WO2015196555A1 - 灰阶电压补偿方法及显示装置 - Google Patents

灰阶电压补偿方法及显示装置 Download PDF

Info

Publication number
WO2015196555A1
WO2015196555A1 PCT/CN2014/085213 CN2014085213W WO2015196555A1 WO 2015196555 A1 WO2015196555 A1 WO 2015196555A1 CN 2014085213 W CN2014085213 W CN 2014085213W WO 2015196555 A1 WO2015196555 A1 WO 2015196555A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
target
pixel
compensation
gray scale
Prior art date
Application number
PCT/CN2014/085213
Other languages
English (en)
French (fr)
Inventor
孙磊
谭小平
秦杰辉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/416,289 priority Critical patent/US20150379917A1/en
Publication of WO2015196555A1 publication Critical patent/WO2015196555A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a gray scale voltage compensation method and a display device. Do not
  • each pixel is controlled by a grid line and a data line which are criss-crossed on the substrate to realize display of an image.
  • each scanning line (» line) is sequentially turned on, and in the opening time of one scanning line (within one scanning period), gray lines are input to the pixel electrodes of the row of sub-pixels by the respective data lines. Voltage. In the next scanning period, the gray scale voltage is input from the pixel electrodes of the next row of sub-pixels by the respective data lines.
  • the data line is to input a corresponding gray scale voltage to the pixel electrodes of two adjacent sub-pixels in the adjacent two scanning periods, that is, the voltage on the data line is required.
  • the gray scale voltage of the previous sub-pixel is converted to the gray scale voltage of the latter sub-pixel.
  • the voltage on the data line is difficult to change from the gray scale voltage of the previous sub-pixel to the gray scale of the next sub-pixel in the latter scan period.
  • the voltage causes the color distortion displayed by the next sub-pixel to affect the display effect of the liquid crystal display. Summary of the invention
  • the invention provides a gray scale voltage compensation method, comprising:
  • Step 1 acquiring a target gray scale voltage to be output by the target sub-pixel;
  • Step 2 Acquire a compensation voltage of the target sub-pixel according to a preset condition;
  • Step 3 superimpose the target gray scale voltage and the compensation voltage as an actual gray scale voltage, and output the actual gray scale voltage to the target subpixel.
  • step 2 obtaining a compensation voltage of the target sub-pixel according to the target gray scale voltage and the front gray scale voltage; wherein the front gray scale voltage is corresponding to the target sub-pixel The actual grayscale voltage that the data line outputs during the previous scan cycle.
  • step 2 including
  • step 2 - acquiring a compensation voltage of the target sub-pixel according to a position of the target sub-pixel, and the target gray scale voltage and a front gray scale voltage - wherein the front gray scale voltage The actual gray scale voltage outputted by the data line corresponding to the target sub-pixel in the previous scan period.
  • step 2 including: determining, according to the location of the target sub-pixel, a compensation voltage comparison table corresponding to the target sub-pixel in a plurality of compensation voltage comparison tables;
  • the present invention further provides a display device, comprising: an input module, configured to acquire a target gray scale voltage-compensation module to be outputted by a target sub-pixel, and configured to acquire a compensation voltage of the target sub-pixel according to a preset condition;
  • an output module configured to superimpose the target grayscale voltage and the compensation voltage into an actual grayscale voltage, and output the actual grayscale voltage to the target subpixel.
  • the compensation module is configured to acquire a compensation voltage of the target sub-pixel according to the target gray voltage and the front gray voltage;
  • the front gray scale voltage is an actual gray scale voltage output by the data line corresponding to the target subpixel in a previous scan period.
  • the compensation module includes a memory storing a compensation voltage comparison table, a voltage determining unit for determining the target gray scale voltage and a front gray scale voltage, and a query unit for using the target gray scale voltage and the The front gray scale voltage query compensation voltage comparison table is obtained, and the compensation voltage of the target sub-pixel is obtained.
  • the compensation module is configured to acquire a compensation voltage of the target sub-pixel according to a position of the target sub-pixel, and the target gray-scale voltage and a front gray-scale voltage; wherein the front gray-scale voltage is The actual gray scale voltage output by the data line corresponding to the target sub-pixel in the previous scan period.
  • the compensation module includes a memory that stores a plurality of compensation voltage comparison tables, a position determining unit that determines a position of the target sub-pixel, and a voltage determining unit that determines the target grayscale voltage and the front gray a grading voltage, configured to determine, according to the position of the target sub-pixel, a compensation voltage comparison table corresponding to the target sub-pixel in the plurality of compensation voltage comparison tables; according to the target gray-scale voltage and the The front gray scale voltage query compensation voltage comparison table acquires the power repayment of the target sub-pixel].
  • the target gray scale voltage to be outputted by the target sub-pixel is first obtained, and then the compensation voltage is obtained according to preset conditions such as the front gray scale voltage. And superimposing the target gray scale voltage and the compensation voltage as the actual gray scale voltage, and outputting to the pixel electrode of the target sub-pixel.
  • the gray scale voltage actually obtained on the pixel electrode of the target sub-pixel can be made equal to the target gray scale voltage, thereby solving the technical problem of color distortion.
  • FIG. 1 is a schematic diagram of a driver in a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a partition of a display device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a driver in a display device according to Embodiment 2 of the present invention. Specific form
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiments of the present invention provide a gray scale voltage compensation method for solving a technical problem of color distortion in a display process of a liquid crystal display.
  • the grayscale electricity] compensation method includes;
  • S1 Acquire the target grayscale voltage to be output by the target subpixel.
  • the preset condition in step S2 is the difference between the target gray scale voltage and the front gray scale voltage. That is, in step S2: the compensation voltage of the target sub-pixel is obtained according to the target gray scale voltage and the front gray scale voltage.
  • the front gray voltage is the data line corresponding to the target sub-pixel
  • the actual gray scale voltage outputted in the previous scan period is the gray scale voltage of the previous sub-pixel in the column of the target sub-pixel. If the target sub-pixel is in the first row of a column, the pre-gray voltage is the grayscale voltage of the sub-pixel of the last row of the column.
  • a compensation voltage comparison table may be established in advance, as shown in Table 1.
  • the first row P1 represents the front grayscale voltage of the previous subpixel of the target subpixel
  • the first column P2 represents the target grayscale voltage of the target subpixel
  • the remaining portions represent that PI and P2 are each different values.
  • the corresponding compensation voltage since the liquid crystal display is progressively scanned, P1 of the latter scanning period is P2 of the previous scanning period in two adjacent scanning periods.
  • step S2 the compensation voltage comparison table may be queried according to the target grayscale voltage and the front grayscale voltage to obtain the power repayment of the target subpixel].
  • the target grayscale voltage of the target sub-pixel is 64 grayscale
  • the front grayscale voltage is 16 grayscale.
  • S3 Superimpose the target grayscale voltage and the compensation voltage as the actual grayscale voltage, and output the actual grayscale voltage to the target subpixel.
  • the gray scale voltage 64 is superimposed with the compensation voltage 0 to obtain an actual gray scale voltage 74, and the actual gray voltage is outputted to the target sub-pixel. After this compensation, the gray scale voltage actually obtained by the target sub-pixel can reach 64 gray scale, thereby solving the technical problem of color distortion.
  • the compensation voltage comparison table has a size of 8 X 8 and includes 64 compensation voltages.
  • the compensation voltage is -9.
  • the size of the compensation voltage comparison table may also be 16 X 16, or other sizes, and the compensation voltages obtained when P1 and ⁇ 2 are other sizes are matched with the linear interpolation method, and the storage of the compensation voltage comparison table is saved. Space, reducing costs, also simplifies the process of establishing a compensation voltage comparison table.
  • the embodiment of the invention further provides a display device, which may specifically be a liquid crystal television, a liquid crystal display, a mobile phone, a flat panel Computer, etc.
  • the display device includes a liquid crystal panel and a driver for driving each sub-pixel unit in the liquid crystal panel to realize display.
  • the driver can be based on a field programmable gate array (FieW ProgrammaWe Gate Array), which includes an input module, a compensation module, and an output module.
  • the input module is used to obtain the target gray scale power to be input by the target sub-pixel.
  • the compensation module is configured to obtain a compensation voltage of the target sub-pixel according to a preset condition.
  • the preset condition is a difference between the target grayscale voltage and the front grayscale voltage, that is, the compensation module is configured to obtain the compensation voltage of the target subpixel according to the target grayscale voltage and the front grayscale voltage.
  • the compensation module specifically includes a memory, a voltage determining unit, and a query unit.
  • a compensation voltage comparison table (such as Table 1) is stored in the memory.
  • the voltage determining unit is configured to determine the target gray scale voltage and the front gray scale voltage.
  • the query unit is configured to query the compensation voltage comparison table according to the target gray scale voltage and the front gray scale voltage to obtain the compensation voltage of the target sub-pixel.
  • the input module acquires the target gray scale voltage to be outputted by the target sub-pixel to be 64 gray scale.
  • the voltage determining unit determines that the target gray scale voltage of the target sub-pixel is 64 gray scales, and after the front gray scale voltage is 6 gray scales, the query unit obtains the compensation voltage of the target sub-pixel by querying the compensation voltage comparison table in the memory. 10.
  • the output module is configured to superimpose the target gray scale voltage 64 and the compensation voltage 10 as the actual gray scale voltage 74, and output the actual gray scale voltage 74 to the target sub-pixel, thereby solving the technical problem of color distortion.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a gray-scale power compensation method, which is basically the same as the first embodiment, and the difference is that: in this embodiment, the preset condition in step S2 further includes the position of the target sub-pixel.
  • the data integrated circuit (IC) 1 for outputting a data signal is usually disposed on the upper side of the liquid crystal panel 2, the closer to the sub-pixel below the liquid crystal panel 2, the distance from the data IC 1 The farther away, the greater the impedance between the sub-pixel and the data IC 1, causing a loss in the gray scale voltage output from the data IC 1
  • the data line in the 3G1D mode is longer than the 1G3D mode, so in the 3G1D mode, the impedance between the sub-pixels close to the LCD panel 2 and the data IC 1 is larger, and the loss of the gray scale voltage is more pronounced.
  • the gray scale voltage loss caused by the impedance between the sub-pixel and the data IC 1 is also performed. make up.
  • the liquid crystal panel 2 is divided into several partitions according to the different distance between the sub-pixel and the data IC 1. Further, since the data IC 1 is connected to the respective data lines in the liquid crystal panel 2 through the sector lead 3, the sub-pixels connected to the middle of the sector lead 3 are closer to the data IC 1, and the sub-pixels connected to the both sides of the sector lead 3 are The data IC 1 is farther away, so each partition has a shape similar to a sector. Moreover, a compensation voltage comparison table is established corresponding to each of the partitions, and the further the distance data IC 1 is, the larger the compensation voltage value in the corresponding compensation voltage comparison table is.
  • the liquid crystal panel is divided into five partitions according to different distances between the sub-pixel and the data IC 1
  • the number of partitions may be appropriately increased or decreased according to actual conditions.
  • S2 Obtain a compensation voltage of the target sub-pixel according to the position of the target sub-pixel, and the target gray-scale power and the front gray-scale voltage. Specifically includes -
  • the corresponding compensation voltage comparison table is determined according to which partition the target sub-pixels are located.
  • S3 Superimpose the target grayscale voltage and the compensation voltage as the actual grayscale voltage, and output the actual grayscale voltage to the target subpixel.
  • the gray scale voltage actually obtained by the target sub-pixel can be equal to the target gray scale voltage, thereby solving the technical problem of color distortion.
  • the embodiment of the invention further provides a display device, which is basically the same as the display device provided in the first embodiment, and includes a liquid crystal panel and a driver. As shown in FIG. 3, the driver includes an input module, a compensation module, and an output module.
  • the difference between this embodiment and the first embodiment is as follows:
  • five compensation voltage comparison tables are stored in the memory, corresponding to five partitions divided by the liquid crystal panel (as shown in FIG. 2).
  • the compensation module is configured to obtain a compensation voltage of the target sub-pixel according to the position of the target sub-pixel, and the target gray-scale voltage and the front gray-scale voltage.
  • the compensation module further includes a position determining unit for determining the position of the target sub-pixel.
  • the query unit first determines the compensation voltage comparison table corresponding to the target sub-pixel in the five compensation voltage comparison tables according to the position of the target sub-pixel, and then queries the compensation voltage comparison table according to the target gray-scale voltage and the front gray-scale voltage to obtain the target sub-pixel.
  • the compensation voltage of the pixel is the compensation voltage comparison table corresponding to the target sub-pixel in the five compensation voltage comparison tables according to the position of the target sub-pixel, and then queries the compensation voltage comparison table according to the target gray-scale voltage and the front gray-scale voltage to obtain the target sub-pixel.
  • the compensation voltage of the pixel is determining the compensation voltage comparison table corresponding to the target sub-pixel in the five compensation voltage comparison tables according to the position of the target sub-pixel, and then queries the compensation voltage comparison table according to the target gray-scale voltage and the front gray-scale voltage to obtain the target sub-pixel.
  • the compensation voltage of the pixel is the compensation voltage comparison table corresponding to the target sub-pixel in the five compensation voltage comparison tables according to the position of the target sub-pixel
  • the input module acquires the target gray scale voltage to be outputted by the target sub-pixel to be 64 gray scale.
  • the position determining unit determines that the position of the target sub-pixel is in a region, and the voltage determining unit determines that the target gray pixel of the target sub-pixel is 64 gray scale, and the front gray scale voltage is 16 gray scale.
  • the query unit first determines that the first compensation voltage comparison table in the memory is in accordance with the position of the target sub-pixel according to the position of the target sub-pixel, and then queries the first compensation voltage comparison table to obtain the target sub-pixel.
  • the compensation voltage is 10.
  • the output module is configured to superimpose the target gray scale voltage 64 and the compensation voltage 10 as the actual gray scale voltage 74, and output the actual gray scale voltage 74 to the target sub-pixel. After this compensation, the gray scale voltage actually obtained by the target sub-pixel can reach 64 gray scales, thereby solving the technical problem of color distortion.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种灰阶电压补偿方法及显示装置,属于显示技术领域,解决了现有技术中存在的颜色失真的技术问题。该灰阶电压补偿方法,包括:步骤1,获取目标子像素所要输出的目标灰阶电压;步骤2,根据预设条件,获取所述目标子像素的补偿电压;步骤3,将所述目标灰阶电压与所述补偿电压叠加为实际灰阶电压,并将所述实际灰阶电压输出至所述目标子像素。上述方法可用于液晶电视、液晶显示器、手机、平板电脑等显示装置。

Description

灰阶电压钋偿方法及显示装置 本申请要求享有 2014年 6月 27日提交的名称为 "灰阶电压补偿方法及显示装置" 的 中国专利申请 CN201410301945.7的优先权, 其全部内容通过引用并入本文中。
本发明涉及显示技术领域, 具体地说, 涉及一种灰阶电压补偿方法及显示装置。 不
随着显示技术的发展,液晶显示器已经成为最为常见的平板显示装置。在液晶显示器 中, 由基板上纵横交错的栅线和数据线控刺各个像素, 以实现图像的显示。
在液晶显示器的显示过程中, 各条扫描线(»线)依次打开, 在一条扫描线的打开时 间内 (一个扫描周期内) , 由各条数据线向该行子像素的像素电极输入灰阶电压。在下一 个扫描周期内, 由各条数据线向下一行子像素的像素电极输入灰阶电压。
对于其中一条数据线来说,该数据线要在相邻的两个扫描周期内,分别向这一列中相 邻的两个子像素的像素电极输入相应的灰阶电压,即数据线上的电压需要在后一扫描周期 内, 由前一个子像素的灰阶电压转变为后一个子像素的灰阶电压。但是, 当这两个子像素 的灰阶电压的差值较大^,数据线上的电压很难在后一扫描周期内, 由前一个子像素的灰 阶电压转变至后一个子像素的灰阶电压,导致后一个子像素所显示的颜色失真,影响液晶 显示器的显示效果。 发明内容
本发明的目的在于提供一种灰阶电压补偿方法及显示装置,以解决现有技术中存在的 颜色失真的技术问题。
本发明提供一种灰阶电压补偿方法, 包括:
步骤 1, 获取目标子像素所要输出的目标灰阶电压; 步骤 2, 根据预设条件, 获取所述目标子像素的补偿电压;
步骤 3, 将所述目标灰阶电压与所述补偿电压叠加为实际灰阶电压, 并将所述实际灰 阶电压输出至所述目标子像素。
优选的, 在所述步骤 2中- 根据所述目标灰阶电压和前灰阶电压, 获取所述目标子像素的补偿电压; 其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。
进一步, 在所述步骤 2中, 包括;
根据所述目标灰阶电压和前灰阶电压查询补偿电压对照表,获取所述目标子像素的补 偿电压。
进一步, 在所述歩骤 2中- 根据所述目标子像素的位置, 以及所述目标灰阶电压和前灰阶电压,获取所述目标子 像素的补偿电压- 其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。
优选的, 在所述步骤 2中, 包括- 根据所述目标子像素的位置,在多个 偿电压对照表中确定所述目标子像素所对应的 补偿电压对照表;
根据所述目标灰阶电压和前灰阶电压查询补偿电压对照表,获取所述目标子像素的补 偿电压。
本发明还提供一种显示装置, 包括- 输入模块, 用于获取目标子像素所要输出的目标灰阶电压- 补偿模块, 用于根据预设条件, 获取所述目标子像素的补偿电压;
输出模块,用于将所述目标灰阶电压与所述补偿电压叠加为实际灰阶电压,并将所述 实际灰阶电压输出至所述目标子像素。
优选的,所述 偿模块用于根据所述目标灰盼电压和前灰阶电压,获取所述目标子像 素的补偿电压; 其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。 进一步, 所述补偿模块包括- 存储器, 存储有补偿电压对照表; 电压确定单元, 用亍确定所述目标灰阶电压和前灰阶电压; 查询单元,用于根据所述目标灰阶电压和所述前灰阶电压查询补偿电压对照表,获取 所述目标子像素的补偿电压。 优选的,所述 偿模块用于根据所述目标子像素的位置, 以及所述目标灰阶电压和前 灰阶电压, 获取所述目标子像素的补偿电压; 其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。 进一步, 所述补偿模块包括- 存储器, 存储有多个补偿电压对照表; 位置确定单元, 用亍确定所述目标子像素的位置; 电压确定单元, 用于确定所述目标灰阶电压和前灰阶电压; 査询单元,用于根据所述目标子像素的位置,在多个补偿电压对照表中确定所述目标 子像素所对应的补偿电压对照表;根据所述目标灰阶电压和所述前灰阶电压查询补偿电压 对照表, 获取所述目标子像素的 偿电] ΐ。 本发明带来了以下有益效果:本发明提供的灰阶电压补偿方法及显示装置中,先获取 目标子像素所要输出的目标灰阶电压, 再根据前灰阶电压等预设条件, 获取补偿电压, 并 将目标灰阶电压与补偿电压叠加为实际灰阶电压, 输出至目标子像素的像素电极。 这样, 就能够使目标子像素的像素电极上实际获得的灰阶电压与目标灰阶电压相等,从而解决了 颜色失真的技术问题。 本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显 而易见, 或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要 求书以及附图中所特别指出的结构来实现和获得。 为了更清楚地说明本发明实施例中的技术方案 , τ面将对实施例描述中所需要的 图 做筒单的介绍:
图 1是本发明实施例一提供的显示装置中驱动器的示意图;
图 2是本发明实施例二提供的显示装置的分区示意图;
图 3是本发明实施例二提供的显示装置中驱动器的示意图。 具体实 式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应 ^技术 手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是, 只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形 成的技术方案均在本发明的保护范围之内。
实施例一:
本发明实施例提供一种灰阶电压补偿方法,用于在液晶显示器的显示过程中,解决颜 色失真的技术问题。 该灰阶电] ΐ 偿方法包括;
S1 : 获取目标子像素所要输出的目标灰阶电压。
82: 根据预设条件, 获取目标子像素的补偿电压。
本实施例中, 步骤 S2中的预设条件为目标灰阶电压和前灰阶电压之间的差值。 即在 步骤 S2中: 根据目标灰阶电压和前灰阶电压, 获取目标子像素的补偿电压。 其中, 前灰 盼电压为目标子像素所对应的数据线,在前一扫描周期输出的实际灰阶电压,也就是目标 子像素所在列的上一个子像素的灰阶电压。如果目标子像素位于某一列的第一行,则前灰 盼电压为这一列的最后一行的子像素的灰阶电压。
具体的, 可以预先建立一个补偿电压对照表, 如表 1。
0 8 16 32 64 127 192 255
0 0 0 0 0 0 0 0 0
8 10 0 —4 -5 -11 -12 -24 -24 6 10 8 0 -6 -12 -23 -22 -23
32 11 9 5 0 -10 -20 -20 -12
64 12 10 10 20 0 -12 -10 11
127 13 20 15 24 0 0 -9 -10
192 14 30 20 2,3 10 40 0 -6
255 0 0 0 0 0 0 0 0 表 1
在补偿电压对照表中, 第一行 P1代表目标子像素的前一个子像素的前灰阶电压, 第 一列 P2代表目标子像素的目标灰阶电压, 其余部分表示 PI和 P2各自为不同值时所对应 的补偿电压。应当说明的是, 因为液晶显示器是逐行扫描的, 所以在两个相邻的扫描周期 中, 后一个扫描周期的 P1即是前一个扫描周期的 P2。
建立了补偿电压对照表之后, 在步骤 S2中, 可根据目标灰阶电压和前灰阶电压査询 补偿电压对照表, 获取目标子像素的 偿电] ΐ。
例如, 目标子像素的目标灰阶电压为 64灰阶, 前灰阶电压为 16灰阶, 通过查询补偿 电压对照表可知, 补偿电压为 10。
S3 : 将目标灰阶电压与补偿电压叠加为实际灰阶电压, 并将实际灰阶电压输出至目 标子像素。
将灰阶电压 64与补偿电压 0叠加, 得到实际灰阶电压 74, 并将该实际灰盼电压输 74出至目标子像素。 这样经 ϋ补偿之后, 目标子像素实际获得的灰阶电 ίΐ就能够到达 64 灰阶, 从而解决了颜色失真的技术问题。
补偿电压对照表中的各个补偿电压值均可通过实验获得。本实施例中,补偿电压对照 表的大小为 8 X 8 , 共包括 64个补偿电压, 当 Pl、 Ρ2为其他灰阶时, 可利用线性内插法 获得相应的补偿电压。 例如, 巳知 Pl=32, Ρ2=16时, 补偿电压为- 6, Pl=64, Ρ2=16时, 补偿电压为 -12, 则 Pl=48, Ρ2=16时, 可利用线性内插法获得补偿电压为 -9。 在其他实施方式中, 补偿电压对照表的大小也可以为 16 X 16, 或其他大小, 并配合 线性内插法获得 Pl、 Ρ2为其他大小时的补偿电压,丛而节省补偿电压对照表的存储空间, 降低成本, 也简化了补偿电压对照表的建立过程。
本发明实施例还提供一种显示装置, 具体可以是液晶电视、 液晶显示器、 手机、 平板 电脑等。该显示装置包括液晶面板和驱动器,驱动器用于驱动液晶面板中的各个子像素单 元, 以实现显示。
如图 1所示,驱动器可以以现场可编程逻辑门阵列(FieW ProgrammaWe Gate Array, 筒 称 FPGA) 为平台, 其中包括输入模块、 补偿模块和输出模块。 输入模块用于获取目标子像素所要输 ¾的目标灰阶电 ϊΐ。
补偿模块用于根据预设条件, 获取目标子像素的补偿电压。本实施例中, 预设条件为 目标灰阶电压和前灰阶电压之间的差值, 即补偿模块用于根据目标灰阶电压和前灰阶电 压, 获取目标子像素的补偿电压。 补偿模块具体包括存储器、 电压确定单元和查询单元。
存储器中存储有补偿电压对照表(如表 1 ) 。 电压确定单元用于确定目标灰阶电压和 前灰阶电压。查询单元用于根据目标灰阶电压和前灰阶电压查询补偿电压对照表,获取目 标子像素的补偿电压。
例如, 输入模块获取目标子像素所要输出的目标灰阶电压为 64灰阶。 电压确定单元 确定目标子像素的目标灰阶电压为 64灰阶,前灰阶电压为 6灰阶之后, 由査询单元通过 査询存储器中的补偿电压对照表, 获取目标子像素的补偿电压为 10。
输出模块用于将目标灰阶电压 64与补偿电压 10叠加为实际灰阶电压 74, 并将该实 际灰阶电压 74输出至目标子像素, 从而解决颜色失真的技术问题。
实施例二:
本实施例提供一种灰阶电 ϊΐ 偿方法, 与实施例一基本相同, 其不同点在于: 本实施 例中, 歩骤 S2中的预设条件还包括目标子像素的位置。
如图 2所示, 因为用于输出数据信号的数据集成电路 (IC) 1通常设置在液晶靣板 2 的上侧, 所以越靠近液晶面板 2下方的子像素, 与数据 IC 1之间的距离就越远, 则该子 像素与数据 IC 1之间的阻抗就越大, 会使从数据 IC 1 | 该子像素输出的灰阶电压产生损 失, 而不能达到目标灰阶电压。
特别是在位于三行一列的三个子像素组成一个像素 (筒称 3G1D) 的模式中, 相比于 位于一行三列的三个子像素组成一个像素 (简称 1G3D) 的模式, 3G1D模式中数据线的 长度比 1G3D模式更长, 所以 3G1D模式中, 靠近液晶面板 2 Τ方的子像素与数据 IC 1 之间的阻抗就更大, 灰阶电压的损失也就更加明显。
因此, 本实施例中, 还针对子像素与数据 IC 1之间的阻抗造成的灰阶电压损失进行 补偿。
因为距离数据 :IC 1越远的子像素, 损失越大, 所需的补偿电压也就越大, 所以根据 子像素与数据 IC 1之间的不同距离, 将液晶面板 2分为若干个分区。 又因为数据 IC 1通 过扇形引线 3与液晶面板 2中的各条数据线相连,使得与扇形引线 3中部连接的子像素与 数据 IC 1较近, 与扇形引线 3两侧部连接的子像素与数据 IC 1较远, 所以每个分区的形 状也类似于扇形。 并且, 对应于每个分区各自建立一个补偿电压对照表, 距离数据 IC 1 越远的分区, 所对应的补偿电压对照表中的补偿电压值越大。
本实施例中, 根据子像素与数据 IC 1之间的不同距离, 将液晶面板划分为五个分区„ 在其他实施方式中, 分区的数量可根据实际情况而适当增减。
本实施例提供的灰阶电压补偿方法具体包括:
81: 获取目标子像素所要输出的目标灰阶电压。
S2: 根据目标子像素的位置, 以及目标灰盼电 ϊΐ和前灰阶电压, 获取目标子像素的 补偿电压。 具体包括-
821: 根据目标子像素的位置, 在多个补偿电压对照表中确定目标子像素所对应的补 偿电压对照表。
因为事先已经对应于五个分区,建立了五个补偿电压对照表,所以本歩骤中先根据目 标子像素位于哪个分区, 确定相应的补偿电压对照表。
822: 根据目标灰盼电压和前灰阶电压查询补偿电压对照表, 获取目标子像素的补偿 电压。
S3 : 将目标灰阶电压与补偿电压叠加为实际灰阶电压, 并将实际灰阶电压输出至目 标子像素。
这样经过补偿之后, 目标子像素实际获得的灰阶电压就能够与目标灰阶电压相等,从 而解决了颜色失真的技术问题。
本发明实施例还提供一种显示装置, 与实施例一提供的显示装置基本相同,包括液晶 面板和驱动器。 如图 3所示, 驱动器包括输入模块、 补偿模块和输出模块。
本实施例与实施例一之间的不同点在亍:本实施例中,存储器中存储有五个补偿电压 对照表, 分别对应于液晶面板所划分的五个分区(如图 2所示) 。 补偿模块用于根据目标 子像素的位置, 以及目标灰阶电压和前灰阶电压, 获取目标子像素的补偿电压。 补偿模块中除存储器、 电压确定单元和查询单元以外, 还包括位置确定单元, ^于确 定目标子像素的位置。查询单元先根据目标子像素的位置,在五个补偿电压对照表中确定 目标子像素所对应的补偿电压对照表,再根据目标灰阶电压和前灰阶电压查询补偿电压对 照表, 获取目标子像素的补偿电压。
例如, 输入模块获取目标子像素所要输出的目标灰阶电压为 64灰阶。 位置确定单元确定该目标子像素的位置处于一区,电压确定单元确定目标子像素的目 标灰盼电压为 64灰阶, 前灰阶电压为 16灰阶。之后, 由查询单元先根据目标子像素的位 置处于一区,确定其所对应的是存储器中的第一个补偿电压对照表,再査询该第一个补偿 电压对照表, 获取目标子像素的补偿电压为 10。
最后, 输出模块用于将目标灰阶电压 64与补偿电压 10叠加为实际灰阶电压 74, 并 将该实际灰阶电压 74输出至目标子像素。 这样经过补偿之后, 目标子像素实际获得的灰 阶电压就能够到达 64灰阶, 从而解决了颜色失真的技术问题。 虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的 实施方式, 并非用以限定本发明。任何本发明所属技术领域内的技术人员, 在不脱离本发 明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但 本发明的专利保护范围, 仍须以所附的权利要求书所界定的范围为准。

Claims

扠利耍求书
一种灰阶电压补偿方法, 包括:
步骤 1, 获取目标子像素所要输出的目标灰阶电压;
歩骤 2, 根据预设条件, 获取所述目标子像素的补偿电压;
步骤 3 , 将所述目标灰阶电压与所述补偿电压叠加为实际灰阶电压, 并将所述实际灰 阶电压输出至所述目标子像素。
2、 如权利要求 1所述的方法, 其中, 在所述步骤 2中:
根据所述目标灰阶电压和前灰阶电压, 获取所述目标子像素的补偿电压; 其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。
3、 如权利要求 2所述的方法, 其中, 在所述歩骤 2中, 包括:
根据所述目标灰阶电 ]ΐ和前灰阶电压查询 偿电 ίΐ对照表,获取所述目标子像素的补 偿电压。
4、 如权利要求 1所述的方法, 其中, 在所述步骤 2中:
根据所述目标子像素的位置, 以及所述目标灰阶电压和前灰阶电压,获取所述目标子 像素的补偿电压;
其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。
5、 如权利要求 4所述的方法, 其中, 在所述步骤 2中, 包括;
根据所述目标子像素的位置,在多个补偿电压对照表中确定所述目标子像素所对应的 补偿电压对照表;
根据所述目标灰阶电 ]ΐ和前灰阶电压查询 偿电 ίΐ对照表,获取所述目标子像素的补 偿电压。
6、 一种显示装置, 包括:
输入模块, 用亍获取目标子像素所要输出的目标灰阶电压;
补偿模块, ^于根据预设条件, 获取所述目标子像素的 偿电 ίΐ ; 输出模块,用亍将所述目标灰阶电压与所述补偿电压叠加为实际灰阶电压,并将所述 实际灰阶电压输出至所述目标子像素。
Ί、 如权利要求 6所述的显示装置, 其中, 所述补偿模块用于根据所述目标灰阶电压 和前灰阶电压, 获取所述目标子像素的补偿电压;
其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。
8、 如权利要求 7所述的显示装置, 其中, 所述补偿模块包括;
存储器, 存储有补偿电压对照表;
电压确定单元, 用于确定所述目标灰阶电压和前灰阶电压- 查询单元,用亍根据所述目标灰阶电压和所述前灰阶电压查询补偿电压对照表,获取 所述目标子像素的补偿电压。
9、 如权利要求 6所述的显示装置, 其中, 所述补偿模块用于根据所述目标子像素的 位置, 以及所述目标灰阶电压和前灰阶电压, 获取所述目标子像素的补偿电压;
其中,所述前灰阶电压为所述目标子像素所对应的数据线在前一扫描周期输出的实际 灰阶电压。
10、 如权利要求 9所述的显示装置, 其中, 所述补偿模块包括: 存储器, 存储有多个补偿电压对照表;
位置确定单元, 用于确定所述目标子像素的位置- 电压确定单元, 用于确定所述目标灰阶电压和前灰阶电压;
查询单元,用于根据所述目标子像素的位置,在多个补偿电压对照表中确定所述目标 子像素所对应的补偿电压对照表;根据所述目标灰阶电压和所述前灰阶电压查询补偿电压 对照表, 获取所述目标子像素的补偿电压。
PCT/CN2014/085213 2014-06-27 2014-08-26 灰阶电压补偿方法及显示装置 WO2015196555A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/416,289 US20150379917A1 (en) 2014-06-27 2014-08-26 Method for compensating gray scale voltage and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410301945.7A CN104064157A (zh) 2014-06-27 2014-06-27 灰阶电压补偿方法及显示装置
CN201410301945.7 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015196555A1 true WO2015196555A1 (zh) 2015-12-30

Family

ID=51551837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085213 WO2015196555A1 (zh) 2014-06-27 2014-08-26 灰阶电压补偿方法及显示装置

Country Status (2)

Country Link
CN (1) CN104064157A (zh)
WO (1) WO2015196555A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505043B (zh) * 2014-12-29 2017-04-19 厦门天马微电子有限公司 一种图像数据的灰阶补偿方法及装置
CN104751818B (zh) * 2015-04-01 2017-07-28 深圳市华星光电技术有限公司 一种色偏补偿方法及装置
CN104732949B (zh) * 2015-04-17 2019-01-22 京东方科技集团股份有限公司 伽马电压生成电路、驱动单元、显示装置和色坐标调节方法
CN104882113B (zh) * 2015-06-25 2018-03-27 京东方科技集团股份有限公司 修正lcd显示效果的驱动电路、液晶显示装置及驱动方法
CN105741812A (zh) * 2016-05-10 2016-07-06 京东方科技集团股份有限公司 一种液晶显示器的显示方法、液晶显示器及显示装置
CN105895040B (zh) * 2016-06-03 2018-12-28 深圳市华星光电技术有限公司 一种色偏补偿方法
CN106297644A (zh) * 2016-11-04 2017-01-04 京东方科技集团股份有限公司 一种显示面板的驱动电路、其驱动方法及显示装置
CN106652966B (zh) 2017-03-20 2019-11-05 北京京东方显示技术有限公司 灰阶信号补偿单元、补偿方法、源极驱动器和显示装置
CN107068062B (zh) * 2017-06-29 2019-04-02 京东方科技集团股份有限公司 一种图像串扰补偿方法、装置及显示设备
CN107170419B (zh) * 2017-06-29 2019-09-17 惠科股份有限公司 显示面板驱动方法、系统及显示装置
CN107507574B (zh) * 2017-08-31 2019-09-20 京东方科技集团股份有限公司 Oled显示面板及其补偿方法和装置、显示装置
CN107452319B (zh) * 2017-09-21 2020-10-09 深圳市华星光电半导体显示技术有限公司 显示面板的驱动补偿方法
CN109308883B (zh) * 2018-11-28 2020-10-27 惠科股份有限公司 显示面板的电压补偿方法
CN109473056B (zh) * 2018-12-17 2021-02-02 深圳市华星光电半导体显示技术有限公司 图像显示方法及显示器
CN109509453B (zh) * 2018-12-24 2021-05-14 惠科股份有限公司 显示面板驱动方法、装置和可读存储介质
CN109616067B (zh) * 2019-01-02 2020-09-01 合肥京东方显示技术有限公司 一种电压补偿电路及其方法、显示驱动电路、显示装置
CN109509458B (zh) * 2019-01-15 2021-08-03 深圳禾苗通信科技有限公司 一种消除lcd显示屏残影的驱动方法、lcd显示屏及存储介质
CN109859713A (zh) * 2019-03-22 2019-06-07 惠科股份有限公司 一种显示面板的驱动方法、驱动电路和显示装置
CN110085182A (zh) * 2019-04-17 2019-08-02 深圳市华星光电技术有限公司 像素充电方法及显示装置
CN110570804B (zh) * 2019-09-12 2023-04-28 成都辰显光电有限公司 一种显示面板的驱动装置、驱动方法及显示装置
CN110728953B (zh) * 2019-11-27 2021-11-05 京东方科技集团股份有限公司 一种灰阶电压校正方法、驱动方法、校正系统和存储介质
CN111816135B (zh) * 2020-08-09 2021-12-03 合肥奕斯伟集成电路有限公司 驱动电压补偿方法、补偿装置及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201108189A (en) * 2009-08-19 2011-03-01 Chunghwa Picture Tubes Ltd Generator and generating method thereof for overdrive table of liquid crystal display apparatus
TW201110103A (en) * 2009-09-15 2011-03-16 Chunghwa Picture Tubes Ltd Over driving method and device for display
CN102005185A (zh) * 2009-09-02 2011-04-06 北京京东方光电科技有限公司 参考电压补偿装置和方法
US8049691B2 (en) * 2003-09-30 2011-11-01 Sharp Laboratories Of America, Inc. System for displaying images on a display
CN102314854A (zh) * 2011-09-06 2012-01-11 深圳市华星光电技术有限公司 Lcd过激驱动方法及其装置
CN102568430A (zh) * 2012-03-06 2012-07-11 深圳市华星光电技术有限公司 一种液晶面板的驱动方法、显示驱动电路及液晶显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365722B2 (en) * 2002-09-11 2008-04-29 Samsung Electronics Co., Ltd. Four color liquid crystal display and driving device and method thereof
KR100731048B1 (ko) * 2005-10-20 2007-06-22 엘지.필립스 엘시디 주식회사 액정 표시장치의 구동장치 및 구동방법
JP2008009251A (ja) * 2006-06-30 2008-01-17 Epson Imaging Devices Corp 電気光学装置、電子機器、及び駆動制御プログラム
CN103151015A (zh) * 2013-03-12 2013-06-12 京东方科技集团股份有限公司 过驱动方法、电路、显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049691B2 (en) * 2003-09-30 2011-11-01 Sharp Laboratories Of America, Inc. System for displaying images on a display
TW201108189A (en) * 2009-08-19 2011-03-01 Chunghwa Picture Tubes Ltd Generator and generating method thereof for overdrive table of liquid crystal display apparatus
CN102005185A (zh) * 2009-09-02 2011-04-06 北京京东方光电科技有限公司 参考电压补偿装置和方法
TW201110103A (en) * 2009-09-15 2011-03-16 Chunghwa Picture Tubes Ltd Over driving method and device for display
CN102314854A (zh) * 2011-09-06 2012-01-11 深圳市华星光电技术有限公司 Lcd过激驱动方法及其装置
CN102568430A (zh) * 2012-03-06 2012-07-11 深圳市华星光电技术有限公司 一种液晶面板的驱动方法、显示驱动电路及液晶显示装置

Also Published As

Publication number Publication date
CN104064157A (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2015196555A1 (zh) 灰阶电压补偿方法及显示装置
US9542903B2 (en) Display panel having a pixel unit in which the number of data lines electrically connected to the sub-pixels is less than the number of gate lines electrically connected to the sub-pixels
US9741299B2 (en) Display panel including a plurality of sub-pixel
JP5697939B2 (ja) タッチ表示パネル、タッチ表示装置及び平面表示パネル
US9147364B2 (en) Electrophoretic display capable of reducing passive matrix coupling effect
US9262979B2 (en) Display device and method for correcting gamma deviation
US20150213772A1 (en) Display panel and driving method thereof
JP2022501653A (ja) ゲート駆動回路、ゲート駆動回路を制御する方法、及びモバイル端末
KR102237125B1 (ko) 표시 장치 및 이의 구동 방법
JP2011008190A (ja) 液晶表示装置及びその駆動方法
US10762826B2 (en) Pixel circuit, display panel, display device and driving method
WO2017012300A1 (zh) 显示基板、显示装置以及显示基板分辨率调节方法
TW201317971A (zh) 液晶顯示器面板與其驅動方法
KR20150066901A (ko) 디스플레이 패널의 구동 장치 및 구동 방법
WO2015027630A1 (zh) 极性反转驱动方法和极性反转驱动电路
US20160179270A1 (en) Array substrate, display panel, touch display device and driving method for the same
US8471792B2 (en) Display device and driving method of the same
US20160093262A1 (en) Display driver ic for selectively controlling 3-dimensional mode
US9030454B2 (en) Display device including pixels and method for driving the same
CN105118471B (zh) 液晶显示面板及其驱动方法
KR20110051013A (ko) 액정 표시 장치의 구동 장치 및 방법
CN206563861U (zh) 一种液晶显示装置的像素结构及液晶显示装置
JP2020522761A (ja) 液晶表示パネル及び装置
CN104460162A (zh) 一种阵列基板及其驱动方法、显示装置
US20150379917A1 (en) Method for compensating gray scale voltage and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14416289

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895896

Country of ref document: EP

Kind code of ref document: A1