019246417A1 (en) * 2018-06-20 2019-12-26 Ensco International Incorporated Buoyancy assembly
CN108891552A (zh) * 2018-06-21 2018-11-27 招商局重工(江苏)有限公司 一种自升式平台拖航保护装置
NO346203B1 (en) * 2018-09-24 2022-04-19 Nat Oilwell Varco Norway As A method for installing an offshore wind turbine and a substructure for an offshore wind turbine
ES2759282B2 (es) * 2018-11-07 2022-03-24 Esteyco S A Procedimiento de operaciones para el mantenimiento, instalacion y/o desmontaje de estructuras offshore
JP7266447B2 (ja) * 2019-04-09 2023-04-28 三菱重工業株式会社 セミサブ浮体、及びセミサブ浮体を用いた風車の洋上設置方法
JP7252857B2 (ja) * 2019-08-01 2023-04-05 三菱重工業株式会社 浮体構造物設置システム、及び、浮体構造物設置方法
CN113353202B (zh) * 2020-03-04 2022-11-29 中国电建集团华东勘测设计研究院有限公司 一种海上换流站的浮托式安装结构及方法
JP2023528575A (ja) * 2020-04-16 2023-07-05 ユニバーシティー オブ メイン システム ボード オブ トラスティーズ 浮体式洋上風力タービンプラットフォームを組み立てて配備する方法
CN111894812B (zh) * 2020-07-17 2021-11-23 上海电气风电集团股份有限公司 海上风机的安装方法及安装装置
GB2598616A (en) * 2020-09-04 2022-03-09 Riggmor As Floating body and mooring system
NO346577B1 (en) * 2020-12-21 2022-10-17 Aker Offshore Wind Operating Company As Construction of offshore wind power plants
DK181087B1 (en) * 2021-03-30 2022-12-07 Maersk Supply Service As A semi-submersible service vessel for a floating installation and method therefor
NO346872B1 (en) * 2021-05-26 2023-02-06 Fred Olsen Ocean Ltd A floating fabrication arrangement and a method of building floating structures
NO346675B1 (en) 2021-07-13 2022-11-21 Aker Offshore Wind Operating Company As Construction of offshore wind power plants
KR20220058861A (ko) * 2021-10-27 2022-05-10 박규리 발전용 선박
KR20220058860A (ko) * 2021-10-28 2022-05-10 박규리 풍력발전용 선박
WO2023107013A1 (en) * 2021-12-10 2023-06-15 Sembcorp Marine Integrated Yard Pte. Ltd. Structures and methods for the transport, installation, and maintenance of an offshore wind turbine
WO2023244156A1 (en) * 2022-06-16 2023-12-21 Seatwirl Ab Floating wind turbine installation arrangement and method
WO2024039343A1 (en) * 2022-08-16 2024-02-22 İzmi̇r Yüksek Teknoloji̇ Ensti̇tüsü Rektörlüğü A stable and economical submerged floating platform for offshore wind turbines

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476059A (en) * 1994-12-20 1995-12-19 Imodco, Inc. Turret drive mechanism
US6663320B1 (en) * 2002-09-25 2003-12-16 Single Buoy Moorings Inc. Anchor line connector
US20070220858A1 (en) * 2004-08-06 2007-09-27 Maloberti Rene A Anchoring System for Installing in a Surface Moved According to High-Frequency Movements
US20100316450A1 (en) * 2007-12-21 2010-12-16 Vestas Wind Systems A/S Method for installing an offshore wind turbine and a barge system
JP2012025272A (ja) * 2010-07-23 2012-02-09 Ihi Marine United Inc 浮体構造物作業システム、浮体構造物、作業船及び浮体構造物作業方法
JP2012045981A (ja) * 2010-08-24 2012-03-08 Ihi Marine United Inc 浮体構造物
JP2012076738A (ja) * 2010-10-01 2012-04-19 Nordic Yards Holding Gmbh 海洋構造物の運搬および設置用船舶並びに海洋構造物の運搬および設置方法
WO2012097283A2 (en) * 2011-01-14 2012-07-19 The Glosten Associates, Inc. Installation method for water-submersible platforms and installation vessel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236385A (ja) 1997-02-27 1998-09-08 Mitsui Eng & Shipbuild Co Ltd 大型貨物の揚げ卸し方法
EP0945338A1 (en) * 1998-03-25 1999-09-29 OEDC (Offshore Energy Development Corporation) SPAR construction method
FI107184B (fi) * 1999-11-11 2001-06-15 Asko Fagerstroem Menetelmä ja järjestelmä offshore-tuulivoimalan asentamiseksi merelle ja/tai noutamiseksi mereltä, ja offshore-tuulivoimala
US6666624B2 (en) 2001-08-07 2003-12-23 Union Oil Company Of California Floating, modular deepwater platform and method of deployment
US20040159276A1 (en) 2002-09-13 2004-08-19 Tor Persson Method for installing a self-floating deck structure onto a buoyant substructure
FR2876123B1 (fr) * 2004-10-04 2008-02-08 Technip France Sa Procede d'installation des jambes sur un pont d'une plate-forme d'exploitation en mer.
AU2007358652B2 (en) * 2007-09-07 2012-02-02 Prosafe Production Pte. Ltd. A mooring system for a vessel and a method of mooring a vessel
CN201145003Y (zh) * 2007-12-27 2008-11-05 山东省科学院海洋仪器仪表研究所 隔振降噪万向连接装置
JP5738644B2 (ja) 2011-03-25 2015-06-24 戸田建設株式会社 洋上風力発電設備の施工方法
JP5918503B2 (ja) 2011-11-04 2016-05-18 拓樹 中村 浮体式流体力利用システム及びこれを用いた風力推進船

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476059A (en) * 1994-12-20 1995-12-19 Imodco, Inc. Turret drive mechanism
US6663320B1 (en) * 2002-09-25 2003-12-16 Single Buoy Moorings Inc. Anchor line connector
US20070220858A1 (en) * 2004-08-06 2007-09-27 Maloberti Rene A Anchoring System for Installing in a Surface Moved According to High-Frequency Movements
US20100316450A1 (en) * 2007-12-21 2010-12-16 Vestas Wind Systems A/S Method for installing an offshore wind turbine and a barge system
JP2012025272A (ja) * 2010-07-23 2012-02-09 Ihi Marine United Inc 浮体構造物作業システム、浮体構造物、作業船及び浮体構造物作業方法
JP2012045981A (ja) * 2010-08-24 2012-03-08 Ihi Marine United Inc 浮体構造物
JP2012076738A (ja) * 2010-10-01 2012-04-19 Nordic Yards Holding Gmbh 海洋構造物の運搬および設置用船舶並びに海洋構造物の運搬および設置方法
WO2012097283A2 (en) * 2011-01-14 2012-07-19 The Glosten Associates, Inc. Installation method for water-submersible platforms and installation vessel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3170730A4 *

Also Published As

Publication number Publication date
SG11201700388SA (en) 2017-02-27
KR101998104B1 (ko) 2019-07-09
EP3170730B1 (en) 2019-06-05
CN106794887A (zh) 2017-05-31
PT3170730T (pt) 2019-08-21
EP3170730A4 (en) 2018-04-04
EP3170730A1 (en) 2017-05-24
CN106794887B (zh) 2019-12-06
CA2955399C (en) 2020-02-25
ES2739854T3 (es) 2020-02-04
US10377450B2 (en) 2019-08-13
KR20170008775A (ko) 2017-01-24
JP5750537B1 (ja) 2015-07-22
CA2955399A1 (en) 2016-01-21
US20170197690A1 (en) 2017-07-13
JP2016022783A (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5750537B1 (ja) 洋上構造物の施工方法
JP3413196B2 (ja) 積卸し式浮標
CN100579860C (zh) 运输风轮机的船舶、移动风轮机的方法和近海风力农场的风轮机
US20070102940A1 (en) Vessel for transporting wind turbines, methods of moving a wind turbine, and a wind turbine for an off-shore wind farm
US6923598B2 (en) Method and apparatus for the lifting of offshore installation jackets
CN116348370A (zh) 风力涡轮机在漂浮基座上的安装
CN103670946A (zh) 安装离岸风力涡轮机的方法及其运输船
US20030031516A1 (en) Method for fabricating and assembling a floating offshore structure
US20230399206A1 (en) Offshore wind turbine assembly vessel
EP3601141B1 (en) A lifting device
CN111791991A (zh) 在船舶与海上设施之间固定和转移负载的方法及其设备
EP3810500B1 (en) Method and vessel for deploying heavy objects
WO2020095697A1 (ja) 洋上構造物の施工方法及び作業台船
CN211642531U (zh) 桥梁段半潜式安装运输平台
US20120082530A1 (en) System and method for submerging a hydraulic turbine engine
CN111439347B (zh) 一种自安装单立柱平台及其安装方法
CN202557746U (zh) 一种导管架拆除船
EP4274797A1 (en) Offshore wind turbine assembly vessel
CN116648421A (zh) 海上风力涡轮机组装船舶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034581

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15326245

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2955399

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014897522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014897522

Country of ref document: EP