WO2016008445A1 - 液晶透镜及立体显示装置 - Google Patents

液晶透镜及立体显示装置 Download PDF

Info

Publication number
WO2016008445A1
WO2016008445A1 PCT/CN2015/084305 CN2015084305W WO2016008445A1 WO 2016008445 A1 WO2016008445 A1 WO 2016008445A1 CN 2015084305 W CN2015084305 W CN 2015084305W WO 2016008445 A1 WO2016008445 A1 WO 2016008445A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal lens
electrode
lens unit
electrodes
Prior art date
Application number
PCT/CN2015/084305
Other languages
English (en)
French (fr)
Inventor
陈昭宇
王红磊
宫晓达
Original Assignee
深圳超多维光电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410344728.6A external-priority patent/CN104122718A/zh
Application filed by 深圳超多维光电子有限公司 filed Critical 深圳超多维光电子有限公司
Priority to US14/392,349 priority Critical patent/US20160291333A1/en
Publication of WO2016008445A1 publication Critical patent/WO2016008445A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Definitions

  • the present disclosure belongs to the field of stereoscopic display technologies, and in particular, to a liquid crystal lens and a stereoscopic display device including the same.
  • a stereoscopic display device for realizing stereoscopic display by using a liquid crystal lens mainly uses a common electrode and a plurality of driving electrodes respectively on two substrates on both sides of the liquid crystal layer, applies a corresponding driving voltage to each driving electrode, and applies a common voltage to the common electrode.
  • a vertical electric field having different electric field strengths is formed between the two substrates to drive the alignment of the liquid crystal molecules to form a variable focus liquid crystal lens. Therefore, it is only necessary to control the voltage distribution of the driving electrodes, and the refractive index distribution of the liquid crystal lens is changed correspondingly, thereby controlling the distribution of the light emitted by the display panel to realize the autostereoscopic display.
  • the stereoscopic display device includes a display panel 1' and a liquid crystal lens 2'.
  • the liquid crystal lens 2' is disposed on the light exiting side of the display panel 1', and the light emitted by the display panel 1' passes through The liquid crystal lens 2' enters the left and right eyes of the viewer, respectively.
  • the liquid crystal lens 2' includes a first substrate 21' and a second substrate 22' disposed opposite to each other, and a liquid crystal layer interposed between the first substrate 21' and the second substrate 22'.
  • the first substrate 21' is provided with a plurality of liquid crystal layers.
  • the first electrode 23' is disposed at intervals, and the second electrode 24' is disposed on the second substrate 22'.
  • electric field strength is not generated between the first substrate 21' and the second substrate 22' by applying respective required voltages to the plurality of first electrodes 23' and the second electrodes 24'.
  • the electric field, etc. drives the liquid crystal molecules 25' in the liquid crystal layer to deflect. Because the electric field strength is not equal, the electric field drives the liquid crystal molecules The degree of deflection of 25' is different. Therefore, by controlling the voltage distribution on the plurality of first electrodes 23', the refractive index of the liquid crystal lens 2' is correspondingly changed, thereby controlling the light output of the display panel 1' to realize stereoscopic display. .
  • a liquid crystal lens unit arranged in an array is formed between the first substrate 21' and the second substrate 22', and each liquid crystal lens unit has the same structure.
  • 2 shows only the adjacent first liquid crystal lens unit L1' and the second liquid crystal lens unit L2'.
  • the first liquid crystal lens unit L1' corresponds to two first electrodes 23'
  • the second liquid crystal lens unit L2' corresponds to Two first electrodes 23'.
  • the first driving voltage is applied to the first electrode 23'
  • the second driving voltage is applied to the second electrode 24'. Therefore, an electric field having the largest electric field intensity is formed at the first electrode 23'.
  • the liquid crystal molecules 25' at the first electrode 23' are vertically distributed under the driving of the electric field, and as they move away from the first electrode 23', the electric field becomes weaker and weaker, that is, the liquid crystal molecules 25' tend to be gradually inclined. Arrange horizontally.
  • the voltage applied to the edge of the first liquid crystal lens unit L1' is required to be the largest, and the liquid crystal molecules 25' located near the first electrode 23' at the edge of the first liquid crystal lens unit L1' are substantially vertically distributed.
  • the liquid crystal molecules 25' exhibit a gradient of the refractive index as the electric field intensity changes due to the symmetric distribution of the voltage, and thus the liquid crystal lens 2' has better optical imaging characteristics.
  • n (r) n o
  • D is the size of each liquid crystal lens unit opening
  • f is the focal length of the liquid crystal lens unit
  • d is the thickness of the liquid crystal layer.
  • FIG. 3 is a first liquid crystal.
  • the electric field intensity at the interface between the first liquid crystal lens unit L1' and the second liquid crystal lens unit L2' changes sharply, resulting in a large fluctuation of the optical path difference here, where
  • the optical path difference distribution of the liquid crystal lens 2' is significantly deviated from the optical path difference distribution of the ideal parabolic lens, thereby affecting the imaging characteristics of the liquid crystal lens 2' there. Therefore, the optical path at the boundary of the liquid crystal lens unit has a large deviation from the standard parabolic lens.
  • these deviations increase the crosstalk of the stereoscopic display device and affect the picture quality of the stereoscopic display.
  • the prior art discloses a liquid crystal lens, a driving method thereof, and a stereoscopic display device, the liquid crystal lens 20 including a liquid crystal lens unit L10 and a liquid crystal lens unit L20 having the same structure, each liquid crystal lens unit including a relative
  • the first substrate 210 and the second substrate 220 are disposed.
  • the first substrate 210 is provided with a first electrode 230
  • the surface of the second substrate 220 facing the first substrate 210 is provided with a surface electrode 240
  • the surface electrode 240 is provided with a second surface.
  • the electrode 250, and the surface electrode 240 is grounded as a common electrode, and a negative voltage is applied to the second electrode 250.
  • Different driving voltages are applied to the first electrode 230, the second electrode 240, and the second electrode 250, respectively.
  • Such a liquid crystal lens 20 is not only complicated in manufacturing process, but also cumbersome in driving design, and is not easy to implement in the industry.
  • the present disclosure is achieved by providing a liquid crystal lens including a first substrate and a second substrate disposed opposite to each other, and liquid crystal molecules interposed between the first substrate and the second substrate, the first The substrate is provided with a plurality of first electrodes, and each of the first electrodes is spaced apart from each other.
  • a plurality of structures are formed between the first substrate and the second substrate.
  • the extending direction of the second electrode is parallel to the extending direction of the first electrode, and the second electrodes are spaced apart from each other, and an opening is formed between two adjacent second electrodes, the opening
  • the center line of the portion is on the same line as the center line of the first electrode corresponding thereto and located at the edge of the liquid crystal lens unit.
  • each liquid crystal lens unit has a second electrode corresponding to the liquid crystal lens unit.
  • a width of the second electrode, and a center line of the second electrode is on a same line as a center line of the liquid crystal lens unit, and a gap formed between the adjacent two second electrodes when the first driving voltage is applied to the first electrode Opposite to the first electrode located at the edge of the liquid crystal lens unit, thereby adjusting the electric field intensity at the edge of the liquid crystal lens unit, improving the degree of deflection of the liquid crystal molecules near the first electrode, and exhibiting a smoother state in the phase retardation amount, which is significantly reduced.
  • the crosstalk phenomenon at the junction of two adjacent liquid crystal lens units enhances the effect of stereoscopic display and the comfort of viewing.
  • Another object of the present disclosure is to provide a stereoscopic display device including a display panel, further comprising the liquid crystal lens described above, the liquid crystal lens being disposed on a light exiting side of the display panel.
  • the liquid crystal lens unit adjusts the light emitted by the display panel to present a stereoscopic image, thereby eliminating the cause of crosstalk caused by the liquid crystal lens, and improving the stereoscopic display effect and viewing comfort.
  • FIG. 1 is a schematic structural view of a stereoscopic display device provided by the prior art
  • FIG. 2 is a schematic structural view of a liquid crystal lens provided by the prior art
  • FIG. 3 is a comparison diagram of an optical path difference distribution of a liquid crystal lens provided by the prior art and an optical path difference distribution of an ideal parabolic lens;
  • FIG. 5 is a schematic structural view of a liquid crystal lens according to Embodiment 1 of the present disclosure.
  • FIG. 6 is a schematic view showing a state of a liquid crystal lens according to Embodiment 1 of the present disclosure during stereoscopic display.
  • FIG. 7 is a schematic diagram showing an optical path difference distribution of a liquid crystal lens according to Embodiment 1 of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first electrode according to Embodiment 1 of the present disclosure.
  • FIG. 9 is a schematic structural view of a liquid crystal lens according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a schematic diagram showing an optical path difference distribution of a liquid crystal lens according to Embodiment 2 of the present disclosure
  • FIG. 11 is a schematic structural diagram of a liquid crystal lens according to Embodiment 3 of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a liquid crystal lens according to Embodiment 4 of the present disclosure.
  • the present invention provides a liquid crystal lens 2 including a first substrate 21 and a second substrate 22 disposed opposite to each other, and liquid crystal molecules 23 are disposed between the first substrate 21 and the second substrate 22, A plurality of first electrodes 24 are disposed on a substrate 21, and each of the first electrodes 24 is spaced apart from each other, and a plurality of second electrodes 25 are disposed on a side of the second substrate 22 facing the first substrate 21.
  • a first voltage is applied to the first electrode 24, and a second voltage is applied to the second electrode 25.
  • the potential difference between the first voltage and the second voltage is on the first substrate 21 and the second substrate.
  • the first electric field drives the liquid crystal molecules 23 to be deflected, and a plurality of liquid crystal lens units having the same structure and distributed in an array are formed between the first substrate 21 and the second substrate 22,
  • the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2 share one first electrode 23.
  • FIG. 6 only the liquid crystal lens unit L1 and the liquid crystal lens unit L2 are shown.
  • the liquid crystal lens unit L1 and the liquid crystal lens unit L2 have the same structure, and both of the liquid crystal lens unit L1 and the liquid crystal lens unit L2 have a refractive index gradation characteristic, and the light can be changed. Light path to present a stereoscopic image.
  • liquid crystal lens unit L1 and the liquid crystal lens unit L2 have the same structure, when the liquid crystal lens unit is referred to, only the liquid crystal lens unit L1 is described, and the repetitive expression of the liquid crystal lens unit L2 is omitted. The same, no longer repeat here.
  • the respective second electrodes 25 are spaced apart from each other, the gap between the adjacent two second electrodes 25 forms an opening portion 26, and the center line of the opening portion 26 corresponds to the first electrode at the edge of the liquid crystal lens unit L1.
  • the center line of 24 is on the same straight line, ensuring that the opening portion 26 is disposed corresponding to the first electrode 24 located at the edge of the liquid crystal lens unit L1, since the opening portion 26 is not provided with a conductive material, the liquid crystal lens unit L1 and the liquid crystal lens unit The change in the electric field at the junction of L2 is not too severe and causes a large fluctuation in the optical path difference here.
  • a voltage is applied to the first electrode 24 and the second electrode 25, respectively, and the lens optical path difference exhibited by the liquid crystal lens 2 is compared with a standard parabolic lens. it is good.
  • the liquid crystal lens 2 performs stereoscopic display, crosstalk can be significantly reduced, and the quality of stereoscopic image display can be improved.
  • the electric field curve at the opening portion 26 is brought closer to the region having the conductive material in a relatively gentle state, and the electric field intensity distribution at the edge of the liquid crystal lens unit L1 is optimized to improve the liquid crystal molecules 23 located near the first electrode 24 at the edge of the liquid crystal lens unit L1.
  • the degree of deflection, the optical path difference distribution curve of the liquid crystal lens 2 is more smooth in the expression of the phase delay amount.
  • the electric field change at the boundary between the liquid crystal lens unit L1 and the liquid crystal lens unit L2 is improved to some extent, and is closer to the second electrode 25 in a relatively gentle state, thereby avoiding the optical path difference here due to the electric field change.
  • the large fluctuation significantly reduces the crosstalk phenomenon generated at the interface between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2, and enhances the effect of stereoscopic display and the comfort of viewing.
  • a second driving voltage is applied to each of the second electrodes 25 to ensure an electric field of unequal electric field strength between the first substrate 21 and the second substrate 22. Under the action of the electric field, the liquid crystal molecules 23 are deflected to satisfy the liquid crystal lens 2. Applied to the needs of stereoscopic display.
  • the liquid crystal lens 2 provided by the embodiment of the present invention only needs to apply a first voltage to the first electrode 24 and a second voltage to the second electrode 25 to deflect the liquid crystal molecules 23 in the liquid crystal lens 2 when used for stereoscopic display.
  • the liquid crystal lens unit L1 having a refractive index gradation is formed, which is easy to handle and easy to implement.
  • an opening portion 26 is formed at the second substrate 22, the opening portion 26 is not provided with a conductive material, and when the liquid crystal lens 2 is used for stereoscopic display, the liquid crystal lens is optimized.
  • the distribution of the electric field intensity at the edge of the unit L1 improves the degree of deflection of the liquid crystal molecules 23 located near the first electrode 24 at the edge of the liquid crystal lens unit L1, and the optical path difference distribution curve of the liquid crystal lens 2 exhibits a smoother and less pronounced phase retardation amount.
  • the crosstalk phenomenon occurring at the interface between the liquid crystal lens unit L1 and the liquid crystal lens unit L2 enhances the effect of stereoscopic display and the comfort of viewing, and significantly improves the optical path at the interface between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2.
  • the difference distribution, the optimized optical path difference distribution is close to the ideal parabola, thereby improving the crosstalk phenomenon generated by the stereoscopic display device using the liquid crystal lens 2 during stereoscopic display, thereby improving the stereoscopic display effect and viewing comfort.
  • the liquid crystal lens unit L1 corresponds to one second electrode 25 and at least two first electrodes 24, and when the liquid crystal lens 2 is used for stereoscopic display, one second electrode 25 and at least two The electric field between the first electrodes 24 drives the liquid crystal molecules 23 to deflect, forming a regular liquid crystal lens unit L1. Since the liquid crystal lens unit L1 and the liquid crystal lens unit L2 are sequentially arranged, an opening portion 26 is formed between the adjacent two second electrodes 25, and when the liquid crystal lens 2 is used for stereoscopic display, the first electrode 24 and the second electrode are respectively formed.
  • an opening formed between two adjacent second electrodes 25 26 is opposite to the first electrode 24 located at the edge of the liquid crystal lens unit L1, optimizing the electric field intensity distribution at the edges of the liquid crystal lens unit L1 and the liquid crystal lens unit L2, improving the liquid crystal molecules 23 located near the first electrode 24 at the edge of the liquid crystal lens unit L1.
  • the degree of deflection exhibits a smoother state in the expression of the phase delay amount, reducing the crosstalk phenomenon occurring at the boundary between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2, and enhancing the effect of stereoscopic display and the comfort of viewing.
  • the stereoscopic image can be normally presented, and the distance between the adjacent two second electrodes 25 cannot be excessively large, which affects the normal display of the liquid crystal lens 2.
  • one liquid crystal lens unit L1 corresponds to one second electrode 25, and the width of the second electrode 25 is set to be smaller than the pitch of the liquid crystal lens unit L1, and the pitch of the liquid crystal lens unit L1 is located at the edge of the liquid crystal lens unit L1.
  • the width of the second electrode 25 is smaller than the pitch of the liquid crystal lens unit L1, and the opening portion 26 is formed between the liquid crystal lens unit L1 and the liquid crystal lens unit L2, the width of the opening portion 26 may be set smaller than that at the edge of the liquid crystal lens unit L1.
  • the degree of deflection of the liquid crystal molecules 23 in the vicinity of the first electrode 24, the optical path difference distribution curve of the liquid crystal lens 2 is more smooth in the expression of the phase retardation amount, and the crosstalk phenomenon occurring at the boundary between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2 is lowered. Improve the effect of stereo display and the comfort of viewing.
  • the width of the opening portion 26 is also possible to set the width of the opening portion 26 to be larger than the width of the first electrode 24 located at the edge of the liquid crystal lens unit L1, that is, the second electrode 25 and the first electrode 24 do not overlap at all, and the second substrate 22 and the liquid crystal lens unit are located.
  • the corresponding position of the first electrode 24 at the edge of the L1 is completely free of conductive material. Therefore, the electric field curve at the opening portion 26 is brought closer to the region having the conductive material in a relatively gentle state, and the electric field intensity at the edge of the liquid crystal lens unit L1 is optimized.
  • the distribution improves the degree of deflection of the liquid crystal molecules 23 located near the first electrode 24 at the edge of the liquid crystal lens unit L1, and exhibits a smoother state in the expression of the phase retardation amount.
  • the width of the opening portion 26 can be equal to the width of the first electrode 24 located at the edge of the liquid crystal lens unit L1, that is, the second electrode 25 does not overlap with the first electrode 24, and the liquid crystal lens unit L1 can also be suppressed.
  • the optical path fluctuation generated at the boundary with the liquid crystal lens unit L2, and the electric field curve at the boundary between the liquid crystal lens unit L1 and the liquid crystal lens unit L2, is closer to the second electrode 25 in a relatively gentle state, and the liquid crystal lens unit L1 and the liquid crystal are lowered.
  • the deviation of the optical path difference at the boundary of the lens unit L2 with the standard parabolic lens improves the crosstalk phenomenon occurring at the boundary between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2, and improves the display quality of the liquid crystal lens 2.
  • the liquid crystal lens unit L1 provided in this embodiment corresponds to a second electrode 25 and two first electrodes 24, and the liquid crystal lens unit L1 and the liquid crystal lens unit L2 are sequentially arranged, and two adjacent second and second An opening portion 26 is formed between the electrodes 25, and when the liquid crystal lens 2 is used for stereoscopic display, a voltage is applied to the first electrode 24 and the second electrode 25, respectively, and since the opening portion 26 is not provided with a conductive material, the opening portion 26 is provided.
  • the electric field curve closes the region with the conductive material in a relatively gentle state, optimizes the electric field intensity distribution at the edge of the liquid crystal lens unit L1, and improves the degree of deflection of the liquid crystal molecules 23 near the first electrode 24 at the edge of the liquid crystal lens unit L1.
  • the performance of the phase delay amount exhibits a smoother state.
  • the electric field change at the boundary between the liquid crystal lens unit L1 and the liquid crystal lens unit L2 is closer to the second electrode 25 in a relatively gentle state, thereby avoiding large fluctuations in the optical path difference here due to the electric field change, and significantly reducing
  • the crosstalk phenomenon generated at the interface between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2 enhances the effect of stereoscopic display and the comfort of viewing.
  • the crosstalk phenomenon occurring at the boundary between the liquid crystal lens unit L1 and the liquid crystal lens unit L2 can be remarkably reduced in stereoscopic display.
  • the experimental results will now be described.
  • the liquid crystal lens unit L1 provided in this embodiment corresponds to one second electrode 25 and two first electrodes 24.
  • the pitch of the liquid crystal lens unit L1 was set to 256 ⁇ m, and the optical path difference simulation was performed using LC-MASTER software, and the obtained analog data was processed by MATLAB.
  • the ordinary light refractive index n 0 of the liquid crystal molecules 23 used in this simulation experiment was 1.524, and the extraordinary refractive index n e was 1.824.
  • the thickness of the liquid crystal lens 2 and the width of the first electrode 24 are both set to 30 um, and the driving voltage. These main parameters are in the liquid crystal lens 2' (shown in FIG. 2) provided by the prior art and the liquid crystal lens 2 provided in the present embodiment. It remained unchanged during the simulation. 3 shows the simulation results of the liquid crystal lens 2' provided by the prior art. The curves in the figure are respectively the optical path difference distribution curve of the liquid crystal lens 2' provided by the prior art and the optical path difference distribution curve with the standard parabolic lens. It can be seen that the boundary between the adjacent two liquid crystal lens units L1' and L2' has a large deviation from the optical path difference distribution curve of the standard parabolic lens, and these deviations cause large crosstalk in actual 3D viewing. . Fig.
  • the width of the second electrode 25 is set to 156 um. It can be seen that after the analog data is processed, the optical path difference curve of the liquid crystal lens 2 provided by the embodiment is superposed on the optical path difference curve of the standard parabolic lens, and is in the liquid crystal lens unit L1 and the liquid crystal lens unit L2. At the junction, the deviation from the optical path difference distribution curve of the standard parabolic lens is small, which greatly improves the fluctuation phenomenon of the optical path difference curve, thereby effectively reducing the crosstalk phenomenon during the stereoscopic display process, thereby improving the viewing comfort.
  • the optical path difference distribution curve is greatly improved, and the crosstalk phenomenon occurring at the boundary between the liquid crystal lens unit L1 and the liquid crystal lens unit L2 is reduced, and the stereoscopic display effect and viewing comfort are improved. degree.
  • the extending direction of the second electrode 25 is parallel to the extending direction of the first electrode 24, and the extending direction of the first electrode 24 may be parallel to the width direction of the first substrate 21, when the liquid crystal lens 2 is used for three-dimensional In the display, a first voltage is applied to the first electrode 24, and a second voltage is applied to the second electrode 25, thereby forming an array of liquid crystal lens units L1 between the first substrate 21 and the second substrate 22, using an etching process.
  • the first electrode 24 is processed on the first substrate 21 for convenient operation.
  • each of the first electrodes 24 is obliquely disposed on the first substrate 22, since the extending direction of the second electrode 25 is parallel to the first electrode 24 The extending direction is such that the first electrode 24 and the second electrode 25 are both inclined at a certain angle, thereby improving the periodic interference of the liquid crystal lens 2, weakening the moiré, and improving the display effect of the liquid crystal lens 2 for stereoscopic display.
  • the liquid crystal lens 2 will be left when stereoscopically displayed.
  • the eye image is transmitted to the left eye of the viewer, and the right eye image is transmitted to the right eye of the viewer, and the extending direction of the first electrode 24 is set to intersect with the arrangement direction of the first electrode 24 to form an angle of ⁇ and 60°.
  • ⁇ ⁇ ⁇ 80 ° setting the inclination angle of the first electrode 24 within this range can not only improve the moiré, but also reduce the problem of crosstalk and the like which affect stereoscopic display.
  • the angle ⁇ provided in this embodiment refers to an acute angle formed by the oblique direction of the first electrode 24 and the arrangement direction of the first electrode 24.
  • the tilt direction of the first electrode 24 is rightward, and the same
  • the inclination direction of the first electrode 24 may be leftward
  • the angle ⁇ is the inclination direction of the first electrode 24 and the arrangement of the first electrode 24.
  • the first electrodes 24 are arrayed on the first substrate 22 in the same direction, and the arrangement direction of the first electrodes 24 is the lateral direction of the first substrate 22.
  • the first electrode 24 may be disposed as a strip electrode, and the cross-sectional shape of the first electrode 24 along the extending direction of the first electrode 24 is rectangular, arched or zigzag. In the present embodiment, the shape selected by the first electrode 24 should be satisfied.
  • a driving voltage is applied to the first electrode 24 and the second electrode 25 respectively to make the liquid crystal molecules 23
  • the liquid crystal lens unit L1 is formed by deflection.
  • the cross-sectional shape of the first electrode 24 may also be other regular or irregular shapes, which are all within the protection scope of the present invention, and should be determined without any objection.
  • the cross-sectional shape of the first electrode 24 provided by the embodiment It is only applicable to the illustration that the regular shape of the first electrode 24 is easier to process.
  • the second electrode 25 is easily fabricated, the second electrode 25 is disposed as a strip electrode, and the cross-sectional shape of the second electrode 25 along the extending direction of the second electrode 25 is a rectangle and an arch.
  • the shape of the second electrode 25 is selected to be satisfactory.
  • a driving voltage is applied to the first electrode 24 and the second electrode 25, respectively, so that the liquid crystal molecules are 23 is deflected to form a liquid crystal lens unit L1.
  • the cross-sectional shape of the second electrode 25 may also be other regular or irregular shapes, which are all within the protection scope of the present invention, and should be determined without objection.
  • the cross-sectional shape of the second electrode 25 provided by the embodiment, It is only applicable to the illustration that the regular shape of the second electrode 25 is easier to process.
  • the pitch of the liquid crystal lens unit L1 is set to L, and the second electrode 25 is provided.
  • the width is M, L/2 ⁇ M ⁇ nL, where n is the number of the liquid crystal lens unit L1 corresponding to the second electrode 25, n is a natural number and n ⁇ 1.
  • the pitch L of the liquid crystal lens unit L1 is set to be a distance between the center lines of the two first electrodes 24 located at the edge of the liquid crystal lens unit L1. As shown in FIG.
  • the width of the second electrode 25 is expressed as L/2 ⁇ M ⁇ L, and the width of the second electrode 25 is smaller than the liquid crystal lens unit.
  • the pitch of L1 can be infinitely close to the pitch of the liquid crystal lens unit L1, that is, the width of the opening portion 26 can be arbitrarily set, and the crosstalk problem existing at the interface between the liquid crystal lens unit L1 and the liquid crystal lens unit L2 can be solved, which is convenient for the operator to
  • the width of the second electrode 25 is set as the case may be.
  • the opening portion 26 formed between the adjacent two second electrodes 25 is opposite to the first electrode 24 located at the edge of the liquid crystal lens unit L1.
  • the electric field intensity distribution at the edge of the liquid crystal lens unit L1 and the liquid crystal lens unit L2 improves the degree of deflection of the liquid crystal molecules 23 near the first electrode 24 at the edge of the liquid crystal lens unit L1, and the optical path difference distribution curve of the liquid crystal lens 2 is in the phase retardation amount.
  • the performance is smoother, and the crosstalk phenomenon occurring at the interface between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2 is reduced, and the effect of stereoscopic display and the comfort of viewing are improved.
  • the stereoscopic image can be normally presented, and the distance between the adjacent two second electrodes 25 cannot be excessively large, which affects the normal display of the liquid crystal lens 2.
  • the liquid crystal lens 2 provided in this embodiment further includes a voltage control module (not shown) for controlling the application of the first electrode 24 located at the edge of the liquid crystal lens unit L1.
  • the driving voltage, and the second driving voltage on the second electrode 25 the potential difference between the first driving voltage and the second driving voltage is greater than the threshold voltage of the liquid crystal molecules 23.
  • the electric potential difference generates an electric field with unequal electric field strength. Under the action of the electric field, the liquid crystal molecules 23 are deflected according to the change of the electric field strength, so that the refractive index of the liquid crystal layer between the first substrate 21 and the second substrate 22 is distributed in a gradient, forming an array.
  • the liquid crystal lens unit L1 is provided.
  • the voltage control module can precisely control the magnitudes of the first driving voltage and the second driving voltage, so that when the liquid crystal lens 2 is stereoscopically displayed, the liquid crystal molecules 23 are arranged according to a prescribed electric field distribution, and are close to an ideal parabolic distribution to form a refractive index gradient.
  • the liquid crystal lens unit L1 has an excellent imaging effect.
  • the potential difference provided by the present embodiment is u 0
  • the threshold voltage of the liquid crystal molecules 23 is v th
  • v th ⁇ u 0 ⁇ 4v th The magnitude of the voltage of the first driving voltage is related to the width of the first electrode 24. If the width of the first electrode 24 is large, the voltage value of the corresponding first driving voltage should be small, and similarly, if the first electrode 24 is If the width is small, the voltage value of the corresponding first driving voltage should be large, such processing is to satisfy the voltage required for imaging of the liquid crystal lens 2, and at the same time, the liquid crystal lens 2 is located at the edge of the liquid crystal lens unit L1 when stereoscopically displayed. In the vicinity of the first electrode 24, a problem of crosstalk occurs at the boundary between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2 due to the large electric field intensity.
  • the present embodiment further provides a stereoscopic display device including a display panel 1 and the liquid crystal lens 2 described above.
  • the liquid crystal lens 2 is disposed on the light exiting side of the display panel 1 when the liquid crystal lens 2 is used for three-dimensional
  • a first voltage is applied to the first electrode 24, an equal second voltage is applied to the second electrode 25, and a potential difference between the first voltage and the second voltage forms an electric field between the first substrate 21 and the second substrate 22.
  • a first electric field having unequal strengths
  • the first electric field drives the liquid crystal molecules 23 to be deflected to form a liquid crystal lens unit L1 having a refractive index change, and the liquid crystal lens unit L1 emits light to the display panel 1.
  • the light is adjusted to present a stereoscopic image.
  • the liquid crystal lens 3 provided by the present invention has substantially the same structure as the liquid crystal lens 2 provided in the first embodiment, except that each liquid crystal lens unit L1 has m first electrodes 34, m is a natural number, m ⁇ 3. In the present embodiment, each of the liquid crystal lens units L1 corresponds to six first electrodes 34.
  • a symmetrical fourth driving voltage is applied to each of the first electrodes 34, specifically, in the liquid crystal lens unit L1, for each strip electrode such as S11, S12, S13, S14, S15, S16
  • the voltage applied to the first electrode 34 located at both ends of the liquid crystal lens unit L1 is the largest, the voltage applied to the first electrode 34 at the center of the liquid crystal lens unit L1 is the smallest, and the voltage tends to decrease from the both ends to the center and the voltage exhibits a symmetric distribution.
  • the liquid crystal molecules 33 Due to the symmetric distribution of the voltage in the liquid crystal lens unit L1, the liquid crystal molecules 33 exhibit a certain gradual tendency of the refractive index under the influence of the smooth electric field, and thus the liquid crystal lens 3 can have excellent optical imaging properties.
  • the obtained optical path lens unit L1 has an optical path difference distribution which is more consistent with a standard parabolic lens. In the process of actual viewing, the crosstalk phenomenon is obviously reduced, the vertigo feeling caused by the stereoscopic parallax is reduced, and the stereoscopic display effect and the viewing comfort are improved.
  • liquid crystal lens unit L1 and the liquid crystal lens unit L2 have the same structure, when the liquid crystal lens unit is referred to, only the liquid crystal lens unit L1 is described, and the repetitive expression of the liquid crystal lens unit L2 is omitted. The same, no longer repeat here.
  • each liquid crystal lens unit L1 corresponds to a plurality of first electrodes 34, an opening portion 36 formed between adjacent two second electrodes 35 is located at the liquid crystal lens unit.
  • the first electrode 34 at the edge of L1 is opposed to optimize the electric field intensity distribution at the edge of the liquid crystal lens unit L1, improving the degree of deflection of the liquid crystal molecules 33 near the first electrode 34 located at the edge of the liquid crystal lens unit L1, and the optical path difference of the liquid crystal lens 2.
  • the distribution curve has a smoother performance in the phase delay amount, which significantly reduces the crosstalk phenomenon at the interface between the liquid crystal lens unit L1 and the liquid crystal lens unit L2, improves the stereoscopic display effect and the viewing comfort, and significantly improves the adjacent liquid crystal lens unit.
  • the first electrode 34 may be a strip electrode, and each of the first electrodes 34 has the same width. According to the design requirements of the liquid crystal lens 3, a plurality of first electrodes 34 of equal width are etched, which is convenient to operate. Similarly, a plurality of first electrodes 34 of unequal widths may be etched according to the design requirements of the liquid crystal lens 3. The operator may Specifically, the width of the first electrode 34 is set.
  • the voltage control module controls the first voltage applied to each of the first electrodes 34 to cause the liquid crystal lens 3 to form a regular gradient index when used for stereoscopic display.
  • the lens ensures the light splitting action of the liquid crystal lens 3.
  • the voltage control module controls the first voltage applied to each of the first electrodes 34 to form a regular gradient index lens when the liquid crystal lens 3 is used for stereoscopic display. The light splitting action of the liquid crystal lens 3 is ensured.
  • the voltage control module provided in this embodiment is further configured to control a first voltage applied to the first electrode 34 at the edge of the liquid crystal lens unit L1, and a second voltage on the second electrode 35, by the liquid crystal lens.
  • the two edges of the unit L1 are at the center of the liquid crystal lens unit L1, and the voltage values of the respective first voltages are from large to small, that is, the voltage values of the first voltages on the first electrodes 34 at the two edges are the largest, sequentially decreasing,
  • the potential difference between a voltage and the second voltage generates a first electric field having unequal electric field strengths.
  • the liquid crystal molecules 33 are deflected as the electric field strength changes, so that the liquid crystal between the first substrate 21 and the second substrate 23
  • the refractive index of the layer is in a gradient distribution to form a liquid crystal lens unit L1 arranged in an array, and the liquid crystal lens unit L1 controls the light output of the display panel to realize stereoscopic display.
  • the liquid crystal lens 4 provided by the embodiment of the present invention has substantially the same structure as the liquid crystal lens 3 provided in the second embodiment.
  • the liquid crystal lens 4 includes a first substrate 41 and a second substrate 42 disposed opposite to each other, and the second substrate 42 is disposed.
  • a liquid crystal molecule 43 and a spacer 40 are disposed between the first substrate 41 and the second substrate 42, a second electrode 45 is disposed on the second substrate 42, and a first electrode 41 is disposed on the first substrate 41.
  • the electrode 44 forms an opening 46 between the adjacent two second electrodes 45.
  • a third electrode 47 is disposed between the first substrate 41 and the first electrode 44, and an insulating layer 48 is disposed between the third electrode 47 and the first electrode 44.
  • Each of the first electrodes 44 is disposed on the insulating layer 48. on.
  • Liquid crystal lens 4 is at In the 3D display, the voltage control module is further configured to control the third driving voltage applied to the third electrode 47, the second driving voltage on the second electrode 45, and the respective driving voltages cooperate with each other to drive the liquid crystal molecules 43 to deflect, thereby ensuring liquid crystal.
  • the lens 4 is used for 3D display, a standard stereoscopic image is presented.
  • the second electrode 45 is a strip electrode, and the opening portion 46 formed between the adjacent two second electrodes 45 is opposite to the first electrode 44, and the electric field intensity distribution at the edge of the liquid crystal lens unit is optimized.
  • the degree of deflection of the liquid crystal molecules 43 near the first electrode 44 located at the edge of the liquid crystal lens unit L1 is improved, and the optical path difference distribution curve of the liquid crystal lens 2 is more smooth in the phase retardation amount, which significantly reduces the crosstalk occurring at the edge of the liquid crystal lens unit.
  • the phenomenon of improving the stereoscopic display effect and the viewing comfort significantly improves the optical path difference distribution of the liquid crystal lens unit, and the optimized optical path difference distribution is close to the ideal parabola, thereby improving the stereoscopic display device using the liquid crystal lens 4 in stereoscopic display.
  • the crosstalk phenomenon generated at the time improves the stereoscopic display effect and viewing comfort. Significantly reduce the crosstalk phenomenon occurring at the edge of the liquid crystal lens unit, and improve the quality of viewing.
  • the third electrode 47 it is preferable to set the third electrode 47 as a surface electrode, and the surface electrode means that the entire surface of the first substrate 44 is covered with a conductive material.
  • the third electrode 47 has a simple structure and can provide a stable third driving voltage, so that when the liquid crystal lens 2 is used for 2D display, a second electric field having the same electric field strength is formed between the second electrode 45 and the third electrode 47.
  • the second electric field causes the liquid crystal molecules 43 to be deflected, and the refractive index difference between the deflected liquid crystal molecules 43 and the spacer 40 is within a predetermined range, and the condition that satisfies the preset range is the refractive index of the spacer 40 and the refractive index of the liquid crystal molecules 43.
  • the difference between the ratios is less than 0.1, and at this time, the refractive index of the liquid crystal molecules 43 is close to the refractive index of the spacer 40. Therefore, when the light passes through the liquid crystal molecules 43 and the spacers 40, the light is not refracted, and the liquid crystal lens 4 can improve the bright spot phenomenon of the spacer 40.
  • the liquid crystal lens 5 provided by the present invention has substantially the same structure as the liquid crystal lens 2 provided in the first embodiment.
  • the liquid crystal lens 5 provided in this embodiment includes a first substrate 51 and a second substrate 52 disposed opposite to each other, and liquid crystal molecules 53 are disposed between the first substrate 51 and the second substrate 52, and the first substrate 51 is provided with a plurality of An electrode 54, in FIG.
  • each of the first electrodes 54 is represented as S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, and the respective first electrodes 54 are spaced apart from each other, and second A plurality of second electrodes 55 are disposed on a side of the substrate 52 facing the first substrate 51, and an opening 56 is formed between the two second electrodes 55.
  • the opening 56 corresponds to the first electrode S16, and the center line of the opening 56 On the same line as the center line of the first electrode S16, since the opening portion 56 is not provided with a conductive material, the change of the electric field at the edge of the liquid crystal lens unit L1 is not too severe, resulting in a large optical path difference here. Fluctuation.
  • a voltage is applied to the first electrode 54 and the second electrode 55, respectively, and the lens retardation exhibited by the liquid crystal lens unit is better than that of a standard parabolic lens.
  • the liquid crystal lens 5 performs stereoscopic display, crosstalk can be significantly reduced, and the quality of stereoscopic image display can be improved.
  • the electric field curve at the opening portion 56 closes the region having the conductive material in a relatively gentle state, optimizes the electric field intensity distribution at the edge of the liquid crystal lens unit, and improves the degree of deflection of the liquid crystal molecules 53 near the first electrode 54 at the edge of the liquid crystal lens unit.
  • the performance of the phase delay amount is presented in a smoother state.
  • the electric field change at the boundary between the adjacent two liquid crystal lens units L1 is improved to some extent, and is closer to the second electrode 55 in a relatively gentle state, thereby avoiding the optical path difference here due to the electric field change.
  • Large fluctuations significantly reduce crosstalk caused by adjacent liquid crystal lens units at the interface, improving the effect of stereoscopic display and viewing comfort.
  • one second electrode 55 covers more liquid crystal lens units, that is, n>2, and the width of the second electrode 55 is expressed as L/2 ⁇ M ⁇ nL, which can solve not only the crosstalk problem existing at the boundary of the liquid crystal lens unit, but also At the same time, the processing difficulty of the second electrode 55 is reduced, and the operator is allowed to set the width of the second electrode 55 according to actual needs.
  • each second electrode 55 corresponds to at least two liquid crystal lens units L1, the pitch of the liquid crystal lens unit L1 is set to L, and the liquid crystal lens is set.
  • the pitch L of the unit L1 is the distance between the center lines of the two first electrodes 54 located at the edge of the liquid crystal lens unit L1.
  • the width of the second electrode 55 is M, L/2 ⁇ M ⁇ nL, Where n is the number of the second electrode 55 corresponding to the liquid crystal lens unit L1, n is a natural number and n ⁇ 2. As shown in FIG.
  • one second electrode 55 covers more liquid crystal lens units, that is, n>2, and the width of the second electrode 55 is expressed as L/2 ⁇ M ⁇ nL, which can solve not only the crosstalk problem existing at the boundary of the liquid crystal lens unit, but also At the same time, the processing difficulty of the second electrode 55 is reduced, and the operator is allowed to set the width of the second electrode 55 according to actual needs.
  • the width of the opening portion 56 can be arbitrarily set, and the crosstalk problem existing at the interface between the liquid crystal lens unit L1 and the liquid crystal lens unit L2 can be solved, so that the operator can set the width of the second electrode 55 according to the specific situation.
  • the opening portion 56 formed between the adjacent two second electrodes 55 is opposed to the first electrode 54 located at the edge of the liquid crystal lens unit L1, and the electric field intensity distribution at the edge of the liquid crystal lens unit L1 and the liquid crystal lens unit L2 is optimized to improve the liquid crystal.
  • the degree of deflection of the liquid crystal molecules 53 near the first electrode 54 at the edge of the lens unit L1, the optical path difference distribution curve of the liquid crystal lens 5 is more smooth in the phase retardation amount, and the boundary between the adjacent liquid crystal lens unit L1 and the liquid crystal lens unit L2 is lowered.
  • the crosstalk phenomenon that occurs increases the effect of stereoscopic display and the comfort of viewing.
  • the stereoscopic image can be normally presented, and the distance between the adjacent two second electrodes 55 cannot be excessively large, which affects the normal display of the liquid crystal lens 5.

Abstract

一种适用于立体显示技术领域的液晶透镜(2)及立体显示装置。立体显示装置包括该液晶透镜(2),该液晶透镜(2)包括相对设置的第一基板(21)与第二基板(22),第一基板(21)设有多个第一电极(24),各第一电极(24)彼此间隔设置,当液晶透镜(2)用于立体显示时,第一基板(21)与第二基板(22)之间形成多个结构相同的液晶透镜单元,相邻两个液晶透镜单元共用一个第一电极(24),第二基板(22)朝向第一基板(21)的一侧设有多个第二电极(25),各第二电极(25)彼此间隔设置,相邻两个第二电极(25)之间形成开口部(26),开口部(26)的中心线与其相对应的并位于液晶透镜单元边缘处的第一电极(24)的中心线在同一条直线上。该液晶透镜(2)用于立体显示时,明显降低了相邻两个液晶透镜单元交界处的串扰现象。

Description

液晶透镜及立体显示装置
相关申请的交叉引用
本申请主张在2014年7月18日在中国提交的中国专利申请号No.201410344728.6的优先权,并主张在2015年4月30日在中国提交的中国专利申请号No.201510217311.8及201510218953.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于立体显示技术领域,尤其涉及液晶透镜以及包含该液晶透镜的立体显示装置。
背景技术
采用液晶透镜实现立体显示的立体显示装置,主要是利用在液晶层两侧的两片基板上分别设置公共电极和多个驱动电极,对各个驱动电极施加相应的驱动电压以及对公共电极施加公共电压,从而在两个基板之间形成具有不同电场强度的垂直电场,以驱动液晶分子排列而形成可变焦液晶透镜。因此,只需要控制驱动电极的电压分布,液晶透镜的折射率分布就会发生相应的改变,从而对显示面板发出的光线的分布进行控制,以实现自由立体显示。
图1为现有技术提供的立体显示装置结构示意图,立体显示装置包括显示面板1′和液晶透镜2′,液晶透镜2′设置于显示面板1′的出光侧,显示面板1′发出的光线经过液晶透镜2′分别进入观看者的左眼和右眼。液晶透镜2′包括相对设置的第一基板21′与第二基板22′,以及夹设于第一基板21′与第二基板22′之间的液晶层,第一基板21′上设有多个间隔设置的第一电极23′,第二基板22′上设有第二电极24′。当该立体显示装置用于3D显示时,通过对多个第一电极23′和第二电极24′施加各自所需的电压,第一基板21′与第二基板22′之间产生电场强度不等的电场,电场驱动液晶层内的液晶分子25′发生偏转。由于电场强度不等,因此,电场驱动液晶分子 25′发生偏转的程度不同,因此,控制多个第一电极23′上的电压分布,液晶透镜2′的折射率就会相应的改变,从而对显示面板1′的出光进行控制,实现立体显示。
立体显示装置用于3D显示时,第一基板21′与第二基板22′之间形成有阵列排布的液晶透镜单元,每个液晶透镜单元具有相同的结构。图2仅示出相邻的第一液晶透镜单元L1′与第二液晶透镜单元L2′,第一液晶透镜单元L1′对应有两个第一电极23′,第二液晶透镜单元L2′对应有两个第一电极23′。根据液晶透镜2′工作原理可知,对第一电极23′施加第一驱动电压,对第二电极24′施加第二驱动电压,因此,在第一电极23′处形成电场强度最大的电场,位于第一电极23′处的液晶分子25′在电场的驱动下呈竖直分布状态,而随着远离第一电极23′,电场也变得越来越弱,即液晶分子25′会逐渐倾向于水平排列。
为满足成像要求,需要对第一液晶透镜单元L1′边缘施加的电压最大,位于第一液晶透镜单元L1′的边缘处的第一电极23′附近的液晶分子25′基本上呈现垂直方向分布,而越靠近第一液晶透镜单元L1′的中心电压越小,因此液晶分子25′会逐渐倾向于水平方向排列。在每一个液晶透镜单元内,由于电压对称分布,液晶分子25′随着电场强度的变化呈现折射率的渐变,因而液晶透镜2′具备较好的光学成像特性。
根据折射率渐变透镜光程差公式
Figure PCTCN2015084305-appb-000001
其中Δn=nmax-n(r)=ne-nr,ne为液晶分子25′对非寻常光折射率,折射率n(r)作为位置r的函数在不同位置会有所不同。在如图2中,第一液晶透镜单元L1′与第二液晶透镜单元L2′的边缘处的第一电极23′位置的液晶分子25′呈垂直状态,n(r)=no,而在每个液晶透镜单元的中心附近的液晶分子25′长轴呈现水平状态,n(r)=ne。D即每个液晶透镜单元开口的大小,f为液晶透镜单元的焦距,d为液晶层的厚度。同时,为减小液晶透镜2′在立体显示时引起的串扰,避免左眼图像进入到右眼,右眼图像进入到左眼,需要液晶透镜2′与标准抛物型透镜光程差分布相吻合。
图2所示的液晶透镜2′,其中第二电极24′为面电极,图3为第一液晶 透镜单元L1′与第二液晶透镜单元L2′的光程差分布与理想抛物型透镜光程差分布的比较图,从图3可以看出,相邻第一液晶透镜单元L1′与第二液晶透镜单元L2′边缘处共用一个第一电极23′。当立体显示装置用于3D显示时,第一液晶透镜单元L1′与第二液晶透镜单元L2′交界处的电场强度变化比较剧烈,导致了此处的光程差出现较大的波动,此处的液晶透镜2′的光程差分布明显偏离理想抛物型透镜光程差分布,从而影响了该处液晶透镜2′的成像特性。因此,液晶透镜单元边界处的光程与标准的抛物型透镜相比会有较大的偏差。当液晶透镜2′应用于3D显示技术时,这些偏差会增大立体显示装置的串扰,影响立体显示的画面质量。
如图4所示,现有技术公开了一种液晶透镜及其驱动方法、立体显示装置,该液晶透镜20包括具有相同结构的液晶透镜单元L10与液晶透镜单元L20,每个液晶透镜单元包括相对设置的第一基板210与第二基板220,第一基板210上设有第一电极230,第二基板220面向第一基板210的一侧设有面电极240,面电极240上设有第二电极250,并且,面电极240作为公用电极接地,第二电极250上均施加负电压。对第一电极230、第二电极240以及第二电极250分别施加不同的驱动电压,这种液晶透镜20不仅制造工艺复杂,驱动设计繁琐,而且在产业上不易于实施。
发明内容
本公开的目的在于提供液晶透镜和立体显示装置,旨在解决解决由现有技术的局限和缺点引起的上述一个或多个技术问题。
本公开是这样实现的,提供一种液晶透镜,包括相对设置的第一基板与第二基板,以及夹设于所述第一基板与所述第二基板之间的液晶分子,所述第一基板设有多个第一电极,各个所述第一电极彼此间隔设置,当所述液晶透镜用于立体显示时,所述第一基板与所述第二基板之间形成多个结构相同并呈阵列分布的液晶透镜单元,相邻两个所述液晶透镜单元共用一个所述第一电极,其特征在于:所述第二基板朝向所述第一基板的一侧设有多个第二电极,所述第二电极的延伸方向平行于所述第一电极的延伸方向,各个所述第二电极彼此间隔设置,相邻两个所述第二电极之间形成开口部,所述开口 部的中心线与其相对应的并位于所述液晶透镜单元边缘处的所述第一电极的中心线在同一条直线上。
本公开提供的液晶透镜用于3D显示时,第一基板与第二基板之间形成多个结构相同的液晶透镜单元,每个液晶透镜单元对应有一个第二电极,由于液晶透镜单元的间距大于第二电极的宽度,且第二电极的中心线与液晶透镜单元的中心线在同一条直线上,当对第一电极第一驱动电压时,由于相邻两个第二电极之间形成的间隙与位于液晶透镜单元边缘处的第一电极相对,因此调整液晶透镜单元边缘处的电场强度,改善第一电极附近液晶分子的偏转程度,在相位延迟量的表现呈现更加平滑的状态,明显降低了相邻两液晶透镜单元交界处的串扰现象,提升立体显示的效果和观看的舒适度。
本公开的另一目的还提供立体显示装置,包括显示面板,还包括上述的液晶透镜,所述液晶透镜设置于所述显示面板的出光侧。
本公开提供的立体显示装置,液晶透镜单元对显示面板发出的光进行调整,以呈现立体图像,消除液晶透镜产生串扰的原因,提高了立体显示效果和观看舒适度。
附图说明
图1是现有技术提供的立体显示装置的结构示意图;
图2是现有技术提供的液晶透镜的结构示意图;
图3是现有技术提供的液晶透镜的光程差分布与理想抛物型透镜光程差分布比较图;
图4是现有技术提供的液晶透镜的又一结构示意图;
图5是本公开实施例一提供的液晶透镜的结构示意图;
图6是本公开实施例一提供的液晶透镜在立体显示时的状态示意图
图7是本公开实施例一提供的液晶透镜的光程差分布示意图;
图8是本公开实施例一提供的第一电极的结构示意图;
图9是本公开实施例二提供的液晶透镜的结构示意图;
图10是本公开实施例二提供的液晶透镜的光程差分布示意图;
图11是本公开实施例三提供的液晶透镜的结构示意图;
图12是本公开实施例四提供的液晶透镜的结构示意图。
具体实施方式
为了使本公开要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一
如图5与图6所示,本发明提供一种液晶透镜2,包括相对设置的第一基板21与第二基板22,第一基板21与第二基板22之间设有液晶分子23,第一基板21上设有多个第一电极24,且各个第一电极24彼此间隔设置,第二基板22朝向第一基板21的一侧设有多个第二电极25。当液晶透镜2用于立体显示时,对第一电极24施加第一电压,对第二电极25施加第二电压,第一电压与第二电压之间的电势差在第一基板21与第二基板22之间,形成电场强度不等的第一电场,第一电场驱动液晶分子23发生偏转,第一基板21与第二基板22之间形成多个结构相同并呈阵列分布的液晶透镜单元,相邻的液晶透镜单元L1与液晶透镜单元L2共用一个第一电极23。如图6仅示出液晶透镜单元L1与液晶透镜单元L2,液晶透镜单元L1与液晶透镜单元L2结构相同,且液晶透镜单元L1与液晶透镜单元L2均具有折射率渐变的特性,可以改变光线的光路,以呈现立体图像。在本实施例中,由于液晶透镜单元L1与液晶透镜单元L2结构相同,因此,在提及液晶透镜单元时,仅对液晶透镜单元L1进行表述,省略对液晶透镜单元L2的重复性表述,以下相同,在此不再赘述。
各个第二电极25彼此间隔设置,相邻的两个第二电极25之间的间隙形成开口部26,且开口部26的中心线与其相对应的并位于液晶透镜单元L1边缘处的第一电极24的中心线在同一条直线上,确保开口部26与位于液晶透镜单元L1边缘处的第一电极24相对应设置,由于开口部26未设置有导电材料,在液晶透镜单元L1与液晶透镜单元L2的交界处电场的变化就不会过于剧烈进而导致此处的光程差有较大的波动。分别对第一电极24、第二电极25施加电压,液晶透镜2表现出的透镜光程差与标准的抛物型透镜重合的比较 好。当液晶透镜2在进行立体显示时,可以明显的降低串扰,提升立体图像显示的质量。开口部26处的电场曲线便会以较为平缓的状态靠拢有导电材料的区域,优化液晶透镜单元L1边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处第一电极24附近液晶分子23的偏转程度,液晶透镜2的光程差分布曲线在相位延迟量的表现更加平滑。这样,液晶透镜单元L1与液晶透镜单元L2的交界处的电场变化会得到一定程度的改善,并以较为平缓的状态靠拢于第二电极25,避免因电场变化而导致此处的光程差有较大的波动,明显降低相邻液晶透镜单元L1与液晶透镜单元L2在交界处产生的串扰现象,提升立体显示的效果和观看的舒适度。同时,对各个第二电极25施加第二驱动电压,确保第一基板21与第二基板22之间形成电场强度不等的电场,在电场的作用下,液晶分子23发生偏转,满足液晶透镜2应用于立体显示的需求。本实用新型实施例提供的液晶透镜2,在用于立体显示时,仅需要对第一电极24施加第一电压,对第二电极25施加第二电压,使得液晶透镜2内的液晶分子23偏转形成折射率渐变的液晶透镜单元L1,操作简单,易于实施。
如图7所示,采用本实施例提供的液晶透镜2,在第二基板22处形成有开口部26,开口部26未设置有导电材料,当液晶透镜2用于立体显示时,优化液晶透镜单元L1边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处的第一电极24附近液晶分子23的偏转程度,液晶透镜2的光程差分布曲线在相位延迟量的表现更加平滑,明显降低了液晶透镜单元L1与液晶透镜单元L2在交界处出现的串扰现象,提升立体显示的效果和观看的舒适度,明显改善了相邻液晶透镜单元L1与液晶透镜单元L2的在交界处的光程差分布,优化后的光程差分布接近于理想抛物线,从而改善采用液晶透镜2的立体显示装置在立体显示时产生的串扰现象,提高了立体显示效果和观看舒适度。
在本实施例中,如图6所示,液晶透镜单元L1对应一个第二电极25和至少两个第一电极24,当液晶透镜2用于立体显示时,一个第二电极25与至少两个第一电极24之间的电场驱动液晶分子23偏转,形成规则的液晶透镜单元L1。由于液晶透镜单元L1与液晶透镜单元L2依次排布,相邻两个第二电极25之间形成有开口部26,当液晶透镜2用于立体显示时,分别对第一电极24、第二电极25施加电压,相邻两个第二电极25之间形成的开口部 26与位于液晶透镜单元L1边缘处的第一电极24相对,优化液晶透镜单元L1与液晶透镜单元L2边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处第一电极24附近液晶分子23的偏转程度,在相位延迟量的表现呈现更加平滑的状态,降低相邻液晶透镜单元L1与液晶透镜单元L2在交界处出现的串扰现象,提升立体显示的效果和观看的舒适度。同时,为保证液晶透镜2在立体显示时,可以正常呈现立体图像,相邻两个第二电极25之间的距离也不能过大,影响液晶透镜2的正常显示。
在本实施例中,一个液晶透镜单元L1对应一个第二电极25,并设定第二电极25的宽度小于液晶透镜单元L1的间距,液晶透镜单元L1的间距是指位于液晶透镜单元L1边缘处的两个第一电极24的中心线之间距离。由于液晶透镜单元L1的中心线与相对应的第二电极25的中心线在同一条直线上,这样第二电极25与第一电极24之间形成的电场,驱动液晶分子23发生规则性偏转,继而确保液晶透镜2用于立体显示时,可以呈现结构相同的液晶透镜单元L1。
由于第二电极25的宽度小于液晶透镜单元L1的间距,而且液晶透镜单元L1与液晶透镜单元L2之间形成开口部26,可以设定开口部26的宽度可以小于位于液晶透镜单元L1边缘处的第一电极24的宽度,这样,第二电极25与第一电极24有相对重叠部分,优化液晶透镜单元L1与液晶透镜单元L2在交界处的电场强度分布,改善位于液晶透镜单元L1边缘处的第一电极24附近液晶分子23的偏转程度,液晶透镜2的光程差分布曲线在相位延迟量的表现更加平滑,降低相邻液晶透镜单元L1与液晶透镜单元L2在交界处产生的串扰现象,提升立体显示的效果和观看的舒适度。
当然,也可以设定开口部26的宽度大于位于液晶透镜单元L1边缘处的第一电极24的宽度,即第二电极25与第一电极24完全不重合,第二基板22与位于液晶透镜单元L1边缘处的第一电极24相对应位置处完全无导电材料,因此,开口部26处的电场曲线便会以较为平缓的状态靠拢有导电材料的区域,优化液晶透镜单元L1边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处的第一电极24附近液晶分子23的偏转程度,在相位延迟量的表现呈现更加平滑的状态。
可以理解的是,还可以将开口部26的宽度等于位于液晶透镜单元L1边缘处的第一电极24的宽度,即第二电极25与第一电极24不发生重合,同样可以抑制液晶透镜单元L1与液晶透镜单元L2在交界处产生的光程波动,进而液晶透镜单元L1与液晶透镜单元L2交界处的电场曲线,会以较为平缓的状态靠拢于第二电极25,降低液晶透镜单元L1与液晶透镜单元L2交界处的光程差与标准的抛物型透镜的偏差,改善相邻液晶透镜单元L1与液晶透镜单元L2交界处出现的串扰现象,提升液晶透镜2的显示质量。
如图6所示,本实施例提供的液晶透镜单元L1对应有一个第二电极25和两个第一电极24,由于液晶透镜单元L1与液晶透镜单元L2依次排布,相邻两个第二电极25之间形成有开口部26,当液晶透镜2用于立体显示时,分别对第一电极24、第二电极25施加电压,而由于开口部26未设置导电材料,因此,开口部26处的电场曲线便会以较为平缓的状态靠拢有导电材料的区域,优化液晶透镜单元L1边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处的第一电极24附近液晶分子23的偏转程度,在相位延迟量的表现呈现更加平滑的状态。这样,液晶透镜单元L1与液晶透镜单元L2的交界处的电场变化会以较为平缓的状态靠拢于第二电极25,避免因电场变化而导致此处的光程差有较大的波动,明显降低相邻液晶透镜单元L1与液晶透镜单元L2在交界处产生的串扰现象,提升立体显示的效果和观看的舒适度。
为更好的说明本实施例提供的液晶透镜2,在立体显示时,可以明显地降低液晶透镜单元L1与液晶透镜单元L2交界处出现的串扰现象,现将实验结果进行说明。具体地,本实施例提供的液晶透镜单元L1对应一个第二电极25与两个第一电极24。设定液晶透镜单元L1的间距256um,运用LC-MASTER软件进行光程差模拟,并利用MATLAB对所得模拟数据进行处理。本模拟实验所使用的液晶分子23的寻常光折射率n0为1.524,非寻常光折射率ne为1.824。液晶透镜2的厚度以及第一电极24的宽度都设置为30um,以及驱动电压,这些主要参数在现有技术提供的液晶透镜2′(图2所示)和本实施例提供的液晶透镜2的模拟实验中保持不变。图3展示了现有技术提供的液晶透镜2′的模拟结果,图中曲线分别为现有技术提供的液晶透镜2′的光程差分布曲线和与标准抛物型透镜的光程差分布曲线。可以看出,相邻 两个液晶透镜单元L1′与L2′的交界处,与标准抛物型透镜的光程差分布曲线的偏差较大,这些偏差会在实际的3D观看中造成较大的串扰。图7展示了本实施例提供的液晶透镜2的模拟结果,本实施例中第二电极25的宽度设置为156um。可以看出,模拟数据经处理后,本实施例提供的液晶透镜2的光程差曲线与标准抛物型透镜的光程差曲线重合得比较好,并且在液晶透镜单元L1与液晶透镜单元L2的交界处,与标准抛物型透镜的光程差分布曲线的偏差较小,极大程度改善光程差曲线的波动现象,进而在立体显示过程中,有效减弱串扰现象,进而提升观看舒适度。相对于现有技术提供的液晶透镜2′的光程差分布曲线有较大的改善,降低了液晶透镜单元L1与液晶透镜单元L2的交界处出现的串扰现象,提高了立体显示效果和观看舒适度。
在本实施例中,第二电极25的延伸方向平行于第一电极24的延伸方向,可以设置第一电极24的延伸方向可以平行于第一基板21的宽度方向,当液晶透镜2用于立体显示时,对第一电极24施加第一电压,对第二电极25施加第二电压,从而在第一基板21与第二基板22之间形成阵列排布的液晶透镜单元L1,采用蚀刻工艺在第一基板21上加工第一电极24,操作方便。当然,还可以为了解决液晶透镜2在用于立体显示时出现的摩尔纹问题,将各个第一电极24倾斜设置于第一基板22上,由于第二电极25的延伸方向平行于第一电极24的延伸方向,这样第一电极24、第二电极25均沿一定角度倾斜设置,改善液晶透镜2的周期性干涉,弱化摩尔纹,提升液晶透镜2在用于立体显示的显示效果。
如图8所示,为便于设计第一电极24的倾斜角度,而且倾斜设置的第一电极24、第二电极25不会影响液晶透镜2的分光效果,确保液晶透镜2在立体显示时将左眼图像传送至观看者的左眼,右眼图像传送至观看者的右眼,设定第一电极24的延伸方向与第一电极24的排布方向相交,形成夹角为α,且60°≤α≤80°,在此范围内设定第一电极24的倾斜角度,不仅可以改善摩尔纹,而且可以降低串扰等影响立体显示的问题。本实施例提供的夹角α是指第一电极24的倾斜方向与第一电极24的排布方向所形成的锐角夹角,在本实施例中,第一电极24的倾斜方向为右倾,同样地,可以设置第一电极24的倾斜方向为左倾,夹角α为第一电极24的倾斜方向与第一电极24的排布 方向所夹设的锐角。在本实施例中,第一电极24沿同一方向阵列排布于第一基板22上,第一电极24的排布方向为第一基板22的横向方向。
在本实施例中,为便于加工第一电极24,可以将第一电极24设置为条形电极,并且第一电极24沿第一电极24延伸方向的截面形状为矩形、拱形或锯齿形,便于制作加工,在本实施例中,第一电极24选取的形状应满足,当液晶透镜2用于立体显示时,分别对第一电极24与第二电极25施加驱动电压,以使液晶分子23偏转形成液晶透镜单元L1。当然,第一电极24的截面形状也可以为其他规则或不规则形状,都属于本实用新型的保护范围之内,应当毫无异议的确定,本实施例提供的第一电极24的截面形状,只适用于举例说明,规则形状的第一电极24更加容易加工。
如图5与图6所示,同样地,便于制作加工第二电极25,将第二电极25设置为条形电极,且第二电极25沿第二电极25延伸方向的截面形状为矩形、拱形或锯齿形,在本实施例中,第二电极25选取的形状应满足,当液晶透镜2用于立体显示时,分别对第一电极24与第二电极25施加驱动电压,以使液晶分子23偏转形成液晶透镜单元L1。当然,第二电极25的截面形状也可以为其他规则或不规则形状,都属于本实用新型的保护范围之内,应当毫无异议的确定,本实施例提供的第二电极25的截面形状,只适用于举例说明,规则形状的第二电极25更加容易加工。
如图6与图12所示,由于采用第二电极25为条形电极,为进一步提升液晶透镜2在立体显示时的显示质量,设定液晶透镜单元L1的间距为L,第二电极25的宽度为M,L/2≤M<nL,其中,n为第二电极25对应液晶透镜单元L1的数目,n为自然数且n≥1。设定液晶透镜单元L1的间距L为位于液晶透镜单元L1边缘处的两个第一电极24的中心线之间的距离。如图6所示,当第二电极25对应一个液晶透镜单元L1,即n=1时,第二电极25的宽度表示为L/2≤M<L,第二电极25的宽度小于液晶透镜单元L1的间距,并可以无限接近于液晶透镜单元L1的间距,即开口部26的宽度可以任意设置,都可以解决液晶透镜单元L1与液晶透镜单元L2在交界处存在的串扰问题,便于操作人员根据具体情况设定第二电极25的宽度。相邻两个第二电极25之间形成的开口部26与位于液晶透镜单元L1边缘处的第一电极24相对,优 化液晶透镜单元L1与液晶透镜单元L2边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处第一电极24附近液晶分子23的偏转程度,液晶透镜2的光程差分布曲线在相位延迟量的表现更加平滑,降低相邻液晶透镜单元L1与液晶透镜单元L2在交界处出现的串扰现象,提升立体显示的效果和观看的舒适度。同时,为保证液晶透镜2在立体显示时,可以正常呈现立体图像,相邻两个第二电极25之间的距离也不能过大,影响液晶透镜2的正常显示。
如图6所示,本实施例提供的液晶透镜2还包括电压控制模块(图中未示出),电压控制模块用于控制施加位于液晶透镜单元L1边缘处的第一电极24上的第一驱动电压,以及第二电极25上的第二驱动电压,第一驱动电压与第二驱动电压之间的电势差大于液晶分子23的阈值电压。电势差产生电场强度不等的电场,在电场的作用下,液晶分子23随电场强度的变化发生偏转,使得第一基板21和第二基板22之间液晶层的折射率呈梯度分布,形成呈阵列设置的液晶透镜单元L1。使用电压控制模块,可以精准控制第一驱动电压、第二驱动电压的大小,使得液晶透镜2在立体显示时,液晶分子23按照规定的电场分布排列,并且接近于理想抛物线分布,形成折射率渐变的液晶透镜单元L1,成像效果较佳。
如图6所示,本实施例提供的电势差为u0,液晶分子23的阈值电压为vth,且vth<u0≤4vth。第一驱动电压的电压值大小与第一电极24的宽度有关,若第一电极24的宽度较大,则相应的第一驱动电压的电压值应较小,同样地,若第一电极24的宽度较小,则相应的第一驱动电压的电压值应较大,这样的处理是为了满足液晶透镜2成像所需的电压,同时解决了液晶透镜2在立体显示时,位于液晶透镜单元L1边缘处的第一电极24附近由于电场强度较大,相邻液晶透镜单元L1与液晶透镜单元L2在交界处出现串扰的问题。
如图5与图6所示,本实施例还提供一种立体显示装置,包括显示面板1和上述的液晶透镜2,液晶透镜2设置于显示面板1的出光侧,当液晶透镜2用于立体显示时,对第一电极24施加第一电压,对第二电极25施加相等的第二电压,第一电压与第二电压之间的电势差在第一基板21与第二基板22之间形成电场强度不等的第一电场,第一电场驱动液晶分子23发生偏转,形成折射率渐变的液晶透镜单元L1,液晶透镜单元L1对显示面板1发出的 光进行调整,以呈现立体图像。
实施例二
如图9所示,本发明提供的液晶透镜3与实施例一提供的液晶透镜2结构大体相同,不同之处在于,各液晶透镜单元L1对应有m个第一电极34,m为自然数,m≥3。在本实施例中,每个液晶透镜单元L1对应有6个第一电极34。对于此种结构的液晶透镜3,对各个第一电极34施加对称的第四驱动电压,具体地,在液晶透镜单元L1中,对各个条形电极如S11,S12,S13,S14,S15,S16施加对称的电压,具体地(V(S11)=V(S16))>(V(S12)=V(S15))>(V(S13)=V(S14))。同样地,在液晶透镜单元L2中,对各个条形电极如S16,S17,S18,S19,S3,S21施加对称的电压,具体地(V(S16)=V(S21))>(V(S17)=V(S3))>(V(S18)=V(S19)),对第二电极35施加第五驱动电压。对位于液晶透镜单元L1两端的第一电极34施加的电压最大,位于液晶透镜单元L1中心的第一电极34施加的电压最小,电压由两端到中心呈现递减的趋势且电压呈现对称分布。在液晶透镜单元L1内由于电压对称分布,液晶分子33会在平滑电场的影响下折射率呈现一定的渐变趋势,因此液晶透镜3可以具有很好的光学成像性质。通过合适的电压匹配,得到的液晶透镜单元L1的光程差分布会与标准的抛物线透镜更加的吻合。这样在实际观看的过程,明显的降低串扰现象,减少观看立体因视差产生的眩晕感觉,提高立体显示效果和观看的舒度。在本实施例中,由于液晶透镜单元L1与液晶透镜单元L2结构相同,因此,在提及液晶透镜单元时,仅对液晶透镜单元L1进行表述,省略对液晶透镜单元L2的重复性表述,以下相同,在此不再赘述。
如图10所示,本实施例提供的液晶透镜3,由于各液晶透镜单元L1对应有多个第一电极34,相邻两个第二电极35之间形成的开口部36与位于液晶透镜单元L1边缘处的第一电极34相对,优化液晶透镜单元L1边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处的第一电极34附近液晶分子33的偏转程度,液晶透镜2的光程差分布曲线在相位延迟量的表现更加平滑,明显降低了液晶透镜单元L1与液晶透镜单元L2在交界处出现的串扰现象,提升立体显示的效果和观看的舒适度,明显改善了相邻液晶透镜单元L1 与液晶透镜单元L2的在交界处的光程差分布,优化后的光程差分布接近于理想抛物线,从而改善采用液晶透镜3的立体显示装置在立体显示时产生的串扰现象,提高了立体显示效果和观看舒适度。
在本实施例中,第一电极34可以采用条形电极,且各个第一电极34的宽度相等。根据液晶透镜3的设计要求,蚀刻多个等宽度的第一电极34,操作方便,同样地,还可以根据液晶透镜3的设计要求,蚀刻多个不等宽度的第一电极34,操作人员可以具体要求,设定第一电极34的宽度。
优选地,当各个第一电极34按照等间距排列时,电压控制模块控制施加于各个第一电极34上的第一电压,以使液晶透镜3在用于立体显示时,形成规则的梯度折射率透镜,确保液晶透镜3的分光作用。当各个第一电极34按照不等间距排列时,电压控制模块控制施加于各个第一电极34上的第一电压,以使液晶透镜3在用于立体显示时,形成规则的梯度折射率透镜,确保液晶透镜3的分光作用。
如图9所示,本实施例提供的电压控制模块还用于控制施加位于液晶透镜单元L1边缘处的第一电极34的第一电压,以及第二电极35上的第二电压,由液晶透镜单元L1的两边缘处至液晶透镜单元L1的中心处,各个第一电压的电压值由大至小,即两边缘处第一电极34上的第一电压的电压值最大,依次减小,第一电压与第二电压之间的电势差产生电场强度不等的第一电场,在电场的作用下,液晶分子33随电场强度的变化发生偏转,使得第一基板21和第二基板23之间液晶层的折射率呈梯度分布,形成呈阵列设置的液晶透镜单元L1,液晶透镜单元L1对显示面板的出光进行控制,实现立体显示。
实施例三
如图11所示,本发明实施例提供的液晶透镜4与实施例二提供的液晶透镜3结构大致相同,液晶透镜4包括相对设置的第一基板41与第二基板42,第二基板42设置于第一基板41的上方,第一基板41与第二基板42之间设有液晶分子43和间隙子40,第二基板42上设有第二电极45,第一基板41上设有第一电极44,相邻两个第二电极45之间形成开口部46。不同之处在于,第一基板41与第一电极44之间设有第三电极47,第三电极47与第一电极44之间设有绝缘层48,各个第一电极44设于绝缘层48上。液晶透镜4处于 3D显示时,电压控制模块还用于控制施加于第三电极47上的第三驱动电压,第二电极45上的第二驱动电压,各个驱动电压相互配合,驱动液晶分子43发生偏转,确保液晶透镜4用于3D显示时,呈现标准的立体图像。并且,在本实施例中,第二电极45为条状电极,相邻两个第二电极45之间形成的开口部46与第一电极44相对,优化液晶透镜单元边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处的第一电极44附近液晶分子43的偏转程度,液晶透镜2的光程差分布曲线在相位延迟量的表现更加平滑,明显降低了液晶透镜单元边缘处出现的串扰现象,提升立体显示的效果和观看的舒适度,明显改善了液晶透镜单元的光程差分布,优化后的光程差分布接近于理想抛物线,从而改善采用液晶透镜4的立体显示装置在立体显示时产生的串扰现象,提高了立体显示效果和观看舒适度。明显的降低液晶透镜单元边缘处出现的串扰现象,提高了观看的质量。对第二电极45施加第二驱动电压,对第三电极47施加第三驱动电压,第二驱动电压与第三驱动电压之间的电势差大于液晶分子43的阀值电压,这样在第二电极45和第三电极47间会形成电场强度相等的第二电场,该第二电场使得液晶分子43发生偏转,偏转后的液晶分子43与间隙子40之间的折射率差在预设范围内,满足预设范围的条件是间隙子40的折射率与液晶分子43折射率之间的差值小于0.1,此时,液晶分子43的折射率接近于间隙子40的折射率。因此,光线经过液晶分子43和间隙子40时,不会产生光的折射,液晶透镜4可以改善间隙子40亮点现象。
在本实施方式中,可以优选地设定第三电极47为面电极,面电极是指在第一基板44的表面整体覆盖导电材料。第三电极47结构简单,可以提供稳定的第三驱动电压,这样,当液晶透镜2在用于2D显示时,第二电极45和第三电极47间会形成电场强度相等的第二电场,该第二电场使得液晶分子43发生偏转,偏转后的液晶分子43与间隙子40之间的折射率差在预设范围内,满足预设范围的条件是间隙子40的折射率与液晶分子43折射率之间的差值小于0.1,此时,液晶分子43的折射率接近于间隙子40的折射率。因此,光线经过液晶分子43和间隙子40时,不会产生光的折射,液晶透镜4可以改善间隙子40亮点现象。
实施例四
如图12所示,本发明提供的液晶透镜5与实施例一提供的液晶透镜2结构大体相同。本实施例提供的液晶透镜5,包括相对设置的第一基板51与第二基板52,第一基板51与第二基板52之间设有液晶分子53,第一基板51上设有多个第一电极54,在图12中,各个第一电极54表示为S11,S12,S13,S14,S15,S16,S17,S18,S19,S20,S21,且各个第一电极54彼此间隔设置,第二基板52朝向第一基板51的一侧设有多个第二电极55,两个第二电极55之间形成开口部56,开口部56与第一电极S16相对应,且开口部56的中心线与第一电极S16的中心线在同一直线上,由于开口部56未设置有导电材料,在液晶透镜单元L1的边缘处电场的变化就不会过于剧烈进而导致此处的光程差有较大的波动。分别对第一电极54、第二电极55施加电压,液晶透镜单元表现出的透镜光程差与标准的抛物型透镜重合的比较好。当液晶透镜5在进行立体显示时,可以明显的降低串扰,提升立体图像显示的质量。开口部56处的电场曲线便会以较为平缓的状态靠拢有导电材料的区域,优化液晶透镜单元边缘处的电场强度分布,改善位于液晶透镜单元边缘处第一电极54附近液晶分子53的偏转程度,在相位延迟量的表现呈现更加平滑的状态。这样,相邻两个液晶透镜单元L1的交界处的电场变化会得到一定程度的改善,并以较为平缓的状态靠拢于第二电极,55,避免因电场变化而导致此处的光程差有较大的波动,明显降低相邻液晶透镜单元在交界处产生的串扰现象,提升立体显示的效果和观看的舒适度。
在本实施例中,一个第二电极55对应两个液晶透镜单元(图中未示出),即n=2,第二电极55的宽度小于液晶透镜单元L1的2倍间距。当然,一个第二电极55覆盖更多的液晶透镜单元,即n>2,第二电极55的宽度表示为L/2≤M<nL,不仅可以解决液晶透镜单元的边界处存在的串扰问题,同时降低第二电极55的加工难度,便于操作人员根据实际需求进行设定第二电极55的宽度。
在本实施例中,为进一步提升液晶透镜5在立体显示时的显示质量,每个第二电极55对应至少两个液晶透镜单元L1,设定液晶透镜单元L1的间距为L,设定液晶透镜单元L1的间距L为位于液晶透镜单元L1边缘处的两个第一电极54的中心线之间的距离。第二电极55的宽度为M,L/2≤M<nL, 其中,n为第二电极55对应液晶透镜单元L1的数目,n为自然数且n≥2。如图12所示,一个第二电极55对应两个液晶透镜单元(图中未示出),即n=2,第二电极55的宽度小于液晶透镜单元L1的2倍间距。当然,一个第二电极55覆盖更多的液晶透镜单元,即n>2,第二电极55的宽度表示为L/2≤M<nL,不仅可以解决液晶透镜单元的边界处存在的串扰问题,同时降低第二电极55的加工难度,便于操作人员根据实际需求进行设定第二电极55的宽度。开口部56的宽度可以任意设置,都可以解决液晶透镜单元L1与液晶透镜单元L2在交界处存在的串扰问题,便于操作人员根据具体情况设定第二电极55的宽度。相邻两个第二电极55之间形成的开口部56与位于液晶透镜单元L1边缘处的第一电极54相对,优化液晶透镜单元L1与液晶透镜单元L2边缘处的电场强度分布,改善位于液晶透镜单元L1边缘处第一电极54附近液晶分子53的偏转程度,液晶透镜5的光程差分布曲线在相位延迟量的表现更加平滑,降低相邻液晶透镜单元L1与液晶透镜单元L2在交界处出现的串扰现象,提升立体显示的效果和观看的舒适度。同时,为保证液晶透镜5在立体显示时,可以正常呈现立体图像,相邻两个第二电极55之间的距离也不能过大,影响液晶透镜5的正常显示。
当然,本实施例的技术方案也可基于实施例二的基础上实现,其实现过程及原理基本相同,在此不再赘述。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 液晶透镜,包括相对设置的第一基板与第二基板,以及夹设于所述第一基板与所述第二基板之间的液晶分子,所述第一基板设有多个第一电极,各个所述第一电极彼此间隔设置,当所述液晶透镜用于立体显示时,所述第一基板与所述第二基板之间形成多个结构相同并呈阵列分布的液晶透镜单元,相邻两个所述液晶透镜单元共用一个所述第一电极,其特征在于:所述第二基板朝向所述第一基板的一侧设有多个第二电极,所述第二电极的延伸方向平行于所述第一电极的延伸方向,各个所述第二电极彼此间隔设置,相邻两个所述第二电极之间形成开口部,所述开口部的中心线与其相对应的并位于所述液晶透镜单元边缘处的所述第一电极的中心线在同一条直线上。
  2. 如权利要求1所述的液晶透镜,其特征在于:所述开口部的宽度大于与其相对应的并位于所述液晶透镜单元边缘处的所述第一电极的宽度。
  3. 如权利要求1所述的液晶透镜,其特征在于:所述开口部的宽度等于与其相对应的并位于所述液晶透镜单元边缘处的所述第一电极的宽度。
  4. 如权利要求1所述的液晶透镜,其特征在于:所述开口部的宽度小于与其相对应的并位于所述液晶透镜单元边缘处的所述第一电极的宽度。
  5. 如权利要求1至4中任一项所述的液晶透镜,其特征在于:各个所述第一电极倾斜设置于所述第一基板上,所述第一电极的延伸方向与所述第一电极的排布方向相交,形成夹角。
  6. 如权利要求5所述的液晶透镜,其特征在于:所述夹角α,且60°≤α≤80°。
  7. 如权利要求6所述的液晶透镜,其特征在于:每个所述液晶透镜单元对应一个所述第二电极,所述液晶透镜单元的中心线与所述第二电极的中心线在同一条直线上,第二电极的宽度小于液晶透镜单元的间距。
  8. 如权利要求6所述的液晶透镜,其特征在于:每个所述第二电极对应有至少两个所述液晶透镜单元。
  9. 如权利要求7或8所述的液晶透镜,其特征在于:每个所述液晶透镜 单元对应两个所述第一电极。
  10. 如权利要求7或8所述的液晶透镜,其特征在于:每个所述液晶透镜单元对应有m个所述第一电极,其中,m为自然数,m≥3。
  11. 如权利要求10所述的液晶透镜,其特征在于:各个所述第一电极的宽度相等。
  12. 如权利要求11所述的液晶透镜,其特征在于:各个所述第一电极按照等间距排列。
  13. 如权利要求7或8所述的液晶透镜,其特征在于:所述第一电极为条形电极,所述第一电极沿所述第一电极延伸方向的截面形状为矩形、拱形或锯齿形。
  14. 如权利要求13所述的液晶透镜,其特征在于:所述第二电极为条形电极,所述第二电极沿所述第二电极延伸方向的截面形状为矩形、拱形或锯齿形。
  15. 如权利要求14所述的液晶透镜,其特征在于:所述液晶透镜单元的间距为L,所述第二电极的宽度为M,
    Figure PCTCN2015084305-appb-100001
    其中,n为所述第二电极对应所述液晶透镜单元的数目,n为自然数且n≥1。
  16. 如权利要求5所述的液晶透镜,其特征在于:还包括电压控制模块,用于控制施加位于所述液晶透镜单元边缘处的所述第一电极上的第一驱动电压、所述第二电极上的第二驱动电压,所述第一驱动电压与所述第二驱动电压之间的电势差大于所述液晶分子的阈值电压。
  17. 如权利要求16所述的液晶透镜,其特征在于:所述电势差为u0,所述液晶分子的阈值电压为vth,且vth<u0≤4vth
  18. 如权利要求16所述的液晶透镜,其特征在于:还包括设置于所述第一基板与所述第一电极之间的第三电极,所述第三电极与所述第一电极之间设有绝缘层,各个所述第一电极设置于所述绝缘层上,所述电压控制模块还 用于控制施加于所述第三电极上的第三驱动电压。
  19. 如权利要求18所述的液晶透镜,其特征在于:所述第三电极为面电极。
  20. 立体显示装置,包括显示面板,其特征在于:还包括权利要求1至19中任一项所述的液晶透镜,所述液晶透镜设置于所述显示面板的出光侧。
PCT/CN2015/084305 2014-07-18 2015-07-17 液晶透镜及立体显示装置 WO2016008445A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/392,349 US20160291333A1 (en) 2014-07-18 2015-07-17 Liquid Crystal Lens and Three-Dimensional Display Device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410344728.6A CN104122718A (zh) 2014-07-18 2014-07-18 液晶透镜及立体显示装置
CN201410344728.6 2014-07-18
CN201510218953.X 2015-04-30
CN201510217311.8A CN106200142B (zh) 2014-07-18 2015-04-30 液晶透镜及立体显示装置
CN201510218953.XA CN106200143A (zh) 2014-07-18 2015-04-30 液晶透镜及立体显示装置
CN201510217311.8 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016008445A1 true WO2016008445A1 (zh) 2016-01-21

Family

ID=55077931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084305 WO2016008445A1 (zh) 2014-07-18 2015-07-17 液晶透镜及立体显示装置

Country Status (3)

Country Link
US (1) US20160291333A1 (zh)
TW (1) TWI575255B (zh)
WO (1) WO2016008445A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173516A (ja) * 2015-03-18 2016-09-29 株式会社東芝 液晶レンズ装置及び画像表示装置
KR20180033374A (ko) * 2016-09-23 2018-04-03 삼성디스플레이 주식회사 렌즈 패널 및 이를 포함하는 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052803B2 (ja) * 2001-01-19 2008-02-27 株式会社リコー 画像表示装置
CN101571656A (zh) * 2009-06-04 2009-11-04 友达光电股份有限公司 立体显示器及其液晶透镜
CN102809868A (zh) * 2012-08-14 2012-12-05 深圳超多维光电子有限公司 一种液晶透镜
CN102998873A (zh) * 2012-12-14 2013-03-27 友达光电股份有限公司 一种液晶透镜
CN103336398A (zh) * 2012-10-25 2013-10-02 友达光电股份有限公司 液晶透镜、应用其的显示装置及显示装置的驱动方法
CN103488021A (zh) * 2013-06-06 2014-01-01 友达光电股份有限公司 菲涅耳液晶透镜及平面/立体显示装置
US20140118647A1 (en) * 2012-10-30 2014-05-01 Kabushiki Kaisha Toshiba Liquid crystal lens device and method of driving the same
CN104122718A (zh) * 2014-07-18 2014-10-29 深圳超多维光电子有限公司 液晶透镜及立体显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396944B2 (ja) * 2008-12-22 2014-01-22 ソニー株式会社 レンズアレイ素子および画像表示装置
CN102341743B (zh) * 2009-09-28 2014-07-02 株式会社东芝 立体图像显示装置
CN103597401A (zh) * 2011-07-28 2014-02-19 株式会社东芝 液晶光学元件以及图像显示装置
US20150070607A1 (en) * 2012-04-06 2015-03-12 Sharp Kabushiki Kaisha Stereoscopic display apparatus
JP2015038535A (ja) * 2012-04-27 2015-02-26 株式会社東芝 液晶光学素子及び画像表示装置
CN104903784B (zh) * 2012-12-27 2017-11-28 凸版印刷株式会社 液晶显示装置、滤色器基板及滤色器基板制造方法
KR102061234B1 (ko) * 2013-10-28 2020-01-02 삼성디스플레이 주식회사 표시 장치 및 이를 위한 액정 렌즈 패널

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052803B2 (ja) * 2001-01-19 2008-02-27 株式会社リコー 画像表示装置
CN101571656A (zh) * 2009-06-04 2009-11-04 友达光电股份有限公司 立体显示器及其液晶透镜
CN102809868A (zh) * 2012-08-14 2012-12-05 深圳超多维光电子有限公司 一种液晶透镜
CN103336398A (zh) * 2012-10-25 2013-10-02 友达光电股份有限公司 液晶透镜、应用其的显示装置及显示装置的驱动方法
US20140118647A1 (en) * 2012-10-30 2014-05-01 Kabushiki Kaisha Toshiba Liquid crystal lens device and method of driving the same
CN102998873A (zh) * 2012-12-14 2013-03-27 友达光电股份有限公司 一种液晶透镜
CN103488021A (zh) * 2013-06-06 2014-01-01 友达光电股份有限公司 菲涅耳液晶透镜及平面/立体显示装置
CN104122718A (zh) * 2014-07-18 2014-10-29 深圳超多维光电子有限公司 液晶透镜及立体显示装置

Also Published As

Publication number Publication date
TWI575255B (zh) 2017-03-21
TW201604589A (zh) 2016-02-01
US20160291333A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
US8941786B2 (en) Electrically-driven liquid crystal lens and stereoscopic display device using the same
CN204667023U (zh) 液晶透镜及立体显示装置
WO2016008221A1 (zh) 光栅控制方法和装置、光栅、显示面板及三维(3d)显示装置
WO2011036736A1 (ja) 立体画像表示装置
US9838676B2 (en) Three-dimensional display device
KR20110077709A (ko) 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
WO2017173792A1 (zh) 显示模组及其控制方法、显示装置
KR102017203B1 (ko) 액정 렌즈 및 이를 포함하는 표시 장치
JP4367848B2 (ja) マルチプルビュー方向性ディスプレイ
WO2014155984A1 (ja) 画像表示装置
JP6200789B2 (ja) 表示装置
US9046692B2 (en) Display device
US20160313612A1 (en) Liquid crystal lens and display device
WO2016045110A1 (zh) 一种液晶透镜及液晶显示装置
CN103698933B (zh) 立体显示器
WO2016008445A1 (zh) 液晶透镜及立体显示装置
TWI477816B (zh) 裸眼式立體顯示裝置及其液晶透鏡
JP6207355B2 (ja) 3次元表示装置
US9081198B2 (en) Liquid crystal lens and stereo display device
CN106292123A (zh) 液晶透镜及立体显示装置
TWI579595B (zh) 立體顯示裝置
US9575326B2 (en) Stereoscopic image display apparatus
KR20150092430A (ko) 액정 렌즈 및 이를 포함하는 디스플레이 장치
CN208283667U (zh) 液晶透镜及立体显示装置
CN204807881U (zh) 液晶透镜及立体显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14392349

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821945

Country of ref document: EP

Kind code of ref document: A1