WO2020230641A1 - Refrigerant state detection device, refrigerant state detection method, and temperature control system - Google Patents

Refrigerant state detection device, refrigerant state detection method, and temperature control system Download PDF

Info

Publication number
WO2020230641A1
WO2020230641A1 PCT/JP2020/018223 JP2020018223W WO2020230641A1 WO 2020230641 A1 WO2020230641 A1 WO 2020230641A1 JP 2020018223 W JP2020018223 W JP 2020018223W WO 2020230641 A1 WO2020230641 A1 WO 2020230641A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
condenser
cooling fluid
cooling
Prior art date
Application number
PCT/JP2020/018223
Other languages
French (fr)
Japanese (ja)
Inventor
俊二 山口
亨明 峰原
健太 深井
Original Assignee
伸和コントロールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸和コントロールズ株式会社 filed Critical 伸和コントロールズ株式会社
Priority to KR1020217011457A priority Critical patent/KR20220006029A/en
Priority to CN202080028249.7A priority patent/CN113677940A/en
Priority to US17/593,141 priority patent/US20220186999A1/en
Publication of WO2020230641A1 publication Critical patent/WO2020230641A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • the present invention relates to a refrigerant state detection device, a refrigerant state detection method, and a temperature control system.
  • JP2016-121867A detects compressor suction pressure, evaporator pressure, compressor discharge pressure, condenser pressure, compressor suction temperature, compressor outlet temperature, compressor discharge temperature, compressor inlet temperature, and the like.
  • a technique for detecting a refrigerant leak using the detected value as a parameter is disclosed.
  • WO2017 / 175300 discloses a technique of providing a refrigerant detecting device for detecting a refrigerant leaked to the outside in an indoor unit of an air conditioner.
  • JP2016-121867A requires many sensors to detect pressure, temperature, etc., and many parameters are used to determine refrigerant leakage. Further, since the WO2017 / 175300 technology directly detects the refrigerant leaked to the outside by the refrigerant detection device, it is difficult to detect the leaked refrigerant at a position away from the refrigerant detection device, and the shortage of the refrigerant is accurate. It is hard to say that it can be detected.
  • the inventor of the present invention has conducted diligent research in order to accurately detect a refrigerant leak or a refrigerant shortage as easily as possible. Then, they have found that the outlet temperature of the condenser is higher than the outlet temperature when the refrigerant is not insufficient in the situation where the refrigerant is insufficient. Then, in this phenomenon, when the refrigerant is insufficient, the amount of the refrigerant condensed in the condenser becomes smaller than the planned or expected amount of the refrigerant, and the high-temperature refrigerant as a gas is downstream from the condenser outlet. It was found that this is caused by the fact that it is easily mixed with the piping on the side.
  • the present invention has been made based on the above findings, and an object of the present invention is to provide a refrigerant state detection device, a refrigerant state detection method, and a temperature control system that can easily and accurately detect a leakage or shortage of a refrigerant in a refrigeration circuit. ..
  • the condenser is a liquid-cooled heat exchanger, and the cooling fluid may be a liquid.
  • the condenser has a first condensing part and a second condensing part that condenses the refrigerant flowing out from the first condensing part, and the temperature information acquisition part flows out from the second condensing part.
  • the temperature of the refrigerant and the temperature of the cooling fluid that cools the refrigerant in the second condensing portion before cooling the refrigerant may be acquired.
  • the refrigerant state detection method acquires the temperature of the refrigerant flowing out of the condenser in a refrigerating circuit including a compressor, a condenser, an expansion valve and an evaporator, and cools the refrigerant with the condenser.
  • the difference between the temperature information acquisition step of acquiring the temperature of the refrigerant before cooling the refrigerant and the temperature of the refrigerant acquired in the temperature information acquisition step and the temperature of the cooling fluid exceeds a pre-recorded threshold value.
  • the refrigerant state determination step of determining that the refrigerant leaks or is insufficient is provided.
  • the refrigerant state detection method acquires the temperature of the refrigerant flowing out of the condenser and the temperature of the cooling fluid for cooling the refrigerant in the condenser before cooling the refrigerant.
  • the refrigerating circuit is further provided with a filling step of filling the refrigerating circuit with a predetermined amount of the refrigerant that enables the operation of the refrigerating circuit in which the acquired difference in temperature is equal to or less than the threshold value, and is performed after the filling step.
  • Leakage or deficiency of the refrigerant may be determined by the temperature information acquisition step and the refrigerant state determination step.
  • the temperature control system includes a refrigeration circuit having a compressor, a condenser, an expansion valve and an evaporator, and the above-mentioned refrigerant state detection device.
  • the refrigerating circuit can perform an operation in which the difference between the temperature of the refrigerant acquired by the refrigerant state detecting device and the temperature of the cooling fluid is equal to or less than the threshold value. It may be configured to be.
  • the refrigerant when the predetermined amount of the refrigerant is filled, the refrigerant is cooled by the condenser so that the refrigerant condensed by the condenser covers the outlet of the condenser. May be possible.
  • the temperature control system according to the present invention may further include a fluid flow device for passing the fluid temperature controlled by the evaporator.
  • leakage or shortage of refrigerant in the refrigeration circuit can be detected easily and accurately.
  • FIG. 1 is a diagram showing a schematic configuration of a temperature control system 1 according to a first embodiment of the present invention.
  • the temperature control system 1 according to the present embodiment includes a refrigeration circuit 10, a first cooling fluid flow device 21, a second cooling fluid flow device 22, a temperature control target fluid flow device 30, and a controller. It has 40 and.
  • the refrigeration circuit 10 includes a compressor 11, a condenser 12, a receiver tank 13, an expansion valve 14, and an evaporator 15.
  • the compressor 11, the condenser 12, the receiver tank 13, the expansion valve 14, and the evaporator 15 are connected by a piping member so as to circulate the refrigerant in this order.
  • the condenser 12 has a first condensing unit 121 and a second condensing unit 122 that condenses the refrigerant flowing out from the first condensing unit 121.
  • the refrigerant passing through the first condensing section 121 is cooled by the first cooling fluid supplied by the first cooling fluid flow device 21 to the first condensing section 121.
  • the refrigerant passing through the second condensing section 122 is cooled by the second cooling fluid supplied by the second cooling fluid flow device 22 to the second condensing section 122.
  • the first condensing section 121 and the second condensing section 122 are each composed of a liquid-cooled heat exchanger, specifically, a plate heat exchanger. However, the first condensing section 121 and the second condensing section 122 may be configured by an air-cooled heat exchanger.
  • the first cooling fluid flow device 21 supplies the first cooling fluid to the first condensing unit 121
  • the second cooling fluid flow device 22 supplies the second cooling fluid to the second condensing unit 122.
  • liquids are used as the first cooling fluid and the second cooling fluid. Be done.
  • the first cooling fluid and the second cooling fluid which are liquids, may be water or other fluids.
  • the first cooling fluid and the second cooling fluid may be air.
  • the second cooling fluid flow device 22 has the pump 22A, and by controlling the driving force of the pump 22A, the flow rate of the second cooling fluid supplied to the second condensing unit 122 is increased. Can be adjusted. Thereby, the cooling amount of the refrigerant in the second condensing portion 122 can be adjusted.
  • the temperature control target fluid flow device 30 passes the temperature control target fluid that exchanges heat with the refrigerant by the evaporator 15 as described above.
  • the temperature control target fluid to be passed by the temperature control target fluid flow device 30 may be a gas or a liquid.
  • the temperature control target fluid flow device 30 may be composed of a fan or the like.
  • the temperature control target fluid flow device 30 may be composed of a flow path of the liquid, a pump for allowing the liquid to flow, or the like.
  • the refrigeration circuit 10 is provided with a refrigerant temperature sensor 16 for detecting the temperature of the refrigerant flowing out from the second condensing unit 122 and a refrigerant pressure sensor 17 for detecting the pressure of the refrigerant flowing out from the second condensing unit 122.
  • the refrigerant temperature sensor 16 detects the temperature of the refrigerant before it flows out from the second condensing unit 122 and flows into the receiver tank 13. In other words, the refrigerant temperature sensor 16 detects the temperature inside the piping member connected to the outlet of the second condensing unit 122.
  • the refrigerant pressure sensor 17 detects the pressure of the refrigerant before it flows out from the second condensing unit 122 and flows into the receiver tank 13. In other words, the refrigerant pressure sensor 17 detects the pressure inside the piping member connected to the outlet of the second condensing unit 122.
  • the cooling fluid temperature sensor 22B is provided in the second cooling fluid flow device 22.
  • the cooling fluid temperature sensor 22B detects the temperature of the second cooling fluid before cooling the refrigerant in the second condensing unit 122.
  • the cooling fluid temperature sensor 22B detects the temperature inside the upstream portion of the second condensing portion 122 in the piping member through which the second cooling fluid is passed in the second cooling fluid flow device 22. ..
  • the controller 40 can control the operation of each part of the refrigerating circuit 10, the pump 22A of the second cooling fluid flow device 22, and the like, and can acquire information from the various sensors 16, 17, and 22B described above. It is possible.
  • the controller 40 may be composed of a computer including, for example, a CPU, a ROM, a RAM, or the like, and may control the operation of each of the above parts according to a stored program.
  • the controller 40 has a temperature information acquisition unit 41, a refrigerant state determination unit 42, an operation control unit 43, and an output unit 44.
  • the temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out from the second condensing unit 122 of the condenser 12 from the refrigerant temperature sensor 16 and of the second cooling fluid before the second condensing unit 122 cools the refrigerant.
  • the temperature is acquired from the cooling fluid temperature sensor 22B.
  • the refrigerant state determination unit 42 causes a leakage or shortage of the refrigerant. Judge that there is.
  • the temperature information acquisition unit 41 and the refrigerant state determination unit 42 constitute the refrigerant state detection device 40A.
  • the operation control unit 43 controls the operation of each part of the refrigeration circuit 10, the pump 22A of the second cooling fluid flow device 22, and the like.
  • 2A and 2B are schematic cross-sectional views of a second condensing portion 122 composed of a plate heat exchanger.
  • the second condensing portion 122 is a plurality of plates laminated so as to form a flow path for allowing the refrigerant or the second cooling fluid to flow between adjacent plate members 122A.
  • the member 122A is provided, and the plurality of plate members 122A are formed by alternately arranging the flow paths 122B for the refrigerant and the flow paths 122C for the second cooling fluid in the stacking direction thereof.
  • the refrigerant inlet portion 122D and the refrigerant outlet portion 122E are connected to the plate member 122A located at one end of the plurality of plate members 122A in the stacking direction, and as shown by the white-painted arrows, the refrigerant is It flows from the refrigerant inlet portion 122D to the refrigerant flow path 122B and flows out from the refrigerant outlet portion 122E.
  • the refrigerant inlet portion 122D and the refrigerant outlet portion 122E are arranged apart from each other in a direction orthogonal to the stacking direction, and in the present embodiment, the refrigerant inlet portion 122D is located above the refrigerant outlet portion 122E in the vertical direction.
  • the second condensing unit 122 is arranged so as to do so.
  • the refrigerant inlet portion 122D may be a part of a piping member connecting the first condensing portion 121 and the second condensing portion 122, or may be a member different from the piping member.
  • the refrigerant outlet portion 122E may be a part of a pipe member connecting the second condensing portion 122 and the receiver tank 13, or may be a member different from the pipe member.
  • the plate member 122A located at one end in the stacking direction is also connected to the second cooling fluid inlet portion and the second cooling fluid outlet portion, and is indicated by a hatched arrow. As shown, the second cooling fluid flows from the second cooling fluid inlet portion to the second cooling fluid flow path 122C, and flows out from the second cooling fluid outlet portion.
  • the second cooling fluid inlet and the second cooling fluid outlet are also arranged apart from each other in a direction orthogonal to the stacking direction, but the second cooling fluid inlet is a refrigerant outlet in a direction orthogonal to the stacking direction.
  • the second cooling fluid outlet portion is provided on the same side as the portion 122E, and the second cooling fluid outlet portion is provided on the same side as the refrigerant inlet portion 122D in a direction orthogonal to the stacking direction. Therefore, in the present embodiment, the second cooling fluid outlet portion is located above the second cooling fluid inlet portion in the vertical direction.
  • the second cooling fluid inlet portion may be provided on the same side as the refrigerant inlet portion 122D in the direction orthogonal to the stacking direction, and the second cooling fluid outlet portion may be provided with the refrigerant outlet portion 122E in the direction orthogonal to the stacking direction. It may be provided on the same side.
  • the reference numeral LM shown in FIG. 2A indicates a liquid refrigerant that has been condensed by the second cooling fluid and accumulated on the bottom side of the second condensing portion 122.
  • the liquid level height of the liquid refrigerant LM exceeds the upper end of the refrigerant outlet portion 122E, and the liquid refrigerant LM covers the refrigerant outlet portion 122E.
  • the operation control unit 43 of the controller 40 controls the pump 22A of the second cooling fluid flow device 22 according to the pressure value of the refrigerant from the refrigerant pressure sensor 17, so that the liquid refrigerant LM is generated.
  • a state of covering the refrigerant outlet portion 122E is formed.
  • the liquid level height of the refrigerant LM collected on the bottom side of the second condensing portion 122 is the refrigerant outlet portion 122E.
  • the refrigerant in a gaseous state may enter the refrigerant outlet portion 122E without exceeding the upper end.
  • the pressure value of the refrigerant detected by the refrigerant pressure sensor 17 is larger than that in the case where the refrigerant outlet portion 122E is filled with the liquid refrigerant.
  • the pressure value detected by the refrigerant pressure sensor 17 when the refrigerant outlet portion 122E is filled with the liquid refrigerant is set as a threshold value, and then the second cooling is performed according to the pressure value of the refrigerant from the refrigerant pressure sensor 17.
  • the pump 22A of the fluid flow device 22 it is possible to form a state in which the liquid refrigerant LM covers the refrigerant outlet portion 122E.
  • the liquid refrigerant LM covers the refrigerant outlet portion 122E as described above, the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B before cooling the refrigerant.
  • the difference from the temperature of is small, and ideally the same temperature.
  • the liquid refrigerant LM presses the refrigerant outlet portion 122E. It can be said that the refrigerating circuit 10 is filled with an appropriate predetermined amount of refrigerant while performing normal operation to cover the refrigerating circuit 10. Such a predetermined amount of refrigerant can be determined through calculation and verification in consideration of the size of the refrigerating circuit 10 and the required refrigerating capacity.
  • FIG. 2B shows.
  • the refrigerant in the refrigerating circuit 10 is insufficient due to a refrigerant leak or the like. It can be regarded as a state.
  • the refrigerant in a gaseous state enters the refrigerant outlet portion 122E, and the temperature of the refrigerant detected by the refrigerant temperature sensor 16 becomes higher than in the case where the refrigerant outlet portion 122E is filled with the liquid refrigerant.
  • the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B becomes a large value.
  • the present inventor has described the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B when the refrigerant leaks or runs short from the refrigerating circuit 10 as described above. It has been found that the difference between the two and the above is large, and when this difference exceeds a pre-recorded threshold value, a refrigerant state detection device 40A for determining that a refrigerant leak or shortage has occurred has been adopted.
  • the threshold value for determining the refrigerant leak or deficiency is preferably 2 ° C. or higher, more preferably 2 ° C. or higher and 6 ° C. or lower, and further preferably 2 ° C. or higher and 4 ° C. or lower. I found out. By setting the above threshold value in such a range, the accuracy of determining refrigerant leakage or shortage is improved.
  • the refrigerating circuit 10 is provided with the refrigerant state detecting device 40A. Then, the refrigerant state detection device 40A acquires the temperature of the refrigerant flowing out from the second condensing unit 122, and acquires the temperature of the second cooling fluid for cooling the refrigerant in the second condensing unit 122 before the refrigerant is cooled.
  • the difference between the temperature of the refrigerant acquired by the information acquisition unit 41 and the temperature information acquisition unit 41 and the temperature of the second cooling fluid exceeds a pre-recorded threshold value, it is determined that a refrigerant leak or shortage has occurred.
  • a refrigerant state determination unit 42 for determining is provided.
  • the number of parameters used for determining the leakage or shortage of the refrigerant is suppressed. Further, by using the temperature as a determination parameter, the accuracy of determining the leakage or shortage of the refrigerant can be improved. That is, when the temperature of the refrigerant in the refrigeration circuit 10 is detected, the detection of sudden fluctuations and noise is suppressed as compared with the case where the pressure is detected.
  • the condenser 12 is composed of one liquid-cooled heat exchanger.
  • the cooling fluid to be passed by the cooling fluid flow device 20 is supplied to the condenser 12.
  • the cooling fluid flow device 20 includes a pump 22A for adjusting the flow rate of the cooling fluid and a cooling fluid temperature sensor 22B.
  • the cooling fluid temperature sensor 22B detects the temperature of the cooling fluid before the cooling fluid cools the refrigerant in the condenser 12.
  • the temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out from the condenser 12 from the refrigerant temperature sensor 16 and cools the temperature of the cooling fluid before the refrigerant is cooled by the condenser 12. Obtained from the fluid temperature sensor 22B.
  • the refrigerant state determination unit 42 determines that a refrigerant leak or shortage has occurred when the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the cooling fluid exceeds a pre-recorded threshold value. judge.
  • the condenser 12 is composed of one air-cooled heat exchanger.
  • the condenser 12 is supplied with a cooling fluid, which is a gas that the air cooling device 24 having a fan passes through by driving the fan.
  • the cooling fluid may be air.
  • the cooling fluid temperature sensor 22B provided in the air cooling device 24 detects the temperature of the cooling fluid supplied to the condenser 12.
  • the temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out from the condenser 12 from the refrigerant temperature sensor 16, and the cooling fluid which is a gas before the refrigerant is cooled by the condenser 12.
  • the temperature is acquired from the cooling fluid temperature sensor 22B.
  • the refrigerant state determination unit 42 determines that a refrigerant leak or shortage has occurred when the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the cooling fluid exceeds a pre-recorded threshold value. judge.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made to the above-described embodiments.
  • the receiver tank 13 is provided in the refrigeration circuit 10, but the receiver tank 13 may not be provided in the refrigeration circuit 10.

Abstract

[Problem] A refrigerant state detection device (40A) according to one embodiment is provided with: a temperature information acquisition unit (41) for acquiring the temperature of a refrigerant flowing out from a condenser in a refrigeration circuit having a compressor, the condenser, an expansion valve, and an evaporator, and for acquiring the temperature of a cooling fluid, which is for cooling the refrigerant in the condenser, before the refrigerant is cooled; and a refrigerant state determination unit (42) for determining that a leak or shortage of the refrigerant has occurred when the difference between the temperature of the refrigerant as acquired by the temperature information acquisition unit (41) and the temperature of the cooling fluid exceeds a pre-recorded threshold.

Description

冷媒状態検知装置、冷媒状態検知方法及び温調システムRefrigerant condition detection device, refrigerant condition detection method and temperature control system
 本発明は、冷媒状態検知装置、冷媒状態検知方法及び温調システムに関する。 The present invention relates to a refrigerant state detection device, a refrigerant state detection method, and a temperature control system.
 冷凍回路で冷媒がリークし、冷媒に不足が生じた場合には、冷凍能力の低下等の問題が生じ得るため、早急に何らかの対策をとることが望ましい。 If the refrigerant leaks in the refrigeration circuit and the refrigerant runs short, problems such as a decrease in refrigerating capacity may occur, so it is desirable to take some measures immediately.
 冷媒リークを検知する技術は従来から種々提案されている。例えばJP2016-121867Aには、圧縮機吸入圧力、蒸発器圧力、圧縮機吐出圧力、凝縮器圧力、圧縮機吸入温度、蒸発器出口温度、圧縮機吐出温度、凝縮器入口温度等を検知し、これら検知した値をパラメータとして冷媒リークを検知する技術が開示されている。またWO2017/175300には、外部にリークされた冷媒を検知する冷媒検知装置を空気調和装置の室内機に設ける技術が開示されている。 Various technologies for detecting refrigerant leaks have been proposed conventionally. For example, JP2016-121867A detects compressor suction pressure, evaporator pressure, compressor discharge pressure, condenser pressure, compressor suction temperature, compressor outlet temperature, compressor discharge temperature, compressor inlet temperature, and the like. A technique for detecting a refrigerant leak using the detected value as a parameter is disclosed. Further, WO2017 / 175300 discloses a technique of providing a refrigerant detecting device for detecting a refrigerant leaked to the outside in an indoor unit of an air conditioner.
 しかしながらJP2016-121867Aの技術は、圧力、温度等を検知するために多くのセンサが必要であり、冷媒リークの判断に使用するパラメータも多い。またWO2017/175300の技術は、外部に漏れた冷媒を冷媒検知装置で直接的に検知するため、冷媒検知装置から離れた位置で漏れた冷媒を検知することは困難であり、冷媒の不足を的確に検知できるとは言い難い。 However, the technology of JP2016-121867A requires many sensors to detect pressure, temperature, etc., and many parameters are used to determine refrigerant leakage. Further, since the WO2017 / 175300 technology directly detects the refrigerant leaked to the outside by the refrigerant detection device, it is difficult to detect the leaked refrigerant at a position away from the refrigerant detection device, and the shortage of the refrigerant is accurate. It is hard to say that it can be detected.
 本件発明者は上述のような公知技術を鑑みて、極力簡易に冷媒のリーク又は冷媒の不足を的確に検知することを実現すべく鋭意研究を行った。そして、冷媒が不足する状況下においては、凝縮器の出口温度が、冷媒が不足していない場合の出口温度に比べて高くなることを見出した。そして、この現象は、冷媒が不足した際には凝縮器で凝縮される冷媒の凝縮量が予定又は期待される凝縮量よりも少なくなり、気体のままの高温の冷媒が凝縮器出口からその下流側の配管に混ざり易くなることで生じていることを見出した。 In view of the above-mentioned known techniques, the inventor of the present invention has conducted diligent research in order to accurately detect a refrigerant leak or a refrigerant shortage as easily as possible. Then, they have found that the outlet temperature of the condenser is higher than the outlet temperature when the refrigerant is not insufficient in the situation where the refrigerant is insufficient. Then, in this phenomenon, when the refrigerant is insufficient, the amount of the refrigerant condensed in the condenser becomes smaller than the planned or expected amount of the refrigerant, and the high-temperature refrigerant as a gas is downstream from the condenser outlet. It was found that this is caused by the fact that it is easily mixed with the piping on the side.
 本発明は上記知見に基づきなされたものであり、冷凍回路における冷媒のリーク又は不足を簡易に且つ的確に検知できる冷媒状態検知装置、冷媒状態検知方法及び温調システムを提供することを目的とする。 The present invention has been made based on the above findings, and an object of the present invention is to provide a refrigerant state detection device, a refrigerant state detection method, and a temperature control system that can easily and accurately detect a leakage or shortage of a refrigerant in a refrigeration circuit. ..
 本発明に係る冷媒状態検知装置は、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得部と、前記温度情報取得部で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定部と、を備える。 The refrigerant state detection device according to the present invention acquires the temperature of the refrigerant flowing out of the condenser in a refrigerating circuit having a compressor, a condenser, an expansion valve and an evaporator, and cools the refrigerant with the condenser. The difference between the temperature information acquisition unit that acquires the temperature of the refrigerant before cooling the refrigerant and the temperature of the refrigerant acquired by the temperature information acquisition unit and the temperature of the cooling fluid exceeds a pre-recorded threshold value. In this case, the refrigerant state determination unit for determining that the refrigerant leaks or is insufficient is provided.
 前記凝縮器は液冷式の熱交換器であり、前記冷却用流体は液体でもよい。 The condenser is a liquid-cooled heat exchanger, and the cooling fluid may be a liquid.
 前記凝縮器は、第1凝縮部と、前記第1凝縮部から流出する前記冷媒を凝縮する第2凝縮部と、を有し、前記温度情報取得部は、前記第2凝縮部から流出する前記冷媒の温度と、前記第2凝縮部において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度と、を取得してもよい。 The condenser has a first condensing part and a second condensing part that condenses the refrigerant flowing out from the first condensing part, and the temperature information acquisition part flows out from the second condensing part. The temperature of the refrigerant and the temperature of the cooling fluid that cools the refrigerant in the second condensing portion before cooling the refrigerant may be acquired.
 本発明に係る冷媒状態検知方法は、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得工程と、前記温度情報取得工程で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定工程と、を備える。 The refrigerant state detection method according to the present invention acquires the temperature of the refrigerant flowing out of the condenser in a refrigerating circuit including a compressor, a condenser, an expansion valve and an evaporator, and cools the refrigerant with the condenser. The difference between the temperature information acquisition step of acquiring the temperature of the refrigerant before cooling the refrigerant and the temperature of the refrigerant acquired in the temperature information acquisition step and the temperature of the cooling fluid exceeds a pre-recorded threshold value. In this case, the refrigerant state determination step of determining that the refrigerant leaks or is insufficient is provided.
 本発明に係る冷媒状態検知方法は、前記凝縮器から流出する前記冷媒の温度を取得するとともに、前記凝縮器において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度を取得した場合に、取得した各温度の差が前記閾値以下となる前記冷凍回路の運転を実施可能とする所定量の前記冷媒を、前記冷凍回路に充填する充填工程をさらに備え、前記充填工程後に行う前記温度情報取得工程及び前記冷媒状態判定工程により、前記冷媒のリーク又は不足を判定してもよい。 The refrigerant state detection method according to the present invention acquires the temperature of the refrigerant flowing out of the condenser and the temperature of the cooling fluid for cooling the refrigerant in the condenser before cooling the refrigerant. In this case, the refrigerating circuit is further provided with a filling step of filling the refrigerating circuit with a predetermined amount of the refrigerant that enables the operation of the refrigerating circuit in which the acquired difference in temperature is equal to or less than the threshold value, and is performed after the filling step. Leakage or deficiency of the refrigerant may be determined by the temperature information acquisition step and the refrigerant state determination step.
 前記充填工程後の前記冷凍回路の運転時に、前記冷凍回路は、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態になるように前記凝縮器で前記冷媒を冷却してもよい。 During the operation of the refrigerating circuit after the filling step, the refrigerating circuit may cool the refrigerant with the condenser so that the refrigerant condensed by the condenser covers the outlet of the condenser. Good.
 本発明に係る温調システムは、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路と、前記の冷媒状態検知装置と、を備える。 The temperature control system according to the present invention includes a refrigeration circuit having a compressor, a condenser, an expansion valve and an evaporator, and the above-mentioned refrigerant state detection device.
 前記冷凍回路は、所定量の前記冷媒を充填された場合に、前記冷媒状態検知装置が取得する前記冷媒の温度と前記冷却用流体の温度との差が前記閾値以下となる運転を実施可能となるよう構成されてもよい。 When the refrigerating circuit is filled with the predetermined amount of the refrigerant, the refrigerating circuit can perform an operation in which the difference between the temperature of the refrigerant acquired by the refrigerant state detecting device and the temperature of the cooling fluid is equal to or less than the threshold value. It may be configured to be.
 前記冷凍回路は、前記所定量の前記冷媒を充填された場合に、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態となるように前記凝縮器で前記冷媒を冷却することが可能となっていてもよい。 In the refrigeration circuit, when the predetermined amount of the refrigerant is filled, the refrigerant is cooled by the condenser so that the refrigerant condensed by the condenser covers the outlet of the condenser. May be possible.
 本発明に係る温調システムは、前記蒸発器によって温調される流体を通流させる流体通流装置をさらに備えてもよい。 The temperature control system according to the present invention may further include a fluid flow device for passing the fluid temperature controlled by the evaporator.
 本発明によれば、冷凍回路における冷媒のリーク又は不足を簡易に且つ的確に検知できる。 According to the present invention, leakage or shortage of refrigerant in the refrigeration circuit can be detected easily and accurately.
本発明の第1の実施の形態に係る温調システムの概略構成を示す図である。It is a figure which shows the schematic structure of the temperature control system which concerns on 1st Embodiment of this invention. 図1に示す温調システムの冷凍回路に設けられる凝縮器の概略的な断面図である。It is the schematic sectional drawing of the condenser provided in the refrigeration circuit of the temperature control system shown in FIG. 図1に示す温調システムの冷凍回路に設けられる凝縮器の概略的な断面図である。It is the schematic sectional drawing of the condenser provided in the refrigeration circuit of the temperature control system shown in FIG. 本発明の第2の実施の形態に係る温調システムの概略構成を示す図である。It is a figure which shows the schematic structure of the temperature control system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る温調システムの概略構成を示す図である。It is a figure which shows the schematic structure of the temperature control system which concerns on 3rd Embodiment of this invention.
 以下、本発明の各実施の形態について説明する。 Hereinafter, each embodiment of the present invention will be described.
(第1の実施の形態)
 図1は、本発明の第1の実施の形態に係る温調システム1の概略構成を示す図である。本実施の形態に係る温調システム1は、冷凍回路10と、第1冷却用流体通流装置21と、第2冷却用流体通流装置22と、温調対象流体通流装置30と、コントローラ40と、を備えている。
(First Embodiment)
FIG. 1 is a diagram showing a schematic configuration of a temperature control system 1 according to a first embodiment of the present invention. The temperature control system 1 according to the present embodiment includes a refrigeration circuit 10, a first cooling fluid flow device 21, a second cooling fluid flow device 22, a temperature control target fluid flow device 30, and a controller. It has 40 and.
 冷凍回路10は、圧縮機11、凝縮器12、レシーバタンク13、膨張弁14及び蒸発器15を有する。圧縮機11、凝縮器12、レシーバタンク13、膨張弁14及び蒸発器15は冷媒をこの順で循環させるように配管部材により接続されている。 The refrigeration circuit 10 includes a compressor 11, a condenser 12, a receiver tank 13, an expansion valve 14, and an evaporator 15. The compressor 11, the condenser 12, the receiver tank 13, the expansion valve 14, and the evaporator 15 are connected by a piping member so as to circulate the refrigerant in this order.
 圧縮機11は、蒸発器15から流出した低温且つ低圧の気体の状態の冷媒を圧縮し高温且つ高圧の気体の状態にして、凝縮器12に供給する。凝縮器12は、圧縮機11で圧縮された冷媒を冷却用流体によって冷却して凝縮し、所定の冷却温度の高圧の液体の状態にする。 The compressor 11 compresses the refrigerant in the low-temperature and low-pressure gas state that has flowed out of the evaporator 15 into a high-temperature and high-pressure gas state, and supplies the refrigerant to the condenser 12. The condenser 12 cools the refrigerant compressed by the compressor 11 with a cooling fluid and condenses the refrigerant into a high-pressure liquid state having a predetermined cooling temperature.
 本実施の形態では凝縮器12が、第1凝縮部121と、第1凝縮部121から流出する冷媒を凝縮する第2凝縮部122と、を有している。第1凝縮部121を通過する冷媒は、第1冷却用流体通流装置21が第1凝縮部121に供給する第1冷却用流体によって冷却される。第2凝縮部122を通過する冷媒は、第2冷却用流体通流装置22が第2凝縮部122に供給する第2冷却用流体によって冷却される。 In the present embodiment, the condenser 12 has a first condensing unit 121 and a second condensing unit 122 that condenses the refrigerant flowing out from the first condensing unit 121. The refrigerant passing through the first condensing section 121 is cooled by the first cooling fluid supplied by the first cooling fluid flow device 21 to the first condensing section 121. The refrigerant passing through the second condensing section 122 is cooled by the second cooling fluid supplied by the second cooling fluid flow device 22 to the second condensing section 122.
 第1凝縮部121及び第2凝縮部122はそれぞれ液冷式の熱交換器、具体的にはプレート式熱交換器で構成される。ただし、第1凝縮部121及び第2凝縮部122は空冷式の熱交換器で構成されてもよい。 The first condensing section 121 and the second condensing section 122 are each composed of a liquid-cooled heat exchanger, specifically, a plate heat exchanger. However, the first condensing section 121 and the second condensing section 122 may be configured by an air-cooled heat exchanger.
 レシーバタンク13は、凝縮器12で凝縮され液体となった冷媒を受け入れて貯留し、レシーバタンク13に貯留された冷媒は膨張弁14側に流れる。膨張弁14は、レシーバタンク13から供給された冷媒を膨張させることにより減圧させて、低温且つ低圧の液体状態又は気液混合状態にして、蒸発器15に供給する。蒸発器15は、本実施の形態において、供給された冷媒と温調対象流体通流装置30が通流させる温調対象流体とを熱交換させるようになっている。温調対象流体と熱交換した冷媒は、低温且つ低圧の気体の状態となって蒸発器15から流出して再び圧縮機11で圧縮される。 The receiver tank 13 receives and stores the refrigerant condensed by the condenser 12 and becomes a liquid, and the refrigerant stored in the receiver tank 13 flows to the expansion valve 14 side. The expansion valve 14 decompresses the refrigerant supplied from the receiver tank 13 by expanding it to a low-temperature and low-pressure liquid state or a gas-liquid mixed state, and supplies the refrigerant to the evaporator 15. In the present embodiment, the evaporator 15 is adapted to exchange heat between the supplied refrigerant and the temperature control target fluid through which the temperature control target fluid flow device 30 passes. The refrigerant that has exchanged heat with the fluid to be temperature-controlled flows out of the evaporator 15 into a low-temperature and low-pressure gas state, and is compressed again by the compressor 11.
 第1冷却用流体通流装置21は、第1凝縮部121に第1冷却用流体を供給し、第2冷却用流体通流装置22は、第2凝縮部122に第2冷却用流体を供給する。上述したように本実施の形態では、第1凝縮部121及び第2凝縮部122が液冷式の熱交換器で構成されるため、第1冷却用流体及び第2冷却用流体として液体が用いられる。 The first cooling fluid flow device 21 supplies the first cooling fluid to the first condensing unit 121, and the second cooling fluid flow device 22 supplies the second cooling fluid to the second condensing unit 122. To do. As described above, in the present embodiment, since the first condensing unit 121 and the second condensing unit 122 are composed of a liquid-cooled heat exchanger, liquids are used as the first cooling fluid and the second cooling fluid. Be done.
 液体である第1冷却用流体及び第2冷却用流体は水でもよいし、その他の流体でもよい。第1凝縮部121及び第2凝縮部122が空冷式の熱交換器で構成される場合には、第1冷却用流体及び第2冷却用流体は空気でもよい。 The first cooling fluid and the second cooling fluid, which are liquids, may be water or other fluids. When the first condensing unit 121 and the second condensing unit 122 are composed of an air-cooled heat exchanger, the first cooling fluid and the second cooling fluid may be air.
 本実施の形態では、第2冷却用流体通流装置22がポンプ22Aを有し、ポンプ22Aの駆動力を制御することで、第2凝縮部122に供給される第2冷却用流体の流量を調整できる。これにより、第2凝縮部122における冷媒の冷却量を調整できる。 In the present embodiment, the second cooling fluid flow device 22 has the pump 22A, and by controlling the driving force of the pump 22A, the flow rate of the second cooling fluid supplied to the second condensing unit 122 is increased. Can be adjusted. Thereby, the cooling amount of the refrigerant in the second condensing portion 122 can be adjusted.
 温調対象流体通流装置30は、上述したように蒸発器15で冷媒と熱交換を行う温調対象流体を通流させる。温調対象流体通流装置30が通流させる温調対象流体は気体であってもよいし、液体であってもよい。 The temperature control target fluid flow device 30 passes the temperature control target fluid that exchanges heat with the refrigerant by the evaporator 15 as described above. The temperature control target fluid to be passed by the temperature control target fluid flow device 30 may be a gas or a liquid.
 温調対象流体は気体である場合、温調対象流体通流装置30はファン等で構成され得る。また温調対象流体は液体である場合、温調対象流体通流装置30は、液体の流路や液体を通流させるためのポンプ等で構成され得る。 When the temperature control target fluid is a gas, the temperature control target fluid flow device 30 may be composed of a fan or the like. When the temperature control target fluid is a liquid, the temperature control target fluid flow device 30 may be composed of a flow path of the liquid, a pump for allowing the liquid to flow, or the like.
 また冷凍回路10には、第2凝縮部122から流出する冷媒の温度を検知する冷媒温度センサ16と、第2凝縮部122から流出する冷媒の圧力を検知する冷媒圧力センサ17とが設けられている。詳しくは、冷媒温度センサ16は、第2凝縮部122から流出しレシーバタンク13に流入する前の冷媒の温度を検知する。言い換えると、冷媒温度センサ16は、第2凝縮部122の出口に接続された配管部材の内部の温度を検知する。冷媒圧力センサ17は第2凝縮部122から流出しレシーバタンク13に流入する前の冷媒の圧力を検知する。言い換えると、冷媒圧力センサ17は、第2凝縮部122の出口に接続された配管部材の内部の圧力を検知する。 Further, the refrigeration circuit 10 is provided with a refrigerant temperature sensor 16 for detecting the temperature of the refrigerant flowing out from the second condensing unit 122 and a refrigerant pressure sensor 17 for detecting the pressure of the refrigerant flowing out from the second condensing unit 122. There is. Specifically, the refrigerant temperature sensor 16 detects the temperature of the refrigerant before it flows out from the second condensing unit 122 and flows into the receiver tank 13. In other words, the refrigerant temperature sensor 16 detects the temperature inside the piping member connected to the outlet of the second condensing unit 122. The refrigerant pressure sensor 17 detects the pressure of the refrigerant before it flows out from the second condensing unit 122 and flows into the receiver tank 13. In other words, the refrigerant pressure sensor 17 detects the pressure inside the piping member connected to the outlet of the second condensing unit 122.
 また第2冷却用流体通流装置22には、冷却用流体温度センサ22Bが設けられている。冷却用流体温度センサ22Bは、第2凝縮部122において冷媒を冷却する前の第2冷却用流体の温度を検知する。言い換えると、冷却用流体温度センサ22Bは、第2冷却用流体通流装置22において第2冷却用流体を通流させる配管部材における第2凝縮部122の上流側の部分の内部の温度を検知する。 Further, the cooling fluid temperature sensor 22B is provided in the second cooling fluid flow device 22. The cooling fluid temperature sensor 22B detects the temperature of the second cooling fluid before cooling the refrigerant in the second condensing unit 122. In other words, the cooling fluid temperature sensor 22B detects the temperature inside the upstream portion of the second condensing portion 122 in the piping member through which the second cooling fluid is passed in the second cooling fluid flow device 22. ..
 またコントローラ40は、冷凍回路10の各部、第2冷却用流体通流装置22のポンプ22A等の動作を制御可能であるとともに、上述した各種センサ16,17,22Bからの情報を取得することが可能となっている。コントローラ40は、例えばCPU,ROM,RAM等を備えるコンピュータで構成され、記憶されたプログラムに従って上記各部の動作を制御してもよい。 Further, the controller 40 can control the operation of each part of the refrigerating circuit 10, the pump 22A of the second cooling fluid flow device 22, and the like, and can acquire information from the various sensors 16, 17, and 22B described above. It is possible. The controller 40 may be composed of a computer including, for example, a CPU, a ROM, a RAM, or the like, and may control the operation of each of the above parts according to a stored program.
 コントローラ40は、温度情報取得部41と、冷媒状態判定部42と、動作制御部43と、出力部44とを有する。 The controller 40 has a temperature information acquisition unit 41, a refrigerant state determination unit 42, an operation control unit 43, and an output unit 44.
 温度情報取得部41は、凝縮器12の第2凝縮部122から流出する冷媒の温度を冷媒温度センサ16から取得するとともに、第2凝縮部122で冷媒を冷却する前の第2冷却用流体の温度を冷却用流体温度センサ22Bから取得する。 The temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out from the second condensing unit 122 of the condenser 12 from the refrigerant temperature sensor 16 and of the second cooling fluid before the second condensing unit 122 cools the refrigerant. The temperature is acquired from the cooling fluid temperature sensor 22B.
 冷媒状態判定部42は、温度情報取得部41で取得した冷媒の温度と第2冷却用流体の温度との差が、予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する。ここで、温度情報取得部41及び冷媒状態判定部42は冷媒状態検知装置40Aを構成している。 When the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the second cooling fluid exceeds a pre-recorded threshold value, the refrigerant state determination unit 42 causes a leakage or shortage of the refrigerant. Judge that there is. Here, the temperature information acquisition unit 41 and the refrigerant state determination unit 42 constitute the refrigerant state detection device 40A.
 動作制御部43は、冷凍回路10の各部、第2冷却用流体通流装置22のポンプ22A等の動作を制御するようになっている。 The operation control unit 43 controls the operation of each part of the refrigeration circuit 10, the pump 22A of the second cooling fluid flow device 22, and the like.
 出力部44は、冷媒状態判定部42が冷媒のリーク又は不足が生じていると判定し場合に、図示しない表示装置上に警告を表示するようになっている。 When the refrigerant state determination unit 42 determines that a refrigerant leak or shortage has occurred, the output unit 44 displays a warning on a display device (not shown).
 以下、本実施の形態における冷媒状態検知装置40Aによる冷媒のリーク又は不足の判定の流れを説明する。 Hereinafter, the flow of determining the leakage or shortage of the refrigerant by the refrigerant state detection device 40A in the present embodiment will be described.
 まずは、第2凝縮部122の構造と、冷凍回路10の運転中の第2凝縮部122の内部の状態を説明する。図2A及び図2Bは、プレート式熱交換器で構成された第2凝縮部122の概略的な断面図である。図2Aに示すように、第2凝縮部122は、隣り合うプレート部材122Aの間に上記冷媒又は第2冷却用流体を通流させるための流路が形成されるように積層された複数のプレート部材122Aを有し、複数のプレート部材122Aは、その積層方向に冷媒用の流路122Bと第2冷却用流体用の流路122Cとを交互に並べて形成している。 First, the structure of the second condensing unit 122 and the internal state of the second condensing unit 122 during operation of the refrigeration circuit 10 will be described. 2A and 2B are schematic cross-sectional views of a second condensing portion 122 composed of a plate heat exchanger. As shown in FIG. 2A, the second condensing portion 122 is a plurality of plates laminated so as to form a flow path for allowing the refrigerant or the second cooling fluid to flow between adjacent plate members 122A. The member 122A is provided, and the plurality of plate members 122A are formed by alternately arranging the flow paths 122B for the refrigerant and the flow paths 122C for the second cooling fluid in the stacking direction thereof.
 複数のプレート部材122Aの積層方向の一方側の端に位置するプレート部材122Aには、冷媒入口部122Dと冷媒出口部122Eとが接続されており、白塗りされた矢印に示すように、冷媒は冷媒入口部122Dから冷媒用の流路122Bに流れ、冷媒出口部122Eから流出する。冷媒入口部122Dと冷媒出口部122Eとは積層方向に直交する方向で互いに離れて配置されており、本実施の形態では、上下方向で、冷媒入口部122Dが冷媒出口部122Eよりも上側に位置するように第2凝縮部122が配置されている。なお、冷媒入口部122Dは、第1凝縮部121と第2凝縮部122とを接続する配管部材の一部であってもよいし、この配管部材とは別の部材でもよい。同様に、冷媒出口部122Eは、第2凝縮部122とレシーバタンク13とを接続する管部材の一部であってもよいし、この配管部材とは別の部材でもよい。 The refrigerant inlet portion 122D and the refrigerant outlet portion 122E are connected to the plate member 122A located at one end of the plurality of plate members 122A in the stacking direction, and as shown by the white-painted arrows, the refrigerant is It flows from the refrigerant inlet portion 122D to the refrigerant flow path 122B and flows out from the refrigerant outlet portion 122E. The refrigerant inlet portion 122D and the refrigerant outlet portion 122E are arranged apart from each other in a direction orthogonal to the stacking direction, and in the present embodiment, the refrigerant inlet portion 122D is located above the refrigerant outlet portion 122E in the vertical direction. The second condensing unit 122 is arranged so as to do so. The refrigerant inlet portion 122D may be a part of a piping member connecting the first condensing portion 121 and the second condensing portion 122, or may be a member different from the piping member. Similarly, the refrigerant outlet portion 122E may be a part of a pipe member connecting the second condensing portion 122 and the receiver tank 13, or may be a member different from the pipe member.
 一方、図示省略するが、積層方向の一方側の端に位置するプレート部材122Aには、第2冷却用流体入口部及び第2冷却用流体出口部も接続されており、ハッチングを付けた矢印に示すように、第2冷却用流体は第2冷却用流体入口部から第2冷却用流体用の流路122Cに流れ、第2冷却用流体出口部から流出する。 On the other hand, although not shown, the plate member 122A located at one end in the stacking direction is also connected to the second cooling fluid inlet portion and the second cooling fluid outlet portion, and is indicated by a hatched arrow. As shown, the second cooling fluid flows from the second cooling fluid inlet portion to the second cooling fluid flow path 122C, and flows out from the second cooling fluid outlet portion.
 第2冷却用流体入口部及び第2冷却用流体出口部も積層方向に直交する方向で互いに離れて配置されているが、第2冷却用流体入口部は、積層方向に直交する方向で冷媒出口部122Eと同じ側に設けられ、第2冷却用流体出口部は、積層方向に直交する方向で冷媒入口部122Dと同じ側に設けられる。したがって、本実施の形態では、上下方向で、第2冷却用流体出口部が第2冷却用流体入口部よりも上側に位置する。なお、第2冷却用流体入口部が積層方向に直交する方向で冷媒入口部122Dと同じ側に設けられもよく、第2冷却用流体出口部が積層方向に直交する方向で冷媒出口部122Eと同じ側に設けられてもよい。 The second cooling fluid inlet and the second cooling fluid outlet are also arranged apart from each other in a direction orthogonal to the stacking direction, but the second cooling fluid inlet is a refrigerant outlet in a direction orthogonal to the stacking direction. The second cooling fluid outlet portion is provided on the same side as the portion 122E, and the second cooling fluid outlet portion is provided on the same side as the refrigerant inlet portion 122D in a direction orthogonal to the stacking direction. Therefore, in the present embodiment, the second cooling fluid outlet portion is located above the second cooling fluid inlet portion in the vertical direction. The second cooling fluid inlet portion may be provided on the same side as the refrigerant inlet portion 122D in the direction orthogonal to the stacking direction, and the second cooling fluid outlet portion may be provided with the refrigerant outlet portion 122E in the direction orthogonal to the stacking direction. It may be provided on the same side.
 ところで、図2Aに示した符号LMは、第2冷却用流体によって凝縮されて第2凝縮部122の底側に溜まった液体状態の冷媒を示す。図2Aにおいては、液体の冷媒LMの液面高さが冷媒出口部122Eの上端を越えており、液体の冷媒LMが冷媒出口部122Eを覆う状態になっている。 By the way, the reference numeral LM shown in FIG. 2A indicates a liquid refrigerant that has been condensed by the second cooling fluid and accumulated on the bottom side of the second condensing portion 122. In FIG. 2A, the liquid level height of the liquid refrigerant LM exceeds the upper end of the refrigerant outlet portion 122E, and the liquid refrigerant LM covers the refrigerant outlet portion 122E.
 本実施の形態では、コントローラ40の動作制御部43が冷媒圧力センサ17からの冷媒の圧力値に応じて第2冷却用流体通流装置22のポンプ22Aを制御することで、液体の冷媒LMが冷媒出口部122Eを覆う状態を形成する。 In the present embodiment, the operation control unit 43 of the controller 40 controls the pump 22A of the second cooling fluid flow device 22 according to the pressure value of the refrigerant from the refrigerant pressure sensor 17, so that the liquid refrigerant LM is generated. A state of covering the refrigerant outlet portion 122E is formed.
 詳しくは、第2冷却用流体通流装置22の冷却量が小さく冷媒が十分に凝縮されない場合には、第2凝縮部122の底側に溜まる冷媒LMの液面高さが冷媒出口部122Eの上端を越えず、冷媒出口部122Eに気体の状態の冷媒が進入することがある。この際、冷媒圧力センサ17が検知する冷媒の圧力値は、冷媒出口部122Eが液体の冷媒で満たされる場合に比べて大きくなる。したがって、例えば、冷媒出口部122Eが液体の冷媒で満たされる場合に冷媒圧力センサ17が検知する圧力値を閾値と定めた上で、冷媒圧力センサ17からの冷媒の圧力値に応じて第2冷却用流体通流装置22のポンプ22Aを制御することで、液体の冷媒LMが冷媒出口部122Eを覆う状態を形成することができる。 Specifically, when the cooling amount of the second cooling fluid flow device 22 is small and the refrigerant is not sufficiently condensed, the liquid level height of the refrigerant LM collected on the bottom side of the second condensing portion 122 is the refrigerant outlet portion 122E. The refrigerant in a gaseous state may enter the refrigerant outlet portion 122E without exceeding the upper end. At this time, the pressure value of the refrigerant detected by the refrigerant pressure sensor 17 is larger than that in the case where the refrigerant outlet portion 122E is filled with the liquid refrigerant. Therefore, for example, the pressure value detected by the refrigerant pressure sensor 17 when the refrigerant outlet portion 122E is filled with the liquid refrigerant is set as a threshold value, and then the second cooling is performed according to the pressure value of the refrigerant from the refrigerant pressure sensor 17. By controlling the pump 22A of the fluid flow device 22 for use, it is possible to form a state in which the liquid refrigerant LM covers the refrigerant outlet portion 122E.
 上述のように液体の冷媒LMが冷媒出口部122Eを覆う状態であるときには、冷媒温度センサ16が検知する冷媒の温度と、冷却用流体温度センサ22Bが検知する第2冷却用流体の冷媒冷却前の温度との差は小さい値となり、理想的には同じ温度となる。このように冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差が小さい値となるときには、液体の冷媒LMが冷媒出口部122Eを覆う状態となる正常な運転が行われ且つ冷凍回路10に適正な所定量の冷媒が充填されている状態になっていると言える。このような所定量の冷媒は、冷凍回路10のサイズや要求される冷凍能力を考慮し、計算や検証を通して定めることができる。 When the liquid refrigerant LM covers the refrigerant outlet portion 122E as described above, the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B before cooling the refrigerant. The difference from the temperature of is small, and ideally the same temperature. When the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B becomes a small value, the liquid refrigerant LM presses the refrigerant outlet portion 122E. It can be said that the refrigerating circuit 10 is filled with an appropriate predetermined amount of refrigerant while performing normal operation to cover the refrigerating circuit 10. Such a predetermined amount of refrigerant can be determined through calculation and verification in consideration of the size of the refrigerating circuit 10 and the required refrigerating capacity.
 一方で、上述のように液体の冷媒LMが冷媒出口部122Eを覆う状態となるような第2冷却用流体通流装置22の冷却量の制御を実施しているにもかかわらず、図2Bに示すように、第2凝縮部122の底側に溜まる冷媒LMの液面高さが冷媒出口部122Eの上端を越えない場合には、冷媒リーク等により冷凍回路10中の冷媒が不足している状態と見做すことができる。この場合、冷媒出口部122Eに気体の状態の冷媒が進入し、冷媒温度センサ16が検知する冷媒の温度が、冷媒出口部122Eが液体の冷媒で満たされる場合に比べて大きくなる。その結果、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差が大きい値となる。 On the other hand, although the cooling amount of the second cooling fluid flow device 22 is controlled so that the liquid refrigerant LM covers the refrigerant outlet portion 122E as described above, FIG. 2B shows. As shown, when the liquid level height of the refrigerant LM accumulated on the bottom side of the second condensing portion 122 does not exceed the upper end of the refrigerant outlet portion 122E, the refrigerant in the refrigerating circuit 10 is insufficient due to a refrigerant leak or the like. It can be regarded as a state. In this case, the refrigerant in a gaseous state enters the refrigerant outlet portion 122E, and the temperature of the refrigerant detected by the refrigerant temperature sensor 16 becomes higher than in the case where the refrigerant outlet portion 122E is filled with the liquid refrigerant. As a result, the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B becomes a large value.
 本件発明者は、上述のように冷凍回路10から冷媒がリーク又は不足した場合には、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差が大きくなることを見出し、この差が予め記録された閾値を越えた場合に冷媒のリーク又は不足が生じていると判定する冷媒状態検知装置40Aを採用するに至った。 The present inventor has described the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B when the refrigerant leaks or runs short from the refrigerating circuit 10 as described above. It has been found that the difference between the two and the above is large, and when this difference exceeds a pre-recorded threshold value, a refrigerant state detection device 40A for determining that a refrigerant leak or shortage has occurred has been adopted.
 本件発明者は鋭意研究を通して、上記冷媒リーク又は不足の判定のための閾値は2℃以上であることが好ましく、2℃以上6℃以下がより好ましく、2℃以上4℃以下がさらに好ましいことを知見した。このような範囲に上記閾値を設定することで、冷媒リーク又は不足の判定精度が向上する。 Through diligent research, the present inventor has determined that the threshold value for determining the refrigerant leak or deficiency is preferably 2 ° C. or higher, more preferably 2 ° C. or higher and 6 ° C. or lower, and further preferably 2 ° C. or higher and 4 ° C. or lower. I found out. By setting the above threshold value in such a range, the accuracy of determining refrigerant leakage or shortage is improved.
 上記冷媒リーク又は不足の判定においては、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差の移動平均値を算出し、この移動平均値を上記閾値と比較してもよい。移動平均値は、3秒以上の検知期間における3点以上の検知点における、冷媒温度センサ16が検知する冷媒の温度と冷却用流体温度センサ22Bが検知する第2冷却用流体の温度との差を用いて計算してもよい。移動平均値を利用した場合には、センサにおけるノイズの影響を抑えることで判定精度を向上できる。 In the determination of the refrigerant leak or deficiency, the moving average value of the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B is calculated, and this movement is performed. The average value may be compared with the above threshold. The moving average value is the difference between the temperature of the refrigerant detected by the refrigerant temperature sensor 16 and the temperature of the second cooling fluid detected by the cooling fluid temperature sensor 22B at three or more detection points in the detection period of 3 seconds or more. May be calculated using. When the moving average value is used, the determination accuracy can be improved by suppressing the influence of noise on the sensor.
 以上に説明したように本実施の形態では冷凍回路10に冷媒状態検知装置40Aが設けられる。そして、冷媒状態検知装置40Aは、第2凝縮部122から流出する冷媒の温度を取得するとともに、第2凝縮部122で冷媒を冷却する第2冷却用流体の冷媒冷却前の温度を取得する温度情報取得部41と、温度情報取得部41で取得した冷媒の温度と第2冷却用流体の温度との差が予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する冷媒状態判定部42と、を備える。 As described above, in the present embodiment, the refrigerating circuit 10 is provided with the refrigerant state detecting device 40A. Then, the refrigerant state detection device 40A acquires the temperature of the refrigerant flowing out from the second condensing unit 122, and acquires the temperature of the second cooling fluid for cooling the refrigerant in the second condensing unit 122 before the refrigerant is cooled. When the difference between the temperature of the refrigerant acquired by the information acquisition unit 41 and the temperature information acquisition unit 41 and the temperature of the second cooling fluid exceeds a pre-recorded threshold value, it is determined that a refrigerant leak or shortage has occurred. A refrigerant state determination unit 42 for determining is provided.
 このような冷媒状態検知装置40Aでは、冷媒のリーク又は不足の判定に用いるパラメータの数が抑制される。また、判定のパラメータとして温度を用いることで、冷媒のリーク又は不足の判定精度を向上できる。すなわち、冷凍回路10内における冷媒の温度を検知する場合においては、圧力を検知する場合に比較して急激な変動やノイズの検知が抑制される。 In such a refrigerant state detection device 40A, the number of parameters used for determining the leakage or shortage of the refrigerant is suppressed. Further, by using the temperature as a determination parameter, the accuracy of determining the leakage or shortage of the refrigerant can be improved. That is, when the temperature of the refrigerant in the refrigeration circuit 10 is detected, the detection of sudden fluctuations and noise is suppressed as compared with the case where the pressure is detected.
 よって、本実施の形態によれば、冷凍回路10における冷媒のリーク又は不足を簡易に且つ的確に検知できる。 Therefore, according to the present embodiment, it is possible to easily and accurately detect the leakage or shortage of the refrigerant in the refrigeration circuit 10.
(第2の実施の形態)
 次に、第2の実施の形態に係る温調システム2について図3を参照しつつ説明する。以下の説明では、第1の実施の形態に対する相違点のみを説明する。
(Second Embodiment)
Next, the temperature control system 2 according to the second embodiment will be described with reference to FIG. In the following description, only the differences from the first embodiment will be described.
 図3に示すように、本実施の形態では、凝縮器12が一つの液冷式の熱交換器で構成される。凝縮器12には冷却用流体通流装置20が通流させる冷却用流体が供給される。冷却用流体通流装置20は、冷却用流体の流量を調整するポンプ22Aと、冷却用流体温度センサ22Bとを有する。冷却用流体温度センサ22Bは、冷却用流体が凝縮器12において冷媒を冷却する前の冷却用流体の温度を検知する。 As shown in FIG. 3, in the present embodiment, the condenser 12 is composed of one liquid-cooled heat exchanger. The cooling fluid to be passed by the cooling fluid flow device 20 is supplied to the condenser 12. The cooling fluid flow device 20 includes a pump 22A for adjusting the flow rate of the cooling fluid and a cooling fluid temperature sensor 22B. The cooling fluid temperature sensor 22B detects the temperature of the cooling fluid before the cooling fluid cools the refrigerant in the condenser 12.
 冷媒状態検知装置40Aでは、温度情報取得部41が、凝縮器12から流出する冷媒の温度を冷媒温度センサ16から取得するとともに、凝縮器12で冷媒を冷却する前の冷却用流体の温度を冷却用流体温度センサ22Bから取得する。冷媒状態判定部42は、温度情報取得部41で取得した冷媒の温度と冷却用流体の温度との差が、予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する。 In the refrigerant state detection device 40A, the temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out from the condenser 12 from the refrigerant temperature sensor 16 and cools the temperature of the cooling fluid before the refrigerant is cooled by the condenser 12. Obtained from the fluid temperature sensor 22B. The refrigerant state determination unit 42 determines that a refrigerant leak or shortage has occurred when the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the cooling fluid exceeds a pre-recorded threshold value. judge.
 本実施の形態においても、極めて簡易な構成で的確に冷媒のリーク又は不足を検知できる。 Also in this embodiment, it is possible to accurately detect the leakage or shortage of the refrigerant with an extremely simple configuration.
(第3の実施の形態)
 次に、第3の実施の形態に係る温調システム3について図4を参照しつつ説明する。以下の説明では、第1及び第2の実施の形態に対する相違点のみを説明する。
(Third Embodiment)
Next, the temperature control system 3 according to the third embodiment will be described with reference to FIG. In the following description, only the differences from the first and second embodiments will be described.
 本実施の形態では、凝縮器12が一つの空冷式の熱交換器で構成される。凝縮器12には、ファンを有する空冷装置24がファンの駆動によって通流させる気体である冷却用流体が供給される。冷却用流体は空気でもよい。空冷装置24に設けられる冷却用流体温度センサ22Bは、凝縮器12に供給される冷却用流体の温度を検知する。 In the present embodiment, the condenser 12 is composed of one air-cooled heat exchanger. The condenser 12 is supplied with a cooling fluid, which is a gas that the air cooling device 24 having a fan passes through by driving the fan. The cooling fluid may be air. The cooling fluid temperature sensor 22B provided in the air cooling device 24 detects the temperature of the cooling fluid supplied to the condenser 12.
 冷媒状態検知装置40Aでは、温度情報取得部41が、凝縮器12から流出する冷媒の温度を冷媒温度センサ16から取得するとともに、凝縮器12で冷媒を冷却する前の気体である冷却用流体の温度を冷却用流体温度センサ22Bから取得する。冷媒状態判定部42は、温度情報取得部41で取得した冷媒の温度と冷却用流体の温度との差が、予め記録された閾値を越えた場合に、冷媒のリーク又は不足が生じていると判定する。 In the refrigerant state detection device 40A, the temperature information acquisition unit 41 acquires the temperature of the refrigerant flowing out from the condenser 12 from the refrigerant temperature sensor 16, and the cooling fluid which is a gas before the refrigerant is cooled by the condenser 12. The temperature is acquired from the cooling fluid temperature sensor 22B. The refrigerant state determination unit 42 determines that a refrigerant leak or shortage has occurred when the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit 41 and the temperature of the cooling fluid exceeds a pre-recorded threshold value. judge.
 本実施の形態においても、極めて簡易な構成で的確に冷媒のリーク又は不足を検知できる。 Also in this embodiment, it is possible to accurately detect the leakage or shortage of the refrigerant with an extremely simple configuration.
 以上、本発明の実施の形態を説明したが、本発明は上述の実施の形態に限られるものではなく、上述の実施の形態には各種の変更を加えることができる。例えば、上述の各実施の形態では、冷凍回路10にレシーバタンク13が設けられるが、冷凍回路10にレシーバタンク13が設けられなくてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made to the above-described embodiments. For example, in each of the above-described embodiments, the receiver tank 13 is provided in the refrigeration circuit 10, but the receiver tank 13 may not be provided in the refrigeration circuit 10.

Claims (10)

  1.  圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得部と、
     前記温度情報取得部で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定部と、を備える、冷媒状態検知装置。
    In a refrigerating circuit having a compressor, a condenser, an expansion valve and an evaporator, the temperature of the refrigerant flowing out of the condenser is acquired, and the cooling fluid for cooling the refrigerant in the condenser is before cooling the refrigerant. The temperature information acquisition unit that acquires the temperature and
    Refrigerant state determination for determining that a leak or shortage of the refrigerant has occurred when the difference between the temperature of the refrigerant acquired by the temperature information acquisition unit and the temperature of the cooling fluid exceeds a pre-recorded threshold value. A refrigerant state detection device including a unit.
  2.  前記凝縮器は液冷式の熱交換器であり、前記冷却用流体は液体である、請求項1に記載の冷媒状態検知装置。 The refrigerant state detection device according to claim 1, wherein the condenser is a liquid-cooled heat exchanger, and the cooling fluid is a liquid.
  3.  前記凝縮器は、第1凝縮部と、前記第1凝縮部から流出する前記冷媒を凝縮する第2凝縮部と、を有し、
     前記温度情報取得部は、前記第2凝縮部から流出する前記冷媒の温度と、前記第2凝縮部において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度と、を取得する、請求項1又は2に記載の冷媒状態検知装置。
    The condenser has a first condensing portion and a second condensing portion that condenses the refrigerant flowing out of the first condensing portion.
    The temperature information acquisition unit acquires the temperature of the refrigerant flowing out of the second condensing unit and the temperature of the cooling fluid that cools the refrigerant in the second condensing unit before cooling the refrigerant. , The refrigerant state detecting device according to claim 1 or 2.
  4.  圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路において前記凝縮器から流出する冷媒の温度を取得するとともに、前記凝縮器で前記冷媒を冷却する冷却用流体の前記冷媒を冷却する前の温度を取得する温度情報取得工程と、
     前記温度情報取得工程で取得した前記冷媒の温度と前記冷却用流体の温度との差が予め記録された閾値を越えた場合に、前記冷媒のリーク又は不足が生じていると判定する冷媒状態判定工程と、を備える、冷媒状態検知方法。
    In a refrigerating circuit having a compressor, a condenser, an expansion valve, and an evaporator, the temperature of the refrigerant flowing out of the condenser is obtained, and the cooling fluid for cooling the refrigerant in the condenser is before cooling the refrigerant. The temperature information acquisition process to acquire the temperature and
    Refrigerant state determination for determining that a leak or shortage of the refrigerant has occurred when the difference between the temperature of the refrigerant acquired in the temperature information acquisition step and the temperature of the cooling fluid exceeds a pre-recorded threshold value. A method for detecting a refrigerant state, which comprises a process.
  5.  前記凝縮器から流出する前記冷媒の温度を取得するとともに、前記凝縮器において前記冷媒を冷却する前記冷却用流体の前記冷媒を冷却する前の温度を取得した場合に、取得した各温度の差が前記閾値以下となる前記冷凍回路の運転を実施可能とする所定量の前記冷媒を、前記冷凍回路に充填する充填工程をさらに備え、
     前記充填工程後に行う前記温度情報取得工程及び前記冷媒状態判定工程により、前記冷媒のリーク又は不足を判定する、請求項4に記載の冷媒状態検知方法。
    When the temperature of the refrigerant flowing out of the condenser is acquired and the temperature of the cooling fluid for cooling the refrigerant in the condenser before cooling the refrigerant is acquired, the difference between the acquired temperatures is A filling step of filling the refrigerating circuit with a predetermined amount of the refrigerant that enables the operation of the refrigerating circuit to be equal to or lower than the threshold value is further provided.
    The refrigerant state detection method according to claim 4, wherein the leakage or deficiency of the refrigerant is determined by the temperature information acquisition step and the refrigerant state determination step performed after the filling step.
  6.  前記充填工程後の前記冷凍回路の運転時に、前記冷凍回路は、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態になるように前記凝縮器で前記冷媒を冷却する、請求項5に記載の冷媒状態検知方法。 During the operation of the refrigerating circuit after the filling step, the refrigerating circuit cools the refrigerant with the condenser so that the refrigerant condensed by the condenser covers the outlet of the condenser. Item 5. The refrigerant state detection method according to Item 5.
  7.  圧縮機、凝縮器、膨張弁及び蒸発器を有する冷凍回路と、
     請求項1乃至3のいずれかに記載の冷媒状態検知装置と、を備える温調システム。
    Refrigeration circuits with compressors, condensers, expansion valves and evaporators,
    A temperature control system including the refrigerant state detection device according to any one of claims 1 to 3.
  8.  前記冷凍回路は、所定量の前記冷媒を充填された場合に、前記冷媒状態検知装置が取得する前記冷媒の温度と前記冷却用流体の温度との差が前記閾値以下となる運転を実施可能となるよう構成されている、請求項7に記載の温調システム。 When the refrigerating circuit is filled with the predetermined amount of the refrigerant, the refrigerating circuit can perform an operation in which the difference between the temperature of the refrigerant acquired by the refrigerant state detecting device and the temperature of the cooling fluid is equal to or less than the threshold value. The temperature control system according to claim 7, wherein the temperature control system is configured to be.
  9.  前記冷凍回路は、前記所定量の前記冷媒を充填された場合に、前記凝縮器で凝縮される前記冷媒が前記凝縮器の出口を覆う状態となるように前記凝縮器で前記冷媒を冷却することが可能となる、請求項8に記載の温調システム。 In the refrigeration circuit, when the predetermined amount of the refrigerant is filled, the refrigerant is cooled by the condenser so that the refrigerant condensed by the condenser covers the outlet of the condenser. The temperature control system according to claim 8, wherein the temperature control system can be used.
  10.  前記蒸発器によって温調される流体を通流させる流体通流装置をさらに備える、請求項7乃至9のいずれかに記載の温調システム。 The temperature control system according to any one of claims 7 to 9, further comprising a fluid flow device for flowing a fluid temperature controlled by the evaporator.
PCT/JP2020/018223 2019-05-10 2020-04-30 Refrigerant state detection device, refrigerant state detection method, and temperature control system WO2020230641A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217011457A KR20220006029A (en) 2019-05-10 2020-04-30 Refrigerant condition detection device, refrigerant condition detection method and temperature control system
CN202080028249.7A CN113677940A (en) 2019-05-10 2020-04-30 Refrigerant state detection device, refrigerant state detection method, and temperature adjustment system
US17/593,141 US20220186999A1 (en) 2019-05-10 2020-04-30 Refrigerant condition detection device, refrigerant condition detection method, and temperature control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-089951 2019-05-10
JP2019089951A JP7210018B2 (en) 2019-05-10 2019-05-10 Refrigerant state detection device, refrigerant state detection method, and temperature control system

Publications (1)

Publication Number Publication Date
WO2020230641A1 true WO2020230641A1 (en) 2020-11-19

Family

ID=73222734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018223 WO2020230641A1 (en) 2019-05-10 2020-04-30 Refrigerant state detection device, refrigerant state detection method, and temperature control system

Country Status (6)

Country Link
US (1) US20220186999A1 (en)
JP (1) JP7210018B2 (en)
KR (1) KR20220006029A (en)
CN (1) CN113677940A (en)
TW (1) TW202108943A (en)
WO (1) WO2020230641A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220120483A1 (en) * 2019-05-24 2022-04-21 Carrier Corporation Low refrigerant charge detection in transport refrigeration system
CN114659232A (en) * 2022-05-10 2022-06-24 长虹美菱股份有限公司 Refrigerator and refrigerant leakage detection method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140409A (en) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Refrigerator
JP2017075761A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Water heating device
JP2019002639A (en) * 2017-06-16 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Refrigerant leakage detection method of ari conditioner, and air conditioner

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601130B2 (en) * 1995-10-06 2004-12-15 株式会社デンソー Refrigeration equipment
JP4123764B2 (en) * 2001-11-22 2008-07-23 三菱電機株式会社 Refrigeration cycle equipment
JP3811153B2 (en) * 2003-10-28 2006-08-16 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof
ES2510665T3 (en) * 2005-02-24 2014-10-21 Mitsubishi Electric Corporation Air conditioning system
JP2009198154A (en) * 2007-10-23 2009-09-03 Daikin Ind Ltd Fluid sensor, refrigerant leakage detection device, refrigeration device, and refrigerant leakage detection method
CN104344622B (en) * 2013-07-25 2016-09-07 广东美的暖通设备有限公司 Air-cooled heat pump cold-hot water machine and the antifreeze method of heat exchanger, system
EP2933442B1 (en) * 2014-04-16 2016-11-02 Orcan Energy AG Device and method for detecting leaks in closed cycle processes
JP6318021B2 (en) * 2014-06-24 2018-04-25 ヤンマー株式会社 Heat pump chiller
CN104879972A (en) * 2015-06-03 2015-09-02 广东美的暖通设备有限公司 Refrigeration system, and method and device for automatically filling refrigeration system with refrigerants
US10578328B2 (en) * 2016-02-11 2020-03-03 Vertiv Corporation Systems and methods for detecting degradation of a component in an air conditioning system
KR101999760B1 (en) * 2017-07-17 2019-07-12 (주)에코알앤에스 Method for maintaining cooling apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140409A (en) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Refrigerator
JP2017075761A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Water heating device
JP2019002639A (en) * 2017-06-16 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Refrigerant leakage detection method of ari conditioner, and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220120483A1 (en) * 2019-05-24 2022-04-21 Carrier Corporation Low refrigerant charge detection in transport refrigeration system
CN114659232A (en) * 2022-05-10 2022-06-24 长虹美菱股份有限公司 Refrigerator and refrigerant leakage detection method thereof
CN114659232B (en) * 2022-05-10 2024-03-12 长虹美菱股份有限公司 Refrigerator and refrigerant leakage detection method thereof

Also Published As

Publication number Publication date
CN113677940A (en) 2021-11-19
KR20220006029A (en) 2022-01-14
JP2020186827A (en) 2020-11-19
TW202108943A (en) 2021-03-01
JP7210018B2 (en) 2023-01-23
US20220186999A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US10508850B2 (en) Method for controlling a vapour compression system in a flooded state
US11340000B2 (en) Method for handling fault mitigation in a vapour compression system
US7987679B2 (en) Air conditioning apparatus
JP6341808B2 (en) Refrigeration air conditioner
CN106196787A (en) The control method of heat pump and heat pump
EP2413065B1 (en) Refrigerator
JP2010107187A (en) Device and method of diagnosing leakage, and refrigerating device
JP6444577B1 (en) Air conditioner
JP5999499B2 (en) Refrigeration equipment
WO2020230641A1 (en) Refrigerant state detection device, refrigerant state detection method, and temperature control system
WO2017122479A1 (en) Refrigeration cycle device and control method for determination of leaks in bypass valve of refrigeration cycle device
EP3722687A1 (en) Air conditioning apparatus
JPWO2020241622A1 (en) Refrigeration equipment
JP2006250440A (en) Air conditioning system
JP5921776B1 (en) Refrigeration cycle equipment
JP7150135B2 (en) refrigeration cycle equipment
KR20190085013A (en) Freezing device
KR100882005B1 (en) Device for detecting the status of coolant charged in the heat exchange system and method for controllling the same
US20230168012A1 (en) A method for monitoring a refrigerant charge in a vapour compression system
CN112944618B (en) Air conditioner capacity estimation method and air conditioner
JP4004356B2 (en) Oil level detection method and apparatus for compressor
JP4278351B2 (en) Oil level detection method and apparatus for compressor
KR20100062117A (en) Air conditioner having plate heat exchanger and controlling method of the same of
KR20130135132A (en) Heat pump type air conditioner
JP5908177B1 (en) Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806561

Country of ref document: EP

Kind code of ref document: A1