WO2016000103A1 - 一种信号传输方法、装置及系统 - Google Patents

一种信号传输方法、装置及系统 Download PDF

Info

Publication number
WO2016000103A1
WO2016000103A1 PCT/CN2014/079862 CN2014079862W WO2016000103A1 WO 2016000103 A1 WO2016000103 A1 WO 2016000103A1 CN 2014079862 W CN2014079862 W CN 2014079862W WO 2016000103 A1 WO2016000103 A1 WO 2016000103A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
period
carrier
phase
baseband signal
Prior art date
Application number
PCT/CN2014/079862
Other languages
English (en)
French (fr)
Inventor
左天健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480079385.3A priority Critical patent/CN106416161B/zh
Priority to PCT/CN2014/079862 priority patent/WO2016000103A1/zh
Publication of WO2016000103A1 publication Critical patent/WO2016000103A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal transmission method, apparatus, and system.
  • the receiving device since multiple signals are simultaneously modulated and transmitted, when receiving signals, the receiving device needs to separately demodulate each signal, and one signal requires a filter for demodulation, so that the receiving device needs multiple filtering.
  • the device makes the design of the receiving device complicated and costly.
  • Embodiments of the present invention provide a signal transmission method, apparatus, and system that can reduce the complexity of a receiving device and reduce the cost of the receiving device.
  • a sending device includes:
  • An acquiring unit configured to acquire a first baseband signal and a second baseband signal, where a period of the first baseband signal is the same as a period of the second baseband signal;
  • a carrier unit configured to adjust a period of the first carrier and a period of the second carrier, such that a period of the first carrier is a non-integer multiple of a period of the first baseband signal, and a period of the second carrier is The period of the first carrier is the same as the period of the second carrier, and the phase of the first carrier is different from the phase of the second carrier;
  • a modulating unit configured to load the first baseband signal acquired by the acquiring unit to Generating a first transmission signal on the first carrier, and loading a second baseband signal acquired by the acquiring unit to the second carrier to generate a second transmission signal;
  • phase shifting unit configured to adjust a phase of the first transmission signal generated by the modulation unit, or adjust a phase of the second transmission signal generated by the modulation unit, such that a phase of the first transmission signal is The phases of the second transmission signals are different;
  • a merging unit configured to combine the first transmission signal and the second transmission signal into a mixed signal
  • a sending unit configured to send the mixed signal that is merged by the merging unit.
  • the period, 2 is the period of the first carrier and the second carrier, "is the order of the filter included in the carrier unit, and is 0 or an integer greater than 0.
  • the phase shifting unit is specifically configured to move a phase of the first transmission signal by Till or to shift a phase of the second transmission signal by 7V2, where: ⁇ is the first baseband signal and the second The period of the baseband signal.
  • the acquiring unit is configured to acquire the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal, and combine the first digital signal and the second digital signal into the first baseband a signal, combining the third digital signal level, the fourth digital signal, into the second baseband signal, wherein the first digital signal, the second digital signal, the third digital signal, and the The fourth digital signal includes two levels, and the first baseband signal and the second baseband signal have four levels.
  • a receiving device includes:
  • a receiving unit configured to receive a mixed signal
  • a sampling unit configured to: in the first preset phase sampling of the mixed signal received by the receiving unit, separate the first transmission signal, and sample the second preset phase of the mixed signal to separate the second transmission signal
  • the first preset phase is ZT+7V4
  • the second preset phase is VTi+ST ⁇
  • 7 ⁇ is a period of the first baseband signal and the second baseband signal, and is 0 or an integer greater than 0.
  • the period of the first baseband signal is the same as the period of the second baseband signal;
  • a demodulation unit configured to demodulate the first baseband signal from the first transmission signal separated by the sampling unit, and demodulate the second baseband signal from the second transmission signal.
  • the demodulation unit is further configured to separate the first digital signal and the second digital signal from the first baseband signal, and separate the third digital signal and the fourth digital signal from the second baseband signal, where
  • the first baseband signal and the second baseband signal comprise four levels, and the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two Level.
  • a third aspect is a transmitting device, where the sending device includes:
  • a pulse amplitude modulation encoder configured to acquire a first baseband signal and a second baseband signal, wherein a period of the first baseband signal is the same as a period of the second baseband signal;
  • An in-phase filter configured to adjust a period of the first carrier, such that a period of the first carrier is a non-integer multiple of a period of the first baseband signal, and the first baseband acquired by the pulse amplitude modulation encoder Transmitting a signal to the first carrier to generate a first transmission signal; and orthogonal filter, configured to adjust a period of the second carrier, such that a period of the second carrier is a non-integer multiple of a period of the second baseband signal And loading the second baseband signal obtained by the pulse amplitude modulation encoder to the second carrier to generate a second transmission signal, where a period of the first carrier is the same as a period of the second carrier, The phase of the first carrier is different from the phase of the second carrier;
  • the in-phase filter phase shifts the first transmission signal or the orthogonal filter phase shifts the second transmission signal such that a phase of the first transmission signal and a phase of the second transmission signal different;
  • a signal adder configured to combine the first transmission signal generated by the in-phase filter and the second transmission signal generated by the orthogonal filter into a mixed signal;
  • a transmitter configured to send the mixed signal formed by the signal adder.
  • the order of the in-phase filter is 0 or an integer greater than 0;
  • the orthogonal filter is specifically configured to adjust a period of the second carrier according to a first formula , ⁇ 2 , where 7 ⁇ is a period of the second baseband signal, and 2 is a period of the second carrier,
  • the integration of the third aspect or the first possible implementation manner of the third aspect is 0 or greater than 0.
  • the second possible implementation manner
  • the in-phase filter is further configured to: move the phase of the first transmission signal or the orthogonal filter, and specifically, to move a phase of the second transmission signal by 7V2, where: ⁇ is a period of the first baseband signal and the second baseband signal.
  • the pulse amplitude modulation encoder is specifically configured to combine the first digital signal and the second digital signal into the first baseband signal, and combine the third digital signal and the fourth digital signal into the second baseband signal, where
  • the first baseband signal and the second baseband signal comprise four levels, and the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two Level.
  • a receiving device includes:
  • a demodulation filter for a first predetermined phase of the mixed signal received at the receiver Sampling, separating the first transmission signal, sampling at the second preset phase of the mixed signal, separating the second transmission signal, demodulating the first baseband signal from the first transmission signal, from the second
  • the second baseband signal is demodulated in the transmission signal, where the first preset phase is iTi+T ⁇ , the second preset phase is iT ⁇ T ⁇ , and 7 ⁇ is the first baseband signal and the The period of the second baseband signal is 0 or an integer greater than 0, and the period of the first baseband signal is the same as the period of the second baseband signal.
  • the receiving apparatus further includes a pulse amplitude modulation decoder
  • the pulse amplitude modulation decoder is configured to separate a first digital signal and a second digital signal from the first baseband signal, and separate a third digital signal and a fourth digital signal from the second baseband signal,
  • the first baseband signal and the second baseband signal comprise four levels, and the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two Level.
  • a fifth aspect a signal sending method, comprising:
  • a period of the first carrier is a non-integer multiple of a period of the first baseband signal
  • a period of the second carrier is a second baseband
  • a period of the first carrier is the same as a period of the second carrier, and a phase of the first carrier is different from a phase of the second carrier
  • the adjusting the first carrier The period of the second carrier and the period of the second carrier include:
  • a period of the second carrier where 7 ⁇ is a period of the first baseband signal and the second baseband signal, and 2 is a period of the first carrier and the second carrier, where is a filter order, 0 or an integer greater than 0.
  • the adjusting a phase of the first transmission signal, or adjusting a phase of the second transmission signal The phase of the first transmission signal is different from the phase of the second transmission signal, including:
  • the phase of the first transmission signal is shifted by 7V2, or the phase of the second transmission signal is shifted by 7V2, wherein 7 ⁇ is the period of the first baseband signal and the second baseband signal.
  • the acquiring the first baseband signal and the second baseband signal includes:
  • a signal receiving method includes:
  • the second preset phase is: a period of the first baseband signal and the second baseband signal, which is 0 or an integer greater than 0, and the period of the first baseband signal is the same as the period of the second baseband signal;
  • the second baseband signal is demodulated in the transmitted signal.
  • the first baseband signal is demodulated from the first transmission signal
  • the second baseband signal is demodulated from the second transmission signal
  • first digital signal and the second digital signal Separating the first digital signal and the second digital signal from the first baseband signal, and separating the third digital signal and the fourth digital signal from the second baseband signal, wherein the first baseband signal and the The second baseband signal includes four levels, and the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two levels.
  • a communication system comprising: a transmitting device and a receiving device;
  • the transmitting device is the transmitting device described in the first aspect or any one of the possible implementation manners of the first aspect, where the receiving device is in any one possible implementation manner of the second aspect or the second aspect The receiving device described;
  • the transmitting device is the transmitting device described in any one of the possible implementation manners of the third aspect or the third aspect, wherein the receiving device is in any one of the possible implementation manners of the fourth aspect or the fourth aspect The receiving device described;
  • the embodiment of the present invention provides a signal transmission method, device, and system.
  • the first baseband signal and the second baseband signal are obtained by the transmitting device, and the period of the first carrier and the period of the second carrier are adjusted to make the period of the first carrier.
  • a non-integer multiple of the period of the first baseband signal, and making the period of the second carrier a non-integer multiple of the period of the second baseband signal loading the first baseband signal onto the first carrier to generate the first transmission signal
  • the second baseband signal is loaded onto the second carrier to generate a second transmission signal, and the phase of the first transmission signal or the phase of the second transmission signal is adjusted, so that the phase of the first transmission signal is different from the phase of the second transmission signal, and the first transmission is performed.
  • the signal and the second transmission signal are combined into a mixed signal, and the mixed signal is transmitted, so that the receiving device can demodulate the first transmission signal and the second transmission signal by using a filter in different phase samples, thereby reducing the complexity of the receiving device. , reduce the cost of the receiving device.
  • FIG. 1 is a schematic structural diagram of a transmitting apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a receiving apparatus according to an embodiment of the present invention
  • FIG. 3 is a transmitting apparatus according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a receiving apparatus according to another embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a transmitting apparatus according to still another embodiment of the present invention
  • FIG. 6 is still another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a signal transmission method according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a carrier phase shifting effect according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the transmitting apparatus 10 includes: an obtaining unit 101, a carrier unit 102, a modulating unit 103, a phase shifting unit 104, a merging unit 105, and a transmitting unit 106.
  • the obtaining unit 101 is configured to acquire the first baseband signal and the second baseband signal, where the period of the first baseband signal is the same as the period of the second baseband signal.
  • the carrier unit 102 is configured to adjust a period of the first carrier and a period of the second carrier, such that a period of the first carrier is a non-integer multiple of a period of the first baseband signal, and a period of the second carrier is a second baseband signal. A non-integer multiple of the period, wherein the period of the first carrier is the same as the period of the second carrier, and the phase of the first carrier is different from the phase of the second carrier.
  • the modulating unit 103 is configured to load the first baseband signal acquired by the acquiring unit 101 to generate a first transmission signal, and load the second baseband signal acquired by the acquiring unit 101 to the second carrier to generate a second transmission signal.
  • the phase shifting unit 104 is configured to adjust a phase of the first transmission signal generated by the modulating unit 103, or adjust a phase of the second transmission signal generated by the modulating unit 103, such that a phase of the first transmission signal is different from a phase of the second transmission signal .
  • the merging unit 105 is configured to combine the first transmission signal and the second transmission signal into a mixed signal.
  • the sending unit 106 is configured to send the mixed signal that is merged by the merging unit 105.
  • the order of the filter is 0 or an integer greater than 0.
  • the phase shifting unit 104 is specifically configured to: move a phase of the first transmission signal by Till or shift a phase of the second transmission signal by 7V2, where 7 ⁇ is a period of the first baseband signal and the second baseband signal.
  • the acquiring unit 101 is configured to acquire the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal, and combine the first digital signal and the second digital signal into the first baseband signal, where The third digital signal level fourth digital signal is combined into a second baseband signal, wherein the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two levels, a first baseband signal and a second The baseband signal contains four levels.
  • the sending unit 106 is further configured to convert the mixed signal from an electrical signal to an optical signal.
  • the transmitting device adjusts the period of the first carrier and the period of the second carrier by acquiring the first baseband signal and the second baseband signal, so that the period of the first carrier is the period of the first baseband signal.
  • An integer multiple and the period of the second carrier is a non-integer multiple of the period of the second baseband signal, the first baseband signal is loaded onto the first carrier to generate a first transmission signal, and the second baseband signal is loaded onto the second carrier.
  • the mixed signal enables the receiving device to demodulate the first transmission signal and the second transmission signal in different phase samples through one filter, which can reduce the complexity of the receiving device and reduce the cost of the receiving device.
  • the receiving apparatus 20 includes: a receiving unit 201, a sampling unit 202, and a demodulating unit 203.
  • the receiving unit 201 is configured to receive the mixed signal.
  • the sampling unit 202 is configured to: in the first preset phase sampling of the mixed signal received by the receiving unit 201, separate the first transmission signal, and sample the second preset phase of the mixed signal to separate the second transmission signal, where A preset phase is ZT+7V4, and a second preset phase is T ⁇ +T ⁇ M, 7 ⁇ is a period of the first baseband signal and the second baseband signal, and is 0 or an integer greater than 0, the first baseband signal The period is the same as the period of the second baseband signal.
  • the demodulation unit 203 is configured to demodulate the first baseband signal from the first transmission signal separated by the sampling unit 202, and demodulate the second baseband signal from the second transmission signal.
  • the demodulation unit 203 is further configured to separate the first digital signal and the second digital signal from the first baseband signal, and separate the third digital signal and the fourth digital signal from the second baseband signal, where
  • the first baseband signal and the second baseband signal comprise four levels, and the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two levels.
  • the receiving unit 201 is further configured to convert the mixed signal from the optical signal to the electrical signal.
  • the receiving apparatus separates the first transmission signal by sampling the first preset phase of the mixed signal by receiving the mixed signal, and samples the second preset phase of the mixed signal to separate the second transmission signal.
  • Demodulating the first baseband signal from the first transmission signal, and demodulating the second baseband signal from the second transmission signal, so that the first transmission signal and the second signal can be demodulated by using a filter at different phase samples Transmitting signals can reduce the complexity of the receiving device and reduce the cost of the receiving device.
  • the apparatus 30 includes: a pulse amplitude modulation encoder 301, an in-phase filter 302, an orthogonal filter 303, a signal adder 304, and a transmitter 305.
  • the pulse amplitude modulation encoder 301 is configured to acquire the first baseband signal and the second baseband signal, and the period of the first baseband signal is the same as the period of the second baseband signal.
  • the in-phase filter 302 is configured to adjust a period of the first carrier, such that a period of the first carrier is a non-integer multiple of a period of the first baseband signal, and the first baseband signal is loaded onto the first carrier to generate a first transmission signal.
  • the orthogonal filter 303 is configured to adjust a period of the second carrier, such that the period of the second carrier is a non-integer multiple of the period of the second baseband signal, and the second baseband signal is loaded onto the second carrier to generate the second transmission signal,
  • the period of the first carrier is the same as the period of the second carrier, and the phase of the first carrier is different from the phase of the second carrier.
  • the in-phase filter 302 shifts the first transmission signal or the orthogonal filter 303 phase-shifts the second transmission signal such that the phase of the first transmission signal is different from the phase of the second transmission signal.
  • the signal adder 304 is configured to combine the first transmission signal generated by the in-phase filter 302 and the second transmission signal generated by the orthogonal filter 303 into a mixed signal.
  • the transmitter 305 is configured to send the mixed signal of the signal adder 304.
  • the in-phase filter 302 is specifically used according to the first formula: 7
  • the orthogonal filter 303 is specifically configured to adjust a period of the second carrier according to the first formula , ⁇ 2 , where 7 ⁇ is a period of the second baseband signal, and 2 is a period of the second carrier, "for the orthogonal filtering
  • the order of the 303 is 0 or an integer greater than 0, and the order of the in-phase filter 302 and the orthogonal filter 303 is the same.
  • the in-phase filter 302 is further configured to shift the phase of the first transmission signal by 7V2.
  • the orthogonal filter 303 is further configured to shift the phase of the second transmission signal by 7V2, where is the period of the first baseband signal and the second baseband signal.
  • the pulse amplitude modulation encoder 301 is specifically configured to combine the first digital signal and the second digital signal into a first baseband signal, and combine the third digital signal and the fourth digital signal into a second baseband signal, where the first baseband signal And the second baseband signal includes four levels, and the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two levels.
  • the transmitter 305 is further configured to convert the mixed signal from an electrical signal to an optical signal.
  • the transmitting device provided by the embodiment of the present invention adjusts a period of the first carrier according to the first baseband signal, loads the first baseband signal to the first carrier to generate a first transmission signal, and adjusts a period of the second carrier according to the second baseband signal. And loading the second baseband signal to the second carrier to generate a second transmission signal, phase shifting the first transmission signal or the second transmission signal, combining the first transmission signal and the second transmission signal into a mixed signal, and transmitting the mixed signal Therefore, the receiving device can demodulate the first transmission signal and the second transmission signal by using a filter in different phase samples, thereby reducing the complexity of the receiving device and reducing the cost of the receiving device.
  • the receiving apparatus 40 includes: a receiver 401 and a demodulation filter 402.
  • the receiver 401 is configured to receive a mixed signal.
  • the demodulation filter 402 is configured to sample the first preset phase of the mixed signal received by the receiver 401, separate the first transmission signal, and sample the second preset phase of the mixed signal to separate the second transmission signal. Demodulating the first baseband signal in the first transmission signal, and demodulating the second baseband signal from the second transmission signal, wherein the first preset phase is 7V4, and the second preset phase is T ⁇ +T ⁇ M, wherein: ⁇ is the period of the first baseband signal and the second baseband signal, is 0 or an integer greater than 0, and the period of the first baseband signal is the same as the period of the second baseband signal.
  • the receiving device 40 further includes a pulse amplitude modulation decoder 403.
  • a pulse amplitude modulation decoder 403 configured to separate the first digital signal and the second digital signal from the first baseband signal, and separate the third digital signal from the second baseband signal and The four digital signals, wherein the first baseband signal and the second baseband signal comprise four levels, and the first digital signal, the second digital signal, the third digital signal, and the fourth digital signal comprise two levels.
  • the receiver 401 is further configured to convert the mixed signal from an optical signal to an electrical signal.
  • the receiving apparatus separates the first transmission signal by sampling the first preset phase of the mixed signal by receiving the mixed signal, and samples the second preset phase of the mixed signal to separate the second transmission signal. Demodulating the first baseband signal from the first transmission signal, and demodulating the second baseband signal from the second transmission signal, thereby demodulating the first transmission signal and the second transmission by using a filter at different phase samples
  • the signal can reduce the complexity of the receiving device and reduce the cost of the receiving device.
  • a further embodiment of the present invention provides a transmitting device 5001.
  • the device may be embedded or itself a microprocessor computer, such as a general-purpose computer, a custom machine, a mobile phone terminal, or a tablet device.
  • the transmitting device 5001 includes: at least one processor 5011, a memory 5012, a bus 5013, and a transmitter 5014.
  • the at least one processor 5011, the memory 5012, and the transmitter 5014 are connected by a bus 5013 and complete communication with each other.
  • the bus 5013 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component) bus, or an EISA (Extended Industry Standard Architecture) bus.
  • the bus 5013 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 5, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 5012 is for executing application code of the inventive scheme, and the application code for executing the inventive scheme is stored in a memory and is controlled by the processor 501 1 for execution.
  • the memory can be a read only memory ROM or other type of static storage device that can store static information and instructions, a random access memory RAM or other type of dynamic storage device that can store information and instructions, or can be electrically erasable or programmable.
  • These memories are connected to the processor via a bus.
  • the processor 5011 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present invention. Integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 5011 is configured to call the program code in the memory 5012. In a possible implementation manner, when the application is executed by the processor 5011, the following functions are implemented.
  • the processor 5011 is configured to obtain a first baseband signal and a second baseband signal, where a period of the first baseband signal is the same as a period of the second baseband signal.
  • the processor 5011 is further configured to adjust a period of the first carrier and a period of the second carrier, such that a period of the first carrier is a non-integer multiple of a period of the first baseband signal, and a period of the second carrier is a second baseband signal A non-integer multiple of the period, wherein the period of the first carrier is the same as the period of the second carrier, and the phase of the first carrier is different from the phase of the second carrier.
  • the processor 5011 is further configured to load the first baseband signal onto the first carrier to generate a first transmission signal, and load the second baseband signal to the second carrier to generate a second transmission signal.
  • the processor 5011 is further configured to adjust a phase of the first transmission signal, or adjust a phase of the second transmission signal such that a phase of the first transmission signal is different from a phase of the second transmission signal.
  • the processor 5011 is further configured to combine the first transmission signal and the second transmission signal into a mixed signal, and send the mixed signal through the transmitter 5014.
  • the transmitting device adjusts the period of the first carrier and the period of the second carrier by acquiring the first baseband signal and the second baseband signal, so that the period of the first carrier is the period of the first baseband signal.
  • An integer multiple and the period of the second carrier is a non-integer multiple of the period of the second baseband signal
  • the first baseband signal is loaded onto the first carrier to generate a first transmission signal
  • adjusting a phase of the first transmission signal or a phase of the second transmission signal such that a phase of the first transmission signal and a second transmission signal
  • Different phases combining the first transmission signal and the second transmission signal into a mixed signal, and transmitting the mixed signal, so that the receiving device can demodulate the first transmission signal and the second transmission signal by using a filter in different phase samples.
  • the complexity of the receiving device can be reduced, and the cost of the receiving device can be reduced.
  • a further embodiment of the present invention provides a receiving device 6001.
  • the device may be embedded or itself a microprocessor computer, such as a general-purpose computer, a custom machine, a mobile phone terminal, or a tablet device.
  • the receiving device 6001 includes: at least one processor 601 1 , a memory 6012, a bus 6013, and a receiver 6014.
  • the at least one processor 6011, the memory 6012, and the receiver 6014 are connected by a bus 6013 and complete communication with each other.
  • the bus 6013 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component) bus, or an EISA (Extended Industry Standard Architecture) bus.
  • the bus 6013 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 6, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 6012 is for executing application code of the inventive scheme, and the application code for executing the inventive scheme is stored in a memory and is controlled by the processor 601 1 for execution.
  • the memory can be a read only memory ROM or other type of static storage device that can store static information and instructions, a random access memory RAM or other type of dynamic storage device that can store information and instructions, or can be electrically erasable or programmable.
  • These memories are connected to the processor via a bus.
  • the processor 601 1 may be a central processing unit (CPU 1301), or an application specific integrated circuit (ASIC), or one configured to implement the embodiment of the present invention. Or multiple integrated circuits.
  • the processor 601 1 is configured to call the program code in the memory 6012. In a possible implementation manner, when the application is executed by the processor 601 1 , the following functions are implemented.
  • the processor 601 1 is configured to receive the mixed signal by the receiver 6014, sample the first preset phase of the mixed signal, and separate the first transmission signal, and sample the second preset phase of the mixed signal to separate the second signal. Transmitting a signal, demodulating the first baseband signal from the first transmission signal, and demodulating the second baseband signal from the second transmission signal, wherein the first preset phase is the second preset phase: the first baseband
  • the period of the signal and the second baseband signal is 0 or an integer greater than 0, and the period of the first baseband signal is the same as the period of the second baseband signal.
  • the receiving apparatus separates the first transmission signal by sampling the first preset phase of the mixed signal by receiving the mixed signal, and samples the second preset phase of the mixed signal to separate the second transmission signal.
  • Demodulating the first baseband signal from the first transmission signal, and demodulating the second baseband signal from the second transmission signal, so that the first transmission signal and the second signal can be demodulated by using a filter at different phase samples Transmitting signals can reduce the complexity of the receiving device and reduce the cost of the receiving device.
  • the embodiment of the present invention provides a signal sending method, which is applied to the sending device described in the foregoing embodiment corresponding to FIG. 1, FIG. 3 or FIG. Selected, the signal transmission method can be applied to CAP
  • the transmitting device acquires the first baseband signal and the second baseband signal.
  • the period of the first baseband signal is the same as the period of the second baseband signal.
  • the first baseband signal and the second baseband signal comprise four levels
  • the first baseband The signal may be formed by combining the first digital signal and the second digital signal by pulse amplitude modulation
  • the second baseband signal may be formed by combining the third digital signal and the fourth digital signal by pulse amplitude modulation, wherein the first digital signal, The second digital signal, the third digital signal, and the fourth digital signal comprise two levels.
  • the two-level signal and the four-level signal are exemplified here, and the multi-channel signal may be synthesized by pulse amplitude modulation.
  • the present invention is not limited thereto.
  • the sending apparatus adjusts a period of the first carrier and a period of the second carrier.
  • the sending device adjusts the period of the first carrier to be a non-integer multiple of the period of the first baseband signal, and adjusts the period of the second carrier to be a non-integer multiple of the period of the second baseband signal, where the period of the first carrier and the first The period of the two carriers is the same, and the phase of the first carrier is different from the phase of the second carrier.
  • the period of the second carrier and the period of the second carrier where 7 ⁇ is the period of the first baseband signal and the second baseband signal, and 2 is the period of the first carrier and the second carrier, "is the order of the filter, 0 or greater than 0 Integer.
  • the period of the first carrier is adjusted by the in-phase filter
  • the period of the second carrier is adjusted by the orthogonal filter
  • the order of the in-phase filter and the orthogonal filter are the same.
  • the period of the two carriers is adjusted to be a non-integer multiple of the period of the second baseband signal.
  • the peak of a transmission signal and the peak amplitude of the second transmission signal are relatively large, and the peak of the first transmission signal is symmetric with the peak of the second transmission signal in the same period, if the period of the first carrier and the second carrier is not adjusted
  • the peak of the first transmission signal is symmetric with the peak of the second transmission signal in the same period, if the period of the first carrier and the second carrier is not adjusted
  • the sending device loads the first baseband signal on the first carrier to generate the first transmission. And transmitting a second baseband signal to the second carrier to generate a second transmission signal.
  • Step 703 is equivalent to performing spectrum shifting on the first baseband signal and the second baseband signal.
  • the first baseband signal and the second baseband signal have the same period and the same frequency, and the first carrier and the second carrier have the same period and the same frequency.
  • the first baseband signal and the first carrier are taken as an example.
  • the period of the first baseband signal should be greater than one-half of the first carrier period, that is, the frequency of the first carrier should be greater than the frequency of the first baseband signal.
  • the transmitting device adjusts a phase of the first transmission signal, or adjusts a phase of the second transmission signal such that a phase of the first transmission signal is different from a phase of the second transmission signal.
  • the transmitting device shifts the phase of the first transmission signal by 7V2 or shifts the phase of the second transmission signal by 7V2, where is the period of the first baseband signal and the second baseband signal.
  • adjusting the phase of the first transmission signal or the second transmission signal, the peak of the first transmission signal and the peak distance of the second transmission signal may be increased, and in combination with step 702, adjusting the period of the first carrier and the second carrier, And adjusting the phase of the first transmission signal or the second transmission signal, the peak effect of the first transmission signal and the second transmission signal is as shown in FIG. 8.
  • the horizontal axis is time and the vertical axis is amplitude, and the first carrier is adjusted.
  • the peak of the first transmission signal and the peak of the second transmission signal are both prominent. After the phase of the first transmission signal or the second transmission signal is moved, the first transmission signal and the second transmission signal can be made. The peak distance of the transmission signal is large, so that the receiving device can demodulate the first transmission signal and the second transmission signal by sampling at different phases.
  • the transmitting device combines the first transmission signal and the second transmission signal into a mixed signal, and sends the mixed signal.
  • the transmitting device can convert the mixed signal from the electrical signal to the optical signal and then transmit.
  • the signal transmitting method obtaineds the first baseband signal and the second baseband signal by using the transmitting device, and adjusts the period of the first carrier and the period of the second carrier, so that The period of the first carrier is a non-integer multiple of the period of the first baseband signal, and the period of the second carrier is a non-integer multiple of the period of the second baseband signal, and the first baseband signal is loaded onto the first carrier to generate the first Transmitting a signal, loading the second baseband signal onto the second carrier to generate a second transmission signal, for adjusting a phase of the first transmission signal or a phase of the second transmission signal, such that a phase of the first transmission signal and a second transmission signal Different phases, combining the first transmission signal and the second transmission signal into a mixed signal, and transmitting the mixed signal, so that the receiving device can demodulate the first transmission signal and the second transmission signal by using a filter in different phase samples.
  • the complexity of the receiving device can be reduced, and the cost of the receiving device can be reduced.
  • the embodiment of the present invention provides a signal receiving method, which is applied to the transmitting device described in the foregoing embodiment corresponding to FIG. 2, FIG. 4 or FIG. Selected, the signal receiving method can be applied to CAP
  • the receiving device receives the mixed signal.
  • the receiving device can convert the mixed signal from the optical signal to the electrical signal.
  • the receiving device samples the first preset phase of the mixed signal, separates the first transmission signal, and samples the second preset phase of the mixed signal to separate the second transmission signal.
  • the first preset phase is T ⁇ +T ⁇ M
  • the second preset phase is T ⁇ +TV ⁇ where ⁇ is the period of the first baseband signal and the second baseband signal, and is 0 or an integer greater than 0. .
  • the receiving device demodulates the first baseband signal from the first transmission signal, and demodulates the second baseband signal from the second transmission signal.
  • the period of the first baseband signal is the same as the period of the second baseband signal.
  • the receiving device may separate the first digital signal and the second digital signal from the first baseband signal, and separate the third digital signal and the fourth digital signal from the second baseband signal, where the first baseband signal and The second baseband signal contains four levels, the first digital signal The number, the second digital signal, the third digital signal, and the fourth digital signal comprise two levels.
  • the signal receiving method provided by the embodiment of the present invention receives the mixed signal by the receiving device, samples the first preset phase of the mixed signal, separates the first transmission signal, and samples the second preset phase of the mixed signal to separate the first signal.
  • An embodiment of the present invention provides a communication system 100, as shown in FIG. 10, including a transmitting device 1001 and a receiving device 1002.
  • the transmitting device 1001 is the transmitting device described in the embodiment corresponding to FIG. 1, and the receiving device 1002 is the receiving device described in the embodiment corresponding to FIG. 2.
  • the transmitting device 1001 is the transmitting device described in the embodiment corresponding to FIG. 3
  • the receiving device 1002 is the receiving device described in the embodiment corresponding to FIG.
  • the transmitting device 1001 is the transmitting device described in the embodiment corresponding to FIG. 5, and the receiving device 1002 is the receiving device described in the embodiment corresponding to FIG. 6.
  • the first baseband signal and the second baseband signal are obtained by the transmitting device, and the period of the first carrier and the period of the second carrier are adjusted, so that the period of the first carrier is the period of the first baseband signal.
  • Count Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include RAM (Random Access Memory), ROM (Read Only Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory).
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • disk storage media or other magnetic storage device, or can be used to carry or store in the form of instructions or data structures.
  • Any connection may suitably be a computer readable medium.
  • coaxial cable, fiber optic cable, twisted pair, DSL (Digital Subscriber Line), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • the disc and the disc include a CD (Compact Disc), a laser disc, a disc, a DVD disc (Digital Versatile Disc), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied,
  • the disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种信号传输方法、装置及系统,涉及通信领域,能够降低接收装置的复杂度,减少接收装置的成本。具体方案为:发送装置获取第一基带信号及第二基带信号,调节第一载波的周期及第二载波的周期,使第一载波的周期为第一基带信号的周期的非整数倍,并且使第二载波的周期为第二基带信号的周期的非整数倍,将第一基带信号加载到第一载波上生成第一传输信号,将第二基带信号加载到第二载波上生成第二传输信号,调节第一传输信号的相位或者第二传输信号的相位,使得第一传输信号的相位与第二传输信号的相位不同,将第一传输信号及第二传输信号合并为混合信号,并发送该混合信号。本发明用于信号传输。

Description

一种信号传输方法、 装置及系统
技术领域
本发明涉及通信领域, 尤其涉及一种信号传输方法、 装置及系 统。
背景技术
现实生活中, 人们使用电子设备进行通话、 上网等都需要将文 字、 图片、 语音、 视频等数据转化为信号进行传输, 为了使信号能 够高速传输并且在传输过程中不失真, 需要对信号进行调制之后再 发送, 相应的, 接收到信号后需要先解调才能读取数据。
现有技术中, 为了提高时频资源的利用率, 将多路信号同时进 行调制并发送, 这样在单位时间内能够实现多路信号同时传输, 提 高了单位时间内传输数据的容量。
但是, 因为对多路信号同时进行调制并发送, 接收信号时, 接 收装置就需要分别对每一路信号进行解调, 而一路信号都需要一个 滤波器进行解调, 这样接收装置就需要多个滤波器, 使得接收装置 设计复杂, 成本较高。
发明内容
本发明的实施例提供一种信号传输方法、 装置及系统, 能够降 低接收装置的复杂度, 减少接收装置的成本。
为达到上述目的, 本发明的实施例采用如下技术方案: 第一方面、 一种发送装置, 其特征在于, 包括:
获取单元, 用于获取第一基带信号及第二基带信号, 所述第一基 带信号的周期与所述第二基带信号的周期相同;
载波单元, 用于调节第一载波的周期及第二载波的周期, 使所述 第一载波的周期为所述第一基带信号的周期的非整数倍, 并且使所述 第二载波的周期为所述第二基带信号的周期的非整数倍, 其中, 所述 第一载波的周期与所述第二载波的周期相同, 所述第一载波的相位与 所述第二载波的相位不同;
调制单元,用于将所述获取单元获取的所述第一基带信号加载到 所述第一载波上生成第一传输信号, 将所述获取单元获取的第二基 带信号加载到所述第二载波上生成第二传输信号;
移相单元,用于调节所述调制单元生成的所述第一传输信号的相 位, 或者, 调节所述调制单元生成的所述第二传输信号的相位, 使得 所述第一传输信号的相位与所述第二传输信号的相位不同;
合并单元,用于将所述第一传输信号及所述第二传输信号合并为 混合信号;
发送单元, 用于发送所述合并单元合并的所述混合信号。
结合第一方面, 在第一种可能的实现方式中,
所述载波单元, 具体用于根据第一公式 = X 2调节所述 第一载波的周期及所述第二载波的周期, 其中 7 ^为所述第一基带信 号及所述第二基带信号的周期, 2为所述第一载波及所述第二载波的 周期, 《为所述载波单元中包含的滤波器的阶数, 为 0或大于 0的 整数。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可 能的实现方式中,
所述移相单元, 具体用于将所述第一传输信号的相位移动 Till , 或者将所述第二传输信号的相位移动 7V2 , 其中, : ^为所述第一基带 信号及所述第二基带信号的周期。
结合第一方面至第一方面的第二种可能的实现方式中任一实现 方式, 在第三种可能的实现方式中,
所述获取单元, 具体用于获取第一数字信号、 第二数字信号、 第 三数字信号及第四数字信号, 将所述第一数字信号及所述第二数字信 号合并为所述第一基带信号, 将所述第三数字信号级所述第四数字信 号合并为所述第二基带信号, 其中, 所述第一数字信号、 所述第二数 字信号、 所述第三数字信号及所述第四数字信号包含两个电平, 所述 第一基带信号及所述第二基带信号含四个电平。
第二方面, 一种接收装置, 包括:
接收单元, 用于接收混合信号; 采样单元,用于在所述接收单元接收的所述混合信号的第一预设 相位采样, 分离出第一传输信号, 在所述混合信号的第二预设相位采 样, 分离出第二传输信号, 其中, 所述第一预设相位为 ZT+7V4 , 所 述第二预设相位为 VTi+S T^ , 7^为第一基带信号及第二基带信号的 周期, 为 0或大于 0的整数, 所述第一基带信号的周期与所述第二 基带信号的周期相同;
解调单元,用于从所述采样单元分离出的所述第一传输信号中解 调出所述第一基带信号, 从所述第二传输信号中解调出所述第二基带 信号。
结合第二方面, 在第一种可能的实现方式中,
所述解调单元,还用于从所述第一基带信号中分离出第一数字信 号及第二数字信号, 从所述第二基带信号中分离出第三数字信号及第 四数字信号, 其中, 所述第一基带信号及所述第二基带信号包含四个 电平, 所述第一数字信号、 所述第二数字信号、 所述第三数字信号及 所述第四数字信号包含两个电平。
第三方面, 一种发送装置, 所述发送装置包括:
脉冲幅度调制编码器, 用于获取第一基带信号及第二基带信号, 所述第一基带信号的周期与所述第二基带信号的周期相同;
同相滤波器, 用于调节第一载波的周期, 使所述第一载波的周期 为所述第一基带信号的周期的非整数倍, 将所述脉冲幅度调制编码器 获取的所述第一基带信号加载到所述第一载波上生成第一传输信号; 正交滤波器, 用于调节第二载波的周期, 使所述第二载波的周期 为所述第二基带信号的周期的非整数倍, 将所述脉冲幅度调制编码器 获取的所述第二基带信号加载到所述第二载波上生成第二传输信号, 其中, 所述第一载波的周期与所述第二载波的周期相同, 所述第一载 波的相位与所述第二载波的相位不同;
所述同相滤波器将所述第一传输信号进行移相或者所述正交滤 波器将所述第二传输信号进行移相使得所述第一传输信号的相位与 所述第二传输信号的相位不同; 信号叠加器,用于将所述同相滤波器生成的所述第一传输信号与 所述正交滤波器生成的所述第二传输信号合并为混合信号;
发送器, 用于发送所述信号叠加器合并成的所述混合信号。
结合第三方面, 在第一种可能的实现方式中,
所述同相滤波器, 具体用于根据第一公式 = / X 2调节所 述第一载波的周期, 其中 7 ^为所述第一基带信号的周期, 2为所述 第一载波的周期, 《为所述同相滤波器的阶数, 为 0或大于 0的整 数;
所述正交滤波器, 具体用于根据第一公式 χ Γ2调节所 述第二载波的周期, 其中 7 ^为所述第二基带信号的周期, 2为所述 第二载波的周期, 《为所述正交滤波器的阶数, 为 0或大于 0的整 结合第三方面或第三方面的第一种可能的实现方式,在第二种可 能的实现方式中,
所述同相滤波器, 还具体用于将所述第一传输信号的相位移动 或者, 所述正交滤波器, 还具体用于将所述第二传输信号的相位 移动 7V2 ,其中,: ^为所述第一基带信号及所述第二基带信号的周期。
结合第三方面至第三方面的第二种可能的实现方式中任一实现 方式, 在第三种可能的实现方式中,
所述脉冲幅度调制编码器,具体用于将第一数字信号及第二数字 信号合并为所述第一基带信号, 将第三数字信号及第四数字信号合并 为所述第二基带信号, 其中, 所述第一基带信号及所述第二基带信号 包含四个电平, 所述第一数字信号、 所述第二数字信号、 所述第三数 字信号及所述第四数字信号包含两个电平。
第四方面, 一种接收装置, 包括:
接收器, 用于接收混合信号;
解调滤波器,用于在所述接收器接收的混合信号的第一预设相位 采样, 分离出第一传输信号, 在所述混合信号的第二预设相位采样, 分离出第二传输信号, 从所述第一传输信号中解调出第一基带信号, 从所述第二传输信号中解调出第二基带信号, 其中, 所述第一预设相 位为 iTi+T^ , 所述第二预设相位为 iT^ T^ , 7^为所述第一基带信 号及所述第二基带信号的周期, 为 0或大于 0的整数, 所述第一基 带信号的周期与所述第二基带信号的周期相同。
结合第四方面, 在第一种可能的实现方式中, 所述接收装置还包 括脉冲幅度调制解码器;
所述脉冲幅度调制解码器,用于从所述第一基带信号中分离出第 一数字信号及第二数字信号, 从所述第二基带信号中分离出第三数字 信号及第四数字信号, 其中, 所述第一基带信号及所述第二基带信号 包含四个电平, 所述第一数字信号、 所述第二数字信号、 所述第三数 字信号及所述第四数字信号包含两个电平。
第五方面, 一种信号发送方法、 包括:
获取第一基带信号及第二基带信号,所述第一基带信号的周期与 所述第二基带信号的周期相同;
调节第一载波的周期及第二载波的周期,使所述第一载波的周期 为所述第一基带信号的周期的非整数倍, 并且使所述第二载波的周期 为所述第二基带信号的周期的非整数倍, 其中, 所述第一载波的周期 与所述第二载波的周期相同, 所述第一载波的相位与所述第二载波的 相位不同;
将所述第一基带信号加载到所述第一载波上生成第一传输信号, 将所述第二基带信号加载到所述第二载波上生成第二传输信号;
调节所述第一传输信号的相位, 或者, 调节所述第二传输信号的 相位, 使得所述第一传输信号的相位与所述第二传输信号的相位不 同;
将所述第一传输信号与所述第二传输信号合并为混合信号,并发 送所述混合信号。
结合第五方面, 在第一种可能的实现方式中, 所述调节第一载波 的周期及第二载波的周期, 包括:
根据第一公式 7 χ Γ2调节所述第一载波的周期及所述
\ )
第二载波的周期, 其中 7^为所述第一基带信号及所述第二基带信号 的周期, 2为所述第一载波及所述第二载波的周期,《为滤波器阶数, 为 0或大于 0的整数。
结合第五方面或第五方面的第一种可能的实现方式,在第二种可 能的实现方式中, 所述调节所述第一传输信号的相位, 或者, 调节所 述第二传输信号的相位使得所述第一传输信号的相位与所述第二传 输信号的相位不同, 包括:
将所述第一传输信号的相位移动 7V2 ,或者将所述第二传输信号 的相位移动 7V2 , 其中, 7^为所述第一基带信号及所述第二基带信号 的周期。
结合第五方面至第五方面的第二种可能的实现方式中任一实现 方式, 在第三种可能的实现方式中, 所述获取第一基带信号及第二基 带信号, 包括:
获取第一数字信号、 第二数字信号、 第三数字信号及第四数字信 号, 其中, 所述第一数字信号、 所述第二数字信号、 所述第三数字信 号及所述第四数字信号包含两个电平;
将所述第一数字信号及所述第二数字信号合并为所述第一基带 信号, 将所述第三数字信号级所述第四数字信号合并为所述第二基带 信号, 其中, 所述第一基带信号及所述第二基带信号包含四个电平。
第六方面, 一种信号接收方法, 包括:
接收混合信号;
在所述混合信号的第一预设相位采样, 分离出第一传输信号, 在 所述混合信号的第二预设相位采样, 分离出第二传输信号, 其中, 所 述第一预设相位为 所述第二预设相位为 : 为第 一基带信号及第二基带信号的周期, 为 0或大于 0的整数, 所述第 一基带信号的周期与所述第二基带信号的周期相同;
从所述第一传输信号中解调出所述第一基带信号,从所述第二传 输信号中解调出所述第二基带信号。
结合第六方面, 在第一种可能的实现方式中, 所述从所述第一传 输信号中解调出第一基带信号, 从所述第二传输信号中解调出第二基 带信号之后, 还包括:
从所述第一基带信号中分离出第一数字信号及第二数字信号,从 所述第二基带信号中分离出第三数字信号及第四数字信号, 其中, 所 述第一基带信号及所述第二基带信号包含四个电平, 所述第一数字信 号、 所述第二数字信号、 所述第三数字信号及所述第四数字信号包含 两个电平。
第七方面, 一种通信系统, 包括发送装置及接收装置;
其中,所述发送装置为第一方面或第一方面的任意一种可能的实 现方式中所描述的发送装置, 所述接收装置为第二方面或第二方面的 任意一种可能的实现方式中所描述的接收装置;
或者,所述发送装置为第三方面或第三方面的任意一种可能的实 现方式中所描述的发送装置, 所述接收装置为第四方面或第四方面的 任意一种可能的实现方式中所描述的接收装置;
本发明的实施例提供的一种信号传输方法、 装置及系统, 通过发 送装置获取第一基带信号及第二基带信号, 调节第一载波的周期及第 二载波的周期, 使第一载波的周期为第一基带信号的周期的非整数 倍, 并且使第二载波的周期为第二基带信号的周期的非整数倍, 将第 一基带信号加载到第一载波上生成第一传输信号, 将第二基带信号加 载到第二载波上生成第二传输信号, 调节第一传输信号的相位或者第 二传输信号的相位, 使得第一传输信号的相位与第二传输信号的相位 不同, 将第一传输信号及第二传输信号合并为混合信号, 并发送该混 合信号, 使得接收装置可以通过一个滤波器在不同的相位采样解调出 第一传输信号及第二传输信号, 能够降低接收装置的复杂度, 减少接 收装置的成本。
附图说明 面将对实施例描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普 通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些 附图获得其他的附图。
图 1为本发明的实施例提供的一种发送装置结构示意图; 图 2为本发明的实施例提供的一种接收装置结构示意图; 图 3为本发明的另一实施例提供的一种发送装置结构示意图; 图 4为本发明的另一实施例提供的一种接收装置结构示意图; 图 5为本发明的又一实施例提供的一种发送装置结构示意图; 图 6为本发明的又一实施例提供的一种接收装置结构示意图; 图 7为本发明的实施例提供的一种信号发送方法流程示意图; 图 8为本发明的实施例提供的一种载波移相效果示意图; 图 9为本发明的实施例提供的一种信号接收方法流程示意图; 图 10为本发明的实施例提供的一种通信系统架构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明的实施例提供一种发送装置, 参照图 1所示, 该发送装置 10包括: 获取单元 101、 载波单元 102、调制单元 103、 移相单元 104、 合并单元 105及发送单元 106。
其中, 获取单元 101 , 用于获取第一基带信号及第二基带信号, 第一基带信号的周期与第二基带信号的周期相同。
载波单元 102 , 用于调节第一载波的周期及第二载波的周期, 使 第一载波的周期为第一基带信号的周期的非整数倍, 并且使第二载波 的周期为第二基带信号的周期的非整数倍, 其中, 第一载波的周期与 第二载波的周期相同, 第一载波的相位与第二载波的相位不同。 调制单元 103 , 用于将获取单元 101获取的第一基带信号加载到 第一载波上生成第一传输信号, 将获取单元 101获取的第二基带信 号加载到第二载波上生成第二传输信号。
移相单元 104 , 用于调节调制单元 103生成的第一传输信号的相 位, 或者, 调节调制单元 103生成的第二传输信号的相位, 使得第一 传输信号的相位与第二传输信号的相位不同。
合并单元 105 , 用于将第一传输信号及第二传输信号合并为混合 信号。
发送单元 106 , 用于发送合并单元 105合并的混合信号。
可选的,载波单元 102 ,具体用于根据第一公式? = Χ 2调 节第一载波的周期及第二载波的周期, 其中 7^为第一基带信号及第 二基带信号的周期, 2为第一载波及第二载波的周期, "为载波单元 102包含的滤波器的阶数, 为 0或大于 0的整数。
可选的, 移相单元 104 , 具体用于将第一传输信号的相位移动 Till , 或者将第二传输信号的相位移动 7V2 , 其中, 7^为第一基带信 号及第二基带信号的周期。
可选的, 获取单元 101 , 具体用于获取第一数字信号、 第二数字 信号、 第三数字信号及第四数字信号, 将第一数字信号及第二数字信 号合并为第一基带信号, 将第三数字信号级第四数字信号合并为第二 基带信号, 其中, 第一数字信号、 第二数字信号、 第三数字信号及第 四数字信号包含两个电平, 第一基带信号及第二基带信号包含四个电 平。
可选的, 在一种应用场景中, 发送单元 106 , 还用于将混合信号 由电信号转换为光信号。
本发明的实施例提供的发送装置,通过获取第一基带信号及第二 基带信号, 调节第一载波的周期及第二载波的周期, 使第一载波的周 期为第一基带信号的周期的非整数倍, 并且使第二载波的周期为第二 基带信号的周期的非整数倍, 将第一基带信号加载到第一载波上生成 第一传输信号, 将第二基带信号加载到第二载波上生成第二传输信 号, 调节第一传输信号的相位或者第二传输信号的相位, 使得第一传 输信号的相位与第二传输信号的相位不同, 将第一传输信号及第二传 输信号合并为混合信号, 并发送该混合信号, 使得接收装置可以通过 一个滤波器在不同的相位采样解调出第一传输信号及第二传输信号, 能够降低接收装置的复杂度, 减少接收装置的成本。
本发明的实施例提供一种接收装置, 参照图 2所示, 该接收装置 20包括: 接收单元 201、 采样单元 202、 解调单元 203。
其中, 接收单元 201 , 用于接收混合信号。
采样单元 202 , 用于在接收单元 201接收的混合信号的第一预设 相位采样, 分离出第一传输信号, 在混合信号的第二预设相位采样, 分离出第二传输信号, 其中, 第一预设相位为 ZT+7V4 , 第二预设相 位为 T^+ T^M , 7^为第一基带信号及第二基带信号的周期, 为 0或 大于 0的整数, 第一基带信号的周期与第二基带信号的周期相同。
解调单元 203 , 用于从采样单元 202分离出的第一传输信号中解 调出第一基带信号, 从第二传输信号中解调出第二基带信号。
可选的, 解调单元 203 , 还用于从第一基带信号中分离出第一数 字信号及第二数字信号, 从第二基带信号中分离出第三数字信号及第 四数字信号, 其中, 第一基带信号及第二基带信号包含四个电平, 第 一数字信号、 第二数字信号、 第三数字信号及第四数字信号包含两个 电平。
可选的, 在一种应用场景中, 接收单元 201 , 还用于将混合信号 由光信号转换为电信号。
本发明的实施例提供的接收装置, 通过接收混合信号, 在混合信 号的第一预设相位采样, 分离出第一传输信号, 在混合信号的第二预 设相位采样, 分离出第二传输信号, 从第一传输信号中解调出第一基 带信号, 从第二传输信号中解调出第二基带信号, 这样可以通过一个 滤波器在不同的相位采样解调出第一传输信号及第二传输信号, 能够 降低接收装置的复杂度, 减少接收装置的成本。
本发明的另一实施例提供一种发送装置, 参照图 3所示, 该发送 装置 30包括: 脉冲幅度调制编码器 301、 同相滤波器 302、 正交滤波 器 303、 信号叠加器 304、 发送器 305。
其中, 脉冲幅度调制编码器 301 , 用于获取第一基带信号及第二 基带信号, 第一基带信号的周期与第二基带信号的周期相同。
同相滤波器 302 , 用于调节第一载波的周期, 使第一载波的周期 为第一基带信号的周期的非整数倍, 将第一基带信号加载到第一载波 上生成第一传输信号。
正交滤波器 303 , 用于调节第二载波的周期, 使第二载波的周期 为第二基带信号的周期的非整数倍, 将第二基带信号加载到第二载波 上生成第二传输信号,其中,第一载波的周期与第二载波的周期相同, 第一载波的相位与第二载波的相位不同。
同相滤波器 302将第一传输信号进行移相或者正交滤波器 303 将第二传输信号进行移相使得第一传输信号的相位与第二传输信号 的相位不同。
信号叠加器 304 , 用于将同相滤波器 302生成的第一传输信号与 正交滤波器 303生成的第二传输信号合并为混合信号。
发送器 305 , 用于发送信号叠加器 304合并成的混合信号。
可选的,同相滤波器 302 ,具体用于根据第一公式 : 7
、 4w - 调节所述第一载波的周期, 其中 ^为第一基带信号的周期, 2为第 一载波的周期, 《为同相滤波器 302阶数, 为 0或大于 0的整数。
正交滤波器 303 , 具体用于根据第一公式 χ Γ2调节所 述第二载波的周期, 其中 7 ^为第二基带信号的周期, 2为第二载波 的周期, 《为该正交滤波器 303阶数, 为 0或大于 0的整数, 同相 滤波器 302与正交滤波器 303的阶数相同。
可选的, 同相滤波器 302 , 还具体用于将第一传输信号的相位移 动 7V2。
或者, 正交滤波器 303 , 还具体用于将第二传输信号的相位移动 7V2 , 其中, 为第一基带信号及第二基带信号的周期。 可选的, 在一种应用场景中,
脉冲幅度调制编码器 301 , 具体用于将第一数字信号及第二数字 信号合并为第一基带信号, 将第三数字信号及第四数字信号合并为第 二基带信号, 其中, 第一基带信号及第二基带信号包含四个电平, 第 一数字信号、 第二数字信号、 第三数字信号及第四数字信号包含两个 电平。
发送器 305 , 还用于将混合信号由电信号转换为光信号。
本发明的实施例提供的发送装置,根据第一基带信号调节第一载 波的周期, 将第一基带信号加载到第一载波上生成第一传输信号, 根 据第二基带信号调节第二载波的周期, 将第二基带信号加载到第二载 波上生成第二传输信号, 将第一传输信号或者第二传输信号移相, 将 第一传输信号与第二传输信号合并为混合信号并发送该混合信号, 使 得接收装置可以通过一个滤波器在不同的相位采样解调出第一传输 信号及第二传输信号, 能够降低接收装置的复杂度, 减少接收装置的 成本。
本发明的另一实施例提供一种接收装置, 参照图 4所示, 该接收 装置 40包括: 接收器 401、 解调滤波器 402。
其中, 接收器 401 , 用于接收混合信号。
解调滤波器 402 , 用于在接收器 401接收的混合信号的第一预设 相位采样, 分离出第一传输信号, 在混合信号的第二预设相位采样, 分离出第二传输信号, 从第一传输信号中解调出第一基带信号, 从第 二传输信号中解调出第二基带信号, 其中, 第一预设相位为 7V4 , 第二预设相位为 T^+ T^M , 其中, : ^为第一基带信号及第二基带信 号的周期, 为 0或大于 0的整数, 第一基带信号的周期与第二基带 信号的周期相同。
可选的, 在一种应用场景中, 接收装置 40还包括脉冲幅度调制 解码器 403。
脉冲幅度调制解码器 403 , 用于从第一基带信号中分离出第一数 字信号及第二数字信号, 从第二基带信号中分离出第三数字信号及第 四数字信号, 其中, 第一基带信号及第二基带信号包含四个电平, 第 一数字信号、 第二数字信号、 第三数字信号及第四数字信号包含两个 电平。
接收器 401 , 还用于将混合信号由光信号转换为电信号。
本发明的实施例提供的接收装置, 通过接收混合信号, 在混合信 号的第一预设相位采样, 分离出第一传输信号, 在混合信号的第二预 设相位采样, 分离出第二传输信号, 从第一传输信号中解调出第一基 带信号, 从第二传输信号中解调出第二基带信号, 这样通过一个滤波 器在不同的相位采样解调出第一传输信号及第二传输信号, 能够降低 接收装置的复杂度, 减少接收装置的成本。
本发明的又一实施例提供一种发送装置 5001 , 参照图 5所示, 该设备可以嵌入或本身就是微处理计算机, 比如: 通用计算机、 客 户定制机、 手机终端或平板机等便携设备, 该发送装置 5001 包括: 至少一个处理器 501 1、 存储器 5012、总线 5013和发送器 5014 , 该至 少一个处理器 501 1、 存储器 5012和发送器 5014通过总线 5013连接 并完成相互间的通信。
该总线 5013可以是 ISA( Industry Standard Architecture , 工业标 准体系结构) 总线、 PCI ( Peripheral Component , 外部设备互连) 总 线或 EISA( Extended Industry Standard Architecture , 扩展工业标准体 系结构) 总线等。 该总线 5013可以分为地址总线、 数据总线、 控制 总线等。 为便于表示, 图 5 中仅用一条粗线表示, 但并不表示仅有 一根总线或一种类型的总线。 其中:
存储器 5012用于执行本发明方案的应用程序代码, 执行本发明 方案的应用程序代码保存在存储器中, 并由处理器 501 1来控制执 行。
该存储器可以是只读存储器 ROM 或可存储静态信息和指令的 其他类型的静态存储设备, 随机存取存储器 RAM 或者可存储信息 和指令的其他类型的动态存储设备, 也可以是电可擦可编程只读存 储器 EEPROM、 只读光盘 CD-ROM或其他光盘存储、 光碟存储 ( 包 括压缩光碟、 激光碟、 光碟、 数字通用光碟、 蓝光光碟等)、 磁盘存 储介质或者其他磁存储设备、 或者能够用于携带或存储具有指令或 数据结构形式的期望的程序代码并能够由计算机存取的任何其他介 质, 但不限于此。 这些存储器通过总线与处理器相连接。
处理器 5011可能是一个中央处理器 5011 ( Central Processing Unit, 简称为 CPU) , 或者是特定集成电路 ( Application Specific Integrated Circuit, 简称为 ASIC ) , 或者是被配置成实施本发明实施 例的一个或多个集成电路。
处理器 5011, 用于调用存储器 5012中的程序代码, 在一种可能 的实施方式中, 当上述应用程序被所述处理器 5011执行时, 实现如 下功能。
处理器 5011, 用于获取第一基带信号及第二基带信号, 第一基 带信号的周期与第二基带信号的周期相同。
处理器 5011, 还用于调节第一载波的周期及第二载波的周期, 使第一载波的周期为第一基带信号的周期的非整数倍, 并且使第二载 波的周期为第二基带信号的周期的非整数倍, 其中, 第一载波的周期 及第二载波的周期相同, 第一载波的相位与第二载波的相位不同。
处理器 5011, 还用于将第一基带信号加载到第一载波上生成第 一传输信号, 将第二基带信号加载到第二载波上生成第二传输信 号。
处理器 5011, 还用于调节第一传输信号的相位, 或者, 调节第 二传输信号的相位, 使得第一传输信号的相位与第二传输信号的相位 不同。
处理器 5011, 还用于第一传输信号与第二传输信号合并为混合 信号, 并通过发送器 5014发送混合信号。
本发明的实施例提供的发送装置,通过获取第一基带信号及第二 基带信号, 调节第一载波的周期及第二载波的周期, 使第一载波的周 期为第一基带信号的周期的非整数倍, 并且使第二载波的周期为第二 基带信号的周期的非整数倍, 将第一基带信号加载到第一载波上生成 第一传输信号, 将第二基带信号加载到第二载波上生成第二传输信 号, 调节第一传输信号的相位或者第二传输信号的相位, 使得第一传 输信号的相位与第二传输信号的相位不同, 将第一传输信号及第二传 输信号合并为混合信号, 并发送该混合信号, 使得接收装置可以通过 一个滤波器在不同的相位采样解调出第一传输信号及第二传输信号, 能够降低接收装置的复杂度, 减少接收装置的成本。
本发明的又一实施例提供一种接收装置 6001 , 参照图 6所示, 该设备可以嵌入或本身就是微处理计算机, 比如: 通用计算机、 客 户定制机、 手机终端或平板机等便携设备, 该接收装置 6001 包括: 至少一个处理器 601 1、 存储器 6012、总线 6013和接收器 6014 , 该至 少一个处理器 601 1、 存储器 6012和接收器 6014通过总线 6013连接 并完成相互间的通信。
该总线 6013可以是 ISA( Industry Standard Architecture , 工业标 准体系结构) 总线、 PCI ( Peripheral Component , 外部设备互连) 总 线或 EISA( Extended Industry Standard Architecture , 扩展工业标准体 系结构) 总线等。 该总线 6013可以分为地址总线、 数据总线、 控制 总线等。 为便于表示, 图 6中仅用一条粗线表示, 但并不表示仅有 一根总线或一种类型的总线。 其中:
存储器 6012用于执行本发明方案的应用程序代码, 执行本发明 方案的应用程序代码保存在存储器中, 并由处理器 601 1来控制执 行。
该存储器可以是只读存储器 ROM 或可存储静态信息和指令的 其他类型的静态存储设备, 随机存取存储器 RAM 或者可存储信息 和指令的其他类型的动态存储设备, 也可以是电可擦可编程只读存 储器 EEPROM、 只读光盘 CD-ROM或其他光盘存储、 光碟存储 ( 包 括压缩光碟、 激光碟、 光碟、 数字通用光碟、 蓝光光碟等)、 磁盘存 储介质或者其他磁存储设备、 或者能够用于携带或存储具有指令或 数据结构形式的期望的程序代码并能够由计算机存取的任何其他介 质, 但不限于此。 这些存储器通过总线与处理器相连接。 处理器 601 1可能是一个中央处理器 601 1 ( Central Processing Unit , 简称为 CPU ) , 或者是特定集成电路 ( Application Specific Integrated Circuit , 简称为 ASIC ) , 或者是被配置成实施本发明实施 例的一个或多个集成电路。
处理器 601 1 , 用于调用存储器 6012中的程序代码, 在一种可能 的实施方式中, 当上述应用程序被所述处理器 601 1执行时, 实现如 下功能。
其中, 处理器 601 1 , 用于通过接收器 6014接收混合信号, 在混 合信号的第一预设相位采样, 分离出第一传输信号, 在混合信号的第 二预设相位采样, 分离出第二传输信号, 从第一传输信号中解调出第 一基带信号, 从第二传输信号中解调出第二基带信号, 其中, 第一预 设相位为 第二预设相位为 : 为第一基带信号及 第二基带信号的周期, 为 0或大于 0的整数, 第一基带信号的周期 与第二基带信号的周期相同。
本发明的实施例提供的接收装置, 通过接收混合信号, 在混合信 号的第一预设相位采样, 分离出第一传输信号, 在混合信号的第二预 设相位采样, 分离出第二传输信号, 从第一传输信号中解调出第一基 带信号, 从第二传输信号中解调出第二基带信号, 这样可以通过一个 滤波器在不同的相位采样解调出第一传输信号及第二传输信号, 能够 降低接收装置的复杂度, 减少接收装置的成本。
结合上述图 1、 图 3或图 5对应的实施例, 本发明的实施例提供 一种信号发送方法, 应用于上述图 1、 图 3或图 5对应的实施例中所 描述的发送装置, 可选的, 该信号发送方法可以应用于 CAP
( Carrierless Amplitude/phase Modulation , 无载波幅相调制 ) , QAM ( Quadrature Amplitude Modulation , 正交振幅调制 )等, 本实施例对 此不做限制。 参照图 7所示, 包括以下步骤:
701、 发送装置获取第一基带信号及第二基带信号。
其中, 第一基带信号的周期与第二基带信号的周期相同。
可选的, 第一基带信号及第二基带信号包含四个电平, 第一基带 信号可以由第一数字信号及第二数字信号通过脉冲幅度调制合并而 成, 第二基带信号可以由第三数字信号及第四数字信号通过脉冲幅度 调制合并而成, 其中, 第一数字信号、 第二数字信号、 第三数字信号 及第四数字信号包含两个电平。 当然, 此处只是以两个电平的信号和 四个电平的信号为例说明, 也可以是多路信号通过脉冲幅度调制合成 多阶电平信号, 对此, 本发明不做限制。
702、 发送装置调节第一载波的周期及第二载波的周期。
具体的,发送装置调节第一载波的周期为第一基带信号的周期的 非整数倍, 调节第二载波的周期为第二基带信号的周期的非整数倍, 其中, 第一载波的周期及第二载波的周期相同, 第一载波的相位与第 二载波的相位不同。
优选的, 发送装置根据第一公式 7 = f 2n + 2k + l) χ Γ2调节第一载波
\ )
的周期及第二载波的周期, 其中 7^为第一基带信号及第二基带信号 的周期, 2为第一载波及第二载波的周期, 《为滤波器阶数, 为 0 或大于 0的整数。 可选的, 通过同相滤波器调节第一载波的周期, 通过正交滤波器调节第二载波的周期, 并且同相滤波器与正交滤波器 阶数相同, 均为 《。 可以将两个滤波器的频谱宽度调节为第一载波及 第二载波的中心频率的非整数倍, 以此实现将第一载波的周期调节 为第一基带信号的周期的非整数倍, 将第二载波的周期调节为第二 基带信号的周期的非整数倍。 这样, 调节第一载波及第二载波的周期 之后, 就可以使第一基带信号和第二基带信号分别加载到第一载波 及第二载波上生成第一传输信号及第二传输信号后, 第一传输信号的 波峰与第二传输信号的波峰幅度都比较大, 并且第一传输信号的波峰 与第二传输信号的波峰在同一周期内位置对称, 如果不调节第一载 波及第二载波的周期, 当两个基带信号加载到两个载波上生成两个传 输信号后, 两个传输信号中有一个传输信号波峰幅度较大, 另一个传 输信号波峰幅度很小, 这样接收装置就不能同时对两路传输信号进行 采样。
703、 发送装置将第一基带信号加载到第一载波上生成第一传输 信号, 将第二基带信号加载到第二载波上生成第二传输信号。
步骤 703相当于对第一基带信号及第二基带信号进行频谱搬移。 第一基带信号及第二基带信号的周期相同、 频率相同, 第一载波及第 二载波的周期相同、频率相同。此处以第一基带信号及第一载波为例, 优选的, 应该满足第一基带信号的周期大于第一载波周期的二分之 一, 即第一载波的频率应该大于第一基带信号频率的二分之一, 这样 能够有效地保证信号在调制过程中不失真。
704、 发送装置调节第一传输信号的相位, 或者, 调节第二传输 信号的相位, 使得第一传输信号的相位与第二传输信号的相位不同。
优选的, 发送装置将第一传输信号的相位移动 7V2 , 或者将第二 传输信号的相位移动 7V2 , 其中, 为第一基带信号及第二基带信号 的周期。 此处, 调节第一传输信号或第二传输信号的相位, 可以使第 一传输信号的波峰及第二传输信号的波峰距离变大, 结合步骤 702 , 调节第一载波与第二载波的周期, 并且调节第一传输信号或者第二传 输信号的相位之后, 第一传输信号与第二传输信号的波峰效果如图 8 所示, 图 8中横轴为时间, 纵轴为幅度, 调节第一载波与第二载波的 周期后, 能使第一传输信号的波峰与第二传输信号的波峰都比较突 出, 移动第一传输信号或第二传输信号的相位后, 能使得第一传输信 号与第二传输信号波峰距离较大, 这样, 接收装置通过在不同的相位 采样就可以解调出第一传输信号及第二传输信号。
705、发送装置将第一传输信号与第二传输信号合并为混合信号, 并发送混合信号。
将第一传输信号与第二传输信号合并后,混合信号的一个周期内 就会有至少两个不重叠的波峰, 对应第一传输信号的波峰及第二传输 信号的波峰。
可选的, 在光网络系统中, 发送装置可以将混合信号由电信号转 换为光信号再进行发送。
本发明的实施例提供的信号发送方法,通过发送装置获取第一基 带信号及第二基带信号, 调节第一载波的周期及第二载波的周期, 使 第一载波的周期为第一基带信号的周期的非整数倍, 并且使第二载波 的周期为第二基带信号的周期的非整数倍, 将第一基带信号加载到第 一载波上生成第一传输信号, 将第二基带信号加载到第二载波上生成 第二传输信号, 用于调节第一传输信号的相位或者第二传输信号的相 位, 使得第一传输信号的相位与第二传输信号的相位不同, 将第一传 输信号及第二传输信号合并为混合信号, 并发送该混合信号, 使得接 收装置可以通过一个滤波器在不同的相位采样解调出第一传输信号 及第二传输信号, 能够降低接收装置的复杂度, 减少接收装置的成 本。
结合上述图 2、 图 4或图 6对应的实施例, 本发明的实施例提供 一种信号接收方法, 应用于上述图 2、 图 4或图 6对应的实施例中所 描述的发送装置, 可选的, 该信号接收方法可以应用于 CAP
( Carrierless Amplitude/phase Modulation , 无载波幅相调制 ) , QAM ( Quadrature Amplitude Modulation , 正交振幅调制 )等, 本发明对此 不做限制, 参照图 9所示, 包括以下步骤:
901、 接收装置接收混合信号。
可选的, 在光网络系统中, 接收装置可以将混合信号由光信号转 换为电信号。
902、 接收装置在混合信号的第一预设相位采样, 分离出第一传 输信号, 在混合信号的第二预设相位采样, 分离出第二传输信号。
优选的, 第一预设相位为 T^+T^M , 第二预设相位为 T^+ TV^ 其中, ^为第一基带信号及第二基带信号的周期, 为 0或大于 0的 整数。
903、 接收装置从第一传输信号中解调出第一基带信号, 从第二 传输信号中解调出第二基带信号。
其中, 第一基带信号的周期与第二基带信号的周期相同。
可选的,接收装置可以从第一基带信号中分离出第一数字信号及 第二数字信号, 从第二基带信号中分离出第三数字信号及第四数字信 号, 其中, 第一基带信号及第二基带信号包含四个电平, 第一数字信 号、 第二数字信号、 第三数字信号及第四数字信号包含两个电平。 本发明的实施例提供的信号接收方法,通过接收装置接收混合信 号, 在混合信号的第一预设相位采样, 分离出第一传输信号, 在混合 信号的第二预设相位采样, 分离出第二传输信号, 从第一传输信号中 解调出第一基带信号, 从第二传输信号中解调出第二基带信号, 这样 可以通过一个滤波器在不同的相位采样解调出第一传输信号及第二 传输信号, 能够降低接收装置的复杂度, 减少接收装置的成本。
本发明的实施例提供一种通信系统 100 , 参照图 10所示, 包括 发送装置 1001 , 接收装置 1002。
其中,发送装置 1001为图 1对应的实施例中所描述的发送装置, 接收装置 1002为图 2对应的实施例中所描述的接收装置。
或者,发送装置 1001为图 3对应的实施例中所描述的发送装置, 接收装置 1002为图 4对应的实施例中所描述的接收装置。
或者,发送装置 1001为图 5对应的实施例中所描述的发送装置, 接收装置 1002为图 6对应的实施例中所描述的接收装置。
本发明的实施例提供的通信系统,通过发送装置获取第一基带信 号及第二基带信号, 调节第一载波的周期及第二载波的周期, 使第一 载波的周期为第一基带信号的周期的非整数倍, 并且使第二载波的周 期为第二基带信号的周期的非整数倍, 将第一基带信号加载到第一载 波上生成第一传输信号, 将第二基带信号加载到第二载波上生成第二 传输信号, 用于调节第一传输信号的相位或者第二传输信号的相位, 使得第一传输信号的相位与第二传输信号的相位不同, 将第一传输信 号及第二传输信号合并为混合信号, 并发送该混合信号, 使得接收装 置可以通过一个滤波器在不同的相位采样解调出第一传输信号及第 二传输信号, 能够降低接收装置的复杂度, 减少接收装置的成本。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地 了解到本发明可以用硬件实现, 或固件实现, 或它们的组合方式来 实现。 当使用软件实现时, 可以将上述功能存储在计算机可读介质 中或作为计算机可读介质上的一个或多个指令或代码进行传输。 计 算机可读介质包括计算机存储介质和通信介质, 其中通信介质包括 便于从一个地方向另一个地方传送计算机程序的任何介质。 存储介 质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计 算机可读介质可以包括 RAM ( Random Access Memory , 随机存储 器)、 ROM ( Read Only Memory , 只读内存)、 EEPROM ( Electrically Erasable Programmable Read Only Memory , 电可擦可编程只读存 4渚 器) 、 CD-ROM ( Compact Disc Read Only Memory , 即只读光盘 ) 或 其他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于 携带或存储具有指令或数据结构形式的期望的程序代码并能够由计 算机存取的任何其他介质。 此外。 任何连接可以适当的成为计算机 可读介质。 例如, 如果软件是使用同轴电缆、 光纤光缆、 双绞线、 DSL ( Digital Subscriber Line , 数字用户专线) 或者诸如红外线、 无 线电和微波之类的无线技术从网站、 服务器或者其他远程源传输 的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无 线和微波之类的无线技术包括在所属介质的定影中。 如本发明所使 用的, 盘和碟包括 CD ( Compact Disc , 压缩光碟)、 激光碟、 光碟、 DVD碟 ( Digital Versatile Disc , 数字通用光) 、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上 面的组合也应当包括在计算机可读介质的保护范围之内。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为

Claims

权 利 要 求 书
1、 一种发送装置, 其特征在于, 包括:
获取单元, 用于获取第一基带信号及第二基带信号, 所述第一基 带信号的周期与所述第二基带信号的周期相同;
载波单元, 用于调节第一载波的周期及第二载波的周期, 使所述 第一载波的周期为所述第一基带信号的周期的非整数倍, 并且使所述 第二载波的周期为所述第二基带信号的周期的非整数倍, 其中, 所述 第一载波的周期与所述第二载波的周期相同, 所述第一载波的相位与 所述第二载波的相位不同;
调制单元,用于将所述获取单元获取的所述第一基带信号加载到 所述第一载波上生成第一传输信号, 将所述获取单元获取的第二基 带信号加载到所述第二载波上生成第二传输信号;
移相单元,用于调节所述调制单元生成的所述第一传输信号的相 位, 或者, 调节所述调制单元生成的所述第二传输信号的相位, 使得 所述第一传输信号的相位与所述第二传输信号的相位不同;
合并单元,用于将所述第一传输信号及所述第二传输信号合并为 混合信号;
发送单元, 用于发送所述合并单元合并的所述混合信号。
2、 根据权利要求 1所述的装置, 其特征在于,
所述载波单元, 具体用于根据第一公式 = ' 调节所述
\ J
第一载波的周期及所述第二载波的周期, 其中 7 ^为所述第一基带信 号及所述第二基带信号的周期, 2为所述第一载波及所述第二载波的 周期, 《为所述载波单元中包含的滤波器的阶数, 为 0或大于 0的 整数。
3、 根据权利要求 1或 2所述的装置, 其特征在于,
所述移相单元, 具体用于将所述第一传输信号的相位移动 7V2 , 或者将所述第二传输信号的相位移动 7V2 , 其中, : ^为所述第一基带 信号及所述第二基带信号的周期。
4、 根据权利要求 1 -3任一项所述的装置, 其特征在于, 所述获取单元, 具体用于获取第一数字信号、 第二数字信号、 第 三数字信号及第四数字信号, 将所述第一数字信号及所述第二数字信 号合并为所述第一基带信号, 将所述第三数字信号级所述第四数字信 号合并为所述第二基带信号, 其中, 所述第一数字信号、 所述第二数 字信号、 所述第三数字信号及所述第四数字信号包含两个电平, 所述 第一基带信号及所述第二基带信号含四个电平。
5、 一种接收装置, 其特征在于, 包括:
接收单元, 用于接收混合信号;
采样单元,用于在所述接收单元接收的所述混合信号的第一预设 相位采样, 分离出第一传输信号, 在所述混合信号的第二预设相位采 样, 分离出第二传输信号, 其中, 所述第一预设相位为 ZT+7V4 , 所 述第二预设相位为 iT^T^ , 7^为第一基带信号及第二基带信号的 周期, 为 0或大于 0的整数, 所述第一基带信号的周期与所述第二 基带信号的周期相同;
解调单元,用于从所述采样单元分离出的所述第一传输信号中解 调出所述第一基带信号, 从所述第二传输信号中解调出所述第二基带 信号。
6、 根据权利要求 5所述的装置, 其特征在于,
所述解调单元,还用于从所述第一基带信号中分离出第一数字信 号及第二数字信号, 从所述第二基带信号中分离出第三数字信号及第 四数字信号, 其中, 所述第一基带信号及所述第二基带信号包含四个 电平, 所述第一数字信号、 所述第二数字信号、 所述第三数字信号及 所述第四数字信号包含两个电平。
7、 一种发送装置, 其特征在于, 所述发送装置包括:
脉冲幅度调制编码器, 用于获取第一基带信号及第二基带信号, 所述第一基带信号的周期与所述第二基带信号的周期相同;
同相滤波器, 用于调节第一载波的周期, 使所述第一载波的周期 为所述第一基带信号的周期的非整数倍, 将所述脉冲幅度调制编码器 获取的所述第一基带信号加载到所述第一载波上生成第一传输信号; 正交滤波器, 用于调节第二载波的周期, 使所述第二载波的周期 为所述第二基带信号的周期的非整数倍, 将所述脉冲幅度调制编码器 获取的所述第二基带信号加载到所述第二载波上生成第二传输信号, 其中, 所述第一载波的周期与所述第二载波的周期相同, 所述第一载 波的相位与所述第二载波的相位不同;
所述同相滤波器将所述第一传输信号进行移相或者所述正交滤 波器将所述第二传输信号进行移相使得所述第一传输信号的相位与 所述第二传输信号的相位不同;
信号叠加器,用于将所述同相滤波器生成的所述第一传输信号与 所述正交滤波器生成的所述第二传输信号合并为混合信号;
发送器, 用于发送所述信号叠加器合并成的所述混合信号。
8、 根据权利要求 7所述的装置, 其特征在于,
所述同相滤波器, 具体用于根据第一公式 Ά = : 卜^调节所 述第一载波的周期, 其中 7 ^为所述第一基带信号的周期, 2为所述 第一载波的周期, 《为所述同相滤波器的阶数, 为 0或大于 0的整 数;
所述正交滤波器, 具体用于根据第一公式 =
An 调节所 述第二载波的周期, 其中 7 ^为所述第二基带信号的周期, 2为所述 第二载波的周期, 《为所述正交滤波器的阶数, 为 0或大于 0的整
9、 根据权利要求 7或 8所述的装置, 其特征在于,
所述同相滤波器, 还具体用于将所述第一传输信号的相位移动
7^11 ·,
或者, 所述正交滤波器, 还具体用于将所述第二传输信号的相位 移动 7V2 ,其中,: ^为所述第一基带信号及所述第二基带信号的周期。
10、 根据权利要求 7-9任一项所述的装置, 其特征在于, 所述脉冲幅度调制编码器,具体用于将第一数字信号及第二数字 信号合并为所述第一基带信号, 将第三数字信号及第四数字信号合并 为所述第二基带信号, 其中, 所述第一基带信号及所述第二基带信号 包含四个电平, 所述第一数字信号、 所述第二数字信号、 所述第三数 字信号及所述第四数字信号包含两个电平。
1 1、 一种接收装置, 其特征在于, 包括:
接收器, 用于接收混合信号;
解调滤波器,用于在所述接收器接收的混合信号的第一预设相位 采样, 分离出第一传输信号, 在所述混合信号的第二预设相位采样, 分离出第二传输信号, 从所述第一传输信号中解调出第一基带信号, 从所述第二传输信号中解调出第二基带信号, 其中, 所述第一预设相 位为 iTi+T^ , 所述第二预设相位为 iT^ T^ , 7^为所述第一基带信 号及所述第二基带信号的周期, 为 0或大于 0的整数, 所述第一基 带信号的周期与所述第二基带信号的周期相同。
12、 根据权利要求 1 1所述的装置, 其特征在于, 所述接收装置 还包括脉冲幅度调制解码器;
所述脉冲幅度调制解码器,用于从所述第一基带信号中分离出第 一数字信号及第二数字信号, 从所述第二基带信号中分离出第三数字 信号及第四数字信号, 其中, 所述第一基带信号及所述第二基带信号 包含四个电平, 所述第一数字信号、 所述第二数字信号、 所述第三数 字信号及所述第四数字信号包含两个电平。
1 3、 一种信号发送方法、 其特征在于, 包括:
获取第一基带信号及第二基带信号,所述第一基带信号的周期与 所述第二基带信号的周期相同;
调节第一载波的周期及第二载波的周期,使所述第一载波的周期 为所述第一基带信号的周期的非整数倍, 并且使所述第二载波的周期 为所述第二基带信号的周期的非整数倍, 其中, 所述第一载波的周期 与所述第二载波的周期相同, 所述第一载波的相位与所述第二载波的 相位不同;
将所述第一基带信号加载到所述第一载波上生成第一传输信号, 将所述第二基带信号加载到所述第二载波上生成第二传输信号; 调节所述第一传输信号的相位, 或者, 调节所述第二传输信号的 相位, 使得所述第一传输信号的相位与所述第二传输信号的相位不 同;
将所述第一传输信号与所述第二传输信号合并为混合信号,并发 送所述混合信号。
14、 根据权利要求 13所述的方法, 其特征在于, 所述调节第一 载波的周期及第二载波的周期, 包括:
根据第一公式 7 χ Γ2调节所述第一载波的周期及所述
\ )
第二载波的周期, 其中 7^为所述第一基带信号及所述第二基带信号 的周期, 2为所述第一载波及所述第二载波的周期,《为滤波器阶数, 为 0或大于 0的整数。
15、 根据权利要求 13或 14所述的方法, 其特征在于, 所述调节 所述第一传输信号的相位, 或者, 调节所述第二传输信号的相位使得 所述第一传输信号的相位与所述第二传输信号的相位不同, 包括: 将所述第一传输信号的相位移动 7V2 ,或者将所述第二传输信号 的相位移动 7V2 , 其中, 7^为所述第一基带信号及所述第二基带信号 的周期。
16、 根据权利要求 13- 15任一项所述的方法, 其特征在于, 所述 获取第一基带信号及第二基带信号, 包括:
获取第一数字信号、 第二数字信号、 第三数字信号及第四数字信 号, 其中, 所述第一数字信号、 所述第二数字信号、 所述第三数字信 号及所述第四数字信号包含两个电平;
将所述第一数字信号及所述第二数字信号合并为所述第一基带 信号, 将所述第三数字信号级所述第四数字信号合并为所述第二基带 信号, 其中, 所述第一基带信号及所述第二基带信号包含四个电平。
17、 一种信号接收方法, 其特征在于, 包括:
接收混合信号;
在所述混合信号的第一预设相位采样, 分离出第一传输信号, 在 所述混合信号的第二预设相位采样, 分离出第二传输信号, 其中, 所 述第一预设相位为 所述第二预设相位为 : 为第 一基带信号及第二基带信号的周期, 为 0或大于 0的整数, 所述第 一基带信号的周期与所述第二基带信号的周期相同;
从所述第一传输信号中解调出所述第一基带信号,从所述第二传 输信号中解调出所述第二基带信号。
18、 根据权利要求 17所述的方法, 其特征在于, 所述从所述第 一传输信号中解调出第一基带信号, 从所述第二传输信号中解调出第 二基带信号之后, 还包括:
从所述第一基带信号中分离出第一数字信号及第二数字信号,从 所述第二基带信号中分离出第三数字信号及第四数字信号, 其中, 所 述第一基带信号及所述第二基带信号包含四个电平, 所述第一数字信 号、 所述第二数字信号、 所述第三数字信号及所述第四数字信号包含 两个电平。
19、 一种通信系统, 其特征在于, 包括发送装置及接收装置; 其中, 所述发送装置为权利要求 1 -4任一项所述的发送装置, 所 述接收装置为权利要求 5或权利要求 6所述的接收装置;
或者, 所述发送装置为权利要求 7- 10任一项所述的发送装置, 所述接收装置为权利要求 1 1或权利要求 12所述的接收装置。
PCT/CN2014/079862 2014-06-13 2014-06-13 一种信号传输方法、装置及系统 WO2016000103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480079385.3A CN106416161B (zh) 2014-06-13 2014-06-13 一种信号传输方法、装置及系统
PCT/CN2014/079862 WO2016000103A1 (zh) 2014-06-13 2014-06-13 一种信号传输方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079862 WO2016000103A1 (zh) 2014-06-13 2014-06-13 一种信号传输方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016000103A1 true WO2016000103A1 (zh) 2016-01-07

Family

ID=55018205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079862 WO2016000103A1 (zh) 2014-06-13 2014-06-13 一种信号传输方法、装置及系统

Country Status (2)

Country Link
CN (1) CN106416161B (zh)
WO (1) WO2016000103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169242B2 (en) * 2018-10-02 2021-11-09 GM Global Technology Operations LLC Method and system for locating mobile device relative to vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936811B2 (en) * 2004-05-25 2011-05-03 Panasonic Corporation Modulation apparatus, modulation method, and demodulation apparatus
CN102893568A (zh) * 2012-07-06 2013-01-23 华为技术有限公司 信号调制的方法及设备
CN102971975A (zh) * 2010-07-09 2013-03-13 华为技术有限公司 用于估计和校正相干光学系统中载波相位的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333582B2 (en) * 2004-03-02 2008-02-19 Matsushita Electric Industrial Co., Ltd. Two-point frequency modulation apparatus, wireless transmitting apparatus, and wireless receiving apparatus
JP2007104007A (ja) * 2005-09-30 2007-04-19 Toshiba Corp 直交変調器及び直交変調器におけるベクトル補正方法
CN101595703A (zh) * 2007-01-30 2009-12-02 松下电器产业株式会社 调制装置和解调装置
JP5845974B2 (ja) * 2011-03-31 2016-01-20 ソニー株式会社 受信装置および受信方法
CN103364765B (zh) * 2013-07-24 2015-07-08 中国人民解放军空军预警学院 基于模拟解调/调制的数字射频存储器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936811B2 (en) * 2004-05-25 2011-05-03 Panasonic Corporation Modulation apparatus, modulation method, and demodulation apparatus
CN102971975A (zh) * 2010-07-09 2013-03-13 华为技术有限公司 用于估计和校正相干光学系统中载波相位的方法和设备
CN102893568A (zh) * 2012-07-06 2013-01-23 华为技术有限公司 信号调制的方法及设备

Also Published As

Publication number Publication date
CN106416161A (zh) 2017-02-15
CN106416161B (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
EP2941850B1 (en) Distance-dependent or user-dependent data exchange between wireless communication devices
CN102055713A (zh) 接收数据帧的数据接收设备和发送数据帧的数据发送设备
CN105141567A (zh) 终端应用和服务端的交互数据处理方法及系统、交互方法
WO2019061306A1 (zh) 信号传输方法及装置
WO2022022521A1 (zh) 相位噪声估计方法和装置
WO2016021466A1 (ja) 無線通信装置および集積回路
CN108141420A (zh) 用于gfsk中的联合解调和解映射的系统和方法
CN112954796A (zh) 一种发送方法、接收方法、网络设备及终端
WO2016000103A1 (zh) 一种信号传输方法、装置及系统
CN110808823B (zh) 公共参考信号的序列映射方法及装置、存储介质、终端
US10827418B2 (en) Apparatus and method for transmitting device to device discovery message in communication system supporting device to device scheme
WO2016004589A1 (zh) 一种信号传输方法及设备
CN108809562A (zh) 一种dmrs序列确定方法、终端和网络侧设备
JP6174812B2 (ja) 仮想環境においてペリフェラルコンポーネントインターコネクトエクスプレス(PCIe)デバイスを使用する方法
CN114465864B (zh) 相位噪声补偿方法、装置、终端、存储介质及程序产品
CN103686295A (zh) 一种机顶盒与移动终端共享蓝牙功能的方法及系统
JP6173598B2 (ja) データ送信方法、受信方法、システム及び機器
WO2016115683A1 (zh) 一种信息传输方法、设备及系统
WO2019029790A1 (en) METHOD AND APPARATUS FOR SPECTRUM SHAPING
WO2023066112A1 (zh) 信息比特调制方法、解调制方法、设备和存储介质
US11303497B2 (en) Method and apparatus for generating a quadrature modulated signal near zero frequency for transmission
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置
CN106797665B (zh) 一种信息传输方法、设备及系统
TW201707424A (zh) 資料分配方法、訊號接收方法、無線傳送及接收裝置
WO2023072391A1 (en) System frame number detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896642

Country of ref document: EP

Kind code of ref document: A1