WO2016002913A1 - 管状体の製造方法 - Google Patents

管状体の製造方法 Download PDF

Info

Publication number
WO2016002913A1
WO2016002913A1 PCT/JP2015/069213 JP2015069213W WO2016002913A1 WO 2016002913 A1 WO2016002913 A1 WO 2016002913A1 JP 2015069213 W JP2015069213 W JP 2015069213W WO 2016002913 A1 WO2016002913 A1 WO 2016002913A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
mandrel
tubular body
fiber
fiber layer
Prior art date
Application number
PCT/JP2015/069213
Other languages
English (en)
French (fr)
Inventor
久保 修一
高木 俊
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2016002913A1 publication Critical patent/WO2016002913A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/324Coats or envelopes for the bundles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for producing a polygonal tubular body made of a ceramic / ceramic composite material and a SiC / SiC composite material.
  • a tubular body made of a SiC / SiC composite material has high-strength SiC fibers as an aggregate, and SiC mainly forms a matrix. Since SiC is a material having heat resistance and oxidation resistance, it has a feature that it can be used in an oxidizing atmosphere in which a C / C composite (carbon fiber reinforced carbon composite material) cannot be used.
  • a SiC layer is formed on at least the outer surface of a tubular fiber-reinforced carbonaceous substrate made of an aggregate made of ceramic fibers and a carbonaceous material filled between the ceramic fibers, and the fiber-reinforced carbonaceous material
  • a tubular body is described in which silicon atoms are diffused from the boundary region between the substrate and the SiC layer toward the inside of the fiber-reinforced carbonaceous substrate.
  • the process can be simplified, and the reactor can be operated at a higher temperature by improving performance, so that an energy efficient nuclear reactor can be provided. It is described that the service life can be extended.
  • the tubular body made of the SiC / SiC composite described above has only a description regarding a cylindrical shape, and there is no description regarding a polygonal tubular body such as a quadrangle.
  • An object of the present invention is to provide an effective manufacturing method for manufacturing a tubular body made of a polygonal SiC / SiC composite material such as a quadrangle.
  • the method for manufacturing a tubular body of the present invention for solving the above-described problem is a method for manufacturing a polygonal tubular body, in which a ceramic fiber is wound around a polygonal mandrel having an R-shaped portion on a longitudinal side, A winding step for obtaining a wound body in which a plurality of layers of ceramic fiber layers having different winding angles with respect to the axis of the mandrel are laminated, a CVD step for coating the wound body with ceramic-CVD, and forming a covering body; A mandrel removing step of removing the mandrel from the covering, wherein each ceramic fiber layer has an outermost ceramic fiber layer wound around an axis of the mandrel rather than a ceramic fiber layer immediately below the outermost ceramic fiber layer. It is characterized by a small angle.
  • the manufacturing method of the tubular body of the present invention for solving the above-mentioned problem is a manufacturing method of a polygonal tubular body, in which a SiC fiber is wound around a polygonal mandrel having an R-surface shape portion on a longitudinal side, A winding step of obtaining a wound body in which a plurality of SiC fiber layers having different winding angles with respect to the axis of the mandrel are laminated, a CVD step of covering the wound body with SiC-CVD, and forming a covering body; And a mandrel removing step for removing the mandrel from the covering, wherein each SiC fiber layer has an outermost SiC fiber layer wound around an axis of the mandrel rather than an SiC fiber layer immediately below the outermost SiC fiber layer. It is characterized by a small angle.
  • Ceramic fibers and SiC fibers are high-strength and high-elasticity fibers, so that they exhibit high strength against tension, but generate large stress against strain and have a property of being easily broken. For this reason, in a polygonal tubular body that requires sharp bending, fibers are broken at the corner portion, and fluffing is likely to occur.
  • the mandrel since the mandrel has an R surface on the side in the longitudinal direction, the stress associated with the bending of the ceramic fiber or the SiC fiber can be reduced and can be prevented from being broken.
  • the ceramic fiber or SiC fiber by winding the ceramic fiber or SiC fiber around the mandrel so that the winding angle with respect to the axis of the mandrel becomes small, the radius of curvature of the bending of the ceramic fiber or SiC fiber can be increased, and the stress accompanying bending Can be relaxed. Furthermore, by arranging a ceramic fiber layer or SiC fiber layer with a small winding angle with respect to the axis of the mandrel as the outermost layer, it is less likely to break than the ceramic fiber layer or SiC fiber layer immediately below the outermost ceramic fiber layer or the outermost SiC fiber layer. it can. That is, it is possible to cover the ceramic fiber layer or SiC fiber layer that is easily fuzzed with the ceramic fiber layer or SiC fiber layer that is less likely to fuzz, thereby suppressing the occurrence of fuzz.
  • the ceramic body has a plurality of ceramic fiber layers or SiC fiber layers having different winding angles with respect to the axis of the mandrel. For this reason, it arrange
  • the ceramic fiber layer or the SiC fiber layer having a plurality of layers is filled with the CVD-SiC in the gap, the fibers can be strongly connected.
  • the method for producing a tubular body of the present invention is as follows. (1) Between the winding step and the CVD step, the method further includes a coating step of baking after applying a coating material to the wound body. Since the CVD process is exposed to a high temperature, the SiC fiber is burdened by the difference in thermal expansion, and is likely to cause fluffing.
  • a fiber coating layer is formed on the ceramic fiber or SiC fiber by adding a coating process before the CVD process in which fuzzing of the ceramic fiber or SiC fiber is likely to occur, and the ceramic fiber or SiC fiber is bound to each other. Therefore, the occurrence of fluff can be suppressed.
  • CVD-SiC is deposited on the fuzz and the source gas does not spread sufficiently inside the wound body, making it easy to make defects such as pinholes in the tubular body, With such a configuration, the CVD-SiC is uniformly coated, and generation of defects due to fluffing can be suppressed.
  • a fiber coating layer is formed on the surface of the ceramic fiber or the SiC fiber by a coating process. Since the fiber coating layer is formed at the interface between the CVD-SiC matrix and the ceramic fibers or SiC fibers, the stress can be dispersed so that cracks extending from the matrix are not transmitted to the ceramic fibers or SiC fibers. By these actions, a tubular body made of a high-strength ceramic / ceramic composite material or SiC / SiC composite material can be obtained.
  • the winding angle of the outermost ceramic fiber layer or the outermost SiC fiber layer with respect to the axis of the mandrel is 30 to 60 degrees.
  • the winding angle of the outermost ceramic fiber layer or SiC fiber layer with respect to the mandrel axis is 30 degrees or more, the outermost ceramic fiber layer or SiC fiber layer is firmly wound around the tubular body. A tubular body in which the SiC fiber layer is difficult to peel can be formed.
  • the winding angle of the outermost ceramic fiber layer or SiC fiber layer with respect to the mandrel axis is 60 degrees or less, the radius of curvature of the bending of the ceramic fiber or SiC fiber bent along the longitudinal side of the mandrel is increased. And stress associated with strain can be relaxed.
  • the tubular body has a quadrangular cross section.
  • a plurality of tubular bodies can be regularly arranged, and various things can be stored inside the tubular body, so that the space can be used effectively.
  • the radius of curvature of the R-surface shaped part is 5 to 20 mm.
  • the radius of curvature of the R-plane-shaped portion is 5 mm or more, stress applied to the ceramic fiber or SiC fiber that bends along the R-plane can be reduced.
  • the radius of curvature of the R-surface shape portion is 20 mm or less, it is possible to reduce the space that cannot be used by the R-surface shape portion.
  • the SiC fiber has a fiber diameter of 5 to 20 ⁇ m.
  • the fiber diameter of the ceramic fiber or the SiC fiber is 5 ⁇ m or more, the influence of defects such as a minute scratch generated on the fiber surface can be reduced, and the ceramic fiber or the SiC fiber can be hardly broken.
  • the fiber diameter of the ceramic fiber or SiC fiber is 20 ⁇ m or less, it is possible to suppress the tension generated on the outer surface on the side extending along with the bending, and to make it difficult to break.
  • the coating material is a compound containing one or more elements selected from metal elements, silicon, carbon, and boron. These compounds remain on the surface of the ceramic fiber or the SiC fiber by firing to form a fiber coating layer. When the fiber coating layer is interposed at the interface between the CVD-SiC matrix and the ceramic fiber or SiC fiber, there is an action of suppressing the extension of cracks from the matrix.
  • the tubular body is for nuclear power.
  • the tubular body obtained from the present invention is composed of a ceramic / ceramic composite material or a SiC / SiC composite material, has heat resistance, and has high strength, so a channel box for storing nuclear fuel, etc. It can be suitably used for nuclear power.
  • the side surface in the longitudinal direction of the mandrel has an R surface
  • the stress associated with the bending of the ceramic fiber or the SiC fiber can be reduced and it can be prevented from being broken, and fluffing can be prevented.
  • the radius of curvature of bending of the ceramic fiber or SiC fiber can be further increased. For this reason, the stress accompanying bending can be relieved.
  • CVD-SiC is deposited on the fuzz and the source gas does not spread sufficiently inside the wound body, making it easy to make defects such as pinholes in the tubular body, With such a configuration, the CVD-SiC is uniformly coated, and generation of defects due to fluffing can be suppressed.
  • Process flow figure of manufacturing method of tubular body of Embodiment 1 of the present invention The perspective view of the mandrel used for Embodiment 1 of this invention Detailed process flow diagram of winding process of embodiment 1 of the present invention Drawing showing the appearance photograph of the tubular body obtained by Embodiment 1 of the present invention Sectional drawing of the tubular body obtained by Embodiment 1 of this invention
  • This specification mainly describes a SiC / SiC composite material composed of a SiC fiber and a CVD-SiC matrix.
  • the present invention is also effective for a ceramic / ceramic composite material composed of a ceramic fiber and a ceramic-CVD matrix.
  • the SiC fiber corresponds to the ceramic fiber
  • the CVD-SiC corresponds to the ceramic-CVD and can be described by being replaced.
  • Examples of CVD-SiC include SiC, titanium silicon carbide, alumina, TaC, TaN, and SiO 2 . Further, the combination of ceramic fiber and ceramic-CVD is not particularly limited.
  • the axis of the mandrel is the central axis in the longitudinal direction of the mandrel.
  • the winding angle with respect to the axis of the mandrel is an angle at which the SiC fiber intersects with a line parallel to the axis of the mandrel. In the case of 0 degrees, the SiC fiber is wound in the longitudinal direction of the mandrel, and in the case of 90 degrees, the SiC fiber is wound around the mandrel.
  • ceramic fibers are wound around a polygonal mandrel having an R-shaped portion on the longitudinal side, and a plurality of ceramic fiber layers having different winding angles with respect to the axis of the mandrel are laminated.
  • a winding step for obtaining a wound body a CVD step for coating the wound body with ceramic-CVD and forming a covering body, and a mandrel removing step for removing the mandrel from the covering body,
  • Each ceramic fiber layer is characterized in that the outermost ceramic fiber layer has a smaller winding angle with respect to the axis of the mandrel than the ceramic fiber layer immediately below the outermost ceramic fiber layer.
  • the SiC fiber is a high strength and high elasticity fiber, it exhibits high strength against tension, while it has a large amount of stress generated against strain and is easily broken. For this reason, in a polygonal tubular body that requires sharp bending, fibers are broken at the corner portion, and fluffing is likely to occur. In this invention, since it has R surface in the side of the longitudinal direction of a mandrel, the stress accompanying the bending of a SiC fiber can be made small and it cannot be broken easily.
  • the SiC fiber layer having a small winding angle with respect to the axis of the mandrel in the outermost layer it can be more difficult to break than the SiC fiber layer immediately below the outermost SiC fiber layer. That is, it is possible to cover the SiC fiber layer that is easily fluffed with the SiC fiber layer that is difficult to fluff, and to suppress the occurrence of fluff.
  • the SiC body has a plurality of SiC fiber layers having different winding angles with respect to the axis of the mandrel. For this reason, it arrange
  • the fibers can be strongly connected.
  • the method for producing a tubular body of the present invention is as follows. (1) Between the winding step and the CVD step, the method further includes a coating step of baking after applying a coating material to the wound body. Since the CVD process is exposed to a high temperature, the SiC fiber is burdened by the difference in thermal expansion, and is likely to cause fluffing. In the present invention, since a fiber coating layer is formed on the SiC fiber by adding a coating process before the CVD process in which SiC fiber is likely to fluff, and the SiC fibers are bound to each other, the occurrence of fluff can be suppressed. it can.
  • CVD-SiC is deposited on the fuzz and the source gas does not spread sufficiently inside the wound body, making it easy to make defects such as pinholes in the tubular body, With such a configuration, the CVD-SiC is uniformly coated, and generation of defects due to fluffing can be suppressed.
  • a fiber coating layer is formed on the surface of the SiC fiber by a coating process. Since the fiber coating layer is formed at the interface between the CVD-SiC matrix and the SiC fiber, the stress can be dispersed so that cracks extending from the matrix are not transmitted to the SiC fiber. By these actions, a tubular body made of a high-strength SiC / SiC composite material can be obtained.
  • the winding angle of the outermost SiC fiber layer with respect to the axis of the mandrel is 30 to 60 degrees.
  • the winding angle of the outermost SiC fiber layer with respect to the axis of the mandrel is 30 degrees or more, the outermost SiC fiber layer is firmly wound around the tubular body, so that the SiC fiber layer is difficult to peel off. be able to.
  • the winding angle of the outermost SiC fiber layer with respect to the axis of the mandrel is 60 degrees or less, the curvature radius of the bending of the SiC fiber bent along the longitudinal side of the mandrel can be increased, resulting in distortion. Stress can be relaxed.
  • the tubular body has a quadrangular cross section.
  • a plurality of tubular bodies can be regularly arranged, and various things can be stored inside the tubular body, so that the space can be used effectively.
  • the radius of curvature of the R-surface shaped part is 5 to 20 mm.
  • the radius of curvature of the R-plane-shaped portion is 5 mm or more, the stress applied to the SiC fiber that bends along the R-plane can be relaxed.
  • the radius of curvature of the R-surface shape portion is 20 mm or less, it is possible to reduce the space that cannot be used by the R-surface shape portion.
  • the SiC fiber has a fiber diameter of 5 to 20 ⁇ m.
  • the fiber diameter of the SiC fiber is 5 ⁇ m or more, the influence of defects such as minute scratches generated on the fiber surface can be reduced, and it can be made difficult to break.
  • the fiber diameter of the SiC fiber is 20 ⁇ m or less, it is possible to suppress the tension generated on the outer surface on the side extending along with the bending, and to make it difficult to break.
  • the coating material is a compound containing one or more elements selected from metal elements, silicon, carbon, and boron. These compounds remain on the surface of the SiC fiber by firing to form a fiber coating layer. Since the fiber coating layer is interposed at the interface between the CVD-SiC matrix and the SiC fibers, it has an action of suppressing the extension of cracks from the matrix.
  • the tubular body is for nuclear power.
  • the tubular body obtained from the present invention is composed of a SiC / SiC composite material, has heat resistance, and has high strength, so that it is suitably used for nuclear power such as a channel box for storing nuclear fuel. can do.
  • Embodiment 1 of the manufacturing method of the tubular body of this invention is demonstrated.
  • the manufacturing method of the tubular body of Embodiment 1 includes a winding process (FIG. 1A), a coating process (FIG. 1B), a CVD process (FIG. 1C), and a mandrel removing process (FIG. 1D). )).
  • the mandrel of the present invention is not particularly limited as long as it has heat resistance because it is fired and CVD-treated while the SiC fiber is wound.
  • graphite, SiC, etc. can be used.
  • an isotropic graphite material or the like can be used.
  • An isotropic graphite material has a thermal expansion coefficient close to that of SiC, so that thermal distortion is unlikely to occur during heating and cooling.
  • graphite can be removed by air oxidation in a later mandrel removal step. While the graphite mandrel 1 is rotated, it is wound in the form of a strand in which a plurality of SiC fibers are bundled.
  • the SiC fiber is not particularly limited.
  • SiC fiber "Tyranno SA” can be used.
  • the fiber diameter is 7.5 ⁇ m.
  • the graphite mandrel 1 is a square having a side length of 130 mm in cross section, and an R-plane shape portion 2 having a 10 mm corner portion.
  • the length of the graphite mandrel is 1000 mm.
  • FIG. 2 shows a perspective view of the mandrel. On the four sides in the longitudinal direction of the mandrel 1, there are R-shaped portions 2.
  • FIG. 3A showing the first layer
  • the SiC fiber is wound while being alternately moved in the longitudinal direction of the mandrel so as to be 45 degrees with respect to the axis of the mandrel. Since it winds while moving alternately, it becomes a helical winding in which a rhombus pattern is formed on the surface.
  • FIG.3 (b) which shows the 2nd layer, it winds with the form of the strand which bundled several SiC fiber so that it might become 0 degree
  • FIG.3 (c) which shows the 3rd layer
  • Such a winding method is hoop winding.
  • FIG. 3D showing the fourth layer the SiC fiber is wound while being alternately moved so as to be 45 degrees with respect to the axis of the mandrel. Since it winds while moving alternately, it becomes a helical winding in which a rhombus pattern is formed on the surface. In this way, a wound body having four SiC fiber layers is obtained.
  • the fourth SiC fiber layer that is the outermost layer has a winding angle of 45 degrees with respect to the axis of the mandrel, and the third SiC fiber layer immediately below the outermost SiC fiber layer is 90 degrees with respect to the axis of the mandrel. It is a winding angle.
  • a wound body is obtained in which the outermost SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer. Since the SiC fiber is wound around a mandrel having an R-surface shape portion on the long side, it is possible to make it difficult for a large bending stress to be applied to the SiC fiber.
  • the SiC fiber is wound so that the third-layer SiC fiber is orthogonal to the axis of the mandrel, the SiC fiber is wound with a curvature radius equivalent to the curvature radius of the R-surface shape portion of the mandrel.
  • the mandrel of the fourth outermost layer is wound at an angle of 45 degrees with respect to the axis of the mandrel, so the radius of curvature of the actually wound SiC fiber is (1 / cos 45 degrees), that is, It is relaxed 1.41 times and can be made more difficult to break.
  • FIG. 1 (b) Although a coating process is not essential, since it has the effect of making it hard to destroy a SiC / SiC composite material, it is desirable to use it for the manufacturing method of a tubular body. This effect will be described below.
  • the coating material is a compound containing one or more elements selected from metal elements, silicon, carbon, and boron.
  • a phenol resin is used as a coating material, and a fiber coating layer is formed on the surface of the SiC fiber by firing. These compounds remain on the surface of the SiC fiber by firing to form a fiber coating layer.
  • the fiber coating layer is interposed at the interface between the CVD-SiC matrix and the SiC fibers, it has an action of suppressing the extension of cracks from the matrix.
  • coating materials include organic substances such as polycarbosilane, polyorganoboronsilazane, furan resin, organometallic compounds, and ceramic fine particles such as nano silica.
  • Firing can be performed at 400 to 1000 ° C., for example.
  • the firing atmosphere can be appropriately selected depending on the form of the fiber coating layer to be formed. For example, in the case of a carbon-based fiber coating layer, a reducing atmosphere is used, and in the case of an oxide-based fiber coating layer, an oxidizing atmosphere is used. Thus, a desired fiber coating layer can be obtained.
  • FIG. 1 (c) The wound body thus obtained is placed in a CVD furnace and covered with CVD-SiC.
  • the film forming temperature can be 1000 to 1800 ° C., for example.
  • the source gas is not particularly limited.
  • a mixed gas of silane gas / methane gas, a mixed gas of silane gas / methane gas, methyltrichlorosilane (MTS), or the like can be used.
  • hydrogen gas or the like for adjusting the partial pressure in the furnace can be used as appropriate.
  • the type of CVD is not particularly limited, but it can be used in either a hot wall type that heats the entire furnace by radiation of the heater in the furnace, or a cold wall type that heats only the wound body by a heater built into the mandrel. it can.
  • a hot wall type that heats the entire furnace by radiation of the heater in the furnace
  • a cold wall type that heats only the wound body by a heater built into the mandrel. it can.
  • CVD-SiC not only fills the space between SiC fibers but also has a surface layer portion made of only CVD-SiC by further depositing.
  • FIG. 1 (d) By removing the mandrel thus obtained, a tubular body made of a square SiC / SiC composite material can be obtained.
  • the method for removing the mandrel is not particularly limited. Any method can be used, such as a cutting method that is mechanically cut and removed, a combustion method that burns in an oxidizing atmosphere furnace, or a pulling method that is pulled out by an external force such as hydraulic pressure, and these methods may be used in combination. Furthermore, the both ends of the tubular body are cut to adjust the shape.
  • FIG. 4 is a view showing an appearance photograph of the tubular body 10 obtained by the manufacturing method of the first embodiment.
  • 5 (a) to 5 (c) are cross-sectional views of the tubular body 10 obtained by the manufacturing method of the first embodiment.
  • the tubular body 10 includes a SiC fiber layer 4 and a matrix 5 made of CVD-SiC.
  • the matrix 5 made of CVD-SiC not only fills between the fibers, but further deposits and has a surface layer portion made only of CVD-SiC.
  • the tubular body 10 thus obtained has a plurality of SiC fiber layers 4, a fiber coating layer 8 that covers the plurality of SiC fiber layers 4, and a gap between the SiC fiber layers 4 and an outer surface.
  • the SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer.
  • the tubular body 10 obtained by the manufacturing method of Embodiment 1 has a plurality of SiC fiber layers 4 having different winding angles with respect to the axis of the mandrel. For this reason, it arrange
  • the gaps are filled with CVD-SiC 5, so that the fibers can be strongly connected. For this reason, the high strength tubular body 10 can be obtained. Further, since the side in the longitudinal direction of the tubular body 10 has the R surface 6, the SiC fiber bends gently, and the tension applied to the extending fiber surface can be reduced.
  • the outermost SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer.

Abstract

 四角形など多角形のセラミック/セラミック複合材またはSiC/SiC複合材よりなる管状体を製造するための有効な製造方法を提供する。管状体の製造方法は、長手方向の辺にR面形状部を有する多角形マンドレルにSiC繊維を巻回し、マンドレルの軸線に対する巻き角度の異なる複数層のSiC繊維層が積層された巻回体を得る巻回工程と、巻回体にSiC-CVDを被覆し、被覆体を形成するCVD工程と、被覆体からマンドレルを除去するマンドレル除去工程と、からなり、SiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。

Description

管状体の製造方法
 本発明は、セラミック/セラミック複合材及びSiC/SiC複合材からなる多角形の管状体の製造方法に関する。
 SiC/SiC複合材からなる管状体は、高強度のSiC繊維を骨材とし、主にSiCがマトリックスを構成する。SiCは、耐熱性を有するとともに耐酸化性のある素材であるので、C/Cコンポジット(炭素繊維強化炭素複合材)が使用できない酸化雰囲気下で使用できる特徴がある。
 特許文献1には、セラミック繊維からなる骨材と前記セラミック繊維間に充填された炭素質とからなる管状の繊維強化炭素質基材の少なくとも外表面にSiC層が形成され、前記繊維強化炭素質基材と前記SiC層の境界領域から当該繊維強化炭素質基材の内部に向かってケイ素原子が拡散してなる管状体が記載されている。
 このような管状体では、セラミック繊維の表面が、炭素質に接しているため、熱応力により発生するクラックを、セラミック繊維表面で止めることができ、管状体の内外を貫通するクラックが発生しにくい上、個々のセラミック繊維に被覆を設ける前処理が必要ないため工程が簡略化でき、性能向上によりさらには原子炉をより高温で運転できるため、エネルギー効率の高い原子炉を提供することができると共に使用寿命が長期化可能であることが記載されている。
日本国特開2009-210266号公報
 しかしながら、前記記載のSiC/SiC複合材よりなる管状体は、円筒形の形状に関する記載があるのみで、四角形など多角形の管状体に関しては何の記載もない。
 実際多角形の管状体を製造する際には、円筒形状の管状体には無い課題がある。本発明では、四角形など多角形のSiC/SiC複合材よりなる管状体を製造するための有効な製造方法を提供することを目的とする。
 前記課題を解決するための本発明の管状体の製造方法は、多角形の管状体の製造方法であって長手方向の辺にR面形状部を有する多角形のマンドレルにセラミック繊維を巻回し、前記マンドレルの軸線に対する巻き角度の異なる複数層のセラミック繊維層が積層された巻回体を得る巻回工程と、前記巻回体にセラミック-CVDを被覆し、被覆体を形成するCVD工程と、前記被覆体から前記マンドレルを除去するマンドレル除去工程と、からなり、前記各セラミック繊維層は、最外層セラミック繊維層が、前記最外層セラミック繊維層直下のセラミック繊維層よりも前記マンドレルの軸線に対する巻き角度が小さいことを特徴とする。
 前記課題を解決するための本発明の管状体の製造方法は、多角形の管状体の製造方法であって長手方向の辺にR面形状部を有する多角形のマンドレルにSiC繊維を巻回し、前記マンドレルの軸線に対する巻き角度の異なる複数層のSiC繊維層が積層された巻回体を得る巻回工程と、前記巻回体にSiC-CVDを被覆し、被覆体を形成するCVD工程と、前記被覆体から前記マンドレルを除去するマンドレル除去工程と、からなり、前記各SiC繊維層は、最外層SiC繊維層が、前記最外層SiC繊維層直下のSiC繊維層よりも前記マンドレルの軸線に対する巻き角度が小さいことを特徴とする。
 セラミック繊維およびSiC繊維は高強度、高弾性の繊維であるため、引っ張りに対しては高強度を発揮する一方、歪みに対しては発生する応力が大きく、折れやすい性質を持っている。このため、鋭い曲げ加工が必要な多角形の管状体では、コーナー部分で繊維が折れ、毛羽立ちができやすくなる。本発明では、マンドレルの長手方向の辺にR面を有しているので、セラミック繊維あるいはSiC繊維の曲げに伴う応力を小さくでき折れにくくすることができる。
 また、セラミック繊維あるいはSiC繊維をマンドレルの軸線に対する巻き角度が小さくなるように、マンドレルに巻回することにより、セラミック繊維あるいはSiC繊維の曲げの曲率半径をより大きくすることができ、曲げに伴う応力を緩和することができる。さらに、マンドレルの軸線に対する巻き角度が小さいセラミック繊維層あるいはSiC繊維層を最外層に配置することにより、最外層セラミック繊維層あるいは最外層SiC繊維層直下のセラミック繊維層あるいはSiC繊維層よりも折れにくくできる。つまり毛羽立ちし易いセラミック繊維層あるいはSiC繊維層を、毛羽立ちしにくいセラミック繊維層あるいはSiC繊維層で覆い、毛羽立ちの発生を抑えることができる。
 また本発明の管状体の製造方法によれば、マンドレルの軸線に対する巻き角度が異なる複数層のセラミック繊維層あるいはSiC繊維層を有している。このため、管状体にかかる様々な方向の力に対し、いずれかのセラミック繊維層あるいはSiC繊維層に張力がかかるように配置される。このため、高強度の管状体を得ることができる。
 さらに、複数層のセラミック繊維層あるいはSiC繊維層は、隙間をCVD-SiCによって充填されるので、繊維どうしを強く結びつけることができる。
 さらに本発明の管状体の製造方法は、以下の態様であることが望ましい。
(1)前記巻回工程と、前記CVD工程との間に、前記巻回体にコーティング材を塗布後、焼成するコーティング工程をさらに有する。
 CVD工程では高温に曝されるため、熱膨張差でSiC繊維に負担が掛かり毛羽立ちの発生原因となりやすい。本発明では、セラミック繊維あるいはSiC繊維の毛羽立ちの発生しやすいCVD工程の前に、コーティング工程を加えることでセラミック繊維あるいはSiC繊維に繊維被覆層を形成するとともにセラミック繊維あるいはSiC繊維を互いに結び付けているので、毛羽立ちの発生を抑えることができる。
 CVD工程の原料ガスを流す段階で毛羽立ちがあると、毛羽立ちにもCVD-SiCが沈着し、原料ガスが巻回体の内部に充分行き渡らず、管状体にピンホールなど欠陥ができやすくなるが、このような構成にすることにより、一様にCVD-SiCが被覆され、毛羽立ちを原因とする欠陥の発生を抑止することができる。
 また、コーティング工程により、セラミック繊維あるいはSiC繊維の表面に繊維被覆層を形成する。繊維被覆層はCVD-SiCによるマトリックスとセラミック繊維あるいはSiC繊維との界面に形成されるので、マトリックスから伸展するクラックをセラミック繊維あるいはSiC繊維に伝達しないように応力を分散することができる。
 これら作用により、高強度のセラミック/セラミック複合材あるいはSiC/SiC複合材よりなる管状体を得ることができる。
(2)前記最外層セラミック繊維層あるいは前記最外層SiC繊維層は、前記マンドレルの軸線に対する巻き角度が30~60度である。
 最外層のセラミック繊維層あるいはSiC繊維層のマンドレルの軸線に対する巻き角度が、30度以上であると、最外層のセラミック繊維層あるいはSiC繊維層が管状体に強固に巻き付けられるので、セラミック繊維層あるいはSiC繊維層の剥離しにくい管状体を構成することができる。最外層のセラミック繊維層あるいはSiC繊維層のマンドレルの軸線に対する巻き角度が、60度以下であると、マンドレルの長手方向の辺に沿って曲げられるセラミック繊維あるいはSiC繊維の曲げの曲率半径を大きくすることができ、歪みに伴う応力を緩和することができる。
(3)前記管状体は、断面が四角形である。
 四角形の管状体であれば、複数の管状体を規則的に配列することができる上に、管状体の内部に様々なものを収納することができ、空間を有効に利用できる。
(4)前記R面形状部の曲率半径は、5~20mmである。
 R面形状部の曲率半径が、5mm以上であると、R面に沿って曲がるセラミック繊維あるいはSiC繊維にかかる応力を緩和することができる。R面形状部の曲率半径が、20mm以下であると、R面形状部によってできる利用できない空間を少なくすることができる。
(5)前記SiC繊維は、繊維直径が5~20μmである。
 セラミック繊維あるいはSiC繊維の繊維直径が5μm以上であると繊維表面に発生する微少な傷などの欠陥の影響を小さくすることができ、折れにくくすることができる。セラミック繊維あるいはSiC繊維の繊維直径が20μm以下であると、曲げに伴って延びる側の外表面に発生する張力を抑制することができ、折れにくくすることができる。
(6)前記コーティング材は、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する化合物である。
 これらの化合物は、焼成によってセラミック繊維あるいはSiC繊維の表面に残留し、繊維被覆層を形成する。繊維被覆層が、CVD-SiCからなるマトリックスとセラミック繊維あるいはSiC繊維との界面に介在することにより、マトリックスからのクラックの伸展を抑制する作用がある。
(7)前記管状体は、原子力用である。
 本発明から得られる管状体は、セラミック/セラミック複合材あるいはSiC/SiC複合材で構成され、耐熱性を有している上に、高い強度を備えているので、原子力燃料を収納するチャンネルボックスなど原子力用として好適に利用することができる。
 本発明によれば、マンドレルの長手方向の辺にR面を有しているので、セラミック繊維あるいはSiC繊維の曲げに伴う応力を小さくでき折れにくくすることができ、毛羽立ちを防止することができる。
 また、セラミック繊維あるいはSiC繊維をマンドレルの軸線に対する巻き角度が小さくなるように、マンドレルに巻回することにより、セラミック繊維あるいはSiC繊維の曲げの曲率半径をより大きくすることができる。このため曲げに伴う応力を緩和することができる。さらに、マンドレルの軸線に対する巻き角度が小さいセラミック繊維層あるいはSiC繊維層を最外層に配置することにより、最外層SiC繊維層直下のSiC繊維層よりも折れにくくできる。つまり毛羽立ちし易いSiC繊維層を、毛羽立ちしにくいSiC繊維層で覆い、毛羽立ちの発生を抑えることができる。
 CVD工程の原料ガスを流す段階で毛羽立ちがあると、毛羽立ちにもCVD-SiCが沈着し、原料ガスが巻回体の内部に充分行き渡らず、管状体にピンホールなど欠陥ができやすくなるが、このような構成にすることにより、一様にCVD-SiCが被覆され、毛羽立ちを原因とする欠陥の発生を抑止することができる。
本発明の実施形態1の管状体の製造方法の工程フロー図 本発明の実施形態1に用いるマンドレルの斜視図 本発明の実施形態1の巻回工程の詳細工程フロー図 本発明の実施形態1により得られた管状体の外観写真を表す図面 本発明の実施形態1により得られた管状体の断面図
 本明細書は、SiC繊維と、CVD-SiCのマトリックスにより構成されたSiC/SiC複合材を中心に説明するが、セラミック繊維と、セラミック-CVDのマトリックスよりなるセラミック/セラミック複合材についても作用効果は同一である。SiC繊維はセラミック繊維に対応し、CVD-SiCは、セラミック-CVDに対応し、置き換えて説明可能である。
 セラミック繊維としては、SiC、チタンシリコンカーバイド、アルミナ、TaC、TaN、SiOなどの繊維が挙げられ特に限定されない。CVD-SiCとしては、SiC、チタンシリコンカーバイド、アルミナ、TaC、TaN、SiOなどが挙げられる。また、セラミック繊維、セラミック-CVDの組合せについては特に限定されない。
 本明細書において、マンドレルの軸線とは、マンドレルの長手方向の中心軸である。
 本明細書において、マンドレルの軸線に対する巻き角度とは、SiC繊維がマンドレルの軸線に平行な線と交わる角度である。0度の場合、SiC繊維はマンドレルの長手方向に巻回され、90度の場合、マンドレルを周回するように巻回される。
 本発明の管状体の製造方法は、長手方向の辺にR面形状部を有する多角形のマンドレルにセラミック繊維を巻回し、前記マンドレルの軸線に対する巻き角度の異なる複数層のセラミック繊維層が積層された巻回体を得る巻回工程と、前記巻回体にセラミック-CVDを被覆し、被覆体を形成するCVD工程と、前記被覆体から前記マンドレルを除去するマンドレル除去工程と、からなり、前記各セラミック繊維層は、最外層セラミック繊維層が、前記最外層セラミック繊維層直下のセラミック繊維層よりも前記マンドレルの軸線に対する巻き角度が小さいことを特徴とする。
 SiC繊維は高強度、高弾性の繊維であるため、引っ張りに対しては高強度を発揮する一方、歪みに対しては発生する応力が大きく、折れやすい性質を持っている。このため、鋭い曲げ加工が必要な多角形の管状体では、コーナー部分で繊維が折れ、毛羽立ちができやすくなる。本発明では、マンドレルの長手方向の辺にR面を有しているので、SiC繊維の曲げに伴う応力を小さくでき折れにくくすることができる。
 また、SiC繊維をマンドレルの軸線に対する巻き角度が小さくなるように、マンドレルに巻回することにより、SiC繊維の曲げの曲率半径をより大きくすることができ、曲げに伴う応力を緩和することができる。さらに、マンドレルの軸線に対する巻き角度が小さいSiC繊維層を最外層に配置することにより、最外層SiC繊維層直下のSiC繊維層よりも折れにくくできる。つまり毛羽立ちし易いSiC繊維層を、毛羽立ちしにくいSiC繊維層で覆い、毛羽立ちの発生を抑えることができる。
 また本発明の管状体の製造方法によれば、マンドレルの軸線に対する巻き角度が異なる複数層のSiC繊維層を有している。このため、管状体にかかる様々な方向の力に対し、いずれかのSiC繊維層に張力がかかるように配置される。このため、高強度の管状体を得ることができる。
 さらに、複数層のSiC繊維層は、隙間をCVD-SiCによって充填されるので、繊維どうしを強く結びつけることができる。
 さらに本発明の管状体の製造方法は、以下の態様であることが望ましい。
(1)前記巻回工程と、前記CVD工程との間に、前記巻回体にコーティング材を塗布後、焼成するコーティング工程をさらに有する。
 CVD工程では高温に曝されるため、熱膨張差でSiC繊維に負担が掛かり毛羽立ちの発生原因となりやすい。本発明では、SiC繊維の毛羽立ちの発生しやすいCVD工程の前に、コーティング工程を加えることでSiC繊維に繊維被覆層を形成するとともにSiC繊維を互いに結び付けているので、毛羽立ちの発生を抑えることができる。
 CVD工程の原料ガスを流す段階で毛羽立ちがあると、毛羽立ちにもCVD-SiCが沈着し、原料ガスが巻回体の内部に充分行き渡らず、管状体にピンホールなど欠陥ができやすくなるが、このような構成にすることにより、一様にCVD-SiCが被覆され、毛羽立ちを原因とする欠陥の発生を抑止することができる。
 また、コーティング工程により、SiC繊維の表面に繊維被覆層を形成する。繊維被覆層はCVD-SiCによるマトリックスとSiC繊維との界面に形成されるので、マトリックスから伸展するクラックをSiC繊維に伝達しないように応力を分散することができる。
 これら作用により、高強度のSiC/SiC複合材よりなる管状体を得ることができる。
(2)前記最外層SiC繊維層は、前記マンドレルの軸線に対する巻き角度が30~60度である。
 最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、30度以上であると、最外層のSiC繊維層が管状体に強固に巻き付けられるので、SiC繊維層の剥離しにくい管状体を構成することができる。最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、60度以下であると、マンドレルの長手方向の辺に沿って曲げられるSiC繊維の曲げの曲率半径を大きくすることができ、歪みに伴う応力を緩和することができる。   
(3)前記管状体は、断面が四角形である。
 四角形の管状体であれば、複数の管状体を規則的に配列することができる上に、管状体の内部に様々なものを収納することができ、空間を有効に利用できる。
(4)前記R面形状部の曲率半径は、5~20mmである。
 R面形状部の曲率半径が、5mm以上であると、R面に沿って曲がるSiC繊維にかかる応力を緩和することができる。R面形状部の曲率半径が、20mm以下であると、R面形状部によってできる利用できない空間を少なくすることができる。
(5)前記SiC繊維は、繊維直径が5~20μmである。
 SiC繊維の繊維直径が5μm以上であると繊維表面に発生する微少な傷などの欠陥の影響を小さくすることができ、折れにくくすることができる。SiC繊維の繊維直径が20μm以下であると、曲げに伴って延びる側の外表面に発生する張力を抑制することができ、折れにくくすることができる。
(6)前記コーティング材は、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する化合物である。
 これらの化合物は、焼成によってSiC繊維の表面に残留し、繊維被覆層を形成する。繊維被覆層が、CVD-SiCからなるマトリックスとSiC繊維との界面に介在することにより、マトリックスからのクラックの伸展を抑制する作用がある。
(7)前記管状体は、原子力用である。
 本発明から得られる管状体は、SiC/SiC複合材で構成され、耐熱性を有している上に、高い強度を備えているので、原子力燃料を収納するチャンネルボックスなど原子力用として好適に利用することができる。
 本発明の管状体の製造方法の実施形態1について説明する。(図1(a)~図1(d))
 実施形態1の管状体の製造方法は、巻回工程(図1(a))、コーティング工程(図1(b))、CVD工程(図1(c))、マンドレル除去工程(図1(d))とからなる。
<巻回工程>図1(a)
 本発明のマンドレルは、SiC繊維を巻回したまま焼成、CVD処理がされるので耐熱性を有するものであればよく、特に限定されない。例えば、黒鉛、SiCなどが利用できる。黒鉛としては、等方性黒鉛材などが利用でできる。等方性黒鉛材は、SiCと熱膨張係数が近いので加熱、冷却の過程で熱歪みが発生しにくい。
 また、黒鉛は後のマンドレル除去工程で、空気酸化させて除去することができる利点もある。
 黒鉛のマンドレル1を回転させながら、複数のSiC繊維を束ねたストランドの形態で巻回する。SiC繊維は特に限定されない。例えば、宇部興産株式会社製SiC繊維「チラノSA」を用いることができる。繊維直径は7.5μmである。
 黒鉛のマンドレル1は、断面が130mmの辺の長さの正方形であり、コーナー部分は10mmのR面形状部2がなされている。また、黒鉛のマンドレルの長さは1000mmである。図2にそのマンドレルの斜視図を示す。マンドレル1の長手方向の4辺にはR面形状部2を有している。
 実施形態1の巻回工程を、図3を用いて説明する。
 1層目を示す図3(a)では、SiC繊維をマンドレルの軸線に対し45度となるようにマンドレルの長手方向に交互に移動させながら巻回する。交互に移動しながら巻回するので、表面に菱形の模様が形成されるヘリカル巻きとなる。
 2層目を示す図3(b)では、マンドレルの軸線に対し0度となるように、複数のSiC繊維を束ねたストランドの形態で巻回する。
 3層目を示す図3(c)では、マンドレルの軸線に直交するように、複数のSiC繊維を束ねたストランドの形態で巻回する。このような巻き方は、フープ巻きである。
 4層目を示す図3(d)では、SiC繊維をマンドレルの軸線に対し45度となるように交互に移動させながら巻回する。交互に移動しながら巻回するので、表面に菱形の模様が形成されるヘリカル巻きとなる。
 このように4層のSiC繊維層を有する巻回体が得られる。
 最外層である4層目のSiC繊維層は、マンドレルの軸線に対し45度の巻き角度であり、最外層SiC繊維層直下の3層目のSiC繊維層は、マンドレルの軸線に対し90度の巻き角度である。このような構成にすることにより最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい巻回体がえられる。
 長辺にR面形状部を有するマンドレルにSiC繊維を巻回するので、SiC繊維に大きな曲げ応力が加わりにくくすることができる。
 また、3層目のSiC繊維は、マンドレルの軸線に直交するようにSiC繊維が巻回されるのでマンドレルのR面形状部の曲率半径と同等の曲率半径で巻回される。これに対し、最外層の4層目のマンドレルでは、マンドレルの軸線に対し45度の角度で巻回されるので、実際巻回されるSiC繊維の曲率半径は(1/cos45度)倍、すなわち1.41倍に緩和され、より折れにくくすることができる。
 このような構成にすることにより、より折れにくくなったSiC繊維層で最外層が構成されるので、毛羽立ちを効率良く防止することができる。
<コーティング工程>図1(b)
 コーティング工程は必須ではないが、SiC/SiC複合材を破壊しにくくする効果があるため、管状体の製造方法に用いることが望ましい。この効果について以下に説明する。
 巻回体に、コーティング材を塗布した後焼成する。コーティング材としては、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する化合物である。
 実施形態1ではコーティング材として、フェノール樹脂を用い、焼成によって、SiC繊維の表面に繊維被覆層を形成する。
 これらの化合物は、焼成によってSiC繊維の表面に残留し、繊維被覆層を形成する。繊維被覆層が、CVD-SiCからなるマトリックスとSiC繊維との界面に介在することにより、マトリックスからのクラックの伸展を抑制する作用がある。
 他のコーティング材としては、例えば、ポリカルボシラン、ポリオルガノボロンシラザン、フラン樹脂などの有機物、有機金属化合物、ナノシリカなどのセラミック微細粒子などが利用できる。
 焼成は、例えば400~1000℃で処理することができる。焼成雰囲気は、形成する繊維被覆層の形態によって適宜選択することができ、例えば、カーボン系の繊維被覆層の場合には還元性雰囲気、酸化物系の繊維被覆層には酸化性雰囲気とすることにより、望ましい繊維被覆層を得ることができる。
 <CVD工程>図1(c)
 こうして得られた巻回体を、CVD炉に入れ、CVD-SiCにより被覆する。
 成膜温度は、例えば1000~1800℃が利用できる。原料ガスは特に限定されない。例えば、シランガス/メタンガスの混合ガス、シランガス/メタンガスの混合ガス、メチルトリクロロシラン(MTS)などが利用できる。他に炉内分圧を調整するための水素ガスなどを適宜利用することができる。
 CVDの形式は特に限定されないが、炉内のヒーターの輻射で炉内全体を暖めるホットウォール型、マンドレル内部に組み込まれたヒーターにより、巻回体のみを暖めるコールドウォール型のいずれでも利用することができる。コールドウォール型を用いた場合には、原料ガスを供給するノズルに被膜は形成されにくいので、効率良く成膜することができ、厚い被膜を容易に得ることができる。
 なお、CVD-SiCは、SiC繊維間を充填するだけではなく、さらに沈積することによって、CVD-SiCのみからなる表層部を有している。
<マンドレル除去工程>図1(d)
 こうして得られたマンドレルを除去することにより、四角形のSiC/SiC複合材よりなる管状体を得ることができる。
 マンドレルの除去の方法は、特に限定されない。機械的に切削加工して除去する切削法、酸化雰囲気炉で燃焼させる燃焼法、油圧など外部からの力で引き抜く引き抜き法など、どのような方法でも利用でき、これらを併用しても良い。
 さらに、管状体の両端を切断し、形状を整える。
 次に得られた管状体について説明する。図4は実施形態1の製造方法で得られた管状体10の外観写真を表す図面である。図5(a)~図5(c)は、実施形態1の製造方法で得られた管状体10の断面図である。
 図5(a)に示すように、管状体10は、SiC繊維層4と、CVD-SiCからなるマトリックス5とを有している。CVD-SiCからなるマトリックス5は、繊維間を充填するのみならず、さらに沈積し、CVD-SiCのみからなる表層部を有している。
 このようにして得られた管状体10は、複数層のSiC繊維層4と、複数層のSiC繊維層4を被覆する繊維被覆層8と、SiC繊維層4の隙間を充填するとともに外表面を構成するCVD-SiC5とからなるSiC/SiC複合材からなる多角形の管状体10であって、管状体10の長手方向の辺は、R面6を有し、SiC繊維層4は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。
 また実施形態1の製造方法により得られる管状体10は、マンドレルの軸線に対する巻き角度が異なる複数層のSiC繊維層4を有している。このため、管状体10にかかる様々な方向の力に対し、いずれかのSiC繊維層4に張力がかかるように配置される。
 複数層のSiC繊維層4は、隙間をCVD-SiC5によって充填されるので、繊維どうしを強く結びつくことができる。このため高強度の管状体10を得ることができる。
 また、管状体10の長手方向の辺は、R面6を有しているので、SiC繊維が緩やかに曲がり、延びる側の繊維表面にかかる張力を小さくすることができる。SiC繊維層4は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。このため、繊維の毛羽立ちが少なく、CVDによって形成されるマトリックスは、毛羽立ちしたSiC繊維7への付着が少なく、ピンホールの少ないSiC/SiC複合材よりなる管状体を得ることができる。
 本出願は、2014年7月2日出願の日本国特許出願(特願2014-137016)に基づくものであり、それらの内容はここに参照として取り込まれる。
 原子力用途の燃料集合体材料にとして用いられる薄肉長尺角筒、薄肉長尺円筒などの様々な形状にも利用することができる。
1 マンドレル
2 R面形状部
3 マンドレルの軸線
4 SiC繊維層
5 CVD-SiC(マトリックス)
6 R面
7 SiC繊維
8 繊維被覆層
10 管状体

Claims (9)

  1.  多角形の管状体の製造方法であって、
     長手方向の辺にR面形状部を有する多角形のマンドレルにセラミック繊維を巻回し、前記マンドレルの軸線に対する巻き角度の異なる複数層のセラミック繊維層が積層された巻回体を得る巻回工程と、
     前記巻回体にセラミック-CVDを被覆し、被覆体を形成するCVD工程と、
     前記被覆体から前記マンドレルを除去するマンドレル除去工程と、
     からなり、前記各セラミック繊維層は、最外層セラミック繊維層が、前記最外層セラミック繊維層直下のセラミック繊維層よりも前記マンドレルの軸線に対する巻き角度が小さいことを特徴とするセラミック/セラミック複合材からなる多角形の管状体の製造方法。
  2.  多角形の管状体の製造方法であって、
     長手方向の辺にR面形状部を有する多角形のマンドレルにSiC繊維を巻回し、前記マンドレルの軸線に対する巻き角度の異なる複数層のSiC繊維層が積層された巻回体を得る巻回工程と、
     前記巻回体にSiC-CVDを被覆し、被覆体を形成するCVD工程と、前記被覆体から前記マンドレルを除去するマンドレル除去工程と、
     からなり、前記各SiC繊維層は、最外層SiC繊維層が、前記最外層SiC繊維層直下のSiC繊維層よりも前記マンドレルの軸線に対する巻き角度が小さいことを特徴とするSiC/SiC複合材からなる多角形の管状体の製造方法。
  3.  前記巻回工程と、前記CVD工程との間に、
     前記巻回体にコーティング材を塗布後、焼成するコーティング工程をさらに有することを特徴とする請求項1または請求項2に記載の管状体の製造方法。
  4.  前記最外層セラミック繊維層あるいは前記最外層SiC繊維層は、前記マンドレルの軸線に対する巻き角度が30~60度であることを特徴とする請求項1~請求項3のうちのいずれか1項に記載の管状体の製造方法。
  5.  前記管状体は、断面が四角形であることを特徴とする請求項1~請求項4のうちのいずれか1項に記載の管状体の製造方法。
  6.  前記R面形状部の曲率半径は、5~20mmであることを特徴とする請求項1~請求項5のうちのいずれか1項に記載の管状体の製造方法。
  7.  前記SiC繊維は、繊維直径が5~20μmであることを特徴とする請求項1~請求項6のうちのいずれか1項に記載の管状体の製造方法。
  8.  前記コーティング材は、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する化合物であることを特徴とする請求項3~請求項7のうちのいずれか1項に記載の管状体の製造方法。
  9.  前記管状体は、原子力用であることを特徴とする請求項1~請求項8のうちのいずれか1項に記載の管状体の製造方法。
PCT/JP2015/069213 2014-07-02 2015-07-02 管状体の製造方法 WO2016002913A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014137016A JP6334292B2 (ja) 2014-07-02 2014-07-02 管状体の製造方法
JP2014-137016 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002913A1 true WO2016002913A1 (ja) 2016-01-07

Family

ID=55019439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069213 WO2016002913A1 (ja) 2014-07-02 2015-07-02 管状体の製造方法

Country Status (2)

Country Link
JP (1) JP6334292B2 (ja)
WO (1) WO2016002913A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647043A1 (en) * 2018-11-01 2020-05-06 Admap, Inc. Tubular body containing sic fiber and method for producing the same
SE2250101A1 (en) * 2021-03-18 2022-09-19 Toshiba Kk Channel box and fuel assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222185B1 (ko) * 2016-08-08 2021-03-03 제너럴 아토믹스 엔지니어링된 sic-sic 복합체 및 모놀리식 sic 층상 구조체
US10899671B2 (en) * 2016-08-24 2021-01-26 Westinghouse Electric Company Llc Process for manufacturing SiC composite ceramics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543364A (ja) * 1991-08-12 1993-02-23 Kawasaki Steel Corp 耐酸化性炭素繊維強化炭素複合材料及びその製造方法
JPH07206535A (ja) * 1993-12-29 1995-08-08 Osaka Gas Co Ltd 繊維補強耐火構造物およびその製造方法
JP2001507769A (ja) * 1996-02-05 2001-06-12 ザ リージェンツ オブ ザ ユニバーシティー オブ カルフォルニア アット サン ディエゴ 弾性繊維補強複合構造部材
JP2008501977A (ja) * 2004-06-07 2008-01-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子力発電所における燃料格納容器障壁等に使用される多層セラミックチューブ
JP2009210266A (ja) * 2008-02-29 2009-09-17 Ibiden Co Ltd 管状体
JP2013507605A (ja) * 2009-10-08 2013-03-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 核燃料アセンブリ体、及び核燃料アセンブリ体を有する核燃料アセンブリ
JP2013529298A (ja) * 2010-04-28 2013-07-18 ウェスティングハウス エレクトリック スウェーデン アーベー 核分裂原子炉のための燃料要素に含まれるように配置される燃料チャネル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972448B1 (fr) * 2011-03-07 2013-04-19 Commissariat Energie Atomique Procede de fabrication d'un composite a matrice ceramique
WO2012174548A1 (en) * 2011-06-16 2012-12-20 Ceramic Tubular Products Llc Nuclear reactor fuel element having silicon carbide multilayered cladding and thoria-based fissionable fuel
FR2978776B1 (fr) * 2011-08-04 2013-09-27 Commissariat Energie Atomique Procede de fabrication ameliore d'une piece a geometrie tubulaire en materiau composite a matrice ceramique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543364A (ja) * 1991-08-12 1993-02-23 Kawasaki Steel Corp 耐酸化性炭素繊維強化炭素複合材料及びその製造方法
JPH07206535A (ja) * 1993-12-29 1995-08-08 Osaka Gas Co Ltd 繊維補強耐火構造物およびその製造方法
JP2001507769A (ja) * 1996-02-05 2001-06-12 ザ リージェンツ オブ ザ ユニバーシティー オブ カルフォルニア アット サン ディエゴ 弾性繊維補強複合構造部材
JP2008501977A (ja) * 2004-06-07 2008-01-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子力発電所における燃料格納容器障壁等に使用される多層セラミックチューブ
JP2009210266A (ja) * 2008-02-29 2009-09-17 Ibiden Co Ltd 管状体
JP2013507605A (ja) * 2009-10-08 2013-03-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 核燃料アセンブリ体、及び核燃料アセンブリ体を有する核燃料アセンブリ
JP2013529298A (ja) * 2010-04-28 2013-07-18 ウェスティングハウス エレクトリック スウェーデン アーベー 核分裂原子炉のための燃料要素に含まれるように配置される燃料チャネル

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647043A1 (en) * 2018-11-01 2020-05-06 Admap, Inc. Tubular body containing sic fiber and method for producing the same
JP2020070216A (ja) * 2018-11-01 2020-05-07 株式会社アドマップ SiC繊維を内包する管状体およびその製造方法
CN111145920A (zh) * 2018-11-01 2020-05-12 艾德麦普株式会社 包含SiC纤维的管状体及其制造方法
US11380445B2 (en) 2018-11-01 2022-07-05 Admap Inc. Tubular body containing SiC fiber and method for producing the same
CN111145920B (zh) * 2018-11-01 2023-09-19 艾德麦普株式会社 包含SiC纤维的管状体及其制造方法
SE2250101A1 (en) * 2021-03-18 2022-09-19 Toshiba Kk Channel box and fuel assembly
US11862352B2 (en) 2021-03-18 2024-01-02 Kabushiki Kaisha Toshiba Channel box and fuel assembly

Also Published As

Publication number Publication date
JP2016013950A (ja) 2016-01-28
JP6334292B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6334293B2 (ja) 管状体
WO2016002913A1 (ja) 管状体の製造方法
JP4191247B2 (ja) 炭素繊維もしくは炭素で被覆された繊維から成る補強材を有する耐酸化性の向上した高温複合材料
US8613580B2 (en) Fastening device
JP5696174B2 (ja) 核燃料被覆管及びその製造方法
JP2009210266A (ja) 管状体
JP5539386B2 (ja) セラミック繊維の処理方法
JPH11116337A (ja) SiC複合材料スリーブおよびその製造方法
JP5722330B2 (ja) セラミックマトリックスを有する複合材料部品およびその製造方法
JP6301261B2 (ja) Cmc材料部品
WO2016006668A1 (ja) 管状体及びその製造方法
JP5371894B2 (ja) 繊維強化複合セラミックス材料の製造方法、及び繊維強化複合セラミックス材料
JP6467290B2 (ja) セラミック複合材
JP2003252694A (ja) SiC繊維複合化SiC複合材料
JP6854657B2 (ja) セラミックバネの製造方法及びセラミックバネ
JP2017024923A (ja) セラミック複合材
JP6460808B2 (ja) 管状体
EP2650272A1 (en) Oxide-based composite material
JP5263980B2 (ja) 強化用繊維材料とこれを用いた繊維強化セラミックス複合材料およびこれらの製造方法。
WO2020039599A1 (ja) SiC繊維を内包する管状体
WO2015016072A1 (ja) セラミック複合材料及びセラミック複合材料の製造方法
JP2016135728A (ja) 管状体
JP7343360B2 (ja) セラミック複合材及びその製造方法
JP6868601B2 (ja) SiC繊維を内包する管状体およびその製造方法
WO2015016071A1 (ja) SiC繊維強化SiC複合材料及びSiC繊維強化SiC複合材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815290

Country of ref document: EP

Kind code of ref document: A1