WO2015197023A1 - 步进式光刻机对位监控方法 - Google Patents

步进式光刻机对位监控方法 Download PDF

Info

Publication number
WO2015197023A1
WO2015197023A1 PCT/CN2015/082523 CN2015082523W WO2015197023A1 WO 2015197023 A1 WO2015197023 A1 WO 2015197023A1 CN 2015082523 W CN2015082523 W CN 2015082523W WO 2015197023 A1 WO2015197023 A1 WO 2015197023A1
Authority
WO
WIPO (PCT)
Prior art keywords
view
field
alignment
product
compensation
Prior art date
Application number
PCT/CN2015/082523
Other languages
English (en)
French (fr)
Inventor
姚振海
Original Assignee
无锡华润上华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华科技有限公司 filed Critical 无锡华润上华科技有限公司
Priority to US15/315,168 priority Critical patent/US9977342B2/en
Publication of WO2015197023A1 publication Critical patent/WO2015197023A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7069Alignment mark illumination, e.g. darkfield, dual focus

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, to a method for monitoring a position of a stepper.
  • the distortion of the lens is nonlinear, that is, different fields.
  • Size field of view
  • daily monitoring generally chooses the maximum field of view; the chip design company's lithography version has a wide field of view, which determines the different products of the wafer processing factory.
  • the difference in size eventually leads to difficulty in controlling the alignment during wafer processing and is prone to alignment offset.
  • the prior art solutions are as follows: First, the lens of the lithography machine is adjusted to improve the degree of lens distortion, but the degree of improvement is limited and the cost is high, and the lens distortion is gradually deteriorated with time; the second is measured according to different products. The overlay value is compensated, but the wafer foundry product is updated quickly and the product variety is large, which requires a lot of manpower and low efficiency. Moreover, when the new product is processed for the first time, it is impossible to predict the compensation amount in advance, at the expense of The alignment accuracy and circulation speed of the new product (rework required to exceed the specifications).
  • FIG. 1 is a view of the alignment monitoring of the existing stepper.
  • a field of view 1 is selected for monitoring, and the alignment measurement pattern 11 is placed at the four corners of the field of view 1, and the alignment measurement pattern 11 is used according to the four angles.
  • the offset value is output, and the machine (not shown) is compensated for rotation, magnification, offset, and the like.
  • the existing method can accurately compensate the product close to its field of view 1, and when the product field of view deviates from the field of view selected by the monitoring machine, Misalignment is prone to occur.
  • the prior art has high cost, low efficiency, and difficulty in alignment control.
  • a step lithography machine alignment monitoring method includes:
  • test version comprising a plurality of fields of view, each of which derives a set of registration values based on each field of view;
  • the alignment compensation value is used to compensate the product.
  • the invention monitors multiple fields of view. If the lens distortion is nonlinear, the compensation amount of rotation, magnification, offset, etc. calculated separately according to the registration values measured by different fields of view will be different; by making a test version, Calculate separately with different fields of view, each calculation of a set of compensation amount, product alignment compensation value can be selected according to a set of compensation amount close to its field of view, so that the product alignment compensation value can be accurately distinguished.
  • the invention takes into consideration various products of the field of view, and can accurately compensate regardless of the field of view.
  • the estimated compensation value can be given before processing, and the probability of occurrence of the alignment offset is greatly reduced, and the present invention does not increase. On the basis of cost and manpower, effectively improve the alignment control.
  • 1 is a conventional alignment view of a stepper
  • FIG 3 is a view of alignment monitoring of a stepper in an embodiment.
  • FIG. 2 which illustrates a step aligner monitoring method of an embodiment.
  • FIG. 3 is a view of the alignment of the stepper in an embodiment.
  • a step lithography machine alignment monitoring method includes the following steps:
  • Step S1 Providing a test version comprising a plurality of fields of view, respectively testing a set of overlay values based on each field of view.
  • the test version includes four fields of view, which are a first field of view 100, a second field of view 200, a third field of view 300, and a fourth field of view 400, respectively.
  • the specification of the first field of view 100 is 20 mm ⁇ 20 mm
  • the specification of the second field of view 200 is 17.5 mm ⁇ 17.5 mm
  • the specification of the third field of view 300 is 15 mm ⁇ 15 mm
  • the specification of the fourth field of view 400 is 12.5 mm. ⁇ 12.5mm.
  • the four corners of the first field of view 100, the second field of view 200, the third field of view 300, and the fourth field of view 400 are respectively provided with alignment measurement patterns 101, 201, 301, and 401, according to each field of view.
  • the alignment measurements of the four corners measure a set of overlay values.
  • the number of fields of view is at least two, which may be determined according to actual conditions.
  • the specification of each field of view is not limited, and may be determined according to actual conditions.
  • Step S2 Calculate the compensation amount, and calculate a set of compensation amounts according to the overlay value of each field of view.
  • the first field of view 100 of the specification 20 mm ⁇ 20 mm separately calculates a set of compensation amount
  • the second field of view 200 of the specification of 17.5 mm ⁇ 17.5 mm separately calculates a set of compensation amount
  • the specification is A third field of view 300 of 15 mm x 15 mm is used to separately calculate a set of compensation amounts
  • the fourth field of view 400 of the specification of 12.5 mm x 12.5 mm separately calculates a set of compensation amounts.
  • the alignment compensation value of the product can be compensated according to a set of compensation amount closer to its field of view, so that the product alignment compensation value can be accurately distinguished to compensate for the distortion caused by the lens distortion of the machine.
  • the compensation amount includes, but is not limited to, rotation, magnification, and offset.
  • the product includes, but is not limited to, a wafer.
  • Step S3 comparing the estimated alignment compensation value of the product with each compensation amount of each field of view, and selecting a compensation amount of a field of view that is closer to the estimated alignment compensation value as a product alignment.
  • the compensation value is used to compensate the product.
  • the following is an illustration of the alignment compensation of the product according to the four fields of view in FIG. 3, assuming that the daily monitoring of the stepper machine measures only four corners.
  • the first field of view 100 compensation amount of 20 mm ⁇ 20 mm is separately calculated: the four corners of the first field of view 100 respectively correspond to one alignment measurement pattern 101, and an overlay is measured according to each alignment measurement pattern 101.
  • the four overlay values are grouped as (m1, n1), (m2, n2), (m3, n3), (m4, n4), where the m1, m2 And m3 and m4 are numerical values in the X-axis direction, and the n1, n2, n3, and n4 are numerical values in the Y-axis direction; and the offset of the X-direction of the first field of view 100 of the machine is (m1+m2+m3) +m4)/4, the compensation amount of the Y field of the first field of view 100 of the machine is (n1+n2+n3+n4)/4; then the second field of view 200 of the specification 17.5 mm ⁇ 17.5 mm is separately calculated.
  • a set of compensation amounts of the field of view close to the size of the product may be selected as the alignment compensation value of the product.
  • the invention adopts monitoring of multiple fields of view. If the lens distortion is nonlinear, the compensation amount of rotation, magnification, offset and the like calculated separately according to the overlay value measured by different fields of view will be different; by making a test version, Calculate separately with different fields of view, each calculation of a set of compensation amount, product alignment compensation value can be selected according to a set of compensation amount close to its field of view, so that the product alignment compensation value can be accurately distinguished.
  • the invention takes into account various fields of view products, and can accurately compensate regardless of the field of view.
  • the estimated compensation value can be given before processing, and the probability of occurrence of the alignment offset is greatly reduced.
  • the present invention can Increase cost and manpower based on effective improvement of alignment control.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

提供了一种步进式光刻机对位监控方法,包括:提供具有多个视场的测试版,基于每个视场分别得出一组套准值(S1);根据每个视场的套准值分别计算一组补偿量(S2);及将产品的对位补偿值与每一个视场的每组补偿量进行比较,选择与预估对位补偿值较接近的一个视场的一组补偿量作为产品对位补偿值,利用产品对位补偿值对该产品进行对位补偿(S3)。

Description

步进式光刻机对位监控方法
【技术领域】
本发明涉及半导体技术领域,尤其涉及一种步进式光刻机对位监控方法。
【背景技术】
随着步进光刻机的老化,Distortion(镜头畸变)存在非线性,即不同的Field size(视场)表现出不同的Magnification(倍率)、Rotation(旋转)、offset X/Y(偏移量)等,而日常监控一般选择最大视场;芯片设计公司的光刻版视场范围很广,决定了晶圆加工厂的不同产品Field size差异,最终造成晶圆加工时对位较难控制,容易出现对位偏移。
针对上述缺陷,现有技术的解决方法为:一是调整光刻机镜头,改善镜头畸变程度,但改善程度有限且成本高,镜头畸变还会随时间逐渐变差;二是根据不同产品测出来的套准(overlay)值进行补偿,但晶圆代工厂产品更新换代快且产品品种多,需耗费大量人力,效率低;而且新产品第一次加工时,无法提前预估补偿量,牺牲了新品的对位精度与流通速度(超出规格需要返工)。
请参阅图1,其为一种现有的步进式光刻机对位监控视图。通过该方法在进行日常对位监控时,即选择一个视场1进行监控,对准量测图形11放在所述视场1的四个角,根据四个角的对准量测图形11测出的overlay值,对机台(未图示)进行旋转、倍率、偏移量等补偿。现有的方法能对与其视场1接近的产品进行精确补偿,而当产品视场偏离监控机台选用的视场时,容易出现Misalignment(对位偏移)。并且,现有技术成本高、效率低,对位控制难。
【发明内容】
基于此,有必要提供一种步进式光刻机对位监控方法,在不增加成本的前提下,改善对位控制。
一种步进式光刻机对位监控方法,包括:
提供包括多个视场的测试版,基于每个视场分别得出一组套准值;
根据每个视场的套准值分别计算一组补偿量;及
将产品的预估对位补偿值与每一个视场的每组补偿量进行比较,选择与预估对位补偿值较接近的一个视场的一组补偿量作为产品对位补偿值,利用产品对位补偿值对该产品进行对位补偿。
本发明对多个视场进行监控,如果镜头畸变存在非线性,那么根据不同视场测出的套准值单独计算的旋转、倍率、偏移量等补偿量会不同;通过制作一块测试版,用不同的视场分别进行计算,各计算一组补偿量,产品对位补偿值可根据与其视场较接近的一组补偿量进行选择,这样可以比较精确地区分产品对位补偿值,弥补机台镜头畸变带来的影响。本发明兼顾了各种视场的产品,不论视场大小,均可以做到精确补偿,可以在加工前就给出预估补偿值,大大降低对位偏移发生的概率,本发明在不增加成本与人力的基础上,有效的改善对位控制。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1是一种现有的步进式光刻机对位监控视图;
图2是一实施例的步进式光刻机对位监控方法;
图3是一实施例的步进式光刻机对位监控视图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图2,其为一实施例的步进式光刻机对位监控方法。请参阅图3,其为一实施例的步进式光刻机对位监控视图。一种步进式光刻机对位监控方法,其包括如下步骤:
步骤S1:提供一测试版,其包括多个视场,基于每个视场分别测试出一组overlay值。请参阅图3,在本实施例中,所述测试版包括四个视场,其分别为第一视场100、第二视场200、第三视场300和第四视场400。所述第一视场100的规格为20mm×20mm,第二视场200的规格为17.5mm×17.5mm,第三视场300的规格为15mm×15mm,第四视场400的规格为12.5mm×12.5mm。该第一视场100、第二视场200、第三视场300和第四视场400的四个角分别设置有对准量测图形101、201、301和401,根据每个视场的四个角的对准量测图形测出一组overlay(套准)值。在其他实施例中,所述视场的数量至少为两个,具体可根据实际情况而定。在其他实施例中,对每个视场的规格也不做限制,可根据实际情况而定。
步骤S2:计算补偿量,根据每个视场的overlay值分别计算一组补偿量。请继续参阅图3,所述规格为20mm×20mm的第一视场100单独计算一组补偿量,所述规格为17.5mm×17.5mm的第二视场200单独计算一组补偿量,规格为15mm×15mm的第三视场300单独计算一组补偿量,所述规格为12.5mm×12.5mm的第四视场400单独计算一组补偿量。产品的对位补偿值可根据与其视场较接近的一组补偿量进行补偿,这样可以比较精确的区分产品对位补偿值,弥补机台镜头畸变带来的影响。本发明中,所述补偿量包括但不限于旋转、倍率及偏移量。本发明中,所述产品包括但不限于晶圆片。
步骤S3:将产品的预估对位补偿值与每一个视场的每组补偿量进行比较,选择与所述预估对位补偿值较接近的一个视场的一组补偿量作为产品对位补偿值,对产品进行对位补偿。请继续参阅图3,下述根据图3中的四个视场举例说明对产品的对位补偿,假定步进式光刻机机台的日常监控只测量四个角。首先,单独计算规格为20mm×20mm的第一视场100补偿量:第一视场100的四个角分别对应一个对准量测图形101,根据每个对准量测图形101测出一个overlay(套准)值,该四个overlay(套准)值为一组记为(m1,n1)、(m2,n2)、(m3,n3)、(m4,n4),其中所述m1、m2、m3、m4是X轴方向的数值,所述n1、n2、n3、n4是Y轴方向的数值;则机台的第一视场100的X方向的偏移量为(m1+m2+m3+m4)/4,机台的第一视场100的Y方向的补偿量为(n1+n2+n3+n4)/4;然后单独计算规格为17.5mm×17.5mm的第二视场200的补偿量、规格为15mm×15mm的第三视场300的补偿量、规格为12.5mm×12.5mm的第四视场400的补偿量。然后选择与预估对位补偿值较接近的一组补偿量作为产品对位补偿值对产品进行补偿。当所述预估对位补偿值同时与两组补偿量相接近时,可选择与该产品的尺寸相近的视场的一组补偿量作为该产品的对位补偿值。
本发明采用对多个视场进行监控,如果镜头畸变存在非线性,那么根据不同视场测出的overlay值单独计算的旋转、倍率、偏移量等补偿量会不同;通过制作一块测试版,用不同的视场分别进行计算,各计算一组补偿量,产品对位补偿值可根据与其视场较接近的一组补偿量进行选择,这样可以比较精确地区分产品对位补偿值,弥补机台镜头畸变带来的影响。本发明兼顾了各种视场的产品,不论视场大小,均可以做到精确补偿,可以在加工前就给出预估补偿值,大大降低对位偏移发生的概率,本发明能在不增加成本与人力的基础上,有效的改善对位控制。
上述说明已经充分揭露了本发明的具体实施方式。需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (7)

  1. 一种步进式光刻机对位监控方法,其特征在于:包括:
    提供具有多个视场的测试版,基于每个视场分别得出一组套准值;
    根据每个视场的套准值分别计算一组补偿量;及
    将产品的预估对位补偿值与每一个视场的补偿量进行比较,选择与所述预估对位补偿值较接近的一个视场的一组补偿量作为产品对位补偿值,利用所述产品对位补偿值对产品进行对位补偿。
  2. 根据权利要求1所述的步进式光刻机对位监控方法,其特征在于:所述多个视场的数量至少为两个。
  3. 根据权利要求1所述的步进式光刻机对位监控方法,其特征在于:所述多个视场包括第一视场、第二视场、第三视场和第四视场;所述第一视场的规格为20mm×20mm,第二视场的规格为17.5mm×17.5mm,第三视场的规格为15mm×15mm,第四视场的规格为12.5mm×12.5mm。
  4. 根据权利要求1所述的步进式光刻机对位监控方法,其特征在于:每个视场包括四个对准量测图形,所述四个对准量测图形分别设置于每个视场的四个角,所述套准值是根据每个视场的四个角的对准量测图形测出的。
  5. 根据权利要求1所述的步进式光刻机对位监控方法,其特征在于:所述补偿量包括旋转、倍率及偏移量中的至少一个量。
  6. 根据权利要求1所述的步进式光刻机对位监控方法,其特征在于:所述产品为晶圆片。
  7. 根据权利要求1所述的步进式光刻机对位监控方法,其特征在于:所述步进式光刻机对位监控方法还包括:当所述预估对位补偿值同时与两组补偿量相接近时,选择与所述产品的尺寸相近的视场的一组补偿量作为所述产品对位补偿值。
PCT/CN2015/082523 2014-06-26 2015-06-26 步进式光刻机对位监控方法 WO2015197023A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/315,168 US9977342B2 (en) 2014-06-26 2015-06-26 Lithography stepper alignment and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410295485.1 2014-06-26
CN201410295485.1A CN105223781B (zh) 2014-06-26 2014-06-26 一种步进式光刻机对位监控方法

Publications (1)

Publication Number Publication Date
WO2015197023A1 true WO2015197023A1 (zh) 2015-12-30

Family

ID=54936982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082523 WO2015197023A1 (zh) 2014-06-26 2015-06-26 步进式光刻机对位监控方法

Country Status (3)

Country Link
US (1) US9977342B2 (zh)
CN (1) CN105223781B (zh)
WO (1) WO2015197023A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483758B (zh) 2015-09-02 2019-08-20 无锡华润上华科技有限公司 光学邻近效应修正方法和系统
CN106653842B (zh) 2015-10-28 2019-05-17 无锡华润上华科技有限公司 一种具有静电释放保护结构的半导体器件
CN106816468B (zh) 2015-11-30 2020-07-10 无锡华润上华科技有限公司 具有resurf结构的横向扩散金属氧化物半导体场效应管
US10061211B2 (en) * 2016-02-17 2018-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method for layoutless overlay control
CN107465983B (zh) 2016-06-03 2021-06-04 无锡华润上华科技有限公司 Mems麦克风及其制备方法
US10831110B2 (en) * 2018-05-29 2020-11-10 Taiwan Semiconductor Manufacturing Company Ltd. Lithographic overlay correction and lithographic process
CN110364449B (zh) * 2019-07-24 2022-06-14 上海华力集成电路制造有限公司 栅氧掺氮退火温度的监控方法
CN113376969A (zh) * 2020-03-10 2021-09-10 长鑫存储技术有限公司 套刻误差的补偿方法、曝光系统、服务器及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057418A1 (en) * 2006-08-31 2008-03-06 Rolf Seltmann Method and system for reducing overlay errors within exposure fields by apc control strategies
CN101435998A (zh) * 2007-11-15 2009-05-20 上海华虹Nec电子有限公司 降低光刻机镜头畸变引起的光刻对准偏差的方法
WO2011087129A1 (ja) * 2010-01-18 2011-07-21 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
CN102955379A (zh) * 2012-11-15 2013-03-06 上海集成电路研发中心有限公司 一种补偿镜头畸变造成的套刻误差的方法
CN103105741A (zh) * 2013-01-22 2013-05-15 北京京东方光电科技有限公司 对位补偿装置及曝光装置
US20130258306A1 (en) * 2012-03-31 2013-10-03 Yibin Huang Mask pattern alignment method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022374B2 (ja) * 2001-01-26 2007-12-19 株式会社ルネサステクノロジ 半導体デバイスの製造方法およびそのシステム
US7473502B1 (en) * 2007-08-03 2009-01-06 International Business Machines Corporation Imaging tool calibration artifact and method
EP2392970A3 (en) * 2010-02-19 2017-08-23 ASML Netherlands BV Method and apparatus for controlling a lithographic apparatus
US9543223B2 (en) * 2013-01-25 2017-01-10 Qoniac Gmbh Method and apparatus for fabricating wafer by calculating process correction parameters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057418A1 (en) * 2006-08-31 2008-03-06 Rolf Seltmann Method and system for reducing overlay errors within exposure fields by apc control strategies
CN101435998A (zh) * 2007-11-15 2009-05-20 上海华虹Nec电子有限公司 降低光刻机镜头畸变引起的光刻对准偏差的方法
WO2011087129A1 (ja) * 2010-01-18 2011-07-21 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
US20130258306A1 (en) * 2012-03-31 2013-10-03 Yibin Huang Mask pattern alignment method and system
CN102955379A (zh) * 2012-11-15 2013-03-06 上海集成电路研发中心有限公司 一种补偿镜头畸变造成的套刻误差的方法
CN103105741A (zh) * 2013-01-22 2013-05-15 北京京东方光电科技有限公司 对位补偿装置及曝光装置

Also Published As

Publication number Publication date
CN105223781A (zh) 2016-01-06
CN105223781B (zh) 2017-06-23
US9977342B2 (en) 2018-05-22
US20170192363A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2015197023A1 (zh) 步进式光刻机对位监控方法
WO2016209625A1 (en) Process-induced asymmetry detection, quantification, and control using patterned wafer geometry measurements
US9513565B2 (en) Using wafer geometry to improve scanner correction effectiveness for overlay control
CN106154768A (zh) 一种基于掩模板的集成电路基板二次曝光方法
CN102749815B (zh) 套刻精度的检测方法
JP5166916B2 (ja) パターンの重ね合わせを行う装置およびデバイス製造方法
CN109817559B (zh) 一种用于晶圆加工的双面对准工艺方法
CN105321799B (zh) 用于光刻叠对制作工艺的非对称补偿方法
CN106444294B (zh) 一种掩膜版固定系统
TWI673807B (zh) 檢查重疊量測配方的方法以及重疊量測流程
CN105278252B (zh) 一种检测光阻涂布均匀度的方法及光刻制程
TWI716459B (zh) 適應性對準方法及系統
TWI630676B (zh) 晶片放置裝置和晶片定向儀
CN104898378A (zh) 一种晶圆曝光顺序的优化方法
CN110928136A (zh) 减小关键尺寸漂移的方法
CN110727166B (zh) Opc方法
CN113784530B (zh) 一种电路板的加工方法和系统
JP2012164811A (ja) 半導体装置の製造方法、露光マスクの出荷判定方法及び作製方法
TWI651596B (zh) 曝光補償計算的方法與系統
TWI225577B (en) Smart overlay control
JP2015082555A (ja) 露光装置
CN105759563A (zh) 光罩以及光罩或晶圆沾污的检测方法
CN104009020A (zh) 晶圆及其可接受测试方法
CN104347443A (zh) 一种晶圆套刻的水平方向突变的测试方法
CN104635417A (zh) 偏差修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15315168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811701

Country of ref document: EP

Kind code of ref document: A1