WO2015198750A1 - Heat pump type chiller - Google Patents

Heat pump type chiller Download PDF

Info

Publication number
WO2015198750A1
WO2015198750A1 PCT/JP2015/064166 JP2015064166W WO2015198750A1 WO 2015198750 A1 WO2015198750 A1 WO 2015198750A1 JP 2015064166 W JP2015064166 W JP 2015064166W WO 2015198750 A1 WO2015198750 A1 WO 2015198750A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
circulating fluid
temperature
heat exchanger
compressor
Prior art date
Application number
PCT/JP2015/064166
Other languages
French (fr)
Japanese (ja)
Inventor
真矢 堀部
宏太郎 南本
広孝 中村
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to AU2015282158A priority Critical patent/AU2015282158B2/en
Priority to KR1020167032898A priority patent/KR101902675B1/en
Priority to EP15811007.2A priority patent/EP3163218B8/en
Priority to CN201580033631.6A priority patent/CN106471319B/en
Publication of WO2015198750A1 publication Critical patent/WO2015198750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/16Sensors measuring the temperature of products

Definitions

  • the present invention relates to a heat pump chiller that cools a liquid to be cooled by heat exchange with a refrigerant circulating in a refrigeration cycle.
  • Patent Document 1 discloses a configuration shown in FIG. 9 in order to prevent the chiller using a refrigerator from freezing.
  • the chiller of Patent Document 1 executes a refrigeration cycle with a compressor 501, a condenser 502, an expansion valve 503, and an evaporator 504, and cools a liquid to be cooled by heat exchange with a refrigerant circulating in the cycle. .
  • a liquid electromagnetic valve 505 is provided on the primary side of the expansion valve 503, and the temperature of the primary side of the liquid electromagnetic valve 505 is monitored by the first temperature sensor 506 at the time of activation.
  • the bypass valve 507 is opened while the liquid electromagnetic valve 505 is closed, and the refrigerant discharged from the compressor 501 is supplied to the second expansion valve 503. Bypass to the next side. By bypassing the refrigerant in this way, the refrigerant does not circulate in the refrigeration cycle, and freezing of the circulating water (cooled liquid) from the cold water tank 510 in the evaporator (heat exchanger) 504 can be prevented.
  • An object of the present invention is to provide a heat pump chiller capable of preventing the liquid to be cooled from being frozen, including during startup and operation.
  • a heat pump chiller includes a compressor for sucking and discharging refrigerant, a refrigerant-air heat exchanger, an expansion valve, and a refrigerant-circulating liquid heat in which the circulating liquid and the refrigerant exchange heat.
  • a heat pump chiller provided with an exchanger and provided with a circulating pump in the circulating fluid flow path, wherein temperature sensors are respectively provided at the circulating fluid inlet, the circulating fluid outlet, and the surface of the refrigerant-circulating fluid heat exchanger.
  • a pressure sensor is provided in the refrigerant suction path of the compressor, and one of a temperature detected by the three temperature sensors or a refrigerant evaporation temperature converted from the pressure detected by the pressure sensor is equal to or lower than a predetermined temperature. When this is detected, the compressor is stopped and the circulating pump is operated.
  • a plurality of controllers can receive the detection signals of the three temperature sensors and the pressure sensor in a distributed manner.
  • the first controller receives signals from the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the pressure sensor from the refrigerant suction path of the compressor, and the refrigerant-
  • the second controller receives signals from the circulating fluid outlet of the circulating fluid heat exchanger and the surface temperature sensor, and the first controller has a function of detecting an abnormality in the received signal itself.
  • the circulating pump is operated before the compressor is driven, and the temperature sensor at the circulating liquid inlet of the refrigerant-circulating fluid heat exchanger is detected after the circulating pump is operated and before the compressor is started.
  • the absolute value of the temperature difference between the temperature and the temperature detected by the temperature sensor of the circulating fluid outlet is not less than a first predetermined value, or the temperature detected by the temperature sensor of the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger
  • the driving of the compressor is stopped. it can.
  • the first controller receives signals from the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the pressure sensor from the refrigerant suction path of the compressor, and the refrigerant- A connection relay that receives signals from the circulating fluid outlet of the circulating fluid heat exchanger and the surface temperature sensor, and is opened and closed by the first controller, and is connected between the circulating pump and the power source.
  • the heat pump chiller of the present invention is provided with a temperature sensor at each of a circulating fluid inlet, a circulating fluid outlet, and a surface of a refrigerant-circulating fluid heat exchanger, and a pressure sensor at the refrigerant suction path of the compressor.
  • a temperature sensor at each of a circulating fluid inlet, a circulating fluid outlet, and a surface of a refrigerant-circulating fluid heat exchanger
  • a pressure sensor at the refrigerant suction path of the compressor.
  • the temperature corresponding to the temperature of the circulating fluid is monitored, and the anti-freezing control of the circulating fluid is performed based on these temperatures, thereby preventing the circulating fluid from being frozen over the entire operation period of the chiller. Play.
  • FIG. 3 is a diagram for explaining anti-freezing control at normal time in the control system shown in FIG. 2.
  • FIG. 3 is a diagram illustrating freeze prevention control when the main CPU is abnormal in the control system shown in FIG. 2.
  • FIG. 3 is a diagram for explaining anti-freezing control when a sensor input to the main CPU is abnormal in the control system shown in FIG. 2.
  • FIG. 3 is a diagram illustrating a control operation of anti-freezing control when a sub CPU is abnormal in the control system shown in FIG. 2.
  • FIG. 3 is a diagram for explaining anti-freezing control when a sensor input to the sub CPU is abnormal in the control system shown in FIG. 2. It is a flowchart which shows sensor abnormality detection operation
  • FIG. 1 is a block diagram showing a schematic configuration of a heat pump chiller (hereinafter simply referred to as a chiller) 100 according to the present embodiment.
  • the chiller 100 generally includes a refrigerant circuit 110 that circulates a refrigerant and a circulating fluid circuit 200 that circulates a circulating fluid.
  • the control device 140 controls the operation of the entire chiller 100.
  • the refrigerant circuit 110 includes a compressor 10, a refrigerant-air heat exchanger 20, an expansion valve 40, and a refrigerant-circulating liquid heat exchanger 50.
  • the chiller 100 executes a refrigeration cycle by circulating refrigerant in the order of the compressor 10, the refrigerant-air heat exchanger 20, the expansion valve 40, and the refrigerant-circulated liquid heat exchanger 50.
  • the chiller 100 cools the circulating fluid by heat exchange in the refrigerant-circulating fluid heat exchanger 50 (heat exchange between the circulating fluid and the refrigerant) (cooling operation).
  • the compressor 10 compresses and discharges the sucked refrigerant.
  • the refrigerant-air heat exchanger 20 exchanges heat between the refrigerant and air (specifically, outside air).
  • the expansion valve 40 expands the refrigerant compressed by the compressor 10.
  • the refrigerant-circulating liquid heat exchanger 50 exchanges heat between the circulating liquid and the refrigerant.
  • the compressor 10 may be a unit in which a plurality of compressors are connected in parallel.
  • the refrigerant-air heat exchanger 20 is a unit in which a plurality of refrigerant-air heat exchangers are connected in parallel. There may be.
  • the expansion valve 40 can be adjusted in opening degree by an instruction signal from the control device 140. Thereby, the expansion valve 40 can adjust the circulation amount of the refrigerant in the refrigerant circuit 110.
  • the expansion valve 40 is formed by connecting a plurality of expansion valves that can be closed in parallel. By doing so, the expansion valve 40 can adjust the circulation amount of the refrigerant in the refrigerant circuit 110 by combining the expansion valves to be opened.
  • the refrigerant-air heat exchanger fan 30 is provided to efficiently perform heat exchange in the refrigerant-air heat exchanger 20.
  • the engine 60 is provided as a drive source that drives the compressor 10.
  • the drive source for driving the compressor 10 is not limited to the engine, and another drive source (for example, a motor) may be used.
  • the chiller 100 is configured to perform a heating operation in addition to the cooling operation. For this reason, the chiller 100 includes a four-way valve 111 and a bridge circuit 112 on the refrigerant discharge side of the compressor 10.
  • the four-way valve 111 switches the flow direction of the refrigerant between the cooling operation and the heating operation according to an instruction signal from the control device 140. That is, during the cooling operation, the inflow port (lower side in FIG. 1) and one connection port (left side in FIG. 1) are connected, and the other connection port (right side in FIG. 1) and the outflow port ( 1 (upper line in FIG. 1). Further, during the heating operation, the inlet (lower side in FIG. 1) and the other connection port (right side in FIG. 1) are connected, and one connection port (left side in FIG. 1) and the outlet ( 1 (upper line in FIG. 1).
  • the bridge circuit 112 automatically switches the refrigerant flow direction between the cooling operation and the heating operation.
  • the bridge circuit 112 includes four check valves (a first check valve 112a, a second check valve 112b, a third check valve 112c, and a fourth check valve 112d).
  • the first check valve 112a and the second check valve 112b are connected in series so that the refrigerant flows in the same direction, and constitute a first check valve train.
  • the third check valve 112c and the fourth check valve 112d are connected in series so that the refrigerant flows in the same direction, and constitute a second check valve train.
  • the first check valve row and the second check valve row are connected in parallel so that the refrigerant flows in the same direction.
  • a connection point between the first check valve 112a and the second check valve 112b is a first intermediate connection point P1
  • the connection between the first check valve 112a and the third check valve 112c is the connection point between the third check valve 112c and the fourth check valve 112d.
  • the connection point between the third check valve 112c and the fourth check valve 112d is the second intermediate connection point P3, and the second check valve 112b and the fourth check point 112b.
  • a connection point with the check valve 112d is an inflow connection point P4.
  • the refrigerant flow path includes the compressor 10, the four-way valve 111, the refrigerant-air heat exchanger 20, the bridge circuit 112 (P1 to P2), the expansion valve 40, and the bridge circuit 112 (P4 to P3).
  • the refrigerant-circulating liquid heat exchanger 50, the four-way valve 111, and the compressor 10 become the refrigeration cycle.
  • the refrigerant flow path includes the compressor 10, the four-way valve 111, the refrigerant-circulating fluid heat exchanger 50, the bridge circuit 112 (P3 to P2), the expansion valve 40, and the bridge circuit 112 (P4).
  • the refrigerant-air heat exchanger 20, the four-way valve 111, and the compressor 10 are executed, and the heating cycle is executed.
  • the chiller 100 further includes an oil separator 81, an accumulator 82, and a receiver 83.
  • the oil separator 81 separates the lubricating oil of the compressor 10 contained in the refrigerant, and returns the separated lubricating oil to the compressor 10.
  • the accumulator 82 separates the refrigerant liquid that has not completely evaporated in the refrigerant-circulated liquid heat exchanger 50 acting as an evaporator or the refrigerant-air heat exchanger 20 acting as an evaporator.
  • the receiver 83 temporarily stores the high-pressure liquid refrigerant from the bridge circuit 112.
  • the chiller 100 includes a four-way valve 111 and a bridge circuit 112 so that the cooling operation and the heating operation can be switched.
  • the present invention is characterized by the operation during the cooling operation. It is what has. For this reason, this invention is applicable also to the chiller which can implement only a cooling operation.
  • the circulating fluid flowing through the circulating fluid circuit 200 becomes a liquid to be cooled that is cooled by heat exchange in the refrigerant-circulating fluid heat exchanger 50 during the cooling operation.
  • the liquid to be heated is heated by heat exchange in the refrigerant-circulating liquid heat exchanger 50.
  • the circulating fluid is used, for example, as cold water or hot water used in a building air conditioning system.
  • water is used as the circulating fluid, but the present invention is not limited to this, and a solution in which an antifreeze or the like is mixed in water may be used.
  • the circulating fluid circuit 200 includes an inflow pipe 211, an outflow pipe 212, and a circulation pump 300.
  • the circulating fluid is introduced into the refrigerant-circulating fluid heat exchanger 50 via the inflow pipe 211, and the temperature is adjusted in the refrigerant-circulating fluid heat exchanger 50.
  • the circulating fluid whose temperature has been adjusted is discharged from the chiller 100 through the outflow pipe 212.
  • the circulating fluid circuit 200 included in the chiller 100 basically forms only a part of a closed circuit through which the circulating fluid flows. That is, when the chiller 100 according to the present embodiment is used for an air conditioning system in a building, the circulating fluid circuit on the air conditioning system side and the circulating fluid circuit 200 on the chiller 100 side are connected to form a closed circuit. Circulating fluid flows in the circuit.
  • the circulation pump 300 is a pump for circulating the circulating fluid in the closed circuit. In the configuration shown in FIG. 1, the circulation pump 300 is provided in the outflow pipe 212, but may be provided in the
  • the chiller 100 includes an inflowing circulating fluid temperature sensor TWR, an outflowing circulating fluid temperature sensor TWL, a heat exchanger surface temperature sensor TWS, and a pressure sensor PL in order to prevent the circulating fluid from freezing during the cooling operation. I have.
  • the inflow circulating fluid temperature sensor TWR is provided in the inflow tube 211 and detects the temperature of the circulating fluid flowing into the refrigerant-circulating fluid heat exchanger 50 (specifically, the circulating fluid in the inflow tube 211).
  • the outflow circulating fluid temperature sensor TWL is provided in the outflow pipe 212 and detects the temperature of the circulating liquid flowing out from the refrigerant-circulating liquid heat exchanger 50 (specifically, the circulating liquid in the outflow pipe 212).
  • the heat exchanger surface temperature sensor TWS is provided on the surface of the refrigerant-circulating liquid heat exchanger 50 and detects the surface temperature.
  • the pressure sensor PL is provided in the refrigerant suction path of the compressor 10 and detects the pressure of the refrigerant flowing out from the refrigerant-circulated liquid heat exchanger 50. Note that the refrigerant evaporating temperature of the refrigerant flowing out of the refrigerant-circulating fluid heat exchanger 50 is obtained from the pressure detected by the pressure sensor PL.
  • the control device 140 performs the following control based on detection signals from various sensors in order to prevent the circulating fluid from freezing during the cooling operation. Specifically, the temperature detected by any of the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, and the heat exchanger surface temperature sensor TWS, or the refrigerant evaporation temperature converted from the detected pressure of the pressure sensor PL is predetermined. When it is detected that the temperature is lower than (eg, 2 ° C.), the compressor 10 is stopped and the circulation pump 300 is operated.
  • a predetermined temperature for example, 2 ° C.
  • the refrigeration cycle of the refrigerant circuit 110 is stopped by stopping the compressor 10, and the circulating pump 300 is operated to make it difficult to freeze the circulating fluid in the circulating fluid circuit 200. Note that the above operation is continued until all of the four temperatures are equal to or higher than a predetermined temperature.
  • freezing can be prevented over the entire operation period of the chiller by constantly monitoring the temperature corresponding to the temperature of the circulating fluid.
  • the control device 140 is preferably formed by a plurality of controllers, and the detection signals of the three temperature sensors and the pressure sensors are distributed and received by the plurality of controllers. In this way, by distributing the sensor signal reception controllers, it is possible to reduce the risk of controller abnormality. A configuration for distributing the reception controllers will be described in detail below.
  • the control device 140 includes a main board 141 and a sub board 142.
  • a main CPU (first controller) 143 is mounted on the main board 141, and a sub CPU ( A second controller 144 is mounted.
  • the main CPU 143 and the sub CPU 144 are connected via a communication line 145 so that they can communicate with each other.
  • the detection signal of the outflow circulating fluid temperature sensor TWL and the detection signal of the pressure sensor PL are input to the main CPU 143, and the detection signal of the inflowing circulating fluid temperature sensor TWR and the heat exchanger surface temperature sensor TWS are input to the sub CPU 144. It is assumed that the detection signal is input.
  • the main CPU 143 can supply power to the motor 301 by controlling the connection relay RY1 (first connection relay) in the power board 146.
  • the sub CPU 144 can control the connection relay RY2 (second connection relay) and the connection relay RY (MC) (second connection relay) to supply power to the motor 301.
  • the motor 301 is a motor for driving the circulation pump 300, and the circulation pump 300 operates by supplying power to the motor 301. That is, a first connection relay (connection relay RY1) opened and closed by the main CPU 143 and a second connection relay (connection relay RY2 and connection relay RY (MC)) opened and closed by the sub CPU 144 are provided in parallel.
  • the motor 301 can be supplied with power to the circulation pump from either the main CPU 143 or the sub CPU 144. Thereby, the operational safety of the circulation pump 300 with respect to controller abnormality improves.
  • both the main CPU 143 and the sub CPU 144 are operating normally, and from all of the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, the heat exchanger surface temperature sensor TWS, and the pressure sensor PL. A normal detection signal is input.
  • the above-described freeze prevention control is performed by the main CPU 143.
  • Detection signals from the outflow circulating fluid temperature sensor TWL and the pressure sensor PL are directly input to the main CPU 143, and detection signals from the inflowing circulating fluid temperature sensor TWR and the heat exchanger surface temperature sensor TWS are input via the sub CPU 144. Entered.
  • the main CPU 143 monitors the temperatures detected from these four signals, and performs the above-described antifreezing control when any of them falls below a predetermined temperature (for example, 2 ° C.).
  • the main CPU 143 controls the connection relay RY1 to supply power to the motor 301 and operate the circulation pump 300. Further, the main CPU 143 performs control for closing the gas valve GV.
  • the gas valve GV is a valve that adjusts the fuel supply to the engine 60. By closing the gas valve GV, the engine 60 stops and the compressor 10 stops.
  • the closing of the gas valve GV is an example of control for stopping the compressor 10, and the present invention is not limited to this. For example, when the drive source of the compressor 10 is an engine and the compressor 10 is stopped before the engine completely starts driving, control for stopping power supply to the starter of the engine may be performed. Or when the drive source of the compressor 10 is a motor, the control which stops the electric power feeding to this motor may be sufficient.
  • the sub CPU 144 detects an abnormality of the main CPU 143 due to a communication error with the main CPU 143.
  • the sub CPU 144 controls the connection relay RY2 and the connection relay RY (MC) to supply power to the motor 301 and operate the circulation pump 300.
  • the sub CPU 144 may perform control to close the gas valve GV, but here, a case where the auxiliary CPU 147 performs the control is illustrated. That is, the auxiliary CPU 147 can detect an abnormality of the main CPU 143 by a communication error with the main CPU 143. When the auxiliary CPU 147 detects an abnormality in the main CPU 143, the auxiliary CPU 147 closes the gas valve GV and stops the compressor 10.
  • the sensor input abnormality to the main CPU 143 is when the outflow circulating fluid temperature sensor TWL or the pressure sensor PL is abnormal and the detection signal is not output, or the detection signal of these sensors is input to the main CPU 143 due to the disconnection of the signal line. It refers to the case where it is no longer done. Also in this case, if the freeze prevention control is performed based only on the incomplete sensor input, the circulation fluid may be frozen due to the incomplete control. For this reason, the main CPU 143 performs the following freeze prevention control regardless of the detection result of each sensor.
  • the main CPU 143 detects a sensor input abnormality.
  • the main CPU 143 that has detected the sensor input abnormality controls the connection relay RY1 to operate the circulation pump 300 and closes the gas valve GV to stop the compressor 10.
  • the main CPU 143 detects an abnormality of the sub CPU 144 due to a communication error with the sub CPU 144.
  • the main CPU 143 controls the connection relay RY1 to operate the circulation pump 300, and closes the gas valve GV to stop the compressor 10.
  • Abnormal sensor input to the sub CPU 144 means that the detection signal is not output due to an abnormality in the inflowing circulating fluid temperature sensor TWR or the heat exchanger surface temperature sensor TWS, or the detection signal of these sensors is due to the disconnection of the signal line. This indicates a case where the input to the sub CPU 144 is stopped. Also in this case, if the freeze prevention control is performed based only on the incomplete sensor input, the circulation fluid may be frozen due to the incomplete control. For this reason, the main CPU 143 performs the following freeze prevention control regardless of the detection result of each sensor.
  • the main CPU 143 detects a sensor input abnormality.
  • the main CPU 143 that has detected the sensor input abnormality controls the connection relay RY1 to operate the circulation pump 300 and closes the gas valve GV to stop the compressor 10.
  • the chiller 100 has a function of detecting whether there is an abnormality in the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, the heat exchanger surface temperature sensor TWS, and the pressure sensor PL at the time of starting.
  • This sensor abnormality detection operation will be described with reference to FIG. That is, when the chiller 100 is activated, the control device 140 performs the operation shown in the flowchart of FIG. 8 in order to detect the presence or absence of sensor abnormality.
  • the control device 140 When the chiller 100 is activated, the control device 140 first detects an abnormality in the outflow circulating fluid temperature sensor TWL and the pressure sensor PL (ST1). That is, the control device 140 has a self-check function for detecting an abnormality in the signal itself received by the main CPU 143 for the outflow circulating fluid temperature sensor TWL and the pressure sensor PL that input signals to the main CPU 143. Abnormalities in the outflow circulating fluid temperature sensor TWL and the pressure sensor PL in this case are detected by the main CPU 143. This abnormality detection can be determined, for example, by confirming the presence / absence of detection signals in the outflow circulating fluid temperature sensor TWL and the pressure sensor PL and whether the signal value is within a specified range.
  • control device 140 acquires the detected temperature from each of the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, and the heat exchanger surface temperature sensor TWS.
  • the control device 140 obtains a detected temperature difference between the inflowing circulating fluid temperature sensor TWR and the outflowing circulating fluid temperature sensor TWL, and the absolute value of the temperature difference is not less than a first predetermined value (for example, 2.0 ° C.). Whether or not is determined (ST3).
  • a first predetermined value for example, 2.0 ° C.
  • the circulating fluid is neither cooled nor heated, so it is considered that there is almost no difference between the detected temperature of the inflowing circulating fluid temperature sensor TWR and the detected temperature of the outflowing circulating fluid temperature sensor TWL. Therefore, in ST3, when the temperature difference is equal to or higher than the predetermined temperature (YES in ST3), it is determined that the inflowing circulating fluid temperature sensor TWR is abnormal, and the process proceeds to ST5.
  • control device 140 obtains a detected temperature difference between outflow circulating fluid temperature sensor TWL and heat exchanger surface temperature sensor TWS, and It is determined whether or not the absolute value of the temperature difference is equal to or greater than a second predetermined value (> first predetermined value; for example, 3.0 ° C.) (ST4). If the temperature difference is equal to or higher than the predetermined temperature in ST4 (YES in ST4), it is determined that there is an abnormality in the heat exchanger surface temperature sensor TWS, and the process proceeds to ST5.
  • a second predetermined value > first predetermined value; for example, 3.0 ° C.
  • the control device 140 closes the gas valve GV to stop the compressor 10 (that is, does not start driving the compressor 10), starts the operation of the circulation pump 300, and causes an abnormality in the sensor.
  • An alarm is sent to inform you that the In ST4, when the temperature difference is less than the predetermined temperature (NO in ST4), there is no abnormality in all the sensors, so that the process proceeds to ST6 and the operation of the chiller 100 is started.
  • the reliability of the anti-freezing detection is improved by checking whether the temperature sensor is abnormal before driving the compressor 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A heat pump type chiller (100) equipped with a compressor (10), a refrigerant-air heat exchanger (20), an expansion valve (40), and a refrigerant-circulating-liquid heat exchanger (50), wherein a circulating liquid is cooled by means of a heat exchange between a refrigerant and the circulating liquid. A circulating liquid inlet part, a circulating liquid outlet part, and a surface part of the refrigerant-circulating-liquid heat exchanger (50) are provided respectively with temperature sensors (TWR, TWL, TWS), and a refrigerant suction passage of the compressor (10) is provided with a pressure sensor (PL). When it is detected that the temperature detected by the three temperature sensors (TWR, TWL, TWS) or a refrigerant evaporation temperature calculated by converting from the pressure detected by the pressure sensor (PL) is equal to or less than a prescribed temperature, the compressor (10) is stopped and a circulation pump (300) for circulating the circulating liquid is operated.

Description

ヒートポンプ式チラーHeat pump chiller
 本発明は、冷凍サイクルを循環する冷媒との熱交換によって被冷却液の冷却を行うヒートポンプ式チラーに関する。 The present invention relates to a heat pump chiller that cools a liquid to be cooled by heat exchange with a refrigerant circulating in a refrigeration cycle.
 従来のヒートポンプ式チラーとして、特許文献1は、冷凍機を用いたチラーの凍結防止のために、図9に示す構成を開示している。特許文献1のチラーは、圧縮機501、凝縮器502、膨張弁503および蒸発器504にて冷凍サイクルを実行し、該サイクルを循環する冷媒との熱交換によって被冷却液の冷却を行っている。 As a conventional heat pump chiller, Patent Document 1 discloses a configuration shown in FIG. 9 in order to prevent the chiller using a refrigerator from freezing. The chiller of Patent Document 1 executes a refrigeration cycle with a compressor 501, a condenser 502, an expansion valve 503, and an evaporator 504, and cools a liquid to be cooled by heat exchange with a refrigerant circulating in the cycle. .
 特許文献1のチラーでは、膨張弁503の一次側に液電磁弁505を設け、起動時には、液電磁弁505の一次側の温度を第1温度センサ506で監視している。そして、第1温度センサ506での検出温度が第一設定値以下の場合は、液電磁弁505を閉じたままでバイパス弁507を開いて、圧縮機501から吐出される冷媒を膨張弁503の二次側にバイパスする。このように冷媒をバイパスすることにより、冷媒は冷凍サイクルを循環せず、蒸発器(熱交換器)504における冷水タンク510からの循環水(被冷却液)の凍結を防止することができる。 In the chiller of Patent Document 1, a liquid electromagnetic valve 505 is provided on the primary side of the expansion valve 503, and the temperature of the primary side of the liquid electromagnetic valve 505 is monitored by the first temperature sensor 506 at the time of activation. When the temperature detected by the first temperature sensor 506 is equal to or lower than the first set value, the bypass valve 507 is opened while the liquid electromagnetic valve 505 is closed, and the refrigerant discharged from the compressor 501 is supplied to the second expansion valve 503. Bypass to the next side. By bypassing the refrigerant in this way, the refrigerant does not circulate in the refrigeration cycle, and freezing of the circulating water (cooled liquid) from the cold water tank 510 in the evaporator (heat exchanger) 504 can be prevented.
日本国特許公報「特許第5098472号公報」Japanese Patent Gazette “Patent No. 5098472”
 しかしながら、上記特許文献1の構成では、液電磁弁505の一次側の温度は、定常運転に達すると温度が上昇するため、上記技術を運転中の凍結防止に流用することは困難である。 However, in the configuration of Patent Document 1, the temperature on the primary side of the liquid electromagnetic valve 505 increases when reaching the steady operation, and thus it is difficult to divert the above technique to prevent freezing during operation.
 本発明は、起動から運転中も含めて、被冷却液の凍結防止を図ることができるヒートポンプ式チラーを提供することを目的とする。 An object of the present invention is to provide a heat pump chiller capable of preventing the liquid to be cooled from being frozen, including during startup and operation.
 上記目的を達成するために、本発明に係るヒートポンプ式チラーは、冷媒を吸入・吐出する圧縮機、冷媒-空気熱交換器、膨張弁、および循環液と冷媒が熱交換する冷媒-循環液熱交換器を備え、前記循環液の流れ経路に循環ポンプを設けたヒートポンプ式チラーであって、前記冷媒-循環液熱交換器の循環液入口部、循環液出口部および表面部にそれぞれ温度センサを設け、前記圧縮機の冷媒吸入経路に圧力センサを設け、前記3つの温度センサによる検知温度、または前記圧力センサによる検知圧力から換算される冷媒蒸発温度のいずれか一つの温度が所定温度以下であることを検知した場合に、前記圧縮機を停止させると共に、前記循環ポンプを動作させることを特徴としている。 In order to achieve the above object, a heat pump chiller according to the present invention includes a compressor for sucking and discharging refrigerant, a refrigerant-air heat exchanger, an expansion valve, and a refrigerant-circulating liquid heat in which the circulating liquid and the refrigerant exchange heat. A heat pump chiller provided with an exchanger and provided with a circulating pump in the circulating fluid flow path, wherein temperature sensors are respectively provided at the circulating fluid inlet, the circulating fluid outlet, and the surface of the refrigerant-circulating fluid heat exchanger. And a pressure sensor is provided in the refrigerant suction path of the compressor, and one of a temperature detected by the three temperature sensors or a refrigerant evaporation temperature converted from the pressure detected by the pressure sensor is equal to or lower than a predetermined temperature. When this is detected, the compressor is stopped and the circulating pump is operated.
 上記の構成によれば、循環液の温度に相当する温度を監視することで、チラーの運転期間全般に渡って循環液の凍結を防止できる。 According to the above configuration, by monitoring the temperature corresponding to the temperature of the circulating fluid, it is possible to prevent the circulating fluid from freezing over the entire operation period of the chiller.
 また、上記ヒートポンプ式チラーにおいては、前記3つの温度センサおよび前記圧力センサの検知信号を複数のコントローラが分散して受信する構成とすることができる。 In the heat pump chiller, a plurality of controllers can receive the detection signals of the three temperature sensors and the pressure sensor in a distributed manner.
 上記の構成によれば、センサ信号の受信コントローラを分散することで、コントローラ異常に対するリスク低減が図れる。 According to the above configuration, it is possible to reduce the risk of controller abnormality by distributing the sensor signal reception controllers.
 また、上記ヒートポンプ式チラーにおいては、前記冷媒-循環液熱交換器の循環液入口部の温度センサ、および前記圧縮機の冷媒吸入経路の圧力センサの信号を第1コントローラが受信し、前記冷媒-循環液熱交換器の循環液出口部、および表面部の温度センサの信号を第2コントローラが受信し、前記第1コントローラは、受信した信号自体の異常を検知する機能を有し、当該チラーの起動時には、前記圧縮機の駆動前に前記循環ポンプを動作させ、前記循環ポンプの動作後で圧縮機の駆動開始前に、前記冷媒-循環液熱交換器の循環液入口部の温度センサによる検知温度と循環液出口部の温度センサによる検知温度との温度差の絶対値が第1所定値以上、または前記冷媒-循環液熱交換器の循環液入口部の温度センサによる検知温度と表面部の温度センサによる検知温度との温度差の絶対値が第1所定値よりも大きい第2所定値以上であることを検知した場合には、前記圧縮機の駆動を中止する構成とすることができる。 In the heat pump chiller, the first controller receives signals from the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the pressure sensor from the refrigerant suction path of the compressor, and the refrigerant- The second controller receives signals from the circulating fluid outlet of the circulating fluid heat exchanger and the surface temperature sensor, and the first controller has a function of detecting an abnormality in the received signal itself. At startup, the circulating pump is operated before the compressor is driven, and the temperature sensor at the circulating liquid inlet of the refrigerant-circulating fluid heat exchanger is detected after the circulating pump is operated and before the compressor is started. The absolute value of the temperature difference between the temperature and the temperature detected by the temperature sensor of the circulating fluid outlet is not less than a first predetermined value, or the temperature detected by the temperature sensor of the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger When it is detected that the absolute value of the temperature difference from the temperature detected by the surface temperature sensor is equal to or larger than a second predetermined value that is larger than the first predetermined value, the driving of the compressor is stopped. it can.
 上記の構成によれば、圧縮機の駆動前に温度センサの異常有無を確認することができ、凍結防止検知の信頼性が向上する。 According to the above configuration, it is possible to confirm whether or not the temperature sensor is abnormal before driving the compressor, and the reliability of the freeze prevention detection is improved.
 また、上記ヒートポンプ式チラーにおいては、前記冷媒-循環液熱交換器の循環液入口部の温度センサ、および前記圧縮機の冷媒吸入経路の圧力センサの信号を第1コントローラが受信し、前記冷媒-循環液熱交換器の循環液出口部、および表面部の温度センサの信号を第2コントローラが受信し、前記第1コントローラによって開閉される接続リレーであって、前記循環ポンプと電源との間に設けられる第1接続リレーと、前記第2コントローラによって開閉される接続リレーであって、前記循環ポンプと電源との間に設けられる第2接続リレーとを並列に設けた構成とすることができる。 In the heat pump chiller, the first controller receives signals from the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the pressure sensor from the refrigerant suction path of the compressor, and the refrigerant- A connection relay that receives signals from the circulating fluid outlet of the circulating fluid heat exchanger and the surface temperature sensor, and is opened and closed by the first controller, and is connected between the circulating pump and the power source. A first connection relay provided and a connection relay opened and closed by the second controller, wherein a second connection relay provided between the circulation pump and a power source can be provided in parallel.
 上記の構成によれば、第1コントローラおよび第2コントローラのいずれのコントロ-ラからでも循環ポンプへ給電が可能となるので、コントローラ異常に対する循環ポンプの作動安全性が向上する。 According to the above configuration, power can be supplied to the circulation pump from either of the controllers of the first controller and the second controller, so that the operation safety of the circulation pump against controller abnormality is improved.
 本発明のヒートポンプ式チラーは、冷媒-循環液熱交換器の循環液入口部、循環液出口部および表面部にそれぞれ温度センサを設け、前記圧縮機の冷媒吸入経路に圧力センサを設け、前記3つの温度センサによる検知温度、または前記圧力センサによる検知圧力から換算される冷媒蒸発温度のいずれか一つの温度が所定温度以下であることを検知した場合に、前記圧縮機を停止させると共に、前記循環ポンプを動作させる。 The heat pump chiller of the present invention is provided with a temperature sensor at each of a circulating fluid inlet, a circulating fluid outlet, and a surface of a refrigerant-circulating fluid heat exchanger, and a pressure sensor at the refrigerant suction path of the compressor. When it is detected that one of the temperature detected by two temperature sensors or the refrigerant evaporation temperature converted from the pressure detected by the pressure sensor is equal to or lower than a predetermined temperature, the compressor is stopped and the circulation Operate the pump.
 これにより、循環液の温度に相当する温度を監視し、これらの温度に基づいて循環液の凍結防止制御を行うことで、チラーの運転期間全般に渡って循環液の凍結を防止できるといった効果を奏する。 As a result, the temperature corresponding to the temperature of the circulating fluid is monitored, and the anti-freezing control of the circulating fluid is performed based on these temperatures, thereby preventing the circulating fluid from being frozen over the entire operation period of the chiller. Play.
本実施の形態に係るヒートポンプ式チラーの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the heat pump type chiller which concerns on this Embodiment. 本実施の形態に係るヒートポンプ式チラーにおける、循環液の凍結防止制御を行う制御系を示すブロック図である。It is a block diagram which shows the control system which performs the freeze prevention control of the circulating fluid in the heat pump chiller which concerns on this Embodiment. 図2に示す制御系において、正常時における凍結防止制御を説明する図である。FIG. 3 is a diagram for explaining anti-freezing control at normal time in the control system shown in FIG. 2. 図2に示す制御系において、メインCPUの異常時における凍結防止制御を説明する図である。FIG. 3 is a diagram illustrating freeze prevention control when the main CPU is abnormal in the control system shown in FIG. 2. 図2に示す制御系において、メインCPUへのセンサ入力異常時における凍結防止制御を説明する図である。FIG. 3 is a diagram for explaining anti-freezing control when a sensor input to the main CPU is abnormal in the control system shown in FIG. 2. 図2に示す制御系において、サブCPUの異常時における凍結防止制御の制御動作を説明する図である。FIG. 3 is a diagram illustrating a control operation of anti-freezing control when a sub CPU is abnormal in the control system shown in FIG. 2. 図2に示す制御系において、サブCPUへのセンサ入力異常時における凍結防止制御を説明する図である。FIG. 3 is a diagram for explaining anti-freezing control when a sensor input to the sub CPU is abnormal in the control system shown in FIG. 2. 本実施の形態に係るヒートポンプ式チラーにおける、センサ異常検知動作を示すフローチャートである。It is a flowchart which shows sensor abnormality detection operation | movement in the heat pump chiller which concerns on this Embodiment. 従来のヒートポンプ式チラーの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the conventional heat pump type chiller.
 以下、本発明に係る実施の形態について図面を参照しながら説明する。図1は、本実施の形態に係るヒートポンプ式チラー(以下、単にチラーと称する)100の概略構成を示すブロック図である。チラー100は、大略的に、冷媒を流通させる冷媒回路110と、循環液とを流通させる循環液回路200とを備えている。また、制御装置140は、チラー100全体の動作を制御する。 Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a heat pump chiller (hereinafter simply referred to as a chiller) 100 according to the present embodiment. The chiller 100 generally includes a refrigerant circuit 110 that circulates a refrigerant and a circulating fluid circuit 200 that circulates a circulating fluid. The control device 140 controls the operation of the entire chiller 100.
 冷媒回路110は、圧縮機10、冷媒-空気熱交換器20、膨張弁40および冷媒-循環液熱交換器50を備えて構成されている。チラー100は、冷媒を圧縮機10、冷媒-空気熱交換器20、膨張弁40、冷媒-循環液熱交換器50の順で循環させることによって冷凍サイクルを実行している。そして、チラー100は、冷媒-循環液熱交換器50での熱交換(循環液と冷媒との間での熱交換)によって循環液の冷却を行う(冷却運転)。 The refrigerant circuit 110 includes a compressor 10, a refrigerant-air heat exchanger 20, an expansion valve 40, and a refrigerant-circulating liquid heat exchanger 50. The chiller 100 executes a refrigeration cycle by circulating refrigerant in the order of the compressor 10, the refrigerant-air heat exchanger 20, the expansion valve 40, and the refrigerant-circulated liquid heat exchanger 50. The chiller 100 cools the circulating fluid by heat exchange in the refrigerant-circulating fluid heat exchanger 50 (heat exchange between the circulating fluid and the refrigerant) (cooling operation).
 冷媒回路110において、圧縮機10は、吸入した冷媒を圧縮して吐出する。冷媒-空気熱交換器20は、冷媒と空気(具体的には外気)との間で熱交換させる。膨張弁40は、圧縮機10で圧縮した冷媒を膨張させる。冷媒-循環液熱交換器50は、循環液と冷媒との間で熱交換させる。圧縮機10は、複数台の圧縮機を並列に接続したものであってもよく、同様に、冷媒-空気熱交換器20は、複数台の冷媒-空気熱交換器を並列に接続したものであってもよい。 In the refrigerant circuit 110, the compressor 10 compresses and discharges the sucked refrigerant. The refrigerant-air heat exchanger 20 exchanges heat between the refrigerant and air (specifically, outside air). The expansion valve 40 expands the refrigerant compressed by the compressor 10. The refrigerant-circulating liquid heat exchanger 50 exchanges heat between the circulating liquid and the refrigerant. The compressor 10 may be a unit in which a plurality of compressors are connected in parallel. Similarly, the refrigerant-air heat exchanger 20 is a unit in which a plurality of refrigerant-air heat exchangers are connected in parallel. There may be.
 膨張弁40は、制御装置140からの指示信号により開度を調整できるようになっている。これにより、膨張弁40は、冷媒回路110における冷媒の循環量を調整することができる。詳しくは、膨張弁40は、閉塞可能な複数の膨張弁を並列に接続したものとされている。こうすることで、膨張弁40は、開放する膨張弁を組み合わせて冷媒回路110における冷媒の循環量を調整することができる。 The expansion valve 40 can be adjusted in opening degree by an instruction signal from the control device 140. Thereby, the expansion valve 40 can adjust the circulation amount of the refrigerant in the refrigerant circuit 110. Specifically, the expansion valve 40 is formed by connecting a plurality of expansion valves that can be closed in parallel. By doing so, the expansion valve 40 can adjust the circulation amount of the refrigerant in the refrigerant circuit 110 by combining the expansion valves to be opened.
 図1に示すチラー100において、冷媒-空気熱交換器用ファン30は、冷媒-空気熱交換器20での熱交換を効率よく行うために設けられている。エンジン60は、圧縮機10を駆動する駆動源として設けられている。但し、本発明において、圧縮機10を駆動する駆動源はエンジンに限定されるものではなく、他の駆動原(例えば、モータ)を用いてもよい。 In the chiller 100 shown in FIG. 1, the refrigerant-air heat exchanger fan 30 is provided to efficiently perform heat exchange in the refrigerant-air heat exchanger 20. The engine 60 is provided as a drive source that drives the compressor 10. However, in the present invention, the drive source for driving the compressor 10 is not limited to the engine, and another drive source (for example, a motor) may be used.
 本実施の形態に係るチラー100は、冷却運転以外に、加熱運転を実行できる構成となっている。このため、チラー100は、圧縮機10の冷媒吐出側に四方弁111を備えると共に、ブリッジ回路112を備えている。 The chiller 100 according to the present embodiment is configured to perform a heating operation in addition to the cooling operation. For this reason, the chiller 100 includes a four-way valve 111 and a bridge circuit 112 on the refrigerant discharge side of the compressor 10.
 四方弁111は、制御装置140からの指示信号により、冷却運転時と加熱運転時とで冷媒の流れ方向を切り替える。すなわち、冷却運転時には、流入口(図1中の下側)と一方の接続口(図1中の左側)とを接続し、かつ、他方の接続口(図1中の右側)と流出口(図1中の上側)とを接続する(図1に示す実線経路)。また、加熱運転時には、流入口(図1中の下側)と他方の接続口(図1中の右側)とを接続し、かつ、一方の接続口(図1中の左側)と流出口(図1中の上側)とを接続する(図1に示す破線経路)。 The four-way valve 111 switches the flow direction of the refrigerant between the cooling operation and the heating operation according to an instruction signal from the control device 140. That is, during the cooling operation, the inflow port (lower side in FIG. 1) and one connection port (left side in FIG. 1) are connected, and the other connection port (right side in FIG. 1) and the outflow port ( 1 (upper line in FIG. 1). Further, during the heating operation, the inlet (lower side in FIG. 1) and the other connection port (right side in FIG. 1) are connected, and one connection port (left side in FIG. 1) and the outlet ( 1 (upper line in FIG. 1).
 ブリッジ回路112は、冷却運転時と加熱運転時とで冷媒の流れ方向が自動的に切り替わるものである。ブリッジ回路112は、4つの逆止弁(第1逆止弁112a、第2逆止弁112b、第3逆止弁112cおよび第4逆止弁112d)を備えている。第1逆止弁112aおよび第2逆止弁112bは、冷媒の流れる方向が同じになるように直列に接続され、第1逆止弁列を構成している。第3逆止弁112cおよび第4逆止弁112dは、冷媒の流れる方向が同じになるように直列に接続され、第2逆止弁列を構成している。そして、第1逆止弁列および第2逆止弁列は、冷媒の流れる方向が同じになるように並列に接続されている。 The bridge circuit 112 automatically switches the refrigerant flow direction between the cooling operation and the heating operation. The bridge circuit 112 includes four check valves (a first check valve 112a, a second check valve 112b, a third check valve 112c, and a fourth check valve 112d). The first check valve 112a and the second check valve 112b are connected in series so that the refrigerant flows in the same direction, and constitute a first check valve train. The third check valve 112c and the fourth check valve 112d are connected in series so that the refrigerant flows in the same direction, and constitute a second check valve train. The first check valve row and the second check valve row are connected in parallel so that the refrigerant flows in the same direction.
 ブリッジ回路112においては、第1逆止弁112aと第2逆止弁112bとの間の接続点が第1中間接続点P1とされ、第1逆止弁112aと第3逆止弁112cとの間の接続点が流出接続点P2とされ、第3逆止弁112cと第4逆止弁112dとの間の接続点が第2中間接続点P3とされ、第2逆止弁112bと第4逆止弁112dとの間の接続点が流入接続点P4とされている。 In the bridge circuit 112, a connection point between the first check valve 112a and the second check valve 112b is a first intermediate connection point P1, and the connection between the first check valve 112a and the third check valve 112c. The connection point between the third check valve 112c and the fourth check valve 112d is the second intermediate connection point P3, and the second check valve 112b and the fourth check point 112b. A connection point with the check valve 112d is an inflow connection point P4.
 チラー100の冷却運転時には、冷媒の流れ経路は、圧縮機10、四方弁111、冷媒-空気熱交換器20、ブリッジ回路112(P1からP2)、膨張弁40、ブリッジ回路112(P4からP3)、冷媒-循環液熱交換器50、四方弁111、圧縮機10となり、冷凍サイクルを実行する。また、チラー100の加熱運転時には、冷媒の流れ経路は、圧縮機10、四方弁111、冷媒-循環液熱交換器50、ブリッジ回路112(P3からP2)、膨張弁40、ブリッジ回路112(P4からP1)、冷媒-空気熱交換器20、四方弁111、圧縮機10となり、加熱サイクルを実行する。 During the cooling operation of the chiller 100, the refrigerant flow path includes the compressor 10, the four-way valve 111, the refrigerant-air heat exchanger 20, the bridge circuit 112 (P1 to P2), the expansion valve 40, and the bridge circuit 112 (P4 to P3). The refrigerant-circulating liquid heat exchanger 50, the four-way valve 111, and the compressor 10 become the refrigeration cycle. Further, during the heating operation of the chiller 100, the refrigerant flow path includes the compressor 10, the four-way valve 111, the refrigerant-circulating fluid heat exchanger 50, the bridge circuit 112 (P3 to P2), the expansion valve 40, and the bridge circuit 112 (P4). To P1), the refrigerant-air heat exchanger 20, the four-way valve 111, and the compressor 10 are executed, and the heating cycle is executed.
 本実施の形態では、チラー100は、オイルセパレータ81、アキュムレータ82およびレシーバ83をさらに備えている。オイルセパレータ81は、冷媒に含有する圧縮機10の潤滑油を分離し、かつ分離した潤滑油を圧縮機10に戻す。アキュムレータ82は、蒸発器として作用する冷媒-循環液熱交換器50または蒸発器として作用する冷媒-空気熱交換器20で蒸発し切れなかった冷媒液を分離する。レシーバ83は、ブリッジ回路112からの高圧液冷媒を一時的に蓄える。 In the present embodiment, the chiller 100 further includes an oil separator 81, an accumulator 82, and a receiver 83. The oil separator 81 separates the lubricating oil of the compressor 10 contained in the refrigerant, and returns the separated lubricating oil to the compressor 10. The accumulator 82 separates the refrigerant liquid that has not completely evaporated in the refrigerant-circulated liquid heat exchanger 50 acting as an evaporator or the refrigerant-air heat exchanger 20 acting as an evaporator. The receiver 83 temporarily stores the high-pressure liquid refrigerant from the bridge circuit 112.
 本実施の形態に係るチラー100は、四方弁111とブリッジ回路112とを備えることによって、冷却運転と加熱運転とを切替可能な構成となっているが、本発明は冷却運転時の動作に特徴を有するものである。このため、本発明は、冷却運転のみを実施可能なチラーに対しても適用可能である。 The chiller 100 according to the present embodiment includes a four-way valve 111 and a bridge circuit 112 so that the cooling operation and the heating operation can be switched. The present invention is characterized by the operation during the cooling operation. It is what has. For this reason, this invention is applicable also to the chiller which can implement only a cooling operation.
 続いて、循環液回路200について説明する。循環液回路200を流れる循環液は、冷却運転時には、冷媒-循環液熱交換器50における熱交換によって冷却される被冷却液となる。また、加熱運転時には、冷媒-循環液熱交換器50における熱交換によって加熱される被加熱液となる。上記循環液は、例えば、建物の空調システムにて利用される冷水や温水として使用される。上記循環液には例えば水が使用されるが、本発明はこれに限定されるものではなく、水に不凍剤等を混入した溶液であっても良い。 Subsequently, the circulating fluid circuit 200 will be described. The circulating fluid flowing through the circulating fluid circuit 200 becomes a liquid to be cooled that is cooled by heat exchange in the refrigerant-circulating fluid heat exchanger 50 during the cooling operation. In the heating operation, the liquid to be heated is heated by heat exchange in the refrigerant-circulating liquid heat exchanger 50. The circulating fluid is used, for example, as cold water or hot water used in a building air conditioning system. For example, water is used as the circulating fluid, but the present invention is not limited to this, and a solution in which an antifreeze or the like is mixed in water may be used.
 循環液回路200は、流入管211と流出管212と循環ポンプ300とを備えて構成されている。循環液は、流入管211を介して冷媒-循環液熱交換器50に導入され、冷媒-循環液熱交換器50において温度を調節される。温度調節された循環液は、流出管212を介してチラー100から排出される。尚、チラー100に含まれる循環液回路200は、基本的には、循環液が流れる閉回路の一部のみを形成するものである。すなわち、本実施の形態に係るチラー100を建物の空調システムに利用する場合には、空調システム側の循環液回路とチラー100側の循環液回路200とが接続されて閉回路をなし、この閉回路内を循環液が流れる。循環ポンプ300は、上記閉回路内で循環液を循環させるためのポンプである。図1に示す構成では、循環ポンプ300は流出管212に設けられているが、流入管211に設けられていても良い。 The circulating fluid circuit 200 includes an inflow pipe 211, an outflow pipe 212, and a circulation pump 300. The circulating fluid is introduced into the refrigerant-circulating fluid heat exchanger 50 via the inflow pipe 211, and the temperature is adjusted in the refrigerant-circulating fluid heat exchanger 50. The circulating fluid whose temperature has been adjusted is discharged from the chiller 100 through the outflow pipe 212. The circulating fluid circuit 200 included in the chiller 100 basically forms only a part of a closed circuit through which the circulating fluid flows. That is, when the chiller 100 according to the present embodiment is used for an air conditioning system in a building, the circulating fluid circuit on the air conditioning system side and the circulating fluid circuit 200 on the chiller 100 side are connected to form a closed circuit. Circulating fluid flows in the circuit. The circulation pump 300 is a pump for circulating the circulating fluid in the closed circuit. In the configuration shown in FIG. 1, the circulation pump 300 is provided in the outflow pipe 212, but may be provided in the inflow pipe 211.
 本実施の形態に係るチラー100は、冷却運転時における循環液の凍結防止を図るために、流入循環液温度センサTWR、流出循環液温度センサTWL、熱交換器表面温度センサTWSおよび圧力センサPLを備えている。 The chiller 100 according to the present embodiment includes an inflowing circulating fluid temperature sensor TWR, an outflowing circulating fluid temperature sensor TWL, a heat exchanger surface temperature sensor TWS, and a pressure sensor PL in order to prevent the circulating fluid from freezing during the cooling operation. I have.
 流入循環液温度センサTWRは、流入管211に設けられており、冷媒-循環液熱交換器50に流入する循環液(具体的には流入管211内の循環液)の温度を検出する。流出循環液温度センサTWLは、流出管212に設けられており、冷媒-循環液熱交換器50から流出する循環液(具体的には流出管212内の循環液)の温度を検出する。熱交換器表面温度センサTWSは、冷媒-循環液熱交換器50の表面に設けられ、該表面温度を検出する。圧力センサPLは、圧縮機10の冷媒吸入経路に設けられ、冷媒-循環液熱交換器50から流出する冷媒の圧力を検出する。尚、圧力センサPLによって検出される圧力からは、冷媒-循環液熱交換器50から流出する冷媒の冷媒蒸発温度が求められる。 The inflow circulating fluid temperature sensor TWR is provided in the inflow tube 211 and detects the temperature of the circulating fluid flowing into the refrigerant-circulating fluid heat exchanger 50 (specifically, the circulating fluid in the inflow tube 211). The outflow circulating fluid temperature sensor TWL is provided in the outflow pipe 212 and detects the temperature of the circulating liquid flowing out from the refrigerant-circulating liquid heat exchanger 50 (specifically, the circulating liquid in the outflow pipe 212). The heat exchanger surface temperature sensor TWS is provided on the surface of the refrigerant-circulating liquid heat exchanger 50 and detects the surface temperature. The pressure sensor PL is provided in the refrigerant suction path of the compressor 10 and detects the pressure of the refrigerant flowing out from the refrigerant-circulated liquid heat exchanger 50. Note that the refrigerant evaporating temperature of the refrigerant flowing out of the refrigerant-circulating fluid heat exchanger 50 is obtained from the pressure detected by the pressure sensor PL.
 制御装置140は、冷却運転時における循環液の凍結防止を図るために、各種センサからの検知信号に基づいて以下の制御を行う。具体的には、流入循環液温度センサTWR、流出循環液温度センサTWLおよび熱交換器表面温度センサTWSの何れかによる検知温度、または、圧力センサPLの検知圧力から換算される冷媒蒸発温度が所定温度(例えば2℃)以下であることを検知した場合に、圧縮機10を停止すると共に、循環ポンプ300を動作させる。 The control device 140 performs the following control based on detection signals from various sensors in order to prevent the circulating fluid from freezing during the cooling operation. Specifically, the temperature detected by any of the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, and the heat exchanger surface temperature sensor TWS, or the refrigerant evaporation temperature converted from the detected pressure of the pressure sensor PL is predetermined. When it is detected that the temperature is lower than (eg, 2 ° C.), the compressor 10 is stopped and the circulation pump 300 is operated.
 すなわち、上記4つの温度の何れか一つでも所定温度(例えば2℃)以下であることを検知した場合には、そのまま冷却運転を実行し続けると循環液の凍結の虞があると判断され、これを防止するための制御が実行される。具体的には、圧縮機10を停止することで冷媒回路110の冷凍サイクルを停止させ、さらに、循環ポンプ300を動作させることで、循環液回路200内の循環液を凍結させにくくする。尚、上記動作は、上記4つの温度の全てが所定温度以上になるまで継続されるものとする。このように、本実施の形態に係るチラー100では、循環液の温度に相当する温度を常に監視することでチラーの運転期間全般に渡って凍結を防止できる。 That is, when it is detected that any one of the four temperatures is equal to or lower than a predetermined temperature (for example, 2 ° C.), it is determined that the circulating fluid may be frozen if the cooling operation is continued as it is. Control for preventing this is executed. Specifically, the refrigeration cycle of the refrigerant circuit 110 is stopped by stopping the compressor 10, and the circulating pump 300 is operated to make it difficult to freeze the circulating fluid in the circulating fluid circuit 200. Note that the above operation is continued until all of the four temperatures are equal to or higher than a predetermined temperature. As described above, in the chiller 100 according to the present embodiment, freezing can be prevented over the entire operation period of the chiller by constantly monitoring the temperature corresponding to the temperature of the circulating fluid.
 本実施の形態に係るチラー100において、制御装置140は複数のコントローラによって形成され、前記3つの温度センサおよび前記圧力センサの検知信号を複数のコントローラで分散して受信する構成とすることが好ましい。このように、センサ信号の受信コントローラを分散することでコントローラ異常に対するリスク低減を図ることができる。受信コントローラを分散する構成について、以下に詳細に説明する。 In the chiller 100 according to the present embodiment, the control device 140 is preferably formed by a plurality of controllers, and the detection signals of the three temperature sensors and the pressure sensors are distributed and received by the plurality of controllers. In this way, by distributing the sensor signal reception controllers, it is possible to reduce the risk of controller abnormality. A configuration for distributing the reception controllers will be described in detail below.
 制御装置140は、図2に示すように、メインボード141とサブボード142によって構成されており、メインボード141にはメインCPU(第1コントローラ)143が搭載され、サブボード142にはサブCPU(第2コントローラ)144が搭載されている。メインCPU143とサブCPU144とは、通信ライン145を介して互いに通信可能に接続されている。 As shown in FIG. 2, the control device 140 includes a main board 141 and a sub board 142. A main CPU (first controller) 143 is mounted on the main board 141, and a sub CPU ( A second controller 144 is mounted. The main CPU 143 and the sub CPU 144 are connected via a communication line 145 so that they can communicate with each other.
 図2の例では、メインCPU143に流出循環液温度センサTWLの検知信号と圧力センサPLの検知信号とが入力され、サブCPU144に流入循環液温度センサTWRの検知信号と熱交換器表面温度センサTWSの検知信号とが入力されるものとする。 In the example of FIG. 2, the detection signal of the outflow circulating fluid temperature sensor TWL and the detection signal of the pressure sensor PL are input to the main CPU 143, and the detection signal of the inflowing circulating fluid temperature sensor TWR and the heat exchanger surface temperature sensor TWS are input to the sub CPU 144. It is assumed that the detection signal is input.
 さらに、メインCPU143は、パワーボード146における接続リレーRY1(第1接続リレー)を制御してモータ301に動力を供給することが可能である。サブCPU144は、接続リレーRY2(第2接続リレー)および接続リレーRY(MC)(第2接続リレー)を制御してモータ301に動力を供給することが可能である。モータ301は循環ポンプ300を駆動するためのモータであり、モータ301に動力を供給することによって循環ポンプ300が動作する。すなわち、メインCPU143によって開閉される第1接続リレー(接続リレーRY1)と、サブCPU144によって開閉される第2接続リレー(接続リレーRY2および接続リレーRY(MC))とが並列に設けられており、モータ301に対しては、メインCPU143およびサブCPU144のいずれのコントロ-ラからでも循環ポンプへ給電が可能となる。これにより、コントローラ異常に対する循環ポンプ300の作動安全性が向上する。 Furthermore, the main CPU 143 can supply power to the motor 301 by controlling the connection relay RY1 (first connection relay) in the power board 146. The sub CPU 144 can control the connection relay RY2 (second connection relay) and the connection relay RY (MC) (second connection relay) to supply power to the motor 301. The motor 301 is a motor for driving the circulation pump 300, and the circulation pump 300 operates by supplying power to the motor 301. That is, a first connection relay (connection relay RY1) opened and closed by the main CPU 143 and a second connection relay (connection relay RY2 and connection relay RY (MC)) opened and closed by the sub CPU 144 are provided in parallel. The motor 301 can be supplied with power to the circulation pump from either the main CPU 143 or the sub CPU 144. Thereby, the operational safety of the circulation pump 300 with respect to controller abnormality improves.
 先ずは、正常時における凍結防止制御の制御動作を図3を参照して説明する。正常時においては、メインCPU143およびサブCPU144の両方が正常に動作しており、かつ、流入循環液温度センサTWR、流出循環液温度センサTWL、熱交換器表面温度センサTWSおよび圧力センサPLの全てから正常な検知信号が入力される。 First, the control operation of the freeze prevention control in the normal state will be described with reference to FIG. Under normal conditions, both the main CPU 143 and the sub CPU 144 are operating normally, and from all of the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, the heat exchanger surface temperature sensor TWS, and the pressure sensor PL. A normal detection signal is input.
 この場合、上述した凍結防止制御はメインCPU143によって行われる。メインCPU143には、流出循環液温度センサTWLおよび圧力センサPLからの検知信号が直接入力されると共に、流入循環液温度センサTWRおよび熱交換器表面温度センサTWSからの検知信号がサブCPU144を介して入力される。メインCPU143は、これら4つの信号から検出される温度を監視し、その何れかが所定温度(例えば2℃)以下となった場合に、上述した凍結防止制御を行う。 In this case, the above-described freeze prevention control is performed by the main CPU 143. Detection signals from the outflow circulating fluid temperature sensor TWL and the pressure sensor PL are directly input to the main CPU 143, and detection signals from the inflowing circulating fluid temperature sensor TWR and the heat exchanger surface temperature sensor TWS are input via the sub CPU 144. Entered. The main CPU 143 monitors the temperatures detected from these four signals, and performs the above-described antifreezing control when any of them falls below a predetermined temperature (for example, 2 ° C.).
 具体的には、メインCPU143は、接続リレーRY1を制御してモータ301に動力を供給し、循環ポンプ300を動作させる。さらに、メインCPU143は、ガスバルブGVを閉じる制御を行う。本例では、ガスバルブGVはエンジン60への燃料供給を調整するバルブであり、これを閉じることによってエンジン60が停止し、圧縮機10が停止する。尚、ガスバルブGVを閉じるのは、圧縮機10を停止させるための制御の一例であって、本発明はこれに限定されるものではない。例えば、圧縮機10の駆動源がエンジンであり、エンジンが完全に駆動開始する前に圧縮機10を停止させる場合には、エンジンのスタータへの給電を停止する制御であっても良い。あるいは、圧縮機10の駆動源がモータである場合には、該モータへの給電を停止する制御であっても良い。 Specifically, the main CPU 143 controls the connection relay RY1 to supply power to the motor 301 and operate the circulation pump 300. Further, the main CPU 143 performs control for closing the gas valve GV. In this example, the gas valve GV is a valve that adjusts the fuel supply to the engine 60. By closing the gas valve GV, the engine 60 stops and the compressor 10 stops. The closing of the gas valve GV is an example of control for stopping the compressor 10, and the present invention is not limited to this. For example, when the drive source of the compressor 10 is an engine and the compressor 10 is stopped before the engine completely starts driving, control for stopping power supply to the starter of the engine may be performed. Or when the drive source of the compressor 10 is a motor, the control which stops the electric power feeding to this motor may be sufficient.
 次に、メインCPU143の異常時における凍結防止制御の制御動作を図4を参照して説明する。メインCPU143の異常時においては、メインCPU143に入力される流出循環液温度センサTWLおよび圧力センサPLからの検知信号を検出できない。この場合、残りの検知信号のみに基づいて凍結防止制御を行うと、不完全な制御のために循環液の凍結が発生する虞がある。このため、メインCPU143の異常時には、各センサの検知結果に関らず、サブCPU144が凍結防止制御を行う。 Next, the control operation of the freeze prevention control when the main CPU 143 is abnormal will be described with reference to FIG. When the main CPU 143 is abnormal, detection signals from the outflow circulating fluid temperature sensor TWL and the pressure sensor PL input to the main CPU 143 cannot be detected. In this case, if the freeze prevention control is performed based only on the remaining detection signals, the circulating fluid may freeze due to incomplete control. For this reason, when the main CPU 143 is abnormal, the sub CPU 144 performs anti-freezing control regardless of the detection result of each sensor.
 この場合、サブCPU144は、メインCPU143との通信エラーによってメインCPU143の異常を検出する。そして、サブCPU144は、メインCPU143の異常を検出すると、接続リレーRY2および接続リレーRY(MC)を制御してモータ301に動力を供給し、循環ポンプ300を動作させる。 In this case, the sub CPU 144 detects an abnormality of the main CPU 143 due to a communication error with the main CPU 143. When the sub CPU 144 detects an abnormality in the main CPU 143, the sub CPU 144 controls the connection relay RY2 and the connection relay RY (MC) to supply power to the motor 301 and operate the circulation pump 300.
 また、圧縮機10を停止する制御としては、サブCPU144がガスバルブGVを閉じる制御を行ってもよいが、ここでは補助CPU147が該制御を行う場合を例示する。すなわち、補助CPU147は、メインCPU143との通信エラーによってメインCPU143の異常を検出することができる。そして、補助CPU147は、メインCPU143の異常を検出すると、ガスバルブGVを閉じて、圧縮機10を停止させる。 Further, as control for stopping the compressor 10, the sub CPU 144 may perform control to close the gas valve GV, but here, a case where the auxiliary CPU 147 performs the control is illustrated. That is, the auxiliary CPU 147 can detect an abnormality of the main CPU 143 by a communication error with the main CPU 143. When the auxiliary CPU 147 detects an abnormality in the main CPU 143, the auxiliary CPU 147 closes the gas valve GV and stops the compressor 10.
 次に、メインCPU143へのセンサ入力異常時における凍結防止制御の制御動作を図5を参照して説明する。メインCPU143へのセンサ入力異常とは、流出循環液温度センサTWLまたは圧力センサPLに異常が生じて検知信号が出力されなくなった場合や、これらセンサの検知信号が信号線の断線によってメインCPU143に入力されなくなった場合を指す。この場合も、不完全なセンサ入力のみに基づいて凍結防止制御を行うと、不完全な制御となって循環液の凍結が発生する虞がある。このため、メインCPU143は、各センサの検知結果に関らず、以下の凍結防止制御を行う。 Next, the control operation of the freeze prevention control when the sensor input to the main CPU 143 is abnormal will be described with reference to FIG. The sensor input abnormality to the main CPU 143 is when the outflow circulating fluid temperature sensor TWL or the pressure sensor PL is abnormal and the detection signal is not output, or the detection signal of these sensors is input to the main CPU 143 due to the disconnection of the signal line. It refers to the case where it is no longer done. Also in this case, if the freeze prevention control is performed based only on the incomplete sensor input, the circulation fluid may be frozen due to the incomplete control. For this reason, the main CPU 143 performs the following freeze prevention control regardless of the detection result of each sensor.
 流出循環液温度センサTWLまたは圧力センサPLの検知信号がメインCPU143に入力されなくなると、メインCPU143はセンサ入力異常を検出する。センサ入力異常を検出したメインCPU143は、接続リレーRY1を制御して循環ポンプ300を動作させると共に、ガスバルブGVを閉じて圧縮機10を停止させる。 When the detection signal of the outflow circulating fluid temperature sensor TWL or the pressure sensor PL is not input to the main CPU 143, the main CPU 143 detects a sensor input abnormality. The main CPU 143 that has detected the sensor input abnormality controls the connection relay RY1 to operate the circulation pump 300 and closes the gas valve GV to stop the compressor 10.
 次に、サブCPU144の異常時における凍結防止制御の制御動作を図6を参照して説明する。サブCPU144の異常時においては、サブCPU144に入力される流入循環液温度センサTWRおよび熱交換器表面温度センサTWSからの検知信号を検出できない。この場合、残りの検知信号のみに基づいて凍結防止制御を行うと、不完全な制御のために循環液の凍結が発生する虞がある。このため、サブCPU144の異常時には、各センサの検知結果に関らず、メインCPU143が凍結防止制御を行う。 Next, the control operation of the freeze prevention control when the sub CPU 144 is abnormal will be described with reference to FIG. When the sub CPU 144 is abnormal, detection signals from the inflowing circulating fluid temperature sensor TWR and the heat exchanger surface temperature sensor TWS input to the sub CPU 144 cannot be detected. In this case, if the freeze prevention control is performed based only on the remaining detection signals, the circulating fluid may freeze due to incomplete control. For this reason, when the sub CPU 144 is abnormal, the main CPU 143 performs anti-freezing control regardless of the detection result of each sensor.
 この場合、メインCPU143は、サブCPU144との通信エラーによってサブCPU144の異常を検出する。そして、メインCPU143は、サブCPU144の異常を検出すると、接続リレーRY1を制御して循環ポンプ300を動作させると共に、ガスバルブGVを閉じて圧縮機10を停止させる。 In this case, the main CPU 143 detects an abnormality of the sub CPU 144 due to a communication error with the sub CPU 144. When the main CPU 143 detects an abnormality in the sub CPU 144, the main CPU 143 controls the connection relay RY1 to operate the circulation pump 300, and closes the gas valve GV to stop the compressor 10.
 次に、サブCPU144へのセンサ入力異常時における凍結防止制御の制御動作を図7を参照して説明する。サブCPU144へのセンサ入力異常とは、流入循環液温度センサTWRまたは熱交換器表面温度センサTWSに異常が生じて検知信号が出力されなくなった場合や、これらセンサの検知信号が信号線の断線によってサブCPU144に入力されなくなった場合を指す。この場合も、不完全なセンサ入力のみに基づいて凍結防止制御を行うと、不完全な制御となって循環液の凍結が発生する虞がある。このため、メインCPU143は、各センサの検知結果に関らず、以下の凍結防止制御を行う。 Next, the control operation of the freeze prevention control when the sensor input to the sub CPU 144 is abnormal will be described with reference to FIG. Abnormal sensor input to the sub CPU 144 means that the detection signal is not output due to an abnormality in the inflowing circulating fluid temperature sensor TWR or the heat exchanger surface temperature sensor TWS, or the detection signal of these sensors is due to the disconnection of the signal line. This indicates a case where the input to the sub CPU 144 is stopped. Also in this case, if the freeze prevention control is performed based only on the incomplete sensor input, the circulation fluid may be frozen due to the incomplete control. For this reason, the main CPU 143 performs the following freeze prevention control regardless of the detection result of each sensor.
 流入循環液温度センサTWRまたは熱交換器表面温度センサTWSの検知信号がサブCPU144に入力されなくなると、メインCPU143に対してもこれらの検知信号は入力されなくなる。これにより、メインCPU143はセンサ入力異常を検出する。センサ入力異常を検出したメインCPU143は、接続リレーRY1を制御して循環ポンプ300を動作させると共に、ガスバルブGVを閉じて圧縮機10を停止させる。 When the detection signals of the inflowing circulating fluid temperature sensor TWR or the heat exchanger surface temperature sensor TWS are not input to the sub CPU 144, these detection signals are also not input to the main CPU 143. Thereby, the main CPU 143 detects a sensor input abnormality. The main CPU 143 that has detected the sensor input abnormality controls the connection relay RY1 to operate the circulation pump 300 and closes the gas valve GV to stop the compressor 10.
 また、本実施の形態に係るチラー100は、その起動時において、流入循環液温度センサTWR、流出循環液温度センサTWL、熱交換器表面温度センサTWSおよび圧力センサPLの異常の有無を検知する機能を有する。このセンサ異常検知動作について、図8を参照して説明する。すなわち、制御装置140は、チラー100の起動時には、センサ異常の有無を検知するために、図8のフローチャートに示す動作を行う。 In addition, the chiller 100 according to the present embodiment has a function of detecting whether there is an abnormality in the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, the heat exchanger surface temperature sensor TWS, and the pressure sensor PL at the time of starting. Have This sensor abnormality detection operation will be described with reference to FIG. That is, when the chiller 100 is activated, the control device 140 performs the operation shown in the flowchart of FIG. 8 in order to detect the presence or absence of sensor abnormality.
 チラー100の起動時には、制御装置140は、最初に流出循環液温度センサTWLおよび圧力センサPLの異常検知を行う(ST1)。すなわち、制御装置140は、メインCPU143に信号を入力する流出循環液温度センサTWLと圧力センサPLとについては、メインCPU143が受信した信号自体の異常を検知する自己チェック機能を有する。この場合の流出循環液温度センサTWLおよび圧力センサPLの異常は、メインCPU143によって検出される。この異常検知は、例えば、流出循環液温度センサTWLおよび圧力センサPLにおける検出信号の有無や、信号値が規定範囲内にあるか否かを確認することで判定できる。具体的には、検出信号が無い場合や、信号があっても規定範囲に無い場合はセンサ異常と判定することができる。流出循環液温度センサTWLおよび圧力センサPLに異常が無ければ(ST1でYES)、ST2に処理を移行し、異常があればST1でYES)ST5に移行する。尚、センサの異常検知が終了するまで、圧縮機10は駆動しないものとする。 When the chiller 100 is activated, the control device 140 first detects an abnormality in the outflow circulating fluid temperature sensor TWL and the pressure sensor PL (ST1). That is, the control device 140 has a self-check function for detecting an abnormality in the signal itself received by the main CPU 143 for the outflow circulating fluid temperature sensor TWL and the pressure sensor PL that input signals to the main CPU 143. Abnormalities in the outflow circulating fluid temperature sensor TWL and the pressure sensor PL in this case are detected by the main CPU 143. This abnormality detection can be determined, for example, by confirming the presence / absence of detection signals in the outflow circulating fluid temperature sensor TWL and the pressure sensor PL and whether the signal value is within a specified range. Specifically, when there is no detection signal or when there is a signal but not within a specified range, it can be determined that the sensor is abnormal. If there is no abnormality in outflow circulating fluid temperature sensor TWL and pressure sensor PL (YES in ST1), the process proceeds to ST2, and if there is an abnormality, YES in ST1, the process proceeds to ST5. It is assumed that the compressor 10 is not driven until sensor abnormality detection is completed.
 ST2では、制御装置140が流入循環液温度センサTWR、流出循環液温度センサTWLおよび熱交換器表面温度センサTWSのそれぞれから検知温度を取得する。 In ST2, the control device 140 acquires the detected temperature from each of the inflowing circulating fluid temperature sensor TWR, the outflowing circulating fluid temperature sensor TWL, and the heat exchanger surface temperature sensor TWS.
 ついで、制御装置140は、流入循環液温度センサTWRと流出循環液温度センサTWLとの検知温度差を求め、その温度差の絶対値が第1所定値(例えば、2.0℃)以上であるか否かを判定する(ST3)。チラー100の起動直後では、循環液は冷却も加熱も受けていないため、流入循環液温度センサTWRの検知温度と流出循環液温度センサTWLの検知温度とに殆ど差は無いと考えられる。このため、ST3において、上記温度差が所定温度以上である場合(ST3でYES)には、流入循環液温度センサTWRに異常があると判断され、ST5の処理に移行する。 Next, the control device 140 obtains a detected temperature difference between the inflowing circulating fluid temperature sensor TWR and the outflowing circulating fluid temperature sensor TWL, and the absolute value of the temperature difference is not less than a first predetermined value (for example, 2.0 ° C.). Whether or not is determined (ST3). Immediately after the start of the chiller 100, the circulating fluid is neither cooled nor heated, so it is considered that there is almost no difference between the detected temperature of the inflowing circulating fluid temperature sensor TWR and the detected temperature of the outflowing circulating fluid temperature sensor TWL. Therefore, in ST3, when the temperature difference is equal to or higher than the predetermined temperature (YES in ST3), it is determined that the inflowing circulating fluid temperature sensor TWR is abnormal, and the process proceeds to ST5.
 ST3において、上記温度差が2.0未満である場合(ST3でNO)には、制御装置140は、流出循環液温度センサTWLと熱交換器表面温度センサTWSとの検知温度差を求め、その温度差の絶対値が第2所定値(>第1所定値;例えば、3.0℃)以上であるか否かを判定する(ST4)。ST4において、上記温度差が所定温度以上である場合(ST4でYES)には、熱交換器表面温度センサTWSに異常があると判断され、ST5の処理に移行する。 In ST3, when the temperature difference is less than 2.0 (NO in ST3), control device 140 obtains a detected temperature difference between outflow circulating fluid temperature sensor TWL and heat exchanger surface temperature sensor TWS, and It is determined whether or not the absolute value of the temperature difference is equal to or greater than a second predetermined value (> first predetermined value; for example, 3.0 ° C.) (ST4). If the temperature difference is equal to or higher than the predetermined temperature in ST4 (YES in ST4), it is determined that there is an abnormality in the heat exchanger surface temperature sensor TWS, and the process proceeds to ST5.
 ST5では、制御装置140は、ガスバルブGVを閉じて圧縮機10を停止させ(すなわち、圧縮機10の駆動を開始しない)、かつ、循環ポンプ300の運転を開始すると共に、センサに異常が生じていることを報知するアラームを発する。また、ST4において、上記温度差が所定温度未満である場合(ST4でNO)には、全てのセンサに異常がないため、ST6に移行してチラー100の運転を開始する。 In ST5, the control device 140 closes the gas valve GV to stop the compressor 10 (that is, does not start driving the compressor 10), starts the operation of the circulation pump 300, and causes an abnormality in the sensor. An alarm is sent to inform you that the In ST4, when the temperature difference is less than the predetermined temperature (NO in ST4), there is no abnormality in all the sensors, so that the process proceeds to ST6 and the operation of the chiller 100 is started.
 このように、圧縮機10の駆動前に温度センサの異常有無を確認することで凍結防止検知の信頼性が向上する。 As described above, the reliability of the anti-freezing detection is improved by checking whether the temperature sensor is abnormal before driving the compressor 10.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 この出願は、2014年6月24日に日本で出願された特願2014-129484に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2014-129484 filed in Japan on June 24, 2014. By this reference, the entire contents thereof are incorporated into the present application.
10  圧縮機
20  冷媒-空気熱交換器
30  冷媒-空気熱交換器用ファン
40  膨張弁
50  冷媒-循環液熱交換器
60  エンジン
100  ヒートポンプ式チラー
110  冷媒回路
140  制御装置
143  メインCPU(第1コントローラ)
144  サブCPU(第2コントローラ)
147  補助CPU
200  循環液回路
211  流入管
212  流出管
300  循環ポンプ
TWR  流入循環液温度センサ
TWL  流出循環液温度センサ
TWS  熱交換器表面温度センサ
PL  圧力センサ
GV  ガスバルブ
RY1  接続リレー(第1接続リレー)
RY2  接続リレー(第2接続リレー)
RY(MC)  接続リレー(第2接続リレー)
10 Compressor 20 Refrigerant-Air Heat Exchanger 30 Refrigerant-Air Heat Exchanger Fan 40 Expansion Valve 50 Refrigerant-Circulating Fluid Heat Exchanger 60 Engine 100 Heat Pump Chiller 110 Refrigerant Circuit 140 Controller 143 Main CPU (first controller)
144 Sub CPU (second controller)
147 Auxiliary CPU
200 Circulating fluid circuit 211 Inflow pipe 212 Outflow pipe 300 Circulating pump TWR Inflowing circulating fluid temperature sensor TWL Outflow circulating fluid temperature sensor TWS Heat exchanger surface temperature sensor PL Pressure sensor GV Gas valve RY1 Connection relay (first connection relay)
RY2 connection relay (second connection relay)
RY (MC) connection relay (second connection relay)

Claims (4)

  1.  冷媒を吸入・吐出する圧縮機、冷媒-空気熱交換器、膨張弁、および循環液と冷媒が熱交換する冷媒-循環液熱交換器を備え、前記循環液の流れ経路に循環ポンプを設けたヒートポンプ式チラーにおいて、
     前記冷媒-循環液熱交換器の循環液入口部、循環液出口部および表面部にそれぞれ温度センサを設け、前記圧縮機の冷媒吸入経路に圧力センサを設け、
     前記3つの温度センサによる検知温度、または前記圧力センサによる検知圧力から換算される冷媒蒸発温度のいずれか一つの温度が所定温度以下であることを検知した場合に、前記圧縮機を停止させると共に、前記循環ポンプを動作させることを特徴とするヒートポンプ式チラー。
    A compressor for sucking and discharging refrigerant, a refrigerant-air heat exchanger, an expansion valve, and a refrigerant-circulating liquid heat exchanger for exchanging heat between the circulating liquid and the refrigerant are provided, and a circulation pump is provided in the flow path of the circulating liquid In heat pump chiller,
    A temperature sensor is provided at each of the circulating fluid inlet, the circulating fluid outlet and the surface of the refrigerant-circulating fluid heat exchanger, and a pressure sensor is provided at the refrigerant suction path of the compressor.
    When it is detected that any one of the temperature detected by the three temperature sensors or the refrigerant evaporation temperature converted from the pressure detected by the pressure sensor is equal to or lower than a predetermined temperature, the compressor is stopped, A heat pump chiller that operates the circulation pump.
  2.  請求項1に記載のヒートポンプ式チラーにおいて、
     前記3つの温度センサおよび前記圧力センサの検知信号を複数のコントローラが分散して受信することを特徴とするヒートポンプ式チラー。
    In the heat pump chiller according to claim 1,
    A heat pump chiller, wherein a plurality of controllers receive the detection signals of the three temperature sensors and the pressure sensor in a distributed manner.
  3.  請求項2に記載のヒートポンプ式チラーにおいて、
     前記冷媒-循環液熱交換器の循環液入口部の温度センサ、および前記圧縮機の冷媒吸入経路の圧力センサの信号を第1コントローラが受信し、前記冷媒-循環液熱交換器の循環液出口部、および表面部の温度センサの信号を第2コントローラが受信し、
     前記第1コントローラは、受信した信号自体の異常を検知する機能を有し、
     当該チラーの起動時には、前記圧縮機の駆動前に前記循環ポンプを動作させ、
     前記循環ポンプの動作後で圧縮機の駆動開始前に、前記冷媒-循環液熱交換器の循環液入口部の温度センサによる検知温度と循環液出口部の温度センサによる検知温度との温度差の絶対値が第1所定値以上、または前記冷媒-循環液熱交換器の循環液入口部の温度センサによる検知温度と表面部の温度センサによる検知温度との温度差の絶対値が第1所定値よりも大きい第2所定値以上であることを検知した場合には、前記圧縮機の駆動を停止することを特徴とするヒートポンプ式チラー。
    In the heat pump chiller according to claim 2,
    The first controller receives signals from the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the pressure sensor in the refrigerant suction path of the compressor, and the circulating fluid outlet of the refrigerant-circulating fluid heat exchanger The second controller receives the temperature sensor signal of the surface portion and the surface portion,
    The first controller has a function of detecting an abnormality of the received signal itself,
    When starting the chiller, operate the circulation pump before driving the compressor,
    After the operation of the circulation pump and before the start of driving of the compressor, the temperature difference between the temperature detected by the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the temperature detected by the temperature sensor at the circulating fluid outlet The absolute value is not less than the first predetermined value, or the absolute value of the temperature difference between the temperature detected by the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the temperature detected by the surface temperature sensor is the first predetermined value. The heat pump chiller is characterized by stopping the driving of the compressor when it is detected that the second predetermined value is greater than the second predetermined value.
  4.  請求項2に記載のヒートポンプ式チラーにおいて、
     前記冷媒-循環液熱交換器の循環液入口部の温度センサ、および前記圧縮機の冷媒吸入経路の圧力センサの信号を第1コントローラが受信し、前記冷媒-循環液熱交換器の循環液出口部、および表面部の温度センサの信号を第2コントローラが受信し、
     前記第1コントローラによって開閉される接続リレーであって、前記循環ポンプと電源との間に設けられる第1接続リレーと、前記第2コントローラによって開閉される接続リレーであって、前記循環ポンプと電源との間に設けられる第2接続リレーとを並列に設けたことを特徴とするヒートポンプ式チラー。
    In the heat pump chiller according to claim 2,
    The first controller receives signals from the temperature sensor at the circulating fluid inlet of the refrigerant-circulating fluid heat exchanger and the pressure sensor in the refrigerant suction path of the compressor, and the circulating fluid outlet of the refrigerant-circulating fluid heat exchanger The second controller receives the temperature sensor signal of the surface portion and the surface portion,
    A connection relay that is opened and closed by the first controller, a first connection relay provided between the circulation pump and a power source, and a connection relay that is opened and closed by the second controller, the circulation pump and the power source A heat pump chiller characterized in that a second connection relay provided in between is provided in parallel.
PCT/JP2015/064166 2014-06-24 2015-05-18 Heat pump type chiller WO2015198750A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2015282158A AU2015282158B2 (en) 2014-06-24 2015-05-18 Heat pump type chiller
KR1020167032898A KR101902675B1 (en) 2014-06-24 2015-05-18 Heat pump type chiller
EP15811007.2A EP3163218B8 (en) 2014-06-24 2015-05-18 Heat pump type chiller
CN201580033631.6A CN106471319B (en) 2014-06-24 2015-05-18 Heat-pump-type cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-129484 2014-06-24
JP2014129484A JP6318021B2 (en) 2014-06-24 2014-06-24 Heat pump chiller

Publications (1)

Publication Number Publication Date
WO2015198750A1 true WO2015198750A1 (en) 2015-12-30

Family

ID=54937848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064166 WO2015198750A1 (en) 2014-06-24 2015-05-18 Heat pump type chiller

Country Status (6)

Country Link
EP (1) EP3163218B8 (en)
JP (1) JP6318021B2 (en)
KR (1) KR101902675B1 (en)
CN (1) CN106471319B (en)
AU (1) AU2015282158B2 (en)
WO (1) WO2015198750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803931B1 (en) * 2016-03-31 2017-12-01 유니셈(주) Chiller device for seminconductor process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6865111B2 (en) * 2017-06-02 2021-04-28 ヤンマーパワーテクノロジー株式会社 Heat pump device
CN107642497A (en) * 2017-09-14 2018-01-30 温岭市大洋电器厂 A kind of fan speed regulation control system based on Stress control
JP7210018B2 (en) * 2019-05-10 2023-01-23 伸和コントロールズ株式会社 Refrigerant state detection device, refrigerant state detection method, and temperature control system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213962A (en) * 1985-07-10 1987-01-22 株式会社日立製作所 Antifreezing controller for refrigerator
JPH02503465A (en) * 1987-04-15 1990-10-18 シー・コンテナーズ・リミテッド Cold storage tank container
JPH07151429A (en) * 1993-11-30 1995-06-16 Toshiba Corp Air conditioner
JPH1078266A (en) * 1996-09-04 1998-03-24 Nippon P-Mac Kk Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function
JPH1131086A (en) * 1997-07-11 1999-02-02 Mazda Motor Corp Electronic equipment device
JP2007127307A (en) * 2005-11-01 2007-05-24 Ebara Refrigeration Equipment & Systems Co Ltd Refrigerating machine and its operation method
JP2009014298A (en) * 2007-07-06 2009-01-22 Miura Co Ltd Refrigerator and chiller using the same
WO2011092802A1 (en) * 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method
JP2014052122A (en) * 2012-09-06 2014-03-20 Yanmar Co Ltd Engine driven heat pump chiller
JP2014088965A (en) * 2012-10-29 2014-05-15 Toshiba Carrier Corp Hot water supplying machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412228B2 (en) * 2005-05-13 2010-02-10 株式会社デンソー Distributed control system
JP2007139225A (en) * 2005-11-15 2007-06-07 Hitachi Ltd Refrigerating device
JP5095295B2 (en) * 2007-08-03 2012-12-12 東芝キヤリア株式会社 Water heater
JP5113447B2 (en) * 2007-08-09 2013-01-09 東芝キヤリア株式会社 Control method for heat pump water heater
US9791194B2 (en) * 2011-11-18 2017-10-17 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5500161B2 (en) * 2011-12-16 2014-05-21 三菱電機株式会社 Refrigeration cycle equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213962A (en) * 1985-07-10 1987-01-22 株式会社日立製作所 Antifreezing controller for refrigerator
JPH02503465A (en) * 1987-04-15 1990-10-18 シー・コンテナーズ・リミテッド Cold storage tank container
JPH07151429A (en) * 1993-11-30 1995-06-16 Toshiba Corp Air conditioner
JPH1078266A (en) * 1996-09-04 1998-03-24 Nippon P-Mac Kk Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function
JPH1131086A (en) * 1997-07-11 1999-02-02 Mazda Motor Corp Electronic equipment device
JP2007127307A (en) * 2005-11-01 2007-05-24 Ebara Refrigeration Equipment & Systems Co Ltd Refrigerating machine and its operation method
JP2009014298A (en) * 2007-07-06 2009-01-22 Miura Co Ltd Refrigerator and chiller using the same
WO2011092802A1 (en) * 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method
JP2014052122A (en) * 2012-09-06 2014-03-20 Yanmar Co Ltd Engine driven heat pump chiller
JP2014088965A (en) * 2012-10-29 2014-05-15 Toshiba Carrier Corp Hot water supplying machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803931B1 (en) * 2016-03-31 2017-12-01 유니셈(주) Chiller device for seminconductor process

Also Published As

Publication number Publication date
AU2015282158A1 (en) 2017-01-12
CN106471319A (en) 2017-03-01
KR101902675B1 (en) 2018-09-28
EP3163218A1 (en) 2017-05-03
JP6318021B2 (en) 2018-04-25
EP3163218B8 (en) 2020-10-21
JP2016008771A (en) 2016-01-18
AU2015282158B2 (en) 2018-11-29
EP3163218A4 (en) 2017-06-28
KR20160146968A (en) 2016-12-21
EP3163218B1 (en) 2020-09-09
CN106471319B (en) 2019-04-23

Similar Documents

Publication Publication Date Title
US8925337B2 (en) Air conditioning systems and methods having free-cooling pump-protection sequences
AU2014325839B2 (en) Air conditioner
EP2122275B1 (en) Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
US9857115B2 (en) Air-conditioning apparatus
US11536502B2 (en) Refrigerant cycle apparatus
WO2015198750A1 (en) Heat pump type chiller
CN107429950B (en) Heat pump
KR20100129138A (en) Air conditioner
WO2016067567A1 (en) Air-conditioning control device and vehicle air-conditioning device, and method for determining fault in electromagnetic valve of air-conditioning control device
EP2204620B1 (en) Heating and/or cooling installation and method for monitoring the operability of the installation
CN113623706A (en) Anti-freezing protection method, anti-freezing protection system and water system heat pump unit
JP2011174639A (en) Air conditioner
WO2015198751A1 (en) Heat pump type chiller
EP3367010B1 (en) Heat source system
JP2015152174A (en) hot water system
JP4546067B2 (en) Air conditioner
WO2017195294A1 (en) Refrigeration cycle device
WO2021044886A1 (en) Refrigeration cycle device
JP2004278814A (en) Freezing device and its controlling method
US20220221209A1 (en) Refrigeration apparatus and heat source unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167032898

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015811007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015282158

Country of ref document: AU

Date of ref document: 20150518

Kind code of ref document: A