JP7210018B2 - Refrigerant state detection device, refrigerant state detection method, and temperature control system - Google Patents

Refrigerant state detection device, refrigerant state detection method, and temperature control system Download PDF

Info

Publication number
JP7210018B2
JP7210018B2 JP2019089951A JP2019089951A JP7210018B2 JP 7210018 B2 JP7210018 B2 JP 7210018B2 JP 2019089951 A JP2019089951 A JP 2019089951A JP 2019089951 A JP2019089951 A JP 2019089951A JP 7210018 B2 JP7210018 B2 JP 7210018B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
condenser
cooling fluid
state detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019089951A
Other languages
Japanese (ja)
Other versions
JP2020186827A (en
Inventor
俊二 山口
亨明 峰原
健太 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Controls Co Ltd
Original Assignee
Shinwa Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Controls Co Ltd filed Critical Shinwa Controls Co Ltd
Priority to JP2019089951A priority Critical patent/JP7210018B2/en
Priority to CN202080028249.7A priority patent/CN113677940A/en
Priority to PCT/JP2020/018223 priority patent/WO2020230641A1/en
Priority to KR1020217011457A priority patent/KR20220006029A/en
Priority to US17/593,141 priority patent/US20220186999A1/en
Priority to TW109114757A priority patent/TW202108943A/en
Publication of JP2020186827A publication Critical patent/JP2020186827A/en
Application granted granted Critical
Publication of JP7210018B2 publication Critical patent/JP7210018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、冷媒状態検知装置、冷媒状態検知方法及び温調システムに関する。 TECHNICAL FIELD The present invention relates to a refrigerant state detection device, a refrigerant state detection method, and a temperature control system.

冷凍回路で冷媒がリークし、冷媒に不足が生じた場合には、冷凍能力の低下等の問題が生じ得るため、早急に何らかの対策をとることが望ましい。 If the refrigerant leaks in the refrigerating circuit and the refrigerant becomes insufficient, problems such as a decrease in refrigerating capacity may occur.

冷媒リークを検知する技術は従来から種々提案されている。例えば特許文献1には、圧縮機吸入圧力、蒸発器圧力、圧縮機吐出圧力、凝縮器圧力、圧縮機吸入温度、蒸発器出口温度、圧縮機吐出温度、凝縮器入口温度等を検知し、これら検知した値をパラメータとして冷媒リークを検知する技術が開示されている。また特許文献2には、外部にリークされた冷媒を検知する冷媒検知装置を空気調和装置の室内機に設ける技術が開示されている。 Various techniques for detecting refrigerant leaks have been proposed in the past. For example, in Patent Document 1, compressor suction pressure, evaporator pressure, compressor discharge pressure, condenser pressure, compressor suction temperature, evaporator outlet temperature, compressor discharge temperature, condenser inlet temperature, etc. are detected, and these Techniques for detecting refrigerant leaks using detected values as parameters have been disclosed. Further, Patent Literature 2 discloses a technique of providing an indoor unit of an air conditioner with a refrigerant detection device for detecting refrigerant leaked to the outside.

特開2016-121867号公報JP 2016-121867 A 国際公開2017/175300号WO2017/175300

しかしながら、特許文献1の技術は、圧力、温度等を検知するために多くのセンサが必要であり、冷媒リークの判断に使用するパラメータも多い。また特許文献2の技術は、外部に漏れた冷媒を冷媒検知装置で直接的に検知するため、冷媒検知装置から離れた位置で漏れた冷媒を検知することは困難であり、冷媒の不足を的確に検知できるとは言い難い。 However, the technique of Patent Literature 1 requires many sensors to detect pressure, temperature, etc., and many parameters are used to determine refrigerant leaks. In addition, in the technique of Patent Document 2, since the refrigerant detection device directly detects the leaked refrigerant to the outside, it is difficult to detect the leaked refrigerant at a position away from the refrigerant detection device, and the lack of refrigerant can be accurately detected. It is difficult to say that it can be detected in

本件発明者は上述のような公知技術を鑑みて、極力簡易に冷媒のリーク又は冷媒の不足を的確に検知することを実現すべく鋭意研究を行った。そして、冷媒が不足する状況下においては、凝縮器の出口温度が、冷媒が不足していない場合の出口温度に比べて高くなることを見出した。そして、この現象は、冷媒が不足した際には凝縮器で凝縮される冷媒の凝縮量が予定又は期待される凝縮量よりも少なくなり、気体のままの高温の冷媒が凝縮器出口からその下流側の配管に混ざり易くなることで生じていることを見出した。 In view of the above-described known techniques, the inventors of the present invention have made intensive studies to realize accurate detection of refrigerant leaks or refrigerant shortages as simply as possible. Then, the inventors found that the outlet temperature of the condenser becomes higher in a situation where the refrigerant is insufficient, compared to the outlet temperature when the refrigerant is not insufficient. And this phenomenon is that when the refrigerant is insufficient, the amount of condensation of the refrigerant condensed in the condenser becomes smaller than the planned or expected amount of condensation, and the high-temperature refrigerant in gaseous form flows downstream from the condenser outlet. It was found that it was caused by easy mixing with the piping on the side.

本発明は上記知見に基づきなされたものであり、冷凍回路における冷媒のリーク又は不足を簡易に且つ的確に検知できる冷媒状態検知装置、冷媒状態検知方法及び温調システムを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made based on the above findings, and an object thereof is to provide a refrigerant state detection device, a refrigerant state detection method, and a temperature control system that can easily and accurately detect leakage or shortage of refrigerant in a refrigeration circuit. .

本発明に係る冷媒状態検知装置は、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得部と、前記温度情報取得部で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定部と、を備える。 A refrigerant state detection device according to the present invention acquires the temperature of refrigerant flowing out of the condenser in a refrigeration circuit having a compressor, a condenser, an expansion valve, and an evaporator, and cools the refrigerant in the condenser. a temperature information acquisition unit that acquires the temperature of the cooling fluid before cooling the coolant; and a difference between the temperature of the coolant acquired by the temperature information acquisition unit and the temperature of the cooling fluid exceeds a prerecorded threshold. and a refrigerant state determination unit that determines that the refrigerant leaks or is in short supply when the refrigerant is inadequate.

前記凝縮器は液冷式の熱交換器であり、前記冷却用流体は液体でもよい。 The condenser may be a liquid-cooled heat exchanger and the cooling fluid may be liquid.

前記凝縮器は、第1凝縮部と、前記第1凝縮部から流出する前記冷媒を凝縮する第2凝縮部と、を有し、前記温度情報取得部は、前記第2凝縮部から流出する前記冷媒の温度と、前記第2凝縮部において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度と、を取得してもよい。 The condenser has a first condensation section and a second condensation section for condensing the refrigerant flowing out of the first condensation section, and the temperature information acquisition section receives the refrigerant flowing out of the second condensation section. The temperature of the coolant and the temperature of the cooling fluid that cools the coolant in the second condensation section before cooling the coolant may be acquired.

本発明に係る冷媒状態検知方法は、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得工程と、前記温度情報取得工程で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定工程と、を備える。 A refrigerant state detection method according to the present invention acquires the temperature of refrigerant flowing out of the condenser in a refrigeration circuit having a compressor, a condenser, an expansion valve, and an evaporator, and cools the refrigerant in the condenser. a temperature information acquiring step of acquiring the temperature of the cooling fluid before cooling the coolant; and a difference between the temperature of the cooling fluid acquired in the temperature information acquiring step and the temperature of the cooling fluid exceeding a pre-recorded threshold value. and a refrigerant state determination step of determining that the refrigerant is leaking or running short when the refrigerant is in the state of being inadequate.

本発明に係る冷媒状態検知方法は、前記凝縮器から流出する前記冷媒の温度を取得するとともに、前記凝縮器において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度を取得した場合に、取得した各温度の差が前記閾値以下となる前記冷凍回路の運転を実施可能とする所定量の前記冷媒を前記冷凍回路に充填する充填工程をさらに備え、前記充填工程後に行う前記温度情報取得工程及び前記冷媒状態判定工程により、前記冷媒のリーク又は不足を判定してもよい。 In the refrigerant state detection method according to the present invention, the temperature of the refrigerant flowing out of the condenser is obtained, and the temperature of the cooling fluid for cooling the refrigerant in the condenser is obtained before the refrigerant is cooled. in a case where the obtained temperature difference is equal to or less than the threshold, the charging step of charging the refrigerating circuit with a predetermined amount of the refrigerant that enables the operation of the refrigerating circuit, wherein the temperature after the charging step is The leakage or shortage of the refrigerant may be determined by the information acquisition step and the refrigerant state determination step.

前記充填工程後に前記冷凍回路の運転時に、前記冷凍回路は、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態になるように前記凝縮器で前記冷媒を冷却してもよい。 During operation of the refrigeration circuit after the charging step, the refrigeration circuit may cool the refrigerant with the condenser so that the refrigerant condensed in the condenser covers an outlet of the condenser. .

本発明に係る温調システムは、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路と、前記の冷媒状態検知装置と、を備える。 A temperature control system according to the present invention includes a refrigeration circuit having a compressor, a condenser, an expansion valve, and an evaporator, and the refrigerant state detection device described above.

前記冷凍回路は、所定量の前記冷媒を充填された場合に、前記冷媒状態検知装置が取得する前記冷媒の温度と前記冷却用流体の温度との差が前記閾値以下となる運転を実施可能となるよう構成されてもよい。 When the refrigerating circuit is filled with a predetermined amount of the refrigerant, the refrigerating circuit can perform operation such that the difference between the temperature of the refrigerant acquired by the refrigerant state detection device and the temperature of the cooling fluid is equal to or less than the threshold. may be configured to be

前記冷凍回路は、前記所定量の前記冷媒を充填された場合に、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態となるように前記凝縮器で前記冷媒を冷却することが可能となっていてもよい。 When the refrigerating circuit is filled with the predetermined amount of the refrigerant, the refrigerant is cooled by the condenser so that the refrigerant condensed by the condenser covers the outlet of the condenser. may be possible.

本発明に係る温調システムは、前記蒸発器によって温調される流体を通流させる流体通流装置をさらに備えてもよい。 The temperature control system according to the present invention may further include a fluid flow device for causing the fluid whose temperature is controlled by the evaporator to flow.

本発明によれば、冷凍回路における冷媒のリーク又は不足を簡易に且つ的確に検知できる。 ADVANTAGE OF THE INVENTION According to this invention, the leak or lack of the refrigerant|coolant in a refrigerating circuit can be detected simply and exactly.

本発明の第1の実施の形態に係る温調システムの概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the temperature control system which concerns on the 1st Embodiment of this invention. 図1に示す温調システムの冷凍回路に設けられる凝縮器の概略的な断面図である。FIG. 2 is a schematic cross-sectional view of a condenser provided in a refrigerating circuit of the temperature control system shown in FIG. 1; 図1に示す温調システムの冷凍回路に設けられる凝縮器の概略的な断面図である。FIG. 2 is a schematic cross-sectional view of a condenser provided in a refrigerating circuit of the temperature control system shown in FIG. 1; 本発明の第2の実施の形態に係る温調システムの概略構成を示す図である。It is a figure which shows schematic structure of the temperature control system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る温調システムの概略構成を示す図である。It is a figure which shows schematic structure of the temperature control system which concerns on the 3rd Embodiment of this invention.

以下、本発明の各実施の形態について説明する。 Each embodiment of the present invention will be described below.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る温調システム1の概略構成を示す図である。本実施の形態に係る温調システム1は、冷凍回路10と、第1冷却用流体通流装置21と、第2冷却用流体通流装置22と、温調対象流体通流装置30と、コントローラ40と、を備えている。
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a temperature control system 1 according to a first embodiment of the invention. The temperature control system 1 according to the present embodiment includes a refrigerating circuit 10, a first cooling fluid circulation device 21, a second cooling fluid circulation device 22, a temperature control target fluid circulation device 30, a controller 40 and .

冷凍回路10は、圧縮機11、凝縮器12、レシーバタンク13、膨張弁14及び蒸発器15を有する。圧縮機11、凝縮器12、レシーバタンク13、膨張弁14及び蒸発器15は冷媒をこの順で循環させるように配管部材により接続されている。 The refrigeration circuit 10 has a compressor 11 , a condenser 12 , a receiver tank 13 , an expansion valve 14 and an evaporator 15 . The compressor 11, the condenser 12, the receiver tank 13, the expansion valve 14 and the evaporator 15 are connected by piping members so as to circulate the refrigerant in this order.

圧縮機11は、蒸発器15から流出した低温且つ低圧の気体の状態の冷媒を圧縮し高温且つ高圧の気体の状態にして、凝縮器12に供給する。凝縮器12は、圧縮機11で圧縮された冷媒を冷却用流体によって冷却して凝縮し、所定の冷却温度の高圧の液体の状態にする。 The compressor 11 compresses the low-temperature, low-pressure gaseous refrigerant that has flowed out of the evaporator 15 into a high-temperature, high-pressure gaseous state, and supplies the refrigerant to the condenser 12 . The condenser 12 cools and condenses the refrigerant compressed by the compressor 11 with the cooling fluid to a high-pressure liquid state at a predetermined cooling temperature.

本実施の形態では凝縮器12が、第1凝縮部121と、第1凝縮部121から流出する冷媒を凝縮する第2凝縮部122と、を有している。第1凝縮部121を通過する冷媒は、第1冷却用流体通流装置21が第1凝縮部121に供給する第1冷却用流体によって冷却される。第2凝縮部122を通過する冷媒は、第2冷却用流体通流装置22が第2凝縮部122に供給する第2冷却用流体によって冷却される。 In the present embodiment, the condenser 12 has a first condenser 121 and a second condenser 122 that condenses the refrigerant flowing out of the first condenser 121 . The refrigerant passing through the first condenser section 121 is cooled by the first cooling fluid supplied to the first condenser section 121 by the first cooling fluid circulation device 21 . The refrigerant passing through the second condenser section 122 is cooled by the second cooling fluid supplied to the second condenser section 122 by the second cooling fluid circulation device 22 .

第1凝縮部121及び第2凝縮部122はそれぞれ液冷式の熱交換器、具体的にはプレート式熱交換器で構成される。ただし、第1凝縮部121及び第2凝縮部122は空冷式の熱交換器で構成されてもよい。 Each of the first condenser section 121 and the second condenser section 122 is composed of a liquid-cooled heat exchanger, specifically a plate heat exchanger. However, the first condenser section 121 and the second condenser section 122 may be configured by air-cooled heat exchangers.

レシーバタンク13は、凝縮器12で凝縮され液体となった冷媒を受け入れて貯留し、レシーバタンク13に貯留された冷媒は膨張弁14側に流れる。膨張弁14は、レシーバタンク13から供給された冷媒を膨張させることにより減圧させて、低温且つ低圧の液体状態又は気液混合状態にして、蒸発器15に供給する。蒸発器15は、本実施の形態において、供給された冷媒と温調対象流体通流装置30が通流させる温調対象流体とを熱交換させるようになっている。温調対象流体と熱交換した冷媒は、低温且つ低圧の気体の状態となって蒸発器15から流出して再び圧縮機11で圧縮される。 The receiver tank 13 receives and stores the refrigerant that has been condensed into a liquid by the condenser 12 , and the refrigerant stored in the receiver tank 13 flows to the expansion valve 14 side. The expansion valve 14 expands the refrigerant supplied from the receiver tank 13 to decompress the refrigerant, converts the refrigerant into a low-temperature, low-pressure liquid state or a gas-liquid mixed state, and supplies the refrigerant to the evaporator 15 . In the present embodiment, the evaporator 15 exchanges heat between the supplied refrigerant and the temperature-controlled fluid flowed by the temperature-controlled fluid circulation device 30 . The refrigerant that has exchanged heat with the fluid to be temperature-controlled flows out of the evaporator 15 into a low-temperature, low-pressure gas state and is compressed again by the compressor 11 .

第1冷却用流体通流装置21は、第1凝縮部121に第1冷却用流体を供給し、第2冷却用流体通流装置22は、第2凝縮部122に第2冷却用流体を供給する。上述したように本実施の形態では、第1凝縮部121及び第2凝縮部122が液冷式の熱交換器で構成されるため、第1冷却用流体及び第2冷却用流体として液体が用いられる。 The first cooling fluid circulation device 21 supplies the first cooling fluid to the first condensation section 121, and the second cooling fluid circulation device 22 supplies the second cooling fluid to the second condensation section 122. do. As described above, in the present embodiment, since the first condenser section 121 and the second condenser section 122 are configured by liquid-cooled heat exchangers, liquids are used as the first cooling fluid and the second cooling fluid. be done.

液体である第1冷却用流体及び第2冷却用流体は水でもよいし、その他の流体でもよい。第1凝縮部121及び第2凝縮部122が空冷式の熱交換器で構成される場合には、第1冷却用流体及び第2冷却用流体は空気でもよい。 The liquid first and second cooling fluids may be water or other fluids. When the first condenser 121 and the second condenser 122 are air-cooled heat exchangers, the first cooling fluid and the second cooling fluid may be air.

本実施の形態では、第2冷却用流体通流装置22がポンプ22Aを有し、ポンプ22Aの駆動力を制御することで、第2凝縮部122に供給される第2冷却用流体の流量を調整できる。これにより、第2凝縮部122における冷媒の冷却量を調整できる。 In the present embodiment, the second cooling fluid circulation device 22 has a pump 22A, and by controlling the driving force of the pump 22A, the flow rate of the second cooling fluid supplied to the second condensation section 122 is controlled. Adjustable. Thereby, the cooling amount of the refrigerant in the second condenser section 122 can be adjusted.

温調対象流体通流装置30は、上述したように蒸発器15で冷媒と熱交換を行う温調対象流体を通流させる。温調対象流体通流装置30が通流させる温調対象流体は気体であってもよいし、液体であってもよい。 The temperature control target fluid circulation device 30 causes the temperature control target fluid, which exchanges heat with the refrigerant in the evaporator 15 as described above, to flow. The temperature-controlled fluid flowed by the temperature-controlled fluid circulation device 30 may be gas or liquid.

温調対象流体は気体である場合、温調対象流体通流装置30はファン等で構成され得る。また温調対象流体は液体である場合、温調対象流体通流装置30は、液体の流路や液体を通流させるためのポンプ等で構成され得る。 When the temperature-controlled fluid is gas, the temperature-controlled fluid circulation device 30 may be configured by a fan or the like. When the temperature-controlled fluid is a liquid, the temperature-controlled fluid flow device 30 may be configured by a liquid flow path, a pump for flowing the liquid, or the like.

また冷凍回路10には、第2凝縮部122から流出する冷媒の温度を検知する冷媒温度センサ16と、第2凝縮部122から流出する冷媒の圧力を検知する冷媒圧力センサ17とが設けられている。詳しくは、冷媒温度センサ16は、第2凝縮部122から流出しレシーバタンク13に流入する前の冷媒の温度を検知する。言い換えると、冷媒温度センサ16は、第2凝縮部122の出口に接続された配管部材の内部の温度を検知する。冷媒圧力センサ17は第2凝縮部122から流出しレシーバタンク13に流入する前の冷媒の圧力を検知する。言い換えると、冷媒圧力センサ17は、第2凝縮部122の出口に接続された配管部材の内部の温度を検知する。 The refrigerating circuit 10 is also provided with a refrigerant temperature sensor 16 that detects the temperature of the refrigerant flowing out of the second condenser 122 and a refrigerant pressure sensor 17 that detects the pressure of the refrigerant flowing out of the second condenser 122. there is Specifically, the refrigerant temperature sensor 16 detects the temperature of the refrigerant that has flowed out of the second condenser 122 and before it flows into the receiver tank 13 . In other words, the refrigerant temperature sensor 16 detects the internal temperature of the piping member connected to the outlet of the second condenser 122 . The refrigerant pressure sensor 17 detects the pressure of the refrigerant that has flowed out of the second condensing section 122 and before it flows into the receiver tank 13 . In other words, the refrigerant pressure sensor 17 detects the temperature inside the piping member connected to the outlet of the second condenser 122 .

また第2冷却用流体通流装置22には、冷却用流体温度センサ22Bが設けられている。冷却用流体温度センサ22Bは、第2凝縮部122において冷媒を冷却する前の第2冷却用流体の温度を検知する。言い換えると、冷却用流体温度センサ22Bは、第2冷却用流体通流装置22において第2冷却用流体を通流させる配管部材における第2凝縮部122の上流側の部分の内部の温度を検知する。 Further, the second cooling fluid circulation device 22 is provided with a cooling fluid temperature sensor 22B. Cooling fluid temperature sensor 22</b>B detects the temperature of the second cooling fluid before the refrigerant is cooled in second condenser 122 . In other words, the cooling fluid temperature sensor 22B detects the internal temperature of the upstream side portion of the second condensation section 122 in the piping member through which the second cooling fluid flows in the second cooling fluid circulation device 22. .

またコントローラ40は、冷凍回路10の各部、第2冷却用流体通流装置22のポンプ22A等の動作を制御可能であるとともに、上述した各種センサ16,17,22Bからの情報を取得することが可能となっている。コントローラ40は、例えばCPU,ROM,RAM等を備えるコンピュータで構成され、記憶されたプログラムに従って上記各部の動作を制御してもよい。 The controller 40 can control the operation of each part of the refrigerating circuit 10, the pump 22A of the second cooling fluid circulation device 22, etc., and can acquire information from the various sensors 16, 17, 22B described above. It is possible. The controller 40 may be configured by a computer including, for example, a CPU, ROM, RAM, etc., and may control the operations of the above sections according to a stored program.

コントローラ40は、温度情報取得部41と、冷媒状態判定部42と、動作制御部43と、出力部44とを有する。 The controller 40 has a temperature information acquisition section 41 , a refrigerant state determination section 42 , an operation control section 43 and an output section 44 .

温度情報取得部41は、凝縮器12の第2凝縮部122から流出する冷媒の温度を冷媒温度センサ16から取得するとともに、第2凝縮部122で冷媒を冷却する前の第2冷却用流体の温度を冷却用流体温度センサ22Bから取得する。 The temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out of the second condensation unit 122 of the condenser 12 from the refrigerant temperature sensor 16, and also obtains the temperature of the second cooling fluid before cooling the refrigerant in the second condensation unit 122. The temperature is obtained from the cooling fluid temperature sensor 22B.

冷媒状態判定部42は、温度情報取得部41で取得した冷媒の温度と第2冷却用流体の温度との差が、予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する。ここで、温度情報取得部41及び冷媒状態判定部42は冷媒状態検知装置40Aを構成している。 When the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the second cooling fluid exceeds a prerecorded threshold value, the refrigerant state determination unit 42 determines that leakage or shortage of the refrigerant has occurred. determine that there is Here, the temperature information acquisition unit 41 and the refrigerant state determination unit 42 constitute a refrigerant state detection device 40A.

動作制御部43は、冷凍回路10の各部、第2冷却用流体通流装置22のポンプ22A等の動作を制御するようになっている。 The operation control unit 43 controls the operation of each part of the refrigeration circuit 10, the pump 22A of the second cooling fluid circulation device 22, and the like.

出力部44は、冷媒状態判定部42が冷媒のリーク又は不足が生じていると判定し場合に、図示しない表示装置上に警告を表示するようになっている。 The output unit 44 displays a warning on a display device (not shown) when the refrigerant state determination unit 42 determines that the refrigerant is leaking or running short.

以下、本実施の形態における冷媒状態検知装置40Aによる冷媒のリーク又は不足の判定の流れを説明する。 Hereinafter, the flow of determination of refrigerant leakage or shortage by the refrigerant state detection device 40A in the present embodiment will be described.

まずは、第2凝縮部122の構造と、冷凍回路10の運転中の第2凝縮部122の内部の状態を説明する。図2A及び図2Bは、プレート式熱交換器で構成された第2凝縮部122の概略的な断面図である。図2Aに示すように、第2凝縮部122は、隣り合うプレート部材122Aの間に上記冷媒又は第2冷却用流体を通流させるための流路が形成されるように積層された複数のプレート部材122Aを有し、複数のプレート部材122Aは、その積層方向に冷媒用の流路122Bと第2冷却用流体用の流路122Cとを交互に並べて形成している。 First, the structure of the second condenser section 122 and the state inside the second condenser section 122 during operation of the refrigeration circuit 10 will be described. 2A and 2B are schematic cross-sectional views of the second condenser section 122 configured with a plate heat exchanger. As shown in FIG. 2A, the second condensation section 122 is composed of a plurality of plates stacked such that a flow path for circulating the coolant or the second cooling fluid is formed between adjacent plate members 122A. A plurality of plate members 122A has a plurality of plate members 122A, in which coolant flow paths 122B and second cooling fluid flow paths 122C are alternately arranged in the stacking direction.

複数のプレート部材122Aの積層方向の一方側の端に位置するプレート部材122Aには、冷媒入口部122Dと冷媒出口部122Eとが接続されており、白塗りされた矢印に示すように、冷媒は冷媒入口部122Dから冷媒用の流路122Bに流れ、冷媒出口部122Eから流出する。冷媒入口部122Dと冷媒出口部122Eとは積層方向に直交する方向で互いに離れて配置されており、本実施の形態では、上下方向で、冷媒入口部122Dが冷媒出口部122Eよりも上側に位置するように第2凝縮部122が配置されている。なお、冷媒入口部122Dは、第1凝縮部121と第2凝縮部122とを接続する配管部材の一部であってもよいし、この配管部材とは別の部材でもよい。同様に、冷媒出口部122Eは、第2凝縮部122とレシーバタンク13とを接続する管部材の一部であってもよいし、この配管部材とは別の部材でもよい。 A plate member 122A positioned at one end in the stacking direction of the plurality of plate members 122A is connected to a coolant inlet portion 122D and a coolant outlet portion 122E. The coolant flows from the coolant inlet portion 122D to the coolant channel 122B and flows out from the coolant outlet portion 122E. Refrigerant inlet portion 122D and refrigerant outlet portion 122E are arranged apart from each other in a direction orthogonal to the stacking direction, and in the present embodiment, refrigerant inlet portion 122D is positioned above refrigerant outlet portion 122E in the vertical direction. The second condensing section 122 is arranged so as to. Refrigerant inlet portion 122D may be a part of a piping member that connects first condensation portion 121 and second condensation portion 122, or may be a member separate from this piping member. Similarly, the refrigerant outlet portion 122E may be a part of the pipe member that connects the second condenser portion 122 and the receiver tank 13, or may be a separate member from this pipe member.

一方、図示省略するが、積層方向の一方側の端に位置するプレート部材122Aには、第2冷却用流体入口部及び第2冷却用流体出口部も接続されており、ハッチングを付けた矢印に示すように、第2冷却用流体は第2冷却用流体入口部から第2冷却用流体用の流路122Cに流れ、第2冷却用流体出口部から流出する。 On the other hand, although not shown, a second cooling fluid inlet and a second cooling fluid outlet are also connected to the plate member 122A positioned at one end in the stacking direction. As shown, the second cooling fluid flows from the second cooling fluid inlet to the second cooling fluid channel 122C and out the second cooling fluid outlet.

第2冷却用流体入口部及び第2冷却用流体出口部も積層方向に直交する方向で互いに離れて配置されているが、第2冷却用流体入口部は、積層方向に直交する方向で冷媒出口部122Eと同じ側に設けられ、第2冷却用流体出口部は、積層方向に直交する方向で冷媒入口部122Dと同じ側に設けられる。したがって、本実施の形態では、上下方向で、第2冷却用流体出口部が第2冷却用流体入口部よりも上側に位置する。なお、第2冷却用流体入口部が積層方向に直交する方向で冷媒入口部122Dと同じ側に設けられもよく、第2冷却用流体出口部が積層方向に直交する方向で冷媒出口部122Eと同じ側に設けられてもよい。 The second cooling fluid inlet portion and the second cooling fluid outlet portion are also separated from each other in the direction perpendicular to the stacking direction, but the second cooling fluid inlet portion has the coolant outlet in the direction perpendicular to the stacking direction. The second cooling fluid outlet portion is provided on the same side as the portion 122E, and the second cooling fluid outlet portion is provided on the same side as the coolant inlet portion 122D in the direction orthogonal to the stacking direction. Therefore, in the present embodiment, the second cooling fluid outlet is located above the second cooling fluid inlet in the vertical direction. The second cooling fluid inlet portion may be provided on the same side as the coolant inlet portion 122D in the direction perpendicular to the stacking direction, and the second cooling fluid outlet portion may be provided on the same side as the coolant outlet portion 122E in the direction perpendicular to the stacking direction. They may be provided on the same side.

ところで、図2Aに示した符号LMは、第2冷却用流体によって凝縮されて第2凝縮部122の底側に溜まった液体状態の冷媒を示す。図2Aにおいては、液体の冷媒LMの液面高さが冷媒出口部122Eの上端を越えており、液体の冷媒LMが冷媒出口部122Eを覆う状態になっている。 By the way, the symbol LM shown in FIG. 2A indicates the liquid refrigerant that is condensed by the second cooling fluid and accumulated on the bottom side of the second condensing section 122 . In FIG. 2A, the liquid level of the liquid coolant LM exceeds the upper end of the coolant outlet 122E, and the liquid coolant LM covers the coolant outlet 122E.

本実施の形態では、コントローラ40の動作制御部43が冷媒圧力センサ17からの冷媒の圧力値に応じて第2冷却用流体通流装置22のポンプ22Aを制御することで、液体の冷媒LMが冷媒出口部122Eを覆う状態を形成する。 In the present embodiment, the operation control unit 43 of the controller 40 controls the pump 22A of the second cooling fluid circulation device 22 according to the pressure value of the refrigerant from the refrigerant pressure sensor 17, so that the liquid refrigerant LM is A state of covering the refrigerant outlet portion 122E is formed.

詳しくは、第2冷却用流体通流装置22の冷却量が小さく冷媒が十分に凝縮されない場合には、第2凝縮部122の底側に溜まる冷媒LMの液面高さが冷媒出口部122Eの上端を越えず、冷媒出口部122Eに気体の状態の冷媒が進入することがある。この際、冷媒圧力センサ17が検知する冷媒の圧力値は、冷媒出口部122Eが液体の冷媒で満たされる場合に比べて大きくなる。したがって、例えば、冷媒出口部122Eが液体の冷媒で満たされる場合に冷媒圧力センサ17が検知する圧力値を閾値と定めた上で、冷媒圧力センサ17からの冷媒の圧力値に応じて第2冷却用流体通流装置22のポンプ22Aを制御することで、液体の冷媒LMが冷媒出口部122Eを覆う状態を形成することができる。 More specifically, when the cooling amount of the second cooling fluid flow device 22 is small and the refrigerant is not sufficiently condensed, the liquid level of the refrigerant LM accumulated on the bottom side of the second condensation section 122 reaches the refrigerant outlet portion 122E. The gaseous refrigerant may enter the refrigerant outlet portion 122E without exceeding the upper end. At this time, the pressure value of the refrigerant detected by the refrigerant pressure sensor 17 becomes larger than when the refrigerant outlet portion 122E is filled with the liquid refrigerant. Therefore, for example, the pressure value detected by the refrigerant pressure sensor 17 when the refrigerant outlet portion 122E is filled with liquid refrigerant is defined as a threshold, and the second cooling is performed according to the pressure value of the refrigerant from the refrigerant pressure sensor 17. By controlling the pump 22A of the fluid communication device 22, it is possible to create a state in which the liquid coolant LM covers the coolant outlet 122E.

上述のように液体の冷媒LMが冷媒出口部122Eを覆う状態であるときには、冷媒温度センサ16が検知する冷媒の温度と、冷却用流体温度センサ22Bが検知する第2冷却用流体の冷媒冷却前の温度との差は小さい値となり、理想的には同じ温度となる。このように冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差が小さい値となるときには、液体の冷媒LMが冷媒出口部122Eを覆う状態となる正常な運転が行われ且つ冷凍回路10に適正な所定量の冷媒が充填されている状態になっていると言える。このような所定量の冷媒は、冷凍回路10のサイズや要求される冷凍能力を考慮し、計算や検証を通して定めることができる。 As described above, when the liquid refrigerant LM covers the refrigerant outlet portion 122E, the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B before the refrigerant is cooled. is a small value, ideally the same temperature. When the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B is small, the liquid refrigerant LM flows through the refrigerant outlet 122E. It can be said that the refrigerating circuit 10 is in a state in which a proper predetermined amount of refrigerant is charged in the refrigerating circuit 10 and the normal operation is performed. Such a predetermined amount of refrigerant can be determined through calculation and verification in consideration of the size of the refrigeration circuit 10 and the required refrigeration capacity.

一方で、上述のように液体の冷媒LMが冷媒出口部122Eを覆う状態となるような第2冷却用流体通流装置22の冷却量の制御を実施しているにもかかわらず、図2Bに示すように、第2凝縮部122の底側に溜まる冷媒LMの液面高さが冷媒出口部122Eの上端を越えない場合には、冷媒リーク等により冷凍回路10中の冷媒が不足している状態と見做すことができる。この場合、冷媒出口部122Eに気体の状態の冷媒が進入し、冷媒温度センサ16が検知する冷媒の温度が、冷媒出口部122Eが液体の冷媒で満たされる場合に比べて大きくなる。その結果、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差が大きい値となる。 On the other hand, although the cooling amount of the second cooling fluid circulation device 22 is controlled such that the liquid coolant LM covers the coolant outlet portion 122E as described above, FIG. As shown, when the liquid level of the refrigerant LM accumulated on the bottom side of the second condensing section 122 does not exceed the upper end of the refrigerant outlet section 122E, the refrigerant in the refrigerating circuit 10 is insufficient due to refrigerant leakage or the like. can be regarded as a state In this case, gaseous refrigerant enters the refrigerant outlet portion 122E, and the temperature of the refrigerant detected by the refrigerant temperature sensor 16 becomes higher than when the refrigerant outlet portion 122E is filled with liquid refrigerant. As a result, the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B becomes a large value.

本件発明者は、上述のように冷凍回路10から冷媒がリーク又は不足した場合には、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差が大きくなることを見出し、この差が予め記録された閾値を越えた場合に冷媒のリーク又は不足が生じていると判定する冷媒状態検知装置40Aを採用するに至った。 As described above, when the refrigerant leaks or runs short from the refrigeration circuit 10, the inventors of the present invention have determined that the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B As a result, the refrigerant state detection device 40A is adopted, which determines that a refrigerant leak or shortage has occurred when this difference exceeds a pre-recorded threshold value.

本件発明者は鋭意研究を通して、上記冷媒リーク又は不足の判定のための閾値は2℃以上であることが好ましく、2℃以上6℃以下がより好ましく、2℃以上4℃以下がさらに好ましいことを知見した。このような範囲に上記閾値を設定することで、冷媒リーク又は不足の判定精度が向上する。 Through intensive research, the inventors of the present invention have found that the threshold for determining the refrigerant leak or shortage is preferably 2°C or higher, more preferably 2°C or higher and 6°C or lower, and further preferably 2°C or higher and 4°C or lower. I found out. By setting the threshold within such a range, the accuracy of determination of refrigerant leakage or shortage is improved.

上記冷媒リーク又は不足の判定においては、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差の移動平均値を算出し、この移動平均値を上記閾値と比較してもよい。移動平均値は、3秒以上の検知期間における3点以上の検知点における、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差を用いて計算してもよい。移動平均値を利用した場合には、センサにおけるノイズの影響を抑えることで判定精度を向上できる。 In determining whether the refrigerant leaks or is insufficient, the moving average value of the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B is calculated. An average value may be compared to the threshold. The moving average value is the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B at three or more detection points in a detection period of three seconds or more. may be calculated using When the moving average value is used, the judgment accuracy can be improved by suppressing the influence of noise in the sensor.

以上に説明したように本実施の形態では冷凍回路10に冷媒状態検知装置40Aが設けられる。そして、冷媒状態検知装置40Aは、第2凝縮部122から流出する冷媒の温度を取得するとともに、第2凝縮部122で冷媒を冷却する第2冷却用流体の冷媒冷却前の温度を取得する温度情報取得部41と、温度情報取得部41で取得した冷媒の温度と第2冷却用流体の温度との差が予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する冷媒状態判定部42と、を備える。 As described above, the refrigerant state detection device 40A is provided in the refrigeration circuit 10 in the present embodiment. Then, the refrigerant state detection device 40A obtains the temperature of the refrigerant flowing out of the second condenser 122, and obtains the temperature of the second cooling fluid that cools the refrigerant in the second condenser 122 before the refrigerant is cooled. When the difference between the temperature of the coolant acquired by the information acquisition unit 41 and the temperature of the second cooling fluid exceeds a pre-recorded threshold value, it is determined that there is a leakage or shortage of the coolant. and a refrigerant state determination unit 42 for determination.

このような冷媒状態検知装置40Aでは、冷媒のリーク又は不足の判定に用いるパラメータの数が抑制される。また、判定のパラメータとして温度を用いることで、冷媒のリーク又は不足の判定精度を向上できる。すなわち、冷凍回路10内における冷媒の温度を検知する場合においては、圧力を検知する場合に比較して急激な変動やノイズの検知が抑制される。 In such a refrigerant state detection device 40A, the number of parameters used to determine refrigerant leakage or shortage is reduced. Further, by using the temperature as a parameter for determination, it is possible to improve the determination accuracy of refrigerant leakage or shortage. That is, when detecting the temperature of the refrigerant in the refrigerating circuit 10, detection of rapid fluctuations and noise is suppressed as compared with the case of detecting pressure.

よって、本実施の形態によれば、冷凍回路10における冷媒のリーク又は不足を簡易に且つ的確に検知できる。 Therefore, according to the present embodiment, leakage or shortage of refrigerant in the refrigeration circuit 10 can be easily and accurately detected.

(第2の実施の形態)
次に、第2の実施の形態に係る温調システム2について図3を参照しつつ説明する。以下の説明では、第1の実施の形態に対する相違点のみを説明する。
(Second embodiment)
Next, a temperature control system 2 according to a second embodiment will be described with reference to FIG. In the following description only the differences with respect to the first embodiment will be described.

図3に示すように、本実施の形態では、凝縮器12が一つの液冷式の熱交換器で構成される。凝縮器12には冷却用流体通流装置20が通流させる冷却用流体が供給される。冷却用流体通流装置20は、冷却用流体の流量を調整するポンプ22Aと、冷却用流体温度センサ22Bとを有する。冷却用流体温度センサ22Bは、冷却用流体が凝縮器12において冷媒を冷却する前の冷却用流体の温度を検知する。 As shown in FIG. 3, in this embodiment, the condenser 12 is composed of one liquid-cooled heat exchanger. Cooling fluid is supplied to the condenser 12 by means of a cooling fluid circulation device 20 . The cooling fluid circulation device 20 has a pump 22A for adjusting the flow rate of the cooling fluid and a cooling fluid temperature sensor 22B. Cooling fluid temperature sensor 22 B senses the temperature of the cooling fluid before it cools the refrigerant in condenser 12 .

冷媒状態検知装置40Aでは、温度情報取得部41が、凝縮器12から流出する冷媒の温度を冷媒温度センサ16から取得するとともに、凝縮器12で冷媒を冷却する前の冷却用流体の温度を冷却用流体温度センサ22Bから取得する。冷媒状態判定部42は、温度情報取得部41で取得した冷媒の温度と冷却用流体の温度との差が、予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する。 In the refrigerant state detection device 40A, the temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out of the condenser 12 from the refrigerant temperature sensor 16, and also obtains the temperature of the cooling fluid before cooling the refrigerant in the condenser 12. obtained from the fluid temperature sensor 22B. When the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the cooling fluid exceeds a prerecorded threshold value, the refrigerant state determination unit 42 determines that there is a leakage or shortage of the refrigerant. judge.

本実施の形態においても、極めて簡易な構成で的確に冷媒のリーク又は不足を検知できる。 Also in the present embodiment, it is possible to accurately detect leakage or shortage of refrigerant with a very simple configuration.

(第3の実施の形態)
次に、第3の実施の形態に係る温調システム3について図4を参照しつつ説明する。以下の説明では、第1及び第2の実施の形態に対する相違点のみを説明する。
(Third Embodiment)
Next, a temperature control system 3 according to a third embodiment will be described with reference to FIG. In the following description, only the differences with respect to the first and second embodiments will be described.

本実施の形態では、凝縮器12が一つの空冷式の熱交換器で構成される。凝縮器12には、ファンを有する空冷装置24がファンの駆動によって通流させる気体である冷却用流体が供給される。冷却用流体は空気でもよい。空冷装置24に設けられる冷却用流体温度センサ22Bは、凝縮器12に供給される冷却用流体の温度を検知する。 In this embodiment, the condenser 12 is composed of one air-cooled heat exchanger. The condenser 12 is supplied with a cooling fluid, which is a gas that is caused to flow by an air cooling device 24 having a fan when the fan is driven. The cooling fluid may be air. A cooling fluid temperature sensor 22B provided in the air cooling device 24 detects the temperature of the cooling fluid supplied to the condenser 12 .

冷媒状態検知装置40Aでは、温度情報取得部41が、凝縮器12から流出する冷媒の温度を冷媒温度センサ16から取得するとともに、凝縮器12で冷媒を冷却する前の気体である冷却用流体の温度を冷却用流体温度センサ22Bから取得する。冷媒状態判定部42は、温度情報取得部41で取得した冷媒の温度と冷却用流体の温度との差が、予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する。 In the refrigerant state detection device 40A, the temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out of the condenser 12 from the refrigerant temperature sensor 16, and also obtains the temperature of the cooling fluid, which is a gas before cooling the refrigerant in the condenser 12. The temperature is obtained from the cooling fluid temperature sensor 22B. When the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the cooling fluid exceeds a prerecorded threshold value, the refrigerant state determination unit 42 determines that there is a leakage or shortage of the refrigerant. judge.

本実施の形態においても、極めて簡易な構成で的確に冷媒のリーク又は不足を検知できる。 Also in the present embodiment, it is possible to accurately detect leakage or shortage of refrigerant with a very simple configuration.

以上、本発明の実施の形態を説明したが、本発明は上述の実施の形態に限られるものではなく、上述の実施の形態には各種の変更を加えることができる。例えば、上述の各実施の形態では、冷凍回路10にレシーバタンク13が設けられるが、冷凍回路10にレシーバタンク13が設けられなくてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made to the above-described embodiments. For example, although receiver tank 13 is provided in refrigerating circuit 10 in each of the above-described embodiments, receiver tank 13 may not be provided in refrigerating circuit 10 .

1, 2,3…温調システム
10…冷凍回路
11…圧縮機
12…凝縮器
121…第1凝縮部
122…第2凝縮部
122A…プレート部材
122B,122C…流路
122D…冷媒入口部
122E…冷媒出口部
13…レシーバタンク
14…膨張弁
15…蒸発器
16…冷媒温度センサ
17…冷媒圧力センサ
20…冷却用流体通流装置
21…第1冷却用流体通流装置
22…第2冷却用流体通流装置
22A…ポンプ
22B…冷却用流体温度センサ
24…空冷装置
30…温調対象流体通流装置
40…コントローラ
40A…冷媒状態検知装置
41…温度情報取得部
42…冷媒状態判定部
REFERENCE SIGNS LIST 1, 2, 3 Temperature control system 10 Refrigeration circuit 11 Compressor 12 Condenser 121 First condenser 122 Second condenser 122A Plate members 122B, 122C Flow path 122D Refrigerant inlet 122E Refrigerant outlet 13 Receiver tank 14 Expansion valve 15 Evaporator 16 Refrigerant temperature sensor 17 Refrigerant pressure sensor 20 Cooling fluid circulation device 21 First cooling fluid circulation device 22 Second cooling fluid Circulation device 22A Pump 22B Cooling fluid temperature sensor 24 Air cooling device 30 Temperature control target fluid circulation device 40 Controller 40A Refrigerant state detection device 41 Temperature information acquisition unit 42 Refrigerant state determination unit

Claims (10)

圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得部と、
前記温度情報取得部で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定部と、を備える、冷媒状態検知装置。
In a refrigeration circuit having a compressor, a condenser, an expansion valve, and an evaporator, a temperature of a refrigerant flowing out of the condenser is obtained, and a cooling fluid for cooling the refrigerant in the condenser is obtained before the refrigerant is cooled. a temperature information acquisition unit that acquires temperature;
Refrigerant state determination for determining that a leak or shortage of the coolant occurs when a difference between the temperature of the coolant acquired by the temperature information acquisition unit and the temperature of the cooling fluid exceeds a pre-recorded threshold value and a refrigerant state detection device.
前記凝縮器は液冷式の熱交換器であり、前記冷却用流体は液体である、請求項1に記載の冷媒状態検知装置。 2. The refrigerant state detection device according to claim 1, wherein said condenser is a liquid-cooled heat exchanger, and said cooling fluid is liquid. 前記凝縮器は、第1凝縮部と、前記第1凝縮部から流出する前記冷媒を凝縮する第2凝縮部と、を有し、
前記温度情報取得部は、前記第2凝縮部から流出する前記冷媒の温度と、前記第2凝縮部において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度と、を取得する、請求項1又は2に記載の冷媒状態検知装置。
The condenser has a first condensation section and a second condensation section for condensing the refrigerant flowing out from the first condensation section,
The temperature information acquisition unit acquires the temperature of the refrigerant flowing out of the second condensation unit and the temperature of the cooling fluid that cools the refrigerant in the second condensation unit before cooling the refrigerant. 3. The refrigerant state detection device according to claim 1 or 2.
圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得工程と、
前記温度情報取得工程で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定工程と、を備える、冷媒状態検知方法。
In a refrigeration circuit having a compressor, a condenser, an expansion valve, and an evaporator, a temperature of a refrigerant flowing out of the condenser is obtained, and a cooling fluid for cooling the refrigerant in the condenser is obtained before the refrigerant is cooled. a temperature information acquisition step of acquiring temperature;
Refrigerant state determination determining that a leak or shortage of the coolant occurs when a difference between the temperature of the coolant obtained in the temperature information obtaining step and the temperature of the cooling fluid exceeds a pre-recorded threshold value A refrigerant state detection method, comprising:
前記凝縮器から流出する前記冷媒の温度を取得するとともに、前記凝縮器において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度を取得した場合に、取得した各温度の差が前記閾値以下となる前記冷凍回路の運転を実施可能とする所定量の前記冷媒を前記冷凍回路に充填する充填工程をさらに備え、
前記充填工程後に行う前記温度情報取得工程及び前記冷媒状態判定工程により、前記冷媒のリーク又は不足を判定する、請求項4に記載の冷媒状態検知方法。
When acquiring the temperature of the refrigerant flowing out of the condenser and acquiring the temperature of the cooling fluid that cools the refrigerant in the condenser before cooling the refrigerant, the difference between the acquired temperatures is further comprising a filling step of filling the refrigeration circuit with a predetermined amount of the refrigerant that enables operation of the refrigeration circuit that is equal to or less than the threshold;
5. The refrigerant state detection method according to claim 4, wherein leak or shortage of the refrigerant is determined by the temperature information acquisition step and the refrigerant state determination step performed after the filling step.
前記充填工程後に前記冷凍回路の運転時に、前記冷凍回路は、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態になるように前記凝縮器で前記冷媒を冷却する、請求項4又は5に記載の冷媒状態検知方法。 3. The refrigerating circuit cools the refrigerant in the condenser so that the refrigerant condensed in the condenser covers an outlet of the condenser when the refrigerating circuit is in operation after the charging step. 6. The refrigerant state detection method according to 4 or 5. 圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路と、
請求項1乃至3のいずれかに記載の冷媒状態検知装置と、を備える温調システム。
a refrigeration circuit having a compressor, a condenser, an expansion valve and an evaporator;
A temperature control system comprising the refrigerant state detection device according to any one of claims 1 to 3.
前記冷凍回路は、所定量の前記冷媒を充填された場合に、前記冷媒状態検知装置が取得する前記冷媒の温度と前記冷却用流体の温度との差が前記閾値以下となる運転を実施可能となるよう構成されている、請求項7に記載の温調システム。 When the refrigerating circuit is filled with a predetermined amount of the refrigerant, the refrigerating circuit can perform operation such that the difference between the temperature of the refrigerant acquired by the refrigerant state detection device and the temperature of the cooling fluid is equal to or less than the threshold. 8. The temperature control system of claim 7, configured to: 前記冷凍回路は、前記所定量の前記冷媒を充填された場合に、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態となるように前記凝縮器で前記冷媒を冷却することが可能となる、請求項8に記載の温調システム。 When the refrigerating circuit is filled with the predetermined amount of the refrigerant, the refrigerant is cooled by the condenser so that the refrigerant condensed by the condenser covers the outlet of the condenser. The temperature control system according to claim 8, wherein 前記蒸発器によって温調される流体を通流させる流体通流装置をさらに備える、請求項7乃至9のいずれかに記載の温調システム。 10. The temperature control system according to any one of claims 7 to 9, further comprising a fluid circulation device for causing a fluid whose temperature is controlled by said evaporator to flow.
JP2019089951A 2019-05-10 2019-05-10 Refrigerant state detection device, refrigerant state detection method, and temperature control system Active JP7210018B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019089951A JP7210018B2 (en) 2019-05-10 2019-05-10 Refrigerant state detection device, refrigerant state detection method, and temperature control system
CN202080028249.7A CN113677940A (en) 2019-05-10 2020-04-30 Refrigerant state detection device, refrigerant state detection method, and temperature adjustment system
PCT/JP2020/018223 WO2020230641A1 (en) 2019-05-10 2020-04-30 Refrigerant state detection device, refrigerant state detection method, and temperature control system
KR1020217011457A KR20220006029A (en) 2019-05-10 2020-04-30 Refrigerant condition detection device, refrigerant condition detection method and temperature control system
US17/593,141 US20220186999A1 (en) 2019-05-10 2020-04-30 Refrigerant condition detection device, refrigerant condition detection method, and temperature control system
TW109114757A TW202108943A (en) 2019-05-10 2020-05-04 Refrigerant state detection device, refrigerant state detection method, and temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089951A JP7210018B2 (en) 2019-05-10 2019-05-10 Refrigerant state detection device, refrigerant state detection method, and temperature control system

Publications (2)

Publication Number Publication Date
JP2020186827A JP2020186827A (en) 2020-11-19
JP7210018B2 true JP7210018B2 (en) 2023-01-23

Family

ID=73222734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089951A Active JP7210018B2 (en) 2019-05-10 2019-05-10 Refrigerant state detection device, refrigerant state detection method, and temperature control system

Country Status (6)

Country Link
US (1) US20220186999A1 (en)
JP (1) JP7210018B2 (en)
KR (1) KR20220006029A (en)
CN (1) CN113677940A (en)
TW (1) TW202108943A (en)
WO (1) WO2020230641A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988428B2 (en) * 2019-05-24 2024-05-21 Carrier Corporation Low refrigerant charge detection in transport refrigeration system
CN114659232B (en) * 2022-05-10 2024-03-12 长虹美菱股份有限公司 Refrigerator and refrigerant leakage detection method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140409A (en) 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Refrigerator
JP2019002639A (en) 2017-06-16 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Refrigerant leakage detection method of ari conditioner, and air conditioner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601130B2 (en) * 1995-10-06 2004-12-15 株式会社デンソー Refrigeration equipment
JP4123764B2 (en) * 2001-11-22 2008-07-23 三菱電機株式会社 Refrigeration cycle equipment
JP3811153B2 (en) * 2003-10-28 2006-08-16 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof
CN100513944C (en) * 2005-02-24 2009-07-15 三菱电机株式会社 Air-conditioning plant
JP2009198154A (en) * 2007-10-23 2009-09-03 Daikin Ind Ltd Fluid sensor, refrigerant leakage detection device, refrigeration device, and refrigerant leakage detection method
CN104344622B (en) * 2013-07-25 2016-09-07 广东美的暖通设备有限公司 Air-cooled heat pump cold-hot water machine and the antifreeze method of heat exchanger, system
EP2933442B1 (en) * 2014-04-16 2016-11-02 Orcan Energy AG Device and method for detecting leaks in closed cycle processes
JP6318021B2 (en) * 2014-06-24 2018-04-25 ヤンマー株式会社 Heat pump chiller
CN104879972A (en) * 2015-06-03 2015-09-02 广东美的暖通设备有限公司 Refrigeration system, and method and device for automatically filling refrigeration system with refrigerants
JP2017075761A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Water heating device
US10578328B2 (en) * 2016-02-11 2020-03-03 Vertiv Corporation Systems and methods for detecting degradation of a component in an air conditioning system
KR101999760B1 (en) * 2017-07-17 2019-07-12 (주)에코알앤에스 Method for maintaining cooling apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140409A (en) 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Refrigerator
JP2019002639A (en) 2017-06-16 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Refrigerant leakage detection method of ari conditioner, and air conditioner

Also Published As

Publication number Publication date
KR20220006029A (en) 2022-01-14
WO2020230641A1 (en) 2020-11-19
TW202108943A (en) 2021-03-01
CN113677940A (en) 2021-11-19
JP2020186827A (en) 2020-11-19
US20220186999A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US10508850B2 (en) Method for controlling a vapour compression system in a flooded state
CN105143791B (en) Refrigerant managing in HVAC system
CN105485856B (en) Method for detecting abnormality under air-conditioning system and air-conditioning system heating state
CN106196787A (en) The control method of heat pump and heat pump
CN102378884A (en) Refrigeration cycle device
JP7210018B2 (en) Refrigerant state detection device, refrigerant state detection method, and temperature control system
CN102147142A (en) Air conditioner and method for controlling air conditioner
CN106765903B (en) A kind of control method of the outer blower for air-conditioning system
CN106352627A (en) Air conditioner and control method and device thereof
US20180209709A1 (en) Refrigerating machine and control method therefor
JP5220045B2 (en) Cooling system
JP2014095514A (en) Refrigeration apparatus
WO2017183588A1 (en) Vehicle air-conditioning device and vehicle provided with same
JPWO2006126396A1 (en) Refrigeration cycle equipment
EP3722687A1 (en) Air conditioning apparatus
CN107848375A (en) The kind of refrigeration cycle of air conditioner for vehicles and the vehicle for carrying it
JP5921776B1 (en) Refrigeration cycle equipment
JP2017075761A (en) Water heating device
KR100882005B1 (en) Device for detecting the status of coolant charged in the heat exchange system and method for controllling the same
US20230168012A1 (en) A method for monitoring a refrigerant charge in a vapour compression system
JP6671250B2 (en) Inspection method of heat pump system
JP5452342B2 (en) Outdoor unit, indoor unit and air conditioner
CN115200243A (en) Magnetic suspension cooling unit and control method
JP4004356B2 (en) Oil level detection method and apparatus for compressor
JP5908177B1 (en) Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7210018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150