WO2016002680A1 - 形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法 - Google Patents

形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法 Download PDF

Info

Publication number
WO2016002680A1
WO2016002680A1 PCT/JP2015/068589 JP2015068589W WO2016002680A1 WO 2016002680 A1 WO2016002680 A1 WO 2016002680A1 JP 2015068589 W JP2015068589 W JP 2015068589W WO 2016002680 A1 WO2016002680 A1 WO 2016002680A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
seq
amino acid
transformant
acid sequence
Prior art date
Application number
PCT/JP2015/068589
Other languages
English (en)
French (fr)
Inventor
太志 原
修一郎 木村
哲也 小谷
崇之 田中
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP15814080.6A priority Critical patent/EP3162896B1/en
Priority to ES15814080T priority patent/ES2811926T3/es
Priority to JP2016531344A priority patent/JP6620373B2/ja
Priority to US15/316,005 priority patent/US20170253895A1/en
Publication of WO2016002680A1 publication Critical patent/WO2016002680A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01037Malate dehydrogenase (1.1.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01031Phosphoenolpyruvate carboxylase (4.1.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01001Pyruvate carboxylase (6.4.1.1)

Definitions

  • the present invention relates to a transformant and a method for producing the same, and a method for producing a C4 dicarboxylic acid (C4 dicarboxylic acid). More specifically, Schizosaccharomyces pombe (hereinafter also referred to as S. pombe), phosphoenolpyruvate carboxykinase (hereinafter also referred to as PCK) gene, pyryboxycarboxylase, pyruvate carboxylate.
  • PCK phosphoenolpyruvate carboxykinase
  • PYC pyruvate carboxylate
  • MDH malate dehydrogenase
  • the present invention relates to a method for producing C4 dicarboxylic acid to obtain C4 dicarboxylic acid.
  • Malic acid (HOOCCH (OH) CH 2 COOH) is a four-carbon dicarboxylic acid (C4 dicarboxylic acid), which is generally chemically synthesized from petroleum-derived raw materials or microbial fermentation from renewable feedstocks Manufactured commercially.
  • malic acid is produced as the main fermenting organism.
  • malic acid is produced by culturing Aspergillus flavus (Non-patent Document 1) and Penicillium sclerotiorum (Non-patent Document 2). A method is disclosed.
  • Patent Document 1 As a microorganism having improved malic acid production ability by gene recombination, for example, in Patent Document 1, by introducing a C4 dicarboxylic acid transporter into a filamentous fungus such as Aspergillus oryzae, It is described that C4 dicarboxylic acid production ability is improved.
  • Patent Document 2 also discloses that a PDC gene is deleted from Saccharomyces cerevisiae, and a PYC gene or a phosphoenolpyruvate carboxykinase (hereinafter also referred to as PCK gene) and MD gene. Malate is produced using a transformant introduced with a malate transporter protein gene.
  • Non-Patent Document 3 malic acid is produced from Saccharomyces cerevisiae using a transformant in which the PDC gene is deleted and the PYC gene, MDH gene, and malate transporter protein gene are introduced.
  • Patent Document 3 discloses that for Saccharomyces cerevisiae, the PDC enzyme gene, pyruvate kinase (PYK) gene, and hexokinase (HXK) gene are deleted, and the PYC gene, MDH gene, malate transporter protein gene, and PCK gene are deleted. Malate is produced using a transformant introduced with.
  • Non-Patent Document 4 describes a trait in which Escherichia coli has an improved ability to produce malic acid by deactivating a plurality of enzymes involved in pathways other than the pathway from pyruvate to malic acid production. Although a transformant is produced, it is disclosed that the malate enzyme gene maeB deletion strain and the non-deletion strain have a higher production rate of malic acid in the strain in which the maeB gene has not been deleted.
  • the maeB gene of E. coli is It corresponds to the pombe malate enzyme gene mae2.
  • the malic acid production rates of the transformants disclosed in Patent Documents 1 to 3 and Non-Patent Documents 3 to 4 are both less than 1.0 g / (L ⁇ h), and the malic acid-producing ability is higher. Development of microorganisms is desired.
  • An object of the present invention is to provide a transformant of Schizosaccharomyces pombe which has an excellent ability to produce C4 dicarboxylic acid by microbial fermentation from a renewable feedstock, and a method for producing the transformant. Moreover, it aims at the method of manufacturing C4 dicarboxylic acid including malic acid using the said transformant.
  • the transformant according to the present invention has Schizosaccharomyces pombe as a host, and is incorporated with one or more foreign genes selected from the group consisting of a phosphoenolpyruvate carboxykinase gene and a pyruvate carboxylase gene.
  • the malate dehydrogenase gene is a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOs: 17 to 21, represented by any one of SEQ ID NOs: 17 to 21.
  • a polypeptide having an amino acid sequence in which one or several amino acids are substituted, added, or deleted, and having malate dehydrogenase activity or represented by any of SEQ ID NOs: 17 to 21
  • a gene that encodes a polypeptide comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence and having malate dehydrogenase activity is preferred.
  • the malate enzyme gene is deleted or inactivated.
  • At least one exogenous phosphoenolpyruvate carboxykinase gene or exogenous pyruvate carboxylase gene and one exogenous malate dehydrogenase gene are incorporated, respectively, and the pdc2 gene and It is preferred that any malic enzyme gene is deleted or inactivated.
  • the foreign gene is integrated into the host chromosome.
  • the transformant is cultured in a culture solution, and the C4 dicarboxylic acid is obtained from the cultured transformant or culture supernatant. It is characterized by that.
  • the C4 dicarboxylic acid is preferably malic acid or oxaloacetic acid.
  • the transformant of Schizosaccharomyces pombe according to the present invention can produce C4 dicarboxylic acid such as malic acid at an unprecedented high production rate.
  • the transformant can be easily obtained by the method for producing a transformant according to the present invention.
  • the manufacturing method of C4 dicarboxylic acid which concerns on this invention can manufacture C4 dicarboxylic acid with high productivity by microbial fermentation.
  • FIG. 1 is a block diagram of a single locus integrated recombinant vector pSMh.
  • FIG. 2 is a diagram showing the relative values of PYC expression levels of 16 transformants introduced with the PYC gene.
  • FIG. 3 is a graph showing the relative PYC activity (mU / mL) per enzyme solution of the 8 transformants introduced with the PYC gene.
  • FIG. 4 is a diagram showing the relative values of the MDH expression levels of the five types of transformants introduced with the MDH gene.
  • FIG. 5 is a diagram showing the relative MDH activity (mU / mL) per enzyme solution of the three transformants introduced with the MDH gene.
  • FIG. 1 is a block diagram of a single locus integrated recombinant vector pSMh.
  • FIG. 2 is a diagram showing the relative values of PYC expression levels of 16 transformants introduced with the PYC gene.
  • FIG. 3 is a graph showing the relative PYC activity (mU / mL)
  • FIG. 6 is a graph showing changes over time in the glucose concentration (g / L), ethanol concentration (g / L), and malic acid concentration (g / L) of the wild strain (ARC010 strain).
  • FIG. 7 is a graph showing changes over time in the glucose concentration (g / L), ethanol concentration (g / L), and malic acid concentration (g / L) of the ASP4590 strain ( ⁇ pdc2).
  • FIG. 8 is a graph showing changes over time in the glucose concentration (g / L), ethanol concentration (g / L), and malic acid concentration (g / L) of ASP4491 strain ( ⁇ pdc2, + ScePYC, + DacMDH). .
  • FIG. 9 is a graph showing changes over time in the glucose concentration (g / L), ethanol concentration (g / L), and malic acid concentration (g / L) of the ASP4964 strain ( ⁇ pdc2, ⁇ mae2, + ScePYC, + DacMDH). It is.
  • FIG. 10 is a graph showing changes over time in the glucose concentration (g / L), ethanol concentration (g / L), and malic acid concentration (g / L) of the ASP4933 strain ( ⁇ pdc2, ⁇ fum1, + ScePYC, + DacMDH). It is.
  • FIG. 10 is a graph showing changes over time in the glucose concentration (g / L), ethanol concentration (g / L), and malic acid concentration (g / L) of the ASP4933 strain ( ⁇ pdc2, ⁇ fum1, + ScePYC, + DacMDH). It is.
  • FIG. 11 is a graph showing changes in glucose concentration (g / L) and malic acid concentration (g / L) over time in culture solutions of the ASP4491 strain and the ASP4892 strain.
  • FIG. 12 is a diagram showing the relative values of the PCK expression levels of 20 transformants into which the PCK gene was introduced.
  • the transformant according to the present invention uses Schizosaccharomyces pombe as a host and incorporates one or more foreign genes selected from the group consisting of a phosphoenolpyruvate carboxykinase (PCK) gene and a pyruvate carboxylase (PYC) gene. And a part of the gene group encoding pyruvate decarboxylase of the Schizo Saccharomyces pombe host is deleted or inactivated.
  • PCK phosphoenolpyruvate carboxykinase
  • PYC pyruvate carboxylase
  • a foreign gene is not a structural gene originally possessed by a host (a structural gene contained in a chromosome of a natural host before transformation), but a transformation operation, etc.
  • Means the structural gene introduced by A gene introduced by a transformation operation or the like is a foreign gene in the present invention even if it is a gene originally possessed by the host.
  • Oxaloacetic acid is a kind of C4 dicarboxylic acid. In Pombe, it is important as a raw material for the synthesis of other C4 dicarboxylic acids such as malic acid. Wild type S. In Pombe, oxaloacetic acid is mainly synthesized by PYC via pyruvate via a pathway directly synthesized by phosphoenolpyruvate by PCK. Therefore, by increasing PCK activity and PYC activity, It is expected that the production amount of pombe oxaloacetate can be increased.
  • pyruvic acid is important in ethanol fermentation, and pyruvic acid is converted to acetaldehyde by pyruvic acid decarboxylase, and then the acetaldehyde is converted to ethanol by alcohol dehydrogenase. That is, since pyruvic acid is a raw material for ethanol fermentation, it is necessary not only to increase PCK activity and PYC activity but also to suppress ethanol fermentation in order to increase the production amount of oxaloacetate.
  • the transformant according to the present invention incorporates at least one foreign gene of the PCK gene and the PYC gene, and in addition to the improvement of at least one of the PCK activity and the PYC activity, the transformant contains pyruvate decarboxylase. A part of the encoded gene group is deleted or inactivated, and the efficiency of ethanol fermentation is reduced.
  • the transformant according to the present invention is suppressed in ethanol fermentation and has a large amount of pyruvic acid that can be used as a substrate for PYC. Therefore, the transformant is excellent in oxaloacetic acid production and is synthesized from oxaloacetate. It is also excellent in the ability to produce C4 dicarboxylic acid.
  • malic acid is aerobically produced from pyruvic acid through acetyl CoA, citric acid, succinic acid, etc., and then fumaric acid is hydrolyzed by fumarate dehydrase.
  • oxaloacetate is produced anaerobically by PYC, and produced from malate dehydrogenase (MDH) from oxaloacetate. Since the transformant according to the present invention has an increased production amount of oxaloacetate, the malic acid production ability is also high.
  • At least one PCK gene or at least one PYC gene is introduced as a foreign gene into the transformant according to the present invention.
  • the number of PYC genes to be introduced is not limited to one and may be two or more. The more foreign genes that are introduced, the more transformants with higher PYC activity can be obtained.
  • PYC genes When two or more PYC genes are introduced, the same type of PYC gene may be introduced, or two or more types of PYC genes may be introduced. Similarly, one PCK gene may be introduced into the transformant according to the present invention, or two or more of the same or different types of PCK genes may be introduced.
  • transformants according to the present invention in order to obtain a transformant having particularly high malic acid production ability, it is preferable to increase the MDH activity and suppress the degradation of malic acid.
  • one or more foreign MDH genes have been incorporated into the pombe, and one of the genes that encode pyruvate decarboxylase
  • a transformant in which the malate enzyme gene is deleted or inactivated in addition to the part is preferred.
  • at least one of the PCK gene and the PYC gene and an exogenous gene of the MDH gene are incorporated, and at least one of the PCK activity and the PYC activity and the MDH activity are improved.
  • a part of the gene group encoding acid decarboxylase is deleted or inactivated, and the efficiency of ethanol fermentation is reduced. That is, since the transformant promotes malic acid fermentation while suppressing ethanol fermentation, it is excellent in malic acid production ability.
  • one MDH gene may be introduced into the transformant according to the present invention, and the same or Two or more heterologous MDH genes may be introduced.
  • At least one PCK gene, at least one PYC gene, and at least one MDH gene are introduced as foreign genes.
  • foreign genes such as PCK gene, PYC gene and MDH gene, malic acid production ability is further improved.
  • Pombe is a yeast belonging to the genus Schizosaccharomyces (fission yeast), and is a microorganism particularly excellent in acid resistance compared to other yeasts.
  • a gene encoding pyruvate decarboxylase in Pombe includes a gene encoding pyruvate decarboxylase 1 (hereinafter referred to as “PDC1 gene”).
  • a gene encoding pyruvate decarboxylase 2 (hereinafter referred to as “PDC2 gene”), a gene encoding pyruvate decarboxylase 3 (hereinafter referred to as “PDC3 gene”), pyruvate decarboxylase
  • PDC4 gene A gene encoding pyruvate decarboxylase 2 (hereinafter referred to as “PDC2 gene”), a gene encoding pyruvate decarboxylase 3 (hereinafter referred to as “PDC3 gene”), pyruvate decarboxylase
  • PDC4 gene There are four types of genes encoding 4 (hereinafter referred to as “PDC4 gene”). In particular, S.M. In Pombe, the PDC2 gene and the PDC4 gene are PDC genes having major functions.
  • the system name of each PDC gene is as follows. PDC1 gene (pdc1); SPAC13A11.06 PDC2 gene (pdc2); SPAC1F8.07c PDC3 gene (pdc3); SPAC186.09 PDC4 gene (pdc4); SPAC3G9.11c
  • the sequence data of the PDC gene is the S.P. It can be obtained by searching by gene name or strain name from the Pombe gene database.
  • the transformant according to the present invention has a chromosome in which a part of the gene group encoding the pyruvate decarboxylase is deleted or inactivated. Since a part of the PDC gene group of the transformant is deleted or inactivated, the efficiency of ethanol fermentation of the transformant is reduced, and the amount of pyruvic acid converted to ethanol is reduced. The productivity of C4 dicarboxylic acid including the first is improved. However, if the PDC gene group is completely deleted or inactivated, ethanol fermentation cannot be performed at all and growth is inhibited. Therefore, deletion or inactivation is a part of the PDC gene group.
  • the PDC gene to be deleted or inactivated is particularly preferably a PDC2 gene.
  • the PDC2 gene is a PDC gene having a particularly major function.
  • S. The amino acid sequence of PDC2 (SpoPDC2) encoded by the Pombe PDC2 gene is shown in SEQ ID NO: 22.
  • deletion or inactivation of the PDC gene reduces the ethanol fermentation ability and improves the fermentation efficiency of C4 dicarboxylic acid while leaving the ethanol fermentation ability necessary for growth and obtaining a sufficient amount of transformant.
  • mae gene a gene encoding malate enzyme 2 (hereinafter referred to as “mae2 gene”).
  • the system name of the mae2 gene is as follows. mae2 gene (mae2); SPCC 794.12c
  • the sequence data of the mae2 gene is the S.P. It can be obtained by searching by gene name or strain name from the Pombe gene database.
  • S. SEQ ID NO: 23 shows the amino acid sequence of mae2 (Spomae2) encoded by the pombe mae2 gene.
  • Deletion and inactivation of the PDC gene and the mae2 gene can be performed by known methods.
  • the PDC gene or the like can be deleted by using the Latour method (described in Nucleic Acids Research, 2006, 34, e11, International Publication No. 2007/063919).
  • the PDC gene or the like can be inactivated by causing deletion, insertion, substitution or addition to a part of the base sequence of the PDC gene or the like. Mutation due to deletion, insertion, substitution, or addition may cause only one of them, or may cause two or more.
  • a known method can be used. For example, mutation isolation method using a mutation agent (Yeast Molecular Genetics Experimental Method, 1996, Society Press Center) and random mutation method using PCR (Polymerase Chain Reaction) (Volume 2 of PCR Methods Application, 28-33 pages, 1992).
  • the PDC gene into which a mutation has been partially introduced may express a temperature-sensitive mutant pyruvate decarboxylase.
  • a temperature-sensitive mutant pyruvate decarboxylase is an enzyme that exhibits the same activity as wild-type pyruvate decarboxylase at a certain culture temperature, but loses or decreases its activity at a specific culture temperature or higher. It is.
  • Mutant strains expressing mutant pyruvate decarboxylase show the same growth rate as wild-type yeast under conditions where activity is not limited by temperature, and the growth rate is significantly higher under specific temperature conditions where activity is limited. It is obtained by selecting the one that decreases.
  • the mae2 gene into which a mutation has been partially introduced may express a temperature-sensitive mutant mae2.
  • deletion or inactivation of a gene does not mean only the deletion or inactivation of a structural gene. If the structural gene is deleted, of course, even if the protein encodes a protein, or if the protein is not an active enzyme even if the protein is expressed, it means that the gene is inactivated To do.
  • the gene of the structural region of the gene does not express a protein in the structural region of the gene even if the structural region of the gene encodes an active enzyme, the gene encoding the regulatory region is deleted or its sequence is mutated. Means “deleted or inactivated”. Therefore, the PDC gene or mae2 gene to be deleted or inactivated may be either the structural region or the regulatory region of the PDC gene or mae2 gene, or both.
  • PYC gene introduced as a foreign gene into the transformant according to the present invention examples include S. cerevisiae. It may be a structural gene that can express a protein that exhibits PYC activity when introduced into pombe, and may be a PYC gene derived from any species.
  • PYC encoded by the PYC gene introduced as a foreign gene examples include PYC (AniPYC) (AC. No .: CAC19838.1.) (SEQ ID NO: 1) derived from Aspergillus niger (SEQ ID NO: 1), Brevibacillus PYC (SEQ ID NO: 2) derived from BbrPYC (Brevibacillus brevis), PYC (DhaPYC) derived from Debaryomyces hansenii (AC. No .: CAG8615.
  • Candida tropicalis derived from Candida tropicalis EER35520.1.
  • SEQ ID NO: 9 PYC (NcaPYC) derived from Naumovozyma castellii (NcaPYC) ( C. No .: CCC 71457.1.)
  • SEQ ID NO: 10 PYC (NdaPYC) (AC.
  • the PYC gene comprises a polypeptide having an amino acid sequence in which one or several amino acids of these PYC amino acid sequences (SEQ ID NOs: 1 to 16) are substituted, added, or deleted, and having PYC activity. It may be a gene.
  • the PYC gene has a sequence identity of 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more with these PYC amino acid sequences (SEQ ID NOs: 1 to 16). It may be a gene consisting of an amino acid sequence and encoding a polypeptide having PYC activity.
  • AC No. means an accession number of the database GenBank of NCBI (National Center for Biotechnology Information).
  • severe amino acids means 2 to 20 amino acids, preferably 2 to 10 amino acids.
  • the PYC gene introduced into the transformant according to the present invention is a gene encoding BbrPYC, KlaPYC, LelPYC, PYC derived from Saccharomyces cerevisiae, ScePYC, SpoPYC, or PYC having the same or similar amino acid sequence to TblPYC It is preferable.
  • polypeptide consisting of the amino acid sequence of SEQ ID NOs: 2, 4-7, 12-14, one or several amino acids of the amino acid sequence of SEQ ID NOs: 2, 4-7, 12-14 are substituted, added, Or a polypeptide having a deleted amino acid sequence and having PYC activity, or an amino acid sequence having 80% or more sequence identity with the amino acid sequences of SEQ ID NOs: 2, 4 to 7, 12 to 14, and PYC activity
  • a gene encoding a polypeptide having is preferred.
  • a polypeptide comprising SEQ ID NO: 7 a polypeptide comprising an amino acid sequence in which one or several amino acids of the amino acid sequence of SEQ ID NO: 7 are substituted, added or deleted, and having PYC activity, or SEQ ID NO: 7 More preferred is a gene consisting of an amino acid sequence having 80% or more sequence identity to the amino acid sequence and encoding a polypeptide having PYC activity.
  • the polypeptide consisting of SEQ ID NO: 7, or one of the amino acid sequences of SEQ ID NO: 7 or A polypeptide having an amino acid sequence in which several amino acids are substituted, added, or deleted and having PYC activity is more preferable.
  • MDH gene introduced as a foreign gene into the transformant according to the present invention examples include S. cerevisiae. Any structural gene may be used as long as it can express a protein that exhibits MDH activity when introduced into pombe, and may be an MDH gene derived from any species.
  • MDH encoded by the MDH gene introduced as a foreign gene examples include MDH (AfuMDH) (SEQ ID NO: 17) derived from Archaeoglobus fulgidus and MDH (Cligibacter litoralis) derived from MDH (Cligibacter litoralis). ) (SEQ ID NO: 18), MDH (DacMDH) derived from Delftia acidovorans (SEQ ID NO: 19), MDH (HelMDH) derived from Halomonas elongata (SEQ ID NO: 20), or Schwanella Putrepha MDH (SpuMDH) derived from Shewanella pu Economicsaciens ( Column number 21), and the like.
  • the MDH gene encodes a polypeptide having an amino acid sequence in which one or several amino acids of these amino acid sequences (SEQ ID NOs: 17 to 21) are substituted, added, or deleted, and having MDH activity. It may be a gene. Further, the MDH gene has a sequence identity of 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more with these MDH amino acid sequences (SEQ ID NOs: 17 to 21). It may be a gene consisting of an amino acid sequence and encoding a polypeptide having MDH activity.
  • the MDH gene to be introduced into the transformant according to the present invention is preferably a gene encoding MDH having the same amino acid sequence as that of CliMDH, DacMDH, or HelMDH.
  • a polypeptide comprising the amino acid sequence of SEQ ID NOs: 18 to 20
  • a polypeptide comprising an amino acid sequence in which one or several amino acids of these amino acid sequences are substituted, added or deleted, and having MDH activity
  • a gene consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequences of SEQ ID NOs: 18 to 20 and encoding a polypeptide having MDH activity is preferable.
  • PCK gene introduced as a foreign gene into the transformant according to the present invention examples include S. cerevisiae. It may be a structural gene that can express a protein that exhibits PCK activity when introduced into pombe, and may be a PCK gene derived from any species.
  • PCK encoded by the PCK gene introduced as a foreign gene examples include Candida glabrata-derived PCK (CglPCK) (AC. No .: CAG60019.1) (SEQ ID NO: 94), Citrobacter coseri PCK (CkoPCK) (AC.No .: KGY18702.1) (SEQ ID NO: 95) derived from (Cirobacter koseri), PCK (CsaPCK) (AC.No .: EGL73852.1) derived from Cronobacter sakazaki (SEQ ID NO: 96), PCK derived from Debaryomyces hansenii (DhaPCK) (AC.
  • PCK PcaPCK
  • PlePCK PCK
  • SEQ ID NO: 103 derived from Photobacterium leiognathi
  • PCK PrePCK
  • PrePCK Providencia rettgeri
  • SEQ ID NO: 104 PCK derived from Saccharomyces cerevisiae
  • SEQ ID NO: 105 PCK derived from Serratia odorifera ( SodPCK) (Ac.
  • the PCK gene encodes a polypeptide having an amino acid sequence in which one or several amino acids of these PCK amino acid sequences (SEQ ID NOs: 94 to 113) are substituted, added, or deleted, and having PCK activity. It may be a gene. Furthermore, the PCK gene has a sequence identity of 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more with the amino acid sequence of these PCKs (SEQ ID NOs: 94 to 113). It may be a gene consisting of an amino acid sequence and encoding a polypeptide having PCK activity.
  • PCK, PYC, and MDH exhibiting high activity include PCK derived from Escherichia coli (EcoPCK) (AC.No .: AAA58200.1) (SEQ ID NO: 154), PYC derived from chicken (Gallus gallus). (GglPYC) (AC.No.:AAM92771.1.) (SEQ ID NO: 155) and MDH (EcoMDH) derived from Escherichia coli (AC.No.:AAA58038.1) (SEQ ID NO: 156) are known It has been.
  • the transformant according to the present invention includes S. cerevisiae in which a part of the PDC gene group has been deleted or inactivated. It can be obtained by using a pombe as a host and introducing at least one foreign gene of the PCK gene and the PYC gene into the host by a genetic engineering method. In addition, S. as a host. A transformant according to the present invention is obtained by deleting or inactivating a part of the PDC gene group of a transformant in which at least one of the PCK gene and the PYC gene is introduced into the pombe by a genetic engineering method. You can also
  • those in which an exogenous MDH gene has been introduced and the mae2 gene has also been deleted include those in which a part of the PDC gene group has been deleted or inactivated.
  • a pombe as a host, at least one foreign gene of the PCK gene and the PYC gene and at least one foreign MDH gene are introduced into the host by a genetic engineering method, and the mae2 gene of the host is deleted or lost. It is obtained by making it live.
  • a part of the PDC gene cluster has been deleted or inactivated.
  • the pombe is used as a host and the mae2 gene of the host is deleted or inactivated, at least one foreign gene of PCK gene and PYC gene and at least one foreign MDH gene may be incorporated by a genetic engineering method.
  • a method for producing a transformant will be described by taking as an example a method of deleting or inactivating the mae2 gene after introducing a PYC gene and an MDH gene into a pombe as a host.
  • the pombe may be a wild type or a mutant type in which a specific gene is deleted or inactivated depending on the use.
  • a known method can be used as a method for deleting or inactivating a specific gene. Specifically, the gene can be deleted by using the Latour method.
  • the gene can be inactivated by introducing a mutation into a part of the gene.
  • yeasts belonging to the genus Schizosaccharomyces from which a specific gene has been deleted or inactivated are described in, for example, WO 2002/101038 and WO 2007/015470.
  • the part that deletes or inactivates a specific gene may be an ORF (open reading frame) part or an expression regulatory sequence part.
  • a particularly preferred method is a method of deletion or inactivation by a PCR-mediated homologous recombination method (Yeast, Vol. 14, pages 943-951, 1998) in which the ORF portion of the structural gene is replaced with a marker gene.
  • a mutant in which the PDC gene is deleted or inactivated can be preferably used as a host for producing the transformant according to the present invention. Furthermore, in addition to the PDC gene, a specific gene other than the PDC gene was deleted or inactivated. Pombe can be the host. Deletion or inactivation of a protease gene or the like can increase the expression efficiency of a heterologous protein, and application to a host in the present invention can be expected to improve the production efficiency of C4 dicarboxylic acids such as malic acid.
  • S. is used as a host. It is preferable to use a pombe having a marker for selecting a transformant. For example, it is preferable to use a host in which a specific nutritional component is essential for growth because a certain gene is missing. When a transformant is produced by transforming with a vector containing the target gene sequence, by incorporating this missing gene (an auxotrophic complementary marker) into the vector, the transformant is required for host nutrition. Sex disappears. Due to the difference in auxotrophy between the host and the transformant, a transformant can be obtained by distinguishing the two.
  • ura4 gene S. cerevisiae that requires uracil due to deletion or inactivation of the orotidine phosphate decarboxylase gene (ura4 gene).
  • a transformant in which the vector has been incorporated can be obtained by selecting those that have lost uracil requirement.
  • the gene that becomes auxotrophic due to deletion in the host is not limited to the ura4 gene as long as it is used for selection of transformants, and may be an isopropylmalate dehydrogenase gene (leu1 gene) or the like.
  • ⁇ Foreign gene introduction method> As a method for introducing a foreign gene into a host by a genetic engineering method, a known method can be used. S. Examples of methods for introducing a structural gene of a heterologous protein into pombe as a host include, for example, Japanese Patent Application Laid-Open No. 5-15380, International Publication No. 95/09914, Japanese Patent Application Laid-Open No. 10-234375, Japan The methods described in JP-A No. 2000-262284, JP-A No. 2005-198612, International Publication No. 2011/021629 can be used.
  • An expression cassette is a combination of DNAs necessary for expressing a target protein, and includes a structural gene encoding the target protein, a promoter functioning in the host, and a terminator.
  • the expression cassette used in the production of the transformant according to the present invention is one of the PYC gene and the MDH gene, A promoter that functions in Pombe Including a terminator that functions within the pombe.
  • the expression cassette may contain one or more of 5'-untranslated region and 3'-untranslated region. Furthermore, the auxotrophic complementary marker may be included. Multiple expression genes may be present in one expression cassette. The number of foreign genes in one expression cassette is preferably 1-8, and more preferably 1-5.
  • Preferred expression cassettes are those comprising one or more PYC and MDH genes, promoters, terminators, 5'-untranslated regions, 3'-untranslated regions, auxotrophic complementary markers.
  • the PYC gene and the MDH gene may be introduced into the host by separate expression cassettes, or both genes may be introduced into the host by one expression cassette.
  • the expression cassette containing the PYC gene and the MDH gene include an expression cassette having a promoter, PYC gene, cleavage sequence, auxotrophic complementary marker (for example, Ura4 gene), MDH gene, and terminator from the 5 ′ end side. preferable.
  • the gene encoded by the wild type may be used as it is.
  • the wild type gene sequence was transformed into S. cerevisiae. It may be modified to a codon frequently used in pombe.
  • S. Examples of promoters that function in pombe include S. cerevisiae. Pombe's inherent promoter (preferably having high transcription initiation activity) or S.
  • a promoter eg, a virus-derived promoter
  • Two or more promoters may be present in the vector.
  • promoters inherent to Pombe include alcohol dehydrogenase gene promoter, nmt1 gene promoter involved in thiamine metabolism, fructose-1, 6-bisphosphatase gene promoter involved in glucose metabolism, and invertase gene involved in catabolite repression. Examples include promoters (see International Publication No. 99/23223), heat shock protein gene promoters (see International Publication No. 2007/26617), and the like.
  • promoters that Pombe does not originally have are derived from animal cell viruses described in, for example, Japanese Patent Application Laid-Open No. 5-15380, Japanese Patent Application Laid-Open No. 7-163373, and Japanese Patent Application Laid-Open No. 10-234375. And hCMV promoter and SV40 promoter are preferable.
  • S. Pombe's inherent terminator and S.P. A terminator that Pombe does not have can be used. Two or more terminators may be present in the vector. Examples of the terminator include human-derived terminators described in Japanese Patent Application Laid-Open No. 5-15380, Japanese Patent Application Laid-Open No. 7-163373, and Japanese Patent Application Laid-Open No. 10-234375. The rutin I terminator is preferred.
  • the transformant according to the present invention has an expression cassette containing a foreign gene in the chromosome or as an extrachromosomal gene. Having an expression cassette in the chromosome means that the expression cassette is incorporated at one or more positions in the chromosome of the host cell, and having as an extrachromosomal gene means having a plasmid containing the expression cassette in the cell. That is.
  • a transformant containing each expression cassette is used as a host using a vector containing each expression cassette. It is obtained by transforming pombe.
  • the vector can be produced by incorporating the expression cassette into a vector having a circular DNA structure or a linear DNA structure.
  • the vector is a sequence for replication in the host cell, that is, an autonomously replicating sequence (Autonomously Replicating).
  • the plasmid contains (Sequence: ARS).
  • the vector when producing a transformant in which the expression cassette is integrated into the host cell chromosome, the vector is assumed to have a linear DNA structure and no ARS. It is preferable to be introduced into.
  • the vector may be a vector composed of linear DNA, or a vector having a circular DNA structure provided with a restriction enzyme recognition sequence for cleavage into linear DNA upon introduction into a host.
  • the vector when the vector is a plasmid having ARS, it can be introduced into the host after forming a linear DNA structure by deleting the ARS part or a linear DNA structure in which the function of ARS is inactivated by cleaving the ARS part.
  • Each foreign gene is S.P. It is preferably introduced into the pombe chromosome. By introducing a foreign gene into the chromosome, a transformant having excellent passage stability can be obtained. A plurality of foreign genes can also be introduced into the chromosome.
  • the number of PYC genes integrated into the chromosome is preferably 1-20, and more preferably 1-8.
  • the number of MDH genes integrated in the chromosome of the transformant is preferably 1-20, and particularly preferably 1-8.
  • the homology between the base sequence of the recombination site and the base sequence of the target site needs to be 70% or more. Further, the homology between the base sequence of the recombination site and the base sequence of the target site is preferably 90% or more, and more preferably 95% or more from the viewpoint that homologous recombination is likely to occur.
  • the expression cassette is incorporated into the target site by homologous recombination.
  • the length (number of bases) of the recombination site is preferably 20 to 2000 bp. If the length of the recombination site is 20 bp or more, homologous recombination is likely to occur. Moreover, if the length of the recombination site is 2000 bp or less, it is easy to prevent the vector from becoming too long and causing homologous recombination to hardly occur.
  • the length of the recombination site is more preferably 100 bp or more, and further preferably 200 bp or more. Further, the length of the recombination site is more preferably 800 bp or less, and further preferably 400 bp or less.
  • the vector may have other DNA regions in addition to the expression cassette and the recombination site.
  • a replication initiation region called “ori” necessary for replication in E. coli and an antibiotic resistance gene (neomycin resistance gene, etc.) can be mentioned. These are genes usually required when constructing a vector using Escherichia coli.
  • the replication initiation region is preferably removed when the vector is integrated into the host chromosome as described later.
  • the vector When integrating foreign genes into chromosomes, the vector is S. When introducing into a pombe cell, it is preferable to introduce it in a linear DNA structure. That is, in the case of a vector having a circular DNA structure such as a commonly used plasmid DNA, S. It is preferable to introduce into pombe cells.
  • the position where the vector having the circular DNA structure is opened is within the recombination site.
  • the recombination sites partially exist at both ends of the opened vector, and the entire vector is integrated into the target site of the chromosome by homologous recombination.
  • the vector may be constructed by a method other than the method of cutting a vector having a circular DNA structure, as long as it can have a linear DNA structure in which a part of the recombination site exists at each end.
  • the method for constructing the vector from which the replication start region has been removed is not particularly limited, but the method described in Japanese Patent Application Laid-Open No. 2000-262284 is preferably used. That is, a method is preferred in which a precursor vector in which a replication initiation region is inserted at the cleavage site in the recombination site is constructed so that the replication initiation region is excised at the same time as the linear DNA structure as described above. Thereby, a vector from which the replication initiation region has been easily removed can be obtained.
  • the expression vectors described in Japanese Patent Laid-Open No. 5-15380, Japanese Patent Laid-Open No. 7-163373, International Publication No. 96/23890, Japanese Patent Laid-Open No. 10-234375, etc. Is applied to construct a precursor vector having an expression cassette and a recombination site, and further, the replication initiation region is removed from the precursor vector by a conventional genetic engineering technique to obtain a vector used for homologous recombination. There may be.
  • an expression cassette containing a PYC gene is incorporated into a vector having a first target site
  • an expression cassette containing an MDH gene is incorporated into a vector having a second target site
  • a part of the PDC gene group is incorporated using the vector.
  • the target site described in Japanese Patent Application Laid-Open No. 2000-262284 can be used.
  • Two or more vectors having different integration sites can be used to integrate the vectors into different target sites.
  • this method is complicated when the vector is integrated at two or more sites on the chromosome.
  • a single vector can be used for more than one location on the chromosome. Can incorporate vectors.
  • “Substantially identical base sequences to each other” means that the base sequence homology is 90% or more.
  • the homology between the target sites is preferably 95% or more.
  • the length of the base sequences that are substantially identical to each other is a length that includes the recombination site of the vector, and is preferably 1000 bp or more.
  • the foreign genes are dispersed and incorporated into multiple target sites In this case, when the transformant grows, the foreign gene is less likely to drop off from the chromosome at a time, and the maintenance stability in the passage of the transformant is improved.
  • a transposon gene Tf2 is preferable as a target site present in a plurality of locations in a chromosome.
  • Tf2 is the S.T.
  • a vector can be incorporated into only one location of Tf2 that exists in 13 locations on a chromosome.
  • a transformant having two or more foreign genes can be obtained by incorporating a vector having two or more foreign genes.
  • a transformant having two or more foreign genes can be obtained by incorporating a vector into two or more locations of Tf2.
  • a transformant having more foreign genes can be obtained by incorporating a vector having two or more foreign genes. If the vector is incorporated at all 13 positions of Tf2, the burden on the survival and growth of the transformant may be too great.
  • the vector is preferably incorporated at 8 sites or less of 13 Tf2, and more preferably at 5 sites or less.
  • Transformation method Any known transformation method may be used as the transformation method.
  • the transformation method include conventionally known methods such as lithium acetate method, electroporation method, spheroplast method, glass bead method, and the method described in Japanese Patent Application Laid-Open No. 2005-198612.
  • a commercially available yeast transformation kit may also be used.
  • S. As a method for transforming the pombe host by the homologous recombination method, a known homologous recombination method can be used. As a transformation method for producing the transformant according to the present invention, S. cerevisiae in which a part of the PDC gene group described above has been deleted or inactivated. A method in which the expression cassette is integrated by homologous recombination using the above-mentioned vector as a host and pombe as a host is preferable.
  • the obtained transformant is usually selected after homologous recombination.
  • the selection method include the following methods. Screening is performed with a medium capable of selecting transformants using the auxotrophic marker, and a plurality of colonies obtained are selected.
  • the expression level of the heterologous protein in each culture solution is examined, and a transformant with a higher expression level of the heterologous protein is selected.
  • a transformant with a higher expression level of the heterologous protein is selected.
  • the number of vectors integrated into the chromosome can be adjusted to some extent by adjusting the integration conditions. Depending on the size (number of bases) and structure of the vector, the integration efficiency and the number of integrations may change.
  • the transformant according to the present invention has an unprecedented high malic acid producing ability.
  • the malic acid production rate of the transformant is preferably 2.0 g / (L ⁇ h) or more, more preferably 5.0 g / (L ⁇ h) or more, and further more preferably 10 g / (L ⁇ h) or more. 15 to 30 g / (L ⁇ h) is particularly preferable.
  • the method for producing C4 dicarboxylic acid according to the present invention is a method for producing C4 dicarboxylic acid by culturing the transformant according to the present invention in a culture solution and obtaining C4 dicarboxylic acid from the culture solution.
  • oxaloacetate is produced from pyruvic acid obtained from the sugar by a glycolysis system by PYC, or from phosphoenolpyruvate by PCK. Is done.
  • Malic acid is produced by MDH from the produced oxaloacetic acid.
  • Other C4 dicarboxylic acids are also produced from the produced malic acid.
  • C4 dicarboxylic acid including malic acid produced is accumulated inside the cells, but a part is released to the culture supernatant by Mae1 (C4 dicarboxylic acid transporter).
  • C4 dicarboxylic acid can be produced by obtaining C4 dicarboxylic acid from the cultured transformant or culture supernatant. Examples of the C4 dicarboxylic acid produced by the transformant include oxaloacetic acid, malic acid, fumaric acid, succinic acid and the like, and oxaloacetic acid or malic acid is preferable.
  • a known yeast culture medium containing sugar can be used as a culture solution used for production of C4 dicarboxylic acid. Contains a nitrogen source, inorganic salts, etc. that can be utilized by Pombe; Any material that can efficiently culture pombe is acceptable.
  • a natural medium or a synthetic medium may be used as the culture solution.
  • sugars such as glucose, fructose, sucrose, and maltose.
  • nitrogen source include inorganic acids such as ammonia, ammonium chloride, and ammonium acetate, or ammonium salts of inorganic acids, peptone, casamino acid, yeast extract, and the like.
  • inorganic salts include magnesium phosphate, magnesium sulfate, sodium chloride and the like.
  • a fermentation promoting factor such as proteolipid can be included.
  • a culture solution containing glucose or sucrose as sugar.
  • concentration of glucose or sucrose in the culture medium (100% by mass) at the initial stage of culture is preferably 1% by mass or more, more preferably 1 to 50% by mass, and further preferably 2 to 16% by mass. Since the glucose concentration or sucrose concentration is lowered by the culture, it is preferable to continue the culture by adding glucose if necessary.
  • the glucose concentration and the like at the end of the culture may be 1% by mass or less.
  • the productivity of C4 dicarboxylic acid is further improved.
  • the production efficiency of C4 dicarboxylic acid improves more by making glucose or sucrose in a culture solution into 16 mass% or less.
  • the initial cell concentration of the transformant in the culture solution is preferably 0.1 to 100 g / L in terms of dry cell weight. More preferably, the initial bacterial cell concentration of the transformant in the culture solution is 20 to 60 g / L expressed in terms of dry cell weight.
  • High productivity can be achieved in a short time by increasing the initial cell concentration.
  • the initial bacterial cell concentration is too high, there is a possibility that problems such as bacterial cell aggregation and reduction in purification efficiency may occur.
  • cell concentration indicated in the Examples etc. described later is a value converted from JASCO Corporation ultraviolet-visible spectrometer wavelength 660nm absorbance of light measured by V550 (OD 660).
  • OD 660 1 at 660 nm corresponds to 0.2 g of fission yeast dry weight and 0.8 g of wet weight.
  • a known yeast culture method can be used for the culture, for example, shaking culture, stirring culture, or the like.
  • the culture temperature is preferably 23 to 37 ° C. Further, the culture time can be determined as appropriate.
  • the culture may be batch culture or continuous culture.
  • the cells can be separated from the culture solution to obtain a culture solution containing C4 dicarboxylic acid.
  • the continuous culture method for example, a part of the culture solution is extracted from the culture tank being cultured, C4 dicarboxylic acid is separated from the extracted culture solution, the culture supernatant is recovered, and glucose or There is a method of continuously culturing by repeatedly adding a new culture solution and returning it to the culture tank. By performing continuous culture, the productivity of C4 dicarboxylic acid is further improved.
  • C4 dicarboxylic acid can be produced without neutralization even when the pH becomes low (about pH 2 to 4) due to accumulation of C4 dicarboxylic acid. Therefore, C4 dicarboxylic acid can be produced by continuous culture in which the culture is further continued even after the pH of the culture solution becomes 3.5 or lower.
  • the pH at the end of culture and the pH in continuous culture are preferably 3.5 or less, and particularly preferably 2.3 to 3.5. In some cases, the culture may be terminated before the pH of the culture solution becomes 3.5 or less.
  • a known method can be used to obtain C4 dicarboxylic acid from the culture solution. For example, by separating the cells from the culture broth after completion of the culture by centrifugation, extracting with pH 1 or less and then extracting with diethyl ether or ethyl acetate, etc. And a method of removing impurities using, a method of distilling after reacting with an alcohol in the presence of an acid catalyst, and a method of separating using a separation membrane.
  • C4 dicarboxylic acid can also be obtained by neutralizing C4 dicarboxylic acid in the culture solution and then separating the culture solution and C4 dicarboxylate.
  • C4 dicarboxylic acid can also be obtained by converting C4 dicarboxylic acid in the culture solution into calcium salt or lithium salt and crystallizing the neutralized salt.
  • C4 dicarboxylic acid can be easily produced with high productivity using a transformant having pombe as a host. According to the production method, the production rate of C4 dicarboxylic acid is easily adjusted to 5 g / L / h or more, and in some cases, the production rate of C4 dicarboxylic acid reaches 15 g / L / h or more. Further, the method for producing C4 dicarboxylic acid according to the present invention is also suitable for high-density culture in the presence of a high concentration of glucose and a high concentration of transformant.
  • UP regions with UF and UR, OL regions with OF and OR, and DN regions with DF and DR were prepared by PCR using KOD-Dash (manufactured by Toyobo Co., Ltd.).
  • Full length deletion fragments were prepared by the same PCR method using FF and FR as templates.
  • two synthetic oligo DNAs manufactured by Operon
  • the pombe uracil auxotrophic marker ura4 strain name SPCC330.05c, Genetidine-5'-phosphate decarboxylase gene listed in GeneDB
  • region fragment was also used as a template.
  • the obtained S.P. A Pombe PDC2 gene deleted strain (IGF836 strain, h - leu1-32 ura4-D18 ade6-M216 pdc2-D23) was transformed with the DNA fragment obtained by treating the pSHh vector with the restriction enzyme PmaCI, and uracil-requiring And the ASP4590 strain in which the adenine requirement was recovered.
  • Example 2 ⁇ Preparation of foreign gene transfer strain> Aspergillus niger-derived PYC (AniPYC) (SEQ ID NO: 1), Brevibacillus brevis-derived PYC (BbrPYC) (SEQ ID NO: 2), Devalyomyces Hansenii-derived PYC (DhaPYC) (SEQ ID NO: 3), derived from Kruberomyces lactis PYC (KlaPYC) (SEQ ID NO: 4), PYC (LthPYC) (SEQ ID NO: 5) derived from Lachansea thermotolerance, PYC (LelPYC) derived from Roderomyces elongis spors (SEQ ID NO: 6), PYC derived from Saccharomyces cerevisiae (ScePYC) (SEQ ID NO: 7), PYC derived from Candida orthopsis (CorPYC) (SEQ ID NO: 8), PYC
  • the IGF836 strain (S. pombe gene-deleted strain) prepared in Example 1 was used as a single locus-integrated recombinant vector pSLh-AniPYC carrying an ANIPYC gene expression cassette, and a single locus set carrying a BbrPYC gene expression cassette.
  • the monodentate recombination vector pSMh can be prepared by the following steps. First, a fragment obtained by digesting a DNA fragment (Fr.1) having the base sequence shown in SEQ ID NO: 34 prepared by DNA total synthesis with the restriction enzyme BsiWI, and a pSE vector digested with the restriction enzyme BsiWI, and the restriction enzyme again. The DNA fragment obtained by double digestion with KpnI and SnaBI was ligated to prepare pSMh (8849 bp, FIG. 1) consisting of the base sequence shown in SEQ ID NO: 35 (5 ′ ⁇ 3 ′, circular).
  • PSLh-AniPYC was produced by the following steps. First, two synthetic oligo DNAs (AniPYC-F, AniPYC-R, and Operon) shown in Table 3 were prepared using the whole genome DNA prepared from DNeasy (Qiagen) from a culture of Aspergillus niger as a template. The ORP fragment of the AniPYC gene was obtained by PCR using KOD-Dash (Toyobo Co., Ltd.). The ORF fragment encoded AniPYC (SEQ ID NO: 1).
  • the obtained amplified fragment was incorporated into pSLh using In-Fusion (registered trademark) HD Cloning Kit (manufactured by Clontech) to prepare pSLh-AniPYC.
  • the In-Fusion method was performed according to the manual of the kit. That is, the obtained PCR product was purified by a spin column, added to the In-Fusion reaction solution together with pSLh, and reacted at 50 ° C. for 15 minutes.
  • the ASP4590 strain was transformed with the single locus integration type recombinant vectors pSLh-ScePYC vector and pSMh-DacMDH vector to prepare ASP4491 strain into which the ScePYC gene and the DacMDH gene were introduced.
  • Table 24 shows the name, host, and introduced foreign gene name of each transformant produced.
  • MDH expression level was confirmed for five transformants into which only the MDH gene was introduced. Specifically, each transformant was cultured in the same manner as in ⁇ Confirmation of PYC expression>, a purified enzyme solution was prepared, SDS-PAGE was performed with the enzyme solution, and the relative expression level was calculated. The results of the MDH expression level (relative value) calculated for each transformant are shown in FIG. As a result, the expression of MDH was confirmed in all cases.
  • Example 3 Production of mae2 deletion strain A deletion strain (ASP4964 strain) from which the mae2 gene of the ASP4491 strain into which the ScePYC gene and the DacMDH gene were introduced was produced.
  • the method for preparing the deleted fragment of mae2 was the same as the method for preparing the deleted fragment of pdc2 deletion.
  • S. Pombe's ASP4491 strain (genotype: h ⁇ , leu1-32, ura4-D18, Ade6-M216, ⁇ pdc2, + ScePYC, + DacMDH) was transformed according to the Latour method, and the mae2 gene (strain name: SPCC794.12c) was deleted.
  • ASP4964 strain was produced.
  • Example 4 Production of fumu1 deleted strain A deleted strain (ASP4933 strain) from which the fumu1 gene of the ASP4491 strain into which the ScePYC gene and the DacMDH gene were introduced was produced.
  • fum1 is an enzyme that produces fumaric acid using malic acid as a substrate.
  • the production method of the deletion fragment of fum1 was the same as the production method of the deletion fragment of pdc2 deletion.
  • S. Pombe's ASP4491 strain was transformed according to the Latour method to produce ASP4933 strain from which the fum1 gene (line name: SPCC18.18c / SPCC290.01c) was deleted. For production of deleted fragments, S.
  • the cells were seeded on a YES plate and cultured at 30 ° C. for 96 hours to obtain colonies.
  • the obtained colonies were transferred to 5 mL of a YES medium (test tube) and cultured with shaking at 30 ° C. for 24 hours.
  • the obtained bacterial solution was transferred to 100 mL of YPD6 medium (Sakaguchi flask) and cultured with shaking at 30 ° C. for 44 hours.
  • the obtained cells are collected and added to 3 mL of fermentation medium (100 g / L glucose, 111 g / L calcium carbonate) in a test tube so that the weight of the cells is 36 g dry cell weight / L. Fermented. Timely sampling was performed from the fermentation broth.
  • glucose concentration and ethanol concentration were measured using enzyme electrode method biosensor BF-7 (manufactured by Oji Scientific Instruments), and malic acid concentration was measured by HPLC.
  • HPLC measurement a high performance liquid chromatograph Prominence (manufactured by Shimadzu Corporation) is used, the column is Aminex HPX-87H 300 ⁇ 7.8 mm (manufactured by Bio-RAD), the injection volume is 10 ⁇ L, and the solvent is 10 mM H 2 SO. 4 , the flow rate was 0.6 mL / min, the measurement time was 35 minutes, the measurement temperature was 60 ° C., and diode array detection (210 nm) and differential refractive index detection were used for detection. Each concentration is a concentration per culture broth or fermentation broth.
  • “MA-4892” and “MA-4491” are those of the ASP4892 strain and the ASP4491 strain, respectively.
  • the time-dependent change of malic acid concentration is shown.
  • the malic acid concentration of the fermentation liquid of ASP4892 strain exceeds 20 g / L at the time when 1 hour has elapsed from the start of fermentation, and the malic acid production rate is 20 g / (L ⁇ h) or more.
  • the malic acid concentration in the fermentation broth was 28.9 g / L.
  • the malic acid concentration at the time point of 2 hours was 3.9 g / L.
  • Example 5 Preparation of strains introduced with PCK PCK derived from Candida globulata (CglPCK) (SEQ ID NO: 94), PCK derived from Citrobacter coseri (CkoPCK) (SEQ ID NO: 95), PCK derived from Cronobacter sakazaki (CsaPCK) (SEQ ID NO: 96), PCK derived from Debaryomyces Hansenii (DhaPCK) (SEQ ID NO: 97), PCK derived from Escherichia Fergusoni (EfePCK) (SEQ ID NO: 98), PCK derived from Edward Sierra Thada (EtaPCK) (SEQ ID NO: 99) ), PCK (KlaPCK) derived from Kluveromyces lactis (SEQ ID NO: 100), PCK derived from Roderomyces elongis pors (LelPCK) (SEQ ID NO: 101), PCK derived from Pectobacterium carotovorum
  • the IGF836 strain prepared in Example 1 was digested with restriction enzyme BsiWI digestion of each single-site integrated recombinant vector carrying the PCK gene expression cassette described in Table 47.
  • the product was transformed according to the method of Bahler et al. (Yeast magazine, 1998, Vol. 14, pages 943-951).
  • PSLh-CglPCK was produced by the following steps. First, using the whole genome DNA prepared from the Candida globulata culture by DNeasy (Qiagen) as a template, two kinds of synthetic oligo DNAs (CglPCK-F, CglPCK-R, Operon) shown in Table 27 were used.
  • the ORF fragment of the CglPCK gene was obtained by PCR using KOD-Dash (Toyobo Co., Ltd.).
  • the ORF fragment encoded CglPCK (SEQ ID NO: 94).
  • the IGF836 strain (S. pombe gene-deleted strain) prepared in Example 1 was used as a monodentate recombinant vector pSNh-EcoPCK carrying an EcoPCK gene expression cassette, and a monodentate group carrying a GglPYC gene expression cassette.
  • the method of Bahler et al. (Yeast, 1998, Vol. 14, 943-943) 951).
  • PSNh-EcoPCK was produced by the following steps. First, using the whole genome DNA prepared from a culture of Escherichia coli by DNeasy (manufactured by Qiagen) as a template, two kinds of synthetic oligo DNAs (EcoPCK-F, EcoPCK-R, manufactured by Operon) described in Table 48 were used. Then, an ORF fragment of the EcoPCK gene was obtained by PCR using KOD-Dash (Toyobo Co., Ltd.). The ORF fragment encoded EcoPCK (SEQ ID NO: 154).
  • the obtained amplified fragment was incorporated into pSNh using In-Fusion (registered trademark) HD Cloning Kit (manufactured by Clontech) to prepare pSNh-EcoPCK.
  • the In-Fusion method was performed according to the manual of the kit. That is, the obtained PCR product was purified by a spin column, added to the In-Fusion reaction solution together with pSNh, and reacted at 50 ° C. for 15 minutes.
  • Table 51 shows the name, host, and introduced foreign gene name of each transformant produced.
  • Example 7 Production of malic acid producing strain According to the methods described in Examples 2, 3 and 5, transformants described in Table 52 were produced.
  • Example 8 Confirmation of effect of deletion of mae2
  • fermentation production of malic acid was carried out using the ASP4491 strain, the ASP4964 strain, the ASP4933 strain, and the ASP5127 strain.
  • the cells were seeded on a YES plate and cultured at 30 ° C. for 96 hours to obtain colonies.
  • the obtained colonies were transferred to 5 mL of a YES medium (test tube) and cultured with shaking at 30 ° C. for 24 hours.
  • the obtained bacterial solution was transferred to 100 mL of YPD6 medium (Sakaguchi flask) and cultured with shaking at 30 ° C. for 44 hours.
  • the obtained cells are collected and added to 3 mL of fermentation medium (100 g / L glucose, 111 g / L calcium carbonate) in a test tube so that the weight of the cells is 36 g dry cell weight / L. Fermented. Timely sampling was performed from the fermentation broth.
  • glucose concentration and ethanol concentration were measured using enzyme electrode method biosensor BF-7 (manufactured by Oji Scientific Instruments), and malic acid concentration was measured by HPLC.
  • HPLC measurement a high performance liquid chromatograph Prominence (manufactured by Shimadzu Corporation) is used, the column is Aminex HPX-87H 300 ⁇ 7.8 mm (manufactured by Bio-RAD), the injection volume is 10 ⁇ L, and the solvent is 10 mM H 2 SO. 4 , the flow rate was 0.6 mL / min, the measurement time was 35 minutes, the measurement temperature was 60 ° C., and diode array detection (210 nm) and differential refractive index detection were used for detection. Each concentration is a concentration per culture broth or fermentation broth. The results are shown in Table 53.
  • the ASP4964 strain from which mae2 was deleted increased the production amount of malic acid by about 10 times.
  • the amount of malic acid produced hardly increased.
  • about 5 g / L of malic acid was produced in the ASP5127 strain in which only mae2 and pdc2 were deleted and PYC and MDH were not introduced.
  • Example 9 Confirmation of effect of introduction of PCK
  • fermentation production of malic acid was performed using the ASP5126 strain, the ASP5087 strain, the ASP5088 strain, and the ASP5089 strain.
  • Malic acid fermentation production was carried out in the same manner as in Example 7. The results are shown in Table 54.
  • Example 10 Confirmation of effect of introduction of PYC
  • fermentation production of malic acid was performed using the ASP5126 strain, the ASP4964 strain, the ASP5132 strain, and the ASP5135 strain.
  • Malic acid fermentation production was carried out in the same manner as in Example 7. The results are shown in Table 55.
  • the ASP4964 strain introduced with PYC derived from Saccharomyces cerevisiae
  • the ASP5132 strain introduced with PYC derived from Kluberomyces lactis (KlaPYC)
  • KlaPYC Kluberomyces lactis
  • S. cerevisiae S. cerevisiae.
  • the ASP5135 strain into which Pombe derived PYC (SpoPYC) was introduced was confirmed to improve the production rate of malic acid and the final concentration of malic acid.
  • Example 11 Confirmation of MDH introduction effect
  • ASP5125 strain, ASP5215 strain, ASP5216 strain, ASP5127 strain, ASP4964 strain, ASP5129 strain, and ASP5131 strain were used to ferment malic acid. Production was performed. Malic acid fermentation production was carried out in the same manner as in Example 7. The results are shown in Table 56.
  • MDH is not introduced, compared to ASP5125 strain with PYC introduced, ASP5215 strain with CLIMDH and PCK introduced, ASP5216 strain with HelMDH and PCK introduced, ASP5217 strain with SpuMDH and PCK introduced, HelMDH and PYC
  • ASP4964 strain introduced with CliMDH and PYC and the ASP5131 strain introduced with SpuMDH and PYC, the production rate of malic acid and the final malic acid concentration were improved.
  • Example 12 Confirmation of effect of increase in copy number of introduced gene
  • fermentation production of malic acid was performed using the ASP4964 strain and the ASP5235 strain. Malic acid fermentation production was carried out in the same manner as in Example 7. The results are shown in Table 57.
  • the ASP5235 strain into which two copies of PYC and MDH were introduced was confirmed to improve the production rate of malic acid and the final concentration of malic acid.
  • Example 13 Fermentative production of malic acid under non-neutralized conditions
  • fermentative production of malic acid was carried out using the ASP4964 strain and the ASP5235 strain. Specifically, the cells increased in the same manner as in Example 7 were added to 3 mL of fermentation medium (100 g / L glucose) in a test tube so that the weight of the cells was 36 g dry cell weight / L, and the shaking condition was 30 ° C. And fermented. Timely sampling was performed from the fermentation broth. The obtained sample was measured in the same manner as in Example 7. The results are shown in Table 58. As a result, both strains confirmed the production of malic acid under non-neutralizing conditions.
  • the pH of the 1 hour fermentation sample of the ASP4964 strain was 3.5, and the pH of the 2 hour fermentation sample was 3.0. Moreover, pH of the fermentation progress 1 hour sample of ASP5235 stock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 シゾサッカロミセス・ポンベを宿主とし、ホスホエノールピルビン酸カルボキシキナーゼ遺伝子およびピルビン酸カルボキシラーゼ遺伝子からなる群より選択される1以上の外来遺伝子が組み込まれており、かつ、前記シゾサッカロミセス・ポンベ宿主のpdc2遺伝子が欠失または失活していることを特徴とする形質転換体該形質転換体、および該形質転換体を用いた炭素数4のジカルボン酸の製造方法である。

Description

形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法
 本発明は、形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸(C4ジカルボン酸)の製造方法に関する。より詳細には、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe、以下、S.ポンベともいう。)に、ホスホエノールピルビン酸カルボキシキナーゼ(Phosphoenolpyruvate carboxykinase、以下PCKともいう。)遺伝子、ピルビン酸カルボキシラーゼ(Pyruvate carboxylase、以下、PYCともいう。)遺伝子およびリンゴ酸脱水素酵素(Malate dehydrogenase、以下、MDHともいう。)遺伝子からなる群より選択される1種以上の外来遺伝子が1以上組み込まれ、かつピルビン酸脱炭酸酵素(Pyruvate decarboxylase、以下、PDCともいう。)をコードする遺伝子群の一部およびリンゴ酸酵素(Malic enzyme、以下、MAEともいう。)遺伝子を欠失または失活させた形質転換体、該形質転換体の製造方法、および該形質転換体を培養液中で培養し、該培養液からC4ジカルボン酸を取得するC4ジカルボン酸の製造方法に関する。
 リンゴ酸(HOOCCH(OH)CHCOOH)は4個の炭素からなるジカルボン酸(C4ジカルボン酸)であり、一般的に、石油由来の原料からの化学合成または再生可能な供給原料からの微生物発酵のいずれかにより商業的に製造される。
 多くの天然または遺伝子組換え体の微生物が、主要な発酵性生物としてリンゴ酸を生産し得ることが知られている。たとえば、野生型の微生物を用いる方法としては、アスペルギルス・フラバス(Aspergillus flavus)(非特許文献1)およびペニシリウム・スクレロティオラム(Penicillium sclerotiorum)(非特許文献2)を培養してリンゴ酸を産生する方法が開示されている。
 また、遺伝子組換えによりリンゴ酸産生能を向上させた微生物としては、たとえば、特許文献1には、アスペルギルス・オリザエ(Aspergillus oryzae)等の糸状菌に、C4ジカルボン酸トランスポーターを導入することにより、C4ジカルボン酸産生能が向上することが記載されている。
 また、特許文献2には、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)に対し、PDC遺伝子を削除し、PYC遺伝子またはホスホエノールピルビン酸カルボキシキナーゼ(Phosphoenolpyruvate carboxykinase、以下、PCKともいう。)遺伝子と、MDH遺伝子とリンゴ酸輸送体タンパク質遺伝子とを導入した形質転換体を用いて、リンゴ酸を産生させている。
 非特許文献3には、サッカロミセス・セレビシエに対し、PDC遺伝子を削除し、PYC遺伝子、MDH遺伝子、およびリンゴ酸輸送体タンパク質遺伝子を導入した形質転換体を用いて、リンゴ酸を産生させている。特許文献3には、サッカロミセス・セレビシエに対し、PDC酵素遺伝子、ピルビン酸キナーゼ(PYK)遺伝子、およびヘキソキナーゼ(HXK)遺伝子を削除し、PYC遺伝子、MDH遺伝子、リンゴ酸輸送体タンパク質遺伝子、およびPCK遺伝子を導入した形質転換体を用いて、リンゴ酸を産生させている。
 その他にも、非特許文献4には、大腸菌に、ピルビン酸からリンゴ酸が産生されるまでの経路以外の経路に関与する複数の酵素を失活させてリンゴ酸の産生能を向上させた形質転換体を製造しているが、リンゴ酸酵素遺伝子maeBの削除株と未削除株では、maeB遺伝子未削除株の方がリンゴ酸の生産速度が速かったことが開示されている。なお、大腸菌のmaeB遺伝子は、S.ポンベのリンゴ酸酵素遺伝子mae2に相当する。
日本国特表2013-503631号公報 日本国特表2009-516526号公報 国際公開第2009/011974号
Battat et al.,Biotechnology and Bioengineering,1991,vol.37,p.1108-1116. Wang et al.,Bioresource Technology,2013,vol.143,p.674-677. Zelle et al.,Applied and Environmental Microbiology,2008,vol.74,p.2766-2777. Zhang et al.,Applied and Environmental Microbiology,2011,vol.77,p.427-434.
 特許文献1~3、非特許文献3~4に開示されている形質転換体のリンゴ酸の生産速度は、いずれも1.0g/(L・h)未満であり、よりリンゴ酸生産能の高い微生物の開発が望まれている。
 本発明では、再生可能な供給原料からの微生物発酵によるC4ジカルボン酸の産生能に優れたシゾサッカロミセス・ポンベの形質転換体、および該形質転換体の製造方法を提供することを目的とする。
 また、前記形質転換体を用いて、リンゴ酸をはじめとするC4ジカルボン酸を製造する方法を目的とする。
 本発明に係る形質転換体は、シゾサッカロミセス・ポンベを宿主とし、ホスホエノールピルビン酸カルボキシキナーゼ遺伝子およびピルビン酸カルボキシラーゼ遺伝子からなる群より選択される1種以上の外来遺伝子が1以上組み込まれており、かつ、前記シゾサッカロミセス・ポンベ宿主のピルビン酸脱炭酸酵素をコードする遺伝子群の一部が欠失または失活しており、
 前記ホスホエノールピルビン酸カルボキシキナーゼ遺伝子が、配列番号94~113のいずれかで表されるアミノ酸配列からなるポリペプチド、配列番号94~113のいずれかで表されるアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつホスホエノールピルビン酸カルボキシキナーゼ活性を有するポリペプチド、または配列番号94~113のいずれかで表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつホスホエノールピルビン酸カルボキシキナーゼ活性を有するポリペプチドをコードしており、
 前記ピルビン酸カルボキシラーゼ遺伝子が、配列番号1~16のいずれかで表されるアミノ酸配列からなるポリペプチド、配列番号1~16のいずれかで表されるアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつピルビン酸カルボキシラーゼ活性を有するポリペプチド、または配列番号1~16のいずれかで表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつピルビン酸カルボキシラーゼ活性を有するポリペプチドをコードしており、
 欠失または失活しているピルビン酸脱炭酸酵素をコードする遺伝子がpdc2遺伝子であることを特徴とする。
 本発明に係る形質転換体においては、さらに、外来のリンゴ酸脱水素酵素遺伝子が1以上組み込まれていることが好ましい。
 また、本発明に係る形質転換体においては、前記リンゴ酸脱水素酵素遺伝子が、配列番号17~21のいずれかで表されるアミノ酸配列からなるポリペプチド、配列番号17~21のいずれかで表されるアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつリンゴ酸脱水素酵素活性を有するポリペプチド、または配列番号17~21のいずれかで表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつリンゴ酸脱水素酵素活性を有するポリペプチドをコードする遺伝子であることが好ましい。
 また、本発明に係る形質転換体においては、さらに、リンゴ酸酵素遺伝子が欠失または失活していることが好ましい。
 また、本発明に係る形質転換体においては、外来のホスホエノールピルビン酸カルボキシキナーゼ遺伝子または外来のピルビン酸カルボキシラーゼ遺伝子と、外来のリンゴ酸脱水素酵素遺伝子とが、それぞれ1以上組み込まれ、pdc2遺伝子とリンゴ酸酵素遺伝子のいずれもが欠失または失活していることが好ましい。
 さらに、本発明に係る形質転換体においては、前記外来遺伝子が宿主の染色体に組み込まれていることも好ましい。
 また、本発明に係る炭素数4のジカルボン酸の製造方法は、前記形質転換体を培養液中で培養し、培養された該形質転換体または培養上清から炭素数4のジカルボン酸を取得することを特徴とする。
 本発明に係る炭素数4のジカルボン酸の製造方法においては、炭素数4のジカルボン酸がリンゴ酸またはオキサロ酢酸であることが好ましい。
 また、本発明に係る炭素数4のジカルボン酸の製造方法においては、培養を、培養液のpHが3.5以下となった後も継続することが好ましい。
 本発明に係るシゾサッカロミセス・ポンベの形質転換体は、従来になく速い生産速度でリンゴ酸をはじめとするC4ジカルボン酸を産生できる。
 前記形質転換体は、本発明に係る形質転換体の製造方法により簡便に得られる。
 また、本発明に係るC4ジカルボン酸の製造方法は、微生物発酵により高い生産性でC4ジカルボン酸を製造できる。
図1は、単座組込型組換えベクターpSMhの構成図である。 図2は、PYC遺伝子を導入した16種の形質転換体のPYC発現量の相対値を示した図である。 図3は、PYC遺伝子を導入した8種の形質転換体の相対的な酵素液当たりのPYC活性(mU/mL)を示した図である。 図4は、MDH遺伝子を導入した5種の形質転換体のMDH発現量の相対値を示した図である。 図5は、MDH遺伝子を導入した3種の形質転換体の相対的な酵素液当たりのMDH活性(mU/mL)を示した図である。 図6は、野生株(ARC010株)のグルコース濃度(g/L)、エタノール濃度(g/L)、およびリンゴ酸の濃度(g/L)の経時的変化を示した図である。 図7は、ASP4590株(Δpdc2)のグルコース濃度(g/L)、エタノール濃度(g/L)、およびリンゴ酸の濃度(g/L)の経時的変化を示した図である。 図8は、ASP4491株(Δpdc2,+ScePYC,+DacMDH)のグルコース濃度(g/L)、エタノール濃度(g/L)、およびリンゴ酸の濃度(g/L)の経時的変化を示した図である。 図9は、ASP4964株(Δpdc2,Δmae2,+ScePYC,+DacMDH)のグルコース濃度(g/L)、エタノール濃度(g/L)、およびリンゴ酸の濃度(g/L)の経時的変化を示した図である。 図10は、ASP4933株(Δpdc2,Δfum1,+ScePYC,+DacMDH)のグルコース濃度(g/L)、エタノール濃度(g/L)、およびリンゴ酸の濃度(g/L)の経時的変化を示した図である。 図11は、ASP4491株およびASP4892株の培養液のグルコース濃度(g/L)およびリンゴ酸の濃度(g/L)の経時的変化を示した図である。 図12は、PCK遺伝子を導入した20種の形質転換体のPCK発現量の相対値を示した図である。
[遺伝子組換え体]
 本発明に係る形質転換体は、シゾサッカロミセス・ポンベを宿主とし、ホスホエノールピルビン酸カルボキシキナーゼ(PCK)遺伝子およびピルビン酸カルボキシラーゼ(PYC)遺伝子からなる群より選択される1以上の外来遺伝子が組み込まれており、かつ、前記シゾサッカロミセス・ポンベ宿主のピルビン酸脱炭酸酵素をコードする遺伝子群の一部が欠失または失活している形質転換体である。
 なお、本発明および本願明細書において、外来遺伝子とは、宿主が本来有している構造遺伝子(形質転換前の天然型の宿主の染色体に含まれている構造遺伝子)ではなく、形質転換操作等により導入された構造遺伝子を意味する。宿主が本来有している遺伝子であっても、形質転換操作等により導入された遺伝子は、本発明における外来遺伝子である。
 オキサロ酢酸は、C4ジカルボン酸の一種であり、S.ポンベでは、リンゴ酸等の他のC4ジカルボン酸の合成の原料として重要である。野生型S.ポンベでは、オキサロ酢酸は、主に、ホスホエノールピルビン酸からPCKにより直接合成される経路と、ピルビン酸を介してPYCにより合成される。このため、PCK活性とPYC活性を高めることにより、S.ポンベのオキサロ酢酸の産生量を高められることが期待される。
 一方で、ピルビン酸はエタノール発酵において重要であり、ピルビン酸がピルビン酸脱炭酸酵素によりアセトアルデヒドに変換され、次いで該アセトアルデヒドがアルコール脱水素酵素によりエタノールへと変換される。つまり、ピルビン酸はエタノール発酵の原料となるため、オキサロ酢酸の産生量を高めるためには、単にPCK活性とPYC活性を高めるだけではなく、エタノール発酵も抑制する必要がある。
 本発明に係る形質転換体は、PCK遺伝子およびPYC遺伝子の少なくとも一方の外来遺伝子が組み込まれており、PCK活性およびPYC活性の少なくとも一方が向上していることに加えて、ピルビン酸脱炭酸酵素をコードする遺伝子群のうち、一部が欠失または失活しており、エタノール発酵の効率が低下している。
 つまり、本発明に係る形質転換体は、エタノール発酵が抑えられており、PYCの基質として利用できるピルビン酸量が多くなるため、オキサロ酢酸の産生能に優れており、オキサロ酢酸から合成される他のC4ジカルボン酸の産生能にも優れている。
 野生型S.ポンベでは、リンゴ酸は、好気的にピルビン酸からアセチルCoA、クエン酸、コハク酸などを経て、フマル酸脱水酵素によるフマル酸の加水により産生される。また嫌気的にPYCによりオキサロ酢酸が産生され、オキサロ酢酸からリンゴ酸脱水素酵素(MDH)により産生される。本発明に係る形質転換体は、オキサロ酢酸の産生量が高められているため、リンゴ酸の産生能も高い。
 本発明に係る形質転換体には、少なくとも1個のPCK遺伝子、または少なくとも1個のPYC遺伝子が外来遺伝子として導入されていればよい。導入されるPYC遺伝子は、1個ではなく、2個以上であってもよい。導入される外来遺伝子が多いほど、PYC活性の高い形質転換体が得られる。
 2個以上のPYC遺伝子が導入される場合、同種のPYC遺伝子が導入されていてもよく、2種類以上のPYC遺伝子が導入されていてもよい。同様に、本発明に係る形質転換体には、1個のPCK遺伝子が導入されていてもよく、互いに同種または異種のPCK遺伝子が2個以上導入されていてもよい。
 本発明に係る形質転換体のうち、特にリンゴ酸の産生能の高い形質転換体とするためには、MDH活性を高め、かつリンゴ酸の分解を抑制することが好ましい。
 具体的には、宿主となるS.ポンベに対して、PCK遺伝子およびPYC遺伝子の少なくとも一方の外来遺伝子に加えて、さらに、外来のMDH遺伝子が1以上組み込まれており、かつ、ピルビン酸脱炭酸酵素をコードする遺伝子群のうちの一部に加えてリンゴ酸酵素遺伝子も欠失または失活している形質転換体が好ましい。該形質転換体は、PCK遺伝子およびPYC遺伝子の少なくとも一方、およびMDH遺伝子の外来遺伝子が組み込まれており、PCK活性およびPYC活性の少なくとも一方、およびMDH活性が向上していることに加えて、ピルビン酸脱炭酸酵素をコードする遺伝子群の一部が欠失または失活しており、エタノール発酵の効率が低下している。つまり、該形質転換体は、エタノール発酵を抑えつつリンゴ酸発酵を促進しているため、リンゴ酸の産生能に優れている。
 本発明に係る形質転換体が少なくとも1個のMDH遺伝子が外来遺伝子として導入されている場合、本発明に係る形質転換体には、1個のMDH遺伝子が導入されていてもよく、互いに同種または異種のMDH遺伝子が2個以上導入されていてもよい。
 本発明に係る形質転換体としては、少なくとも1個のPCK遺伝子、少なくとも1個のPYC遺伝子、および少なくとも1個のMDH遺伝子が外来遺伝子として導入されていることが好ましい。PCK遺伝子、PYC遺伝子およびMDH遺伝子の外来遺伝子が組み込まれていることにより、リンゴ酸産生能がより向上する。
<S.ポンベ>
 宿主であるS.ポンベは、シゾサッカロミセス属に属する酵母(分裂酵母)であり、他の酵母に比べて特に耐酸性に優れる微生物である。また、S.ポンベは元々mae1(C4ジカルボン酸トランスポーター)遺伝子を有しているため、菌体内におけるC4ジカルボン酸の生産量を増大させた場合にも、過剰量のC4ジカルボン酸による菌体の生育等への影響を抑えられる。このため、S.ポンベは、サッカロミセス・セレビシエ等のMae1遺伝子を有していない他の酵母よりも、C4ジカルボン酸産生に適している。
 なお、S.ポンベの染色体の全塩基配列は、サンガー研究所のデータベース「GeneDB」に「Schizosaccharomyces pombe Gene DB(http://www.genedb.org/genedb/pombe/)」として、収録され、公開されている。本明細書記載のS.ポンベの遺伝子の配列データは前記データベースから遺伝子名や前記系統名で検索して、入手できる。
<ピルビン酸脱炭酸酵素をコードする遺伝子>
 S.ポンベにおけるピルビン酸脱炭酸酵素をコードする遺伝子(ピルビン酸脱炭酸酵素遺伝子、以下「PDC遺伝子」ともいう。)群には、ピルビン酸脱炭酸酵素1をコードする遺伝子(以下、「PDC1遺伝子」という。)、ピルビン酸脱炭酸酵素2をコードする遺伝子(以下、「PDC2遺伝子」という。)、ピルビン酸脱炭酸酵素3をコードする遺伝子(以下、「PDC3遺伝子」という。)、ピルビン酸脱炭酸酵素4をコードする遺伝子(以下、「PDC4遺伝子」という。)の4種類がある。なかでも、S.ポンベにおいては、PDC2遺伝子とPDC4遺伝子が主要な機能を持つPDC遺伝子である。
 各PDC遺伝子の系統名は以下の通りである。
 PDC1遺伝子(pdc1);SPAC13A11.06
 PDC2遺伝子(pdc2);SPAC1F8.07c
 PDC3遺伝子(pdc3);SPAC186.09
 PDC4遺伝子(pdc4);SPAC3G9.11c
 前記PDC遺伝子の配列データは、前記S.ポンベ遺伝子データベースから遺伝子名や系統名で検索して入手できる。
 本発明に係る形質転換体は、前記ピルビン酸脱炭酸酵素をコードする遺伝子群のうち、一部が欠失または失活した染色体を有する。形質転換体のPDC遺伝子群の一部が欠失または失活していることにより、形質転換体のエタノール発酵の効率が低下し、エタノールに変換されるピルビン酸量が少なくなるため、リンゴ酸をはじめとするC4ジカルボン酸の生産性が向上する。ただし、PDC遺伝子群を完全に欠失または失活させると、エタノール発酵が全く行えなくなって生育が阻害されるため、欠失または失活させるのはPDC遺伝子群の一部とする。
 欠失または失活させるPDC遺伝子は、PDC2遺伝子であることが特に好ましい。PDC2遺伝子は、特に主要な機能を持つPDC遺伝子である。S.ポンベのPDC2遺伝子がコードするPDC2(SpoPDC2)のアミノ酸配列を配列番号22に示す。
 前述のように、PDC遺伝子を全て欠失または失活させてしまうと、その形質転換体はエタノール発酵が行えなくなるために生育が阻害される。そのため、PDC遺伝子の欠失または失活は、生育に必要なエタノール発酵能を残して充分な形質転換体量が得られるようにしつつ、エタノール発酵能を低下させてC4ジカルボン酸の発酵効率を向上させられるように行わなければならない。
 この課題に対して本発明者等が検討を行った結果、PDC2遺伝子を欠失または失活させるとPDC4遺伝子がある程度活性化し、充分な形質転換体量が得られる程度のエタノール発酵能と、高い発酵効率でのC4ジカルボン酸の生産が両立できることを見出した。
<リンゴ酸酵素遺伝子>
 S.ポンベにおけるリンゴ酸酵素をコードする遺伝子(リンゴ酸酵素遺伝子、以下「mae遺伝子」ともいう。)は、リンゴ酸酵素2をコードする遺伝子(以下、「mae2遺伝子」という。)である。mae2遺伝子の系統名は以下の通りである。
 mae2遺伝子(mae2);SPCC794.12c
 前記mae2遺伝子の配列データは、前記S.ポンベ遺伝子データベースから遺伝子名や系統名で検索して入手できる。S.ポンベのmae2遺伝子がコードするmae2(Spomae2)のアミノ酸配列を配列番号23に示す。
 野生型のS.ポンベでは、産生されたリンゴ酸の一部は、mae2によりピルビン酸に変換される。本発明に係る形質転換体のうち、mae2遺伝子が欠失または失活しているものは、該形質転換体内では産生されたリンゴ酸がピルビン酸へ変換されないため、リンゴ酸産生量が飛躍的に向上する。
<遺伝子の欠失または失活>
 PDC遺伝子およびmae2遺伝子の欠失や失活は、公知の方法で行える。たとえば、Latour法(Nucleic Acids Research誌、2006年、34巻、e11頁、国際公開第2007/063919号等に記載)を用いることによりPDC遺伝子等を欠失させられる。
 また、PDC遺伝子等の塩基配列の一部に欠失、挿入、置換、付加を起こすことにより、該PDC遺伝子等を失活させることもできる。欠失、挿入、置換、付加による変異は、それらのいずれか1つのみを起こしてもよく、2つ以上を起こしてもよい。
 PDC遺伝子等の一部に前記変異を導入する方法は、公知の方法を用いることができる。
 たとえば、変異剤を用いた突然変異分離法(酵母分子遺伝学実験法、1996年、学会出版センター)や、PCR(ポリメラーゼ連鎖反応)を利用したランダム変異法(PCR Methods Application誌、第2巻、28-33ページ、1992年)等が挙げられる。
 また、一部に変異が導入されたPDC遺伝子は、温度感受性の変異型ピルビン酸脱炭酸酵素を発現するものであってもよい。温度感受性の変異型ピルビン酸脱炭酸酵素とは、ある培養温度においては野生型のピルビン酸脱炭酸酵素と同等の活性を示すが、特定の培養温度以上になると活性の消失または低下が見られる酵素である。
 変異型ピルビン酸脱炭酸酵素を発現する突然変異株は、温度により活性が制限されない条件下では野生型酵母と同等の生育速度を示し、活性が制限される特定の温度条件下において生育速度が著しく低下するものを選択することで得られる。
 同様に、一部に変異が導入されたmae2遺伝子は、温度感受性の変異型mae2を発現するものであってもよい。
 なお、遺伝子の欠失または失活とは、構造遺伝子の欠失または失活のみを意味しない。構造遺伝子が欠失している場合は勿論、たとえあるタンパク質を構造遺伝子がコードしていても、該構造遺伝子が発現しても該タンパク質が活性のある酵素ではない場合は遺伝子の失活を意味する。
 しかし、遺伝子の構造領域が活性のある酵素をコードしていても、調節領域をコードする遺伝子が欠失またはその配列が変異していることにより遺伝子の構造領域のタンパク質を発現しない場合は、遺伝子は「欠失または失活している」ことを意味する。したがって、欠失または失活させるPDC遺伝子またはmae2遺伝子は、PDC遺伝子またはmae2遺伝子の構造領域と調節領域のいずれでもよく、その両方でもよい。
<PYC遺伝子>
 本発明に係る形質転換体に外来遺伝子として導入されるPYC遺伝子としては、S.ポンベに導入した場合にPYC活性を発揮するタンパク質を発現させ得る構造遺伝子であればよく、いずれの生物種由来のPYC遺伝子であってもよい。
 外来遺伝子として導入されるPYC遺伝子がコードするPYCとしては、たとえば、アスペルギルス・ニガー(Aspergillus niger)由来のPYC(AniPYC)(AC.No.:CAC19838.1.)(配列番号1)、ブレビバチルス・ブレビス(BbrPYC)(Brevibacillus brevis)由来のPYC(配列番号2)、デバリョミセス・ハンセニイ(Debaryomyces hansenii)由来のPYC(DhaPYC)(AC.No.:CAG86153.2.)(配列番号3)、クルベロミセス・ラクティス(Kluyveromyces lactis)由来のPYC(KlaPYC)(配列番号4)、ラチャンセア・サーモトレランス(Lachancea thermotolerans)由来のPYC(LthPYC)(配列番号5)、ロデロミセス エロンギスポルス(Lodderomyces elongisporus)由来のPYC(LelPYC)(配列番号6)、サッカロミセス・セレビシエ由来のPYC(ScePYC)(配列番号7)、カンジダ・オルトプシローシス(Candida orthopsilosis)由来のPYC(CorPYC)(AC.No.:CCG23801.1.)(配列番号8)、カンジダ・トロピカリス(Candida tropicalis)由来のPYC(CtrPYC)(AC.No.:EER35520.1.)(配列番号9)、ナウモボジマ・カステリィ(Naumovozyma castellii)由来のPYC(NcaPYC)(AC.No.:CCC71457.1.)(配列番号10)、ナウモボジマ・ダイレネンシス(Naumovozyma dairenensis)由来のPYC(NdaPYC)(AC.No.:CCD26740.1.)(配列番号11)、サッカロミセス・クドリアベゼビイ(Saccharomyces kudriavzevii)由来のPYC(SkuPYC)(AC.No.:EJT41260.1.)(配列番号12)、S.ポンベ由来のPYC(SpoPYC)(AC.No.:BAA11239.1.,CAB52809.1.)(配列番号13)、テトラピシスポラ・ブラッタエ(Tetrapisispora blattae)由来のPYC(TblPYC)(AC.No.:CCH58779.1.)(配列番号14)、トルラスポラ・デルブルエキ(Torulaspora delbrueckii)由来のPYC(TdePYC)(AC.No.:CCE93722.1.)(配列番号15)、またはジゴサッカロミセス・ロキシイ(Zygosaccharomyces rouxii)由来のPYC(ZroPYC)(AC.No.:CAR26934.1.)(配列番号16)が挙げられる。
 また、該PYC遺伝子は、これらのPYCのアミノ酸配列(配列番号1~16)の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつPYC活性を有するポリペプチドをコードする遺伝子であってもよい。
 さらに、該PYC遺伝子は、これらのPYCのアミノ酸配列(配列番号1~16)と80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するアミノ酸配列からなり、かつPYC活性を有するポリペプチドをコードする遺伝子であってもよい。
 本願明細書中、「AC.No.」は、NCBI(National Center for Biotechnology Information)のデータベースGenBankのアクセッション番号を意味する。
 また、本発明および本願明細書中、「数個のアミノ酸」とは、2~20個のアミノ酸を意味し、2~10個のアミノ酸が好ましい。
 本発明に係る形質転換体に導入されるPYC遺伝子としては、BbrPYC、KlaPYC、LelPYC、サッカロミセス・セレビシエ由来のPYC、ScePYC、SpoPYC、もしくはTblPYCと同一またはアミノ酸配列が類似したPYCをコードする遺伝子であることが好ましい。
 具体的には、配列番号2、4~7、12~14のアミノ酸配列からなるポリペプチド、配列番号2、4~7、12~14のアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつPYC活性を有するポリペプチド、または配列番号2、4~7、12~14のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつPYC活性を有するポリペプチドをコードする遺伝子が好ましい。
 また、配列番号7からなるポリペプチド、配列番号7のアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつPYC活性を有するポリペプチド、または配列番号7のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつPYC活性を有するポリペプチドをコードする遺伝子がより好ましく、配列番号7からなるポリペプチド、または配列番号7のアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつPYC活性を有するポリペプチドがさらに好ましい。
<MDH遺伝子>
 本発明に係る形質転換体に外来遺伝子として導入されるMDH遺伝子としては、S.ポンベに導入した場合にMDH活性を発揮するタンパク質を発現させ得る構造遺伝子であればよく、いずれの生物種由来のMDH遺伝子であってもよい。
 外来遺伝子として導入されるMDH遺伝子がコードするMDHとしては、たとえば、アーケオグロブス・フルギダス(Archaeoglobus fulgidus)由来のMDH(AfuMDH)(配列番号17)、コングレギバクター・リトラリス(Congregibacter litoralis)由来のMDH(CliMDH)(配列番号18)、デルフチア・アシドボランス(Delftia acidovorans)由来のMDH(DacMDH)(配列番号19)、ハロモナス・エロンガタ(Halomonas elongata)由来のMDH(HelMDH)(配列番号20)、またはシュワネラ・プトレファシエンス(Shewanella putrefaciens)由来のMDH(SpuMDH)(配列番号21)が挙げられる。
 また、該MDH遺伝子は、これらのMDHのアミノ酸配列(配列番号17~21)の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつMDH活性を有するポリペプチドをコードする遺伝子であってもよい。さらに、該MDH遺伝子は、これらのMDHのアミノ酸配列(配列番号17~21)と80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するアミノ酸配列からなり、かつMDH活性を有するポリペプチドをコードする遺伝子であってもよい。
 本発明に係る形質転換体に導入されるMDH遺伝子としては、CliMDH、DacMDH、またはHelMDHと同一またはアミノ酸配列が類似したMDHをコードする遺伝子であることが好ましい。
 具体的には、配列番号18~20のアミノ酸配列からなるポリペプチド、これらのアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつMDH活性を有するポリペプチド、または配列番号18~20のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつMDH活性を有するポリペプチドをコードする遺伝子が好ましい。
 また、配列番号19からなるポリペプチド、配列番号19のアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつMDH活性を有するポリペプチド、または配列番号19のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつMDH活性を有するポリペプチドをコードする遺伝子がより好ましく、配列番号19からなるポリペプチド、または配列番号19のアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつMDH活性を有するポリペプチドがさらに好ましい。
<PCK遺伝子>
 本発明に係る形質転換体に外来遺伝子として導入されるPCK遺伝子としては、S.ポンベに導入した場合にPCK活性を発揮するタンパク質を発現させ得る構造遺伝子であればよく、いずれの生物種由来のPCK遺伝子であってもよい。
 外来遺伝子として導入されるPCK遺伝子がコードするPCKとしては、たとえば、カンジダ・グロブラータ(Candida glabrata)由来のPCK(CglPCK)(AC.No.:CAG60017.1)(配列番号94)、シトロバクター・コセリ(Citrobacter koseri)由来のPCK(CkoPCK)(AC.No.:KGY18702.1)(配列番号95)、クロノバクター・サカザキ(Cronobacter sakazakii)由来のPCK(CsaPCK)(AC.No.:EGL73852.1)(配列番号96)、デバリョミセス・ハンセニイ由来のPCK(DhaPCK)(AC.No.:CAG88379.1)(配列番号97)、エシェリキア・フェルグソニ(Escherichia fergusonii)由来のPCK(EfePCK)(AC.No.:EGC96802.1)(配列番号98)、エドワードシエラ・ターダ(Edwardsiella tarda)由来のPCK(EtaPCK)(Ac.No.:GAC66070.1)(配列番号99)、クルベロミセス・ラクティス由来のPCK(KlaPCK)(AC.No.:AAC27661.1)(配列番号100)、ロデロミセス エロンギスポルス由来のPCK(LelPCK)(Ac.No.:EDK41877.1)(配列番号101)、ペクトバクテリウム・カロトボラム(Pectobacterium carotovorum)由来のPCK(PcaPCK)(Ac.No.:ACT14911.1)(配列番号102)、フォトバクテリウム・ロイナチ(Photobacterium leiognathi)由来のPCK(PlePCK)(Ac.No.:GAA03015.1)(配列番号103)、プロヴィデンシア・レトゲア(Providencia rettgeri)由来のPCK(PrePCK)(Ac.No.:EFE52670.1)(配列番号104)、サッカロミセス・セレビシエ由来のPCK(ScePCK)(Ac.No.:CAA31488.1)(配列番号105)、セラチア・オドリフェラ(Serratia odorifera)由来のPCK(SodPCK)(Ac.No.:EFE97343.1)(配列番号106)、ビブリオ・オリエンタリス(Vibrio orientalis)由来のPCK(VorPCK)(Ac.No.:EGU52194.1)(配列番号107)、バンデルワルトジマ・ポリスポラ(Vanderwaltozyma polyspora)由来PCK(VpoPCK)(Ac.No.:EDO17884.1)(配列番号108)、ビブリオ・ツビアシ(Vibrio tubiashii)由来のPCK(VtuPCK)(Ac.No.:EIF04922.1)(配列番号109)、イエシニア・ベルコビエリ(Yersinia bercovieri)由来PCK(YbePCK)(Ac.No.:EEQ07887.1)(配列番号110)、ヤロウィア・リポリチカ(Yarrowia lipolytica)由来PCK(YliPCK)(Ac.No.:CAG82248.1)(配列番号111)、イエシニア・ロデイ(Yersinia rohdei)由来のPCK(YroPCK)(Ac.No.:AJJ11585.1)(配列番号112)、またはジゴサッカロミセス・ロキシイ由来PCK(ZroPCK)(Ac.No.:CAR26716.1)(配列番号113)が挙げられる。
 また、該PCK遺伝子は、これらのPCKのアミノ酸配列(配列番号94~113)の1もしくは数個のアミノ酸が置換、付加、または欠失したアミノ酸配列からなり、かつPCK活性を有するポリペプチドをコードする遺伝子であってもよい。さらに、該PCK遺伝子は、これらのPCKのアミノ酸配列(配列番号94~113)と80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するアミノ酸配列からなり、かつPCK活性を有するポリペプチドをコードする遺伝子であってもよい。
 また高い活性を示すPCK、PYC、およびMDHとして、エシェリキア・コリ(Escherichia coli)由来のPCK(EcoPCK)(AC.No.:AAA58200.1)(配列番号154)、ニワトリ(Gallus gallus)由来のPYC(GglPYC)(AC.No.:AAM92771.1.)(配列番号155)およびエシェリキア・コリ(Escherichia coli)由来のMDH(EcoMDH)(AC.No.:AAA58038.1)(配列番号156)が知られている。
[形質転換体の製造]
 本発明に係る形質転換体は、PDC遺伝子群の一部が欠失または失活したS.ポンベを宿主とし、これにPCK遺伝子およびPYC遺伝子の少なくとも一方の外来遺伝子を遺伝子工学的方法で該宿主に導入することにより得られる。また、宿主とするS.ポンベに、PCK遺伝子およびPYC遺伝子の少なくとも一方の外来遺伝子を遺伝子工学的方法で導入した形質転換体のPDC遺伝子群の一部を欠失または失活させて、本発明に係る形質転換体を得ることもできる。
 本発明に係る形質転換体のうち、外来のMDH遺伝子が導入されており、かつmae2遺伝子も欠失等しているものは、PDC遺伝子群の一部が欠失または失活したS.ポンベを宿主とし、これにPCK遺伝子およびPYC遺伝子の少なくとも一方の外来遺伝子と少なくとも1個の外来のMDH遺伝子を遺伝子工学的方法で該宿主に導入し、さらに該宿主のmae2遺伝子を欠失または失活させることにより得られる。
 または、PDC遺伝子群の一部が欠失または失活したS.ポンベを宿主とし、該宿主のmae2遺伝子を欠失または失活させた後に、PCK遺伝子およびPYC遺伝子の少なくとも一方の外来遺伝子と少なくとも1個の外来のMDH遺伝子を遺伝子工学的方法で組み込んでもよい。
 その他、宿主とするS.ポンベに、PCK遺伝子およびPYC遺伝子の少なくとも一方の外来遺伝子と、少なくとも一個の外来のMDH遺伝子を遺伝子工学的方法で導入した形質転換体のPDC遺伝子群の一部およびmae2遺伝子を欠失または失活させて、本発明に係る形質転換体を得ることもできる。複数の外来遺伝子を導入する場合、全てを同時に宿主に導入してもよく、順次(順不同)導入してもよい。
 以下、PDC遺伝子群の一部が欠失または失活したS.ポンベを宿主とし、これにPYC遺伝子およびMDH遺伝子を導入した後、mae2遺伝子を欠失または失活させる方法を例に、形質転換体の製造方法を説明する。
<宿主>
 宿主とするS.ポンベは、野生型であってもよく、用途に応じて特定の遺伝子を欠失または失活させた変異型であってもよい。特定の遺伝子を欠失または失活させる方法としては、公知の方法を用いることができる。具体的には、前記Latour法を用いることにより遺伝子を欠失させられる。
 また、変異剤を用いた突然変異分離法(酵母分子遺伝学実験法、1996年、学会出版センター)や、PCRを利用したランダム変異法(PCR Methods Application誌、第2巻、28-33ページ、1992年)等により遺伝子の一部に変異を導入することにより該遺伝子を失活させられる。特定遺伝子を欠失または失活させたシゾサッカロミセス属酵母宿主としては、たとえば、国際公開第2002/101038号、国際公開第2007/015470号等に記載されている。
 また、特定の遺伝子の削除または不活性化を行う部分はORF(オープンリーディングフレーム)部分であってもよく、発現調節配列部分であってもよい。特に好ましい方法は、構造遺伝子のORF部分をマーカー遺伝子に置換するPCR媒介相同組換え法(Yeast誌、第14巻、943-951ページ、1998年)による削除または不活性化の方法である。
 PDC遺伝子が欠失または失活した変異体は、本発明に係る形質転換体を製造するための宿主として好ましく使用できる。さらに、PDC遺伝子以外にさらにPDC遺伝子以外の特定遺伝子を欠失または失活させたS.ポンベを宿主とすることもできる。プロテアーゼ遺伝子等を欠失または失活させることにより異種蛋白質の発現効率を高めることができ、本発明における宿主に適用することによりリンゴ酸等のC4ジカルボン酸の生産効率の向上が期待できる。
 さらに宿主として使用するS.ポンベには、形質転換体を選択するためのマーカーを有するものを用いることが好ましい。たとえば、ある遺伝子が欠落していることにより特定の栄養成分が生育に必須である宿主を使用することが好ましい。目的遺伝子配列を含むベクターにより形質転換をして形質転換体を作製する場合、ベクターにこの欠落している遺伝子(栄養要求性相補マーカー)を組み込んでおくことにより、形質転換体では宿主の栄養要求性が消失する。宿主と形質転換体の栄養要求性の相違により、両者を区別して形質転換体を得られる。
 たとえば、オロチジンリン酸デカルボキシラーゼ遺伝子(ura4遺伝子)が欠失または失活してウラシル要求性となっているS.ポンベを宿主とし、ura4遺伝子(栄養要求性相補マーカー)を有するベクターにより形質転換した後、ウラシル要求性が消失したものを選択することにより、ベクターが組み込まれた形質転換体を得られる。宿主において欠落により栄養要求性となる遺伝子は、形質転換体の選択に用いられるものであればura4遺伝子には限定されず、イソプロピルリンゴ酸デヒドロゲナーゼ遺伝子(leu1遺伝子)等であってもよい。
 また、PDC遺伝子群が欠失も失活もしていないS.ポンベを形質転換体製造のための宿主として使用することもできる。この場合の宿主としては、PDC遺伝子以外の前記のような遺伝子(栄養要求性マーカーやプロテアーゼ遺伝子など)が欠失または失活しているものを使用できる。該宿主を用いて形質転換体を製造した後、得られた形質転換体のPDC遺伝子群の一部を欠失または失活させて、本発明に係る形質転換体が得られる。
<外来遺伝子導入方法>
 遺伝子工学的方法で宿主に外来遺伝子を導入する方法としては、公知の方法を使用できる。S.ポンベを宿主としてこれに異種蛋白質の構造遺伝子を導入する方法としては、たとえば、日本国特開平5-15380号公報、国際公開第95/09914号、日本国特開平10-234375号公報、日本国特開2000-262284号公報、日本国特開2005-198612号公報、国際公開第2011/021629号などに記載の方法を使用できる。
<発現カセット>
 発現カセットとは、目的の蛋白質を発現するために必要なDNAの組み合わせであり、目的の蛋白質をコードする構造遺伝子と宿主内で機能するプロモーターとターミネーターを含む。本発明に係る形質転換体の製造において用いられる発現カセットは、PYC遺伝子およびMDH遺伝子のいずれか一方と、S.ポンベ内で機能するプロモーターとS.ポンベ内で機能するターミネーターとを含む。
 該発現カセットは、5’-非翻訳領域、3’-非翻訳領域のいずれか1つ以上が含まれていてもよい。さらに、前記栄養要求性相補マーカーが含まれていてもよい。1の発現カセットには複数の外来遺伝子が存在していてもよい。1の発現カセット中の外来遺伝子の数は1~8が好ましく、1~5がより好ましい。
 また、1の発現カセット中に複数の外来遺伝子が含まれている場合、2種類以上の外来遺伝子を含んでいてもよい。好ましい発現カセットは、1または複数のPYC遺伝子およびMDH遺伝子、プロモーター、ターミネーター、5’-非翻訳領域、3’-非翻訳領域、栄養要求性相補マーカーを含む発現カセットである。
 本発明に係る形質転換体の製造において、PYC遺伝子およびMDH遺伝子は、それぞれ別個の発現カセットにより宿主に導入してもよく、両遺伝子を1の発現カセットにより宿主に導入してもよい。PYC遺伝子およびMDH遺伝子を含む発現カセットとしては、たとえば、5’末端側から、プロモーター、PYC遺伝子、切断配列、栄養要求性相補マーカー(たとえば、Ura4遺伝子)、MDH遺伝子、およびターミネーターを有する発現カセットが好ましい。
 発現カセットに含めるPYC遺伝子またはMDH遺伝子の遺伝子配列としては、野生型がコードする遺伝子をそのまま用いてもよいが、宿主として用いるS.ポンベ内での発現量を増大させるために、野生型の遺伝子配列を、S.ポンベにおいて使用頻度の高いコドンに改変してもよい。
 S.ポンベ内で機能するプロモーターとターミネーターは、本発明に係る形質転換体によりC4ジカルボン酸が蓄積して酸性になっても(pH6以下になっても)、形質転換体内で機能して外来遺伝子がコードするタンパク質の発現を維持できるものであればよい。S.ポンベ内で機能するプロモーターとしては、S.ポンベが本来有するプロモーター(転写開始活性が高いものが好ましい)やS.ポンベが本来有しないプロモーター(ウイルス由来のプロモーターなど)を使用できる。なお、プロモーターはベクター内に2種以上存在していてもよい。
 S.ポンベが本来有するプロモーターとしては、たとえば、アルコールデヒドロゲナーゼ遺伝子プロモーター、チアミンの代謝に関与するnmt1遺伝子プロモーター、グルコースの代謝に関与するフルクトース-1、6-ビスホスファターゼ遺伝子プロモーター、カタボライト抑制に関与するインベルターゼ遺伝子のプロモーター(国際公開第99/23223号参照)、熱ショック蛋白質遺伝子プロモーター(国際公開第2007/26617号参照)などが挙げられる。
 S.ポンベが本来有しないプロモーターとしては、たとえば、日本国特開平5-15380号公報、日本国特開平7-163373号公報、日本国特開平10-234375号公報に記載されている動物細胞ウイルス由来のプロモーターが挙げられ、hCMVプロモーター、SV40プロモーターが好ましい。
 S.ポンベ内で機能するターミネーターとしては、S.ポンベが本来有するターミネーターやS.ポンベが本来有しないターミネーターを使用できる。なお、ターミネーターはベクター内に2種以上存在していてもよい。
 ターミネーターとしては、たとえば、日本国特開平5-15380号公報、日本国特開平7-163373号公報、日本国特開平10-234375号公報に記載されているヒト由来のターミネーターが挙げられ、ヒトリポコルチンIのターミネーターが好ましい。
<ベクター>
 本発明に係る形質転換体は、外来遺伝子を含む発現カセットを、染色体中に有するか、または染色体外遺伝子として有する。発現カセットを染色体中に有するとは、宿主細胞の染色体中の1カ所以上に発現カセットが組み込まれていることであり、染色体外遺伝子として有するとは、発現カセットを含むプラスミドを細胞内に有するということである。各発現カセットを含む形質転換体は、各発現カセットを含むベクターを用いて宿主であるS.ポンベを形質転換することにより得られる。
 該ベクターは、環状DNA構造または線状DNA構造を有するベクターに、該発現カセットを組み込むことにより製造できる。該発現カセットが、宿主の細胞内で染色体外遺伝子として保持される形質転換体を作製する場合には、該ベクターは、宿主細胞内で複製されるための配列、即ち、自律複製配列(Autonomously Replicating Sequence:ARS)を含むプラスミドであることが好ましい。
 一方で、該発現カセットが、宿主細胞の染色体中に組み込まれた形質転換体を作製する場合には、該ベクターは、線状DNA構造であり、かつARSを有していないものとして、宿主細胞へ導入されることが好ましい。たとえば、該ベクターは、線状DNAからなるベクターであってもよく、宿主への導入時に、線状DNAに切り開くための制限酵素認識配列を備える環状DNA構造のベクターであってもよい。該ベクターがARSを有するプラスミドの場合、ARS部分を削除して線状DNA構造、またはARS部分を開裂させることによりARSの機能を失活させた線状DNA構造とした後、宿主へ導入できる。
 該ベクターは、形質転換体を選択するためのマーカーを有することが好ましい。該マーカーとしては、たとえば、ura4遺伝子(栄養要求性相補マーカー)、イソプロピルリンゴ酸デヒドロゲナーゼ遺伝子(leu1遺伝子)が挙げられる。
 各外来遺伝子はS.ポンベの染色体に導入することが好ましい。染色体に外来遺伝子を導入することにより継代の維持安定性に優れた形質転換体が得られる。また、外来遺伝子は染色体に複数導入することもできる。本発明に係る形質転換体において、染色体に組み込まれたPYC遺伝子の数は1~20が好ましく、特に1~8が好ましい。また、該形質転換体の染色体に組み込まれたMDH遺伝子の数は1~20が好ましく、特に1~8が好ましい。
 染色体に外来遺伝子を導入する方法としては、公知の方法を使用できる。たとえば、前記日本国特開2000-262284号公報に記載の方法で染色体に外来遺伝子を複数導入できる。また、該方法で染色体に外来遺伝子を1個導入することもできる。また、後述のように、染色体の複数の箇所に1個または複数の外来遺伝子を導入することもできる。
 外来遺伝子をS.ポンベの染色体に導入する方法としては、外来遺伝子を有する発現カセットと組換え部位とを有するベクターを用い、相同組換え法により導入する方法が好ましい。
 ベクターの組換え部位は、S.ポンベの染色体における相同組換えの標的部位に対して相同組換えを行わせることのできる塩基配列を有する部位である。また、標的部位は、S.ポンベの染色体内で発現カセットを組み込む標的となる部位である。標的部位は、ベクターの組換え部位を該標的部位に対して相同組換えを行わせる塩基配列とすることにより自由に設定できる。
 前記組換え部位の塩基配列と標的部位の塩基配列との相同性は70%以上とすることが必要である。また、組換え部位の塩基配列と標的部位の塩基配列との相同性は、相同組換えが起きやすくなる点から、90%以上とすることが好ましく、95%以上であることがより好ましい。該組換え部位を有するベクターを用いることにより、発現カセットが相同組換えにより標的部位に組み込まれる。
 組換え部位の長さ(塩基数)は、20~2000bpであることが好ましい。組換え部位の長さが20bp以上であれば、相同組換えが起きやすくなる。また、組換え部位の長さが2000bp以下であれば、ベクターが長くなりすぎて相同組換えが起き難くなることを防ぎやすい。組換え部位の長さは100bp以上であることがより好ましく、200bp以上であることがさらに好ましい。また、組換え部位の長さは800bp以下であることがより好ましく、400bp以下であることがさらに好ましい。
 ベクターは、前記発現カセットと組換え部位以外に他のDNA領域を有していてもよい。たとえば、大腸菌内での複製のために必要な「ori」と呼ばれる複製開始領域や抗生物質耐性遺伝子(ネオマイシン耐性遺伝子等)が挙げられる。これらは大腸菌を使用してベクターを構築する場合に通常必要とされる遺伝子である。ただし、前記複製開始領域は後述のようにベクターを宿主の染色体に組み込む際には除去されることが好ましい。
 染色体に外来遺伝子を組み込む場合、ベクターは、S.ポンベの細胞に導入する際には線状DNA構造で導入することが好ましい。すなわち、通常用いられるプラスミドDNA等の環状DNA構造を有するベクターである場合には、制限酵素でベクターを線状に切り開いた後にS.ポンベの細胞に導入することが好ましい。
 この場合、環状DNA構造を有するベクターを切り開く位置は、組換え部位内とする。これにより、切り開かれたベクターの両端にそれぞれ組換え部位が部分的に存在することとなり、相同組換えによりベクター全体が染色体の標的部位に組み込まれる。
 ベクターは、両端それぞれに組換え部位の一部が存在するような線状DNA構造とすることができれば、環状DNA構造を有するベクターを切り開く方法以外の方法で構築してもよい。
 ベクターとしては、たとえば、pBR322、pBR325、pUC118、pUC119、pUC18、pUC19等の大腸菌由来のプラスミドを好適に用いることができる。
 この場合、相同組換えに用いる際のプラスミドベクターは、大腸菌内での複製のために必要な「ori」と呼ばれる複製開始領域が除去されていることが好ましい。これにより、上述したベクターを染色体に組み込む際に、その組み込み効率を向上させられる。
 複製開始領域が除去されたベクターの構築方法は特に限定されないが、日本国特開2000-262284号公報に記載されている方法を用いることが好ましい。すなわち、組換え部位内の切断箇所に複製開始領域が挿入された前駆体ベクターを構築しておき、前述のように線状DNA構造とすると同時に複製開始領域が切り出されるようにする方法が好ましい。これにより、簡便に複製開始領域が除去されたベクターを得られる。
 また、日本国特開平5-15380号公報、日本国特開平7-163373号公報、国際公開第96/23890号、日本国特開平10-234375号公報等に記載された発現ベクターやその構築方法を適用して、発現カセットおよび組換え部位を有する前駆体ベクターを構築し、さらに通常の遺伝子工学的手法で該前駆体ベクターから複製開始領域を除去して相同組換えに用いるベクターを得る方法であってもよい。
<標的部位>
 ベクターを組み込む標的部位は、S.ポンベの染色体中の1箇所のみに存在していてもよく、2箇所以上に存在していてもよい。標的部位が2箇所以上存在している場合、S.ポンベの染色体の2箇所以上に該ベクターを組み込める。また、1の発現カセット中の外来遺伝子を複数とした場合には、標的部位の1箇所に複数の外来遺伝子を組み込める。
 さらに、2種以上の標的部位に、それぞれの標的部位に対応する組換え部位を有する2種以上のベクターを用いて、発現カセットを組み込むこともできる。該方法で、S.ポンベの染色体に複数の外来遺伝子を組み込むことができ、これにより外来遺伝子がコードするPYCまたはMDHの発現量を増大させ、C4ジカルボン酸の生産性を向上させられる。
 たとえば、PYC遺伝子を含む発現カセットを第1の標的部位を有するベクターに組み込み、MDH遺伝子を含む発現カセットを第2の標的部位を有するベクターに組み込み、該ベクターを用いてPDC遺伝子群の一部が欠失または失活しているS.ポンベを宿主として形質転換した後、得られた形質転換体のmae2遺伝子を欠失または失活させることにより、本発明に係る形質転換体が得られる。
 1箇所の標的部位に発現カセットを組み込む場合、たとえば日本国特開2000-262284号公報に記載の方法記載の標的部位を使用できる。異なる組み込み部位を有する2種以上のベクターを用いて、異なる標的部位にそれぞれベクターを組み込める。しかし、染色体の2箇所以上にベクターを組み込む場合、該方法は煩雑である。
 染色体中に複数箇所存在する互いに実質的に同一の塩基配列部分を標的部位として、この複数箇所の標的部位にそれぞれベクターを組み込むことができれば、1種類のベクターを使用して染色体の2箇所以上にベクターを組み込める。
 互いに実質的に同一の塩基配列とは、塩基配列の相同性が90%以上であることを意味する。標的部位同士の相同性は95%以上であることが好ましい。また、互いに実質的に同一である塩基配列の長さは、前記ベクターの組換え部位を包含する長さであり、1000bp以上であることが好ましい。
 1箇所の標的部位に複数の外来遺伝子が組み込まれている場合に比較して、外来遺伝子の組み込み数が同一であっても、複数存在する標的部位に外来遺伝子が分散して組み込まれている場合には、形質転換体が増殖する際に外来遺伝子が染色体から1度に脱落することが少なくなり、形質転換体の継代における維持安定性が向上する。
 染色体中に複数箇所存在する標的部位としては、トランスポゾン遺伝子Tf2が好ましい。Tf2は、S.ポンベの3本(一倍体)の染色体それぞれに合計13箇所存在するトランスポゾン遺伝子であり、長さ(塩基数)は約4900bpであり、それらの遺伝子間における塩基配列相同性は99.7%であることが知られている(下記文献参照)。
 Nathan J.Bowen et al,“Retrotransposons and Their Recognition of pol II Promoters:A Comprehensive Survey of the Transposable Elements From the Complete Genome Sequence of Schizosaccharomyces pombe”,Genome Res.2003 13:1984-1997
 染色体に13箇所存在するTf2の1箇所のみにベクターを組み込める。この場合、2個以上の外来遺伝子を有するベクターを組み込むことにより、2個以上の外来遺伝子を有する形質転換体を得られる。また、Tf2の2箇所以上にベクターを組み込むことにより、2個以上の外来遺伝子を有する形質転換体を得られる。この場合、2個以上の外来遺伝子を有するベクターを組み込むことにより、さらに多くの外来遺伝子を有する形質転換体を得られる。Tf2の13箇所すべてにベクターが組み込まれると、形質転換体の生存や増殖に対する負荷が大きくなりすぎるおそれがある。好ましくは、13箇所のTf2の8箇所以下にベクターが組み込まれることが好ましく、5箇所以下にベクターが組み込まれることがより好ましい。
<形質転換方法>
 形質転換方法は、公知の形質転換方法がいずれも用いられる。該形質転換方法としては、たとえば、酢酸リチウム法、エレクトロポレーション法、スフェロプラスト法、ガラスビーズ法など従来周知の方法や、日本国特開2005-198612号公報記載の方法が挙げられる。また、市販の酵母形質転換用キットを用いてもよい。
 S.ポンベ宿主を相同組み換え法で形質転換する方法としては、公知の相同組み換え法を使用できる。本発明に係る形質転換体を製造する際の形質転換方法としては、上述のPDC遺伝子群の一部が欠失または失活したS.ポンベを宿主とし、その染色体に上述のベクターを用いて、発現カセットを相同組換えにより組み込む方法が好ましい。
 形質転換体の製造では、通常、相同組換えを行った後、得られた形質転換体を選択する。選択する方法としては、たとえば、以下に示す方法が挙げられる。前記栄養要求性マーカーにより形質転換体を選択できる培地によりスクリーニングし、得られたコロニーから複数を選択する。
 次に、それらを別々に液体培養した後、それぞれの培養液における異種蛋白質の発現量を調べ、該異種蛋白質の発現量がより多い形質転換体を選択する。それら選択した形質転換体に対してパルスフィールドゲル電気泳動法によるゲノム解析を行うことにより、染色体に組み込まれたベクターの数や発現カセットの数を調べられる。
 染色体に組み込まれるベクターの数は組み込み条件などを調整することによりある程度は調整できる。ベクターの大きさ(塩基数)や構造により、組み込み効率や組み込み数も変化すると考えられる。
 本発明に係る形質転換体は、リンゴ酸産生能が従来になく高い。該形質転換体のリンゴ酸の生産速度としては、2.0g/(L・h)以上が好ましく、5.0g/(L・h)以上がより好ましく、10g/(L・h)以上がさらに好ましく、15~30g/(L・h)が特に好ましい。
[C4ジカルボン酸の製造方法]
 本発明に係るC4ジカルボン酸の製造方法は、前記本発明に係る形質転換体を培養液中で培養し、該培養液からC4ジカルボン酸を取得するC4ジカルボン酸の製造方法である。
 本発明に係る形質転換体を、糖を含む培養液中で培養することにより、解糖系により該糖から得られるピルビン酸からPYCにより、または、ホスホエノールピルビン酸からPCKにより、オキサロ酢酸が産生される。産生されたオキサロ酢酸からMDHによりリンゴ酸が産生される。産生されたリンゴ酸から他のC4ジカルボン酸も産生される。
 産生されたリンゴ酸をはじめとするC4ジカルボン酸は、菌体内部に蓄積されるが、一部はMae1(C4ジカルボン酸トランスポーター)により培養上清に放出される。培養された該形質転換体または培養上清からC4ジカルボン酸を取得することでC4ジカルボン酸を製造できる。該形質転換体により製造されるC4ジカルボン酸としては、オキサロ酢酸、リンゴ酸、フマル酸、コハク酸等が挙げられ、オキサロ酢酸またはリンゴ酸が好ましい。
 C4ジカルボン酸の製造に用いる培養液としては、糖を含有する公知の酵母培養培地を用いることができ、さらにS.ポンベが資化しうる窒素源、無機塩類等を含有し、S.ポンベの培養を効率良く行えるものであればよい。培養液としては、天然培地を用いてもよく、合成培地を用いてもよい。
 炭素源である糖としては、たとえば、グルコース、フルクトース、スクロース、マルトース等の糖が挙げられる。窒素源としては、たとえば、アンモニア、塩化アンモニウム、酢酸アンモニウム等の無機酸または無機酸のアンモニウム塩、ペプトン、カザミノ酸、イーストエキス等が挙げられる。無機塩類としては、たとえば、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。さらには、プロテオリピドなどの発酵促進因子などを含ませることができる。
 本発明に係るC4ジカルボン酸の製造方法では、糖として特にグルコースまたはスクロースを含有する培養液を用いることが好ましい。培養初期の培養液(100質量%)中のグルコースまたはスクロース濃度は1質量%以上が好ましく、1~50質量%がより好ましく、2~16質量%がさらに好ましい。培養によりグルコース濃度またはスクロース濃度が低下することより、必要によりグルコースを添加して培養を継続することが好ましい。培養終期のグルコース濃度等は1質量%以下となってもよい。
 また、C4ジカルボン酸を分離しながら培養液を循環させて連続的に培養を行う場合には、前記グルコース濃度等を維持することが好ましい。グルコース濃度等を2質量%以上とすることにより、C4ジカルボン酸の生産性がより向上する。また、培養液中のグルコースまたはスクロースを16質量%以下とすることにより、C4ジカルボン酸の生産効率がより向上する。
 また、C4ジカルボン酸製造の生産性を高くするために、高密度培養を行うことが好ましい。高密度培養では、培養液中の形質転換体の初発菌体濃度を乾燥菌体重量換算値で表して0.1~100g/Lとすることが好ましい。培養液中の形質転換体の初発菌体濃度を乾燥菌体重量換算値で表して20~60g/Lとすることがより好ましい。初発菌体濃度を高くすることにより短時間で高い生産性を達成できる。また、初発菌体濃度があまりに高すぎると菌体の凝集や精製効率の低下などの問題が生じるおそれがある。
 なお、後述の実施例等で示す菌体濃度は、日本分光社製可視紫外分光器V550によって測定した波長660nmの光の吸光度(OD660)から換算した値である。660nmにおけるOD660=1は、分裂酵母乾燥重量の0.2g、湿重量の0.8gに相当する。
 培養には公知の酵母培養方法を用いることができ、たとえば振とう培養、攪拌培養等により行える。
 また、培養温度は、23~37℃であることが好ましい。また、培養時間は適宜決定できる。
 また、培養は、回分培養であってもよく、連続培養であってもよい。たとえば、回分培養で培養を行った後、菌体を培養液から分離して、C4ジカルボン酸を含む培養液を取得できる。また、連続培養法では、たとえば、培養中の培養槽から培養液の一部を抜き出し、抜き出した培養液からC4ジカルボン酸を分離するとともに、培養上清を回収し、該培養上清にグルコースや新たな培養液を加えて培養槽に戻すことを繰り返して、連続的に培養する方法が挙げられる。連続培養を行うことにより、C4ジカルボン酸の生産性がより向上する。
 本発明に係る形質転換体は、耐酸性に特に優れているため、C4ジカルボン酸の蓄積により低pH(pH2~4程度)となっても中和を行わずにC4ジカルボン酸を生産できる。そのため、培養液のpHが3.5以下になった後も、さらに培養を継続する連続培養によりC4ジカルボン酸を製造できる。培養終期のpHおよび連続培養におけるpHは、3.5以下が好ましく、特に2.3~3.5が好ましい。場合によっては培養液のpHが3.5以下になる前に培養を終了してもよい。
 培養液からのC4ジカルボン酸の取得は、公知の方法を用いることができる。たとえば、培養終了後の培養液から遠心分離により菌体を分離し、pH1以下にした後にジエチルエーテルや酢酸エチル等により抽出する方法、イオン交換樹脂に吸着させて洗浄した後に溶出させる方法、活性炭を用いて不純物を除去する方法、酸触媒の存在下でアルコールと反応させた後に蒸留する方法、分離膜を用いて分離する方法が挙げられる。
 また、場合によっては培養液中のC4ジカルボン酸を中和した後培養液とC4ジカルボン酸塩を分離して、C4ジカルボン酸を取得することもできる。たとえば、培養液中のC4ジカルボン酸をカルシウム塩またはリチウム塩に変換し、該中和塩を晶析する方法でC4ジカルボン酸を取得することもできる。
 以上説明した本発明に係るC4ジカルボン酸の製造方法は、S.ポンベを宿主とする形質転換体を用い、高い生産性で簡便にC4ジカルボン酸を製造できる。該製造方法によれば、C4ジカルボン酸の生産速度を5g/L/h以上とすることが容易であり、場合により、C4ジカルボン酸の生産速度は15g/L/h以上にも達する。また、本発明に係るC4ジカルボン酸の製造方法は、高濃度のグルコース存在下、および高濃度の形質転換体による高密度培養にも適している。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。また、本実施例においては特に断りのない限り「%」は「質量%」を意味する。
<S.ポンベPDC2遺伝子削除株の作製>
 S.ポンベのウラシル要求性株ARC019株(遺伝子型:h、leu1-32、ura4-D18、Ade6-M216)(Strain name:JY741,NBRPID:FY7512)をLatour法(Nucleic Acids Research誌、2006年、34巻、e11頁、国際公開第2007/063919号に記載)に従って形質転換し、PDC2遺伝子(系統名:SPAC1F8.07c)を削除した削除株(IGF836株)を作製した。
 削除断片の作製には、S.ポンベのARC032株(遺伝子型:h)(国際公開第2007/015470号参照。)からDNeasy(キアゲン社製)によって調製した全ゲノムDNAを鋳型とし、表1に示す塩基配列を有する8種の合成オリゴDNA(オペロン社製)を使用した。
Figure JPOXMLDOC01-appb-T000001
 具体的には、UFとURでUP領域を、OFとORでOL領域を、DFとDRでDN領域をそれぞれKOD-Dash(東洋紡社製)を用いたPCR法によって作製したのち、さらにそれらを鋳型として、それぞれFFとFRを用いた同様のPCR法によって全長の削除断片を作製した。全長の削除断片作製時には、表2に示す塩基配列を有する2種の合成オリゴDNA(オペロン社製)を用い、ARC032株より同様に調製した全ゲノムDNAを鋳型とし、同様のPCR法によって調製したS.ポンベのウラシル要求性マーカーura4(GeneDB収載の系統名SPCC330.05c、オロチジン-5’-リン酸脱炭酸酵素遺伝子)領域断片も鋳型として合わせて使用した。
Figure JPOXMLDOC01-appb-T000002
 得られたS.ポンベPDC2遺伝子削除株(IGF836株、hleu1-32 ura4-D18 ade6-M216 pdc2-D23)を、pSHhベクターを制限酵素PmaCIで処理し得られたDNA断片を用いて形質転換し、ウラシル要求性とアデニン要求性が回復したASP4590株を取得した。
[例2]
<外来遺伝子導入株の作製>
 アスペルギルス・ニガー由来のPYC(AniPYC)(配列番号1)、ブレビバチルス・ブレビス由来のPYC(BbrPYC)(配列番号2)、デバリョミセス・ハンセニイ由来のPYC(DhaPYC)(配列番号3)、クルベロミセス・ラクティス由来のPYC(KlaPYC)(配列番号4)、ラチャンセア・サーモトレランス由来のPYC(LthPYC)(配列番号5)、ロデロミセス エロンギスポルス由来のPYC(LelPYC)(配列番号6)、サッカロミセス・セレビシエ由来のPYC(ScePYC)(配列番号7)、カンジダ・オルトプシローシス由来のPYC(CorPYC)(配列番号8)、カンジダ・トロピカリス由来のPYC(CtrPYC)(配列番号9)、ナウモボジマ・カステリィ由来のPYC(NcaPYC)(配列番号10)、ナウモボジマ・ダイレネンシス由来のPYC(NdaPYC)(配列番号11)、サッカロミセス・クドリアベゼビイ由来のPYC(SkuPYC)(配列番号12)、S.ポンベ由来のPYC(SpoPYC)(配列番号13)、テトラピシスポラ・ブラッタエ由来のPYC(TblPYC)(配列番号14)、トルラスポラ・デルブルエキ由来のPYC(TdePYC)(配列番号15)、ジゴサッカロミセス・ロキシイ由来のPYC(ZroPYC)(配列番号16)、アーケオグロブス・フルギダス由来のMDH(AfuMDH)(配列番号17)、コングレギバクター・リトラリス由来のMDH(CliMDH)(配列番号18)、デルフチア・アシドボランス由来のMDH(DacMDH)(配列番号19)、ハロモナス・エロンガタ由来のMDH(HelMDH)(配列番号20)、またはシュワネラ・プトレファシエンス由来のMDH(SpuMDH)(配列番号21)を導入したポンベ形質転換株を作製した(表24)。
 具体的には、例1で作製したIGF836株(S.ポンベの遺伝子削除株)を、AniPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-AniPYC、BbrPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-BbrPYC、DhaPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-DhaPYC、KlaPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-KlaPYC、LthPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-LthPYC、LelPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-LelPYC、ScePYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-ScePYC、CorPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-CorPYC、CtrPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-CtrPYC、NcaPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-NcaPYC、NdaPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-NdaPYC、SkuPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-SkuPYC、SpoPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-SpoPYC、TblPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-TblPYC、TdePYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-TdePYC、ZroPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-ZroPYC、AfuMDH遺伝子発現カセットを保持した単座組込型組換えベクターpSMh-AfuMDH、CliMDH遺伝子発現カセットを保持した単座組込型組換えベクターpSMh-CliMDH、DacMDH遺伝子発現カセットを保持した単座組込型組換えベクターpSMh-DacMDH、HelMDH遺伝子発現カセットを保持した単座組込型組換えベクターpSMh-HelMDH、またはSpuMDH遺伝子発現カセットを保持した単座組込型組換えベクターpSMh-SpuMDHの制限酵素BsiWI消化物で、Bahlerらの方法(Yeast誌、1998年、14巻、943-951頁)に従い形質転換した。
 単座組込型組換えベクターpSMhは、以下に示す工程で作製することができる。まず、DNA全合成により作製された配列番号34に示す塩基配列からなるDNA断片(Fr.1)を制限酵素BsiWIで消化し得られた断片と、pSEベクターを制限酵素BsiWIで消化し再び制限酵素KpnIとSnaBIで二重消化して得られたDNA断片をライゲーションし、配列番号35に示す塩基配列(5’→3’、環状)からなるpSMh(8849bp、図1)を作製した。
 pSLh-AniPYCは、以下に示す工程で作製した。まず、アスペルギルス・ニガーの培養物からDNeasy(キアゲン社製)によって調製した全ゲノムDNAを鋳型とし、表3に記載の2種の合成オリゴDNA(AniPYC-F、AniPYC-R、オペロン社製)を使用し、KOD-Dash(東洋紡社製)を用いたPCR法によって、AniPYC遺伝子のORF断片を得た。当該ORF断片は、AniPYC(配列番号1)をコードしていた。
Figure JPOXMLDOC01-appb-T000003
 得られた増幅断片を、In-Fusion(登録商標)HD Cloning Kit(Clontech社製)を用いて、pSLhに組み込んで、pSLh-AniPYCを作製した。In-Fusion法の方法は該キットのマニュアルに則り行った。すなわち、得られたPCR産物をスピンカラムにより精製し、pSLhと共にIn-Fusion反応液に加え、50℃、15分間反応させた。
 同様の手法で単座組込型組換えベクターpSLh-BbrPYC、単座組込型組換えベクターpSLh-DhaPYC、単座組込型組換えベクターpSLh-KlaPYC、単座組込型組換えベクターpSLh-LthPYC、単座組込型組換えベクターpSLh-LelPYC、単座組込型組換えベクターpSLh-ScePYC、単座組込型組換えベクターpSLh-CorPYC、単座組込型組換えベクターpSLh-CtrPYC、単座組込型組換えベクターpSLh-NcaPYC、単座組込型組換えベクターpSLh-NdaPYC、単座組込型組換えベクターpSLh-SkuPYC、単座組込型組換えベクターpSLh-SpoPYC、単座組込型組換えベクターpSLh-TblPYC、単座組込型組換えベクターpSLh-TdePYC、単座組込型組換えベクターpSLh-ZroPYC、単座組込型組換えベクターpSMh-AfuMDH、単座組込型組換えベクターpSMh-CliMDH、単座組込型組換えベクターpSMh-DacMDH、単座組込型組換えベクターpSMh-HelMDH、および単座組込型組換えベクターpSMh-SpuMDHを作製した。それぞれ用いたプライマーセットを記す。
 また、ASP4590株に、単座組込型組換えベクターpSLh-ScePYCベクターおよびpSMh-DacMDHベクターを用いて形質転換し、ScePYC遺伝子とDacMDH遺伝子を導入したASP4491株を作製した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 製造された各形質転換体の名称、宿主、および導入した外来遺伝子名を表24に示す。
Figure JPOXMLDOC01-appb-T000024
<PYC発現の確認>
 PYC遺伝子のみを導入した16種の形質転換体について、PYC発現量を確認した。具体的には、各形質転換体をそれぞれ、20mLのYPD6培地で44時間振とう培養した後、増殖させた菌体を集菌し、マルチビーズショッカーを用いて破砕した。得られた菌体破砕液をANTI-FLAG(登録商標)M1 Agarose Affinity Gel(Sigma社製)を用いて、プロトコールに従い精製した。精製した酵素液でSDS-PAGEを行い、検出されたバンドを画像解析装置LAS4000にて数値化し、相対発現量を算出した。各形質転換体について算出したPYC発現量(相対値)の結果を図2に示す。この結果、いずれもPYCの発現が確認された。
<PYC活性の確認>
 PYC遺伝子のみを導入した16種の形質転換体のうち、BbrPYC、KluPYC、LthPYC、LelPYC、ScePYC、SkuPYC、SpoPYC、またはTblPYCを発現させた8種の形質転換体について、PYC活性を調べた。具体的には、前記の精製した酵素液を30℃で保温しておいた反応液(100mM Tris-HCl(pH7.5),2mM ATP,100mM MgCl,100mM KCl,5mM Pyruvic acid,5mM NaHCO,0.1mM Acetyl-CoA,0.15mM NADH)に混合した後、ミキシング機能をもつ吸光光度計を用いて経時的に測定した。得られた経時的な吸光度の変化から、相対的な酵素液あたりの活性(mU/mL)を算出した。各形質転換体について算出した酵素液あたりのPYC活性の結果を図3に示す。この結果、いずれもPYC活性が確認された。
<MDH発現の確認>
 MDH遺伝子のみを導入した5種の形質転換体について、MDH発現量を確認した。具体的には、<PYC発現の確認>と同様にして各形質転換体を培養し、精製した酵素液を調製し、該酵素液でSDS-PAGEを行い、相対発現量を算出した。各形質転換体について算出したMDH発現量(相対値)の結果を図4に示す。この結果、いずれもMDHの発現が確認された。
<MDH活性の確認>
 MDH遺伝子のみを導入した5種の形質転換体のうち、CliMDH、DacMDH、またはHelMDHを発現させた3種の形質転換体について、MDH活性を調べた。具体的には、前記の精製した酵素液を30℃で保温しておいた反応液(90mM Tris-HCl(pH9.0),0.5mM Oxaloacetate,0.25mM NADH)に混合した後、ミキシング機能をもつ吸光光度計を用いて経時的に測定した。得られた経時的な吸光度の変化から、相対的な酵素液あたりの活性(mU/mL)を算出した。各形質転換体について算出した酵素液あたりのMDH活性の結果を図5に示す。この結果、いずれもMDH活性が確認された。
[例3]mae2削除株の作製
 ScePYC遺伝子とDacMDH遺伝子を導入したASP4491株のmae2遺伝子を削除した削除株(ASP4964株)を作製した。mae2の削除断片の作製方法は、pdc2削除の削除断片と同様の作製方法で行った。
 S.ポンベのASP4491株(遺伝子型:h、leu1-32、ura4-D18、Ade6-M216、Δpdc2、+ScePYC、+DacMDH)をLatour法に従って形質転換し、mae2遺伝子(系統名:SPCC794.12c)を削除したASP4964株を作製した。
 削除断片の作製には、S.ポンベのARC032株からDNeasy(キアゲン社製)によって調製した全ゲノムDNAを鋳型とし、表25に示す塩基配列を有する8種の合成オリゴDNA(オペロン社製)を使用した。
Figure JPOXMLDOC01-appb-T000025
[例4]fum1削除株の作製
 ScePYC遺伝子とDacMDH遺伝子を導入したASP4491株のfum1遺伝子を削除した削除株(ASP4933株)を作製した。fum1は、リンゴ酸を基質としてフマル酸を生産する酵素である。fum1の削除断片の作製方法は、pdc2削除の削除断片と同様の作製方法で行った。
 S.ポンベのASP4491株をLatour法に従って形質転換し、fum1遺伝子(系統名:SPCC18.18c/SPCC290.01c)を削除したASP4933株を作製した。
 削除断片の作製には、S.ポンベのARC032株からDNeasy(キアゲン社製)によって調製した全ゲノムDNAを鋳型とし、表26に示す塩基配列を有する8種の合成オリゴDNA(オペロン社製)を使用した。
Figure JPOXMLDOC01-appb-T000026
<リンゴ酸生産能の確認>
 S.ポンベの野生株(ARC010株)、PDC2遺伝子削除株(ASP4590株、ΔPDC2)、ASP4590株にScePYC遺伝子とDacMDH遺伝子を導入したASP4491株、ASP4491株のmae2遺伝子を削除したASP4964株(ΔPDC2,Δmae2,+ScePYC,+DacMDH)、およびASP4491株のfum1遺伝子を削除したASP4933株(ΔPDC2,Δfum1,+ScePYC,+DacMDH)のリンゴ酸生産速度を調べた。
 具体的には、菌体をYESプレートに播種し、30℃で96時間培養しコロニーを得た。得られたコロニーを5mLのYES培地(試験管)に植継ぎ、30℃で24時間振とう培養した。得られた菌液を100mLのYPD6培地(坂口フラスコ)に植継ぎ、30℃で44時間振とう培養した。
 得られた菌体を集菌し、試験管内の3mLの発酵培地(100g/L グルコース、111g/L 炭酸カルシウム)に36g乾燥菌体重量/Lとなるように加え、30℃、振とう条件で発酵させた。発酵液から適時サンプリングを行った。
 得られたサンプルについて、酵素電極法バイオセンサBF-7(王子計測機器社製)を用いてグルコース濃度とエタノール濃度を測定し、HPLCによりリンゴ酸濃度を測定した。HPLC測定では、高速液体クロマトグラフProminence(島津製作所製)を用い、カラムはAminex HPX―87H 300×7.8mm(Bio-RAD社製)を用い、インジェクション容量を10μLとし、溶媒に10mM HSOを用い、流速は0.6mL/minとし、測定時間は35分間とし、測定温度は60℃とし、検出にはダイオードアレイ検出(210nm)と示差屈折率検出を用いた。各濃度は、培養液または発酵液当たりの濃度である。
 グルコース濃度(g/L)、エタノール濃度(g/L)、およびリンゴ酸の濃度(g/L)の測定結果を、図6~10に示す。この結果、ASP4964株(ΔPDC2,Δmae2,+ScePYC,+DacMDH)のみが、リンゴ酸の産生が確認された。
<リンゴ酸生産速度の測定>
 ASP4491株(ΔPDC2,+ScePYC,+DacMDH)およびASP4892株(ΔPDC2,Δmae2,+ScePYC,+DacMDH)のリンゴ酸生産速度を測定した。
 具体的には、<リンゴ酸生産能の確認>と同様にして各株をそれぞれ発酵させ、発酵液から適時サンプリングを行い、グルコース濃度とリンゴ酸濃度を測定した。測定結果を図11に示す。図11中、「Glu-4892」および「Glu-4491」はそれぞれASP4892株およびASP4491株のグルコース濃度の経時変化を示し、「MA-4892」および「MA-4491」はそれぞれASP4892株およびASP4491株のリンゴ酸濃度の経時変化を示す。この結果、発酵開始から1時間経過時点でASP4892株の発酵液のリンゴ酸濃度は20g/Lを超えており、リンゴ酸生産速度は20g/(L・h)以上であり、2時間経過時点では発酵液のリンゴ酸濃度は28.9g/Lになっていた。一方で、ASP4491株の発酵液では、2時間経過時点でのリンゴ酸濃度は3.9g/Lであった。
[例5]PCK導入株の作製
 カンジダ・グロブラータ由来のPCK(CglPCK)(配列番号94)、シトロバクター・コセリ由来のPCK(CkoPCK)(配列番号95)、クロノバクター・サカザキ由来のPCK(CsaPCK)(配列番号96)、デバリョミセス・ハンセニイ由来のPCK(DhaPCK)(配列番号97)、エシェリキア・フェルグソニ由来のPCK(EfePCK)(配列番号98)、エドワードシエラ・ターダ由来のPCK(EtaPCK)(配列番号99)、クルベロミセス・ラクティス由来のPCK(KlaPCK)(配列番号100)、ロデロミセス エロンギスポルス由来のPCK(LelPCK)(配列番号101)、ペクトバクテリウム・カロトボラム由来のPCK(PcaPCK)(配列番号102)、フォトバクテリウム・ロイナチ由来のPCK(PlePCK)(配列番号103)、プロヴィデンシア・レトゲア由来のPCK(PrePCK)(配列番号104)、サッカロミセス・セレビシエ由来のPCK(ScePCK)(配列番号105)、セラチア・オドリフェラ由来のPCK(SodPCK)(配列番号106)、ビブリオ・オリエンタリス由来のPCK(VorPCK)(配列番号107)、バンデルワルトジマ・ポリスポラ由来PCK(VpoPCK)(配列番号108)、ビブリオ・ツビアシ由来のPCK(VtuPCK)(配列番号109)、イエシニア・ベルコビエリ由来PCK(YbePCK)(配列番号110)、ヤロウィア・リポリチカ由来PCK(YliPCK)(配列番号111)、イエシニア・ロデイ由来のPCK(YroPCK)(配列番号112)、またはジゴサッカロミセス・ロキシイ由来PCK(ZroPCK)(配列番号113)を導入したポンベ形質転換株を作製した(表47)。
 具体的には、例1で作製したIGF836株(S.ポンベの遺伝子削除株)を、表47に記載のPCK遺伝子の発現カセットをそれぞれ保持した各単座組込型組換えベクターの制限酵素BsiWI消化物で、Bahlerらの方法(Yeast誌、1998年、14巻、943-951頁)に従い形質転換した。
 pSLh-CglPCKは、以下に示す工程で作製した。まず、カンジダ・グロブラータの培養物からDNeasy(キアゲン社製)によって調製した全ゲノムDNAを鋳型とし、表27に記載の2種の合成オリゴDNA(CglPCK-F、CglPCK-R、オペロン社製)を使用し、KOD-Dash(東洋紡社製)を用いたPCR法によって、CglPCK遺伝子のORF断片を得た。当該ORF断片は、CglPCK(配列番号94)をコードしていた。
Figure JPOXMLDOC01-appb-T000027
 同様の手法で単座組込型組換えベクターpSLh-CkoPCK、単座組込型組換えベクターpSLh-CsaPCK、単座組込型組換えベクターpSLh-DhaPCK、単座組込型組換えベクターpSLh-EfePCK、単座組込型組換えベクターpSLh-EtaPCK、単座組込型組換えベクターpSLh-KlaPCK、単座組込型組換えベクターpSLh-LelPCK、単座組込型組換えベクターpSLh-PcaPCK、単座組込型組換えベクターpSLh-PlePCK、単座組込型組換えベクターpSLh-PrePCK、単座組込型組換えベクターpSLh-ScePCK、単座組込型組換えベクターpSLh-SodPCK、単座組込型組換えベクターpSLh-VorPCK、単座組込型組換えベクターpSLh-VpoPCK、単座組込型組換えベクターpSLh-VtuPCK、単座組込型組換えベクターpSLh-YbePCK、単座組込型組換えベクターpSMh-YliPCK、単座組込型組換えベクターpSMh-YroPCK、および単座組込型組換えベクターpSMh-ZroPCKを作製した。それぞれ用いたプライマーセットを記す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
<PCK発現の確認>
 PCK遺伝子のみを導入した20種の形質転換体について、PCK発現量を確認した。具体的には、各形質転換体をそれぞれ、20mLのYPD6培地で44時間振とう培養した後、増殖させた菌体を集菌し、マルチビーズショッカーを用いて破砕した。得られた菌体破砕液をANTI-FLAG(登録商標) M1 Agarose Affinity Gel(Sigma社製)を用いて、プロトコールに従い精製した。精製した酵素液でSDS-PAGEを行い、検出されたバンドを画像解析装置LAS4000にて数値化し、相対発現量を算出した。各形質転換体について算出したPCK発現量(相対値)の結果を図12に示す。この結果、いずれもPCKの発現が確認された。
[例6]EcoPCK導入株、GglPYC導入株、EcoMDH導入株の作製
 エシェリキア・コリ由来のPCK(EcoPCK)(配列番号154)、ニワトリ(Gallus gallus)由来のPYC(GglPYC)(配列番号155)、エシェリキア・コリ由来のMDH(EcoMDH)(配列番号156)を導入したポンベ形質転換株を作製した。
 具体的には、例1で作製したIGF836株(S.ポンベの遺伝子削除株)を、EcoPCK遺伝子発現カセットを保持した単座組込型組換えベクターpSNh-EcoPCK、GglPYC遺伝子発現カセットを保持した単座組込型組換えベクターpSLh-GglPYCまたはEcoMDH遺伝子発現カセットを保持した単座組込型組換えベクターpSMh-EcoMDHの制限酵素BsiWI消化物で、Bahlerらの方法(Yeast誌、1998年、14巻、943-951頁)に従い形質転換した。
 pSNh-EcoPCKは、以下に示す工程で作製した。まずは、エシェリキア・コリの培養物からDNeasy(キアゲン社製)によって調整した全ゲノムDNAを鋳型とし、表48に記載の2種の合成オリゴDNA(EcoPCK-F、EcoPCK-R、オペロン社製)を使用し、KOD-Dash(東洋紡社製)を用いたPCR法によって、EcoPCK遺伝子のORF断片を得た。当該ORF断片は、EcoPCK(配列番号154)をコードしていた。
Figure JPOXMLDOC01-appb-T000048
 得られた増幅断片を、In-Fusion(登録商標)HD Cloning Kit(Clontech社製)を用いて、pSNhに組み込んで、pSNh-EcoPCKを作製した。In-Fusion法の方法は該キットのマニュアルに則り行った。すなわち、得られたPCR産物をスピンカラムにより精製し、pSNhと共にIn-Fusion反応液に加え、50℃、15分間反応させた。
 同様の手法で単座組込型組換えベクターpSLh-GalPYC、単座組込型組換えベクターpSMh-EcoMDHを作製した。それぞれ用いたプライマーセットを記す。
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
 製造された各形質転換体の名称、宿主、および導入した外来遺伝子名を表51に示す。
Figure JPOXMLDOC01-appb-T000051
 <PCK、PYCまたはMDHの発現の確認>
 PCK、PYCまたはMDH遺伝子のみを導入した3種の形質転換体について、PCK、PYCまたはMDHの発現量を確認した。具体的には、各形質転換体をそれぞれ、20mLのYPD6培地で44時間振とう培養した後、増殖させた菌体を集菌し、マルチビーズショッカーを用いて破砕した。得られた菌体破砕液をANTI-FLAG(登録商標)M1 Agarose Affinity Gel(Sigma社製)を用いて、プロトコールに従い精製した。精製した酵素液でSDS-PAGEを行ったところ、いずれの酵素液でもバンドが検出されなかった。この事からS.ポンベにEcoPCK、GglPYCまたはEcoMDH遺伝子を導入しても、これらの酵素が発現されないため有効な活性が得られない事が示唆された。
[例7]リンゴ酸生産株の作製
 例2、例3、および例5に記載の方法に従い、表52に記載の形質転換体を作製した。
Figure JPOXMLDOC01-appb-T000052
[例8]mae2削除の効果の確認
 mae2の削除による効果を確認するため、ASP4491株、ASP4964株、ASP4933株、およびASP5127株を用いて、リンゴ酸の発酵生産を行った。
 具体的には、菌体をYESプレートに播種し、30℃で96時間培養しコロニーを得た。得られたコロニーを5mLのYES培地(試験管)に植継ぎ、30℃で24時間振とう培養した。得られた菌液を100mLのYPD6培地(坂口フラスコ)に植継ぎ、30℃で44時間振とう培養した。
 得られた菌体を集菌し、試験管内の3mLの発酵培地(100g/L グルコース、111g/L 炭酸カルシウム)に36g乾燥菌体重量/Lとなるように加え、30℃、振とう条件で発酵させた。発酵液から適時サンプリングを行った。
 得られたサンプルについて、酵素電極法バイオセンサBF-7(王子計測機器社製)を用いてグルコース濃度とエタノール濃度を測定し、HPLCによりリンゴ酸濃度を測定した。HPLC測定では、高速液体クロマトグラフProminence(島津製作所製)を用い、カラムはAminex HPX―87H 300×7.8mm(Bio-RAD社製)を用い、インジェクション容量を10μLとし、溶媒に10mM HSOを用い、流速は0.6mL/minとし、測定時間は35分間とし、測定温度は60℃とし、検出にはダイオードアレイ検出(210nm)と示差屈折率検出を用いた。各濃度は、培養液または発酵液当たりの濃度である。結果を表53に示す。
Figure JPOXMLDOC01-appb-T000053
 その結果、ASP4491株と比べて、mae2が削除されているASP4964株では、リンゴ酸の生産量が約10倍に増加した。一方、mae2と同様にリンゴ酸を基質とするfum1がASP4491株から削除されたASP4933株では、リンゴ酸の生産量はほとんど増加しなかった。また、mae2とpdc2を削除したのみでPYCとMDHが導入されていないASP5127株では、5g/Lほどのリンゴ酸の生産が認められた。
[例9]PCK導入の効果の確認
 PCKの導入による効果を確認するために、ASP5126株、ASP5087株、ASP5088株、およびASP5089株を用いて、リンゴ酸の発酵生産を行った。
 リンゴ酸の発酵生産は例7と同様にして行った。結果を表54に示す。
Figure JPOXMLDOC01-appb-T000054
 PCKおよびPYCを導入していないASP5126株に比べて、サッカロミセス・セレビシエ由来のPCK(ScePCK)が導入されたASP5087株、フォトバクテリウム・ロイナチ由来のPCK(PlePCK)が導入されたASP5088株、およびイエシニア・ベルコビエリ由来PCK(YbePCK)が導入されたASP5089株らは、リンゴ酸の生産速度またはリンゴ酸の終濃度の向上が確認された。
[例10]PYC導入の効果の確認
 PYCの導入による効果を確認するために、ASP5126株、ASP4964株、ASP5132株、およびASP5135株を用いて、リンゴ酸の発酵生産を行った。
 リンゴ酸の発酵生産は例7と同様にして行った。結果を表55に示す。
Figure JPOXMLDOC01-appb-T000055
 PCKおよびPYCを導入していないASP5126株に比べて、サッカロミセス・セレビシエ由来のPYCが導入されたASP4964株、クルベロミセス・ラクティス由来のPYC(KlaPYC)が導入されたASP5132株、およびS.ポンベ由来のPYC(SpoPYC)が導入されたASP5135株らは、リンゴ酸の生産速度およびリンゴ酸の終濃度の向上が確認された。
[例11]MDH導入の効果の確認
 MDHの導入による効果を確認するために、ASP5125株、ASP5215株、ASP5216株、ASP5127株、ASP4964株、ASP5129株、およびASP5131株を用いて、リンゴ酸の発酵生産を行った。
 リンゴ酸の発酵生産は例7と同様にして行った。結果を表56に示す。
Figure JPOXMLDOC01-appb-T000056
 MDHは導入されず、PYCが導入されたASP5125株に比べて、CliMDHとPCKが導入されたASP5215株、HelMDHとPCKが導入されたASP5216株、SpuMDHとPCKが導入されたASP5217株、HelMDHとPYCが導入されたASP4964株、CliMDHとPYCが導入されたASP5129株、およびSpuMDHとPYCが導入されたASP5131株らは、リンゴ酸の生産速度およびリンゴ酸の終濃度の向上が確認された。
[例12]導入遺伝子のコピー数増加の効果の確認
 導入した遺伝子のコピー数増加の効果を確認するために、ASP4964株およびASP5235株を用いて、リンゴ酸の発酵生産を行った。
 リンゴ酸の発酵生産は例7と同様にして行った。結果を表57に示す。
Figure JPOXMLDOC01-appb-T000057
 PYCとMDHが1コピーずつ導入されたASP4964株に比べ、PYCとMDHが2コピーずつ導入されたASP5235株は、リンゴ酸の生産速度およびリンゴ酸の終濃度の向上が確認された。
[例13]無中和条件下でのリンゴ酸の発酵生産
 無中和条件でのリンゴ酸の生産を確認するために、ASP4964株およびASP5235株を用いて、リンゴ酸の発酵生産を行った。
 具体的には、例7と同じ方法で増やした菌体を、試験管内の3mLの発酵培地(100g/L グルコース)に36g乾燥菌体重量/Lとなるように加え、30℃、振とう条件で発酵させた。発酵液から適時サンプリングを行った。
 得られたサンプルに対して例7と同様にして測定した。結果を表58に示す。この結果、どちらの株でも無中和条件下でのリンゴ酸の生産が確認された。ASP4964株の発酵経過1時間サンプルのpHは3.5であり、発酵経過2時間サンプルのpHは3.0であった。またASP5235株の発酵経過1時間サンプルのpHは3.0であり、発酵経過2時間サンプルのpHは2.8であった。
Figure JPOXMLDOC01-appb-T000058
 本願は、2014年6月30日に日本国に出願された特願2014-135043号、に基づく優先権を主張し、その内容をここに援用する。

Claims (9)

  1.  シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)を宿主とし、ホスホエノールピルビン酸カルボキシキナーゼ遺伝子およびピルビン酸カルボキシラーゼ遺伝子からなる群より選択される1種以上の外来遺伝子が1以上組み込まれており、かつ、前記シゾサッカロミセス・ポンベ宿主のピルビン酸脱炭酸酵素をコードする遺伝子群の一部が欠失または失活しており、
     前記ホスホエノールピルビン酸カルボキシキナーゼ遺伝子が、
    配列番号94~113のいずれかで表されるアミノ酸配列からなるポリペプチド、
    配列番号94~113のいずれかで表されるアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつホスホエノールピルビン酸カルボキシキナーゼ活性を有するポリペプチド、または
    配列番号94~113のいずれかで表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつホスホエノールピルビン酸カルボキシキナーゼ活性を有するポリペプチドをコードしており、
     前記ピルビン酸カルボキシラーゼ遺伝子が、
    配列番号1~16のいずれかで表されるアミノ酸配列からなるポリペプチド、
    配列番号1~16のいずれかで表されるアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつピルビン酸カルボキシラーゼ活性を有するポリペプチド、または
    配列番号1~16のいずれかで表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつピルビン酸カルボキシラーゼ活性を有するポリペプチドをコードしており、
     欠失または失活しているピルビン酸脱炭酸酵素をコードする遺伝子がpdc2遺伝子であることを特徴とする形質転換体。
  2.  さらに、外来のリンゴ酸脱水素酵素遺伝子が1以上組み込まれている、請求項1に記載の形質転換体。
  3.  前記リンゴ酸脱水素酵素遺伝子が、
    配列番号17~21のいずれかで表されるアミノ酸配列からなるポリペプチド、
    配列番号17~21の1いずれかで表されるアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、もしくは欠失したアミノ酸配列からなり、かつリンゴ酸脱水素酵素活性を有するポリペプチド、または
    配列番号17~21のいずれかで表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつリンゴ酸脱水素酵素活性を有するポリペプチドをコードする、請求項2に記載の形質転換体。
  4.  さらに、リンゴ酸酵素遺伝子が欠失または失活している、請求項1~3のいずれか一項に記載の形質転換体。
  5.  外来のホスホエノールピルビン酸カルボキシキナーゼ遺伝子または外来のピルビン酸カルボキシラーゼ遺伝子と、外来のリンゴ酸脱水素酵素遺伝子とが、それぞれ1以上組み込まれ、pdc2遺伝子とリンゴ酸酵素遺伝子のいずれもが欠失または失活している、請求項1に記載の形質転換体。
  6.  前記外来遺伝子が宿主の染色体に組み込まれている、請求項1~5のいずれか一項に記載の形質転換体。
  7.  請求項1~6のいずれか一項に記載の形質転換体を培養液中で培養し、培養された該形質転換体または培養上清から炭素数4のジカルボン酸を取得することを特徴とする炭素数4のジカルボン酸の製造方法。
  8.  前記炭素数4のジカルボン酸がリンゴ酸またはオキサロ酢酸である、請求項7に記載の炭素数4のジカルボン酸の製造方法。
  9.  培養を、培養液のpHが3.5以下となった後も継続する、請求項7または8に記載の炭素数4のジカルボン酸の製造方法。
PCT/JP2015/068589 2014-06-30 2015-06-26 形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法 WO2016002680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15814080.6A EP3162896B1 (en) 2014-06-30 2015-06-26 Transformant, method for producing same, and method for producing c4-dicarboxylic acid
ES15814080T ES2811926T3 (es) 2014-06-30 2015-06-26 Transformante, procedimiento de producción del mismo y procedimiento de producción de ácido dicarboxílico C4
JP2016531344A JP6620373B2 (ja) 2014-06-30 2015-06-26 形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法
US15/316,005 US20170253895A1 (en) 2014-06-30 2015-06-26 Transformant, method for manufacturing same, and method for manufacturing dicarboxylic acid having 4 carbon atoms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-135043 2014-06-30
JP2014135043 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002680A1 true WO2016002680A1 (ja) 2016-01-07

Family

ID=55019216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068589 WO2016002680A1 (ja) 2014-06-30 2015-06-26 形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法

Country Status (5)

Country Link
US (1) US20170253895A1 (ja)
EP (1) EP3162896B1 (ja)
JP (1) JP6620373B2 (ja)
ES (1) ES2811926T3 (ja)
WO (1) WO2016002680A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061590A1 (en) * 2005-11-21 2007-05-31 Tate & Lyle Ingredients Americas, Inc. Malic acid production in recombinant yeast
WO2008144626A1 (en) * 2007-05-18 2008-11-27 Microbia Precision Engineering, Inc. Malic acid production in recombinant yeast
WO2009065780A1 (en) * 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Dicarboxylic acid production in eukaryotes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2158323A4 (en) * 2007-05-18 2011-06-22 Microbia Prec Engineering Inc PRODUCTION OF ORGANIC ACID BY PILZ CELLS
WO2009155382A1 (en) * 2008-06-17 2009-12-23 Genomatica, Inc. Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate
WO2012038390A1 (en) * 2010-09-24 2012-03-29 Dsm Ip Assets B.V. Dicarboxylic acid production process
EP2495304A1 (en) * 2010-12-03 2012-09-05 DSM IP Assets B.V. Dicarboxylic acid production in a yeast cell
WO2012103261A2 (en) * 2011-01-25 2012-08-02 Finley Kenneth R Compositions and methods for succinate production
EP2726624B1 (en) * 2011-07-01 2016-11-30 DSM IP Assets B.V. Process for producing dicarboxylic acids employing fungal cells
US9850507B2 (en) * 2012-07-25 2017-12-26 Cargill, Incorporated Yeast cells having reductive TCA pathway from pyruvate to succinate and overexpressing an exogenous NAD(P)+ transhydrogenase enzyme
CN118652942A (zh) * 2013-07-18 2024-09-17 德希尼布能源法国公司 发酵方法
JP6090090B2 (ja) * 2013-09-30 2017-03-08 株式会社デンソー 給湯機用リモコン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061590A1 (en) * 2005-11-21 2007-05-31 Tate & Lyle Ingredients Americas, Inc. Malic acid production in recombinant yeast
WO2008144626A1 (en) * 2007-05-18 2008-11-27 Microbia Precision Engineering, Inc. Malic acid production in recombinant yeast
WO2009065780A1 (en) * 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Dicarboxylic acid production in eukaryotes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
[o] 14 May 2014 (2014-05-14), "RecName: Full=Phosphoenolpyruvate carboxykinase [ATP].", XP055379136, Database accession no. Q6FRRO *
LANGELANDSVIK A.S. ET AL.: "Properties and primary structure of a thermostable L-malate dehydrogenase from Archaeoglobus fulgidus.", ARCH. MICROBIOL., vol. 168, no. 1, 1997, pages 59 - 67, XP055251157 *
See also references of EP3162896A4 *
VILJOEN M. ET AL.: "Transcriptional regulation of the Schizosaccharomyces pombe malic enzyme gene , mae2.", J. BIOL. CHEM., vol. 274, no. 15, 1999, pages 9969 - 9975, XP055251156, ISSN: 0021-9258 *

Also Published As

Publication number Publication date
EP3162896B1 (en) 2020-05-13
ES2811926T3 (es) 2021-03-15
JP6620373B2 (ja) 2019-12-18
US20170253895A1 (en) 2017-09-07
JPWO2016002680A1 (ja) 2017-04-27
EP3162896A4 (en) 2018-01-10
EP3162896A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP5772594B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
US11655478B2 (en) Promoter derived from organic acid-resistant yeast and method for expression of target gene by using same
ITMI972080A1 (it) Ceppi di lievito per la riproduzione di acido lattico
CN112789353B (zh) 抑制乙醇产生的重组耐酸酵母以及使用其制备乳酸的方法
US9428777B2 (en) Transformant and method for producing same, and method for producing lactic acid
JP2018157814A (ja) シュードザイマ・アンタクティカの新規菌株
JP6620375B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
US11214809B2 (en) Vector containing centromere DNA sequence and use thereof
US20140120592A1 (en) Recombinant caldicellulosiruptor bescii and methods of use
EP2886642B1 (en) Transformant of schizosaccharomyces pombe mutant, and cloning vector
JP6620373B2 (ja) 形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法
JP6499587B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
JP7452900B2 (ja) 乳酸耐性の向上を有する酵母およびその使用
JP2006280268A (ja) 細胞増殖の促進によりアルコール生産効率を向上させる方法
JP2016063802A (ja) 形質転換体の製造方法、形質転換体、および単座組込み用ベクターキット
Young cerevisiae for Enhanced triterpene Biosynthesis
CN112204146A (zh) 具有受抑制的乙醇产生途径的耐酸酵母及使用其生产乳酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531344

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015814080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15316005

Country of ref document: US

Ref document number: 2015814080

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE