WO2016002825A1 - Method for producing glass substrate for magnetic disc - Google Patents

Method for producing glass substrate for magnetic disc Download PDF

Info

Publication number
WO2016002825A1
WO2016002825A1 PCT/JP2015/068926 JP2015068926W WO2016002825A1 WO 2016002825 A1 WO2016002825 A1 WO 2016002825A1 JP 2015068926 W JP2015068926 W JP 2015068926W WO 2016002825 A1 WO2016002825 A1 WO 2016002825A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass substrate
abrasive grains
particle size
main surface
Prior art date
Application number
PCT/JP2015/068926
Other languages
French (fr)
Japanese (ja)
Inventor
田村 健
順平 深田
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2016531411A priority Critical patent/JP6063611B2/en
Priority to CN201580025871.1A priority patent/CN106463146B/en
Priority to MYPI2016704373A priority patent/MY178448A/en
Priority to SG11201609794RA priority patent/SG11201609794RA/en
Publication of WO2016002825A1 publication Critical patent/WO2016002825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a method for producing a glass substrate for a magnetic disk.
  • a personal computer, a DVD (Digital Versatile Disc) recording device, and the like have a built-in hard disk device (HDD: Hard Disk Drive) for data recording.
  • HDD Hard Disk Drive
  • a hard disk device a magnetic disk having a magnetic layer provided on a substrate is used, and magnetic recording information is recorded on or read from the magnetic layer by a magnetic head slightly floated on the surface of the magnetic disk.
  • a glass substrate having a property that is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like is preferably used.
  • the magnetic recording has been increased in density.
  • the magnetic recording information area is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate.
  • the storage capacity of one disk substrate can be increased.
  • a magnetic head equipped with a DFH (Dynamic Flying Height) mechanism is used to significantly shorten the flying distance from the magnetic recording surface, so that the recording / reproducing element of the magnetic head and the magnetic It is also practiced to increase the accuracy of recording / reproducing information (to improve the S / N ratio) by reducing the magnetic spacing between the magnetic recording layers of the disk. Even in this case, the surface irregularities of the substrate of the magnetic disk are required to be as small as possible in order to read and write magnetic recording information by the magnetic head stably over a long period of time.
  • DFH Dynamic Flying Height
  • the glass substrate is polished.
  • an abrasive containing fine abrasive grains such as cerium oxide and colloidal silica for precise polishing for making a glass substrate into a final product (see, for example, Patent Document 1).
  • the outer peripheral end portion of the main surface of the glass substrate may be raised from the center portion.
  • this bulge cannot be allowed because the flying distance from the magnetic recording surface is short.
  • it is preferable that the outer peripheral end portion of the main surface of the glass substrate is flat.
  • an object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk that can suppress the occurrence of bulges at the outer peripheral edge of the main surface of the glass substrate in the polishing treatment of the glass substrate.
  • the polishing rate increased when the polishing process was performed using the abrasive grains having a large average particle diameter, while the outer peripheral edge of the main surface of the glass substrate It was found that the bumps occurring in On the other hand, it was found that when polishing is performed using abrasive grains having a small average particle diameter, the occurrence of bulges at the outer peripheral edge of the main surface of the glass substrate is suppressed, but the polishing rate is lowered.
  • the present inventor has studied that by using a mixture of abrasive particles having a large particle diameter and abrasive particles having a small particle diameter, the polishing rate is increased with the abrasive particles having a large particle diameter, and the polishing having a small particle diameter is performed. It turned out that generation
  • a first aspect of the present invention is for a magnetic disk having a polishing process for supplying a polishing liquid containing free abrasive grains between a main surface of a glass substrate and a polishing pad and polishing the main surface of the glass substrate. It is a manufacturing method of a glass substrate.
  • the particle size ( ⁇ m) of the free abrasive grains contained in the polishing liquid is x (x> 0)
  • the relative frequency (%) of the abrasive grains with the particle size x is y
  • y is a function f (x) of x.
  • the ratio y lm / y 1 between the maximum value y lm and y 1 of y in the range of x 3 ⁇ x ⁇ x 4 is 0.5 ⁇ y lm / y 1 ⁇ 1.
  • f (x) may be an interpolation polynomial for all data points indicating the frequency y for each particle size x of the loose abrasive grains actually measured, or a spline function using individual polynomials between the data points. It may be f (x).
  • the relative frequency of free abrasive grains of twice the particle size x n of the x 1 and y n is preferably 0.5 ⁇ y n / y 1 ⁇ 1.
  • a second aspect of the present invention is for a magnetic disk having a polishing process for supplying a polishing liquid containing free abrasive grains between a main surface of a glass substrate and a polishing pad and polishing the main surface of the glass substrate.
  • a method of manufacturing a glass substrate The particle size distribution of the volume distribution has a particle size distribution with a particle diameter ds-50 value of 0.9 ⁇ m to 1.4 ⁇ m at a point where the cumulative relative frequency obtained by accumulating the relative frequency of the free abrasive grains from the smaller particle diameter side becomes 50%.
  • the free abrasive grain group be the first free abrasive grain group
  • the free abrasive grain group having a particle size distribution with the ds-50 value of 0.5 ⁇ m to 0.8 ⁇ m is defined as the second free abrasive grain group
  • the loose abrasive contained in the polishing liquid is obtained by mixing the first loose abrasive grain group and the second loose abrasive grain group,
  • the outer peripheral edge of the main surface after polishing the main surface using a polishing liquid containing the obtained free abrasive grains and the mass ratio of the first free abrasive grain group and the second free abrasive grain group Check the correlation with the edge shape evaluation value to evaluate the shape of the part, The mixture ratio is determined based on the correlation so that the end shape evaluation value falls within a desired range.
  • the “end shape evaluation value” is, for example, a virtual straight line drawn from the center point of the glass substrate toward an arbitrary point on the outer edge, and a position on the main surface (Z1 and 30 mm away from the center point).
  • the maximum protrusion amount (from the virtual straight line)
  • the maximum distance) represented by a plus value (hereinafter referred to as “index value A”) can be used.
  • index value A an optical surface shape measuring device can be used to measure the index value A.
  • the end shape evaluation value falls within a desired range” means, for example, that the index value A is 0 to ⁇ 20 nm.
  • the loose abrasive contained in the polishing liquid is a ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (mass of the first loose abrasive grain group / second loose grain). It is preferably obtained by mixing so that the mass of the abrasive grains group is in the range of 1.0 to 2.0.
  • the main component of the free abrasive grains is preferably one kind of abrasive grains selected from cerium oxide or zirconium oxide.
  • the “main component” is a component that occupies 50% or more, more preferably 70% or more of the components in the free abrasive grains.
  • the loose abrasive is substantially one type of component.
  • the free abrasive grains include cerium oxide abrasive grains, cerium hydroxide abrasive grains, zirconium oxide, and zirconium silicate. In particular, in order to improve the polishing rate, it is preferable to select from cerium oxide or cerium hydroxide, and it is most preferable to use cerium oxide as the free abrasive grains.
  • a phosphoric acid compound or a polymer compound having various functional groups can be used as a dispersant for dispersing free abrasive grains in a solvent.
  • a phosphoric acid compound for example, sodium hexametaphosphate, sodium pyrophosphate, potassium pyrophosphate and the like can be used.
  • a polymer compound having a carboxylic acid or a carboxylate salt, a sulfonic acid or a sulfonate salt as a functional group can be used as a dispersant as necessary.
  • the counter cation that forms the salt may be selected from alkali metal ions, ammonium ions, and the like.
  • the polishing process includes a first polishing process for polishing the main surface of the glass substrate with the free abrasive grains, and a free abrasive grain different from the free abrasive grains, and the glass substrate after the first polishing process.
  • the loose abrasive used for the second polishing treatment is preferably colloidal silica.
  • a third aspect of the present invention is a polishing that includes loose abrasive grains and is supplied between the main surface of the glass substrate and the polishing pad when performing a polishing process for polishing the main surface of the glass substrate for a magnetic disk.
  • the particle size ( ⁇ m) of the free abrasive grains contained in the polishing liquid is x (x> 0)
  • the relative frequency (%) of the abrasive grains with the particle size x is y
  • y is a function f (x) of x.
  • the ratio y lm / y 1 between the maximum value y lm and y 1 of y in the range of x 3 ⁇ x ⁇ x 4 is 0.5 ⁇ y lm / y 1 ⁇ 1.
  • the polishing treatment of the glass substrate it is possible to suppress the occurrence of bulging at the outer peripheral end portion of the main surface of the glass substrate.
  • the present invention is suitable for manufacturing a glass substrate for a magnetic disk having a nominal size of 2.5 to 3.5 inches (diameter 65 to 95 mm) and a plate thickness of 0.4 to 2.0 mm.
  • the glass substrate for magnetic disks has a disc shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out.
  • a magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the glass substrate for a magnetic disk.
  • a glass blank for magnetic disk (hereinafter simply referred to as a glass blank) is a circular glass plate produced by press molding, and is in a form before the center hole is cut out.
  • aluminosilicate glass soda lime glass, borosilicate glass, or the like can be used.
  • aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
  • a method for manufacturing a magnetic disk glass substrate Next, a method for manufacturing a magnetic disk glass substrate will be described. First, a glass blank as a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is produced by press molding (press molding process). Next, a circular hole is formed in the center part of the produced glass blank, and it is set as a ring-shaped (annular) glass substrate (circular hole formation process). Next, shape processing is performed on the glass substrate in which the circular holes are formed (shape processing processing). Thereby, a glass substrate is produced
  • a disk-shaped glass substrate having a circular hole can be obtained by forming a circular hole in a glass blank using a drill or the like.
  • (D) End surface polishing process In the end surface polishing process, mirror finishing is performed on the inner end face and the outer peripheral end face of the glass substrate by brush polishing. At this time, an abrasive slurry containing fine particles such as cerium oxide as free abrasive grains is used.
  • (E) Grinding process grinding is performed on the main surface of the glass substrate using a double-sided grinding apparatus having a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate generated from the glass blank in the holding hole provided in the holding member of the double-side grinding apparatus.
  • the double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
  • the first polishing for example, when grinding with fixed abrasive grains is performed, scratches and distortions remaining on the main surface are removed, or fine surface irregularities (microwaveness, roughness) are adjusted.
  • the main surface on both sides of the glass substrate is polished while holding the outer peripheral side end face of the glass substrate in a holding hole provided in the polishing carrier of the double-side polishing apparatus.
  • the glass substrate is polished while applying a polishing slurry by using a double-side polishing apparatus having the same configuration as the double-side grinding apparatus used for the grinding process using fixed abrasive grains.
  • a polishing slurry containing free abrasive grains is used instead of fixed abrasive grains, unlike grinding with fixed abrasive grains.
  • the free abrasive grains used for the first polishing for example, cerium oxide abrasive grains, cerium hydroxide abrasive grains, zirconium oxide, zirconium silicate and the like are used.
  • cerium oxide abrasive grains or zirconium oxide it is preferable to use cerium oxide as free abrasive grains.
  • cerium oxide as free abrasive grains.
  • the particle size distribution of the free abrasive grains used for the first polishing will be described later.
  • the double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate.
  • An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. Both main surfaces of the glass substrate are polished by moving either the upper surface plate or the lower surface plate or both of them to move the glass substrate and each surface plate relatively.
  • the polishing load is preferably 50 to 200 g / cm 2 .
  • the polishing rate is preferably 0.6 ( ⁇ m / min).
  • the polishing allowance is preferably 5 to 50 ⁇ m.
  • an abrasive cloth generally referred to as a “suede pad” having an Asker C hardness of 90 or less, an opening formed in the polishing surface, and a hole extending vertically from the opening in the thickness direction is formed.
  • the opening ratio of the polished surface of the suede pad is, for example, 10 to 80% for the case where the diamond dress is used, and 50 to 80% for the case where the buffing is performed.
  • the cross-sectional shape is a foam having pores having an average pore diameter in the horizontal direction of 10 ⁇ m or more and 500 ⁇ m or less and an average pore diameter in the vertical direction of 50 ⁇ m or more.
  • the Asker C hardness is preferably 50 or more, and if it is less than 50, the polishing rate may decrease.
  • the material is generally polyurethane. Since the outermost surface of the suede pad is relatively soft, it can be polished so as to reduce roughness and microwaviness without generating fine scratches. For example, the roughness and fine waviness can be set to 1.0 nm or less in terms of Ra.
  • the micro waviness is an average roughness (Ra) at a wavelength of 50 to 200 ⁇ m, and can be evaluated by measuring a main surface having a radius of 15 mm to 30 mm from the center of the substrate using an optical surface profile measuring machine.
  • the roughness is an average roughness (Ra) obtained by measuring an area of 1 ⁇ m square on the main surface with a resolution of 256 ⁇ 256 using AFM.
  • a glass substrate is chemically strengthened by immersing a glass substrate in a chemical strengthening liquid.
  • a chemical strengthening liquid for example, a mixed melt of potassium nitrate and sodium sulfate can be used.
  • (H) Second polishing (final polishing) treatment The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. Specifically, the main surface on both sides of the glass substrate is polished while holding the outer peripheral side end face of the glass substrate in a holding hole provided in the polishing carrier of the double-side polishing apparatus. The machining allowance by the second polishing is, for example, about 1 to 10 ⁇ m.
  • the second polishing process is different from the first polishing process in that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
  • a polishing liquid containing colloidal silica having a particle size of about 5 to 100 nm as free abrasive grains is supplied between the polishing pad of the double-side polishing apparatus and the main surface of the glass substrate, and the main surface of the glass substrate is polished.
  • the polished glass substrate is washed with a neutral detergent, pure water, isopropyl alcohol or the like to obtain a magnetic disk glass substrate.
  • the roughness (Ra) of the main surface can be made 0.3 nm or less, preferably 0.1 nm or less.
  • the micro surface of the main surface can be 0.1 nm or less. In this manner, the glass substrate subjected to the second polishing is appropriately washed and dried to become a glass substrate for a magnetic disk.
  • the particle size distribution of the free abrasive grains contained in the polishing slurry used for the first polishing will be described.
  • the particle size distribution of the free abrasive grains can be obtained by a particle size distribution measuring apparatus using a laser diffraction / scattering method.
  • the particle size distribution is preferably measured with a resolution at which the difference between adjacent measurement target particle sizes is 20% or less of any adjacent particle size. For example, by setting the difference between adjacent measurement target particle sizes to 10% or less of the measurement target particle size, sufficient measurement points can be secured even when the horizontal axis is displayed in logarithm (Log).
  • the polishing slurry used for the first polishing includes a predetermined dispersion medium (for example, water) and free abrasive grains dispersed in the dispersion medium, and a dispersing agent that disperses the free abrasive grains in the dispersion medium. Further included if necessary.
  • the particle size distribution (relative frequency) of the free abrasive grains in this embodiment has a peak (maximum value) in the range of 0.5 ⁇ m to 1.0 ⁇ m. This local maximum is the maximum relative frequency.
  • the particle size distribution function of the relative frequency y with respect to the particle size x of the free abrasive grains is defined as f (x).
  • f (x) for example, an interpolation polynomial that minimizes the residual sum of squares for all data points indicating the frequency y for each actually measured particle diameter x may be used as an approximate expression. In this case, it is preferable that the error from the data point is 1/100 or less.
  • a spline function using an individual polynomial (a third or higher order polynomial that can be differentiated twice) between each data point may be used as f (x).
  • is preferably x n ⁇ x 3
  • y 2 > y n and y 3> x 2 is preferably y n.
  • the sign of the second derivative f ′′ (x)) changes.
  • x 3 ⁇ x ⁇ x y is the maximum value in the range of 4 (maximum value) that takes the y lm P lm (x lm, y lm) when the ratio y lm / y 1 and y lm and y 1 Is 0.5 ⁇ y lm / y 1 ⁇ 1.
  • the polishing slurry having the above particle size distribution requires a first free abrasive grain group having a small average particle diameter and a second free abrasive grain group having an average particle diameter larger than that of the first free abrasive grain group. Accordingly, it can be obtained by mixing with a dispersant at a predetermined ratio.
  • the particle diameter ds-3 at the point where the cumulative relative frequency of 3% of the cumulative relative frequency of the free abrasive grains from the smaller particle diameter becomes 0.3% is 0.3 ⁇ m or more, and the particle diameter at the cumulative relative frequency of 50%.
  • a free abrasive group having a particle size distribution with a ds-50 value of 0.9 ⁇ m to 1.45 ⁇ m and a cumulative relative frequency of 95% and a particle size ds-95 value of 2.8 ⁇ m or less is defined as the first free abrasive group.
  • a free abrasive grain group having a particle size distribution with a ds-3 value of 0.32 ⁇ m or more, a ds-50 value of 0.5 ⁇ m to 0.8 ⁇ m, and a ds-95 value of 1.0 ⁇ m or less is defined as a second free abrasive grain group.
  • the loose abrasive contained in the polishing liquid is a ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (mass of the first loose abrasive grain group / second loose grain). It is preferable to obtain the above polishing slurry by mixing so that the mass of the abrasive grains group is in the range of 1.0 to 2.0. In addition, it is preferable that the composition of the free abrasive grains contained in the first free abrasive grain group and the composition of the free abrasive grains contained in the second free abrasive grain group are substantially the same.
  • a phosphoric acid compound or a polymer compound having various functional groups can be used.
  • the phosphoric acid compound for example, sodium hexametaphosphate, sodium pyrophosphate, potassium pyrophosphate and the like can be used.
  • a polymer compound having a carboxylic acid or a carboxylate salt, a sulfonic acid or a sulfonate salt as a functional group can be used as a dispersant as necessary.
  • the counter cation that forms the salt may be selected from alkali metal ions, ammonium ions, and the like.
  • the first loose abrasive grain group and the second loose abrasive grain group may be mixed in advance using a stirrer and then supplied to the double-side polishing apparatus.
  • the first loose abrasive grain group and the second loose abrasive grain group are separately supplied to the double-side polishing apparatus, and the second loose abrasive grain group with respect to the mass of the second free abrasive grain group in the middle of the supply flow path to the double-side polishing apparatus, So that the ratio of the mass of one free abrasive grain group (the mass of the first free abrasive grain group / the mass of the second free abrasive grain group) is in the range of 1.0 to 2.0.
  • the supply amount may be adjusted respectively.
  • the polishing rate is increased with large abrasive particles, and abrasive particles with small particle sizes are used.
  • the occurrence of bulges at the outer peripheral end of the main surface of the glass substrate can be suppressed.
  • the outer peripheral edge of the main surface after polishing the main surface using the polishing liquid containing the obtained free abrasive grains and the mass ratio between the first free abrasive grains group and the second free abrasive grains group The correlation with the edge shape evaluation value for evaluating the shape (bump) of the part is examined, and the mixing ratio is determined based on the investigated correlation so that the edge shape evaluation value falls within the desired range. May be.
  • the point P lm (x lm , y lm ) having the maximum value y lm also has a peak in the range of x 3 ⁇ x ⁇ x 4 , but the present invention is not limited to this. Absent. For example, it is not necessary to have a frequency peak (maximum value) in the range of x 3 ⁇ x ⁇ x 4 .
  • the maximum value y lm of y in the range of x 3 ⁇ x ⁇ x 4 may be equal to y 3 .
  • FIG. 2 is a schematic diagram showing another example of the particle size distribution of loose abrasive grains.
  • the curve y f (x) appears to protrude in the positive direction of the y axis with respect to the line segment connecting P3 and P4.
  • the main surface of the glass substrate may be polished using a polishing slurry containing free abrasive grains having a particle size distribution shown in FIG.
  • the present invention is particularly effective when the second polishing process with a small machining allowance is subsequently performed because the bulge of the end shape can be reduced immediately after polishing. This is because when the silica abrasive grains are used in the second polishing treatment, the outer peripheral end on the main surface tends to have a sagging shape to be described later.
  • the polishing allowance is preferably 0.1 to 1.5 ⁇ m or less in terms of plate thickness. By doing so, the production cost can be further reduced.
  • Example 1 The free abrasive grains of cerium oxide having a particle size distribution with a ds-3 value of 0.35 ⁇ m or more, a ds-50 value of 1.438 ⁇ m, and a ds-95 value of 2.8 ⁇ m or less are the first free abrasive grains (first abrasive grains) It was.
  • Free abrasive grains of cerium oxide having a particle size distribution with a ds-3 value of 0.32 ⁇ m or more, a ds-50 value of 0.52 ⁇ m, and a ds-95 value of 1.0 ⁇ m or less are the second free abrasive grains (second abrasive grains) It was.
  • the ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (the mass of the first loose abrasive grain group / the mass of the second loose abrasive grain group) is 1.0.
  • Example 2 The ratio of the mass of the first free abrasive grain group to the mass of the second free abrasive grain group (the mass of the first free abrasive grain group / the mass of the second free abrasive grain group) is 1.5.
  • the first loose abrasive grain group and the second loose abrasive grain group were mixed at a mass ratio of 3: 2 to obtain a polishing liquid.
  • Example 3 The ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (the mass of the first loose abrasive grain group / the mass of the second loose abrasive grain group) is 2.0.
  • a polishing liquid was obtained by mixing the first loose abrasive grain group and the second loose abrasive grain group at a mass ratio of 2: 1.
  • the particle size distribution of the free abrasive grains contained in the polishing liquids of Examples 1 to 3 and Comparative Examples 1 to 4 was determined by a particle size distribution measuring apparatus using a laser diffraction / scattering method.
  • the relative frequency in the range of particle size 0.5 ⁇ 1.0 .mu.m was determined a particle size x 1 as the maximum value y 1.
  • the relative frequency y with respect to the particle size x of the loose abrasive grains was approximated by a polynomial of x.
  • x> x One region had three inflection points.
  • the x coordinate of the inflection point is x 2 , x 3 , x 4 (x 1 ⁇ x 2 ⁇ x 3 ⁇ x 4 ), and the maximum value y lm of y in the range of x 3 ⁇ x ⁇ x 4 and at this time determined particle size x lm of, determine the ratio y lm / y 1 and y 1.
  • Table 1 shows x 1 , x lm , y n / y 1 , and y lm / y 1 .
  • a first glass substrate (diameter 65 mm, plate thickness 0.635 mm) was subjected to a first polishing treatment. While supplying the above polishing liquid between the main surface of the glass substrate and the suede type polyurethane foam polishing pad, the main surface of the glass substrate is moved relative to the main surface of the glass substrate. Polished.
  • the polishing load was 100 g / cm 2 .
  • the polishing allowance was 30 ⁇ m.
  • the end of the glass substrate is defined as a raised shape, and the maximum dent amount (maximum distance from the imaginary straight line) is represented by a negative value.
  • an optical surface shape measuring device can be used to measure the index value A.
  • the index value A was calculated and averaged at four locations on one side at intervals of 90 degrees and a total of eight locations on both sides, and the average value of the annular glass substrate was calculated. The index value was A.
  • the index value A is practically acceptable if it is in the range of ⁇ 20 nm to 0 nm, and more preferably in the range of ⁇ 10 nm to 0 nm. In addition, it is not preferable that the index value A exceeds 0 and becomes the plus side (sagging shape side) because the sagging shape may be further deteriorated after the second polishing.
  • Table 1 The results are shown in Table 1.
  • polishing rate was measured by measuring the amount of displacement of the main surface after the first polishing treatment relative to the main surface before the first polishing treatment.
  • the relative values when the polishing rate of Example 1 is 1 are shown in Table 1.
  • Example 1 to 3 the occurrence of bulges at the outer peripheral edge of the main surface of the glass substrate after the polishing treatment could be suppressed.
  • the polishing rate could be maintained at a high level.
  • Comparative Examples 1 and 2 it can be seen that the outer peripheral end portion of the main surface of the glass substrate after the polishing treatment has a sagging shape. It can also be seen that the polishing rate decreases because the ratio of the second loose abrasive grains having a small particle size is high. In Comparative Examples 3 and 4, bumps occurred at the outer peripheral edge of the main surface after the glass substrate was polished.
  • Examples 4 and 5 By appropriately mixing two types of loose abrasive grains different from those in Examples 1 to 3 and Comparative Examples 1 to 4, x 1 , x lm , y n / y 1 , y lm / y shown in Table 2 are used. A polishing liquid containing free abrasive grains having a particle size distribution showing a value of 1 was obtained.
  • Example 2 Using the polishing liquid of Example 1 and the polishing liquids of Examples 4 and 5, a disk-shaped glass substrate (diameter 65 mm, plate thickness 0.635 mm) was subjected to a first polishing process. While supplying the above polishing liquid between the main surface of the glass substrate and the suede type polyurethane foam polishing pad, the main surface of the glass substrate is moved relative to the main surface of the glass substrate. Polished. The surface of 100 glass substrates after the first polishing process and the cleaning process was visually inspected under a condensing lamp in a dark room to obtain scratches, and the occurrence rate of scratches was calculated. The results are shown in Table 2.
  • Example 4 scratches occurred on one of the 100 glass substrates, whereas in Examples 5 and 1, no scratches occurred.
  • Example 4 and Example 5 are compared, it can be seen that when y n / y 1 is less than 0.5, scratches are likely to occur. If y n / y 1 is less than 0.5, the continuity of the particle size becomes low, so that it is easy to apply a polishing load only to the large-diameter abrasive grains, and as a result, scratches are likely to occur. .
  • the evaluation of the index value A for the glass substrates of Examples 4 and 5 was the same as that of Example 1.
  • Example 6 Zirconium oxide (ZrO 2 ) is used as the abrasive grains, and free abrasive grains having a particle size distribution showing the values of x 1 , x lm , y n / y 1 , y lm / y 1 as in Example 1 are included. A polishing liquid was obtained.
  • Example 7 Free abrasive grains having a particle size distribution showing values of x 1 , x lm , y n / y 1 , y lm / y 1 as in Example 1 using zirconium silicate (ZrSiO 4 ) as abrasive grains A polishing liquid containing was obtained.
  • ZrSiO 4 zirconium silicate
  • the first polishing process is performed using the polishing liquids of Example 6 and Example 7, and the amount of displacement of the main surface after the first polishing process relative to the main surface before the first polishing process is measured, whereby the polishing rate is increased. Measured. Table 3 shows the relative values when the polishing rate of Example 1 is 1.
  • Example 6 In the polishing liquid of Example 6 using zirconium oxide as the polishing abrasive grains, the polishing rate was almost the same as that of Example 1. On the other hand, in the polishing liquid of Example 7 using zirconium silicate as the abrasive grains, the polishing rate was 6% lower than that of Example 1.
  • the index value A was evaluated for the glass substrates of Examples 6 and 7, it was the same as Example 1. From the viewpoint of the polishing rate, it is understood that cerium oxide or zirconium oxide is preferably used as the abrasive grains.

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

In the present invention, in a glass substrate polishing process, the occurrence of protrusions at the outer peripheral ends of the primary surface of the glass substrate is suppressed. In the polishing process for polishing the primary surface of a glass substrate, when the particle size (μm) for free grit contained in a polishing liquid supplied between a polishing pad and the primary surface of the glass substrate is x (x>0), the relative abundance (%) of grit for each particle size (x) is y, and y is a function f(x) of x, there is a maximum value (y1) of y in the domain 0.5 μm ≤ x ≤ 1.0 μm, y1 is the maximum value of y, and when the particle size corresponding to y1 is x1, the curve y = f(x) in the xy coordinate plane has three inflection points P2 (x2, y2), P3 (x3, y3) and P4 (x4, y4) (where x1 < x2 < x3 < x4, y2 = f(x2), y3 = f(x3), and y4 = f(x4)) in the region x > x1, and the ratio (ylm/y1) of the maximum value (ylm) of y in the domain x3 ≤ x ≤ x4 and y1 is such that 0.5 ≤ ylm/y1 < 1.

Description

磁気ディスク用ガラス基板の製造方法Manufacturing method of glass substrate for magnetic disk
 本発明は、磁気ディスク用ガラス基板の製造方法に関する。 The present invention relates to a method for producing a glass substrate for a magnetic disk.
 今日、パーソナルコンピュータ、DVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置(HDD:Hard Disk Drive)が内蔵されている。
 ハードディスク装置では、基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッドで磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板として、金属基板(アルミニウム基板)等に比べて塑性変形し難い性質を持つガラス基板が好適に用いられる。
Today, a personal computer, a DVD (Digital Versatile Disc) recording device, and the like have a built-in hard disk device (HDD: Hard Disk Drive) for data recording.
In a hard disk device, a magnetic disk having a magnetic layer provided on a substrate is used, and magnetic recording information is recorded on or read from the magnetic layer by a magnetic head slightly floated on the surface of the magnetic disk. As the substrate of this magnetic disk, a glass substrate having a property that is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like is preferably used.
 ハードディスク装置において記憶容量を増大させるために、磁気記録の高密度化が図られている。例えば、磁性層における磁化方向を基板の面に対して垂直方向にする垂直磁気記録方式を用いて、磁気記録情報エリアの微細化が行われている。これにより、1枚のディスク基板における記憶容量を増大させることができる。このようなディスク基板においては、磁性層の磁化方向が基板面に対して略垂直方向に向くように、基板表面を可能な限り平らにして磁性粒の成長方向を垂直方向に揃えることが好ましい。
 さらに、記憶容量の一層の増大化のために、DFH(Dynamic Flying Height)機構を搭載した磁気ヘッドを用いて磁気記録面からの浮上距離を極めて短くすることにより、磁気ヘッドの記録再生素子と磁気ディスクの磁気記録層との間の磁気的スペーシングを低減して情報の記録再生の精度をより高める(S/N比を向上させる)ことも行われている。この場合においても、磁気ヘッドによる磁気記録情報の読み書きを長期に亘って安定して行うために、磁気ディスクの基板の表面凹凸は可能な限り小さくすることが求められる。
In order to increase the storage capacity in the hard disk device, the magnetic recording has been increased in density. For example, the magnetic recording information area is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate. Thereby, the storage capacity of one disk substrate can be increased. In such a disk substrate, it is preferable to make the surface of the substrate as flat as possible and align the growth direction of the magnetic grains in the vertical direction so that the magnetization direction of the magnetic layer is substantially perpendicular to the substrate surface.
Furthermore, in order to further increase the storage capacity, a magnetic head equipped with a DFH (Dynamic Flying Height) mechanism is used to significantly shorten the flying distance from the magnetic recording surface, so that the recording / reproducing element of the magnetic head and the magnetic It is also practiced to increase the accuracy of recording / reproducing information (to improve the S / N ratio) by reducing the magnetic spacing between the magnetic recording layers of the disk. Even in this case, the surface irregularities of the substrate of the magnetic disk are required to be as small as possible in order to read and write magnetic recording information by the magnetic head stably over a long period of time.
 磁気ディスク用ガラス基板の表面凹凸を小さくするために、ガラス基板の研磨処理が行われる。ガラス基板を最終製品とするための精密な研磨に、酸化セリウムやコロイダルシリカ等の微細な研磨砥粒を含む研磨剤を用いる方法がある(例えば、特許文献1参照)。 In order to reduce the surface unevenness of the magnetic disk glass substrate, the glass substrate is polished. There is a method of using an abrasive containing fine abrasive grains such as cerium oxide and colloidal silica for precise polishing for making a glass substrate into a final product (see, for example, Patent Document 1).
特開2010-59310号公報JP 2010-59310 A
 ところで、酸化セリウムを砥粒として用いて円板状のガラス基板の研磨処理を行うと、ガラス基板の主表面の外周端部において、中央部よりも隆起した形状となることがある。DFH機構を搭載した磁気ヘッドを用いる場合、磁気記録面からの浮上距離が低いためにこの隆起を許容することができない。また、1枚のディスク基板における記憶容量を増大させるために、ガラス基板の主表面の外周端部においても平坦であることが好ましい。 By the way, when a disc-shaped glass substrate is polished using cerium oxide as an abrasive, the outer peripheral end portion of the main surface of the glass substrate may be raised from the center portion. When a magnetic head equipped with a DFH mechanism is used, this bulge cannot be allowed because the flying distance from the magnetic recording surface is short. Further, in order to increase the storage capacity of one disk substrate, it is preferable that the outer peripheral end portion of the main surface of the glass substrate is flat.
 そこで、本発明は、ガラス基板の研磨処理において、ガラス基板の主表面の外周端部における隆起の発生を抑制することができる磁気ディスク用ガラス基板の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk that can suppress the occurrence of bulges at the outer peripheral edge of the main surface of the glass substrate in the polishing treatment of the glass substrate.
 本発明者が砥粒の粒度を変えながら研磨処理を行ったところ、平均粒径が大きい砥粒を用いて研磨処理を行うと、研磨レートが高くなる一方、ガラス基板の主表面の外周端部に発生する隆起が高くなることがわかった。一方、平均粒径が小さい砥粒を用いて研磨処理を行うと、ガラス基板の主表面の外周端部における隆起の発生が抑制されるが、研磨レートが低くなることがわかった。
 そこで、本発明者が検討したところ、粒径が大きな研磨粒子と粒径が小さな研磨粒子とを混合して用いることで、粒径が大きな研磨粒子で研磨レートを高めるとともに、粒径が小さな研磨粒子を用いることでガラス基板の主表面の外周端部における隆起の発生を抑制することができることがわかった。換言すると、砥粒の粒度分布を適切に制御することで、ガラス基板の主表面の外周端部における隆起の発生を抑制することができることがわかった。
When the present inventor performed the polishing process while changing the grain size of the abrasive grains, the polishing rate increased when the polishing process was performed using the abrasive grains having a large average particle diameter, while the outer peripheral edge of the main surface of the glass substrate It was found that the bumps occurring in On the other hand, it was found that when polishing is performed using abrasive grains having a small average particle diameter, the occurrence of bulges at the outer peripheral edge of the main surface of the glass substrate is suppressed, but the polishing rate is lowered.
Therefore, the present inventor has studied that by using a mixture of abrasive particles having a large particle diameter and abrasive particles having a small particle diameter, the polishing rate is increased with the abrasive particles having a large particle diameter, and the polishing having a small particle diameter is performed. It turned out that generation | occurrence | production of the protrusion in the outer peripheral edge part of the main surface of a glass substrate can be suppressed by using particle | grains. In other words, it was found that by appropriately controlling the particle size distribution of the abrasive grains, it is possible to suppress the occurrence of bulges at the outer peripheral end of the main surface of the glass substrate.
 本発明の第一の態様は、ガラス基板の主表面と研磨パッドとの間に、遊離砥粒を含む研磨液を供給し、前記ガラス基板の主表面を研磨する研磨処理を有する、磁気ディスク用ガラス基板の製造方法である。
 前記研磨液に含まれる遊離砥粒の粒径(μm)をx(x>0)とし、粒径xの砥粒の相対頻度(%)をyとし、yをxの関数f(x)とみなすとき、
0.5μm≦x≦1.0μmの範囲にyの極大値y1が存在し、y1はyの最大値であり、
 y1に対応する粒径をxとするとき、xy座標平面における曲線y=f(x)はx>xの領域に少なくとも3つの変曲点P2(x、y)、P3(x、y)、P4(x、y)(x<x<x<x、y=f(x)、y=f(x)、y=f(x))を有し、
 x≦x≦xの範囲におけるyの最大値ylmとy1との比ylm/y1が0.5≦ylm/y1<1である。
 例えば、実際に計測した遊離砥粒の粒径x毎の頻度yを示す全てのデータ点に対する補間多項式をf(x)としてもよいし、各データ点間に個別の多項式を用いたスプライン関数をf(x)としてもよい。
 曲線y=f(x)は、変曲点P3とP4との間において、xy座標平面においてP3とP4とを結ぶ線分に対してy軸の正方向に凸となる隆起形状を有する。この曲線y=f(x)は、P3とP4との間に極大値を有していてもよいし、変曲点P3とP4との間の形状が、いわゆる「肩」であってもよい。「肩」とは、変曲点P3とP4との間においてy=f(x)が極大値を有さない(微分値の符号が変化しない)ものの、P3とP4とを結ぶ線分に対して曲線y=f(x)がy軸の正方向に隆起しているように見えることをいう。変曲点P3とP4との間において、xの増加に伴って曲線y=f(x)の傾きがP3とP4とを結ぶ線分の傾きよりも大きい値から小さい値に変化し、かつ符号が変化しないときに「肩」となる。
A first aspect of the present invention is for a magnetic disk having a polishing process for supplying a polishing liquid containing free abrasive grains between a main surface of a glass substrate and a polishing pad and polishing the main surface of the glass substrate. It is a manufacturing method of a glass substrate.
The particle size (μm) of the free abrasive grains contained in the polishing liquid is x (x> 0), the relative frequency (%) of the abrasive grains with the particle size x is y, and y is a function f (x) of x. When considering
There is a maximum value y 1 of y in the range of 0.5 μm ≦ x ≦ 1.0 μm, and y 1 is the maximum value of y,
When the particle size corresponding to y 1 is x 1 , the curve y = f (x) in the xy coordinate plane has at least three inflection points P2 (x 2 , y 2 ), P3 (in the region of x> x 1 x 3 , y 3 ), P 4 (x 4 , y 4 ) (x 1 <x 2 <x 3 <x 4 , y 2 = f (x 2 ), y 3 = f (x 3 ), y 4 = f (X 4 ))
The ratio y lm / y 1 between the maximum value y lm and y 1 of y in the range of x 3 ≦ x ≦ x 4 is 0.5 ≦ y lm / y 1 <1.
For example, f (x) may be an interpolation polynomial for all data points indicating the frequency y for each particle size x of the loose abrasive grains actually measured, or a spline function using individual polynomials between the data points. It may be f (x).
The curve y = f (x) has a raised shape that is convex in the positive direction of the y-axis with respect to the line segment connecting P3 and P4 on the xy coordinate plane between the inflection points P3 and P4. The curve y = f (x) may have a maximum value between P3 and P4, and the shape between the inflection points P3 and P4 may be a so-called “shoulder”. . “Shoulder” refers to a line segment connecting P3 and P4, although y = f (x) does not have a maximum value between the inflection points P3 and P4 (the sign of the differential value does not change). That is, the curve y = f (x) appears to protrude in the positive direction of the y-axis. Between the inflection points P3 and P4, as the value of x increases, the slope of the curve y = f (x) changes from a value larger than the slope of the line segment connecting P3 and P4 to a smaller value. It becomes “shoulder” when does not change.
 前記xの2倍の粒径xの遊離砥粒の相対頻度をyとするとき、0.5≦y/y<1であることが好ましい。 When the relative frequency of free abrasive grains of twice the particle size x n of the x 1 and y n, is preferably 0.5 ≦ y n / y 1 < 1.
 本発明の第二の態様は、ガラス基板の主表面と研磨パッドとの間に、遊離砥粒を含む研磨液を供給し、前記ガラス基板の主表面を研磨する研磨処理を有する、磁気ディスク用ガラス基板の製造方法であって、
 体積分布の粒度分布にて、粒子径が小さい側から遊離砥粒の相対頻度を累積した累積相対頻度が50%となる点の粒子径ds-50値が0.9μm~1.4μmの粒度分布を有する遊離砥粒群を第1の遊離砥粒群とし、
 前記ds-50値が0.5μm~0.8μmの粒度分布を有する遊離砥粒群を第2の遊離砥粒群としたとき、
 前記研磨液に含まれる遊離砥粒は、前記第1の遊離砥粒群と前記第2の遊離砥粒群とを混合して得られ、
 前記第1の遊離砥粒群と前記第2の遊離砥粒群との質量比と、得られた遊離砥粒を含む研磨液を用いて前記主表面を研磨した後の前記主表面の外周端部の形状を評価する端部形状評価値との相関関係を調べておき、
 前記端部形状評価値が所望の範囲内に入るように、前記相関関係に基づいて、前記混合比を決定することを特徴とする。
 ここで、「端部形状評価値」とは、例えば、ガラス基板の中心点から外縁の任意の1点に向けて仮想直線を引き、その中心点から30mm離れた主表面上の位置(Z1とする。)と、31.5mm離れた主表面上の位置(Z2とする。)とを結ぶ仮想直線Lに対して主表面のプロファイルが突出している場合に、その最大突出量(仮想直線からの最大距離)をプラス値で表したもの(以下、「指標値A」という)を用いることができる。指標値Aの測定には例えば光学式の表面形状測定装置を用いることができる。
 「端部形状評価値が所望の範囲内に入る」とは、例えば、指標値Aが0~-20nmであることをいう。
 前記研磨液に含まれる遊離砥粒は、前記第2の遊離砥粒群の質量に対する、前記第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が1.0~2.0の範囲内となるように混合して得られることが好ましい。
A second aspect of the present invention is for a magnetic disk having a polishing process for supplying a polishing liquid containing free abrasive grains between a main surface of a glass substrate and a polishing pad and polishing the main surface of the glass substrate. A method of manufacturing a glass substrate,
The particle size distribution of the volume distribution has a particle size distribution with a particle diameter ds-50 value of 0.9 μm to 1.4 μm at a point where the cumulative relative frequency obtained by accumulating the relative frequency of the free abrasive grains from the smaller particle diameter side becomes 50%. Let the free abrasive grain group be the first free abrasive grain group,
When the free abrasive grain group having a particle size distribution with the ds-50 value of 0.5 μm to 0.8 μm is defined as the second free abrasive grain group,
The loose abrasive contained in the polishing liquid is obtained by mixing the first loose abrasive grain group and the second loose abrasive grain group,
The outer peripheral edge of the main surface after polishing the main surface using a polishing liquid containing the obtained free abrasive grains and the mass ratio of the first free abrasive grain group and the second free abrasive grain group Check the correlation with the edge shape evaluation value to evaluate the shape of the part,
The mixture ratio is determined based on the correlation so that the end shape evaluation value falls within a desired range.
Here, the “end shape evaluation value” is, for example, a virtual straight line drawn from the center point of the glass substrate toward an arbitrary point on the outer edge, and a position on the main surface (Z1 and 30 mm away from the center point). When the profile of the main surface protrudes from a virtual straight line L that connects the position (Z2) on the main surface separated by 31.5 mm, the maximum protrusion amount (from the virtual straight line) The maximum distance) represented by a plus value (hereinafter referred to as “index value A”) can be used. For example, an optical surface shape measuring device can be used to measure the index value A.
“The end shape evaluation value falls within a desired range” means, for example, that the index value A is 0 to −20 nm.
The loose abrasive contained in the polishing liquid is a ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (mass of the first loose abrasive grain group / second loose grain). It is preferably obtained by mixing so that the mass of the abrasive grains group is in the range of 1.0 to 2.0.
 前記遊離砥粒の主成分は、酸化セリウム又は酸化ジルコニウムから選択される1種類の砥粒であることが好ましい。
 ここで、「主成分」とは、遊離砥粒における成分の50%以上、より好ましくは70%以上を占める成分のことである。遊離砥粒は、実質的に1種類の成分であることが最も好ましい。
 前記遊離砥粒として、例えば、酸化セリウム砥粒、水酸化セリウム砥粒、酸化ジルコニウム、ケイ酸ジルコニウムなどが用いられる。特に、研磨レートを良好にするために、酸化セリウム又は水酸化セリウムから選択されることが好ましく、遊離砥粒として酸化セリウムを用いることが最も好ましい。
The main component of the free abrasive grains is preferably one kind of abrasive grains selected from cerium oxide or zirconium oxide.
Here, the “main component” is a component that occupies 50% or more, more preferably 70% or more of the components in the free abrasive grains. Most preferably, the loose abrasive is substantially one type of component.
Examples of the free abrasive grains include cerium oxide abrasive grains, cerium hydroxide abrasive grains, zirconium oxide, and zirconium silicate. In particular, in order to improve the polishing rate, it is preferable to select from cerium oxide or cerium hydroxide, and it is most preferable to use cerium oxide as the free abrasive grains.
 遊離砥粒を溶媒に分散させる分散剤として、リン酸化合物や、種々の官能基を持つ高分子化合物を用いることができる。リン酸化合物として、例えば、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム、ピロリン酸カリウム等を用いることができる。また、例えば、カルボン酸又はカルボン酸塩、スルホン酸又はスルホン酸塩等を官能基として持つ高分子化合物を分散剤として必要に応じて用いることができる。塩を形成する対カチオンはアルカリ金属イオンやアンモニウムイオン等から選択されうる。 As a dispersant for dispersing free abrasive grains in a solvent, a phosphoric acid compound or a polymer compound having various functional groups can be used. As the phosphoric acid compound, for example, sodium hexametaphosphate, sodium pyrophosphate, potassium pyrophosphate and the like can be used. In addition, for example, a polymer compound having a carboxylic acid or a carboxylate salt, a sulfonic acid or a sulfonate salt as a functional group can be used as a dispersant as necessary. The counter cation that forms the salt may be selected from alkali metal ions, ammonium ions, and the like.
 前記研磨処理は、前記遊離砥粒により前記ガラス基板の主表面を研磨する第1の研磨処理と、前記遊離砥粒とは異なる遊離砥粒を用いて前記第1の研磨処理後のガラス基板の主表面を研磨する第2の研磨処理を含み、
 前記第2の研磨処理に用いられる遊離砥粒はコロイダルシリカであることが好ましい。
The polishing process includes a first polishing process for polishing the main surface of the glass substrate with the free abrasive grains, and a free abrasive grain different from the free abrasive grains, and the glass substrate after the first polishing process. Including a second polishing process for polishing the main surface;
The loose abrasive used for the second polishing treatment is preferably colloidal silica.
 本発明の第三の態様は、遊離砥粒を含み、磁気ディスク用ガラス基板の主表面を研磨する研磨処理を行う際に、前記ガラス基板の主表面と研磨パッドとの間に供給される研磨液であって、
 前記研磨液に含まれる遊離砥粒の粒径(μm)をx(x>0)とし、粒径xの砥粒の相対頻度(%)をyとし、yをxの関数f(x)とみなすとき、
0.5μm≦x≦1.0μmの範囲にyの極大値y1が存在し、y1はyの最大値であり、
 y1に対応する粒径をxとするとき、xy座標平面における曲線y=f(x)はx>xの領域に少なくとも3つの変曲点P2(x、y)、P3(x、y)、(x、y)(x<x<x<x、y=f(x)、y=f(x)、y=f(x))を有し、
 x≦x≦xの範囲におけるyの最大値ylmとy1との比ylm/y1が0.5≦ylm/y1<1であることを特徴とする。
A third aspect of the present invention is a polishing that includes loose abrasive grains and is supplied between the main surface of the glass substrate and the polishing pad when performing a polishing process for polishing the main surface of the glass substrate for a magnetic disk. Liquid,
The particle size (μm) of the free abrasive grains contained in the polishing liquid is x (x> 0), the relative frequency (%) of the abrasive grains with the particle size x is y, and y is a function f (x) of x. When considering
There is a maximum value y 1 of y in the range of 0.5 μm ≦ x ≦ 1.0 μm, and y 1 is the maximum value of y,
When the particle size corresponding to y 1 is x 1 , the curve y = f (x) in the xy coordinate plane has at least three inflection points P2 (x 2 , y 2 ), P3 (in the region of x> x 1 x 3, y 3), ( x 4, y 4) (x 1 <x 2 <x 3 <x 4, y 2 = f (x 2), y 3 = f (x 3), y 4 = f ( x 4 ))
The ratio y lm / y 1 between the maximum value y lm and y 1 of y in the range of x 3 ≦ x ≦ x 4 is 0.5 ≦ y lm / y 1 <1.
 本発明によれば、ガラス基板の研磨処理において、ガラス基板の主表面の外周端部における隆起の発生を抑制することができる。 According to the present invention, in the polishing treatment of the glass substrate, it is possible to suppress the occurrence of bulging at the outer peripheral end portion of the main surface of the glass substrate.
遊離砥粒の粒度分布の一例を示す模式図である。It is a schematic diagram which shows an example of the particle size distribution of a loose abrasive grain. 遊離砥粒の粒度分布の他の一例を示す模式図である。It is a schematic diagram which shows another example of the particle size distribution of a loose abrasive grain.
 以下、本発明の実施形態に係る磁気ディスク用ガラス基板の製造方法について詳細に説明する。なお、本発明は、公称2.5~3.5インチサイズ(直径65~95mm)、板厚0.4~2.0mmの磁気ディスク用ガラス基板の製造に好適である。 Hereinafter, a method for manufacturing a glass substrate for magnetic disks according to an embodiment of the present invention will be described in detail. The present invention is suitable for manufacturing a glass substrate for a magnetic disk having a nominal size of 2.5 to 3.5 inches (diameter 65 to 95 mm) and a plate thickness of 0.4 to 2.0 mm.
(磁気ディスク用ガラス基板)
 まず、磁気ディスク用ガラス基板について説明する。磁気ディスク用ガラス基板は、円板形状であって、外周と同心の円形の中心孔がくり抜かれたリング状である。磁気ディスク用ガラス基板の両面の円環状領域に磁性層(記録領域)が形成されることで、磁気ディスクが形成される。
(Magnetic disk glass substrate)
First, the glass substrate for magnetic disks will be described. The glass substrate for a magnetic disk has a disc shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out. A magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the glass substrate for a magnetic disk.
 磁気ディスク用ガラスブランク(以降、単にガラスブランクという)は、プレス成形により作製される円形状のガラス板であって、中心孔がくり抜かれる前の形態である。ガラスブランクの材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。 A glass blank for magnetic disk (hereinafter simply referred to as a glass blank) is a circular glass plate produced by press molding, and is in a form before the center hole is cut out. As a material for the glass blank, aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
(磁気ディスク用ガラス基板の製造方法)
 次に、磁気ディスク用ガラス基板の製造方法を説明する。先ず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクをプレス成形により作製する(プレス成形処理)。次に、作製されたガラスブランクの中心部分に円孔を形成しリング形状(円環状)のガラス基板とする(円孔形成処理)。次に、円孔を形成したガラス基板に対して形状加工を行う(形状加工処理)。これにより、ガラス基板が生成される。次に、形状加工されたガラス基板に対して端面研磨を行う(端面研磨処理)。端面研磨の行われたガラス基板に、固定砥粒による研削を行う(研削処理)。次に、ガラス基板の主表面に第1研磨を行う(第1研磨処理)。次に、ガラス基板に対して化学強化を行う(化学強化処理)。なお、化学強化処理については、行わなくてもよい。次に、化学強化されたガラス基板に対して第2研磨を行う(第2研磨処理)。以上の処理を経て、磁気ディスク用ガラス基板が得られる。以下、各処理について、詳細に説明する。
(Method for producing glass substrate for magnetic disk)
Next, a method for manufacturing a magnetic disk glass substrate will be described. First, a glass blank as a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is produced by press molding (press molding process). Next, a circular hole is formed in the center part of the produced glass blank, and it is set as a ring-shaped (annular) glass substrate (circular hole formation process). Next, shape processing is performed on the glass substrate in which the circular holes are formed (shape processing processing). Thereby, a glass substrate is produced | generated. Next, end-face polishing is performed on the shape-processed glass substrate (end-face polishing process). Grinding with a fixed abrasive is performed on the glass substrate that has been subjected to end surface polishing (grinding treatment). Next, 1st grinding | polishing is performed to the main surface of a glass substrate (1st grinding | polishing process). Next, chemical strengthening is performed on the glass substrate (chemical strengthening treatment). The chemical strengthening process may not be performed. Next, second polishing is performed on the chemically strengthened glass substrate (second polishing treatment). The glass substrate for magnetic disks is obtained through the above processing. Hereinafter, each process will be described in detail.
 (a)プレス成形処理
 熔融ガラス流の先端部を切断器により切断し、切断された熔融ガラス塊を一対の金型のプレス成形面の間に挟みこみ、プレスしてガラスブランクを成形する。所定時間プレスを行った後、金型を開いてガラスブランクが取り出される。
(A) Press molding process The front-end | tip part of a molten glass flow is cut | disconnected with a cutter, the cut molten glass lump is pinched | interposed between the press molding surfaces of a pair of metal molds, and a glass blank is formed by pressing. After pressing for a predetermined time, the mold is opened and the glass blank is taken out.
 (b)円孔形成処理
 ガラスブランクに対してドリル等を用いて円孔を形成することにより円形状の孔があいたディスク状のガラス基板を得ることもできる。
(B) Circular hole formation treatment A disk-shaped glass substrate having a circular hole can be obtained by forming a circular hole in a glass blank using a drill or the like.
 (c)形状加工処理
 形状加工処理では、円孔形成処理後のガラス基板の端部に対する面取り加工を行う。
(C) Shape processing In the shape processing, chamfering is performed on the end of the glass substrate after the circular hole formation processing.
 (d)端面研磨処理
 端面研磨処理では、ガラス基板の内側端面及び外周側端面に対して、ブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含む砥粒スラリが用いられる。
(D) End surface polishing process In the end surface polishing process, mirror finishing is performed on the inner end face and the outer peripheral end face of the glass substrate by brush polishing. At this time, an abrasive slurry containing fine particles such as cerium oxide as free abrasive grains is used.
 (e)研削処理
 研削処理では、遊星歯車機構を備えた両面研削装置を用いて、ガラス基板の主表面に対して研削加工を行う。具体的には、ガラスブランクから生成されたガラス基板の外周側端面を、両面研削装置の保持部材に設けられた保持孔内に保持しながらガラス基板の両側の主表面の研削を行う。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させ、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研削することができる。
(E) Grinding process In the grinding process, grinding is performed on the main surface of the glass substrate using a double-sided grinding apparatus having a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate generated from the glass blank in the holding hole provided in the holding member of the double-side grinding apparatus. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
 (f)第1研磨処理
 第1研磨は、例えば固定砥粒による研削を行った場合に主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。具体的には、ガラス基板の外周側端面を、両面研磨装置の研磨用キャリアに設けられた保持孔内に保持しながらガラス基板の両側の主表面の研磨が行われる。
(F) First polishing treatment In the first polishing, for example, when grinding with fixed abrasive grains is performed, scratches and distortions remaining on the main surface are removed, or fine surface irregularities (microwaveness, roughness) are adjusted. Objective. Specifically, the main surface on both sides of the glass substrate is polished while holding the outer peripheral side end face of the glass substrate in a holding hole provided in the polishing carrier of the double-side polishing apparatus.
 第1研磨処理では、固定砥粒による研削処理に用いる両面研削装置と同様の構成を備えた両面研磨装置を用いて、研磨スラリを与えながらガラス基板が研磨される。第1研磨処理では、固定砥粒による研削と異なり、固定砥粒の代わりに遊離砥粒を含む研磨スラリが用いられる。第1研磨に用いる遊離砥粒として、例えば、酸化セリウム砥粒、水酸化セリウム砥粒、酸化ジルコニウム、ケイ酸ジルコニウムなどが用いられる。特に、研磨レートを良好にするために、酸化セリウム砥粒又は酸化ジルコニウムを用いることが好ましく、遊離砥粒として酸化セリウムを用いることが最も好ましい。第1研磨に用いる遊離砥粒の粒度分布については、後述する。 In the first polishing process, the glass substrate is polished while applying a polishing slurry by using a double-side polishing apparatus having the same configuration as the double-side grinding apparatus used for the grinding process using fixed abrasive grains. In the first polishing process, a polishing slurry containing free abrasive grains is used instead of fixed abrasive grains, unlike grinding with fixed abrasive grains. As the free abrasive grains used for the first polishing, for example, cerium oxide abrasive grains, cerium hydroxide abrasive grains, zirconium oxide, zirconium silicate and the like are used. In particular, in order to improve the polishing rate, it is preferable to use cerium oxide abrasive grains or zirconium oxide, and it is most preferable to use cerium oxide as free abrasive grains. The particle size distribution of the free abrasive grains used for the first polishing will be described later.
 両面研磨装置は、両面研削装置と同様に、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面が研磨される。研磨荷重は50~200g/cmとすることが好ましい。研磨速度は0.6(μm/min)とすることが好ましい。研磨取代は5~50μmとすることが好ましい。
 本発明の第1研磨処理で用いる研磨パッドには制限はなく、目的に応じて選択することができる。例えば、アスカーC硬度が90以下であって、研磨面に開孔が形成され、開孔から厚さ方向に縦長に延びる空孔が形成された、一般に「スエードパッド」と称される研磨布を使用することができる。このスエードパッドの研磨面の開口率は、ダイヤドレスを用いて開口させるものに関しては例えば10~80%、バフによる開口が行われているものに関しては例えば50~80%である。また、断面形状については、水平方向の平均空孔径が10μm以上500μm以下、垂直方向の平均空孔径が50μm以上の空孔を有する発泡体である。尚、アスカーC硬度は50以上であることが好ましく、50未満では研磨速度が低下するおそれがある。また、材質はポリウレタンが一般的である。スエードパッドは最表面が比較的軟らかいため、微細なキズを発生させずに、粗さや微小うねりを小さくするように研磨することが可能である。例えば、粗さや微小うねりをRaで1.0nm以下とすることができる。
 微小うねりは、波長50~200μmにおける平均粗さ(Ra)であり、光学式の表面形状測定機を用いて、基板中心より半径15mmから30mmの間の主表面を測定することにより評価できる。
 粗さは、AFMを用いて、主表面上を1μm四方の領域を256×256の分解能で測定することにより得られる平均粗さ(Ra)である。
Similar to the double-side grinding apparatus, the double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. Both main surfaces of the glass substrate are polished by moving either the upper surface plate or the lower surface plate or both of them to move the glass substrate and each surface plate relatively. The polishing load is preferably 50 to 200 g / cm 2 . The polishing rate is preferably 0.6 (μm / min). The polishing allowance is preferably 5 to 50 μm.
There is no restriction | limiting in the polishing pad used by the 1st grinding | polishing process of this invention, According to the objective, it can select. For example, an abrasive cloth generally referred to as a “suede pad” having an Asker C hardness of 90 or less, an opening formed in the polishing surface, and a hole extending vertically from the opening in the thickness direction is formed. Can be used. The opening ratio of the polished surface of the suede pad is, for example, 10 to 80% for the case where the diamond dress is used, and 50 to 80% for the case where the buffing is performed. The cross-sectional shape is a foam having pores having an average pore diameter in the horizontal direction of 10 μm or more and 500 μm or less and an average pore diameter in the vertical direction of 50 μm or more. The Asker C hardness is preferably 50 or more, and if it is less than 50, the polishing rate may decrease. The material is generally polyurethane. Since the outermost surface of the suede pad is relatively soft, it can be polished so as to reduce roughness and microwaviness without generating fine scratches. For example, the roughness and fine waviness can be set to 1.0 nm or less in terms of Ra.
The micro waviness is an average roughness (Ra) at a wavelength of 50 to 200 μm, and can be evaluated by measuring a main surface having a radius of 15 mm to 30 mm from the center of the substrate using an optical surface profile measuring machine.
The roughness is an average roughness (Ra) obtained by measuring an area of 1 μm square on the main surface with a resolution of 256 × 256 using AFM.
 (g)化学強化処理
 化学強化処理では、ガラス基板を化学強化液中に浸漬することで、ガラス基板を化学強化する。化学強化液として、例えば硝酸カリウムと硫酸ナトリウムの混合熔融液等を用いることができる。
(G) Chemical strengthening process In a chemical strengthening process, a glass substrate is chemically strengthened by immersing a glass substrate in a chemical strengthening liquid. As the chemical strengthening liquid, for example, a mixed melt of potassium nitrate and sodium sulfate can be used.
 (h)第2研磨(最終研磨)処理
 第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。具体的には、ガラス基板の外周側端面を、両面研磨装置の研磨用キャリアに設けられた保持孔内に保持しながらガラス基板の両側の主表面の研磨が行われる。第2研磨による取り代は、例えば1~10μm程度である。第2研磨処理が第1研磨処理と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。具体的には、粒径5~100nm程度のコロイダルシリカを遊離砥粒として含む研磨液が両面研磨装置の研磨パッドとガラス基板の主表面との間に供給され、ガラス基板の主表面が研磨される。研磨されたガラス基板を中性洗剤、純水、イソプロピルアルコール等を用いて洗浄することで、磁気ディスク用ガラス基板が得られる。
 第2研磨処理を実施することで、主表面の粗さ(Ra)を0.3nm以下、好ましくは0.1nm以下とすることができる。また、主表面のマイクロウェービネスを0.1nm以下とすることができる。このようにして、第2研磨の施されたガラス基板は、適宜洗浄・乾燥されて磁気ディスク用ガラス基板となる。
(H) Second polishing (final polishing) treatment The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. Specifically, the main surface on both sides of the glass substrate is polished while holding the outer peripheral side end face of the glass substrate in a holding hole provided in the polishing carrier of the double-side polishing apparatus. The machining allowance by the second polishing is, for example, about 1 to 10 μm. The second polishing process is different from the first polishing process in that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different. Specifically, a polishing liquid containing colloidal silica having a particle size of about 5 to 100 nm as free abrasive grains is supplied between the polishing pad of the double-side polishing apparatus and the main surface of the glass substrate, and the main surface of the glass substrate is polished. The The polished glass substrate is washed with a neutral detergent, pure water, isopropyl alcohol or the like to obtain a magnetic disk glass substrate.
By performing the second polishing treatment, the roughness (Ra) of the main surface can be made 0.3 nm or less, preferably 0.1 nm or less. In addition, the micro surface of the main surface can be 0.1 nm or less. In this manner, the glass substrate subjected to the second polishing is appropriately washed and dried to become a glass substrate for a magnetic disk.
 次に、第1研磨に用いる研磨スラリに含まれる遊離砥粒の粒度分布について説明する。なお、遊離砥粒の粒度分布は、レーザー回折・散乱法を用いる粒度分布測定装置により求めることができる。粒度分布は、後述するように滑らかな近似曲線を得るために、例えば、隣接する測定対象粒径の差分が、隣接するいずれかの粒径の20%以下となる分解能で計測することが好ましい。例えば、隣接する測定対象粒径との差分を測定対象粒径の10%以下とすることで、横軸を対数(Log)表示にしても十分な測定点を確保することができる。なお、測定粒径のピッチの最小値は、例えば1nmとすることができるが、全領域に渡って同じピッチで測定する必要はない。
 本実施形態において、第1研磨に用いる研磨スラリは、所定の分散媒(例えば水)と、分散媒に分散している遊離砥粒とを含み、分散媒に遊離砥粒を分散させる分散剤を必要に応じてさらに含む。
 本実施形態における遊離砥粒の粒度分布(相対頻度)は、粒径0.5μm~1.0μmの範囲にピーク(極大値)を有する。この極大値は相対頻度の最大値である。この極大値の頻度をy1とし、y1に対応する粒径をxとし、粒径xの2倍の粒径xの遊離砥粒の頻度をyとするとき、0.5≦y/y1<1であることが好ましい。
Next, the particle size distribution of the free abrasive grains contained in the polishing slurry used for the first polishing will be described. The particle size distribution of the free abrasive grains can be obtained by a particle size distribution measuring apparatus using a laser diffraction / scattering method. In order to obtain a smooth approximate curve as described later, for example, the particle size distribution is preferably measured with a resolution at which the difference between adjacent measurement target particle sizes is 20% or less of any adjacent particle size. For example, by setting the difference between adjacent measurement target particle sizes to 10% or less of the measurement target particle size, sufficient measurement points can be secured even when the horizontal axis is displayed in logarithm (Log). In addition, although the minimum value of the pitch of a measurement particle diameter can be 1 nm, for example, it is not necessary to measure with the same pitch over the whole area | region.
In this embodiment, the polishing slurry used for the first polishing includes a predetermined dispersion medium (for example, water) and free abrasive grains dispersed in the dispersion medium, and a dispersing agent that disperses the free abrasive grains in the dispersion medium. Further included if necessary.
The particle size distribution (relative frequency) of the free abrasive grains in this embodiment has a peak (maximum value) in the range of 0.5 μm to 1.0 μm. This local maximum is the maximum relative frequency. When this frequency maxima and y 1, the particle size corresponding to y 1 and x 1, the frequency of free abrasive grains of 2 times the particle size x n of the particle size x 1 and y n, 0.5 It is preferable that ≦ y n / y 1 <1.
 ここで、図1に示すように、遊離砥粒の粒径xに対する相対頻度yの粒度分布関数をf(x)とする。関数f(x)として、例えば、実際に計測した粒径x毎の頻度yを示す全てのデータ点に対して残差平方和が最小となるような補間多項式を近似式として用いてもよい。この場合、データ点との誤差が1/100以下となるようにすることが好ましい。また、各データ点間に個別の多項式(2回微分可能な3次以上の多項式)を用いたスプライン関数をf(x)として用いてもよい。
 このとき、xy座標平面における曲線y=f(x)は0.5μm≦x≦1.0μmの範囲にyの極大値y1を有する点P1(x,y)が存在し、y1はyの最大値である。xy座標平面における曲線y=f(x)はx>xの領域に3つの変曲点(x,y)、(x,y)、(x,y)(x<x<x<x、y=f(x)、y=f(x)、y=f(x))を有する。ここで、図1に示すように、x<x<xであることが好ましく、y>yかつy>yであることが好ましい。
 なお、変曲点とは、その点における曲線y=f(x)への接線が曲線y=f(x)と交差する点であり、曲線y=f(x)上で曲率の符号(2次導関数f’’(x)の符号)が変化する点である。
 x≦x≦xの範囲においてyが最大値(極大値)ylmをとる点をPlm(xlm,ylm)とするとき、ylmとyとの比ylm/yは0.5≦ylm/y<1である。
Here, as shown in FIG. 1, the particle size distribution function of the relative frequency y with respect to the particle size x of the free abrasive grains is defined as f (x). As the function f (x), for example, an interpolation polynomial that minimizes the residual sum of squares for all data points indicating the frequency y for each actually measured particle diameter x may be used as an approximate expression. In this case, it is preferable that the error from the data point is 1/100 or less. Also, a spline function using an individual polynomial (a third or higher order polynomial that can be differentiated twice) between each data point may be used as f (x).
At this time, the curve y = f (x) on the xy coordinate plane has a point P1 (x 1 , y 1 ) having a maximum value y 1 of y in the range of 0.5 μm ≦ x ≦ 1.0 μm, and y 1 Is the maximum value of y. curve y = f (x) is three inflection points in the region of x> x 1 in the xy coordinate plane (x 2, y 2), (x 3, y 3), (x 4, y 4) (x 1 <x 2 <x 3 <x 4, y 2 = f (x 2), y 3 = f (x 3), having a y 4 = f (x 4) ). Here, as shown in FIG. 1, <is preferably x n <x 3, y 2 > y n and y 3> x 2 is preferably y n.
The inflection point is a point where the tangent to the curve y = f (x) at that point intersects the curve y = f (x), and the sign of curvature (2 on the curve y = f (x)). The sign of the second derivative f ″ (x)) changes.
x 3 ≦ x ≦ x y is the maximum value in the range of 4 (maximum value) that takes the y lm P lm (x lm, y lm) when the ratio y lm / y 1 and y lm and y 1 Is 0.5 ≦ y lm / y 1 <1.
 上記の粒度分布を有する研磨スラリは、平均粒径が小さい第1の遊離砥粒群と、平均粒径が第1の遊離砥粒群よりも大きい第2の遊離砥粒群とを、必要に応じて分散剤とともに、所定の比率で混合することで得ることができる。
 例えば、粒子径が小さい側から遊離砥粒の相対頻度を累積した累積相対頻度が3%となる点の粒子径ds-3値が0.3μm以上、累積相対頻度が50%となる点の粒子径ds-50値が0.9μm~1.45μm、累積相対頻度が95%となる点の粒子径ds-95値が2.8μm以下の粒度分布を有する遊離砥粒群を第1の遊離砥粒群とする。また、ds-3値が0.32μm以上、ds-50値が0.5μm~0.8μm、ds-95値が1.0μm以下の粒度分布を有する遊離砥粒群を第2の遊離砥粒群とする。このとき、研磨液に含まれる遊離砥粒は、第2の遊離砥粒群の質量に対する、第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が1.0~2.0の範囲内となるように混合することで、上記の研磨スラリを得ることが好ましい。
 なお、第1の遊離砥粒群に含まれる遊離砥粒の組成と、第2の遊離砥粒群に含まれる遊離砥粒の組成は、実質的に同一であることが好ましい。
The polishing slurry having the above particle size distribution requires a first free abrasive grain group having a small average particle diameter and a second free abrasive grain group having an average particle diameter larger than that of the first free abrasive grain group. Accordingly, it can be obtained by mixing with a dispersant at a predetermined ratio.
For example, the particle diameter ds-3 at the point where the cumulative relative frequency of 3% of the cumulative relative frequency of the free abrasive grains from the smaller particle diameter becomes 0.3% is 0.3 μm or more, and the particle diameter at the cumulative relative frequency of 50%. A free abrasive group having a particle size distribution with a ds-50 value of 0.9 μm to 1.45 μm and a cumulative relative frequency of 95% and a particle size ds-95 value of 2.8 μm or less is defined as the first free abrasive group. . A free abrasive grain group having a particle size distribution with a ds-3 value of 0.32 μm or more, a ds-50 value of 0.5 μm to 0.8 μm, and a ds-95 value of 1.0 μm or less is defined as a second free abrasive grain group. At this time, the loose abrasive contained in the polishing liquid is a ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (mass of the first loose abrasive grain group / second loose grain). It is preferable to obtain the above polishing slurry by mixing so that the mass of the abrasive grains group is in the range of 1.0 to 2.0.
In addition, it is preferable that the composition of the free abrasive grains contained in the first free abrasive grain group and the composition of the free abrasive grains contained in the second free abrasive grain group are substantially the same.
 分散剤として、リン酸化合物や、種々の官能基を持つ高分子化合物を用いることができる。リン酸化合物は、例えば、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム、ピロリン酸カリウムなどを用いることができる。また、例えば、カルボン酸又はカルボン酸塩、スルホン酸又はスルホン酸塩等を官能基として持つ高分子化合物を分散剤として必要に応じて用いることができる。塩を形成する対カチオンはアルカリ金属イオンやアンモニウムイオン等から選択されうる。 As the dispersant, a phosphoric acid compound or a polymer compound having various functional groups can be used. As the phosphoric acid compound, for example, sodium hexametaphosphate, sodium pyrophosphate, potassium pyrophosphate and the like can be used. In addition, for example, a polymer compound having a carboxylic acid or a carboxylate salt, a sulfonic acid or a sulfonate salt as a functional group can be used as a dispersant as necessary. The counter cation that forms the salt may be selected from alkali metal ions, ammonium ions, and the like.
 第1の遊離砥粒群と第2の遊離砥粒群とは、事前に攪拌器を用いて混合した後にまとめて両面研磨装置に供給してもよい。また、第1の遊離砥粒群および第2の遊離砥粒群を別々に両面研磨装置に供給し、両面研磨装置への供給流路の途中で第2の遊離砥粒群の質量に対する、第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が1.0~2.0の範囲内となるように混合されるように供給量をそれぞれ調整してもよい。 The first loose abrasive grain group and the second loose abrasive grain group may be mixed in advance using a stirrer and then supplied to the double-side polishing apparatus. In addition, the first loose abrasive grain group and the second loose abrasive grain group are separately supplied to the double-side polishing apparatus, and the second loose abrasive grain group with respect to the mass of the second free abrasive grain group in the middle of the supply flow path to the double-side polishing apparatus, So that the ratio of the mass of one free abrasive grain group (the mass of the first free abrasive grain group / the mass of the second free abrasive grain group) is in the range of 1.0 to 2.0. The supply amount may be adjusted respectively.
 上記のような粒度分布の遊離砥粒を含む研磨スラリを用いてガラス基板の主表面を研磨することにより、粒径が大きな研磨粒子で研磨レートを高めるとともに、粒径が小さな研磨粒子を用いることでガラス基板の主表面の外周端部における隆起の発生を抑制することができる。
 ここで、第1の遊離砥粒群と前記第2の遊離砥粒群との質量比と、得られた遊離砥粒を含む研磨液を用いて主表面を研磨した後の主表面の外周端部の形状(隆起)を評価する端部形状評価値との相関関係を調べておき、調べた相関関係に基づいて、端部形状評価値が所望の範囲内に入るように、混合比を決定してもよい。
By polishing the main surface of the glass substrate using a polishing slurry containing free abrasive grains having a particle size distribution as described above, the polishing rate is increased with large abrasive particles, and abrasive particles with small particle sizes are used. Thus, the occurrence of bulges at the outer peripheral end of the main surface of the glass substrate can be suppressed.
Here, the outer peripheral edge of the main surface after polishing the main surface using the polishing liquid containing the obtained free abrasive grains and the mass ratio between the first free abrasive grains group and the second free abrasive grains group The correlation with the edge shape evaluation value for evaluating the shape (bump) of the part is examined, and the mixing ratio is determined based on the investigated correlation so that the edge shape evaluation value falls within the desired range. May be.
 図1に示す粒度分布の模式図では、x≦x≦xの範囲に極大値ylmをとる点Plm(xlm,ylm)もピークがあったが、本発明はこれに限らない。例えば、x≦x≦xの範囲に頻度のピーク(極大値)を有していなくてもよい。x≦x≦xの範囲におけるyの最大値ylmはyに等しくてもよい。また、x=xにおいて1次導関数f’(x)が0(f’(x)=0)となってもよいし、f’(x)<0となってもよい。 In the schematic diagram of the particle size distribution shown in FIG. 1, the point P lm (x lm , y lm ) having the maximum value y lm also has a peak in the range of x 3 ≦ x ≦ x 4 , but the present invention is not limited to this. Absent. For example, it is not necessary to have a frequency peak (maximum value) in the range of x 3 ≦ x ≦ x 4 . The maximum value y lm of y in the range of x 3 ≦ x ≦ x 4 may be equal to y 3 . Further, when x = x 3 , the first derivative f ′ (x) may be 0 (f ′ (x 3 ) = 0) or f ′ (x 3 ) <0.
 図2は遊離砥粒の粒度分布の他の一例を示す模式図である。図2に示す粒度分布では、x≦x≦xの範囲に頻度のピーク(極大値)を有しておらず、x≦x≦xの範囲におけるyの最大値ylmはyに等しい。
 図2に示す粒度分布では、曲線y=f(x)がP3とP4との間に極大値を有していない。すなわち、変曲点P3とP4との間においてy=f(x)の微分値の符号が負のまま変化していない。変曲点P3とP4との間において、曲線y=f(x)の形状は、いわゆる「肩」の形状となっている。すなわち、P3における曲線y=f(x)の傾きはP3とP4とを結ぶ線分の傾きよりも大きく、P4における曲線y=f(x)の傾きはP3とP4とを結ぶ線分の傾きよりも小さくなっており、変曲点P3とP4との間において、xの増加に伴って曲線y=f(x)の傾きがP3とP4とを結ぶ線分の傾きよりも大きい値から小さい値に変化している。このため、曲線y=f(x)はP3とP4とを結ぶ線分に対してy軸の正方向に隆起しているように見える。
 図2に示す粒度分布の遊離砥粒を含む研磨スラリを用いてガラス基板の主表面を研磨してもよい。
FIG. 2 is a schematic diagram showing another example of the particle size distribution of loose abrasive grains. The particle size distribution shown in FIG. 2, x 3 ≦ x ≦ x 4 ranging the frequency of the peak (maximum value) not not have a maximum value y lm range in the y of x 3xx 4 is y Equal to 3 .
In the particle size distribution shown in FIG. 2, the curve y = f (x) does not have a maximum value between P3 and P4. That is, the sign of the differential value y = f (x) remains negative between the inflection points P3 and P4. Between the inflection points P3 and P4, the shape of the curve y = f (x) is a so-called “shoulder” shape. That is, the slope of the curve y = f (x) at P3 is larger than the slope of the line segment connecting P3 and P4, and the slope of the curve y = f (x) at P4 is the slope of the line segment connecting P3 and P4. The slope of the curve y = f (x) between the inflection points P3 and P4 is smaller than a value larger than the slope of the line segment connecting P3 and P4 as x increases. The value has changed. Therefore, the curve y = f (x) appears to protrude in the positive direction of the y axis with respect to the line segment connecting P3 and P4.
The main surface of the glass substrate may be polished using a polishing slurry containing free abrasive grains having a particle size distribution shown in FIG.
 本件発明は、研磨直後において端部形状の隆起を小さくすることができるので、続けて取代の小さい第2研磨処理をする場合に特に有効である。これは、第2研磨処理でシリカ砥粒を用いる場合には、通常、主表面上の外周端部が後述するダレ形状となる傾向にあるためである。本件発明の研磨処理の後にシリカ研磨を行う場合、研磨取代は板厚換算で0.1~1.5μm以下であることが好ましい。こうすることで、生産コストをさらに低下させることが可能となる。 The present invention is particularly effective when the second polishing process with a small machining allowance is subsequently performed because the bulge of the end shape can be reduced immediately after polishing. This is because when the silica abrasive grains are used in the second polishing treatment, the outer peripheral end on the main surface tends to have a sagging shape to be described later. When silica polishing is performed after the polishing treatment of the present invention, the polishing allowance is preferably 0.1 to 1.5 μm or less in terms of plate thickness. By doing so, the production cost can be further reduced.
 以上、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this invention was demonstrated in detail, this invention is not limited to the said embodiment and Example, In the range which does not deviate from the main point of this invention, various improvement and a change are carried out. Of course.
 以下、本発明の実施例および比較例について説明する。
〔実施例1〕
 ds-3値が0.35μm以上、ds-50値が1.438μm、ds-95値が2.8μm以下の粒度分布を有する酸化セリウムの遊離砥粒を第1の遊離砥粒群(第一砥粒)とした。
 ds-3値が0.32μm以上、ds-50値が0.52μm、ds-95値が1.0μm以下の粒度分布を有する酸化セリウムの遊離砥粒を第2の遊離砥粒群(第二砥粒)とした。
 第2の遊離砥粒群の質量に対する、第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が1.0となるように、第1の遊離砥粒群と、第2の遊離砥粒群とを、質量比1:1で混合することで、表1に示す粒度分布を有する遊離砥粒を含む研磨液を得た。
Examples of the present invention and comparative examples will be described below.
[Example 1]
The free abrasive grains of cerium oxide having a particle size distribution with a ds-3 value of 0.35 μm or more, a ds-50 value of 1.438 μm, and a ds-95 value of 2.8 μm or less are the first free abrasive grains (first abrasive grains) It was.
Free abrasive grains of cerium oxide having a particle size distribution with a ds-3 value of 0.32 μm or more, a ds-50 value of 0.52 μm, and a ds-95 value of 1.0 μm or less are the second free abrasive grains (second abrasive grains) It was.
The ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (the mass of the first loose abrasive grain group / the mass of the second loose abrasive grain group) is 1.0. In addition, by mixing the first loose abrasive grain group and the second loose abrasive grain group at a mass ratio of 1: 1, a polishing liquid containing free abrasive grains having a particle size distribution shown in Table 1 was obtained. .
〔実施例2〕
 第2の遊離砥粒群の質量に対する、第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が1.5となるように、第1の遊離砥粒群と、第2の遊離砥粒群とを、質量比3:2で混合することで、研磨液を得た。
[Example 2]
The ratio of the mass of the first free abrasive grain group to the mass of the second free abrasive grain group (the mass of the first free abrasive grain group / the mass of the second free abrasive grain group) is 1.5. In addition, the first loose abrasive grain group and the second loose abrasive grain group were mixed at a mass ratio of 3: 2 to obtain a polishing liquid.
〔実施例3〕
 第2の遊離砥粒群の質量に対する、第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が2.0となるように、第1の遊離砥粒群と、第2の遊離砥粒群とを、質量比2:1で混合することで、研磨液を得た。
Example 3
The ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (the mass of the first loose abrasive grain group / the mass of the second loose abrasive grain group) is 2.0. In addition, a polishing liquid was obtained by mixing the first loose abrasive grain group and the second loose abrasive grain group at a mass ratio of 2: 1.
〔比較例1〕
 第2の遊離砥粒群のみを用いて研磨液を得た。
[Comparative Example 1]
A polishing liquid was obtained using only the second loose abrasive grain group.
〔比較例2〕
 第2の遊離砥粒群の質量に対する、第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が0.7となるように、第1の遊離砥粒群と、第2の遊離砥粒群とを、質量比0.7:1で混合することで、研磨液を得た。
[Comparative Example 2]
The ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (the mass of the first loose abrasive grain group / the mass of the second loose abrasive grain group) is 0.7. In addition, the first loose abrasive grain group and the second loose abrasive grain group were mixed at a mass ratio of 0.7: 1 to obtain a polishing liquid.
〔比較例3〕
  第2の遊離砥粒群の質量に対する、第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が2.3となるように、第1の遊離砥粒群と、第2の遊離砥粒群とを、質量比2.3:1で混合することで、表1に示す粒度分布を有する遊離砥粒を含む研磨液を得た。
[Comparative Example 3]
The ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (the mass of the first loose abrasive grain group / the mass of the second loose abrasive grain group) is 2.3. In addition, by mixing the first loose abrasive grain group and the second loose abrasive grain group at a mass ratio of 2.3: 1, a polishing liquid containing the loose abrasive grains having the particle size distribution shown in Table 1 is obtained. Obtained.
〔比較例4〕
 第1の遊離砥粒群のみを用いて研磨液を得た。
[Comparative Example 4]
A polishing liquid was obtained using only the first loose abrasive grain group.
〔評価〕
 実施例1~3および比較例1~4の研磨液に含まれる遊離砥粒の粒度分布をレーザー回折・散乱法を用いる粒度分布測定装置により求めた。粒径0.5~1.0μmの範囲における相対頻度が最大値yとなる粒径xを求めた。また、xの2倍の粒径xnにおける相対頻度ynを求め、両者の比yn/y1を計算した。
 得られた粒度分布の情報に基づき、遊離砥粒の粒径xに対する相対頻度yを、xの多項式に近似したところ、実施例1~3および比較例1のいずれの近似曲線も、x>xの領域において3つの変曲点を有していた。
 この変曲点のx座標をx、x、x(x<x<x<x)とし、x≦x≦xの範囲におけるyの最大値ylmおよびこのときの粒径xlmを求め、y1との比ylm/y1を求めた。
 x、xlm、yn/y1、ylm/y1について表1に示す。
[Evaluation]
The particle size distribution of the free abrasive grains contained in the polishing liquids of Examples 1 to 3 and Comparative Examples 1 to 4 was determined by a particle size distribution measuring apparatus using a laser diffraction / scattering method. The relative frequency in the range of particle size 0.5 ~ 1.0 .mu.m was determined a particle size x 1 as the maximum value y 1. Also, determine the relative frequency y n at twice the particle diameter x n of x 1, it was calculated the ratio of the two y n / y 1.
Based on the information on the obtained particle size distribution, the relative frequency y with respect to the particle size x of the loose abrasive grains was approximated by a polynomial of x. As a result, in any of the approximate curves of Examples 1 to 3 and Comparative Example 1, x> x One region had three inflection points.
The x coordinate of the inflection point is x 2 , x 3 , x 4 (x 1 <x 2 <x 3 <x 4 ), and the maximum value y lm of y in the range of x 3 ≦ x ≦ x 4 and at this time determined particle size x lm of, determine the ratio y lm / y 1 and y 1.
Table 1 shows x 1 , x lm , y n / y 1 , and y lm / y 1 .
 実施例1~3および比較例1~4の研磨液を用いて、円板状のガラス基板(直径65mm、板厚0.635mm)の第一研磨処理を行った。ガラス基板の主表面とスエードタイプの発泡ポリウレタン製の研磨パッドとの間に、上記の研磨液を供給しながら、研磨パッドをガラス基板の主表面に対して相対移動させることでガラス基板の主表面を研磨した。研磨荷重は100g/cmとした。研磨取代は30μmとした。 Using the polishing liquids of Examples 1 to 3 and Comparative Examples 1 to 4, a first glass substrate (diameter 65 mm, plate thickness 0.635 mm) was subjected to a first polishing treatment. While supplying the above polishing liquid between the main surface of the glass substrate and the suede type polyurethane foam polishing pad, the main surface of the glass substrate is moved relative to the main surface of the glass substrate. Polished. The polishing load was 100 g / cm 2 . The polishing allowance was 30 μm.
〔指標値A〕
 第一研磨処理後のガラス基板を洗浄後、外縁における端部形状を評価した。ここで端部形状の指標として、指標値Aを用いて評価した。指標値Aを算出するためには、まず、ガラス基板の中心点から外縁の任意の1点に向けて仮想直線を引き、その中心点から30mm離れた主表面上の位置(Z1とする。)と、31.5mm離れた主表面上の位置(Z2とする。)とを設定する。そして、Z1とZ2を結ぶ仮想直線Lに対して主表面のプロファイルが突出している場合には、ガラス基板の端部をダレ形状と定義し、その最大突出量(仮想直線からの最大距離)をプラス値で表す。逆に、仮想直線Lに対して主表面のプロファイルが凹んでいる場合には、ガラス基板の端部を隆起形状と定義し、その最大凹み量(仮想直線からの最大距離)をマイナス値で表す。指標値Aの測定には例えば光学式の表面形状測定装置を用いることができる。
 なお、1枚の円環状のガラス基板に対して、一方の面について90度間隔で4箇所、両面で合計8箇所について指標値Aを算出して平均した値を、当該円環状のガラス基板の指標値Aとした。指標値Aは、-20nm~0nmの範囲内であれば、実用上合格であり、-10nm~0nmの範囲内であればより好ましい。なお、指標値Aが0を超えてプラス側(ダレ形状側)となると、第二研磨後にダレ形状がさらに悪化する可能性があるので好ましくない。
 結果を表1に示す。
[Indicator value A]
After cleaning the glass substrate after the first polishing treatment, the end shape at the outer edge was evaluated. Here, evaluation was performed using the index value A as an index of the end shape. In order to calculate the index value A, first, a virtual straight line is drawn from the center point of the glass substrate toward an arbitrary point on the outer edge, and a position on the main surface 30 mm away from the center point (referred to as Z1). And a position (referred to as Z2) on the main surface separated by 31.5 mm. And when the profile of the main surface protrudes with respect to the virtual straight line L which connects Z1 and Z2, the edge part of a glass substrate is defined as a sagging shape, The maximum protrusion amount (maximum distance from a virtual straight line) is set. Expressed as a positive value. Conversely, when the profile of the main surface is recessed with respect to the imaginary straight line L, the end of the glass substrate is defined as a raised shape, and the maximum dent amount (maximum distance from the imaginary straight line) is represented by a negative value. . For example, an optical surface shape measuring device can be used to measure the index value A.
In addition, with respect to one annular glass substrate, the index value A was calculated and averaged at four locations on one side at intervals of 90 degrees and a total of eight locations on both sides, and the average value of the annular glass substrate was calculated. The index value was A. The index value A is practically acceptable if it is in the range of −20 nm to 0 nm, and more preferably in the range of −10 nm to 0 nm. In addition, it is not preferable that the index value A exceeds 0 and becomes the plus side (sagging shape side) because the sagging shape may be further deteriorated after the second polishing.
The results are shown in Table 1.
〔研磨速度〕
 第一研磨処理前の主表面に対する、第一研磨処理後の主表面の変位量を計測することで、研磨速度を計測した。実施例1の研磨速度を1としたときの相対値を表1に示す。
[Polishing speed]
The polishing rate was measured by measuring the amount of displacement of the main surface after the first polishing treatment relative to the main surface before the first polishing treatment. The relative values when the polishing rate of Example 1 is 1 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 実施例1~3では、研磨処理後のガラス基板の主表面の外周端部における隆起の発生を抑制することができた。また、実施例1~3では、研磨速度を高いレベルで維持することができた。
 一方、比較例1、2では、研磨処理後のガラス基板の主表面の外周端部がダレ形状となってしまうことがわかる。また、粒径が小さい第2の遊離砥粒群の比率が高いために、研磨速度が低下することがわかる。
 比較例3、4では、ガラス基板の研磨処理後の主表面の外周端部において隆起が発生した。本実施例の粒度分布を有する遊離砥粒を用いて研磨処理を行うことで、研磨処理後のガラス基板の主表面の外周端部における隆起の発生を抑制することができることがわかる。
In Examples 1 to 3, the occurrence of bulges at the outer peripheral edge of the main surface of the glass substrate after the polishing treatment could be suppressed. In Examples 1 to 3, the polishing rate could be maintained at a high level.
On the other hand, in Comparative Examples 1 and 2, it can be seen that the outer peripheral end portion of the main surface of the glass substrate after the polishing treatment has a sagging shape. It can also be seen that the polishing rate decreases because the ratio of the second loose abrasive grains having a small particle size is high.
In Comparative Examples 3 and 4, bumps occurred at the outer peripheral edge of the main surface after the glass substrate was polished. It turns out that generation | occurrence | production of the protrusion in the outer peripheral edge part of the main surface of the glass substrate after grinding | polishing processing can be suppressed by performing grinding | polishing processing using the loose abrasive grain which has a particle size distribution of a present Example.
〔実施例4、5〕
 上記の実施例1~3および比較例1~4とは異なる2種類の遊離砥粒群を適宜混合することで、表2に示すx、xlm、yn/y1、ylm/y1の値を示す粒度分布を有する遊離砥粒を含む研磨液を得た。
[Examples 4 and 5]
By appropriately mixing two types of loose abrasive grains different from those in Examples 1 to 3 and Comparative Examples 1 to 4, x 1 , x lm , y n / y 1 , y lm / y shown in Table 2 are used. A polishing liquid containing free abrasive grains having a particle size distribution showing a value of 1 was obtained.
 実施例1の研磨液および実施例4、5の研磨液を用いて円板状のガラス基板(直径65mm、板厚0.635mm)の第一研磨処理を行った。ガラス基板の主表面とスエードタイプの発泡ポリウレタン製の研磨パッドとの間に、上記の研磨液を供給しながら、研磨パッドをガラス基板の主表面に対して相対移動させることでガラス基板の主表面を研磨した。第一研磨処理および洗浄処理後のガラス基板100枚の表面を暗室内の集光ランプ下で目視検査することで、スクラッチとし、スクラッチの発生率を計算した。
 結果を表2に示す。
Using the polishing liquid of Example 1 and the polishing liquids of Examples 4 and 5, a disk-shaped glass substrate (diameter 65 mm, plate thickness 0.635 mm) was subjected to a first polishing process. While supplying the above polishing liquid between the main surface of the glass substrate and the suede type polyurethane foam polishing pad, the main surface of the glass substrate is moved relative to the main surface of the glass substrate. Polished. The surface of 100 glass substrates after the first polishing process and the cleaning process was visually inspected under a condensing lamp in a dark room to obtain scratches, and the occurrence rate of scratches was calculated.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 実施例4では100枚中1枚のガラス基板でスクラッチが発生したのに対し、実施例5および実施例1ではスクラッチが発生しなかった。実施例4と実施例5とを比較すると、yn/y1が0.5未満の場合には、スクラッチが発生しやすくなることがわかる。yn/y1が0.5未満であると、粒径の連続性が低くなるため、大粒径の砥粒のみに研磨荷重がかかりやすくなり、その結果、スクラッチが発生しやすくなると考えられる。
 なお、実施例4、5のガラス基板について指標値Aの評価を行ったところ、実施例1と同様であった。
In Example 4, scratches occurred on one of the 100 glass substrates, whereas in Examples 5 and 1, no scratches occurred. When Example 4 and Example 5 are compared, it can be seen that when y n / y 1 is less than 0.5, scratches are likely to occur. If y n / y 1 is less than 0.5, the continuity of the particle size becomes low, so that it is easy to apply a polishing load only to the large-diameter abrasive grains, and as a result, scratches are likely to occur. .
Note that the evaluation of the index value A for the glass substrates of Examples 4 and 5 was the same as that of Example 1.
〔実施例6〕
 研磨砥粒として酸化ジルコニウム(ZrO)を用いて、実施例1と同様のx、xlm、yn/y1、ylm/y1の値を示す粒度分布を有する遊離砥粒を含む研磨液を得た。
Example 6
Zirconium oxide (ZrO 2 ) is used as the abrasive grains, and free abrasive grains having a particle size distribution showing the values of x 1 , x lm , y n / y 1 , y lm / y 1 as in Example 1 are included. A polishing liquid was obtained.
〔実施例7〕
 研磨砥粒としてケイ酸ジルコニウム(ZrSiO)を用いて、実施例1と同様のx、xlm、yn/y1、ylm/y1の値を示す粒度分布を有する遊離砥粒を含む研磨液を得た。
Example 7
Free abrasive grains having a particle size distribution showing values of x 1 , x lm , y n / y 1 , y lm / y 1 as in Example 1 using zirconium silicate (ZrSiO 4 ) as abrasive grains A polishing liquid containing was obtained.
 実施例6および実施例7の研磨液を用いて第一研磨処理を行い、第一研磨処理前の主表面に対する、第一研磨処理後の主表面の変位量を計測することで、研磨速度を計測した。実施例1の研磨速度を1としたときの相対値を表3に示す。 The first polishing process is performed using the polishing liquids of Example 6 and Example 7, and the amount of displacement of the main surface after the first polishing process relative to the main surface before the first polishing process is measured, whereby the polishing rate is increased. Measured. Table 3 shows the relative values when the polishing rate of Example 1 is 1.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 研磨砥粒として酸化ジルコニウムを用いた実施例6の研磨液では、実施例1とほぼ同様の研磨速度であった。一方、研磨砥粒としてケイ酸ジルコニウムを用いた実施例7の研磨液では、実施例1よりも研磨速度が6%低下した。
 なお、実施例6、7のガラス基板について指標値Aの評価を行ったところ、実施例1と同様であった。
 研磨速度の観点からは、砥粒として酸化セリウムまたは酸化ジルコニウムを用いることが好ましいことがわかる。
In the polishing liquid of Example 6 using zirconium oxide as the polishing abrasive grains, the polishing rate was almost the same as that of Example 1. On the other hand, in the polishing liquid of Example 7 using zirconium silicate as the abrasive grains, the polishing rate was 6% lower than that of Example 1.
When the index value A was evaluated for the glass substrates of Examples 6 and 7, it was the same as Example 1.
From the viewpoint of the polishing rate, it is understood that cerium oxide or zirconium oxide is preferably used as the abrasive grains.

Claims (7)

  1.  ガラス基板の主表面と研磨パッドとの間に、遊離砥粒を含む研磨液を供給し、前記ガラス基板の主表面を研磨する研磨処理を有する、磁気ディスク用ガラス基板の製造方法であって、
     前記研磨液に含まれる遊離砥粒の粒径(μm)をx(x>0)とし、粒径xの砥粒の相対頻度(%)をyとし、yをxの関数f(x)とみなすとき、
    0.5μm≦x≦1.0μmの範囲にyの極大値y1が存在し、y1はyの最大値であり、
     y1に対応する粒径をxとするとき、xy座標平面における曲線y=f(x)はx>xの領域に少なくとも3つの変曲点P2(x、y)、P3(x、y)、P4(x、y)(x<x<x<x、y=f(x)、y=f(x)、y=f(x))を有し、
     x≦x≦xの範囲におけるyの最大値ylmとy1との比ylm/y1が0.5≦ylm/y1<1であることを特徴とする、磁気ディスク用ガラス基板の製造方法。
    A method for producing a glass substrate for a magnetic disk, comprising a polishing process for supplying a polishing liquid containing free abrasive grains between a main surface of a glass substrate and a polishing pad and polishing the main surface of the glass substrate,
    The particle size (μm) of the free abrasive grains contained in the polishing liquid is x (x> 0), the relative frequency (%) of the abrasive grains with the particle size x is y, and y is a function f (x) of x. When considering
    There is a maximum value y 1 of y in the range of 0.5 μm ≦ x ≦ 1.0 μm, and y 1 is the maximum value of y,
    When the particle size corresponding to y 1 is x 1 , the curve y = f (x) in the xy coordinate plane has at least three inflection points P2 (x 2 , y 2 ), P3 (in the region of x> x 1 x 3 , y 3 ), P 4 (x 4 , y 4 ) (x 1 <x 2 <x 3 <x 4 , y 2 = f (x 2 ), y 3 = f (x 3 ), y 4 = f (X 4 ))
    The ratio y lm / y 1 between the maximum value y lm and y 1 in the range of x 3 ≦ x ≦ x 4 is 0.5 ≦ y lm / y 1 <1. A method for producing a glass substrate.
  2.  前記xの2倍の粒径xの遊離砥粒の相対頻度をyとするとき、0.5≦y/y1<1であることを特徴とする、請求項1に記載の磁気ディスク用ガラス基板の製造方法。 Characterized in that when said relative frequencies of free abrasive grains of 2 times the particle size x n of x 1 and y n, it is 0.5 ≦ y n / y 1 < 1, according to claim 1 Manufacturing method of glass substrate for magnetic disk.
  3.  ガラス基板の主表面と研磨パッドとの間に、遊離砥粒を含む研磨液を供給し、前記ガラス基板の主表面を研磨する研磨処理を有する、磁気ディスク用ガラス基板の製造方法であって、
     体積分布の粒度分布にて、粒子径が小さい側から遊離砥粒の相対頻度を累積した累積相対頻度が50%となる点の粒子径ds-50値が0.9μm~1.4μmの粒度分布を有する遊離砥粒群を第1の遊離砥粒群とし、
     前記ds-50値が0.5μm~0.8μmの粒度分布を有する遊離砥粒群を第2の遊離砥粒群としたとき、
     前記研磨液に含まれる遊離砥粒は、前記第1の遊離砥粒群と前記第2の遊離砥粒群とを混合して得られ、
     前記第1の遊離砥粒群と前記第2の遊離砥粒群との質量比と、得られた遊離砥粒を含む研磨液を用いて前記主表面を研磨した後の前記主表面の外周端部の形状を評価する端部形状評価値との相関関係を調べておき、
     前記端部形状評価値が所望の範囲内に入るように、前記相関関係に基づいて、前記混合比を決定することを特徴とする、磁気ディスク用ガラス基板の製造方法。
    A method for producing a glass substrate for a magnetic disk, comprising a polishing process for supplying a polishing liquid containing free abrasive grains between a main surface of a glass substrate and a polishing pad and polishing the main surface of the glass substrate,
    The particle size distribution of the volume distribution has a particle size distribution with a particle diameter ds-50 value of 0.9 μm to 1.4 μm at a point where the cumulative relative frequency obtained by accumulating the relative frequency of the free abrasive grains from the smaller particle diameter side becomes 50%. Let the free abrasive grain group be the first free abrasive grain group,
    When the free abrasive grain group having a particle size distribution with the ds-50 value of 0.5 μm to 0.8 μm is defined as the second free abrasive grain group,
    The loose abrasive contained in the polishing liquid is obtained by mixing the first loose abrasive grain group and the second loose abrasive grain group,
    The outer peripheral edge of the main surface after polishing the main surface using a polishing liquid containing the obtained free abrasive grains and the mass ratio of the first free abrasive grain group and the second free abrasive grain group Check the correlation with the edge shape evaluation value to evaluate the shape of the part,
    The method of manufacturing a glass substrate for a magnetic disk, wherein the mixing ratio is determined based on the correlation so that the end shape evaluation value falls within a desired range.
  4.  前記研磨液に含まれる遊離砥粒は、前記第2の遊離砥粒群の質量に対する、前記第1の遊離砥粒群の質量の比(第1の遊離砥粒群の質量/第2の遊離砥粒群の質量)が1.0~2.0の範囲内となるように混合して得られる、請求項3に記載の磁気ディスク用ガラス基板の製造方法。 The loose abrasive contained in the polishing liquid is a ratio of the mass of the first loose abrasive grain group to the mass of the second loose abrasive grain group (mass of the first loose abrasive grain group / second loose grain). The method for producing a glass substrate for a magnetic disk according to claim 3, obtained by mixing so that the mass of the abrasive grain group) is in the range of 1.0 to 2.0.
  5.  前記遊離砥粒の主成分は、酸化セリウム又は酸化ジルコニウムから選択される1種類の砥粒である、請求項1~4のいずれか一項に記載の磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 4, wherein the main component of the free abrasive grains is one kind of abrasive grains selected from cerium oxide or zirconium oxide.
  6.  前記研磨処理は、前記遊離砥粒により前記ガラス基板の主表面を研磨する第1の研磨処理と、前記遊離砥粒とは異なる遊離砥粒を用いて前記第1の研磨処理後のガラス基板の主表面を研磨する第2の研磨処理を含み、
     前記第2の研磨処理に用いられる遊離砥粒はコロイダルシリカである、請求項1~5のいずれか一項に記載の磁気ディスク用ガラス基板の製造方法。
    The polishing process includes a first polishing process for polishing the main surface of the glass substrate with the free abrasive grains, and a free abrasive grain different from the free abrasive grains, and the glass substrate after the first polishing process. Including a second polishing process for polishing the main surface;
    The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 5, wherein the loose abrasive grains used in the second polishing treatment are colloidal silica.
  7.  遊離砥粒を含み、磁気ディスク用ガラス基板の主表面を研磨する研磨処理を行う際に、前記ガラス基板の主表面と研磨パッドとの間に供給される研磨液であって、
     前記研磨液に含まれる遊離砥粒の粒径(μm)をx(x>0)とし、粒径xの砥粒の相対頻度(%)をyとし、yをxの関数f(x)とみなすとき、
    0.5μm≦x≦1.0μmの範囲にyの極大値y1が存在し、y1はyの最大値であり、
     y1に対応する粒径をxとするとき、xy座標平面における曲線y=f(x)はx>xの領域に少なくとも3つの変曲点P2(x、y)、P3(x、y)、(x、y)(x<x<x<x、y=f(x)、y=f(x)、y=f(x))を有し、
     x≦x≦xの範囲におけるyの最大値ylmとy1との比ylm/y1が0.5≦ylm/y1<1であることを特徴とする、研磨液。
    A polishing liquid that is provided between the main surface of the glass substrate and the polishing pad when performing a polishing process that includes free abrasive grains and polishes the main surface of the glass substrate for magnetic disk,
    The particle size (μm) of the free abrasive grains contained in the polishing liquid is x (x> 0), the relative frequency (%) of the abrasive grains with the particle size x is y, and y is a function f (x) of x. When considering
    There is a maximum value y 1 of y in the range of 0.5 μm ≦ x ≦ 1.0 μm, and y 1 is the maximum value of y,
    When the particle size corresponding to y 1 is x 1 , the curve y = f (x) in the xy coordinate plane has at least three inflection points P2 (x 2 , y 2 ), P3 (in the region of x> x 1 x 3, y 3), ( x 4, y 4) (x 1 <x 2 <x 3 <x 4, y 2 = f (x 2), y 3 = f (x 3), y 4 = f ( x 4 ))
    A polishing liquid, wherein a ratio y lm / y 1 between a maximum value y lm and y 1 of y in a range of x 3 ≦ x ≦ x 4 is 0.5 ≦ y lm / y 1 <1.
PCT/JP2015/068926 2014-06-30 2015-06-30 Method for producing glass substrate for magnetic disc WO2016002825A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016531411A JP6063611B2 (en) 2014-06-30 2015-06-30 Manufacturing method of glass substrate for magnetic disk
CN201580025871.1A CN106463146B (en) 2014-06-30 2015-06-30 The manufacturing method of glass substrate for disc
MYPI2016704373A MY178448A (en) 2014-06-30 2015-06-30 Method for manufacturing magnetic-disk glass substrate
SG11201609794RA SG11201609794RA (en) 2014-06-30 2015-06-30 Method for manufacturing magnetic-disk glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014134045 2014-06-30
JP2014-134045 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002825A1 true WO2016002825A1 (en) 2016-01-07

Family

ID=55019355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068926 WO2016002825A1 (en) 2014-06-30 2015-06-30 Method for producing glass substrate for magnetic disc

Country Status (5)

Country Link
JP (1) JP6063611B2 (en)
CN (1) CN106463146B (en)
MY (1) MY178448A (en)
SG (1) SG11201609794RA (en)
WO (1) WO2016002825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088209A1 (en) * 2017-10-31 2019-05-09 Hoya株式会社 Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151563A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Production of magnetic disk
JP2010192041A (en) * 2009-02-18 2010-09-02 Fuji Electric Device Technology Co Ltd Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium manufactured by the method, and perpendicular magnetic recording medium
JP2013084336A (en) * 2011-09-30 2013-05-09 Hoya Corp Manufacturing method of glass substrate for magnetic disk, magnetic disk, and magnetic recording/reproducing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293552A (en) * 2007-05-22 2008-12-04 Fujitsu Ltd Substrate, magnetic recording medium, its manufacturing method, and magnetic storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151563A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Production of magnetic disk
JP2010192041A (en) * 2009-02-18 2010-09-02 Fuji Electric Device Technology Co Ltd Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium manufactured by the method, and perpendicular magnetic recording medium
JP2013084336A (en) * 2011-09-30 2013-05-09 Hoya Corp Manufacturing method of glass substrate for magnetic disk, magnetic disk, and magnetic recording/reproducing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088209A1 (en) * 2017-10-31 2019-05-09 Hoya株式会社 Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk
JPWO2019088209A1 (en) * 2017-10-31 2020-06-11 Hoya株式会社 Polishing liquid, glass substrate manufacturing method, and magnetic disk manufacturing method
JP2020128539A (en) * 2017-10-31 2020-08-27 Hoya株式会社 Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk
US11214713B2 (en) 2017-10-31 2022-01-04 Hoya Corporation Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk
JP7201639B2 (en) 2017-10-31 2023-01-10 Hoya株式会社 Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk
US11680187B2 (en) 2017-10-31 2023-06-20 Hoya Corporation Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk

Also Published As

Publication number Publication date
JP6063611B2 (en) 2017-01-18
CN106463146A (en) 2017-02-22
MY178448A (en) 2020-10-13
SG11201609794RA (en) 2016-12-29
CN106463146B (en) 2018-11-02
JPWO2016002825A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5592037B1 (en) Glass substrate for magnetic disk, magnetic disk
JP5967999B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2012090510A1 (en) Manufacturing method for glass substrate for magnetic disk, and manufacturing method for magnetic disk
JPWO2011125902A1 (en) Manufacturing method of glass substrate for magnetic disk
JP5768554B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP2018174005A (en) Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, glass substrate for information recording medium, and magnetic recording medium
JP7201639B2 (en) Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk
JP6063611B2 (en) Manufacturing method of glass substrate for magnetic disk
JP4858622B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP6099034B2 (en) Method for manufacturing glass substrate for magnetic disk, magnetic disk, and magnetic recording / reproducing apparatus
JP6307407B2 (en) Manufacturing method of glass substrate
JP2012000700A (en) Abrasive composition and method for polishing magnetic disk substrate
JP5759171B2 (en) Manufacturing method of glass substrate for hard disk
WO2013001722A1 (en) Method for producing hdd glass substrate
JP2008103062A (en) Process for producing glass substrate for magnetic disk and process for manufacturing magnetic disk
WO2012090655A1 (en) Method for producing glass substrate
JP6104668B2 (en) Method for manufacturing glass substrate for information recording medium and carrier
JP5706250B2 (en) Glass substrate for HDD
JP5722618B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
WO2014103284A1 (en) Method for producing glass substrate for information recording medium
JP2013012282A (en) Method for manufacturing glass substrate for hdd
WO2014156114A1 (en) Method for manufacturing glass substrate for information recording medium
JP2014194833A (en) Manufacturing method of magnetic disk glass substrate, manufacturing method of magnetic disk, and polishing liquid
WO2013001723A1 (en) Method for producing hdd glass substrate
WO2012086256A1 (en) Method of manufacturing glass substrate for recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815653

Country of ref document: EP

Kind code of ref document: A1