WO2015198944A1 - Liquid-discharging head and recording apparatus using same - Google Patents

Liquid-discharging head and recording apparatus using same Download PDF

Info

Publication number
WO2015198944A1
WO2015198944A1 PCT/JP2015/067480 JP2015067480W WO2015198944A1 WO 2015198944 A1 WO2015198944 A1 WO 2015198944A1 JP 2015067480 W JP2015067480 W JP 2015067480W WO 2015198944 A1 WO2015198944 A1 WO 2015198944A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
discharge hole
flow path
holes
liquid
Prior art date
Application number
PCT/JP2015/067480
Other languages
French (fr)
Japanese (ja)
Inventor
小林 直樹
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2016529407A priority Critical patent/JP6272480B2/en
Publication of WO2015198944A1 publication Critical patent/WO2015198944A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing

Definitions

  • the present invention relates to a liquid discharge head and a recording apparatus using the same.
  • a liquid discharge head that performs various types of printing by discharging a liquid onto a recording medium.
  • the liquid discharge head includes, for example, a discharge hole for discharging a liquid, a pressurization chamber in which the liquid is pressurized so that the liquid is discharged from the discharge hole, and a common flow path for supplying the liquid to the pressurization chamber.
  • the liquid in the common flow path and the pressurizing chamber is less likely to be clogged due to the liquid remaining in the common flow path and the pressurizing chamber.
  • a liquid discharge head that circulates the liquid is also known (see, for example, Patent Document 1).
  • the liquid discharge head of Patent Document 1 is long in one direction, the common flow path extends along the short direction of the liquid discharge head, and the discharge holes are arranged along the common flow path.
  • an object of the present invention is to provide a liquid discharge head capable of increasing the recording accuracy and a recording apparatus using the same.
  • the liquid ejection head of the present invention is a liquid ejection head having a plurality of ejection holes for ejecting liquid.
  • the plurality of ejection holes are substantially parallel to each other, n (n is An integer of 5 or more), and the n rows are arranged in a first direction, which is a direction intersecting the n rows, the first row, the second row, ...
  • one discharge hole belonging to the first row is defined as the first discharge hole, and among the discharge holes belonging to the n-th row,
  • the discharge hole having the second shortest distance from the first discharge hole is the second discharge hole
  • the fourth discharge hole is the fourth discharge hole
  • the direction from the second discharge hole toward the fourth discharge hole is The discharge that is in the second direction and belongs to the first row and is located in the second direction with respect to the first discharge hole Among these, when the discharge hole having the shortest distance from the first discharge hole is the third discharge hole, the first to fourth discharge holes are the first discharge hole and the first discharge hole in the second direction.
  • the two discharge holes, the third discharge hole, and the fourth discharge hole are arranged in this order, and the discharge holes belonging to the 2nd to (n-1) th rows are from the first discharge hole to the fourth discharge hole.
  • the discharge hole array includes one discharge hole belonging to each of the 2 to n-1 lines, and the discharge hole array includes: With respect to the second direction, a first arrangement of the discharge holes arranged between the first discharge holes and the second discharge holes, and a arrangement between the second discharge holes and the third discharge holes.
  • the second arrangement of the discharge holes, and the third arrangement from the third discharge hole to the fourth discharge hole Characterized in that it consists of a third array of said discharge hole being.
  • the liquid discharge head of the present invention is a liquid discharge head having a plurality of discharge holes for discharging a liquid.
  • the plurality of discharge holes are substantially parallel to each other n ( n is an integer greater than or equal to 5).
  • the n rows are arranged in a first direction, which is a direction intersecting the n rows. Are arranged in the order of the rows,..., The n-th row, and one of the discharge holes belonging to the first row is defined as a first discharge hole, and among the discharge holes belonging to the n-th row
  • the third shortest discharge hole from the first discharge hole is the second discharge hole
  • the fifth shortest discharge hole is the fourth discharge hole
  • the second discharge hole is directed to the fourth discharge hole.
  • the direction is the second direction, belongs to the first row, and is located in the second direction with respect to the first discharge hole Among the outlet holes, when the discharge hole having the shortest distance from the first discharge hole is the third discharge hole, the first to fourth discharge holes are the first discharge hole, The third discharge holes, the second discharge holes, and the fourth discharge holes are arranged in this order, and the discharge holes belonging to the 2nd to (n-1) th rows are arranged from the first discharge holes to the fourth discharge holes.
  • the discharge hole array is arranged in a straight line toward the discharge holes, and the discharge hole array includes one discharge hole belonging to each of the 2nd to (n-1) th lines, and the discharge hole array Is a first array of the ejection holes arranged between the first ejection holes and the third ejection holes in the second direction, and between the third ejection holes and the second ejection holes.
  • the recording apparatus of the present invention includes the liquid discharge head, a transport unit that transports a recording medium to the liquid discharge head, and a control unit that controls the liquid discharge head.
  • the nozzle plate, the liquid discharge head, and the recording apparatus using the same according to the present invention can increase the recording accuracy.
  • FIG. 3 is an enlarged plan view of a part of FIG.
  • FIG. 3 is an enlarged plan view of a part of FIG.
  • A) is a partial longitudinal cross-sectional view along the line VV in FIG. 4, and
  • (b) is a partial vertical cross-sectional view of the head main body in FIG. 2 (a).
  • It is discharge hole arrangement
  • (A), (b) is discharge hole arrangement
  • A), (b) is discharge hole arrangement
  • FIG. 1A is a schematic side view of a color inkjet printer 1 (hereinafter sometimes simply referred to as a printer) which is a recording apparatus including a liquid discharge head 2 according to an embodiment of the present invention.
  • (B) is a schematic plan view.
  • the printer 1 moves the print paper P relative to the liquid ejection head 2 by transporting the print paper P as a recording medium from the guide roller 82 ⁇ / b> A to the transport roller 82 ⁇ / b> B.
  • the control unit 88 controls the liquid ejection head 2 based on image and character data, ejects liquid toward the recording medium P, causes droplets to land on the printing paper P, and prints on the printing paper P. Record such as.
  • the liquid discharge head 2 is fixed to the printer 1, and the printer 1 is a so-called line printer.
  • the operation of moving the liquid ejection head 2 by reciprocating in the direction intersecting the transport direction of the printing paper P, for example, the direction substantially orthogonal, and the printing paper P There is a so-called serial printer that alternately conveys.
  • the printer 1 has a flat head mounting frame 70 (hereinafter sometimes simply referred to as a frame) fixed so as to be substantially parallel to the printing paper P.
  • the frame 70 is provided with 20 holes (not shown), and the 20 liquid discharge heads 2 are mounted in the respective hole portions, and the portion of the liquid discharge head 2 that discharges the liquid is the printing paper P. It has come to face.
  • the distance between the liquid ejection head 2 and the printing paper P is, for example, about 0.5 to 20 mm.
  • the five liquid ejection heads 2 constitute one head group 72, and the printer 1 has four head groups 72.
  • the liquid discharge head 2 has a long and narrow shape in the direction from the front to the back in FIG. 1A and in the vertical direction in FIG. This long direction is sometimes called the longitudinal direction.
  • the three liquid ejection heads 2 are arranged along a direction that intersects the conveyance direction of the printing paper P, for example, a substantially orthogonal direction, and the other two liquid ejection heads 2 are conveyed.
  • One of the three liquid ejection heads 2 is arranged at a position shifted along the direction.
  • the liquid discharge heads 2 are arranged so that the printable range of each liquid discharge head 2 is connected in the width direction of the print paper P (in the direction intersecting the conveyance direction of the print paper P) or the ends overlap. Thus, printing without gaps in the width direction of the printing paper P is possible.
  • the four head groups 72 are arranged along the conveyance direction of the recording paper P.
  • a liquid, for example, ink is supplied to each liquid ejection head 2 from a liquid tank (not shown).
  • the liquid discharge heads 2 belonging to one head group 72 are supplied with the same color ink, and the four head groups 72 can print four color inks.
  • the colors of ink ejected from each head group 72 are, for example, magenta (M), yellow (Y), cyan (C), and black (K).
  • a color image can be printed by printing such ink under the control of the control unit 88.
  • the number of liquid discharge heads 2 mounted on the printer 1 may be one if it is a single color and the range that can be printed by one liquid discharge head 2 is printed.
  • the number of liquid ejection heads 2 included in the head group 72 and the number of head groups 72 can be changed as appropriate according to the printing target and printing conditions. For example, the number of head groups 72 may be increased in order to perform multicolor printing. Also, if a plurality of head groups 72 that print in the same color are arranged and printed alternately in the transport direction, the transport speed can be increased even if the liquid ejection heads 2 having the same performance are used. Thereby, the printing area per time can be increased. Alternatively, a plurality of head groups 72 for printing in the same color may be prepared and arranged so as to be shifted in a direction crossing the transport direction, so that the resolution in the width direction of the print paper P may be increased.
  • a liquid such as a coating agent may be printed for surface treatment of the printing paper P.
  • the printer 1 performs printing on the printing paper P that is a recording medium.
  • the printing paper P is wound around the paper feed roller 80A, passes between the two guide rollers 82A, passes through the lower side of the liquid ejection head 2 mounted on the frame 70, and thereafter It passes between the two conveying rollers 82B and is finally collected by the collecting roller 80B.
  • the printing paper P is transported at a constant speed by rotating the transport roller 82 ⁇ / b> B and printed by the liquid ejection head 2.
  • the collection roller 80B winds up the printing paper P sent out from the conveyance roller 82B.
  • the conveyance speed is, for example, 50 m / min.
  • Each roller may be controlled by the controller 88 or may be manually operated by a person.
  • the recording medium may be a roll-like cloth other than the printing paper P. Further, instead of directly transporting the printing paper P, the printer 1 may transport the transport belt directly and transport the recording medium placed on the transport belt. By doing so, sheets, cut cloth, wood, tiles and the like can be used as the recording medium. Furthermore, a wiring pattern of an electronic device may be printed by discharging a liquid containing conductive particles from the liquid discharge head 2. Still further, the chemical may be produced by discharging a predetermined amount of liquid chemical agent or liquid containing the chemical agent from the liquid discharge head 2 toward the reaction container or the like and reacting.
  • a position sensor, a speed sensor, a temperature sensor, and the like may be attached to the printer 1, and the control unit 88 may control each part of the printer 1 according to the state of each part of the printer 1 that can be understood from information from each sensor.
  • the temperature of the liquid discharge head 2, the temperature of the liquid in the liquid tank, the pressure applied by the liquid in the liquid tank to the liquid discharge head 2, etc. affect the discharge characteristics such as the discharge amount and discharge speed of the discharged liquid.
  • the drive signal for ejecting the liquid may be changed according to the information.
  • FIG. 2A is a plan view showing a head main body 2a which is a main part of the liquid ejection head 2 shown in FIG.
  • FIG. 2B is a plan view showing a state in which the second flow path member 6 is removed from the head main body 2a.
  • 3 and 4 are enlarged plan views of FIG. 2 (b).
  • FIG. 5A is a longitudinal sectional view taken along the line VV in FIG.
  • FIG. 5B is a partial longitudinal sectional view along the first common flow path 20 in the vicinity of the opening 20 a of the first common flow path 20 of the head main body 2 a.
  • FIGS. 2 to 4 the flow path and the like that should be drawn with a broken line below other objects are drawn with a solid line.
  • FIG. 2A the flow path in the first flow path member 4 is omitted, and only the arrangement of the individual electrode main body 44a is shown.
  • the liquid discharge head 2 may include a metal casing, a driver IC, a wiring board and the like in addition to the head main body 2a.
  • the head body 2a includes a first flow path member 4, a second flow path member 6 that supplies liquid to the first flow path member 4, and a piezoelectric actuator in which a displacement element 50 that is a pressurizing unit is built. And a substrate 40.
  • the head body 2a has a flat plate shape that is long in one direction, and this direction is sometimes referred to as a longitudinal direction.
  • the second flow path member 6 serves as a support member, and the head body 2 a is fixed to the frame 70 at both ends in the longitudinal direction of the second flow path member 6.
  • the first flow path member 4 constituting the head body 2a has a flat plate shape and a thickness of about 0.5 to 2 mm.
  • a number of pressurizing chambers 10 are arranged side by side in the plane direction.
  • the discharge hole surface 4-2 which is the second main surface of the first flow path member 4 and on the opposite side of the pressurizing chamber surface 4-1, the discharge holes 8 for discharging the liquid are arranged in the plane direction. Many are arranged side by side. Each discharge hole 8 is connected to the pressurizing chamber 10. In the following description, it is assumed that the pressurizing chamber surface 4-1 is located above the discharge hole surface 4-2.
  • first common flow paths 20 and a plurality of second common flow paths 24 are arranged so as to extend along the first direction. Moreover, the 1st common flow path 20 and the 2nd common flow path 24 are located in a line in the 2nd direction which is a direction which cross
  • the second direction is the same direction as the longitudinal direction of the head body 2a.
  • the pressurizing chambers 10 are arranged along both sides of the first common flow path 20 and constitute one pressurization chamber row 11A, one row on each side.
  • the first common flow path 20 and the pressurizing chambers 10 arranged on both sides of the first common flow path 20 are connected via a first individual flow path 12.
  • the pressurizing chambers 10 are arranged along both sides of the second common flow path 24, and the pressurizing chamber row 11A is constituted by one row on each side for a total of two rows.
  • the second common flow path 24 and the pressurizing chambers 10 arranged on both sides thereof are connected via the second individual flow path 14.
  • the first common channel 20 and the second common channel 24 may be collectively referred to as a common channel.
  • the liquid supplied to the first common flow path 20 flows into the pressurizing chambers 10 arranged along the first common flow path 20, and partly The other liquid is discharged from the discharge hole 8, and the other part of the liquid flows into the second common flow path 24 located on the opposite side of the first common flow path 20 with respect to the pressurizing chamber 10. It is discharged from the one flow path member 4 to the outside.
  • one pressurizing chamber row 11A is provided.
  • One first common flow path 20 and one second common flow path 24 are connected, and another first common flow path 20 and another second common flow path with respect to another pressurization chamber row 11A.
  • the number of the 1st common flow path 20 and the 2nd common flow path 24 can be made into about half, and it is preferable. Since the number of first common channels 20 and second common channels 24 is small, the number of pressurizing chambers 10 is increased to increase the resolution, or the first common channel 20 and the second common channel 24 are thickened. Thus, the difference in ejection characteristics from the ejection holes 8 can be reduced, and the size of the head body 2a in the planar direction can be reduced.
  • the pressure applied to the portion of the first individual flow path 12 on the first common flow path 20 side connected to the first common flow path 20 is affected by the pressure loss, so that the first individual flow path 12 is added to the first common flow path 20. Varies depending on the position where the two are connected (mainly the position in the first direction).
  • the pressure applied to the portion on the second individual flow path 14 side connected to the second common flow path 24 is the position where the second individual flow path 14 is connected to the second common flow path 24 due to the effect of pressure loss (main Depending on the position in the first direction. If the opening 20a to the outside of the first common channel 20 is arranged at one end in the first direction, and the opening 24a to the outside of the second common channel 24 is arranged at the other end in the first direction.
  • the liquid meniscus is held in the discharge hole 8 in a state where the liquid is not discharged. Since the surface tension of the liquid tries to reduce the surface area of the liquid, the meniscus can be held if the pressure is small even if it is a positive pressure. If the positive pressure increases, the liquid overflows, and if the negative pressure increases, the liquid is drawn into the first flow path member 4, and the liquid cannot be discharged. For this reason, it is necessary to prevent the difference in the pressure of the liquid in the discharge hole 8 from becoming too large when the liquid flows from the first common flow path 20 to the second common flow path 24.
  • the pressurizing chamber 10 is disposed facing the pressurizing chamber surface 4-1, and includes a pressurizing chamber main body 10a that receives pressure from the displacement element 50, and a discharge hole surface 4- from below the pressurizing chamber main body 10a.
  • 2 is a hollow region including a descender 10b, which is a partial flow path connected to the discharge hole 8 opened in FIG.
  • the pressurizing chamber body 10a has a right circular cylinder shape, and the planar shape is a circular shape. Since the planar shape is circular, the displacement amount when the displacement element 50 is deformed with the same force and the volume change of the pressurizing chamber 10 caused by the displacement can be increased.
  • the descender 10b has a right circular cylinder shape whose diameter is smaller than that of the pressurizing chamber body 10a, and has a circular cross-sectional shape.
  • the descender 10b is housed in the pressurizing chamber body 10a when viewed from the pressurizing chamber surface 4-1.
  • the descender 10b may have a conical shape or a trapezoidal conical shape whose sectional area decreases toward the discharge hole 8 side. Since the cross-sectional shape of the descender 10b is smaller than that of the pressurizing chamber main body 10a, the widths of the first common channel 20 and the second common channel 24 can be increased correspondingly, and the above-described pressure loss difference can be decreased.
  • the plurality of pressurizing chambers 10 constitute a plurality of pressurizing chamber rows 11A along the first direction, and a plurality of pressurizing chamber rows 11B along the second direction that intersects the first direction. Is configured.
  • Each discharge hole 8 is located at the center of the corresponding pressurizing chamber 10.
  • the plurality of discharge holes 8 constitute a plurality of discharge hole rows 9A along the first direction and a plurality of discharge hole rows 9B along the second direction. Yes.
  • the first common flow path 20 has 50 lines
  • the second common flow path 24 has 51 lines
  • the pressurizing chamber line 11A and the discharge hole line 9A have 100 lines.
  • One pressurization chamber row 11A includes 16 pressurization chambers 10
  • one discharge hole row 9A includes 16 discharge holes 8. That is, the pressurizing chamber row 11B has 16 rows, and the discharge hole row 9B has 16 rows.
  • the pressurizing chamber row 11A it is preferable to displace the pressurizing chambers 10 in the first direction in a zigzag manner because the distance between the pressurizing chambers 10 belonging to the adjacent pressurizing chamber row 11A can be increased.
  • the pressurizing chamber row 11B has 32 rows, and the discharge hole row 9B has 32 rows.
  • the angle formed by the first direction and the second direction is deviated from a right angle. For this reason, the ejection holes 8 belonging to the ejection hole array 9A arranged along the first direction are displaced in the second direction by an angle shifted from the right angle. And since the discharge hole row
  • the first common flow path 20 and the second common flow path 24 are straight in the range where the discharge holes 8 are arranged on a straight line, and are shifted in parallel between the discharge holes 8 where the straight lines are shifted.
  • flow resistance is small.
  • the portion that is shifted in parallel is arranged at a position that does not overlap with the pressurizing chamber 10, it is possible to reduce the variation in discharge characteristics for each pressurizing chamber 10.
  • the pressurizing chambers 10 belonging to the pressurizing chamber row 11B located at both ends in the second direction are dummy pressurizing chambers.
  • the first common channel 20 or the second common channel 24 is provided on the end side in the second direction with respect to the dummy pressurizing chamber. If the second common channel 24 is disposed on the center side in the second direction with respect to the dummy pressurizing chamber, the disposed channel becomes the first common channel 20 and is disposed in the dummy pressurizing chamber. On the other hand, if the first common flow path 20 is disposed on the center side in the second direction, the second common flow path 24 is obtained.
  • the dummy pressurizing chamber is also connected to the first common channel 20 via the first individual channel 12, and the second common channel via the second individual channel 14. 24 is connected.
  • the common flow channel located at the end in the second direction is either the first common flow channel 20 or the second common flow channel 24, and the pressurized chamber row 11A to be supplied or recovered becomes one row, and therefore There is a possibility that the discharge characteristics of the discharge from the pressurization chambers 10 belonging to the one pressurization chamber row 11 ⁇ / b> A vary with respect to the discharge characteristics from the other pressurization chambers 10. Therefore, the pressurizing chambers 10 belonging to the pressurizing chamber row 11A are dummy pressurizing chambers that are not used for printing.
  • the dummy pressurizing chamber has the same basic shape as the normal pressurizing chamber 10, and the discharge hole 8 may not be disposed on the discharge hole surface 4-2 side, or the discharge hole 8 may be disposed. Good.
  • the pressurizing chamber row 11A located second from both ends in the second direction is used.
  • the first common flow path 20 for supplying the liquid to the pressure chamber 10 to which it belongs supplies liquid to the two pressure chamber rows 11A in the same manner as other normal first common flow paths 20.
  • the second common flow path 24 for recovering the liquid in the pressurization chamber 10 belonging to the pressurization chamber row 11A located second from both ends in the second direction is the same as other normal second common flow paths 24.
  • the liquid in the two rows of pressurizing chambers 11A is collected. For this reason, a difference in ejection characteristics is less likely to occur.
  • the eight discharge holes 8 close to the end in the second direction are not 360 dpi apart.
  • the discharge hole 8 is not provided at that position, and the pressurizing chamber 10 at the corresponding position may be a dummy pressurizing chamber.
  • the second flow path member 6 is joined to the pressurizing chamber surface 4-1 of the first flow path member 4, and has a first common flow path 22 for supplying a liquid to the first common flow path 20 and a second common flow path. And a second integrated flow path 26 for recovering the liquid in the flow path 24.
  • the thickness of the second flow path member 6 is thicker than that of the first flow path member 4 and is about 5 to 30 mm.
  • the second flow path member 6 is joined in a region where the piezoelectric actuator substrate 40 of the pressure chamber surface 4-1 of the first flow path member 4 is not connected. More specifically, the piezoelectric actuator substrate 40 is joined so as to surround it. By doing in this way, it can suppress that a part of discharged liquid adheres to the piezoelectric actuator board
  • the first flow path member 4 is fixed on the outer periphery, it is possible to suppress the first flow path member 4 from vibrating due to the driving of the displacement element 50 and causing resonance or the like.
  • the second flow path member 6 has a through hole 6c extending vertically.
  • the through hole 6c is passed through a signal transmission unit such as FPC (Flexible Printed Circuit) that transmits a drive signal for driving the piezoelectric actuator substrate 40.
  • the first flow path member 4 side of the through hole 6c is a widened portion 6ca having a wide width in the short direction, and a signal transmission portion extending from the piezoelectric actuator substrate 40 to both sides in the short direction is It is bent by the widened portion 6 ca and goes upward, and passes through the through hole 6.
  • the convex part of the part which spreads in the wide part 6ca may damage a signal transmission part, it is preferable to make it R shape.
  • the cross-sectional area of the first integrated flow path 22 is increased. Accordingly, a difference in pressure loss due to a difference in position where the first integrated flow path 22 and the first common flow path 20 are connected can be reduced.
  • the channel resistance of the first integrated channel 22 is preferably 1/100 or less of the first common channel 20.
  • the channel resistance of the first integrated channel 22 is more precisely the channel resistance in the range connected to the first common channel 20 in the first integrated channel 22.
  • the cross-sectional area of the second integrated flow path 26 is increased. Accordingly, the difference in pressure loss due to the difference in the position where the second integrated channel 26 and the second common channel 24 are connected can be reduced.
  • the channel resistance of the second integrated channel 26 is preferably set to 1/100 or less of the second common channel 24.
  • the channel resistance of the second integrated channel 26 is more precisely the channel resistance in the range connected to the first integrated channel 22 in the second integrated channel 26.
  • the first integrated flow path 22 is disposed at one end of the second flow path member 6 in the short direction
  • the second integrated flow path 26 is disposed at the other end of the second flow path member 6 in the short direction
  • Each of the flow paths is directed to the first flow path member 4 side so as to be connected to the first common flow path 20 and the second common flow path 24, respectively.
  • the cross-sectional areas of the first integrated flow path 22 and the second integrated flow path 26 can be increased, and the flow path resistance can be decreased.
  • the 1st flow path member 4 can make rigidity high.
  • the through hole 6c through which the signal transmission unit passes can be provided.
  • the second flow path member 6 is configured by laminating plates 6a and 6b of the second flow path member.
  • a groove serving as a first integrated flow path body 22a which is a portion of the first integrated flow path 22 extending in the second direction and having a low flow resistance
  • a second integrated flow path 26 A groove serving as a second integrated flow path body 26a which is a portion having a low flow resistance extending in the second direction, is disposed.
  • a plurality of first connection flow paths 22b extend downward (in the direction of the first flow path member 4) from the groove serving as the first integrated flow path body 22a, and open on the pressurizing chamber surface 4-1. Connected to the opening 20a of the first common flow path.
  • the first connection flow paths 22b are separated by a partition 6ba (that is, the first common flow path 20 side of the first connection flow paths 22b is branched). Thereby, the rigidity of the connection between the second flow path member 6 and the first flow path member 4 can be increased.
  • the length of the partition 6ba is longer than the length of the first connection channel 22b, so that the rigidity of the connection between the second channel member 6 and the first channel member 4 is further increased. Can be high.
  • a plurality of second connection flow paths 26b extend downward (in the direction of the first flow path member 4) from the groove serving as the second integrated flow path body 26a, and open on the pressurizing chamber surface 4-1. Connected to the opening 24a of the second common flow path.
  • Each second connection flow path 26b is partitioned by a partition 6bb (that is, the second common flow path 24 side of the second connection flow path 26b is branched).
  • the rigidity of the connection between the second flow path member 6 and the first flow path member 4 can be increased.
  • the length of the partition 6bb is longer than the length of the second connecting flow path 26b, so that the rigidity of the connection between the second flow path member 6 and the first flow path member 4 is further increased. Can be high.
  • the plate 6a is provided with openings 22c and 22d at both ends in the second direction of the first integrated flow path 22, respectively.
  • the plate 6 a is provided with openings 26 c and 26 d at both ends in the second direction of the second integrated flow channel 26.
  • the liquid discharge head 2 When supplying a liquid to the liquid discharge head 2 that does not contain liquid, the liquid is supplied from one opening (for example, the opening 22c) so that the liquid in the first integrated flow path 22 is easily discharged to the outside.
  • the second integrated channel 26 may be configured such that liquid is supplied from one opening (for example, the opening 26c) and liquid is discharged from the other opening (for example, the opening 26d).
  • Another method of supplying and discharging is to supply the liquid from one opening (for example, 22c) of the first integrated flow path 22, collect the liquid from the other opening (for example, 22d), and to open one opening ( For example, liquid is supplied from 26d) and recovered from the other opening (for example, 26c). If the pressure of each supply / discharge is adjusted so that the pressure of the first integrated flow path 22 is higher than the pressure of the second integrated flow path 26, the liquid flows through the first flow path member 4. . In this way, the difference in pressure applied to the meniscus of each discharge hole 8 is the smallest.
  • the above-described two methods may be combined to supply / discharge the first integrated flow path 22 and only recover from the second integrated flow path 26. Conversely, only the first integrated flow path 22 may be supplied, and the second integrated flow path 26 may be supplied and discharged.
  • the liquid may be supplied from both of the two openings 26 c and 26 d of the second integrated flow path 26, and the liquid may be recovered from both of the two openings 22 c and 22 d of the second discharge flow path 22.
  • a damper may be provided in the first integrated flow path 22 and the second integrated flow path 26 so that the supply or discharge of the liquid is stabilized against fluctuations in the discharge amount of the liquid. Further, by providing a filter in the first integrated flow path 22 and the second integrated flow path 26, foreign substances and bubbles may be difficult to enter the first flow path member 4.
  • a piezoelectric actuator substrate 40 including a displacement element 50 is bonded to the pressurizing chamber surface 4-1, which is the upper surface of the first flow path member 4, so that each displacement element 50 is positioned on the pressurizing chamber 10.
  • the piezoelectric actuator substrate 40 occupies a region having substantially the same shape as the pressurizing chamber group formed by the pressurizing chamber 10. Further, the opening of each pressurizing chamber 10 is closed by bonding the piezoelectric actuator substrate 40 to the pressurizing chamber surface 4-1 of the flow path member 4.
  • the piezoelectric actuator substrate 40 has a rectangular shape that is long in the same direction as the head body 2a.
  • the piezoelectric actuator substrate 40 is connected to a signal transmission unit such as an FPC for supplying a signal to each displacement element 50.
  • the second flow path member 6 is provided with a through hole 6c penetrating vertically at the center, and the signal transmission unit is electrically connected to the control unit 88 through the through hole 6c.
  • the signal transmission unit has a shape extending in the short direction from one long side end of the piezoelectric actuator substrate 40 toward the other long side end, and the wiring disposed in the signal transmission unit extends along the short direction. Extending and arranging in the longitudinal direction is preferable because the distance between the wirings can be easily increased.
  • Individual electrodes 44 are respectively arranged at positions facing the pressurizing chambers 10 on the upper surface of the piezoelectric actuator substrate 40.
  • the flow path member 4 has a laminated structure in which a plurality of plates are laminated. These plates are a cavity plate 4a, a supply plate 4b, manifold plates 4c to e, a recovery plate 4f and a nozzle plate 4g in this order from the pressurizing chamber surface 4-1 side of the flow path member 4. Many holes and grooves are formed in these plates. For example, the holes and grooves can be formed by etching each plate made of metal. Since the thickness of each plate is about 10 to 300 ⁇ m, the formation accuracy of the holes to be formed can be increased.
  • the manifold plates 4c to 4e have the same shape and may be configured by one plate, but are configured by three plates in order to form the holes with high accuracy. Each plate is aligned and stacked such that these holes communicate with each other to form a flow path such as the first common flow path 20.
  • the pressurizing chamber main body 10a is opened on the pressurizing chamber surface 4-1 of the flat plate-like channel member 4, and the piezoelectric actuator substrate 40 is joined thereto.
  • the pressurizing chamber surface 4-1 has an opening 20 a for supplying a liquid to the first common flow path 20 and an opening 24 a for recovering the liquid from the second common flow path 24.
  • a discharge hole 8 is opened in a discharge hole surface 4-2 on the opposite side of the pressure chamber surface 4-1 of the flow path member 4.
  • the pressurizing chamber 10 includes a pressurizing chamber main body 10a facing the displacement element 50 and a descender 10b having a smaller sectional area than the pressurizing chamber main body 10a.
  • the pressurizing chamber main body 10a is formed in the cavity plate 4a, and the descender 10b is overlapped with holes formed in the plates 4b to 4f, and is further blocked by the nozzle plate 4g (parts other than the discharge holes 8). It is made up of.
  • the first individual channel 12 is connected to the pressurizing chamber body 10 a, and the first individual channel 12 is connected to the first common channel 20.
  • the first individual flow path 12 is a circular hole that penetrates the supply plate 4b, and the liquid flows in the vertical direction.
  • the first common flow path 20 is formed by overlapping holes formed in the plates 4c to 4e, and is further closed by the supply plate 4b on the upper side and the nozzle plate 4g on the lower side.
  • the descender 10 b is connected to the second individual flow path 14, and the second individual flow path 14 is connected to the second common flow path 24.
  • the second individual flow path 14 is a through groove penetrating the recovery plate 4f, and the liquid flows along the groove.
  • the second common flow path 24 is formed by overlapping holes formed in the plates 4c to 4h, and is further closed by the supply plate 4b on the upper side and the nozzle plate 4g on the lower side.
  • the liquid supplied to the first integrated flow path 22 enters the pressurizing chamber 10 through the first common flow path 20 and the first individual flow path 12 in order, and a part of the liquid flows. It is discharged from the discharge hole 8.
  • the liquid that has not been discharged passes through the second individual flow path 14, enters the second common flow path 24, enters the second integrated flow path 26, and is discharged outside the head body 2.
  • the piezoelectric actuator substrate 40 has a laminated structure composed of two piezoelectric ceramic layers 40a and 40b that are piezoelectric bodies. Each of these piezoelectric ceramic layers 40a and 40b has a thickness of about 20 ⁇ m. That is, the thickness from the upper surface of the piezoelectric ceramic layer 40a of the piezoelectric actuator substrate 40 to the lower surface of the piezoelectric ceramic layer 40b is about 40 ⁇ m.
  • the thickness ratio between the piezoelectric ceramic layer 40a and the piezoelectric ceramic layer 40b is set to 3: 7 to 7: 3, preferably 4: 6 to 6: 4. Both of the piezoelectric ceramic layers 40 a and 40 b extend so as to straddle the plurality of pressure chambers 10.
  • the piezoelectric ceramic layers 40a, 40b may, for example, strength with a dielectric, lead zirconate titanate (PZT), NaNbO 3 system, BaTiO 3 system, (BiNa) NbO 3 system, such as BiNaNb 5 O 15 system Made of ceramic material.
  • PZT lead zirconate titanate
  • NaNbO 3 system NaNbO 3 system
  • BaTiO 3 system BaTiO 3 system
  • BiNa NbO 3 system such as BiNaNb 5 O 15 system Made of ceramic material.
  • the piezoelectric actuator substrate 40 has a common electrode 42 made of a metal material such as Ag—Pd and an individual electrode 44 made of a metal material such as Au.
  • the common electrode 42 has a thickness of about 2 ⁇ m, and the individual electrode 44 has a thickness of about 1 ⁇ m.
  • the individual electrodes 44 are disposed at positions facing the pressurizing chambers 10 on the upper surface of the piezoelectric actuator substrate 40, respectively.
  • the individual electrode 44 has a planar shape slightly smaller than that of the pressurizing chamber main body 10a and has a shape substantially similar to the pressurizing chamber main body 10a, and an extraction electrode drawn from the individual electrode main body 44a. 44b.
  • a connection electrode 46 is formed at a portion of one end of the extraction electrode 44 b that is extracted outside the region facing the pressurizing chamber 10.
  • the connection electrode 46 is a conductive resin containing conductive particles such as silver particles, and is formed with a thickness of about 5 to 200 ⁇ m.
  • the connection electrode 46 is electrically joined to an electrode provided in the signal transmission unit.
  • a drive signal is supplied to the individual electrode 44 from the control unit 88 through the signal transmission unit.
  • the drive signal is supplied in a constant cycle in synchronization with the conveyance speed of the print medium P.
  • the common electrode 42 is formed over substantially the entire surface in the region between the piezoelectric ceramic layer 40a and the piezoelectric ceramic layer 40b. That is, the common electrode 42 extends so as to cover all the pressurizing chambers 10 in the region facing the piezoelectric actuator substrate 40.
  • the common electrode 42 is a through conductor formed by penetrating the piezoelectric ceramic layer 40a on a common electrode surface electrode (not shown) formed on the piezoelectric ceramic layer 40a so as to avoid the electrode group composed of the individual electrodes 44. Are connected through. Further, the common electrode 42 is grounded via the common electrode surface electricity and held at the ground potential. Similar to the individual electrode 44, the common electrode surface electrode is directly or indirectly connected to the controller 88.
  • a portion sandwiched between the individual electrode 44 and the common electrode 42 of the piezoelectric ceramic layer 40 a is polarized in the thickness direction, and becomes a unimorph-structured displacement element 50 that is displaced when a voltage is applied to the individual electrode 44.
  • a portion sandwiched between the individual electrode 44 and the common electrode 42 of the piezoelectric ceramic layer 40 a is polarized in the thickness direction, and becomes a unimorph-structured displacement element 50 that is displaced when a voltage is applied to the individual electrode 44.
  • the displacement element 50 is driven (displaced) by a drive signal supplied to the individual electrode 44 through a driver IC or the like under the control of the control unit 88.
  • liquid can be ejected by various driving signals.
  • strike driving method will be described.
  • the individual electrode 44 is set to a potential higher than the common electrode 42 (hereinafter referred to as a high potential) in advance, and the individual electrode 44 is once set to the same potential as the common electrode 42 (hereinafter referred to as a low potential) every time there is a discharge request. Thereafter, the potential is set again at a predetermined timing. Thereby, at the timing when the individual electrode 44 becomes low potential, the piezoelectric ceramic layers 40a and 40b return to the original (flat) shape (begin), and the volume of the pressurizing chamber 10 is in the initial state (the potentials of both electrodes are different) Increase compared to the state). As a result, a negative pressure is applied to the liquid in the pressurizing chamber 10.
  • the liquid in the pressurizing chamber 10 starts to vibrate with the natural vibration period. Specifically, first, the volume of the pressurizing chamber 10 begins to increase, and the negative pressure gradually decreases. Next, the volume of the pressurizing chamber 10 becomes maximum and the pressure becomes almost zero. Next, the volume of the pressurizing chamber 10 begins to decrease, and the pressure increases. Thereafter, the individual electrode 44 is set to a high potential at a timing at which the pressure becomes substantially maximum. Then, the first applied vibration overlaps with the next applied vibration, and a larger pressure is applied to the liquid. This pressure propagates through the descender and discharges the liquid from the discharge hole 8.
  • a droplet can be ejected by supplying to the individual electrode 44 a pulse driving signal that is set to a low potential for a certain period of time with reference to a high potential.
  • this pulse width is AL (Acoustic Length), which is half of the natural vibration period of the liquid in the pressurizing chamber 10, in principle, the liquid discharge speed and amount can be maximized.
  • AL Acoustic Length
  • the natural vibration period of the liquid in the pressurizing chamber 10 is greatly influenced by the physical properties of the liquid and the shape of the pressurizing chamber 10, but besides that, the physical properties of the piezoelectric actuator substrate 40 and the flow path connected to the pressurizing chamber 10 Also affected by the characteristics of.
  • the pulse width is actually set to a value of about 0.5 AL to 1.5 AL because there are other factors to consider, such as combining the ejected droplets into one. Further, since the discharge amount can be reduced by setting the pulse width to a value outside of AL, the pulse width is set to a value outside of AL in order to reduce the discharge amount.
  • FIG. 6 shows the arrangement of the discharge holes 8 according to an embodiment of the present invention.
  • the positions where the discharge holes 8 exist are filled in the squares divided into rows and columns so that the positions of the discharge holes 8 on the rows and columns can be easily understood.
  • the position of the xth column and the yth row may be represented as (x, y).
  • the first direction and the second direction shown in FIG. 6 are the same as the first direction and the second direction shown in FIG.
  • the angle formed by the first direction and the second direction is different from FIG. Looks like.
  • the discharge holes 8 are arranged on 16 rows along the second direction. That is, the discharge holes 8 constitute 16 discharge hole rows 9B. In each discharge hole row 9B, the discharge holes 8 are arranged at the same interval in the second direction. Furthermore, the discharge holes 8 are also arranged at the same interval in the second direction in the entire discharge hole 8, and the interval is 1/16 of the interval in each discharge hole row 9B.
  • the discharge hole row 9B is a row in which the discharge holes 8 are arranged at equal intervals in the second direction. Actually, the discharge hole row 9B is further connected with discharge holes 8 on the left and right in FIG. There are 16 discharge hole rows 9B, which are arranged in the first direction. Called the first row, the second row,..., The 16th row in the order arranged in the first direction. In the above-described embodiment, the distance between the discharge hole rows 9B is the same, but this is not necessarily required. When the distances between the respective discharge hole rows 9B are different, it is necessary to understand in the following description using a figure reduced in a state where the ratio is maintained.
  • Recording is performed while moving the recording medium in the short direction of the head body 2a.
  • the liquid that lands on the recording medium adjacent to the second direction is discharged from the discharge holes 8 adjacent to each other in the second direction. That is, the liquid ejected from the ejection holes 8 in the adjacent rows becomes the adjacent pixels on the recording medium.
  • the liquid ejection head 2 is installed so that the conveyance direction of the recording medium and the second direction are orthogonal to each other, but in reality, a certain degree of angular deviation occurs.
  • the distance shift between adjacent pixels is proportional to the angle of the shift and the distance in the short direction of the head body 2a of the ejection hole 8 that ejected those pixels. For this reason, when the discharge holes 8 adjacent to each other in the row direction are arranged away from each other in the short side direction, the shift in the distance between the pixels becomes large.
  • the discharge holes 8 are arranged side by side in the first direction and constitute a discharge hole row 9A.
  • a pressurizing chamber row 11A in which the pressurizing chambers 10 are arranged along the discharge hole row 9A is configured.
  • the first common flow path 20 and the second common flow path 24 are disposed between the pressurizing chamber rows 11A along the pressurizing chamber row 11A. Since the first common flow path 20 and the second common flow path 24 supply the liquid required for ejection and it is necessary to allow the liquid to flow so that the solid content of the ink does not easily settle down.
  • the cross-sectional area is required. Even if the head body 2a does not circulate and does not have the second common flow path 24, it is necessary to supply the liquid to be discharged, and the cross-sectional area of the first common flow path 20 needs to be more than a certain level. is there.
  • the first common flow path 20 and the second common flow path 24 obliquely cross the head body 2a, and the cross-sectional area becomes small.
  • the discharge holes 8 In order to increase the cross-sectional area, for example, it is conceivable to arrange the discharge holes 8 at positions (1, 1), (2, 2),... (16, 16). However, in such an arrangement, (16, 16) in the row direction is next to (17, 1), and the arrangement is 15 units away in the short direction. Such an arrangement is the most distant arrangement in the 16-row ejection hole arrangement, and the influence of the installation angle deviation of the head body 2a becomes large.
  • the discharge holes 8 are arranged between them.
  • the discharge holes belonging to the second array 9A-2 are arranged between the second discharge holes 8-2 (46, 16) and the third discharge holes 8-3 (49, 1) in the second direction. 8 (47, 8) and discharge holes 8 (48, 9) are present. Accordingly, the distance in the short direction between the second discharge hole 8-2 (46, 16) and the discharge hole 8 (47, 8) is 8 units, and the discharge hole 8 (48, 9) and the third discharge hole 8-
  • the distance in the short direction from 3 (49, 1) is 8 units, which is about a half of the distance as compared with the arrangement described above.
  • the influence on the angle deviation is approximately halved.
  • the angle of the first direction with respect to the second direction is not so small, the cross-sectional areas of the first common channel 20 and the second common channel 24 can be increased.
  • the arrangement of the discharge holes 8 is as follows. Attention is paid to one discharge hole 8 belonging to the first row, which is defined as a first discharge hole 8-1 (33, 1).
  • the discharge hole 8-A (30, 16) has the shortest distance from the first discharge hole 8-1
  • the second is the second discharge hole 8-. 2 (46, 16)
  • the third is the discharge hole 8-B (14, 16)
  • the fourth is the fourth discharge hole 8-4 (62, 16).
  • the direction from the second discharge hole 8-2 toward the fourth discharge hole 8-4 coincides with the second direction.
  • the discharge having the shortest distance from the first discharge hole 8-1.
  • the hole 8 is referred to as a third discharge hole 8-3.
  • the first to fourth discharge holes 8-1 to 8-4 are the first discharge hole 8-1, the second discharge hole 8-2, the third discharge hole 8-3, and the fourth discharge hole in the second direction. They are arranged in the order of 8-4.
  • the discharge holes 8 belonging to the second to fifteenth rows are arranged in a linear discharge hole row 9A from the first discharge hole 8-1 to the fourth discharge hole 8-4.
  • the discharge hole column 9A includes the discharge holes 8 in the 2nd to 15th rows.
  • the discharge hole array 9A has a first array 9A-1, second discharge holes 8 that are located between the first discharge holes 8-1 and the second discharge holes 8-2 in the second direction.
  • a second array 9A-2 composed of the discharge holes 8 located between the discharge holes 8-2 and the third discharge holes 8-3, and from the third discharge holes 8-3 to the fourth discharge holes 8-4.
  • the third array 9A-3 is composed of the discharge holes 8 positioned between them.
  • the first array 9A-1 includes a first discharge hole 8-1
  • the third array 9A-3 includes a fourth discharge hole 8-4.
  • the second discharge hole 8-2 and the third discharge hole 8-3 are arranged in a linear discharge hole array 9A from the first discharge hole 8-1 to the fourth discharge hole 8-4, which is the object here. It is not included and is included in the other discharge hole array 9A. Further, the second array 9A-2 may have only one discharge hole 8 belonging to it.
  • the discharge hole rows 9A arranged as described above are arranged side by side in the second direction, so that the discharge holes can be arranged at equal intervals in the second direction.
  • the discharge hole array 9A at the end in the second direction and the end in the direction opposite to the second direction is not perfect, but has the same shape as a part of the other discharge hole array 9A.
  • the above relationship is generalized when the number of ejection hole rows 9B is n rows as follows.
  • the ejection holes 8 belonging to the 2nd to (n-1) th rows are arranged in a linear ejection hole array 9A from the first ejection holes 8-1 to the fourth ejection holes 8-4.
  • the discharge hole column 9A includes the discharge holes 8 in the 2nd to (n-1) th rows.
  • the discharge hole array 9A has a first array 9A-1, second discharge holes, which are formed of discharge holes 8 located between the first discharge holes 8-1 and the second discharge holes 8-2 in the second direction.
  • the second array 9A-2 including the discharge holes 8 positioned between 8-2 and the third discharge holes 8-3, and the space between the third discharge holes 8-3 and the fourth discharge holes 8-4.
  • the third array 9A-3 is composed of the discharge holes 8 located at the center.
  • the number of ejection holes 8 belonging to the 2nd to (n-1) th rows arranged in the first array 9A-1, the second array 9A-2, and the third array 9A-3 is at least one. is there. Therefore, n-1 is 4 at the minimum, and n is 5 or more.
  • the discharge hole column 9A connected to the first discharge hole 8-1 is the m-th column of the n-th row, that is, (m, n). Considering the appropriate range for the value of m in the case where
  • the discharge hole array 9A includes n discharge holes 8, m is n or more.
  • the arrangement of the ejection holes 8 is, for example, (1, 1), (2, 2),... (n, n). The influence of will become large.
  • the second array 9A-2 is arranged between the second discharge hole 8-2 and the third discharge hole 8-3 by setting the value of m to about 2 ⁇ n, the influence of the angular deviation is reduced and the second array 9A-2 is reduced.
  • the cross-sectional areas of the first common channel 20 and the second common channel 24 can be increased.
  • the cross-sectional areas of the first common channel 20 and the second common channel 24 are decreased.
  • an array such as the second array 9A-2 is arranged between the discharge holes 8 belonging to the nth discharge hole column and the discharge holes 8 belonging to the first discharge hole column in the second direction.
  • the position in the short method direction is not near the center in the first direction, but at a position close to the first row discharge hole row or a position near the nth discharge hole row. If such an arrangement is used, the distance from the n-th ejection hole array or the first ejection hole array is increased, and the influence on the angular deviation is increased.
  • n + 2 to 2 ⁇ n ⁇ 1 as the value of m (n + 1 and 2 ⁇ n ⁇ 1 are not included because these values are adjacent in the row direction to the discharge holes 8 belonging to the first row. Therefore, it is appropriate that it is larger than 1.5 ⁇ n and not larger than 2 ⁇ n ⁇ 1.
  • the second array 9A-2 becomes longer in the second direction.
  • the end of the second array 9A-2 on the second discharge hole 8-2 side has a greater distance in the short direction from the second discharge hole 8-2. Then, the influence on the angle deviation gradually increases.
  • the angle formed between the first array 9A-1 and the second direction is gradually decreased, the difference in angle with the second array 9A-2 is increased, and the first common flow path 20 and the second common flow are increased.
  • the cross-sectional area of the path 24 will not be constant. If the cross-sectional areas of the portions where the first individual flow path 12 and the second individual flow path 14 are connected are different, the discharge characteristics may vary. Further, if the cross-sectional areas of the first common flow path 20 and the second common flow path 24 are to be made substantially constant, the cross-sectional area must be reduced to the smallest cross section, resulting in a small cross-sectional area. In order to reduce such influence, the value of m is preferably in the range of more than 1.5 ⁇ n and 2 ⁇ n ⁇ 1 or less.
  • the discharge hole array 9A includes the first discharge holes 8-1 among the first discharge holes 8-1 and the discharge holes 8 belonging to the nth discharge hole array 9B.
  • the fourth discharge hole 8 may be arranged so as to be connected to the fourth to fourth, so that the discharge hole 8 is arranged as described above.
  • the entire third array 9A-3 is positioned in the first direction relative to the second array 9A-2, and the entire second array 9A-2 is positioned in the first direction relative to the first array 9A-1 It is preferable in the following points.
  • the distance in the short direction from the discharge holes 8 in the first array 9A-1 adjacent in the second direction of the second discharge holes 8-2 can be shortened.
  • the distance in the short direction between the third discharge holes 8-3 and the discharge holes 8 in the third array 9A-3 adjacent in the second direction of the third discharge holes 8-3 can be shortened.
  • the distance in the short direction between the third discharge holes 8-3 and the discharge holes 8 in the third array 9A-3 adjacent in the second direction of the third discharge holes 8-3 can be shortened.
  • n is an even number, it is preferable to set the number of ejection holes 8 belonging to the second array 9A-2 to 2. By doing so, the angle formed between the first array 9A-1 and the second direction can be increased. Furthermore, if the number of discharge holes 8 belonging to the first array 9A-1 and the number of discharge holes 8 belonging to the third array 9A-3 are made the same, the discharge hole array 9A can be arranged close to a straight line. The cross-sectional areas of the first common flow path 20 and the second common flow path 24 can be made large and close to a straight line.
  • n is an odd number
  • FIG. 7A shows an embodiment in which the number of discharge holes 8 belonging to the second array 9A-2 is one when there are 16 discharge hole rows 9B.
  • FIG. 7B shows an embodiment in which the number of discharge holes 8 belonging to the second array 9A-2 is four when there are 16 discharge hole rows 9B.
  • FIG. 8 (a) shows that when there are 16 discharge hole rows 9B, the discharge hole row 9A includes the first discharge holes 8-1 and the discharge holes 8 belonging to the 16th discharge hole row.
  • the first discharge hole 8-1 is connected to the discharge hole 8 that is the fifth closest.
  • the discharge hole 8 having the third shortest distance from the first discharge hole 8-1 is the second discharge hole 8-2, and is fifth.
  • the short discharge hole 8 is the fourth discharge hole 8-4.
  • the first discharge hole 8-1, the third discharge hole 8-3, the second discharge hole 8-2, and the fourth discharge hole 8-4 are arranged in this order in the second direction.
  • the discharge holes 8 located between the first discharge holes 8-1 and the third discharge holes 8-3 are composed of the first array 9A-1 and the third discharge holes 8-3 to the second discharge holes 8.
  • the discharge holes 8 positioned between the second discharge hole 8 and the second discharge hole 8-4 are positioned between the second array 9A-2 and the second discharge hole 8-2.
  • the third array consists of:
  • this is a value in the range of 2 ⁇ n + 2 to 3 ⁇ n ⁇ 1 as the value of m.
  • a line connecting the first discharge holes 8-1 and the discharge holes 8 on the first discharge holes 8-1 side of the first array 9A-1 when the value of m approaches 3 ⁇ n, a line connecting the first discharge holes 8-1 and the discharge holes 8 on the first discharge holes 8-1 side of the first array 9A-1;
  • the angle difference between the first array 9A-1 and the line connecting the fourth discharge hole 8-4 and the discharge hole 8 at the end of the third array 9A-3 on the fourth discharge hole 8-4 side is increased. Since the difference in angle between the third array 9A-3 and the third array 9A-3 increases, the cross-sectional areas of the first common channel 20 and the second common channel 24 are not constant. Further, if the cross-sectional areas of the first common flow path 20 and the second common flow path 24 are to be made substantially constant, the cross-sectional area must be reduced to the smallest cross section, resulting in a small cross-section
  • the discharge hole array 9A includes the first discharge hole 8-1 and the fifth discharge hole 8-1 among the discharge holes 8 belonging to the nth row. What is necessary is just to arrange
  • FIG. 8B shows an embodiment in which the number of discharge holes 8 belonging to the second array 9A-2 is one when there are 15 discharge hole rows 9B.
  • FIG. 9 shows the first to fourth discharge holes 8-1 to 8-4.
  • a straight line connecting the first discharge hole 8-1 and the fourth discharge hole 8-4 is a virtual straight line 9AA.
  • mod represents the calculation of the remainder
  • 15 is the difference in the column direction between the first discharge hole 8-1 and the fourth discharge hole 8-4
  • 29 is the first discharge hole 8-1 and the fourth discharge hole. This is the difference in the row direction from the discharge hole 8-4.
  • the position closest to the virtual straight line 9AA among the positions where the discharge holes 8 can be arranged is a range A1 hatched with a diagonal line.
  • the discharge holes 8 are most preferably arranged in this range A1.
  • a range A2 hatched by a horizontal line is within a range of ⁇ 2 rows with respect to the range A1.
  • the discharge holes 8 may be arranged in the range A2.
  • the reason why it is within ⁇ 2 rows, that is, within the width of 4 rows is to make it within 1/4 of 16 rows of the total number of rows. Even when the total number of rows is other than 16, it is preferable to arrange in the region A2, which is a region within 1/4 of the total number of rows.
  • the region A2 is within ⁇ 1 rows of the region A1. This is because even in the case of seven rows or less, the region A2 becomes the same as the region A1 and is difficult to arrange if it is within 1 ⁇ 4 of the total number of rows. Further, when the distance between the rows is not the same, it may be within 1 ⁇ 4 of the distance between the farthest rows.
  • first individual flow path (individual supply flow path) 14 ... Second individual flow path (individual discharge flow path) 20 ... 1st common flow path (common supply flow path) 20a ... (first common flow path) opening 22 ... first integrated flow path (integrated supply flow path) 22a ... 1st integrated flow path main body 22b ... 1st connection flow path (supply connection flow path) 22c, 22d ... (first integrated flow path) opening 24 ... second common flow path (common discharge flow path) 24a ... (second common flow path) opening 26 ...

Abstract

[Problem] To provide a liquid-discharging head capable of increasing recording accuracy and a recording apparatus using same. [Solution] In this liquid-discharging head: multiple discharging holes (8) for discharging a liquid are disposed in n rows (discharging hole rows (9B)) that are roughly parallel to each other; a first discharging hole (8-1) and a third discharging hole (8-3) are located on the first row; a second discharging hole (8-2) and a fourth discharging hole (8-4) are located on the nth row; the discharging holes (8) belonging to the 2nd - (n-1)th rows are disposed on a straight discharging hole line (9A) from the first discharging hole (8-1) toward the fourth discharging hole (8-4); and, in relation to a second direction, the discharging hole line (9A) is obtained from a first array (9A-1) between the first discharging hole (8-1) and the second discharging hole (8-2), a second array (9A-2) between the second discharging hole (8-2) and the third discharging hole (8-3), and a third array (9A-3) between the third discharging hole (8-3) and the fourth discharging hole (8-4).

Description

液体吐出ヘッド、およびそれを用いた記録装置Liquid discharge head and recording apparatus using the same
 本発明は、液体吐出ヘッド、およびそれを用いた記録装置に関する。 The present invention relates to a liquid discharge head and a recording apparatus using the same.
 従来、印刷用ヘッドとして、例えば、液体を記録媒体上に吐出することによって、各種の印刷を行なう液体吐出ヘッドが知られている。液体吐出ヘッドは、例えば、液体を吐出する吐出孔と、吐出孔から液体が吐出されるように液体が加圧される加圧室と、加圧室に液体を供給する共通流路とを備えたものが知られている。また、共通流路および加圧室内の液体が滞留することで流路のつまり等が生じ難いように、吐出を行なわないときにも、共通流路および加圧室内の液体が流れるように、外部も含めて液体を循環させる液体吐出ヘッドも知られている(例えば、特許文献1を参照。)。特許文献1の液体吐出ヘッドは一方方向に長く、共通流路は、液体吐出ヘッドの短手方向に沿って伸びており、吐出孔は、共通流路に沿って配置されている。 Conventionally, as a print head, for example, a liquid discharge head that performs various types of printing by discharging a liquid onto a recording medium is known. The liquid discharge head includes, for example, a discharge hole for discharging a liquid, a pressurization chamber in which the liquid is pressurized so that the liquid is discharged from the discharge hole, and a common flow path for supplying the liquid to the pressurization chamber. Is known. Further, the liquid in the common flow path and the pressurizing chamber is less likely to be clogged due to the liquid remaining in the common flow path and the pressurizing chamber. A liquid discharge head that circulates the liquid is also known (see, for example, Patent Document 1). The liquid discharge head of Patent Document 1 is long in one direction, the common flow path extends along the short direction of the liquid discharge head, and the discharge holes are arranged along the common flow path.
特開2008-200902号公報JP 2008-200902 A
 特許文献1に記載されている吐出孔の配置では、記録媒体に印刷した場合に、短手方向の一方の端に位置する吐出孔から吐出された液滴と、他方の端に位置する吐出孔から吐出された液滴とが、記録媒体上で隣り合って印刷されることになる。記録媒体の移動方向に対する、液体吐出ヘッドの設置角度がずれた状態で、液体吐出ヘッドが設置された場合、上述した、隣り合って印刷された画素の間の距離は、本来の距離からずれてしまう。この距離のずれは、設置角度のずれ、および隣り合って印刷される画素となる液滴が吐出された吐出孔同士の間の短手方向の距離に比例して大きくなる。したがって、特許文献1に記載されている吐出孔の配置では、画素間の距離のばらつきが大きくなり、記録精度が低くなってしまう。 In the arrangement of the ejection holes described in Patent Document 1, when printing on a recording medium, the droplets ejected from the ejection holes located at one end in the short direction and the ejection holes located at the other end The droplets ejected from the ink are printed next to each other on the recording medium. When the liquid ejection head is installed in a state where the installation angle of the liquid ejection head is deviated with respect to the moving direction of the recording medium, the distance between the adjacently printed pixels is deviated from the original distance. End up. The deviation in the distance increases in proportion to the deviation in the installation angle and the distance in the short direction between the ejection holes from which the droplets serving as the pixels printed next to each other are ejected. Therefore, in the arrangement of the discharge holes described in Patent Document 1, the variation in the distance between the pixels increases, and the recording accuracy decreases.
 したがって、本発明の目的は、記録精度を高くできる液体吐出ヘッド、および、それを用いた記録装置を提供することにある。 Accordingly, an object of the present invention is to provide a liquid discharge head capable of increasing the recording accuracy and a recording apparatus using the same.
 本発明の液体吐出ヘッドは、液体を吐出する複数の吐出孔を有する液体吐出ヘッドであって、 該液体吐出ヘッドを平面視したとき、前記複数の吐出孔は、互いに略平行なn(nは5以上の整数)行の行上に配置されており、前記n行の行は、当該n行の行と交差する方向である第1方向に、1行目の行、2行目の行、・・・n行目の行の順に配置されており、前記1行目の行に属する1の前記吐出孔を第1吐出孔とし、前記n行目の行に属する前記吐出孔のうちで前記第1吐出孔からの距離が2番目に短い前記吐出孔を第2吐出孔、4番目に短い前記吐出孔を第4吐出孔とし、前記第2吐出孔から前記第4吐出孔に向かう方向を第2方向とし、前記1行目の行に属していて、前記第1吐出孔に対して前記第2方向に位置している前記吐出孔のうちで、前記第1吐出孔からの距離が最も短い前記吐出孔を第3吐出孔とするとき、前記第1~4吐出孔は、前記第2方向に関して、前記第1吐出孔、前記第2吐出孔、前記第3吐出孔、前記第4吐出孔の順に配置されており、前記2~n-1行目の行に属する前記吐出孔は、前記第1吐出孔から前記第4吐出孔に向かう直線状の吐出孔列に配置されており、該吐出孔列は、前記2~n-1行目の各行に属する前記吐出孔を一つずつ含んでおり、かつ前記吐出孔列は、前記第2方向に関して、前記第1吐出孔から前記第2吐出孔までの間に配置されている前記吐出孔からなる第1配列、前記第2吐出孔から前記第3吐出孔までの間に配置されている前記吐出孔からなる第2配列、および前記第3吐出孔から前記第4吐出孔までの間に配置されている前記吐出孔からなる第3配列からなっていることを特徴とする。 The liquid ejection head of the present invention is a liquid ejection head having a plurality of ejection holes for ejecting liquid. When the liquid ejection head is viewed in plan, the plurality of ejection holes are substantially parallel to each other, n (n is An integer of 5 or more), and the n rows are arranged in a first direction, which is a direction intersecting the n rows, the first row, the second row, ... arranged in the order of the n-th row, one discharge hole belonging to the first row is defined as the first discharge hole, and among the discharge holes belonging to the n-th row, The discharge hole having the second shortest distance from the first discharge hole is the second discharge hole, the fourth discharge hole is the fourth discharge hole, and the direction from the second discharge hole toward the fourth discharge hole is The discharge that is in the second direction and belongs to the first row and is located in the second direction with respect to the first discharge hole Among these, when the discharge hole having the shortest distance from the first discharge hole is the third discharge hole, the first to fourth discharge holes are the first discharge hole and the first discharge hole in the second direction. The two discharge holes, the third discharge hole, and the fourth discharge hole are arranged in this order, and the discharge holes belonging to the 2nd to (n-1) th rows are from the first discharge hole to the fourth discharge hole. The discharge hole array includes one discharge hole belonging to each of the 2 to n-1 lines, and the discharge hole array includes: With respect to the second direction, a first arrangement of the discharge holes arranged between the first discharge holes and the second discharge holes, and a arrangement between the second discharge holes and the third discharge holes. The second arrangement of the discharge holes, and the third arrangement from the third discharge hole to the fourth discharge hole Characterized in that it consists of a third array of said discharge hole being.
 また、本発明の液体吐出ヘッドは、液体を吐出する複数の吐出孔を有する液体吐出ヘッドであって、該液体吐出ヘッドを平面視したとき、前記複数の吐出孔は、互いに略平行なn(nは5以上の整数)行の行上に配置されており、前記n行の行は、当該n行の行と交差する方向である第1方向に、1行目の行、2行目の行、・・・n行目の行の順に配置されており、前記1行目の行に属する1の前記吐出孔を第1吐出孔とし、前記n行目の行に属する前記吐出孔のうちで前記第1吐出孔からの距離が3番目に短い前記吐出孔を第2吐出孔、5番目に短い前記吐出孔を第4吐出孔とし、前記第2吐出孔から前記第4吐出孔に向かう方向を第2方向とし、前記1行目の行に属していて、前記第1吐出孔に対して前記第2方向に位置している前記吐出孔のうちで、前記第1吐出孔からの距離が最も短い前記吐出孔を第3吐出孔とするとき、前記第1~4吐出孔は、前記第2方向に関して、前記第1吐出孔、前記第3吐出孔、前記第2吐出孔、前記第4吐出孔の順に配置されており、前記2~n-1行目の行に属する前記吐出孔は、前記第1吐出孔から前記第4吐出孔に向かう直線状の吐出孔列に配置されており、該吐出孔列は、前記2~n-1行目の各行に属する前記吐出孔を一つずつ含んでおり、かつ前記吐出孔列は、前記第2方向に関して、前記第1吐出孔から前記第3吐出孔までの間に配置されている前記吐出孔からなる第1配列、前記第3吐出孔から前記第2吐出孔までの間に配置されている前記吐出孔からなる第2配列、および前記第2吐出孔から前記第4吐出孔までの間に配置されている前記吐出孔からなる第3配列からなっていることを特徴とする。 Further, the liquid discharge head of the present invention is a liquid discharge head having a plurality of discharge holes for discharging a liquid. When the liquid discharge head is viewed in plan, the plurality of discharge holes are substantially parallel to each other n ( n is an integer greater than or equal to 5). The n rows are arranged in a first direction, which is a direction intersecting the n rows. Are arranged in the order of the rows,..., The n-th row, and one of the discharge holes belonging to the first row is defined as a first discharge hole, and among the discharge holes belonging to the n-th row The third shortest discharge hole from the first discharge hole is the second discharge hole, the fifth shortest discharge hole is the fourth discharge hole, and the second discharge hole is directed to the fourth discharge hole. The direction is the second direction, belongs to the first row, and is located in the second direction with respect to the first discharge hole Among the outlet holes, when the discharge hole having the shortest distance from the first discharge hole is the third discharge hole, the first to fourth discharge holes are the first discharge hole, The third discharge holes, the second discharge holes, and the fourth discharge holes are arranged in this order, and the discharge holes belonging to the 2nd to (n-1) th rows are arranged from the first discharge holes to the fourth discharge holes. The discharge hole array is arranged in a straight line toward the discharge holes, and the discharge hole array includes one discharge hole belonging to each of the 2nd to (n-1) th lines, and the discharge hole array Is a first array of the ejection holes arranged between the first ejection holes and the third ejection holes in the second direction, and between the third ejection holes and the second ejection holes. A second array of the ejection holes arranged in the space between the second ejection hole and the fourth ejection hole. Characterized in that it consists of a third array of said discharge hole being location.
 さらに、本発明の記録装置は、前記液体吐出ヘッドと、記録媒体を前記液体吐出ヘッドに対して搬送する搬送部と、前記液体吐出ヘッドを制御する制御部を備えていることを特徴とする。 Furthermore, the recording apparatus of the present invention includes the liquid discharge head, a transport unit that transports a recording medium to the liquid discharge head, and a control unit that controls the liquid discharge head.
 本発明のノズルプレート、液体吐出ヘッド、およびそれを用いた記録装置は、記録精度を高くできる。 The nozzle plate, the liquid discharge head, and the recording apparatus using the same according to the present invention can increase the recording accuracy.
(a)は、本発明の一実施形態に係る液体吐出ヘッドを含む記録装置の側面図であり、(b)は平面図である。(A) is a side view of a recording apparatus including a liquid ejection head according to an embodiment of the present invention, and (b) is a plan view. (a)は、図1の液体吐出ヘッドの要部であるヘッド本体の平面図であり、(b)は、(a)から第2流路部材を除いた平面図である。(A) is a top view of the head main body which is the principal part of the liquid discharge head of FIG. 1, (b) is a top view which remove | excluded the 2nd flow-path member from (a). 図2(b)の一部の拡大平面図である。FIG. 3 is an enlarged plan view of a part of FIG. 図2(b)の一部の拡大平面図である。FIG. 3 is an enlarged plan view of a part of FIG. (a)は、図4のV-V線に沿った部分縦断面図あり、(b)は、図2(a)のヘッド本体の部分縦断面図ある。(A) is a partial longitudinal cross-sectional view along the line VV in FIG. 4, and (b) is a partial vertical cross-sectional view of the head main body in FIG. 2 (a). 本発明の一実施形態における吐出孔配置である。It is discharge hole arrangement | positioning in one Embodiment of this invention. (a)、(b)は、発明の他の実施形態における吐出孔配置である。(A), (b) is discharge hole arrangement | positioning in other embodiment of invention. (a)、(b)は、発明の他の実施形態における吐出孔配置である。(A), (b) is discharge hole arrangement | positioning in other embodiment of invention. 吐出孔配置を説明するための図である。It is a figure for demonstrating discharge hole arrangement | positioning.
 図1(a)は、本発明の一実施形態に係る液体吐出ヘッド2を含む記録装置であるカラーインクジェットプリンタ1(以下で単にプリンタと言うことがある)の概略の側面図であり、図1(b)は、概略の平面図である。プリンタ1は、記録媒体である印刷用紙Pをガイドローラ82Aから搬送ローラ82Bへと搬送することにより、印刷用紙Pを液体吐出ヘッド2に対して相対的に移動させる。制御部88は、画像や文字のデータに基づいて、液体吐出ヘッド2を制御して、記録媒体Pに向けて液体を吐出させ、印刷用紙Pに液滴を着弾させて、印刷用紙Pに印刷などの記録を行なう。 FIG. 1A is a schematic side view of a color inkjet printer 1 (hereinafter sometimes simply referred to as a printer) which is a recording apparatus including a liquid discharge head 2 according to an embodiment of the present invention. (B) is a schematic plan view. The printer 1 moves the print paper P relative to the liquid ejection head 2 by transporting the print paper P as a recording medium from the guide roller 82 </ b> A to the transport roller 82 </ b> B. The control unit 88 controls the liquid ejection head 2 based on image and character data, ejects liquid toward the recording medium P, causes droplets to land on the printing paper P, and prints on the printing paper P. Record such as.
 本実施形態では、液体吐出ヘッド2はプリンタ1に対して固定されており、プリンタ1はいわゆるラインプリンタとなっている。本発明の記録装置の他の実施形態としては、液体吐出ヘッド2を、印刷用紙Pの搬送方向に交差する方向、例えば、ほぼ直交する方向に往復させるなどして移動させる動作と、印刷用紙Pの搬送を交互に行なう、いわゆるシリアルプリンタが挙げられる。 In this embodiment, the liquid discharge head 2 is fixed to the printer 1, and the printer 1 is a so-called line printer. As another embodiment of the recording apparatus of the present invention, the operation of moving the liquid ejection head 2 by reciprocating in the direction intersecting the transport direction of the printing paper P, for example, the direction substantially orthogonal, and the printing paper P There is a so-called serial printer that alternately conveys.
 プリンタ1には、印刷用紙Pとほぼ平行となるように平板状のヘッド搭載フレーム70(以下で単にフレームと言うことがある)が固定されている。フレーム70には図示しない20個の孔が設けられており、20個の液体吐出ヘッド2がそれぞれの孔の部分に搭載されていて、液体吐出ヘッド2の、液体を吐出する部位が印刷用紙Pに面するようになっている。液体吐出ヘッド2と印刷用紙Pとの間の距離は、例えば0.5~20mm程度とされる。5つの液体吐出ヘッド2は、1つのヘッド群72を構成しており、プリンタ1は、4つのヘッド群72を有している。 The printer 1 has a flat head mounting frame 70 (hereinafter sometimes simply referred to as a frame) fixed so as to be substantially parallel to the printing paper P. The frame 70 is provided with 20 holes (not shown), and the 20 liquid discharge heads 2 are mounted in the respective hole portions, and the portion of the liquid discharge head 2 that discharges the liquid is the printing paper P. It has come to face. The distance between the liquid ejection head 2 and the printing paper P is, for example, about 0.5 to 20 mm. The five liquid ejection heads 2 constitute one head group 72, and the printer 1 has four head groups 72.
 液体吐出ヘッド2は、図1(a)の手前から奥へ向かう方向、図1(b)の上下方向に細長い長尺形状を有している。この長い方向を長手方向と呼ぶことがある。1つのヘッド群72内において、3つの液体吐出ヘッド2は、印刷用紙Pの搬送方向に交差する方向、例えば、ほぼ直交する方向に沿って並んでおり、他の2つの液体吐出ヘッド2は搬送方向に沿ってずれた位置で、3つの液体吐出ヘッド2の間にそれぞれ一つずつ並んでいる。液体吐出ヘッド2は、各液体吐出ヘッド2で印刷可能な範囲が、印刷用紙Pの幅方向に(印刷用紙Pの搬送方向に交差する方向に)繋がるように、あるいは端が重複するように配置されており、印刷用紙Pの幅方向に隙間のない印刷が可能になっている。 The liquid discharge head 2 has a long and narrow shape in the direction from the front to the back in FIG. 1A and in the vertical direction in FIG. This long direction is sometimes called the longitudinal direction. Within one head group 72, the three liquid ejection heads 2 are arranged along a direction that intersects the conveyance direction of the printing paper P, for example, a substantially orthogonal direction, and the other two liquid ejection heads 2 are conveyed. One of the three liquid ejection heads 2 is arranged at a position shifted along the direction. The liquid discharge heads 2 are arranged so that the printable range of each liquid discharge head 2 is connected in the width direction of the print paper P (in the direction intersecting the conveyance direction of the print paper P) or the ends overlap. Thus, printing without gaps in the width direction of the printing paper P is possible.
 4つのヘッド群72は、記録用紙Pの搬送方向に沿って配置されている。各液体吐出ヘッド2には、図示しない液体タンクから液体、例えば、インクが供給される。1つのヘッド群72に属する液体吐出ヘッド2には、同じ色のインクが供給されるようになっており、4つのヘッド群72で4色のインクが印刷できる。各ヘッド群72から吐出されるインクの色は、例えば、マゼンタ(M)、イエロー(Y)、シアン(C)およびブラック(K)である。このようなインクを、制御部88で制御して印刷すれば、カラー画像が印刷できる。 The four head groups 72 are arranged along the conveyance direction of the recording paper P. A liquid, for example, ink is supplied to each liquid ejection head 2 from a liquid tank (not shown). The liquid discharge heads 2 belonging to one head group 72 are supplied with the same color ink, and the four head groups 72 can print four color inks. The colors of ink ejected from each head group 72 are, for example, magenta (M), yellow (Y), cyan (C), and black (K). A color image can be printed by printing such ink under the control of the control unit 88.
 プリンタ1に搭載されている液体吐出ヘッド2の個数は、単色で、1つの液体吐出ヘッド2で印刷可能な範囲を印刷するのなら1つでもよい。ヘッド群72に含まれる液体吐出ヘッド2の個数や、ヘッド群72の個数は、印刷する対象や印刷条件により適宜変更できる。例えば、さらに多色の印刷をするためにヘッド群72の個数を増やしてもよい。また、同色で印刷するヘッド群72を複数配置して、搬送方向に交互に印刷すれば、同じ性能の液体吐出ヘッド2を使用しても搬送速度を速くできる。これにより、時間当たりの印刷面積を大きくすることができる。また、同色で印刷するヘッド群72を複数準備して、搬送方向と交差する方向にずらして配置して、印刷用紙Pの幅方向の解像度を高くしてもよい。 The number of liquid discharge heads 2 mounted on the printer 1 may be one if it is a single color and the range that can be printed by one liquid discharge head 2 is printed. The number of liquid ejection heads 2 included in the head group 72 and the number of head groups 72 can be changed as appropriate according to the printing target and printing conditions. For example, the number of head groups 72 may be increased in order to perform multicolor printing. Also, if a plurality of head groups 72 that print in the same color are arranged and printed alternately in the transport direction, the transport speed can be increased even if the liquid ejection heads 2 having the same performance are used. Thereby, the printing area per time can be increased. Alternatively, a plurality of head groups 72 for printing in the same color may be prepared and arranged so as to be shifted in a direction crossing the transport direction, so that the resolution in the width direction of the print paper P may be increased.
 さらに、色の付いたインクを印刷する以外に、印刷用紙Pの表面処理をするために、コーティング剤などの液体を印刷してもよい。 Furthermore, in addition to printing colored inks, a liquid such as a coating agent may be printed for surface treatment of the printing paper P.
 プリンタ1は、記録媒体である印刷用紙Pに印刷を行なう。印刷用紙Pは、給紙ローラ80Aに巻き取られた状態になっており、2つのガイドローラ82Aの間を通った後、フレーム70に搭載されている液体吐出ヘッド2の下側を通り、その後2つの搬送ローラ82Bの間を通り、最終的に回収ローラ80Bに回収される。印刷する際には、搬送ローラ82Bを回転させることで印刷用紙Pは、一定速度で搬送され、液体吐出ヘッド2によって印刷される。回収ローラ80Bは、搬送ローラ82Bから送り出された印刷用紙Pを巻き取る。搬送速度は、例えば、50m/分とされる。各ローラは、制御部88によって制御されてもよいし、人によって手動で操作されてもよい。 The printer 1 performs printing on the printing paper P that is a recording medium. The printing paper P is wound around the paper feed roller 80A, passes between the two guide rollers 82A, passes through the lower side of the liquid ejection head 2 mounted on the frame 70, and thereafter It passes between the two conveying rollers 82B and is finally collected by the collecting roller 80B. When printing, the printing paper P is transported at a constant speed by rotating the transport roller 82 </ b> B and printed by the liquid ejection head 2. The collection roller 80B winds up the printing paper P sent out from the conveyance roller 82B. The conveyance speed is, for example, 50 m / min. Each roller may be controlled by the controller 88 or may be manually operated by a person.
 記録媒体は、印刷用紙P以外に、ロール状の布などでもよい。また、プリンタ1は、印刷用紙Pを直接搬送する代わりに、搬送ベルトを直接搬送して、記録媒体を搬送ベルトに置いて搬送してもよい。そのようにすれば、枚葉紙や裁断された布、木材、タイルなどを記録媒体にできる。さらに、液体吐出ヘッド2から導電性の粒子を含む液体を吐出するようにして、電子機器の配線パターンなどを印刷してもよい。またさらに、液体吐出ヘッド2から反応容器などに向けて所定量の液体の化学薬剤や化学薬剤を含んだ液体を吐出させて、反応させるなどして、化学薬品を作製してもよい。 The recording medium may be a roll-like cloth other than the printing paper P. Further, instead of directly transporting the printing paper P, the printer 1 may transport the transport belt directly and transport the recording medium placed on the transport belt. By doing so, sheets, cut cloth, wood, tiles and the like can be used as the recording medium. Furthermore, a wiring pattern of an electronic device may be printed by discharging a liquid containing conductive particles from the liquid discharge head 2. Still further, the chemical may be produced by discharging a predetermined amount of liquid chemical agent or liquid containing the chemical agent from the liquid discharge head 2 toward the reaction container or the like and reacting.
 また、プリンタ1に、位置センサ、速度センサ、温度センサなどを取り付けて、制御部88が、各センサからの情報から分かるプリンタ1各部の状態に応じて、プリンタ1の各部を制御してもよい。例えば、液体吐出ヘッド2の温度や液体タンクの液体の温度、液体タンクの液体が液体吐出ヘッド2に加えている圧力などが、吐出される液体の吐出量や吐出速度などの吐出特性に影響を与えている場合などに、それらの情報に応じて、液体を吐出させる駆動信号を変えるようにしてもよい。 In addition, a position sensor, a speed sensor, a temperature sensor, and the like may be attached to the printer 1, and the control unit 88 may control each part of the printer 1 according to the state of each part of the printer 1 that can be understood from information from each sensor. . For example, the temperature of the liquid discharge head 2, the temperature of the liquid in the liquid tank, the pressure applied by the liquid in the liquid tank to the liquid discharge head 2, etc. affect the discharge characteristics such as the discharge amount and discharge speed of the discharged liquid. In the case of giving, the drive signal for ejecting the liquid may be changed according to the information.
 次に、本発明の一実施形態に係る液体吐出ヘッド2について説明する。図2(a)は、図1に示された液体吐出ヘッド2の要部であるヘッド本体2aを示す平面図である。図2(b)は、ヘッド本体2aから第2流路部材6を除いた状態の平面図である。図3および図4は、図2(b)の拡大平面図である。図5(a)は、図4のV-V線に沿った縦断面図である。図5(b)は、ヘッド本体2aの、第1共通流路20の開口20a付近における、第1共通流路20に沿った部分縦断面図である。 Next, the liquid discharge head 2 according to an embodiment of the present invention will be described. FIG. 2A is a plan view showing a head main body 2a which is a main part of the liquid ejection head 2 shown in FIG. FIG. 2B is a plan view showing a state in which the second flow path member 6 is removed from the head main body 2a. 3 and 4 are enlarged plan views of FIG. 2 (b). FIG. 5A is a longitudinal sectional view taken along the line VV in FIG. FIG. 5B is a partial longitudinal sectional view along the first common flow path 20 in the vicinity of the opening 20 a of the first common flow path 20 of the head main body 2 a.
 各図は、図面を分かり易くするために次のように描いている。図2~4では、他のものの下方にあって破線で描くべき流路などを実線で描いている。図2(a)では、第1流路部材4内の流路は省略し、個別電極本体44aの配置のみを示している。 Each figure is drawn as follows to make it easy to understand. In FIGS. 2 to 4, the flow path and the like that should be drawn with a broken line below other objects are drawn with a solid line. In FIG. 2A, the flow path in the first flow path member 4 is omitted, and only the arrangement of the individual electrode main body 44a is shown.
 液体吐出ヘッド2は、ヘッド本体2a以外に、金属製の筐体や、ドライバIC、配線基板などを含んでいてもよい。また、ヘッド本体2aは、第1流路部材4と、第1流路部材4に液体を供給する第2流路部材6と、加圧部である変位素子50が作り込まれている圧電アクチュエータ基板40とを含んでいる。ヘッド本体2aは、一方方向に長い平板形状を有しており、その方向を長手方向と言うことがある。また、第2流路部材6は、支持部材の役割を果たしており、ヘッド本体2aは、第2流路部材6の長手方向の両端部のそれぞれでフレーム70に固定される。 The liquid discharge head 2 may include a metal casing, a driver IC, a wiring board and the like in addition to the head main body 2a. In addition, the head body 2a includes a first flow path member 4, a second flow path member 6 that supplies liquid to the first flow path member 4, and a piezoelectric actuator in which a displacement element 50 that is a pressurizing unit is built. And a substrate 40. The head body 2a has a flat plate shape that is long in one direction, and this direction is sometimes referred to as a longitudinal direction. Further, the second flow path member 6 serves as a support member, and the head body 2 a is fixed to the frame 70 at both ends in the longitudinal direction of the second flow path member 6.
 ヘッド本体2aを構成する第1流路部材4は、平板状の形状を有しており、その厚さは0.5~2mm程度である。第1流路部材4の第1の主面である加圧室面4-1には、加圧室10が平面方向に多数並んで配置されている。第1流路部材4の第2の主面であり、加圧室面4-1の反対側の面である吐出孔面4-2には、液体が吐出される吐出孔8が平面方向に多数並んで配置されている。吐出孔8は、それぞれ加圧室10と繋がっている。以下において、加圧室面4-1は、吐出孔面4-2に対して、上方に位置しているものとして説明をする。 The first flow path member 4 constituting the head body 2a has a flat plate shape and a thickness of about 0.5 to 2 mm. On the pressurizing chamber surface 4-1, which is the first main surface of the first flow path member 4, a number of pressurizing chambers 10 are arranged side by side in the plane direction. On the discharge hole surface 4-2, which is the second main surface of the first flow path member 4 and on the opposite side of the pressurizing chamber surface 4-1, the discharge holes 8 for discharging the liquid are arranged in the plane direction. Many are arranged side by side. Each discharge hole 8 is connected to the pressurizing chamber 10. In the following description, it is assumed that the pressurizing chamber surface 4-1 is located above the discharge hole surface 4-2.
 第1流路部材4には、複数の第1共通流路20および複数の第2共通流路24が、第1方向に沿って伸びるように配置されている。また、第1共通流路20と第2共通流路24とは、第1方向と交差する方向である第2方向に交互に並んでいる。なお、第2方向は、ヘッド本体2aの長手方向と同じ方向である。 In the first flow path member 4, a plurality of first common flow paths 20 and a plurality of second common flow paths 24 are arranged so as to extend along the first direction. Moreover, the 1st common flow path 20 and the 2nd common flow path 24 are located in a line in the 2nd direction which is a direction which cross | intersects a 1st direction alternately. The second direction is the same direction as the longitudinal direction of the head body 2a.
 第1共通流路20の両側に沿って加圧室10が並んでおり、片側1列ずつ、合計2列の加圧室列11Aを構成している。第1共通流路20とその両側に並んでいる加圧室10とは、第1個別流路12を介して繋がっている。 The pressurizing chambers 10 are arranged along both sides of the first common flow path 20 and constitute one pressurization chamber row 11A, one row on each side. The first common flow path 20 and the pressurizing chambers 10 arranged on both sides of the first common flow path 20 are connected via a first individual flow path 12.
 第2共通流路24の両側に沿って加圧室10が並んでおり、片側1列ずつ、合計2列の加圧室列11Aを構成している。第2共通流路24とその両側に並んでいる加圧室10とは、第2個別流路14を介して繋がっている。なお、以下で、第1共通流路20と第2共通流路24とを合わせて、共通流路と言うことがある。 The pressurizing chambers 10 are arranged along both sides of the second common flow path 24, and the pressurizing chamber row 11A is constituted by one row on each side for a total of two rows. The second common flow path 24 and the pressurizing chambers 10 arranged on both sides thereof are connected via the second individual flow path 14. Hereinafter, the first common channel 20 and the second common channel 24 may be collectively referred to as a common channel.
 以上のような構成により、第1流路部材4においては、第1共通流路20に供給された液体は、第1共通流路20に沿って並んでいる加圧室10に流れ込み、一部の液体は吐出孔8から吐出され、他の一部の液体は、加圧室10に対して、第1共通流路20と反対側に位置している第2共通流路24に流れ込み、第1流路部材4から外部に排出される。 With the configuration as described above, in the first flow path member 4, the liquid supplied to the first common flow path 20 flows into the pressurizing chambers 10 arranged along the first common flow path 20, and partly The other liquid is discharged from the discharge hole 8, and the other part of the liquid flows into the second common flow path 24 located on the opposite side of the first common flow path 20 with respect to the pressurizing chamber 10. It is discharged from the one flow path member 4 to the outside.
 第1共通流路20の両側に第2共通流路24が、第2共通流路24の両側に第1共通流路20が配置されていることにより、1つの加圧室列11Aに対して、1つの第1共通流路20および1つの第2共通流路24が繋がっており、別の加圧室列11Aに対して、別の第1共通流路20および別の第2共通流路24が繋がっている場合と比較して、第1共通流路20および第2共通流路24の数を約半分にできるので好ましい。第1共通流路20および第2共通流路24の数が少なくて済む分、加圧室10の数を増やして高解像度化したり、第1共通流路20や第2共通流路24を太くして、吐出孔8からの吐出特性の差を小さくしたり、ヘッド本体2aの平面方向の大きさを小さくすることができる。 By arranging the second common channel 24 on both sides of the first common channel 20 and the first common channel 20 on both sides of the second common channel 24, one pressurizing chamber row 11A is provided. One first common flow path 20 and one second common flow path 24 are connected, and another first common flow path 20 and another second common flow path with respect to another pressurization chamber row 11A. Compared with the case where 24 is connected, the number of the 1st common flow path 20 and the 2nd common flow path 24 can be made into about half, and it is preferable. Since the number of first common channels 20 and second common channels 24 is small, the number of pressurizing chambers 10 is increased to increase the resolution, or the first common channel 20 and the second common channel 24 are thickened. Thus, the difference in ejection characteristics from the ejection holes 8 can be reduced, and the size of the head body 2a in the planar direction can be reduced.
 第1共通流路20に繋がっている第1個別流路12の第1共通流路20側の部分に加わる圧力は、圧力損失の影響で、第1共通流路20に第1個別流路12が繋がっている位置(主に第1方向における位置)により変わる。第2共通流路24に繋がっている第2個別流路14側の部分に加わる圧力は、圧力損失の影響で、第2共通流路24に第2個別流路14が繋がっている位置(主に第1方向における位置)により変わる。第1共通流路20の外部への開口20aを第1方向の一方の端部に配置し、第2共通流路24の外部への開口24aを第1方向の他方の端部に配置すれば、各第1個別流路12および各第2個別流路14の配置による圧力の差が打ち消されるように作用し、各吐出孔8に加わる圧力の差を小さくできる。なお、第1共通流路20の開口20a、および第2共通流路24の開口24aはともに、加圧室面4-1に開口している。 The pressure applied to the portion of the first individual flow path 12 on the first common flow path 20 side connected to the first common flow path 20 is affected by the pressure loss, so that the first individual flow path 12 is added to the first common flow path 20. Varies depending on the position where the two are connected (mainly the position in the first direction). The pressure applied to the portion on the second individual flow path 14 side connected to the second common flow path 24 is the position where the second individual flow path 14 is connected to the second common flow path 24 due to the effect of pressure loss (main Depending on the position in the first direction. If the opening 20a to the outside of the first common channel 20 is arranged at one end in the first direction, and the opening 24a to the outside of the second common channel 24 is arranged at the other end in the first direction. The pressure difference due to the arrangement of the first individual flow paths 12 and the second individual flow paths 14 is canceled out, and the pressure difference applied to the discharge holes 8 can be reduced. Note that both the opening 20a of the first common channel 20 and the opening 24a of the second common channel 24 open to the pressurizing chamber surface 4-1.
 吐出しない状態では、吐出孔8には液体のメニスカスが保持されている。液体の表面張力は、液体の表面積を小さくしようとするので、正圧であっても圧力が小さければ、メニスカスを保持できる。正圧が大きくなれば、液体はあふれ出し、負圧が大きくなれば、液体が第1流路部材4内に引き込まれてしまい、液体が吐出可能な状態を維持できない。そのため、第1共通流路20から第2共通流路24に液体を流した際における、吐出孔8での液体の圧力の差が大きくなり過ぎないようにする必要がある。 The liquid meniscus is held in the discharge hole 8 in a state where the liquid is not discharged. Since the surface tension of the liquid tries to reduce the surface area of the liquid, the meniscus can be held if the pressure is small even if it is a positive pressure. If the positive pressure increases, the liquid overflows, and if the negative pressure increases, the liquid is drawn into the first flow path member 4, and the liquid cannot be discharged. For this reason, it is necessary to prevent the difference in the pressure of the liquid in the discharge hole 8 from becoming too large when the liquid flows from the first common flow path 20 to the second common flow path 24.
 加圧室10は、加圧室面4-1に面して配置されており、変位素子50からの圧力を受ける加圧室本体10aと、加圧室本体10aの下から吐出孔面4-2に開口している吐出孔8に繋がる部分流路であるディセンダ10bとを含んだ中空の領域である。加圧室本体10aは、直円柱形状であり、平面形状は円形状である。平面形状が円形状であることにより変位素子50が同じ力で変形させた場合の変位量、および変位により生じる加圧室10の体積変化を大きくできる。ディセンダ10bは、直径が加圧室本体10aより小さい直円柱形状であり、断面形状は円形状である。また、ディセンダ10bは、加圧室面4-1から見たときに、加圧室本体10a内に納まっている。ディセンダ10bは、吐出孔8側に向かって断面積の小さくなる円錐形状や台形円錐形状でもよい。ディセンダ10bの断面形状が加圧室本体10aより小さくなっているので、その分、第1共通流路20および第2共通流路24の幅を大きくでき、上述の圧力損失の差を小さくできる。 The pressurizing chamber 10 is disposed facing the pressurizing chamber surface 4-1, and includes a pressurizing chamber main body 10a that receives pressure from the displacement element 50, and a discharge hole surface 4- from below the pressurizing chamber main body 10a. 2 is a hollow region including a descender 10b, which is a partial flow path connected to the discharge hole 8 opened in FIG. The pressurizing chamber body 10a has a right circular cylinder shape, and the planar shape is a circular shape. Since the planar shape is circular, the displacement amount when the displacement element 50 is deformed with the same force and the volume change of the pressurizing chamber 10 caused by the displacement can be increased. The descender 10b has a right circular cylinder shape whose diameter is smaller than that of the pressurizing chamber body 10a, and has a circular cross-sectional shape. The descender 10b is housed in the pressurizing chamber body 10a when viewed from the pressurizing chamber surface 4-1. The descender 10b may have a conical shape or a trapezoidal conical shape whose sectional area decreases toward the discharge hole 8 side. Since the cross-sectional shape of the descender 10b is smaller than that of the pressurizing chamber main body 10a, the widths of the first common channel 20 and the second common channel 24 can be increased correspondingly, and the above-described pressure loss difference can be decreased.
 複数ある加圧室10は、第1方向に沿った複数の加圧室列11Aを構成しているとともに、第1方向と交差する方向である第2方向に沿った複数の加圧室行11Bを構成している。各吐出孔8は、対応する加圧室10の中心に位置している。複数ある吐出孔8も、加圧室10と同様に、第1方向に沿った複数の吐出孔列9Aを構成しているとともに、第2方向に沿った複数の吐出孔行9Bを構成している。 The plurality of pressurizing chambers 10 constitute a plurality of pressurizing chamber rows 11A along the first direction, and a plurality of pressurizing chamber rows 11B along the second direction that intersects the first direction. Is configured. Each discharge hole 8 is located at the center of the corresponding pressurizing chamber 10. Similarly to the pressurizing chamber 10, the plurality of discharge holes 8 constitute a plurality of discharge hole rows 9A along the first direction and a plurality of discharge hole rows 9B along the second direction. Yes.
 本実施形態では、第1共通流路20は50本、第2共通流路24は51本であり、加圧室列11Aおよび吐出孔列9Aは100列ある。1つの加圧室列11Aには、16個の加圧室10が含まれており、1つの吐出孔列9Aには、16個の吐出孔8が含まれている。つまり、加圧室行11Bは、16行あり、吐出孔行9Bは、16行ある。 In the present embodiment, the first common flow path 20 has 50 lines, the second common flow path 24 has 51 lines, and the pressurizing chamber line 11A and the discharge hole line 9A have 100 lines. One pressurization chamber row 11A includes 16 pressurization chambers 10, and one discharge hole row 9A includes 16 discharge holes 8. That is, the pressurizing chamber row 11B has 16 rows, and the discharge hole row 9B has 16 rows.
 なお、隣り合う加圧室列11Aにおいて、加圧室10を第1方向にずらして千鳥状に配置すれば、隣り合う加圧室列11Aに属する加圧室10の距離を大きくできるので好ましい。その場合、加圧室行11Bは、32行になり、吐出孔行9Bは、32行になる。 In the adjacent pressurizing chamber row 11A, it is preferable to displace the pressurizing chambers 10 in the first direction in a zigzag manner because the distance between the pressurizing chambers 10 belonging to the adjacent pressurizing chamber row 11A can be increased. In that case, the pressurizing chamber row 11B has 32 rows, and the discharge hole row 9B has 32 rows.
 第1方向と第2方向とが成す角度は直角からずれている。このため、第1方向に沿って配置されている吐出孔列9Aに属する吐出孔8同士は、その直角からのずれた角度の分、第2方向にずれて配置される。そして、吐出孔列9Aが第2方向に並んで配置されるので、異なる吐出孔列9Aに属する吐出孔8は、その分、第2方向にずれて配置される。これらが合わさって、第1流路部材4の吐出孔8は、第2方向に一定間隔で並んで配置されており、これにより、吐出した液体により形成される画素で所定の範囲を埋めるように印刷ができる。 The angle formed by the first direction and the second direction is deviated from a right angle. For this reason, the ejection holes 8 belonging to the ejection hole array 9A arranged along the first direction are displaced in the second direction by an angle shifted from the right angle. And since the discharge hole row | line 9A is arrange | positioned along with the 2nd direction, the discharge hole 8 which belongs to the different discharge hole row | line | column 9A is shifted | deviated and arranged in the 2nd direction by that amount. Together, the discharge holes 8 of the first flow path member 4 are arranged at regular intervals in the second direction, so that a predetermined range is filled with pixels formed by the discharged liquid. Can print.
 図3において、吐出孔8を第2方向と直交する方向に投影すると、仮想直線Rの範囲に32個の吐出孔8が投影され、仮想直線R内で各吐出孔8は360dpiの間隔に並ぶ。これにより、仮想直線Rに直交する方向に印刷用紙Pを搬送して印刷すれば、360dpiの解像度で印刷できる。仮想直線R内に投影される吐出孔8は、1列の吐出孔列9Aに属する吐出孔8すべて(16個)と、その吐出孔列9Aの両隣に位置する2つの吐出孔列9Aに属する吐出孔8の半分(8個)ずつである。このような構成にするために、各吐出孔行9Bでは、吐出孔8は、22.5dpiの間隔で並んでいる。これは、360/16=22.5であるからである。 第1共通流路20および第2共通流路24は、吐出孔8が直線上に並んでいる範囲では、直線になっており、直線がずれる吐出孔8の間で平行にずれている。第1共通流路20および第2共通流路24において、このずれる箇所が少ないので流路抵抗が小さくなっている。また、この平行にずれる部分は、加圧室10と重ならない位置に配置されているので、加圧室10毎に吐出特性の変動を小さくできる。 In FIG. 3, when the discharge holes 8 are projected in a direction orthogonal to the second direction, 32 discharge holes 8 are projected in the range of the virtual straight line R, and the discharge holes 8 are arranged at intervals of 360 dpi in the virtual straight line R. . Accordingly, if the printing paper P is conveyed and printed in a direction orthogonal to the virtual straight line R, printing can be performed with a resolution of 360 dpi. The ejection holes 8 projected in the virtual straight line R belong to all (16) ejection holes 8 belonging to one ejection hole array 9A and to two ejection hole arrays 9A located on both sides of the ejection hole array 9A. Half of the discharge holes 8 (eight). In order to obtain such a configuration, the discharge holes 8 are arranged at intervals of 22.5 dpi in each discharge hole row 9B. This is because 360/16 = 22.5. The first common flow path 20 and the second common flow path 24 are straight in the range where the discharge holes 8 are arranged on a straight line, and are shifted in parallel between the discharge holes 8 where the straight lines are shifted. In the 1st common flow path 20 and the 2nd common flow path 24, since there are few shift parts, flow resistance is small. Further, since the portion that is shifted in parallel is arranged at a position that does not overlap with the pressurizing chamber 10, it is possible to reduce the variation in discharge characteristics for each pressurizing chamber 10.
 第2方向の両端に位置する加圧室列11Bに属する加圧室10は、ダミー加圧室である。ダミー加圧室に対する、第2方向の端側には第1共通流路20もしくは第2共通流路24が設けられる。配置される流路は、ダミー加圧室に対して第2方向の中央側に配置されているのが第2共通流路24であれば、第1共通流路20となり、ダミー加圧室に対して第2方向の中央側に配置されているのが第1共通流路20であれば、第2共通流路24となる。ダミー加圧室も、通常の加圧室10と同様に、第1個別流路12を介して第1共通流路20と繋がっており、第2個別流路14を介して第2共通流路24と繋がっている。 The pressurizing chambers 10 belonging to the pressurizing chamber row 11B located at both ends in the second direction are dummy pressurizing chambers. The first common channel 20 or the second common channel 24 is provided on the end side in the second direction with respect to the dummy pressurizing chamber. If the second common channel 24 is disposed on the center side in the second direction with respect to the dummy pressurizing chamber, the disposed channel becomes the first common channel 20 and is disposed in the dummy pressurizing chamber. On the other hand, if the first common flow path 20 is disposed on the center side in the second direction, the second common flow path 24 is obtained. Similarly to the normal pressurizing chamber 10, the dummy pressurizing chamber is also connected to the first common channel 20 via the first individual channel 12, and the second common channel via the second individual channel 14. 24 is connected.
 第2方向の端に位置する共通流路は、第1共通流路20および第2共通流路24のどちらであっても、供給もしくは回収する加圧室列11Aが1列になり、そのためその1列の加圧室列11Aに属する加圧室10からの吐出の吐出特性が、他の加圧室10からの吐出特性に対して変動するおそれがある。そこでその加圧室列11Aに属する加圧室10は、印刷に使わないダミー加圧室とする。ダミー加圧室は、基本的な形状は通常の加圧室10と同じであり、吐出孔面4-2側に吐出孔8を配置しなくてもよいし、吐出孔8を配置してもよい。 The common flow channel located at the end in the second direction is either the first common flow channel 20 or the second common flow channel 24, and the pressurized chamber row 11A to be supplied or recovered becomes one row, and therefore There is a possibility that the discharge characteristics of the discharge from the pressurization chambers 10 belonging to the one pressurization chamber row 11 </ b> A vary with respect to the discharge characteristics from the other pressurization chambers 10. Therefore, the pressurizing chambers 10 belonging to the pressurizing chamber row 11A are dummy pressurizing chambers that are not used for printing. The dummy pressurizing chamber has the same basic shape as the normal pressurizing chamber 10, and the discharge hole 8 may not be disposed on the discharge hole surface 4-2 side, or the discharge hole 8 may be disposed. Good.
 上述のように、第2方向の両端に位置する加圧室列11Aに属する加圧室10をダミー加圧室とすれば、第2方向の両端から2番目に位置する加圧室列11Aに属する加圧室10に液体を供給する第1共通流路20が他の通常の第1共通流路20と同様に、2列の加圧室列11Aに液体を供給するものとなる。また、第2方向の両端から2番目に位置する加圧室列11Aに属する加圧室10の液体を回収する第2共通流路24が他の通常の第2共通流路24と同様に、2列の加圧室列11Aの液体を回収するものとなる。このため、吐出特性の差が生じ難くなる。 As described above, if the pressurizing chamber 10 belonging to the pressurizing chamber row 11A located at both ends in the second direction is a dummy pressurizing chamber, the pressurizing chamber row 11A located second from both ends in the second direction is used. The first common flow path 20 for supplying the liquid to the pressure chamber 10 to which it belongs supplies liquid to the two pressure chamber rows 11A in the same manner as other normal first common flow paths 20. In addition, the second common flow path 24 for recovering the liquid in the pressurization chamber 10 belonging to the pressurization chamber row 11A located second from both ends in the second direction is the same as other normal second common flow paths 24. The liquid in the two rows of pressurizing chambers 11A is collected. For this reason, a difference in ejection characteristics is less likely to occur.
 第2方向の端から2番目に位置する吐出孔列9Aに属する吐出孔8のうち、第2方向の端に近い8個の吐出孔8は、第2方向の間隔が360dpiとなっていないので、その位置には吐出孔8を設けず、対応する位置にある加圧室10をダミー加圧室としてもよい。 Of the discharge holes 8 belonging to the discharge hole row 9A located second from the end in the second direction, the eight discharge holes 8 close to the end in the second direction are not 360 dpi apart. The discharge hole 8 is not provided at that position, and the pressurizing chamber 10 at the corresponding position may be a dummy pressurizing chamber.
 第2流路部材6は、第1流路部材4の加圧室面4-1に接合されており、第1共通流路20に液体を供給する第1統合流路22と、第2共通流路24の液体を回収する第2統合流路26とを有している。第2流路部材6の厚さは、第1流路部材4よりも厚く、5~30mm程度である。 The second flow path member 6 is joined to the pressurizing chamber surface 4-1 of the first flow path member 4, and has a first common flow path 22 for supplying a liquid to the first common flow path 20 and a second common flow path. And a second integrated flow path 26 for recovering the liquid in the flow path 24. The thickness of the second flow path member 6 is thicker than that of the first flow path member 4 and is about 5 to 30 mm.
 第2流路部材6は、第1流路部材4の加圧室面4-1の圧電アクチュエータ基板40が接続されていない領域で接合されている。より具体的には、圧電アクチュエータ基板40を囲むように接合されている。このようにすることで、圧電アクチュエータ基板40に、吐出した液体の一部がミストとなって付着するのを抑制できる。また、第1流路部材4を外周で固定することになるので、第1流路部材4が変位素子50の駆動にともなって振動し、共振などが生じるのを抑制できる。 The second flow path member 6 is joined in a region where the piezoelectric actuator substrate 40 of the pressure chamber surface 4-1 of the first flow path member 4 is not connected. More specifically, the piezoelectric actuator substrate 40 is joined so as to surround it. By doing in this way, it can suppress that a part of discharged liquid adheres to the piezoelectric actuator board | substrate 40 as mist. In addition, since the first flow path member 4 is fixed on the outer periphery, it is possible to suppress the first flow path member 4 from vibrating due to the driving of the displacement element 50 and causing resonance or the like.
 また、第2流路部材6には、貫通孔6cが上下に貫通している。貫通孔6cは、圧電アクチュエータ基板40を駆動する駆動信号を伝達するFPC(Flexible Printed Circuit)などの信号伝達部が通される。なお、貫通孔6cの第1流路部材4側は、短手方向の幅が広くなっている拡幅部6caとなっており、圧電アクチュエータ基板40から短手方向の両側に伸びる信号伝達部は、拡幅部6caで曲げられて上方に向かい、貫通孔6を抜ける。なお、拡幅部6caに広がる部分の凸部は、信号伝達部を傷つけるおそれがあるので、R形状にしておくのが好ましい。 In addition, the second flow path member 6 has a through hole 6c extending vertically. The through hole 6c is passed through a signal transmission unit such as FPC (Flexible Printed Circuit) that transmits a drive signal for driving the piezoelectric actuator substrate 40. The first flow path member 4 side of the through hole 6c is a widened portion 6ca having a wide width in the short direction, and a signal transmission portion extending from the piezoelectric actuator substrate 40 to both sides in the short direction is It is bent by the widened portion 6 ca and goes upward, and passes through the through hole 6. In addition, since the convex part of the part which spreads in the wide part 6ca may damage a signal transmission part, it is preferable to make it R shape.
 第1統合流路22を、第1流路部材4とは別の、第1流路部材4より厚い第2流路部材6に配置することで、第1統合流路22の断面積を大きくすることができ、それにより第1統合流路22と第1共通流路20とが繋がっている位置の差による圧力損失の差を小さくできる。第1統合流路22の流路抵抗は、第1共通流路20の1/100以下にするのが好ましい。ここで、第1統合流路22の流路抵抗とは、より正確には第1統合流路22のうちで、第1共通流路20と繋がっている範囲の流路抵抗のことである。 By disposing the first integrated flow path 22 in the second flow path member 6 which is different from the first flow path member 4 and is thicker than the first flow path member 4, the cross-sectional area of the first integrated flow path 22 is increased. Accordingly, a difference in pressure loss due to a difference in position where the first integrated flow path 22 and the first common flow path 20 are connected can be reduced. The channel resistance of the first integrated channel 22 is preferably 1/100 or less of the first common channel 20. Here, the channel resistance of the first integrated channel 22 is more precisely the channel resistance in the range connected to the first common channel 20 in the first integrated channel 22.
 第2統合流路26を、第1流路部材4とは別の、第1流路部材4より厚い第2流路部材6に配置することで、第2統合流路26の断面積を大きくすることができ、それにより第2統合流路26と第2共通流路24とが繋がっている位置の差による圧力損失の差を小さくできる。第2統合流路26の流路抵抗は、第2共通流路24の1/100以下にするのが好ましい。ここで、第2統合流路26の流路抵抗とは、より正確には第2統合流路26のうちで、第1統合流路22と繋がっている範囲の流路抵抗のことである。 By disposing the second integrated flow path 26 in the second flow path member 6 that is different from the first flow path member 4 and is thicker than the first flow path member 4, the cross-sectional area of the second integrated flow path 26 is increased. Accordingly, the difference in pressure loss due to the difference in the position where the second integrated channel 26 and the second common channel 24 are connected can be reduced. The channel resistance of the second integrated channel 26 is preferably set to 1/100 or less of the second common channel 24. Here, the channel resistance of the second integrated channel 26 is more precisely the channel resistance in the range connected to the first integrated channel 22 in the second integrated channel 26.
 第1統合流路22を第2流路部材6の短手方向の一方の端に配置し、第2統合流路26を第2流路部材6の短手方向の他方の端に配置し、それぞれの流路を第1流路部材4側に向かわせて、それぞれ第1共通流路20および第2共通流路24と繋げる構造にする。このような構造にすることで、第1統合流路22および第2統合流路26の断面積を大きくして、流路抵抗を小さくすることができる。またこのような構造にすることで、第1流路部材4は、外周が第2流路部材6で固定されるので剛性を高くできる。さらに、このような構造にすることで、信号伝達部の通る貫通孔6cを設けることができる。 The first integrated flow path 22 is disposed at one end of the second flow path member 6 in the short direction, the second integrated flow path 26 is disposed at the other end of the second flow path member 6 in the short direction, Each of the flow paths is directed to the first flow path member 4 side so as to be connected to the first common flow path 20 and the second common flow path 24, respectively. With such a structure, the cross-sectional areas of the first integrated flow path 22 and the second integrated flow path 26 can be increased, and the flow path resistance can be decreased. Moreover, since the outer periphery is fixed by the 2nd flow path member 6 by setting it as such a structure, the 1st flow path member 4 can make rigidity high. Furthermore, with such a structure, the through hole 6c through which the signal transmission unit passes can be provided.
 第2流路部材6は、第2流路部材のプレート6aと6bとが積層されて構成されている。プレート6bの上面には、第1統合流路22のうち第2方向に伸びている流路抵抗の低い部分である第1統合流路本体22aとなる溝と、第2統合流路26のうち第2方向に伸びている流路抵抗の低い部分である第2統合流路本体26aとなる溝が配置されている。 The second flow path member 6 is configured by laminating plates 6a and 6b of the second flow path member. On the upper surface of the plate 6b, a groove serving as a first integrated flow path body 22a, which is a portion of the first integrated flow path 22 extending in the second direction and having a low flow resistance, and a second integrated flow path 26 A groove serving as a second integrated flow path body 26a, which is a portion having a low flow resistance extending in the second direction, is disposed.
 第1統合流路本体22aとなる溝から、下方(第1流路部材4の方向)に向かって複数の第1接続流路22bが伸びており、加圧室面4-1上に開口している第1共通流路の開口20aに繋がっている。各第1接続流路22bの間は仕切り6baで区切られている(つまり、第1接続流路22bの第1共通流路20側は分岐している)。これにより、第2流路部材6と第1流路部材4との接続の剛性を高くできる。さらに、第2方向において、仕切り6baの長さは、第1接続流路22bの長さより長くなっていることで、第2流路部材6と第1流路部材4との接続の剛性をより高くできる。 A plurality of first connection flow paths 22b extend downward (in the direction of the first flow path member 4) from the groove serving as the first integrated flow path body 22a, and open on the pressurizing chamber surface 4-1. Connected to the opening 20a of the first common flow path. The first connection flow paths 22b are separated by a partition 6ba (that is, the first common flow path 20 side of the first connection flow paths 22b is branched). Thereby, the rigidity of the connection between the second flow path member 6 and the first flow path member 4 can be increased. Furthermore, in the second direction, the length of the partition 6ba is longer than the length of the first connection channel 22b, so that the rigidity of the connection between the second channel member 6 and the first channel member 4 is further increased. Can be high.
 第2統合流路本体26aとなる溝から、下方(第1流路部材4の方向)に向かって複数の第2接続流路26bが伸びており、加圧室面4-1上に開口している第2共通流路の開口24aに繋がっている。各第2接続流路26bの間は仕切り6bbで区切られている(つまり、第2接続流路26bの第2共通流路24側は分岐している)。これにより、第2流路部材6と第1流路部材4との接続の剛性を高くできる。さらに、第2方向において、仕切り6bbの長さは、第2続流路26bの長さより長くなっていることで、第2流路部材6と第1流路部材4との接続の剛性をより高くできる。 A plurality of second connection flow paths 26b extend downward (in the direction of the first flow path member 4) from the groove serving as the second integrated flow path body 26a, and open on the pressurizing chamber surface 4-1. Connected to the opening 24a of the second common flow path. Each second connection flow path 26b is partitioned by a partition 6bb (that is, the second common flow path 24 side of the second connection flow path 26b is branched). Thereby, the rigidity of the connection between the second flow path member 6 and the first flow path member 4 can be increased. Furthermore, in the second direction, the length of the partition 6bb is longer than the length of the second connecting flow path 26b, so that the rigidity of the connection between the second flow path member 6 and the first flow path member 4 is further increased. Can be high.
 プレート6aには、第1統合流路22の第2の方向の両端それぞれに開口22c、22dが設けられている。プレート6aには、第2統合流路26の第2の方向の両端それぞれに開口26c、26dが設けられている。液体の入っていない液体吐出ヘッド2に液体を供給するとき、第1統合流路22内の液体が外部に排出され易いように、一方の開口(例えば開口22c)から液体を供給し、第1流路部材4に液体を供給するとともに、空気および溢れた液体を他の開口(例えば22d)から排出することで、第1流路部材4に気体が入り込み難くできる。第2統合流路26についても同様に、一方の開口(例えば開口26c)から液体を供給し、他方の開口(例えば開口26d)から液体を排出するようにすればよい。 The plate 6a is provided with openings 22c and 22d at both ends in the second direction of the first integrated flow path 22, respectively. The plate 6 a is provided with openings 26 c and 26 d at both ends in the second direction of the second integrated flow channel 26. When supplying a liquid to the liquid discharge head 2 that does not contain liquid, the liquid is supplied from one opening (for example, the opening 22c) so that the liquid in the first integrated flow path 22 is easily discharged to the outside. While supplying the liquid to the flow path member 4 and discharging the air and the overflowing liquid from another opening (for example, 22d), it is possible to make it difficult for the gas to enter the first flow path member 4. Similarly, the second integrated channel 26 may be configured such that liquid is supplied from one opening (for example, the opening 26c) and liquid is discharged from the other opening (for example, the opening 26d).
 印刷をする場合の、液体の供給および回収にはいくつかの方法がある。一つは、第1統合流路22に供給した液体のすべてが、第1流路部材4に入り、さらに第2統合流路26入って外部に排出される。この際、第2統合流路26へは外部から液体は供給されない。この場合さらに、2つの開口22c、22dから液体を供給し、2つの開口26c、26dから回収する方法と、開口22c、22dのどちらか一方から液体を供給し、他方は閉じておき、開口26c、26dのどちらか一方から液体を回収し、他方は閉じておく方法があり、さらに、この2つの組み合わせを逆にした方法がある。圧力損失による圧力の差を小さくするには、2つの開口から供給し、2つの開口から回収するのが好ましいが、液体を給排するチューブの接続や、圧力の制御が煩雑になる。1つの開口から供給し、1つの開口から回収すると、接続や圧力の制御が簡単になる。その場合、供給と回収は、第2方向に関して反対側の位置にある開口を組にして行なえば、圧力損失の影響が相殺するようになるので好ましい。具体的には、開口22cから供給し開口26dから回収する、あるいは開口22dから供給し開口26cから回収するようにすればよい。 There are several methods for supplying and collecting liquid when printing. One is that all of the liquid supplied to the first integrated flow path 22 enters the first flow path member 4 and further enters the second integrated flow path 26 and is discharged to the outside. At this time, no liquid is supplied to the second integrated flow channel 26 from the outside. In this case, the liquid is supplied from the two openings 22c and 22d and recovered from the two openings 26c and 26d, the liquid is supplied from one of the openings 22c and 22d, the other is closed, and the opening 26c is closed. 26d, there is a method in which the liquid is recovered from one of them and the other is closed, and there is a method in which the combination of the two is reversed. In order to reduce the difference in pressure due to pressure loss, it is preferable to supply from two openings and collect from two openings. However, connection of a tube for supplying and discharging liquid and control of pressure become complicated. Supplying from one opening and collecting from one opening simplifies connection and control of pressure. In that case, it is preferable that the supply and the recovery are performed in pairs with the openings at positions opposite to each other in the second direction because the influence of the pressure loss is offset. Specifically, it may be supplied from the opening 22c and recovered from the opening 26d, or supplied from the opening 22d and recovered from the opening 26c.
 給排の他の方法は、第1統合流路22の一方の開口(例えば22c)から液体を供給し、他方の開口(例えば22d)から回収し、第2統合流路26の一方の開口(例えば26d)から液体を供給し、他方の開口(例えば26c)から回収する。それぞれの給排の圧力を調節して、第1統合流路22の圧力が、第2統合流路26の圧力より高くなるようにすれば、第1流路部材4に液体が流れるようになる。このようにすると、各吐出孔8のメニスカスに加わる圧力の差は一番小さくなる。 Another method of supplying and discharging is to supply the liquid from one opening (for example, 22c) of the first integrated flow path 22, collect the liquid from the other opening (for example, 22d), and to open one opening ( For example, liquid is supplied from 26d) and recovered from the other opening (for example, 26c). If the pressure of each supply / discharge is adjusted so that the pressure of the first integrated flow path 22 is higher than the pressure of the second integrated flow path 26, the liquid flows through the first flow path member 4. . In this way, the difference in pressure applied to the meniscus of each discharge hole 8 is the smallest.
 上述の2つの方法を組み合わせて、第1統合流路22に対して給排を行なって、第2統合流路26からは回収だけにしてもよい。逆に、第1統合流路22に対しては供給だけを行ない、第2統合流路26には給排を行なってもよい。 The above-described two methods may be combined to supply / discharge the first integrated flow path 22 and only recover from the second integrated flow path 26. Conversely, only the first integrated flow path 22 may be supplied, and the second integrated flow path 26 may be supplied and discharged.
 またさらに、以上で説明した供給と回収の関係を逆にしてもよい。例えば、第2統合流路26の2つの開口26c、26dの両方から液体を供給し、第2排出流路22の2つの開口22c、22dの両方から液体を回収してもよい。 Furthermore, the relationship between supply and recovery described above may be reversed. For example, the liquid may be supplied from both of the two openings 26 c and 26 d of the second integrated flow path 26, and the liquid may be recovered from both of the two openings 22 c and 22 d of the second discharge flow path 22.
 第1統合流路22および第2統合流路26には、ダンパを設けて、液体の吐出量の変動に対して液体の供給、あるいは排出が安定するようにしてもよい。また、第1統合流路22および第2統合流路26内に、フィルタを設けることにより、異物や気泡が、第1流路部材4に入り込み難くしてもよい。 A damper may be provided in the first integrated flow path 22 and the second integrated flow path 26 so that the supply or discharge of the liquid is stabilized against fluctuations in the discharge amount of the liquid. Further, by providing a filter in the first integrated flow path 22 and the second integrated flow path 26, foreign substances and bubbles may be difficult to enter the first flow path member 4.
 第1流路部材4の上面である加圧室面4-1には、変位素子50を含む圧電アクチュエータ基板40が接合されており、各変位素子50が加圧室10上に位置するように配置されている。圧電アクチュエータ基板40は、加圧室10によって形成された加圧室群とほぼ同一の形状の領域を占有している。また、各加圧室10の開口は、流路部材4の加圧室面4-1に圧電アクチュエータ基板40が接合されることで閉塞される。圧電アクチュエータ基板40は、ヘッド本体2aと同じ方向に長い長方形状である。また、圧電アクチュエータ基板40には、各変位素子50に信号を供給するためのFPCなどの信号伝達部が接続されている。第2流路部材6には、中央で、上下に貫通している貫通孔6cが配置されており、信号伝達部は貫通孔6cを通って制御部88と電気的に繋がれる。信号伝達部は、圧電アクチュエータ基板40の一方の長辺の端から他方の長辺の端に向かうように短手方向に伸びる形状にし、信号伝達部に配置される配線が短手方向に沿って伸び、長手方向に並ぶようにすれば、配線間の距離を大きくしやすくなり、好ましい。 A piezoelectric actuator substrate 40 including a displacement element 50 is bonded to the pressurizing chamber surface 4-1, which is the upper surface of the first flow path member 4, so that each displacement element 50 is positioned on the pressurizing chamber 10. Has been placed. The piezoelectric actuator substrate 40 occupies a region having substantially the same shape as the pressurizing chamber group formed by the pressurizing chamber 10. Further, the opening of each pressurizing chamber 10 is closed by bonding the piezoelectric actuator substrate 40 to the pressurizing chamber surface 4-1 of the flow path member 4. The piezoelectric actuator substrate 40 has a rectangular shape that is long in the same direction as the head body 2a. The piezoelectric actuator substrate 40 is connected to a signal transmission unit such as an FPC for supplying a signal to each displacement element 50. The second flow path member 6 is provided with a through hole 6c penetrating vertically at the center, and the signal transmission unit is electrically connected to the control unit 88 through the through hole 6c. The signal transmission unit has a shape extending in the short direction from one long side end of the piezoelectric actuator substrate 40 toward the other long side end, and the wiring disposed in the signal transmission unit extends along the short direction. Extending and arranging in the longitudinal direction is preferable because the distance between the wirings can be easily increased.
 圧電アクチュエータ基板40の上面における各加圧室10に対向する位置には個別電極44がそれぞれ配置されている。 Individual electrodes 44 are respectively arranged at positions facing the pressurizing chambers 10 on the upper surface of the piezoelectric actuator substrate 40.
 流路部材4は、複数のプレートが積層された積層構造を有している。これらのプレートは、流路部材4の加圧室面4-1側から順に、キャビティプレート4a、供給プレート4b、マニホールドプレート4c~e、回収プレート4fおよびノズルプレート4gである。これらのプレートには多数の孔や溝が形成されている。孔や溝は、例えば、各プレートを金属で作製し、エッチングで形成できる。各プレートの厚さは10~300μm程度であることにより、形成する孔の形成精度を高くできる。マニホールドプレート4c~eは、同じ形状をしており、1枚のプレートで構成してもよいが、孔を精度よく形成するため、3枚のプレートで構成している。各プレートは、これらの孔が互いに連通して第1共通流路20などの流路を構成するように、位置合わせして積層されている。 The flow path member 4 has a laminated structure in which a plurality of plates are laminated. These plates are a cavity plate 4a, a supply plate 4b, manifold plates 4c to e, a recovery plate 4f and a nozzle plate 4g in this order from the pressurizing chamber surface 4-1 side of the flow path member 4. Many holes and grooves are formed in these plates. For example, the holes and grooves can be formed by etching each plate made of metal. Since the thickness of each plate is about 10 to 300 μm, the formation accuracy of the holes to be formed can be increased. The manifold plates 4c to 4e have the same shape and may be configured by one plate, but are configured by three plates in order to form the holes with high accuracy. Each plate is aligned and stacked such that these holes communicate with each other to form a flow path such as the first common flow path 20.
 平板状の流路部材4の加圧室面4-1には、加圧室本体10aが開口しており、圧電アクチュエータ基板40が接合されている。また、加圧室面4-1には、第1共通流路20に液体を供給する開口20a、および第2共通流路24から液体を回収する開口24aが開口している。流路部材4の、加圧室面4-1と反対側の面である吐出孔面4-2には吐出孔8が開口している。 The pressurizing chamber main body 10a is opened on the pressurizing chamber surface 4-1 of the flat plate-like channel member 4, and the piezoelectric actuator substrate 40 is joined thereto. The pressurizing chamber surface 4-1 has an opening 20 a for supplying a liquid to the first common flow path 20 and an opening 24 a for recovering the liquid from the second common flow path 24. A discharge hole 8 is opened in a discharge hole surface 4-2 on the opposite side of the pressure chamber surface 4-1 of the flow path member 4.
 液体を吐出する構造としては、加圧室10と吐出孔8とがある。加圧室10は、変位素子50に面している加圧室本体10aと、加圧室本体10aより断面積が小さいディセンダ10bから成っている。加圧室本体10aは、キャビティプレート4aに形成されており、ディセンダ10bは、プレート4b~fに形成された孔が重ねられ、さらにノズルプレート4gで(吐出孔8以外の部分を)塞がれて成っている。 There are a pressurizing chamber 10 and a discharge hole 8 as a structure for discharging the liquid. The pressurizing chamber 10 includes a pressurizing chamber main body 10a facing the displacement element 50 and a descender 10b having a smaller sectional area than the pressurizing chamber main body 10a. The pressurizing chamber main body 10a is formed in the cavity plate 4a, and the descender 10b is overlapped with holes formed in the plates 4b to 4f, and is further blocked by the nozzle plate 4g (parts other than the discharge holes 8). It is made up of.
 加圧室本体10aには、第1個別流路12が繋がっており、第1個別流路12は、第1共通流路20に繋がっている。第1個別流路12は供給プレート4bを貫通する円形状の孔であり、液体は上下方向に流れる。第1共通流路20はプレート4c~eに形成された孔が重ねられ、さらに上側を供給プレート4bで、下側をノズルプレート4gで塞がれて成っている。 The first individual channel 12 is connected to the pressurizing chamber body 10 a, and the first individual channel 12 is connected to the first common channel 20. The first individual flow path 12 is a circular hole that penetrates the supply plate 4b, and the liquid flows in the vertical direction. The first common flow path 20 is formed by overlapping holes formed in the plates 4c to 4e, and is further closed by the supply plate 4b on the upper side and the nozzle plate 4g on the lower side.
 ディセンダ10bには、第2個別流路14が繋がっており、第2個別流路14は、第2共通流路24に繋がっている。第2個別流路14は回収プレート4fを貫通している貫通溝であり、液体は溝に沿って流れる。第2共通流路24はプレート4c~hに形成された孔が重ねられ、さらに上側を供給プレート4bで、下側をノズルプレート4gで塞がれて成っている。 The descender 10 b is connected to the second individual flow path 14, and the second individual flow path 14 is connected to the second common flow path 24. The second individual flow path 14 is a through groove penetrating the recovery plate 4f, and the liquid flows along the groove. The second common flow path 24 is formed by overlapping holes formed in the plates 4c to 4h, and is further closed by the supply plate 4b on the upper side and the nozzle plate 4g on the lower side.
 液体の流れについて、まとめると、第1統合流路22に供給された液体は、第1共通流路20および第1個別流路12を順に通って加圧室10に入り、一部の液体は吐出孔8から吐出される。吐出されなかった液体は、第2個別流路14を通って、第2共通流路24に入った後、第2統合流路26に入り、ヘッド本体2の外部に排出される。 Regarding the liquid flow, the liquid supplied to the first integrated flow path 22 enters the pressurizing chamber 10 through the first common flow path 20 and the first individual flow path 12 in order, and a part of the liquid flows. It is discharged from the discharge hole 8. The liquid that has not been discharged passes through the second individual flow path 14, enters the second common flow path 24, enters the second integrated flow path 26, and is discharged outside the head body 2.
 圧電アクチュエータ基板40は、圧電体である2枚の圧電セラミック層40a、40bからなる積層構造を有している。これらの圧電セラミック層40a、40bはそれぞれ20μm程度の厚さを有している。すなわち、圧電アクチュエータ基板40の圧電セラミック層40aの上面から圧電セラミック層40bの下面までの厚さは40μm程度である。圧電セラミック層40aと圧電セラミック層40bの厚さの比は、3:7~7:3、好ましく4:6~6:4にされる。圧電セラミック層40a、40bのいずれの層も複数の加圧室10を跨ぐように延在している。これらの圧電セラミック層40a、40bは、例えば、強誘電性を有する、チタン酸ジルコン酸鉛(PZT)系、NaNbO系、BaTiO系、(BiNa)NbO系、BiNaNb15系などのセラミックス材料からなる。 The piezoelectric actuator substrate 40 has a laminated structure composed of two piezoelectric ceramic layers 40a and 40b that are piezoelectric bodies. Each of these piezoelectric ceramic layers 40a and 40b has a thickness of about 20 μm. That is, the thickness from the upper surface of the piezoelectric ceramic layer 40a of the piezoelectric actuator substrate 40 to the lower surface of the piezoelectric ceramic layer 40b is about 40 μm. The thickness ratio between the piezoelectric ceramic layer 40a and the piezoelectric ceramic layer 40b is set to 3: 7 to 7: 3, preferably 4: 6 to 6: 4. Both of the piezoelectric ceramic layers 40 a and 40 b extend so as to straddle the plurality of pressure chambers 10. The piezoelectric ceramic layers 40a, 40b may, for example, strength with a dielectric, lead zirconate titanate (PZT), NaNbO 3 system, BaTiO 3 system, (BiNa) NbO 3 system, such as BiNaNb 5 O 15 system Made of ceramic material.
 圧電アクチュエータ基板40は、Ag-Pd系などの金属材料からなる共通電極42およびAu系などの金属材料からなる個別電極44を有している。共通電極42の厚さは2μm程度であり、個別電極44の厚さは、1μm程度である。 The piezoelectric actuator substrate 40 has a common electrode 42 made of a metal material such as Ag—Pd and an individual electrode 44 made of a metal material such as Au. The common electrode 42 has a thickness of about 2 μm, and the individual electrode 44 has a thickness of about 1 μm.
 個別電極44は、圧電アクチュエータ基板40の上面における各加圧室10に対向する位置に、それぞれ配置されている。個別電極44は、平面形状が加圧室本体10aより一回り小さく、加圧室本体10aとほぼ相似な形状を有している個別電極本体44aと、個別電極本体44aから引き出されている引出電極44bとを含んでいる。引出電極44bの一端の、加圧室10と対向する領域外に引き出された部分には、接続電極46が形成されている。接続電極46は、例えば銀粒子などの導電性粒子を含んだ導電性樹脂であり、5~200μm程度の厚さで形成されている。また、接続電極46は、信号伝達部に設けられた電極と電気的に接合されている。 The individual electrodes 44 are disposed at positions facing the pressurizing chambers 10 on the upper surface of the piezoelectric actuator substrate 40, respectively. The individual electrode 44 has a planar shape slightly smaller than that of the pressurizing chamber main body 10a and has a shape substantially similar to the pressurizing chamber main body 10a, and an extraction electrode drawn from the individual electrode main body 44a. 44b. A connection electrode 46 is formed at a portion of one end of the extraction electrode 44 b that is extracted outside the region facing the pressurizing chamber 10. The connection electrode 46 is a conductive resin containing conductive particles such as silver particles, and is formed with a thickness of about 5 to 200 μm. The connection electrode 46 is electrically joined to an electrode provided in the signal transmission unit.
 詳細は後述するが、個別電極44には、制御部88から信号伝達部を通じて駆動信号が供給される。駆動信号は、印刷媒体Pの搬送速度と同期して一定の周期で供給される。 Although details will be described later, a drive signal is supplied to the individual electrode 44 from the control unit 88 through the signal transmission unit. The drive signal is supplied in a constant cycle in synchronization with the conveyance speed of the print medium P.
 共通電極42は、圧電セラミック層40aと圧電セラミック層40bとの間の領域に面方向のほぼ全面にわたって形成されている。すなわち、共通電極42は、圧電アクチュエータ基板40に対向する領域内のすべての加圧室10を覆うように延在している。共通電極42は、圧電セラミック層40a上に個別電極44からなる電極群を避ける位置に形成されている共通電極用表面電極(不図示)に、圧電セラミック層40aを貫通して形成された貫通導体を介して繋がっている。また、共通電極42は、共通電極用表面電を介して接地され、グランド電位に保持されている。共通電極用表面電極は、個別電極44と同様に、制御部88と直接あるいは間接的に接続されている。 The common electrode 42 is formed over substantially the entire surface in the region between the piezoelectric ceramic layer 40a and the piezoelectric ceramic layer 40b. That is, the common electrode 42 extends so as to cover all the pressurizing chambers 10 in the region facing the piezoelectric actuator substrate 40. The common electrode 42 is a through conductor formed by penetrating the piezoelectric ceramic layer 40a on a common electrode surface electrode (not shown) formed on the piezoelectric ceramic layer 40a so as to avoid the electrode group composed of the individual electrodes 44. Are connected through. Further, the common electrode 42 is grounded via the common electrode surface electricity and held at the ground potential. Similar to the individual electrode 44, the common electrode surface electrode is directly or indirectly connected to the controller 88.
 圧電セラミック層40aの個別電極44と共通電極42とに挟まれている部分は、厚さ方向に分極されており、個別電極44に電圧を印加すると変位する、ユニモルフ構造の変位素子50となっている。より具体的には、個別電極44を共通電極42と異なる電位にして圧電セラミック層40aに対してその分極方向に電界を印加したとき、この電界が印加された部分が、圧電効果により歪む活性部として働く。この構成において、電界と分極とが同方向となるように、制御部88により個別電極44を共通電極42に対して正または負の所定電位にすると、圧電セラミック層40aの電極に挟まれた部分(活性部)が、面方向に収縮する。一方、非活性層の圧電セラミック層40bは電界の影響を受けないため、自発的には縮むことがなく活性部の変形を規制しようとする。この結果、圧電セラミック層40aと圧電セラミック層40bとの間で分極方向への歪みに差が生じて、圧電セラミック層40bは加圧室10側へ凸となるように変形(ユニモルフ変形)する。 A portion sandwiched between the individual electrode 44 and the common electrode 42 of the piezoelectric ceramic layer 40 a is polarized in the thickness direction, and becomes a unimorph-structured displacement element 50 that is displaced when a voltage is applied to the individual electrode 44. Yes. More specifically, when an electric field is applied in the polarization direction to the piezoelectric ceramic layer 40a by setting the individual electrode 44 to a potential different from that of the common electrode 42, an active portion where the electric field is applied is distorted by the piezoelectric effect. Work as. In this configuration, when the individual electrode 44 is set to a predetermined positive or negative potential with respect to the common electrode 42 by the control unit 88 so that the electric field and the polarization are in the same direction, a portion sandwiched between the electrodes of the piezoelectric ceramic layer 40a. (Active part) contracts in the surface direction. On the other hand, the piezoelectric ceramic layer 40b, which is an inactive layer, is not affected by an electric field, so that it does not spontaneously shrink and attempts to restrict deformation of the active portion. As a result, there is a difference in strain in the polarization direction between the piezoelectric ceramic layer 40a and the piezoelectric ceramic layer 40b, and the piezoelectric ceramic layer 40b is deformed so as to be convex toward the pressurizing chamber 10 (unimorph deformation).
 続いて、液体の吐出動作について、説明する。制御部88からの制御でドライバICなどを介して、個別電極44に供給される駆動信号により、変位素子50が駆動(変位)させられる。本実施形態では、様々な駆動信号で液体を吐出させることができるが、ここでは、いわゆる引き打ち駆動方法について説明する。 Subsequently, the liquid discharge operation will be described. The displacement element 50 is driven (displaced) by a drive signal supplied to the individual electrode 44 through a driver IC or the like under the control of the control unit 88. In the present embodiment, liquid can be ejected by various driving signals. Here, a so-called strike driving method will be described.
 あらかじめ個別電極44を共通電極42より高い電位(以下、高電位と称す)にしておき、吐出要求がある毎に個別電極44を共通電極42と一旦同じ電位(以下、低電位と称す)とし、その後所定のタイミングで再び高電位とする。これにより、個別電極44が低電位になるタイミングで、圧電セラミック層40a、40bが元の(平らな)形状に戻り(始め)、加圧室10の容積が初期状態(両電極の電位が異なる状態)と比較して増加する。これにより、加圧室10内の液体に負圧が与えられる。そうすると、加圧室10内の液体が固有振動周期で振動し始める。具体的には、最初、加圧室10の体積が増加し始め、負圧は徐々に小さくなっていく。次いで加圧室10の体積は最大になり、圧力はほぼゼロとなる。次いで加圧室10の体積は減少し始め、圧力は高くなっていく。その後、圧力がほぼ最大になるタイミングで、個別電極44を高電位にする。そうすると最初に加えた振動と、次に加えた振動とが重なり、より大きい圧力が液体に加わる。この圧力がディセンダ内を伝搬し、吐出孔8から液体を吐出させる。 The individual electrode 44 is set to a potential higher than the common electrode 42 (hereinafter referred to as a high potential) in advance, and the individual electrode 44 is once set to the same potential as the common electrode 42 (hereinafter referred to as a low potential) every time there is a discharge request. Thereafter, the potential is set again at a predetermined timing. Thereby, at the timing when the individual electrode 44 becomes low potential, the piezoelectric ceramic layers 40a and 40b return to the original (flat) shape (begin), and the volume of the pressurizing chamber 10 is in the initial state (the potentials of both electrodes are different) Increase compared to the state). As a result, a negative pressure is applied to the liquid in the pressurizing chamber 10. Then, the liquid in the pressurizing chamber 10 starts to vibrate with the natural vibration period. Specifically, first, the volume of the pressurizing chamber 10 begins to increase, and the negative pressure gradually decreases. Next, the volume of the pressurizing chamber 10 becomes maximum and the pressure becomes almost zero. Next, the volume of the pressurizing chamber 10 begins to decrease, and the pressure increases. Thereafter, the individual electrode 44 is set to a high potential at a timing at which the pressure becomes substantially maximum. Then, the first applied vibration overlaps with the next applied vibration, and a larger pressure is applied to the liquid. This pressure propagates through the descender and discharges the liquid from the discharge hole 8.
 つまり、高電位を基準として、一定期間低電位とするパルスの駆動信号を個別電極44に供給することで、液滴を吐出できる。このパルス幅は、加圧室10の液体の固有振動周期の半分の時間であるAL(Acoustic Length)とすると、原理的には、液体の吐出速度および吐出量を最大にできる。加圧室10の液体の固有振動周期は、液体の物性、加圧室10の形状の影響が大きいが、それ以外に、圧電アクチュエータ基板40の物性や、加圧室10に繋がっている流路の特性からの影響も受ける。 That is, a droplet can be ejected by supplying to the individual electrode 44 a pulse driving signal that is set to a low potential for a certain period of time with reference to a high potential. If this pulse width is AL (Acoustic Length), which is half of the natural vibration period of the liquid in the pressurizing chamber 10, in principle, the liquid discharge speed and amount can be maximized. The natural vibration period of the liquid in the pressurizing chamber 10 is greatly influenced by the physical properties of the liquid and the shape of the pressurizing chamber 10, but besides that, the physical properties of the piezoelectric actuator substrate 40 and the flow path connected to the pressurizing chamber 10 Also affected by the characteristics of.
 なお、パルス幅は、吐出される液滴を1つにまとめるようにするなど、他に考慮する要因もあるため、実際は、0.5AL~1.5AL程度の値にされる。また、パルス幅は、ALから外れた値にすることで、吐出量を少なくすることができるため、吐出量を少なくするためにALから外れた値にされる。 Note that the pulse width is actually set to a value of about 0.5 AL to 1.5 AL because there are other factors to consider, such as combining the ejected droplets into one. Further, since the discharge amount can be reduced by setting the pulse width to a value outside of AL, the pulse width is set to a value outside of AL in order to reduce the discharge amount.
 本発明の吐出孔8の配置について説明する。図6は、本発明の一実施形態に係る吐出孔8の配置である。図6では、吐出孔8の行上および列上の位置が分かり易いように、行および列に区切ったマス目の中で、吐出孔8が存在する位置を塗りつぶしている。以降の説明において、x列目、y行目の位置を(x、y)と表すことがある。図6で示されている第1方向および第2方向は、図3で示されている第1方向および第2方向と、それぞれ同じ方向である。図6では、図の縦方向と横方向とで拡大率が異なっていて、横方向の拡大率が大きいため、第1方向と第2方向との成す角度が、図3とは異なっているように見える。 The arrangement of the discharge holes 8 of the present invention will be described. FIG. 6 shows the arrangement of the discharge holes 8 according to an embodiment of the present invention. In FIG. 6, the positions where the discharge holes 8 exist are filled in the squares divided into rows and columns so that the positions of the discharge holes 8 on the rows and columns can be easily understood. In the following description, the position of the xth column and the yth row may be represented as (x, y). The first direction and the second direction shown in FIG. 6 are the same as the first direction and the second direction shown in FIG. In FIG. 6, since the enlargement ratio is different between the vertical direction and the horizontal direction in the figure, and the enlargement ratio in the horizontal direction is large, the angle formed by the first direction and the second direction is different from FIG. Looks like.
 吐出孔8は、第2方向に沿っている16行の行上に配置されている。つまり、吐出孔8は、16行の吐出孔行9Bを構成している。また、各吐出孔行9Bにおいては、吐出孔8は第2方向に同じ間隔で並んでいる。さらに、吐出孔8全体でも、吐出孔8は第2方向に同じ間隔で並んでおり、その間隔は、各吐出孔行9Bにおける間隔の1/16となっている。 The discharge holes 8 are arranged on 16 rows along the second direction. That is, the discharge holes 8 constitute 16 discharge hole rows 9B. In each discharge hole row 9B, the discharge holes 8 are arranged at the same interval in the second direction. Furthermore, the discharge holes 8 are also arranged at the same interval in the second direction in the entire discharge hole 8, and the interval is 1/16 of the interval in each discharge hole row 9B.
 吐出孔行9Bは、吐出孔8が第2方向に等間隔に並んでいる行である。実際には吐出孔行9Bは、図6の左右にさらに、吐出孔8が連なっている。吐出孔行9Bは、16行存在しており、それらは第1方向に並んでいる。第1方向に並んでいる順に、1行目の行、2行目の行、・・・・16行目の行と呼ぶ。上述の実施形態では、各吐出孔行9Bの間の距離は同じになっているが、これは必ずしもその必要はない。各吐出孔行9B間の距離が異なっている場合、以下の説明では、その割合を保った状態で縮小した図などを用いて理解する必要がある。 The discharge hole row 9B is a row in which the discharge holes 8 are arranged at equal intervals in the second direction. Actually, the discharge hole row 9B is further connected with discharge holes 8 on the left and right in FIG. There are 16 discharge hole rows 9B, which are arranged in the first direction. Called the first row, the second row,..., The 16th row in the order arranged in the first direction. In the above-described embodiment, the distance between the discharge hole rows 9B is the same, but this is not necessarily required. When the distances between the respective discharge hole rows 9B are different, it is necessary to understand in the following description using a figure reduced in a state where the ratio is maintained.
 記録媒体は、ヘッド本体2aの短手方向に移動させながら記録を行なう。記録媒体上で第2方向に隣り合って着弾する液体は、第2方向に関して隣り合っている吐出孔8から吐出される。つまり、隣り合う列の吐出孔8から吐出された液体が、記録媒体上で隣り合う画素となる。 Recording is performed while moving the recording medium in the short direction of the head body 2a. The liquid that lands on the recording medium adjacent to the second direction is discharged from the discharge holes 8 adjacent to each other in the second direction. That is, the liquid ejected from the ejection holes 8 in the adjacent rows becomes the adjacent pixels on the recording medium.
 記録精度を高くするため、液体吐出ヘッド2は、記録媒体の搬送方向と第2方向とが直交するように設置するが、実際にはある程度の角度のずれが生じる。角度のずれがあった場合、隣り合っている画素間の距離のずれは、ずれの角度とそれらの画素を吐出した吐出孔8のヘッド本体2aの短手方向の距離に比例する。そのため、行方向に隣り合っている吐出孔8が、短手方向に離れて配置されていると、画素間の距離のずれは大きくなる。 In order to increase the recording accuracy, the liquid ejection head 2 is installed so that the conveyance direction of the recording medium and the second direction are orthogonal to each other, but in reality, a certain degree of angular deviation occurs. When there is an angle shift, the distance shift between adjacent pixels is proportional to the angle of the shift and the distance in the short direction of the head body 2a of the ejection hole 8 that ejected those pixels. For this reason, when the discharge holes 8 adjacent to each other in the row direction are arranged away from each other in the short side direction, the shift in the distance between the pixels becomes large.
 また、吐出孔8は、第1方向に並んで配置されており、吐出孔列9Aを構成している。さらに、吐出孔列9Aに沿って、加圧室10が並んでいる加圧室列11Aが構成されている。そして、加圧室列11Aの間に、加圧室列11Aに沿って、第1共通流路20および第2共通流路24が配置されている。第1共通流路20および第2共通流路24は、吐出に必要とされる液体を供給するとともに、インクの固形分などの沈降などが生じ難いように液体を流す必要があるので、ある程度以上の断面積が必要にある。なお、循環を行なわず、第2共通流路24が存在しないヘッド本体2aであっても、吐出する液体の供給は必要であり、第1共通流路20の断面積をある程度以上にする必要がある。 Further, the discharge holes 8 are arranged side by side in the first direction and constitute a discharge hole row 9A. Further, a pressurizing chamber row 11A in which the pressurizing chambers 10 are arranged along the discharge hole row 9A is configured. The first common flow path 20 and the second common flow path 24 are disposed between the pressurizing chamber rows 11A along the pressurizing chamber row 11A. Since the first common flow path 20 and the second common flow path 24 supply the liquid required for ejection and it is necessary to allow the liquid to flow so that the solid content of the ink does not easily settle down. The cross-sectional area is required. Even if the head body 2a does not circulate and does not have the second common flow path 24, it is necessary to supply the liquid to be discharged, and the cross-sectional area of the first common flow path 20 needs to be more than a certain level. is there.
 第2方向に対する第1方向の角度が小さくなると、第1共通流路20および第2共通流路24がヘッド本体2aを斜めに横切るようになり、断面積が小さくなってしまう。断面積を大きくするには、例えば、(1、1)、(2、2)、・・・(16、16)の各位置に吐出孔8を配置することが考えられる。しかし、このような配置では、(16、16)の行方向の隣が(17、1)になり、短手方向に15単位離れた配置になってしまう。このような配置は、16行の吐出孔配置において、最も離れた配置であり、ヘッド本体2aの設置角度ずれの影響が大きくなってしまう。 When the angle of the first direction with respect to the second direction becomes small, the first common flow path 20 and the second common flow path 24 obliquely cross the head body 2a, and the cross-sectional area becomes small. In order to increase the cross-sectional area, for example, it is conceivable to arrange the discharge holes 8 at positions (1, 1), (2, 2),... (16, 16). However, in such an arrangement, (16, 16) in the row direction is next to (17, 1), and the arrangement is 15 units away in the short direction. Such an arrangement is the most distant arrangement in the 16-row ejection hole arrangement, and the influence of the installation angle deviation of the head body 2a becomes large.
 そこで、16行目から1行目に直接戻るのではなく、間に吐出孔8を配置する。図6では、第2方向における、第2吐出孔8-2(46、16)と第3吐出孔8-3(49、1)との間には、第2配列9A-2に属する吐出孔8(47、8)および吐出孔8(48、9)が存在する。これにより、第2吐出孔8-2(46、16)と吐出孔8(47、8)との短手方向の距離は8単位、吐出孔8(48、9)と第3吐出孔8-3(49、1)との短手方向の距離は8単位と、上述した配置と比較して約半分の距離になっている。これにより、上述した配置と比較して、角度ずれに対する影響は約半分になる。また、第2方向に対する第1方向の角度もあまり小さくならないため、第1共通流路20および第2共通流路24の断面積を大きくできる。 Therefore, instead of returning directly from the 16th line to the 1st line, the discharge holes 8 are arranged between them. In FIG. 6, the discharge holes belonging to the second array 9A-2 are arranged between the second discharge holes 8-2 (46, 16) and the third discharge holes 8-3 (49, 1) in the second direction. 8 (47, 8) and discharge holes 8 (48, 9) are present. Accordingly, the distance in the short direction between the second discharge hole 8-2 (46, 16) and the discharge hole 8 (47, 8) is 8 units, and the discharge hole 8 (48, 9) and the third discharge hole 8- The distance in the short direction from 3 (49, 1) is 8 units, which is about a half of the distance as compared with the arrangement described above. Thereby, compared with the arrangement described above, the influence on the angle deviation is approximately halved. In addition, since the angle of the first direction with respect to the second direction is not so small, the cross-sectional areas of the first common channel 20 and the second common channel 24 can be increased.
 吐出孔8の配置は、次のようになっている。1行目の行に属する1つの吐出孔8に注目し、それを第1吐出孔8-1(33、1)とする。16行目の行に属する吐出孔8の中で、第1吐出孔8-1から距離が最も近いのは吐出孔8-A(30、16)であり、2番目が第2吐出孔8-2(46、16)、3番目が吐出孔8-B(14、16)、4番目が第4吐出孔8-4(62、16)である。第2吐出孔8-2から第4吐出孔8-4に向かう方向は第2方向と一致している。1行目の行に属していて、第1吐出孔8-1に対して第2方向側に位置している吐出孔8のうちで、第1吐出孔8-1からの距離が最も短い吐出孔8を第3吐出孔8-3とする。そうすると、第1~4吐出孔8-1~8-4は、第2方向に関して、第1吐出孔8-1、第2吐出孔8-2、第3吐出孔8-3、第4吐出孔8-4の順に配置されていることになる。 The arrangement of the discharge holes 8 is as follows. Attention is paid to one discharge hole 8 belonging to the first row, which is defined as a first discharge hole 8-1 (33, 1). Among the discharge holes 8 belonging to the 16th line, the discharge hole 8-A (30, 16) has the shortest distance from the first discharge hole 8-1, and the second is the second discharge hole 8-. 2 (46, 16), the third is the discharge hole 8-B (14, 16), and the fourth is the fourth discharge hole 8-4 (62, 16). The direction from the second discharge hole 8-2 toward the fourth discharge hole 8-4 coincides with the second direction. Of the discharge holes 8 belonging to the first line and positioned on the second direction side with respect to the first discharge hole 8-1, the discharge having the shortest distance from the first discharge hole 8-1. The hole 8 is referred to as a third discharge hole 8-3. Then, the first to fourth discharge holes 8-1 to 8-4 are the first discharge hole 8-1, the second discharge hole 8-2, the third discharge hole 8-3, and the fourth discharge hole in the second direction. They are arranged in the order of 8-4.
 2~15行目の行に属する吐出孔8は、第1吐出孔8-1から第4吐出孔8-4に向かう直線状の吐出孔列9Aに配置されている。吐出孔列9Aは、2~15行目の行の吐出孔8を一つずつ含んでいる。また、吐出孔列9Aは、第2方向に関して、第1吐出孔8-1から第2吐出孔8-2までの間に位置している吐出孔8からなる第1配列9A-1、第2吐出孔8-2から第3吐出孔8-3までの間に位置している吐出孔8からなる第2配列9A-2、第3吐出孔8-3から第4吐出孔8-4までの間に位置している吐出孔8からなる第3配列9A-3からなっている。なお、第1配列9A-1には、第1吐出孔8-1が含まれており、第3配列9A-3には、第4吐出孔8-4が含まれている。また、第2吐出孔8-2および第3吐出孔8-3は、ここで対象としている第1吐出孔8-1から第4吐出孔8-4に向かう直線状の吐出孔列9Aには含まれておらず、他の吐出孔列9Aに含まれている。また、第2配列9A-2は、属する吐出孔8の個数が1つであっても構わない。 The discharge holes 8 belonging to the second to fifteenth rows are arranged in a linear discharge hole row 9A from the first discharge hole 8-1 to the fourth discharge hole 8-4. The discharge hole column 9A includes the discharge holes 8 in the 2nd to 15th rows. Further, the discharge hole array 9A has a first array 9A-1, second discharge holes 8 that are located between the first discharge holes 8-1 and the second discharge holes 8-2 in the second direction. A second array 9A-2 composed of the discharge holes 8 located between the discharge holes 8-2 and the third discharge holes 8-3, and from the third discharge holes 8-3 to the fourth discharge holes 8-4. The third array 9A-3 is composed of the discharge holes 8 positioned between them. The first array 9A-1 includes a first discharge hole 8-1, and the third array 9A-3 includes a fourth discharge hole 8-4. Further, the second discharge hole 8-2 and the third discharge hole 8-3 are arranged in a linear discharge hole array 9A from the first discharge hole 8-1 to the fourth discharge hole 8-4, which is the object here. It is not included and is included in the other discharge hole array 9A. Further, the second array 9A-2 may have only one discharge hole 8 belonging to it.
 なお、図6においては、吐出孔列9A、第1配列9A-1、第2配列9A-2、第3配列9A-3を同じ吐出孔8の配列に対して示すと、分かり難くなるため、異なる吐出孔8の配列に対して示している。 In FIG. 6, it is difficult to understand if the discharge hole array 9A, the first array 9A-1, the second array 9A-2, and the third array 9A-3 are shown with respect to the same array of the discharge holes 8. A different arrangement of the discharge holes 8 is shown.
 上述のように配置された吐出孔列9Aが、第2方向に並んで配置されることで、吐出孔を、第2方向に等間隔で配置することができる。なお、第2方向の端部、および第2方向と反対方向の端部の吐出孔列9Aは、完全な形状ではないが、他の吐出孔列9Aの一部と同じ形状になっている。 The discharge hole rows 9A arranged as described above are arranged side by side in the second direction, so that the discharge holes can be arranged at equal intervals in the second direction. The discharge hole array 9A at the end in the second direction and the end in the direction opposite to the second direction is not perfect, but has the same shape as a part of the other discharge hole array 9A.
 上述の関係を、吐出孔行9Bの数がn行である場合に一般化すると次のようになる。2~n-1行目の行に属する吐出孔8は、第1吐出孔8-1から第4吐出孔8-4に向かう直線状の吐出孔列9Aに配置されている。吐出孔列9Aは、2~n-1行目の行の吐出孔8を一つずつ含んでいる。吐出孔列9Aは、第2方向に関して、第1吐出孔8-1から第2吐出孔8-2までの間に位置している吐出孔8からなる第1配列9A-1、第2吐出孔8-2から第3吐出孔8-3までの間に位置している吐出孔8からなる第2配列9A-2、および第3吐出孔8-3から第4吐出孔8-4までの間に位置している吐出孔8からなる第3配列9A-3から成っている。 The above relationship is generalized when the number of ejection hole rows 9B is n rows as follows. The ejection holes 8 belonging to the 2nd to (n-1) th rows are arranged in a linear ejection hole array 9A from the first ejection holes 8-1 to the fourth ejection holes 8-4. The discharge hole column 9A includes the discharge holes 8 in the 2nd to (n-1) th rows. The discharge hole array 9A has a first array 9A-1, second discharge holes, which are formed of discharge holes 8 located between the first discharge holes 8-1 and the second discharge holes 8-2 in the second direction. The second array 9A-2 including the discharge holes 8 positioned between 8-2 and the third discharge holes 8-3, and the space between the third discharge holes 8-3 and the fourth discharge holes 8-4. The third array 9A-3 is composed of the discharge holes 8 located at the center.
 第1配列9A-1、第2配列9A-2、および第3配列9A-3に配置されている、2~n-1行目の行に属する吐出孔8の個数は、最少で1つである。したがって、n-1は最小で4であり、nは5以上となる。 The number of ejection holes 8 belonging to the 2nd to (n-1) th rows arranged in the first array 9A-1, the second array 9A-2, and the third array 9A-3 is at least one. is there. Therefore, n-1 is 4 at the minimum, and n is 5 or more.
 第1吐出孔8-1の位置を(1、1)として、第1吐出孔8-1から連なっている吐出孔列9Aが、n行目の行のm列目、すなわち(m、n)にまで連なている場合において、mの値として適切な範囲について考察する。 When the position of the first discharge hole 8-1 is (1, 1), the discharge hole column 9A connected to the first discharge hole 8-1 is the m-th column of the n-th row, that is, (m, n). Considering the appropriate range for the value of m in the case where
 吐出孔列9Aには、n個の吐出孔8が含まれるので、mはn以上になる。m=nとすると、吐出孔8の配置は、例えば、(1、1)、(2、2)、・・・・(n、n)となるが、この配置では、ヘッド本体2aの角度ずれの影響が大きくなってしまう。 Since the discharge hole array 9A includes n discharge holes 8, m is n or more. When m = n, the arrangement of the ejection holes 8 is, for example, (1, 1), (2, 2),... (n, n). The influence of will become large.
 mの値を2×n程度にして、第2吐出孔8-2と第3吐出孔8-3の間に第2配列9A-2を配置すれば、角度ずれの影響を小さくしつつ、第1共通流路20および第2共通流路24の断面積を大きくできる。 If the second array 9A-2 is arranged between the second discharge hole 8-2 and the third discharge hole 8-3 by setting the value of m to about 2 × n, the influence of the angular deviation is reduced and the second array 9A-2 is reduced. The cross-sectional areas of the first common channel 20 and the second common channel 24 can be increased.
 mの値を大きくして、3×n程度以上にすると、第1共通流路20および第2共通流路24の断面積が小さくなってしまう。また、その場合、第2方向に関して、n行目吐出孔列に属する吐出孔8と1行目吐出孔列に属する吐出孔8との間に、第2配列9A-2のような配列が配置されることになるが、そのような配列の中には、短手法方向の位置が第1方向の中央付近ではなく、1行目吐出孔列に近い位置あるいはn行目吐出孔列に近い位置に配置しなければならず、そのような配置にすると、n行目吐出孔列あるいは1行目吐出孔列からの距離が大きくなり、角度ずれに対する影響が大きくなってしまう。 When the value of m is increased to about 3 × n or more, the cross-sectional areas of the first common channel 20 and the second common channel 24 are decreased. In this case, an array such as the second array 9A-2 is arranged between the discharge holes 8 belonging to the nth discharge hole column and the discharge holes 8 belonging to the first discharge hole column in the second direction. However, in such an arrangement, the position in the short method direction is not near the center in the first direction, but at a position close to the first row discharge hole row or a position near the nth discharge hole row. If such an arrangement is used, the distance from the n-th ejection hole array or the first ejection hole array is increased, and the influence on the angular deviation is increased.
 mの値としてn+2~2×n-1の範囲(n+1および2×n-1が含まれていないのは、それらの値では1行目の行に属する吐出孔8と行方向に隣り合うことになるからである)の中では、1.5×nより大きく2×n-1以下が適切である。mの値が、n+2~2×n-1の範囲内でnに近づくと、第2配列9A-2は、第2方向に長くなる。第2配列9A-2が、第2方向に長くなると第2配列9A-2の第2吐出孔8-2側の端は、第2吐出孔8-2との短手方向の距離が大きくなり、次第に角度ずれに対する影響が大きくなっていく。また、第1配列9A-1と第2方向との成す角度が次第に小さくなっていくので、第2配列9A-2との角度の差が大きくなり、第1共通流路20および第2共通流路24の断面積が一定にならなくなってしまう。第1個別流路12や第2個別流路14が繋がっている部分の断面積が異なると吐出特性がばらつく可能性がある。また、第1共通流路20および第2共通流路24の断面積をほぼ一定にしようとすると、一番断面の小さいところに合わせなければならないので、結果的に断面積が小さくなってしまう。このような影響を小さくするためには、mの値は、1.5×nより大きく2×n-1以下の範囲のいずれかであるのが好ましい。 The range of n + 2 to 2 × n−1 as the value of m (n + 1 and 2 × n−1 are not included because these values are adjacent in the row direction to the discharge holes 8 belonging to the first row. Therefore, it is appropriate that it is larger than 1.5 × n and not larger than 2 × n−1. When the value of m approaches n within the range of n + 2 to 2 × n−1, the second array 9A-2 becomes longer in the second direction. When the second array 9A-2 becomes longer in the second direction, the end of the second array 9A-2 on the second discharge hole 8-2 side has a greater distance in the short direction from the second discharge hole 8-2. Then, the influence on the angle deviation gradually increases. In addition, since the angle formed between the first array 9A-1 and the second direction is gradually decreased, the difference in angle with the second array 9A-2 is increased, and the first common flow path 20 and the second common flow are increased. The cross-sectional area of the path 24 will not be constant. If the cross-sectional areas of the portions where the first individual flow path 12 and the second individual flow path 14 are connected are different, the discharge characteristics may vary. Further, if the cross-sectional areas of the first common flow path 20 and the second common flow path 24 are to be made substantially constant, the cross-sectional area must be reduced to the smallest cross section, resulting in a small cross-sectional area. In order to reduce such influence, the value of m is preferably in the range of more than 1.5 × n and 2 × n−1 or less.
 mの値をこの範囲にするためには、吐出孔列9Aは、第1吐出孔8-1と、n行目吐出孔列9Bに属する吐出孔8の中で、第1吐出孔8-1から4番目に近い吐出孔8とを繋ぐように配置すればよく、そのようにすると上述の吐出孔8の配置となる。 In order to make the value of m within this range, the discharge hole array 9A includes the first discharge holes 8-1 among the first discharge holes 8-1 and the discharge holes 8 belonging to the nth discharge hole array 9B. The fourth discharge hole 8 may be arranged so as to be connected to the fourth to fourth, so that the discharge hole 8 is arranged as described above.
 mの値が2×n+2~3×n-1の範囲の場合の挙動については後述する。 The behavior when the value of m is in the range of 2 × n + 2 to 3 × n−1 will be described later.
 第3配列9A-3全体が、第2配列9A-2よりも第1方向に位置し、第2配列9A-2全体が、第1配列9A-1よりも第1方向に位置していると次の点で好ましい。第2吐出孔8-2と、第2吐出孔8-2の第2方向に隣り合う第1配列9A-1内の吐出孔8との短手方向の距離、および第2吐出孔8-2と、第2吐出孔8-2の第2方向に隣り合う第1配列9A-1内の吐出孔8との短手方向の距離を短くできる。さらに、第3吐出孔8-3と、第3吐出孔8-3の第2方向に隣り合う第2配列9A-2内の吐出孔8との短手方向の距離を短くできる。またさらに、第3吐出孔8-3と、第3吐出孔8-3の第2方向に隣り合う第3配列9A-3内の吐出孔8との短手方向の距離を短くできる。 The entire third array 9A-3 is positioned in the first direction relative to the second array 9A-2, and the entire second array 9A-2 is positioned in the first direction relative to the first array 9A-1 It is preferable in the following points. The distance in the short direction between the second discharge holes 8-2 and the discharge holes 8 in the first array 9A-1 adjacent to the second discharge holes 8-2 in the second direction, and the second discharge holes 8-2. And the distance in the short direction from the discharge holes 8 in the first array 9A-1 adjacent in the second direction of the second discharge holes 8-2. Further, the distance in the short direction between the third discharge holes 8-3 and the discharge holes 8 in the second array 9A-2 adjacent to the second direction of the third discharge holes 8-3 can be shortened. Furthermore, the distance in the short direction between the third discharge holes 8-3 and the discharge holes 8 in the third array 9A-3 adjacent in the second direction of the third discharge holes 8-3 can be shortened.
 また、nが偶数の場合、第2配列9A-2に属する吐出孔8の個数を2にするのが好ましい。そのようにすると、第1配列9A-1と第2方向との成す角が大きくできる。さらに、第1配列9A-1に属する吐出孔8の個数と第3配列9A-3に属する吐出孔8の個数とを同じにすれば、吐出孔列9Aを直線に近い配置にできるので、第1共通流路20および第2共通流路24の断面積を大きく、直線に近い形状にすることができる。 If n is an even number, it is preferable to set the number of ejection holes 8 belonging to the second array 9A-2 to 2. By doing so, the angle formed between the first array 9A-1 and the second direction can be increased. Furthermore, if the number of discharge holes 8 belonging to the first array 9A-1 and the number of discharge holes 8 belonging to the third array 9A-3 are made the same, the discharge hole array 9A can be arranged close to a straight line. The cross-sectional areas of the first common flow path 20 and the second common flow path 24 can be made large and close to a straight line.
 さらに、nが奇数の場合、第2配列9A-2に属する吐出孔8の個数を1にするのが好ましい。そのようにすると、第1配列9A-1と第2方向との成す角が大きくできる。さらに、第1配列9A-1に属する吐出孔8の個数と第3配列9A-3に属する吐出孔8の個数とを同じにすれば、吐出孔列9Aを直線に近い配置にできるので、第1共通流路20および第2共通流路24の断面積を大きく、直線に近い形状にすることができる。 Furthermore, when n is an odd number, it is preferable to set the number of ejection holes 8 belonging to the second array 9A-2 to 1. By doing so, the angle formed between the first array 9A-1 and the second direction can be increased. Furthermore, if the number of discharge holes 8 belonging to the first array 9A-1 and the number of discharge holes 8 belonging to the third array 9A-3 are made the same, the discharge hole array 9A can be arranged close to a straight line. The cross-sectional areas of the first common flow path 20 and the second common flow path 24 can be made large and close to a straight line.
 図7(a)、(b)、図8(a)、(b)は、本発明の他の実施形態における吐出孔配置である。図6に示した実施形態と差異が少ない部位については、同じ符号を付けて説明を省略する。 7 (a), 7 (b), 8 (a) and 8 (b) are discharge hole arrangements in another embodiment of the present invention. Parts that have little difference from the embodiment shown in FIG.
 図7(a)は、16行の吐出孔行9Bが存在する場合において、第2配列9A-2に属する吐出孔8の個数を1個にする実施形態である。 FIG. 7A shows an embodiment in which the number of discharge holes 8 belonging to the second array 9A-2 is one when there are 16 discharge hole rows 9B.
 図7(b)は、16行の吐出孔行9Bが存在する場合において、第2配列9A-2に属する吐出孔8の個数を4個にする実施形態である。 FIG. 7B shows an embodiment in which the number of discharge holes 8 belonging to the second array 9A-2 is four when there are 16 discharge hole rows 9B.
 図8(a)は、16行の吐出孔行9Bが存在する場合において、吐出孔列9Aが、第1吐出孔8-1と、16行目吐出孔行に属する吐出孔8の中で、第1吐出孔8-1から5番目に近い吐出孔8とを繋ぐように配置する実施形態である。この実施形態では、16行目の行に属する吐出孔8のうちで第1吐出孔8-1からの距離が3番目に短い吐出孔8が第2吐出孔8-2であり、5番目に短い吐出孔8が第4吐出孔8-4である。また、第2方向に関して、第1吐出孔8-1、第3吐出孔8-3、第2吐出孔8-2、第4吐出孔8-4の順に配置されている。第1吐出孔8-1から第3吐出孔8-3までの間に位置している吐出孔8からなるのが第1配列9A-1、第3吐出孔8-3から第2吐出孔8-2までの間に位置している吐出孔8からなるのが第2配列9A-2、第2吐出孔8-2から第4吐出孔8-4までの間に位置している吐出孔8からなるのが第3配列である。 FIG. 8 (a) shows that when there are 16 discharge hole rows 9B, the discharge hole row 9A includes the first discharge holes 8-1 and the discharge holes 8 belonging to the 16th discharge hole row. In this embodiment, the first discharge hole 8-1 is connected to the discharge hole 8 that is the fifth closest. In this embodiment, among the discharge holes 8 belonging to the 16th line, the discharge hole 8 having the third shortest distance from the first discharge hole 8-1 is the second discharge hole 8-2, and is fifth. The short discharge hole 8 is the fourth discharge hole 8-4. Further, the first discharge hole 8-1, the third discharge hole 8-3, the second discharge hole 8-2, and the fourth discharge hole 8-4 are arranged in this order in the second direction. The discharge holes 8 located between the first discharge holes 8-1 and the third discharge holes 8-3 are composed of the first array 9A-1 and the third discharge holes 8-3 to the second discharge holes 8. The discharge holes 8 positioned between the second discharge hole 8 and the second discharge hole 8-4 are positioned between the second array 9A-2 and the second discharge hole 8-2. The third array consists of:
 これは前述の説明において、mの値として2×n+2~3×n-1の範囲にしたものである。この範囲では、mの値が3×nに近づくと、第1吐出孔8-1と第1配列9A-1の第1吐出孔8-1側の端の吐出孔8を結んだ線と、第1配列9A-1との成す角度の差が大きくなるとともに、第4吐出孔8-4と第3配列9A-3の第4吐出孔8-4側の端の吐出孔8を結んだ線と、第3配列9A-3との成す角度の差が大きくなるので、第1共通流路20および第2共通流路24の断面積が一定にならなくなってしまう。また、第1共通流路20および第2共通流路24の断面積をほぼ一定にしようとすると、一番断面の小さいところに合わせなければならないので、結果的に断面積が小さくなってしまう。 In the above description, this is a value in the range of 2 × n + 2 to 3 × n−1 as the value of m. In this range, when the value of m approaches 3 × n, a line connecting the first discharge holes 8-1 and the discharge holes 8 on the first discharge holes 8-1 side of the first array 9A-1; The angle difference between the first array 9A-1 and the line connecting the fourth discharge hole 8-4 and the discharge hole 8 at the end of the third array 9A-3 on the fourth discharge hole 8-4 side is increased. Since the difference in angle between the third array 9A-3 and the third array 9A-3 increases, the cross-sectional areas of the first common channel 20 and the second common channel 24 are not constant. Further, if the cross-sectional areas of the first common flow path 20 and the second common flow path 24 are to be made substantially constant, the cross-sectional area must be reduced to the smallest cross section, resulting in a small cross-sectional area.
 このような影響を小さくするためには、mの値としては、2×n+2~2.5×nが適切である。mの値をこの範囲するためには、吐出孔列9Aは、第1吐出孔8-1と、n行目の行に属する吐出孔8の中で、第1吐出孔8-1から5番目に近い吐出孔8とを繋ぐように配置すればよい。そのように配置すると上述の吐出孔8の配置となる。 In order to reduce such influence, 2 × n + 2 to 2.5 × n is appropriate as the value of m. In order to set the value of m within this range, the discharge hole array 9A includes the first discharge hole 8-1 and the fifth discharge hole 8-1 among the discharge holes 8 belonging to the nth row. What is necessary is just to arrange | position so that the discharge hole 8 close | similar to may be connected. If it arrange | positions in that way, it will become arrangement | positioning of the above-mentioned discharge hole 8.
 図8(b)は、15行の吐出孔行9Bが存在する場合において、第2配列9A-2に属する吐出孔8の個数を1個にする実施形態である。 FIG. 8B shows an embodiment in which the number of discharge holes 8 belonging to the second array 9A-2 is one when there are 15 discharge hole rows 9B.
 続いて、吐出孔列9Aを直線状に配置する際における、吐出孔8の配置範囲を説明する。図9には、第1~4吐出孔8-1~8-4を示してある。第1吐出孔8-1と第4吐出孔8-4とを繋ぐ直線は、仮想直線9AAである。行方向の位置をx、列方向の位置をyで表すと、仮想直線9AAは、y=(((15÷29)×(x-1)) mod 16)+1で表される。ただし、modは剰余の計算を表し、15は第1吐出孔8-1と第4吐出孔8-4との間の列方向の差であり、29は第1吐出孔8-1と第4吐出孔8-4との間の行方向の差である。 Subsequently, the arrangement range of the discharge holes 8 when the discharge hole array 9A is arranged linearly will be described. FIG. 9 shows the first to fourth discharge holes 8-1 to 8-4. A straight line connecting the first discharge hole 8-1 and the fourth discharge hole 8-4 is a virtual straight line 9AA. If the position in the row direction is represented by x and the position in the column direction is represented by y, the virtual straight line 9AA is represented by y = (((15 ÷ 29) × (x−1)) mod 16) +1. However, mod represents the calculation of the remainder, 15 is the difference in the column direction between the first discharge hole 8-1 and the fourth discharge hole 8-4, and 29 is the first discharge hole 8-1 and the fourth discharge hole. This is the difference in the row direction from the discharge hole 8-4.
 各列において、吐出孔8が配置できる位置の中で、仮想直線9AAに最も近い位置は、斜線でハッチングされた範囲A1である。吐出孔8は、この範囲A1の中に配置するのが最も好ましい。図9において横線でハッチングされている範囲A2は、範囲A1に対して、±2行以内の範囲内である。吐出孔8は、範囲A2の中に配置してもよい。なお、ここで±2行以内、つまり4行の幅以内としているのは、全体の行数の16行の1/4以内にするためである。全体の行数が16行以外の場合でも、全体の行数の1/4以内の領域である領域A2に配置するのが好ましい。ただし、行数が7行以下の場合には、領域A2は、領域A1の±1行以内とする。7行以下の場合にも、全体の行数の1/4以内であると、領域A2が領域A1と同じになってしまい、配置が難しくなるからである。また、各行の間の距離が同じではない場合、最も離れた行の間の距離の1/4以内にすればよい。 In each row, the position closest to the virtual straight line 9AA among the positions where the discharge holes 8 can be arranged is a range A1 hatched with a diagonal line. The discharge holes 8 are most preferably arranged in this range A1. In FIG. 9, a range A2 hatched by a horizontal line is within a range of ± 2 rows with respect to the range A1. The discharge holes 8 may be arranged in the range A2. Here, the reason why it is within ± 2 rows, that is, within the width of 4 rows is to make it within 1/4 of 16 rows of the total number of rows. Even when the total number of rows is other than 16, it is preferable to arrange in the region A2, which is a region within 1/4 of the total number of rows. However, when the number of rows is 7 or less, the region A2 is within ± 1 rows of the region A1. This is because even in the case of seven rows or less, the region A2 becomes the same as the region A1 and is difficult to arrange if it is within ¼ of the total number of rows. Further, when the distance between the rows is not the same, it may be within ¼ of the distance between the farthest rows.
 1・・・カラーインクジェットプリンタ
 2・・・液体吐出ヘッド
  2a・・・ヘッド本体
 4・・・(第1)流路部材
  4a~g
  4-1・・・加圧室面
  4-2・・・吐出孔面
 6・・・第2流路部材
  6a、6b・・・(第2流路部材の)プレート
   6ba、6bb・・・仕切り
  6c・・・(第2流路部材の)貫通孔
  6c-2・・・貫通孔の拡幅部
 8・・・吐出孔
  8-1・・・第1吐出孔
  8-2・・・第2吐出孔
  8-3・・・第3吐出孔
  8-4・・・第4吐出孔
 9A・・・吐出孔列
  9A-1・・・第1配列
  9A-2・・・第2配列
  9A-3・・・第3配列
 9B・・・吐出孔行
 10・・・加圧室
  10a・・・加圧室本体
  10b・・・部分流路(ディセンダ)
 11A・・・加圧室列
 11B・・・加圧室行
 12・・・第1個別流路(個別供給流路)
 14・・・第2個別流路(個別排出流路)
 20・・・第1共通流路(共通供給流路)
  20a・・・(第1共通流路)開口
 22・・・第1統合流路(統合供給流路)
  22a・・・第1統合流路本体
  22b・・・第1接続流路(供給接続流路)
  22c、22d・・・(第1統合流路の)開口
 24・・・第2共通流路(共通排出流路)
  24a・・・(第2共通流路の)開口
 26・・・第2統合流路(統合排出流路)
  26a・・・第2統合流路本体
  26b・・・第2接続流路
  26c、26d・・・(第2統合流路の)開口
 40・・・圧電アクチュエータ基板
  40a・・・圧電セラミック層
  40b・・・圧電セラミック層(振動板)
 42・・・共通電極
 44・・・個別電極
  44a・・・個別電極本体
  44b・・・引出電極
 46・・・接続電極
 50・・・変位素子(加圧部)
 70・・・ヘッド搭載フレーム
 72・・・ヘッド群
 80A・・・給紙ローラ
 80B・・・回収ローラ
 82A・・・ガイドローラ
 82B・・・搬送ローラ
 88・・・制御部
 P・・・印刷用紙
 
DESCRIPTION OF SYMBOLS 1 ... Color inkjet printer 2 ... Liquid discharge head 2a ... Head main body 4 ... (1st) Channel member 4a-g
4-1 ... Pressure chamber surface 4-2 ... Discharge hole surface 6 ... Second flow path member 6a, 6b ... (second flow path member) plate 6ba, 6bb ... Partition 6c ... (through hole of second flow path member) 6c-2 ... Widened portion of through hole 8 ... Discharge hole 8-1 ... First discharge hole 8-2 ... Second discharge Hole 8-3 ... third discharge hole 8-4 ... fourth discharge hole 9A ... discharge hole array 9A-1 ... first array 9A-2 ... second array 9A-3 .. 3rd array 9B ... discharge hole row 10 ... pressurizing chamber 10a ... pressurizing chamber body 10b ... partial flow path (decender)
11A ... pressurization chamber row 11B ... pressurization chamber row 12 ... first individual flow path (individual supply flow path)
14 ... Second individual flow path (individual discharge flow path)
20 ... 1st common flow path (common supply flow path)
20a ... (first common flow path) opening 22 ... first integrated flow path (integrated supply flow path)
22a ... 1st integrated flow path main body 22b ... 1st connection flow path (supply connection flow path)
22c, 22d ... (first integrated flow path) opening 24 ... second common flow path (common discharge flow path)
24a ... (second common flow path) opening 26 ... second integrated flow path (integrated discharge flow path)
26a, second integrated flow channel body 26b, second connection flow channel 26c, 26d, opening (of second integrated flow channel) 40, piezoelectric actuator substrate 40a, piezoelectric ceramic layer 40b, ..Piezoelectric ceramic layer (diaphragm)
42 ... Common electrode 44 ... Individual electrode 44a ... Individual electrode body 44b ... Extraction electrode 46 ... Connection electrode 50 ... Displacement element (pressure part)
DESCRIPTION OF SYMBOLS 70 ... Head mounting frame 72 ... Head group 80A ... Paper feed roller 80B ... Collection roller 82A ... Guide roller 82B ... Conveyance roller 88 ... Control part P ... Printing paper

Claims (7)

  1.  液体を吐出する複数の吐出孔を有する液体吐出ヘッドであって、
     該液体吐出ヘッドを平面視したとき、
     前記複数の吐出孔は、互いに略平行なn(nは5以上の整数)行の行上に配置されており、前記n行の行は、当該n行の行と交差する方向である第1方向に、1行目の行、2行目の行、・・・n行目の行の順に配置されており、
     前記1行目の行に属する1の前記吐出孔を第1吐出孔とし、前記n行目の行に属する前記吐出孔のうちで前記第1吐出孔からの距離が2番目に短い前記吐出孔を第2吐出孔、4番目に短い前記吐出孔を第4吐出孔とし、
     前記第2吐出孔から前記第4吐出孔に向かう方向を第2方向とし、
     前記1行目の行に属していて、前記第1吐出孔に対して前記第2方向に位置している前記吐出孔のうちで、前記第1吐出孔からの距離が最も短い前記吐出孔を第3吐出孔とするとき、
     前記第1~4吐出孔は、前記第2方向に関して、前記第1吐出孔、前記第2吐出孔、前記第3吐出孔、前記第4吐出孔の順に配置されており、
     前記2~n-1行目の行に属する前記吐出孔は、前記第1吐出孔から前記第4吐出孔に向かう直線状の吐出孔列に配置されており、
     該吐出孔列は、前記2~n-1行目の各行に属する前記吐出孔を一つずつ含んでおり、かつ
     前記吐出孔列は、前記第2方向に関して、前記第1吐出孔から前記第2吐出孔までの間に配置されている前記吐出孔からなる第1配列、前記第2吐出孔から前記第3吐出孔までの間に配置されている前記吐出孔からなる第2配列、および前記第3吐出孔から前記第4吐出孔までの間に配置されている前記吐出孔からなる第3配列からなっていることを特徴とする液体吐出ヘッド。
    A liquid discharge head having a plurality of discharge holes for discharging liquid,
    When the liquid discharge head is viewed in plan view,
    The plurality of ejection holes are arranged on n (n is an integer greater than or equal to 5) rows substantially parallel to each other, and the n rows are in a direction intersecting the n rows. In the direction, the first row, the second row,... The nth row are arranged in this order.
    The one discharge hole belonging to the first row is defined as a first discharge hole, and the discharge hole having the second shortest distance from the first discharge hole among the discharge holes belonging to the n-th row. The second discharge hole, the fourth shortest discharge hole is the fourth discharge hole,
    A direction from the second discharge hole toward the fourth discharge hole is a second direction,
    Among the discharge holes belonging to the first row and positioned in the second direction with respect to the first discharge hole, the discharge hole having the shortest distance from the first discharge hole is When setting the third discharge hole,
    The first to fourth discharge holes are arranged in the order of the first discharge hole, the second discharge hole, the third discharge hole, and the fourth discharge hole in the second direction.
    The discharge holes belonging to the 2nd to (n-1) th rows are arranged in a linear discharge hole row from the first discharge holes to the fourth discharge holes,
    The discharge hole row includes one discharge hole belonging to each of the 2nd to (n-1) th rows, and the discharge hole row extends from the first discharge hole to the first in the second direction. A first array of the discharge holes arranged between two discharge holes, a second array of the discharge holes arranged from the second discharge holes to the third discharge holes, and the A liquid discharge head comprising a third arrangement of the discharge holes arranged between the third discharge holes and the fourth discharge holes.
  2.  液体を吐出する複数の吐出孔を有する液体吐出ヘッドであって、
     該液体吐出ヘッドを平面視したとき、
     前記複数の吐出孔は、互いに略平行なn(nは5以上の整数)行の行上に配置されており、前記n行の行は、当該n行の行と交差する方向である第1方向に、1行目の行、2行目の行、・・・n行目の行の順に配置されており、
     前記1行目の行に属する1の前記吐出孔を第1吐出孔とし、前記n行目の行に属する前記吐出孔のうちで前記第1吐出孔からの距離が3番目に短い前記吐出孔を第2吐出孔、5番目に短い前記吐出孔を第4吐出孔とし、
     前記第2吐出孔から前記第4吐出孔に向かう方向を第2方向とし、
     前記1行目の行に属していて、前記第1吐出孔に対して前記第2方向に位置している前記吐出孔のうちで、前記第1吐出孔からの距離が最も短い前記吐出孔を第3吐出孔とするとき、
     前記第1~4吐出孔は、前記第2方向に関して、前記第1吐出孔、前記第3吐出孔、前記第2吐出孔、前記第4吐出孔の順に配置されており、
     前記2~n-1行目の行に属する前記吐出孔は、前記第1吐出孔から前記第4吐出孔に向かう直線状の吐出孔列に配置されており、
     該吐出孔列は、前記2~n-1行目の各行に属する前記吐出孔を一つずつ含んでおり、かつ
     前記吐出孔列は、前記第2方向に関して、前記第1吐出孔から前記第3吐出孔までの間に配置されている前記吐出孔からなる第1配列、前記第3吐出孔から前記第2吐出孔までの間に配置されている前記吐出孔からなる第2配列、および前記第2吐出孔から前記第4吐出孔までの間に配置されている前記吐出孔からなる第3配列からなっていることを特徴とする液体吐出ヘッド。
    A liquid discharge head having a plurality of discharge holes for discharging liquid,
    When the liquid discharge head is viewed in plan view,
    The plurality of ejection holes are arranged on n (n is an integer greater than or equal to 5) rows substantially parallel to each other, and the n rows are in a direction intersecting the n rows. In the direction, the first row, the second row,... The nth row are arranged in this order.
    The one discharge hole belonging to the first row is defined as a first discharge hole, and the discharge hole having the third shortest distance from the first discharge hole among the discharge holes belonging to the n-th row. The second discharge hole, the fifth shortest discharge hole as the fourth discharge hole,
    A direction from the second discharge hole toward the fourth discharge hole is a second direction,
    Among the discharge holes belonging to the first row and positioned in the second direction with respect to the first discharge hole, the discharge hole having the shortest distance from the first discharge hole is When setting the third discharge hole,
    The first to fourth discharge holes are arranged in the order of the first discharge hole, the third discharge hole, the second discharge hole, and the fourth discharge hole in the second direction.
    The discharge holes belonging to the 2nd to (n-1) th rows are arranged in a linear discharge hole row from the first discharge holes to the fourth discharge holes,
    The discharge hole row includes one discharge hole belonging to each of the 2nd to (n-1) th rows, and the discharge hole row extends from the first discharge hole to the first in the second direction. A first array of the discharge holes disposed between up to three discharge holes, a second array of the discharge holes disposed between the third discharge holes and the second discharge hole, and the A liquid discharge head comprising a third array of the discharge holes disposed between the second discharge holes and the fourth discharge holes.
  3.  前記第3配列全体が、前記第2配列よりも前記第1方向に位置し、前記第2配列全体が、前記第1配列よりも前記第1方向に位置していることを特徴とする請求項1または2に記載の液体吐出ヘッド。 The entire third array is positioned in the first direction with respect to the second array, and the entire second array is positioned in the first direction with respect to the first array. The liquid discharge head according to 1 or 2.
  4.  nが偶数の場合は、前記第2配列に属する前記吐出孔の個数が2であり、nが奇数の場合は、前記第2配列に属する前記吐出孔の個数が1であって、
     さらに、前記第1配列に属する前記吐出孔の個数と前記第3配列に属する前記吐出孔の個数とが等しいことを特徴とする請求項1~3のいずれかに記載の液体吐出ヘッド。
    When n is an even number, the number of the discharge holes belonging to the second array is 2, and when n is an odd number, the number of the discharge holes belonging to the second array is 1.
    4. The liquid discharge head according to claim 1, wherein the number of the discharge holes belonging to the first array is equal to the number of the discharge holes belonging to the third array.
  5.  複数の加圧室、複数の第1共通流路および前記複数の加圧室をそれぞれ加圧する複数の加圧部を含んでおり、
     前記複数の吐出孔は、前記複数の加圧室とそれぞれ繋がっており、
     前記液体吐出ヘッドを平面視したとき、
     前記複数の第1共通流路は、前記吐出孔列に沿って伸びており、
     前記複数の加圧室は、前記加圧室が前記吐出孔列に沿って並んでいる複数の加圧室列上に配置されているとともに、当該加圧室の属する前記加圧室列と並んで配置されている前記第1共通流路と繋がっていることを特徴とする請求項1~4のいずれかに記載の液体吐出ヘッド。
    A plurality of pressurizing chambers, a plurality of first common flow paths, and a plurality of pressurizing units that pressurize each of the plurality of pressurizing chambers;
    The plurality of discharge holes are respectively connected to the plurality of pressurizing chambers,
    When the liquid discharge head is viewed in plan view,
    The plurality of first common flow paths extend along the discharge hole row,
    The plurality of pressurizing chambers are arranged on the plurality of pressurizing chamber rows in which the pressurizing chambers are arranged along the discharge hole row, and are aligned with the pressurizing chamber row to which the pressurizing chamber belongs. 5. The liquid discharge head according to claim 1, wherein the liquid discharge head is connected to the first common flow path arranged in the above.
  6.  前記第1方向に沿って伸びている複数の第2共通流路を含んでおり、
     前記液体吐出ヘッドを平面視したとき、
     前記第2共通流路は、当該第2共通流路と並んで配置されている前記加圧室列に属しており、前記第1共通流路と繋がっている加圧室、もしくは前記第1共通流路と繋がっている前記加圧室と前記吐出孔とを繋いでいる部分流路と繋がっていることを特徴とする請求項6に記載の液体吐出ヘッド。
    A plurality of second common flow paths extending along the first direction;
    When the liquid discharge head is viewed in plan view,
    The second common flow path belongs to the pressurization chamber row arranged side by side with the second common flow path, and the pressurization chamber connected to the first common flow path, or the first common flow path The liquid discharge head according to claim 6, wherein the liquid discharge head is connected to a partial flow path connecting the pressure chamber connected to the flow path and the discharge hole.
  7.  請求項1~6記載の液体吐出ヘッドと、記録媒体を前記液体吐出ヘッドに対して搬送する搬送部と、前記液体吐出ヘッドを制御する制御部を備えていることを特徴とする記録装置。 7. A recording apparatus comprising: the liquid discharge head according to claim 1; a transport unit that transports a recording medium to the liquid discharge head; and a control unit that controls the liquid discharge head.
PCT/JP2015/067480 2014-06-27 2015-06-17 Liquid-discharging head and recording apparatus using same WO2015198944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529407A JP6272480B2 (en) 2014-06-27 2015-06-17 Liquid discharge head and recording apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014132797 2014-06-27
JP2014-132797 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198944A1 true WO2015198944A1 (en) 2015-12-30

Family

ID=54938030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067480 WO2015198944A1 (en) 2014-06-27 2015-06-17 Liquid-discharging head and recording apparatus using same

Country Status (2)

Country Link
JP (1) JP6272480B2 (en)
WO (1) WO2015198944A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106985528A (en) * 2016-01-08 2017-07-28 佳能株式会社 Liquid sprays module and fluid ejection head
JP2017144701A (en) * 2016-02-19 2017-08-24 キヤノン株式会社 Liquid discharge head, and liquid discharge device
WO2018181024A1 (en) * 2017-03-28 2018-10-04 京セラ株式会社 Liquid ejection head and recording apparatus using same
WO2019022154A1 (en) * 2017-07-26 2019-01-31 京セラ株式会社 Liquid discharge head and recording device in which same is used
JPWO2018061543A1 (en) * 2016-09-28 2019-07-04 コニカミノルタ株式会社 Ink jet head and method of manufacturing the same, ink jet printer
JP2020157659A (en) * 2019-03-27 2020-10-01 京セラ株式会社 Liquid discharge head and recording device equipped with the same
JP2020157658A (en) * 2019-03-27 2020-10-01 京セラ株式会社 Liquid discharge head and recording device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002225265A (en) * 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd Ink-jet head and ink-jet recorder
JP2006088393A (en) * 2004-09-21 2006-04-06 Fuji Xerox Co Ltd Inkjet recording head and inkjet recording device
JP2009143168A (en) * 2007-12-17 2009-07-02 Fuji Xerox Co Ltd Liquid droplet discharging unit, liquid droplet discharging head, and image forming apparatus equipped with it
JP2011520665A (en) * 2008-05-23 2011-07-21 富士フイルム株式会社 Nozzle layout for fluid droplet discharge
JP2012035573A (en) * 2010-08-10 2012-02-23 Fujifilm Corp Liquid discharge head, and image recording device and method
JP2012139987A (en) * 2011-01-06 2012-07-26 Fujifilm Corp Liquid ejection head and image recording apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002225265A (en) * 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd Ink-jet head and ink-jet recorder
JP2006088393A (en) * 2004-09-21 2006-04-06 Fuji Xerox Co Ltd Inkjet recording head and inkjet recording device
JP2009143168A (en) * 2007-12-17 2009-07-02 Fuji Xerox Co Ltd Liquid droplet discharging unit, liquid droplet discharging head, and image forming apparatus equipped with it
JP2011520665A (en) * 2008-05-23 2011-07-21 富士フイルム株式会社 Nozzle layout for fluid droplet discharge
JP2012035573A (en) * 2010-08-10 2012-02-23 Fujifilm Corp Liquid discharge head, and image recording device and method
JP2012139987A (en) * 2011-01-06 2012-07-26 Fujifilm Corp Liquid ejection head and image recording apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106985528A (en) * 2016-01-08 2017-07-28 佳能株式会社 Liquid sprays module and fluid ejection head
JP2017144701A (en) * 2016-02-19 2017-08-24 キヤノン株式会社 Liquid discharge head, and liquid discharge device
JP7028178B2 (en) 2016-09-28 2022-03-02 コニカミノルタ株式会社 Inkjet heads, their manufacturing methods, and inkjet printers
JPWO2018061543A1 (en) * 2016-09-28 2019-07-04 コニカミノルタ株式会社 Ink jet head and method of manufacturing the same, ink jet printer
JPWO2018181024A1 (en) * 2017-03-28 2020-01-16 京セラ株式会社 Liquid ejection head and recording apparatus using the same
WO2018181024A1 (en) * 2017-03-28 2018-10-04 京セラ株式会社 Liquid ejection head and recording apparatus using same
WO2019022154A1 (en) * 2017-07-26 2019-01-31 京セラ株式会社 Liquid discharge head and recording device in which same is used
CN110997332A (en) * 2017-07-26 2020-04-10 京瓷株式会社 Liquid ejection head and recording apparatus using the same
CN110997332B (en) * 2017-07-26 2021-11-16 京瓷株式会社 Liquid ejection head and recording apparatus using the same
JP6527298B1 (en) * 2017-07-26 2019-06-05 京セラ株式会社 Liquid discharge head and recording apparatus using the same
JP2020157659A (en) * 2019-03-27 2020-10-01 京セラ株式会社 Liquid discharge head and recording device equipped with the same
JP2020157658A (en) * 2019-03-27 2020-10-01 京セラ株式会社 Liquid discharge head and recording device
JP7137507B2 (en) 2019-03-27 2022-09-14 京セラ株式会社 LIQUID EJECTION HEAD AND RECORDING DEVICE INCLUDING THE SAME
JP7137506B2 (en) 2019-03-27 2022-09-14 京セラ株式会社 Liquid ejection head and recording device

Also Published As

Publication number Publication date
JP6272480B2 (en) 2018-01-31
JPWO2015198944A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6130611B1 (en) Channel member, liquid discharge head, and recording apparatus
JP6272480B2 (en) Liquid discharge head and recording apparatus using the same
JP6336842B2 (en) Liquid discharge head and recording apparatus using the same
JP6324515B2 (en) Liquid discharge head and recording apparatus using the same
JP5981682B1 (en) Liquid discharge head and recording apparatus using the same
JP6209671B2 (en) Liquid discharge head and recording apparatus using the same
JP6379223B2 (en) Liquid discharge head and recording apparatus using the same
WO2015147307A1 (en) Liquid discharge head and recording device
JP7036637B2 (en) Liquid discharge head and recording device using it
JP6560115B2 (en) Liquid discharge head and recording apparatus using the same
JP2015150881A (en) Liquid discharge head and recording device using the same
JP2016172381A (en) Liquid discharge head and recording device using the same
JP6352772B2 (en) Liquid discharge head and recording apparatus using the same
JP6224499B2 (en) Piezoelectric element, liquid discharge head using the same, and recording apparatus
JP6564107B2 (en) Liquid discharge head and recording apparatus using the same
JP2019202549A (en) Liquid discharge head, and recording device using the same
JP2015150882A (en) Flow channel member, liquid discharge head using the same, and recording device
JP6193727B2 (en) Liquid discharge head and recording apparatus using the same
JP2017094691A (en) Liquid discharge head, and recording device using the same
JP6131333B2 (en) Piezoelectric substrate, assembly using the same, liquid discharge head, and recording apparatus
JP2018034372A (en) Liquid discharge head, and recording device using the same
JP2015085623A (en) Liquid discharge head, and recording device using the same
JP6571474B2 (en) Channel member, liquid discharge head using the same, and recording apparatus
JP6181531B2 (en) Liquid discharge head and recording apparatus using the same
JP2018167438A (en) Liquid discharge head and recording device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812790

Country of ref document: EP

Kind code of ref document: A1