WO2015196051A1 - Non-human animals having a humanized programmed cell death 1 gene - Google Patents
Non-human animals having a humanized programmed cell death 1 gene Download PDFInfo
- Publication number
- WO2015196051A1 WO2015196051A1 PCT/US2015/036649 US2015036649W WO2015196051A1 WO 2015196051 A1 WO2015196051 A1 WO 2015196051A1 US 2015036649 W US2015036649 W US 2015036649W WO 2015196051 A1 WO2015196051 A1 WO 2015196051A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- human
- rodent
- pdcdl
- endogenous
- polypeptide
- Prior art date
Links
- 101710089372 Programmed cell death protein 1 Proteins 0.000 title claims abstract description 237
- 241001465754 Metazoa Species 0.000 title abstract description 45
- 241000282414 Homo sapiens Species 0.000 claims abstract description 538
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 326
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims abstract description 237
- 229920001184 polypeptide Polymers 0.000 claims abstract description 154
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 154
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 154
- 238000000034 method Methods 0.000 claims abstract description 82
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 101100519207 Mus musculus Pdcd1 gene Proteins 0.000 claims abstract description 13
- 241000283984 Rodentia Species 0.000 claims description 155
- 210000004027 cell Anatomy 0.000 claims description 148
- 239000003814 drug Substances 0.000 claims description 109
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 claims description 100
- 102000048362 human PDCD1 Human genes 0.000 claims description 86
- 206010028980 Neoplasm Diseases 0.000 claims description 85
- 229940079593 drug Drugs 0.000 claims description 79
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 76
- 230000008685 targeting Effects 0.000 claims description 68
- 150000001413 amino acids Chemical class 0.000 claims description 39
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 39
- 108700024394 Exon Proteins 0.000 claims description 36
- 230000014509 gene expression Effects 0.000 claims description 36
- 238000003556 assay Methods 0.000 claims description 33
- 239000012634 fragment Substances 0.000 claims description 29
- 125000003729 nucleotide group Chemical group 0.000 claims description 28
- 239000002773 nucleotide Substances 0.000 claims description 27
- 210000004881 tumor cell Anatomy 0.000 claims description 19
- 230000004614 tumor growth Effects 0.000 claims description 16
- 230000003834 intracellular effect Effects 0.000 claims description 13
- 210000001161 mammalian embryo Anatomy 0.000 claims description 13
- 238000011740 C57BL/6 mouse Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000002829 reductive effect Effects 0.000 claims description 6
- 230000006798 recombination Effects 0.000 claims description 5
- 238000005215 recombination Methods 0.000 claims description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 4
- 230000002147 killing effect Effects 0.000 claims description 4
- 229940122544 PD-1 agonist Drugs 0.000 claims description 3
- 229940124060 PD-1 antagonist Drugs 0.000 claims description 3
- 238000012239 gene modification Methods 0.000 abstract description 4
- 230000005017 genetic modification Effects 0.000 abstract description 3
- 235000013617 genetically modified food Nutrition 0.000 abstract description 3
- 150000007523 nucleic acids Chemical class 0.000 description 76
- 241000699666 Mus <mouse, genus> Species 0.000 description 74
- 241000699670 Mus sp. Species 0.000 description 55
- 102000004169 proteins and genes Human genes 0.000 description 51
- 108020004707 nucleic acids Proteins 0.000 description 48
- 102000039446 nucleic acids Human genes 0.000 description 48
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 47
- 238000011282 treatment Methods 0.000 description 47
- 235000018102 proteins Nutrition 0.000 description 40
- 230000000694 effects Effects 0.000 description 31
- 235000001014 amino acid Nutrition 0.000 description 30
- 210000001744 T-lymphocyte Anatomy 0.000 description 29
- 230000000875 corresponding effect Effects 0.000 description 27
- 201000010099 disease Diseases 0.000 description 27
- 229940024606 amino acid Drugs 0.000 description 26
- 230000001225 therapeutic effect Effects 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- 241000700159 Rattus Species 0.000 description 24
- 108091028043 Nucleic acid sequence Proteins 0.000 description 23
- 125000000539 amino acid group Chemical group 0.000 description 23
- 230000006870 function Effects 0.000 description 23
- 239000013598 vector Substances 0.000 description 23
- 230000004048 modification Effects 0.000 description 21
- 238000012986 modification Methods 0.000 description 21
- 208000035475 disorder Diseases 0.000 description 20
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 19
- 238000001727 in vivo Methods 0.000 description 19
- 208000023275 Autoimmune disease Diseases 0.000 description 17
- 239000000427 antigen Substances 0.000 description 17
- 108091007433 antigens Proteins 0.000 description 17
- 102000036639 antigens Human genes 0.000 description 17
- 201000011510 cancer Diseases 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- 239000000523 sample Substances 0.000 description 16
- 230000007935 neutral effect Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 230000001419 dependent effect Effects 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- 229960005486 vaccine Drugs 0.000 description 14
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 13
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 13
- 238000003780 insertion Methods 0.000 description 13
- 230000037431 insertion Effects 0.000 description 13
- 230000001404 mediated effect Effects 0.000 description 12
- 108020004999 messenger RNA Proteins 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 11
- 241001529936 Murinae Species 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- 108091023045 Untranslated Region Proteins 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- -1 e.g. Proteins 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 9
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical group OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 9
- 230000033228 biological regulation Effects 0.000 description 9
- 210000005260 human cell Anatomy 0.000 description 9
- 230000028993 immune response Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 8
- 229930193140 Neomycin Natural products 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 210000003719 b-lymphocyte Anatomy 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 229960004927 neomycin Drugs 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 230000004083 survival effect Effects 0.000 description 8
- 230000004075 alteration Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 6
- 102000004127 Cytokines Human genes 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 6
- 239000003124 biologic agent Substances 0.000 description 6
- 238000011577 humanized mouse model Methods 0.000 description 6
- 208000027866 inflammatory disease Diseases 0.000 description 6
- 210000004681 ovum Anatomy 0.000 description 6
- 210000000952 spleen Anatomy 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 5
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 5
- 108010074708 B7-H1 Antigen Proteins 0.000 description 5
- 102000008096 B7-H1 Antigen Human genes 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 5
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 5
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 238000002648 combination therapy Methods 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 230000009261 transgenic effect Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108700028369 Alleles Proteins 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 4
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 241000699729 Muridae Species 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 108091036066 Three prime untranslated region Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 229940041181 antineoplastic drug Drugs 0.000 description 4
- 235000009582 asparagine Nutrition 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 230000001363 autoimmune Effects 0.000 description 4
- 238000001516 cell proliferation assay Methods 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Chemical group OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 229960000310 isoleucine Drugs 0.000 description 4
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 210000001616 monocyte Anatomy 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 230000001717 pathogenic effect Effects 0.000 description 4
- 230000000069 prophylactic effect Effects 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- ZDTFMPXQUSBYRL-UUOKFMHZSA-N 2-Aminoadenosine Chemical compound C12=NC(N)=NC(N)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O ZDTFMPXQUSBYRL-UUOKFMHZSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 208000035473 Communicable disease Diseases 0.000 description 3
- 241000699800 Cricetinae Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000003839 Human Proteins Human genes 0.000 description 3
- 108090000144 Human Proteins Proteins 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 108091005461 Nucleic proteins Proteins 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000005809 anti-tumor immunity Effects 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 230000033077 cellular process Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000002784 cytotoxicity assay Methods 0.000 description 3
- 231100000263 cytotoxicity test Toxicity 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 230000009437 off-target effect Effects 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000005909 tumor killing Effects 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 206010067484 Adverse reaction Diseases 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 241000699694 Gerbillinae Species 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical group OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 241000398750 Muroidea Species 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 241000121210 Sigmodontinae Species 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 238000010459 TALEN Methods 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 2
- 230000006838 adverse reaction Effects 0.000 description 2
- 230000004520 agglutination Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000002869 basic local alignment search tool Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 208000035269 cancer or benign tumor Diseases 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000000423 cell based assay Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000000185 intracerebroventricular administration Methods 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000012177 negative regulation of immune response Effects 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 238000001543 one-way ANOVA Methods 0.000 description 2
- 210000000287 oocyte Anatomy 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000010374 somatic cell nuclear transfer Methods 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011287 therapeutic dose Methods 0.000 description 2
- 238000011285 therapeutic regimen Methods 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- RIFDKYBNWNPCQK-IOSLPCCCSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-(6-imino-3-methylpurin-9-yl)oxolane-3,4-diol Chemical compound C1=2N(C)C=NC(=N)C=2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RIFDKYBNWNPCQK-IOSLPCCCSA-N 0.000 description 1
- RKSLVDIXBGWPIS-UAKXSSHOSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidine-2,4-dione Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 RKSLVDIXBGWPIS-UAKXSSHOSA-N 0.000 description 1
- QLOCVMVCRJOTTM-TURQNECASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C#CC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 QLOCVMVCRJOTTM-TURQNECASA-N 0.000 description 1
- PISWNSOQFZRVJK-XLPZGREQSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-2-sulfanylidenepyrimidin-4-one Chemical compound S=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 PISWNSOQFZRVJK-XLPZGREQSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- JRYMOPZHXMVHTA-DAGMQNCNSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JRYMOPZHXMVHTA-DAGMQNCNSA-N 0.000 description 1
- RHFUOMFWUGWKKO-XVFCMESISA-N 2-thiocytidine Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RHFUOMFWUGWKKO-XVFCMESISA-N 0.000 description 1
- LMMLLWZHCKCFQA-UGKPPGOTSA-N 4-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-prop-1-ynyloxolan-2-yl]pyrimidin-2-one Chemical compound C1=CC(N)=NC(=O)N1[C@]1(C#CC)O[C@H](CO)[C@@H](O)[C@H]1O LMMLLWZHCKCFQA-UGKPPGOTSA-N 0.000 description 1
- XXSIICQLPUAUDF-TURQNECASA-N 4-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidin-2-one Chemical compound O=C1N=C(N)C(C#CC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XXSIICQLPUAUDF-TURQNECASA-N 0.000 description 1
- ZAYHVCMSTBRABG-UHFFFAOYSA-N 5-Methylcytidine Natural products O=C1N=C(N)C(C)=CN1C1C(O)C(O)C(CO)O1 ZAYHVCMSTBRABG-UHFFFAOYSA-N 0.000 description 1
- AGFIRQJZCNVMCW-UAKXSSHOSA-N 5-bromouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 AGFIRQJZCNVMCW-UAKXSSHOSA-N 0.000 description 1
- FHIDNBAQOFJWCA-UAKXSSHOSA-N 5-fluorouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 FHIDNBAQOFJWCA-UAKXSSHOSA-N 0.000 description 1
- KDOPAZIWBAHVJB-UHFFFAOYSA-N 5h-pyrrolo[3,2-d]pyrimidine Chemical compound C1=NC=C2NC=CC2=N1 KDOPAZIWBAHVJB-UHFFFAOYSA-N 0.000 description 1
- UEHOMUNTZPIBIL-UUOKFMHZSA-N 6-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-7h-purin-8-one Chemical compound O=C1NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UEHOMUNTZPIBIL-UUOKFMHZSA-N 0.000 description 1
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 241000699725 Acomys Species 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 241000398949 Calomyscidae Species 0.000 description 1
- 241000700193 Calomyscus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000398985 Cricetidae Species 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical class OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 241001095404 Dipodoidea Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 101000609762 Gallus gallus Ovalbumin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 241001416537 Gliridae Species 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 1
- 101001117312 Homo sapiens Programmed cell death 1 ligand 2 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 241000235789 Hyperoartia Species 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 241001046461 Lophiomys imhausi Species 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 101001044384 Mus musculus Interferon gamma Proteins 0.000 description 1
- 241000699669 Mus saxicola Species 0.000 description 1
- 241000282341 Mustela putorius furo Species 0.000 description 1
- 241000398990 Nesomyidae Species 0.000 description 1
- 241001452677 Ogataea methanolica Species 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241001338313 Platacanthomyidae Species 0.000 description 1
- 102220527194 Programmed cell death protein 1_A215V_mutation Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 108010052160 Site-specific recombinase Proteins 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000398956 Spalacidae Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 241000255993 Trichoplusia ni Species 0.000 description 1
- 108091005906 Type I transmembrane proteins Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000011558 animal model by disease Methods 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000004900 autophagic degradation Effects 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 108010048032 cyclophilin B Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 239000002359 drug metabolite Substances 0.000 description 1
- 230000000547 effect on apoptosis Effects 0.000 description 1
- 230000001819 effect on gene Effects 0.000 description 1
- 230000000431 effect on proliferation Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 238000009650 gentamicin protection assay Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 102000048776 human CD274 Human genes 0.000 description 1
- 102000048119 human PDCD1LG2 Human genes 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 150000002678 macrocyclic compounds Chemical group 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- AEMBWNDIEFEPTH-UHFFFAOYSA-N n-tert-butyl-n-ethylnitrous amide Chemical compound CCN(N=O)C(C)(C)C AEMBWNDIEFEPTH-UHFFFAOYSA-N 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000024886 negative regulation of signaling Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 230000008816 organ damage Effects 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- GJVFBWCTGUSGDD-UHFFFAOYSA-L pentamethonium bromide Chemical compound [Br-].[Br-].C[N+](C)(C)CCCCC[N+](C)(C)C GJVFBWCTGUSGDD-UHFFFAOYSA-L 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- RHFUOMFWUGWKKO-UHFFFAOYSA-N s2C Natural products S=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 RHFUOMFWUGWKKO-UHFFFAOYSA-N 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- HDZZVAMISRMYHH-KCGFPETGSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HDZZVAMISRMYHH-KCGFPETGSA-N 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 230000005851 tumor immunogenicity Effects 0.000 description 1
- 230000005760 tumorsuppression Effects 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000002689 xenotransplantation Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0278—Knock-in vertebrates, e.g. humanised vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
- A61K49/0008—Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4747—Apoptosis related proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70521—CD28, CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5038—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects involving detection of metabolites per se
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5082—Supracellular entities, e.g. tissue, organisms
- G01N33/5088—Supracellular entities, e.g. tissue, organisms of vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/15—Humanized animals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/072—Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/01—Animal expressing industrially exogenous proteins
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0331—Animal model for proliferative diseases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/555—Interferons [IFN]
- G01N2333/57—IFN-gamma
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
Definitions
- cancer remains a major challenge in the healthcare industry worldwide. This major challenge is due, in part, to the ability of cancer cells to evade the monitoring mechanisms of the immune system, which is partly the result of inhibition and/or down-regulation of anti-tumor immunity. Still, development of in vivo systems to optimally determine the therapeutic potential of new cancer therapies that are designed to activate and/or promote anti-tumor immunity and determine the molecular aspects of how cancer cells provide inhibitory signals to immune cells (e.g., T cells) is lacking. Such systems provide a source for assays for assessing the therapeutic efficacy of candidate agents that promote an anti-tumor environment in vivo.
- immune cells e.g., T cells
- the present invention encompasses the recognition that it is desirable to engineer non-human animals to permit improved systems for identifying and developing new therapeutics that can be used for the treatment of cancer.
- the present invention also encompasess the recognition that it is desirable to engineer non-human animals to permit improved systems for identifying and developing new therapeutics that can be used to treat autoimmune (or inflammatory) disesases, disorders or conditions.
- the present invention also encompasses the recognition that non-human animals having a humanized Pdcdl gene and/or otherwise expressing, containing, or producing a human or humanized PD-1 polypeptide are desirable, for example for use in identifying and developing cancer therapeutics that up-regulate anti-tumor immunity.
- non-human animals of the present invention provide improved in vivo systems for the identification and development of combination therapies that include targeting PD- 1.
- the present invention provides a non-human animal having a genome comprising a Pdcdl gene that includes genetic material from two different species (e.g., a human and a non-human).
- the Pdcdl gene of a non-human animal as described herein encodes a PD- 1 polypeptide that contains human and non-human portions, wherein the human and non-human portions are linked together and form a functional PD-1 polypeptide.
- the Pdcdl gene of a non-human animal as described herein encodes a PD- 1 polypeptide that contains an extracellular domain, in whole or in part, of a human PD-1 polypeptide.
- the present invention provides a non-human animal that expresses a PD-1 polypeptide, which PD-1 polypeptide comprises a human portion and an endogenous portion.
- a PD-1 polypeptide of the present invention is translated in a cell of the non-human animal with a non-human signal peptide; in some certain embodiments, a rodent signal peptide.
- an endogenous portion comprises an intracellular portion of an endogenous PD-1 polypeptide. In some embodiments, an endogenous portion further comprises a transmembrane portion of an endogenous PD-1 polypeptide. In some
- an endogenous portion has an amino acid sequence that is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% identical to a corresponding amino acid sequence of a mouse PD-1 polypeptide that appears in Figure 8. In some embodiments, an endogenous portion has an amino acid sequence that is substantially identical to a corresponding amino acid sequence of a mouse PD-1 polypeptide that appears in Figure 8. In some embodiments, an endogenous portion has an amino acid sequence that is identical to a corresponding amino acid sequence of a mouse PD-1 polypeptide that appears in Figure 8.
- a human portion comprises amino acids 35-145, 27-145,
- a human portion comprises an amino acid sequence that is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% identical to a corresponding amino acid sequence of a human PD-1 polypeptide that appears in Figure 8.
- a human portion comprises an amino acid sequence that is substantially identical to a corresponding amino acid sequence of a human PD-1 polypeptide that appears in Figure 8.
- a human portion comprises an amino acid sequence that is identical to a corresponding amino acid sequence of a human PD-1 polypeptide that appears in Figure 8.
- a PD-1 polypeptide which comprises a human portion and an endogenous portion, is encoded by an endogenous Pdcdl gene.
- an endogenous Pdcdl gene comprises endogenous Pdcdl exons 1, 4 and 5.
- an endogenous Pdcdl gene further comprises an endogenous Pdcdl exon 3 in whole or in part.
- an endogenous Pdcdl gene comprises SEQ ID NO:21.
- an endogenous Pdcdl gene comprises SEQ ID NO:22.
- an endogenous Pdcdl gene comprises SEQ ID NO:21 and SEQ ID NO:22.
- a PD-1 polypeptide expressed by a non-human animal as described herein has an amino acid sequence that is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% identical to SEQ ID NO:6. In some embodiments, a PD-1 polypeptide expressed by a non-human animal as described herein has an amino acid sequence that is substantially identical to SEQ ID NO:6. In some embodiments, a PD-1 polypeptide expressed by a non-human animal as described herein has an amino acid sequence that is identical to SEQ ID NO:6.
- the present invention provides a humanized Pdcdl locus comprising one or more exons of a non-human Pdcdl gene operably linked to one or more exons, in whole or in part, of a human Pdcdl gene.
- a humanized Pdcdl locus further comprises 5' and 3' non-human Pdcdl untranslated regions (UTRs) flanking the one or more exons of a human Pdcdl gene.
- a humanized Pdcdl locus is under the control of a rodent promoter; in some certain embodiments, an endogenous rodent promoter.
- a humanized Pdcdl locus comprises non-human Pdcdl exons 1, 3, 4 and 5 operably linked to a human Pdcdl exon 2.
- a humanized Pdcdl locus comprises non-human Pdcdl exons 1, 4 and 5, a human Pdcdl exon 2 and further comprises a Pdcdl exon 3, which Pdcdl exon 3 comprises a human portion and a non-human portion, and wherein said non-human and human exons are operably linked.
- a human portion of a Pdcdl exon 3 includes nucleotides that encode a PD-1 stalk sequence.
- a human portion of a Pdcdl exon 3 includes about 71 bp of a human Pdcdl exon 3.
- a non-human portion of a Pdcdl exon 3 includes nucleotides that encode a transmembrane sequence.
- a non-human portion of a Pdcdl exon 3 includes about 91 bp of a rodent Pdcdl exon 3.
- the present invention provides a non-human animal comprising a Pdcdl gene that comprises an endogenous portion and a human portion, where the endogenous and human portions are operably linked to a rodent Pdcdl promoter.
- the rodent Pdcdl promoter is an endogenous rodent Pdcdl promoter.
- an endogenous portion comprises endogenous Pdcdl exons 1, 4 and 5.
- an endogenous portion further comprises endogenous Pdcdl exon 3 in whole or in part.
- exons 1, 3 in whole or in part, 4 and 5 of an endogenous Pdcdl gene are at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% identical to the corresponding exons 1, 3 in whole or in part, 4 and 5 of an endogenous Pdcdl gene that appears in Figure 8.
- exons 1, 3 in whole or in part, 4 and 5 of an endogenous Pdcdl gene are at substantially identical to the corresponding exons 1, 3 in whole or in part, 4 and 5 of an endogenous Pdcdl gene that appears in Figure 8.
- exons 1, 3 in whole or in part, 4 and 5 of an endogenous Pdcdl gene are at identical to the corresponding exons 1, 3 in whole or in part, 4 and 5 of an endogenous Pdcdl gene that appears in Figure 8.
- a human portion encodes amino acids 21-170, 26-169, 27- 169, 27-145 or 35-145 of a human PD-1 polypeptide.
- a human portion comprises exon 2 of a human Pdcdl gene.
- a human portion further comprises a human Pdcdl exon 3 in whole or in part.
- human Pdcdl exons 2 and 3, in whole or in part are at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% identical to the corresponding exons 2 and 3, in whole or in part, of a human Pdcdl gene that appears in Figure 8.
- human Pdcdl exons 2 and 3, in whole or in part, are substantially identical to the corresponding exons 2 and 3, in whole or in part, of a human Pdcdl gene that appears in Figure 8.
- human Pdcdl exons 2 and 3, in whole or in part, are identical to the corresponding exons 2 and 3, in whole or in part, of a human Pdcdl gene that appears in Figure 8.
- a human portion comprises a sequence that is codon-optimized for expression in a non-human animal; in some embodiments, expression in a rodent; in some certain embodiments, expression in a mouse; in some certain embodiments, expression in a rat.
- a human portion comprises a sequence that is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% identical to SEQ ID NO:23. In some embodiments, a human portion comprises a sequence that is substantially identical to SEQ ID NO:23. In some embodiments, a human portion comprises a sequence that is identical to SEQ ID NO:23. In some embodiments, a human portion comprises SEQ ID NO:23.
- the present invention provides a PD-1 polypeptide produced (or generated) by a non-human animal as described herein.
- a PD-1 polypeptide produced by a non-human animal as described herein comprises an amino acid sequence that is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% identical to SEQ ID NO:6.
- a PD-1 polypeptide produced by a non-human animal as described herein comprises an amino acid sequence that is substantially identical to SEQ ID NO:6.
- a PD-1 polypeptide produced by a non-human animal as described herein comprises an amino acid sequence that is identical to SEQ ID NO:6.
- the present invention provides an isolated cell or tissue from a non-human animal as described herein. In some embodiments, the present invention provides an isolated cell or tissue that comprises a Pdcdl gene as described herein. In some embodiments, a cell is a lymphocyte. In some embodiments, a cell is selected from a B cell, dendritic cell, macrophage, monocyte (e.g., an activated monocyte), NK cell, and T cell (e.g., an activated T cell).
- a tissue is selected from adipose, bladder, brain, breast, bone marrow, eye, heart, intestine, kidney, liver, lung, lymph node, muscle, pancreas, plasma, serum, skin, spleen, stomach, thymus, testis, ovum, and a combination thereof.
- the present invention provides a non-human embryonic stem cell whose genome comprises a Pdcdl gene as described herein.
- a non-human embryonic stem cell is a mouse embryonic stem cell and is from a 129 strain, C57BL/6 strain or a BALB/c strain.
- a non-human embryonic stem cell is a mouse embryonic stem cell and is from a 129 strain, C57BL/6 strain or a mixture thereof.
- a non-human embryonic stem cell is a mouse embryonic stem cell and is from a mixture of 129 and C57BL/6 strains.
- a non-human embryonic stem cell has a genome comprising a Pdcdl gene that comprises SEQ ID NO: 19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO: 22 or a combination thereof.
- the present invention provides the use of a non-human embryonic stem cell as described herein to make a non-human animal.
- a non-human embryonic stem cell is a mouse embryonic stem cell and is used to make a mouse comprising a Pdcdl gene as described herein.
- a non-human embryonic stem cell is a rat embryonic stem cell and is used to make a rat comprising a Pdcdl gene as described herein.
- the present invention provides a non-human embryo comprising, made from, obtained from, or generated from a non-human embryonic stem cell comprising a Pdcdl gene as described herein.
- a non-human embryo is a rodent embryo; in some embodiments, a mouse embryo; in some embodiments, a rat embryo.
- the present invention provides the use of a non-human embryo as described herein to make a non-human animal.
- a non-human embryo is a mouse embryo and is used to make a mouse comprising a Pdcdl gene as described herein.
- a non-human embryo is a rat embryo and is used to make a rat comprising a Pdcdl gene as described herein.
- the present invention provides a targeting vector (or nucleic acid construct) as described herein.
- the present invention provides a targeting vector (or nucleic acid construct) that comprises a humanized Pdcdl gene as described herein.
- the present invention provides a targeting vector (or nucleic acid construct) that comprises a Pdcdl gene that encodes a PD-1 polpeptide that comprises a human extracellular domain in whole or in part; in some certain
- a PD-1 polypeptide that comprises amino acids 21-170, 26-169, 27-169, 27-145 or 35-145 of a human PD-1 polypeptide.
- a targeting vector comprises one or more exons, in whole or in part, of a non-human Pdcdl gene operably linked to one or more exons, in whole or in part, of a human Pdcdl gene.
- a targeting vector comprises 5' and 3' non-human Pdcdl untranslated regions (UTRs) flanking the one or more exons of a human Pdcdl gene.
- a targeting vector comprises one or more selection markers. In some embodiments, a targeting vector (or nucleic acid construct) comprises one or more site- specific recombination sites. In some embodiments, a targeting vector (or nucleic acid construct) comprises a human Pdcdl exon 2. In some embodiments, a targeting vector (or nucleic acid construct) comprises a human Pdcdl exon 2 and a human Pdcdl exon 3 in whole or in part.
- the present invention provides use of a targeting vector (or nucleic acid construct) as described herein to make a modified non-human embryonic stem cell. In some embodiments, the present invention provides use of a targeting vector (or nucleic acid construct) as described herein to make a modified non-human embryo. In some embodiments, the present invention provides use of a targeting vector (or nucleic acid construct) as described herein to make a non-human animal.
- the present invention provides a method of making a non- human animal that expresses a PD-1 polypeptide from an endogenous Pdcdl gene, wherein the PD-1 polypeptide comprises a human sequence, the method comprising (a) inserting a genomic fragment into an endogenous Pdcdl gene in a rodent embryonic stem cell, said genomic fragment comprising a nucleotide sequence that encodes a human PD- 1 polypeptide in whole or in part; (b) obtaining the rodent embryonic stem cell generated in (a); and, creating a rodent using the rodent embryonic stem cell of (b).
- a human sequence comprises amino acids 35-145, 27-145, 27-169, 26-169 or 21-170 of a human PD-1 polypeptide.
- a nucleotide sequence comprises human Pdcdl exon 2. In some embodiments, a nucleotide sequence further comprises human Pdcdl exon 3 in whole or in part. In some embodiments, a nucleotide sequence comprises one or more selection markers. In some embodiments, a nucleotide sequence comprises one or more site-specific recombination sites.
- the present invention provides a method of making a non- human animal whose genome comprises a Pdcdl gene that encodes a PD-1 polypeptide having a human portion and an endogenous portion, which portions are operably linked to a rodent Pdcdl promoter, the method comprising modifying the genome of a non-human animal so that it comprises a Pdcdl gene that encodes a PD-1 polypeptide having a human portion and an endogenous portion, which portions are operably linked to a rodent Pdcdl promoter, thereby making said non-human animal.
- a rodent Pdcdl promoter is an endogenous rodent Pdcdl promoter.
- a human portion comprises amino acids 35-145, 27-145, 27-169, 26-169 or 21-170 of a human PD-1 polypeptide.
- a Pdcdl gene is modified to include human Pdcdl exon 2. In some embodiments, a Pdcdl gene is modified to include human Pdcdl exon 2 and human Pdcdl exon 3 in whole or in part.
- modifying the genome of a non-human animal is performed in a non-human embryonic stem cell followed by generating a non-human animal with said non-human embryonic stem cell.
- the non-human embryonic stem cell is a rodent embryonic stem cell; in some embodiments, a mouse embryonic stem cell; in some embodiments, a rat embryonic stem cell.
- the present invention provides a non-human animal obtainable by methods as described herein.
- the present invention provides a method of reducing tumor growth in a non-human animal, the method comprising the steps of administering a drug targeting human PD-1 to a non-human animal whose genome comprises a Pdcdl gene that encodes a PD-1 polypeptide having a human portion and an endogenous portion, which portions are operably linked to a rodent Pdcdl promoter; the administering being performed under conditions and for a time sufficient that tumor growth is reduced in the non-human animal.
- the present invention provides a method of killing tumor cells in a non-human animal, the method comprising the steps of administering a drug targeting human PD-1 to a non-human animal whose genome comprises a Pdcdl gene that encodes a PD-1 polypeptide having a human portion and an endogenous portion, which portions are operably linked to a rodent Pdcdl promoter; the administering being performed under conditions and for a time sufficient that the drug mediates killing of the tumor cells in the non-human animal.
- the present invention provides a method of assessing the pharmacokinetic properties of a drug targeting human PD-1, the method comprising the steps of administering the drug to a non-human animal whose genome comprises a Pdcdl gene that encodes a PD-1 polypeptide having a human portion and an endogenous portion, which portions are operably linked a rodent Pdcdl promoter; and performing an assay to determine one or more pharmacokinetic properties of the drug targeting human PD- 1.
- a non-human animal as described herein is a rodent whose genome includes a Pdcdl gene that encodes a PD-1 polypeptide having a human portion and an endogenous portion, which portions are operably linked to a rodent Pdcdl promoter.
- a rodent Pdcdl promoter is an endogenous rodent Pdcdl promoter.
- a human portion comprises amino acids 35-145, 27-145, 27-169, 26-169 or 21-170 of a human PD-1 polypeptide.
- a drug targeting human PD-1 is a PD-1 antagonist. In some embodiments, a drug targeting human PD-1 is a PD-1 agonist. In some embodiments, a drug targeting human PD-1 is an anti-PD-1 antibody. In some embodiments, a drug targeting human PD- 1 is administered intravenously, intraperitoneally, or subcutaneously.
- the present invention provides a non-human animal tumor model, which non-human animal expresses a PD-1 polypeptide comprising a human portion and an endogenous portion.
- the present invention provides a non-human animal tumor model, which non-human animal has a genome comprising a Pdcdl gene that comprises an endogenous portion and a human portion, wherein the endogenous and human portions are operably linked to a non-human animal Pdcdl promoter.
- the present invention provides a non-human animal tumor model obtained by (a) providing a non-human animal whose genome comprises a Pdcdl gene that includes an endogenous portion and a human portion, which endogenous and human portions are operatively linked to a non-human animal Pdcdl promoter; and (b) implanting one or more tumor cells in the rodent of (a); thereby providing said non-human animal tumor model.
- a non-human animal tumor model of the present invention is a rodent tumor model.
- a non-human animal Pdcdl promoter is a rodent Pdcdl promoter.
- the present invention provides a method for identification or validation of a drug or vaccine, the method comprising the steps of delivering a drug or vaccine to a non-human animal whose genome includes a Pdcdl gene that encodes a PD-1 polypeptide, which PD- 1 polypeptide comprises a human portion and an endogenous portion, and monitoring one or more of the immune response to the drug or vaccine, the safety profile of the drug or vaccine, or the effect on a disease, disorder or condition.
- monitoring the safety profile includes determining if the non-human animal exhibits a side effect or adverse reaction as a result of delivering the drug or vaccine.
- a side effect or adverse reaction is selected from morbidity, mortality, alteration in body weight, alteration of the level of one or more enzymes (e.g., liver), alteration in the weight of one or more organs, loss of function (e.g., sensory, motor, organ, etc.), increased susceptibility to one or more diseases, alterations to the genome of the non- human animal, increase or decrease in food consumption and complications of one or more diseases.
- the disease, disorder or condition is induced in the non- human animal.
- the disease, disorder or condition induced in the non- human animal is associated with a disease, disorder or condition suffered by one or more human patients in need of treatment.
- the drug is an antibody.
- the present invention provides use of a non-human animal as described herein in the development of a drug or vaccine for use in medicine, such as use as a medicament.
- the present invention provides use of a non-human animal as described herein in the manufacture of a medicament for the treatment of cancer, neoplasm, an infectious disease, an inflammatory disease, disorder or condition, or an autoimmune disease, disorder or condition.
- a Pdcdl gene of the present invention includes a Pdcdl gene as described herein.
- a Pdcdl gene of the present invention encodes a PD-1 polypeptide having a human portion and an endogous portion, which portions are operably linked to a rodent Pdcdl promoter.
- a rodent promoter is an endogenous rodent promoter.
- a human portion comprises a human Pdcdl exon 2.
- a human portion comprises a human Pdcdl exon 2 and further comprises a human Pdcdl exon 3 in whole or in part.
- a PD-1 polypeptide of the present invention includes a PD-1 polypeptide as described herein.
- a non-human animal of the present invention does not detectably express a full-length endogenous non-human PD-1 polypeptide.
- a non-human animal of the present invention does not detectably express an extracellular portion of an endogenous PD-1 polypeptide.
- a non-human animal of the present invention does not detectably express an N- terminal immunoglobulin V domain of an endogenous PD-1 polypeptide.
- a non-human animal of the present invention is a rodent; in some embodiments, a mouse; in some embodiments, a rat.
- a mouse of the present invention is selected from the group consisting of a 129 strain, a BALB/C strain, a C57BL/6 strain, and a mixed 129xC57BL/6 strain; in some certain embodiments, 50% 129 and 50% C57BL/6; in some certain embodiments, 25% 129 and 75% C57BL/6.
- Figure 1 shows a diagram, not to scale, of the genomic organization of a non- human (e.g., mouse) and human Programmed cell death 1 (Pdcdl) genes. Exons and untranslated regions (UTRs) are numbered beneath each exon and above each UTR.
- Pdcdl Human Programmed cell death 1
- Figure 2 shows a diagram, not to scale, of an exemplary method for humanization of a non-human Programmed cell death 1 (Pdcdl) gene. Selected nucleotide junction locations are marked with a line below each junction. Sequences of these selected nucleotide junctions are indicated by SEQ ID NOs.
- Pdcdl Programmed cell death 1
- Figure 3 shows a diagram, not to scale, of the genomic organization of a mouse and human Programmed cell death 1 (Pdcdl) genes indicating the approximate locations of probes used in an assay described in Example 1.
- Pdcdl Programmed cell death 1
- Figure 4 shows exemplary histograms of T cells gated on CD 19 and CD8 isolated from a wild-type mouse and a mouse heterozygous for humanization of an endogenous Pdcdl gene as described in Example 1 that express mouse and/or humanized PD-1. Stimulated and unstimulated cell populations are indicated, as are cells stained with an isotype control.
- Figure 5 shows exemplary tumor growth curves over 21 days in mice
- Control antibody not specific for PD-1
- a-hPD-1 antibody specific for human PD-1.
- Arrows indicate the days for antibody treatment. The number of tumor- free mice on day 21 is shown for each treatment group.
- Figure 6 shows exemplary real-time PCR analysis of CD8b, CD3, IFN-g and PD- 1 mRNA expression in spleens in mice homozygous for humanization of an endogenous Pdcdl gene as described in Example 1 after treatment with anti-PD-1 antibody.
- A mean of five mice per group.
- B expression levels for individual mice in each treatment group.
- Control antibody not specific for PD-1; cc-PD-1: anti-PD-1 antibody.
- Figure 7 shows exemplary tumor growth curves over 60 days in mice
- Figure 8 sets forth exemplary murine, human and humanized Pdcdl and PD-1 sequences, and an exemplary human nucleic acid sequence for humanization of a non-human Pdcdl gene.
- mRNA sequences bold font indicates coding sequence and consecutive exons, where indicated, are separated by alternating underlined text; for humanized mRNA sequences, human sequences are contained within parentheses.
- protein sequences signal peptides are underlined, extracellular sequences are bold font, immunoglobulin V domain sequences are within parentheses, and intracellular sequences are italicized; and for humanized protein sequences, non-human sequences are indicated in regular font, and human sequences are indicated in bold font.
- the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
- biologically active includes a characteristic of any agent that has activity in a biological system, in vitro or in vivo (e.g., in an organism). For instance, an agent that, when present in an organism, has a biological effect within that organism, is considered to be biologically active.
- an agent that, when present in an organism, has a biological effect within that organism is considered to be biologically active.
- a portion of that protein or polypeptide that shares at least one biological activity of the protein or polypeptide is typically referred to as a "biologically active" portion.
- the term "comparable” includes to two or more agents, entities, situations, sets of conditions, etc. that may not be identical to one another but that are sufficiently similar to permit comparison between them so that conclusions may reasonably be drawn based on differences or similarities observed. Those of ordinary skill in the art will understand, in context, what degree of identity is required in any given circumstance for two or more such agents, entities, situations, sets of conditions, etc. to be considered comparable.
- conservative amino acid substitution includes substitution of an amino acid residue by another amino acid residue having a side chain R group with similar chemical properties (e.g., charge or hydrophobicity).
- a conservative amino acid substitution will not substantially change the functional properties of interest of a protein, for example, the ability of a receptor to bind to a ligand.
- groups of amino acids that have side chains with similar chemical properties include:
- aliphatic side chains such as glycine, alanine, valine, leucine, and isoleucine; aliphatic - hydroxyl side chains such as serine and threonine; amide-containing side chains such as asparagine and glutamine; aromatic side chains such as phenylalanine, tyrosine, and tryptophan; basic side chains such as lysine, arginine, and histidine; acidic side chains such as aspartic acid and glutamic acid; and, sulfur-containing side chains such as cysteine and methionine.
- Conservative amino acids substitution groups include, for example,
- valine/leucine/isoleucine phenylalanine/tyrosine, lysine/arginine, alanine/valine,
- a conservative amino acid substitution can be a substitution of any native residue in a protein with alanine, as used in, for example, alanine scanning mutagenesis.
- a conservative substitution is made that has a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Exhaustive Matching of the Entire Protein Sequence Database, Science 256:1443-45, hereby incorporated by reference.
- the substitution is a moderately conservative substitution wherein the substitution has a nonnegative value in the PAM250 log-likelihood matrix.
- control includes the art-understood meaning of a "control” being a standard against which results are compared. Typically, controls are used to augment integrity in experiments by isolating variables in order to make a conclusion about such variables.
- a control is a reaction or assay that is performed simultaneously with a test reaction or assay to provide a comparator.
- a "control” may include a "control animal”.
- a "control animal” may have a modification as described herein, a modification that is different as described herein, or no modification (i.e., a wild-type animal). In one experiment, the "test” (i.e., the variable being tested) is applied.
- a control is a historical control (i.e., of a test or assay performed previously, or an amount or result that is previously known).
- a control is or comprises a printed or otherwise saved record.
- a control may be a positive control or a negative control.
- disruption includes the result of a homologous recombination event with a DNA molecule (e.g., with an endogenous homologous sequence such as a gene or gene locus).
- a disruption may achieve or represent an insertion, deletion, substitution, replacement, missense mutation, or a frame-shift of a DNA
- Insertions may include the insertion of entire genes or fragments of genes, e.g., exons, which may be of an origin other than the endogenous sequence (e.g., a heterologous sequence).
- a disruption may increase expression and/or activity of a gene or gene product (e.g., of a protein encoded by a gene).
- a disruption may decrease expression and/or activity of a gene or gene product.
- a disruption may alter sequence of a gene or an encoded gene product (e.g., an encoded protein).
- a disruption may truncate or fragment a gene or an encoded gene product (e.g., an encoded protein).
- a disruption may extend a gene or an encoded gene product; in some such embodiments, a disruption may achieve assembly of a fusion protein. In some embodiments, a disruption may affect level but not activity of a gene or gene product. In some
- a disruption may affect activity but not level of a gene or gene product. In some embodiments, a disruption may have no significant effect on level of a gene or gene product. In some embodiments, a disruption may have no significant effect on activity of a gene or gene product. In some embodiments, a disruption may have no significant effect on either level or activity of a gene or gene product.
- determining means determining if an element is present or not. These terms include both quantitative and/or qualitative determinations. Assaying may be relative or absolute. "Assaying for the presence of can be determining the amount of something present and/or determining whether or not it is present or absent.
- dosing regimen or “therapeutic regimen” includes a set of unit doses, in some embodiments, more than one, that are administered individually to a subject, typically separated by periods of time.
- a given therapeutic agent has a recommended dosing regiment, which may involve one or more doses.
- a dosing regimen comprises a plurality of doses each of which are separated from one another by a time period of the same length; in some embodiments, a dosing regimen comprises a plurality of doses and at least two different time periods separating individual doses.
- endogenous locus or "endogenous gene” includes a genetic locus found in a parent or reference organism. In some embodiments, the endogenous locus has a sequence found in nature. In some embodiments, the endogenous locus is a wild type locus. In some embodiments, the reference organism is a wild-type organism. In some
- the reference organism is an engineered organism. In some embodiments, the reference organism is a laboratory-bred organism (whether wild- type or engineered).
- endogenous promoter includes a promoter that is naturally associated, e.g., in a wild-type organism, with an endogenous gene.
- heterologous includes an agent or entity from a different source.
- the term clarifies that the relevant polypeptide, gene, or gene product: 1) was engineered by the hand of man; 2) was introduced into the cell or organism (or a precursor thereof) through the hand of man (e.g., via genetic engineering); and/or 3) is not naturally produced by or present in the relevant cell or organism (e.g., the relevant cell type or organism type).
- a host cell includes a cell into which a heterologous (e.g., exogenous) nucleic acid or protein has been introduced. Persons of skill upon reading this disclosure will understand that such terms refer not only to the particular subject cell, but also is used to refer to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell” .
- a host cell is or comprises a prokaryotic or eukaryotic cell.
- a host cell is any cell that is suitable for receiving and/or producing a heterologous nucleic acid or protein, regardless of the Kingdom of life to which the cell is designated.
- Exemplary cells include those of prokaryotes and eukaryotes (single-cell or multiple-cell), bacterial cells (e.g., strains of E. coli, Bacillus spp., Streptomyces spp., etc.), mycobacteria cells, fungal cells, yeast cells (e.g., S. cerevisiae, S. pombe, P. pastoris, P.
- the cell is a human, monkey, ape, hamster, rat, or mouse cell.
- the cell is eukaryotic and is selected from the following cells: CHO (e.g., CHO Kl, DXB-11 CHO, Veggie-CHO), COS (e.g., COS-7), retinal cell, Vero, CV1, kidney (e.g., HEK293, 293 EBNA, MSR 293, MDCK, HaK, BHK), HeLa, HepG2, WI38, MRC 5, Colo205, HB 8065, HL-60, (e.g., BHK21), Jurkat, Daudi, A431 (epidermal), CV-1, U937, 3T3, L cell, C127 cell, SP2/0, NS-0, MMT 060562, Sertoli cell, BRL 3 A cell, HT1080 cell, myeloma cell, tumor cell, and a cell line derived from an aforementioned cell.
- CHO e.g., CHO Kl, DXB-11 CHO, Veggie-CHO
- COS e.g
- the cell comprises one or more viral genes, e.g., a retinal cell that expresses a viral gene (e.g., a PER.C6TM cell).
- a host cell is or comprises an isolated cell.
- a host cell is part of a tissue.
- a host cell is part of an organism.
- humanized' includes nucleic acids or proteins whose structures (i.e., nucleotide or amino acid sequences) include portions that correspond substantially or identically with structures of a particular gene or protein found in nature in a non-human animal, and also include portions that differ from that found in the relevant particular non- human gene or protein and instead correspond more closely with comparable structures found in a corresponding human gene or protein.
- a "humanized' gene is one that encodes a polypeptide having substantially the amino acid sequence as that of a human polypeptide (e.g., a human protein or portion thereof - e.g., characteristic portion thereof).
- a "humanized' gene may encode a polypeptide having an extracellular portion, in whole or in part, having an amino acid sequence as that of a human extracellular portion and the remaining sequence as that of a non-human (e.g., mouse) polypeptide.
- a humanized gene comprises at least a portion of a DNA sequence of a human gene.
- a humanized gene comprises an entire DNA sequence of a human gene.
- a humanized protein comprises a sequence having a portion that appears in a human protein.
- a humanized protein comprises an entire sequence of a human protein and is expressed from an endogenous locus of a non-human animal that corresponds to the homolog or ortholog of the human gene.
- identity e.g., as in connection with a comparison of sequences, includes identity as determined by a number of different algorithms known in the art that can be used to measure nucleotide and/or amino acid sequence identity.
- identities as described herein are determined using a ClustalW v. 1.83 (slow) alignment employing an open gap penalty of 10.0, an extend gap penalty of 0.1, and using a Gonnet similarity matrix (MACVECTORTM 10.0.2, Mac Vector Inc., 2008).
- isolated includes a substance and/or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature and/or in an experimental setting), and/or (2) designed, produced, prepared, and/or manufactured by the hand of man. Isolated substances and/or entities may be separated from about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% of the other components with which they were initially associated.
- isolated agents are about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure.
- a substance is "pure” if it is substantially free of other components. In some embodiments, as will be understood by those skilled in the art, a substance may still be considered “isolated” or even “pure", after having been combined with certain other components such as, for example, one or more carriers or excipients (e.g., buffer, solvent, water, etc.); in such embodiments, percent isolation or purity of the substance is calculated without including such carriers or excipients.
- carriers or excipients e.g., buffer, solvent, water, etc.
- a biological polymer such as a polypeptide or polynucleotide that occurs in nature is considered to be "isolated' when: a) by virtue of its origin or source of derivation is not associated with some or all of the components that accompany it in its native state in nature; b) it is substantially free of other polypeptides or nucleic acids of the same species from the species that produces it in nature; or c) is expressed by or is otherwise in association with components from a cell or other expression system that is not of the species that produces it in nature.
- a polypeptide that is chemically synthesized or is synthesized in a cellular system different from that which produces it in nature is considered to be an "isolated” polypeptide.
- a polypeptide that has been subjected to one or more purification techniques may be considered to be an "isolated" polypeptide to the extent that it has been separated from other components: a) with which it is associated in nature; and/or b) with which it was associated when initially produced.
- non-human animal includes any vertebrate organism that is not a human.
- a non-human animal is a cyclostome, a bony fish, a cartilaginous fish (e.g., a shark or a ray), an amphibian, a reptile, a mammal, and a bird.
- a non-human mammal is a primate, a goat, a sheep, a pig, a dog, a cow, or a rodent.
- a non-human animal is a rodent such as a rat or a mouse.
- nucleic acid' includes any compound and/or substance that is or can be incorporated into an oligonucleotide chain.
- a "nucleic acid' is a compound and/or substance that is or can be incorporated into an oligonucleotide chain via a phosphodiester linkage.
- nucleic acid' includes individual nucleic acid residues (e.g., nucleotides and/or nucleosides); in some embodiments, "nucleic acid' includes an oligonucleotide chain comprising individual nucleic acid residues.
- a "nucleic acid' is or comprises RNA; in some embodiments, a “nucleic acid' is or comprises DNA. In some embodiments, a "nucleic acid' is, comprises, or consists of one or more natural nucleic acid residues. In some embodiments, a "nucleic acid' is, comprises, or consists of one or more nucleic acid analogs. In some embodiments, a nucleic acid analog differs from a "nucleic acid' in that it does not utilize a phosphodiester backbone.
- a "nucleic acid' is, comprises, or consists of one or more "peptide nucleic acids", which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention.
- a "nucleic acid' has one or more phosphorothioate and/or 5'-N-phosphoramidite linkages rather than phosphodiester bonds.
- a "nucleic acid' is, comprises, or consists of one or more natural nucleosides (e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine).
- nucleosides e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine.
- a "nucleic acid' is, comprises, or consists of one or more nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, C-5 propynyl-cytidine, C-5 propynyl-uridine, 2-aminoadenosine, C5- bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8- oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, 2-thiocytidine, methylated bases, intercalated
- a "nucleic acid' comprises one or more modified sugars (e.g., 2'-fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose) as compared with those in natural nucleic acids.
- modified sugars e.g., 2'-fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose
- a "nucleic acid' has a nucleotide sequence that encodes a functional gene product such as an RNA or protein.
- a "nucleic acid' includes one or more introns.
- a "nucleic acid' is prepared by one or more of isolation from a natural source, enzymatic synthesis by polymerization based on a complementary template (in vivo or in vitro), reproduction in a recombinant cell or system, and chemical synthesis.
- a "nucleic acid' is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 20, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 or more residues long.
- a "nucleic acid' is single stranded; in some embodiments, a "nucleic acid' is double stranded.
- a "nucleic acid' has a nucleotide sequence comprising at least one element that encodes, or is the complement of a sequence that encodes, a polypeptide. In some embodiments, a "nucleic acid' has enzymatic activity.
- operably linked' includes a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner.
- a control sequence "operably linked' to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.
- operably linked' sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest.
- expression control sequence includes polynucleotide sequences, which are necessary to effect the expression and processing of coding sequences to which they are ligated.
- “Expression control sequences” include:
- control sequences appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion.
- control sequences differs depending upon the host organism. For example, in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence, while in eukaryotes, typically, such control sequences include promoters and transcription termination sequence.
- control sequences is intended to include components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
- a patient includes any organism to which a provided composition is or may be administered, e.g., for experimental, diagnostic, prophylactic, cosmetic, and/or therapeutic purposes. Typical patients include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and/or humans). In some embodiments, a patient is a non-human animal. In some embodiments, a patient (e.g., a non-human animal patient) may have a modification as described herein, a modification that is different as described herein or no modification (i.e., a wild-type non-human animal patient). In some
- a non-human animal is suffering from or is susceptible to one or more disorders or conditions. In some embodiments, a non-human animal displays one or more symptoms of a disorder or condition. In some embodiments, a non-human animal has been diagnosed with one or more disorders or conditions.
- polypeptide includes any polymeric chain of amino acids.
- a polypeptide has an amino acid sequence that occurs in nature.
- a polypeptide has an amino acid sequence that does not occur in nature.
- a polypeptide has an amino acid sequence that contains portions that occur in nature separately from one another (i.e., from two or more different organisms, for example, human and non-human portions).
- a polypeptide has an amino acid sequence that is engineered in that it is designed and/or produced through action of the hand of man.
- recombinant is intended to include polypeptides (e.g., PD-1 polypeptides as described herein) that are designed, engineered, prepared, expressed, created or isolated by recombinant means, such as polypeptides expressed using a recombinant expression vector transfected into a host cell, polypeptides isolated from a recombinant, combinatorial human polypeptide library (Hoogenboom H. R., (1997) TIB Tech. 15:62-70; Azzazy H., and Highsmith W. E., (2002) Clin. Biochem. 35:425-445; Gavilondo J. V., and Larrick J. W.
- polypeptides e.g., PD-1 polypeptides as described herein
- recombinant means such as polypeptides expressed using a recombinant expression vector transfected into a host cell, polypeptides isolated from a recombinant, combinatorial human polypeptide library (Hoogenboom H.
- one or more of such selected sequence elements is found in nature.
- one or more of such selected sequence elements is designed in silico.
- one or more such selected sequence elements result from mutagenesis (e.g., in vivo or in vitro) of a known sequence element, e.g., from a natural or synthetic source.
- a recombinant polypeptide is comprised of sequences found in the genome of a source organism of interest (e.g., human, mouse, etc.).
- a recombinant polypeptide has an amino acid sequence that resulted from mutagenesis (e.g., in vitro or in vivo, for example in a non-human animal), so that the amino acid sequences of the recombinant polypeptides are sequences that, while originating from and related to polypeptides sequences, may not naturally exist within the genome of a non-human animal in vivo.
- replacement includes a process through which a "replaced' nucleic acid sequence (e.g., a gene) found in a host locus (e.g., in a genome) is removed from that locus, and a different, "replacement" nucleic acid is located in its place.
- a "replaced' nucleic acid sequence e.g., a gene
- a host locus e.g., in a genome
- the replaced nucleic acid sequence and the replacement nucleic acid sequences are comparable to one another in that, for example, they are homologous to one another and/or contain corresponding elements (e.g., protein-coding elements, regulatory elements, etc.).
- a replaced nucleic acid sequence includes one or more of a promoter, an enhancer, a splice donor site, a splice receiver site, an intron, an exon, an untranslated region (UTR); in some embodiments, a replacement nucleic acid sequence includes one or more coding sequences.
- a replacement nucleic acid sequence is a homolog of the replaced nucleic acid sequence.
- a replacement nucleic acid sequence is an ortholog of the replaced sequence.
- a replacement nucleic acid sequence is or comprises a human nucleic acid sequence.
- the replaced nucleic acid sequence is or comprises a rodent sequence (e.g., a mouse or rat sequence).
- the nucleic acid sequence so placed may include one or more regulatory sequences that are part of source nucleic acid sequence used to obtain the sequence so placed (e.g., promoters, enhancers, 5'- or 3'- untranslated regions, etc.).
- the replacement is a substitution of an endogenous sequence with a heterologous sequence that results in the production of a gene product from the nucleic acid sequence so placed (comprising the heterologous sequence), but not expression of the endogenous sequence; the replacement is of an endogenous genomic sequence with a nucleic acid sequence that encodes a polypeptide that has a similar function as a polypeptide encoded by the endogenous sequence (e.g., the endogenous genomic sequence encodes a PD- 1 polypeptide, and the DNA fragment encodes one or more human PD-1 polypeptides).
- an endogenous gene or fragment thereof is replaced with a corresponding human gene or fragment thereof.
- a corresponding human gene or fragment thereof is a human gene or fragment that is an ortholog of, or is substantially similar or the same in structure and/or function, as the endogenous gene or fragment thereof that is replaced.
- the phrase "Programmed cell death 1 protein” or "PD-1 protein” includes a type I transmembrane protein that belongs to the CD28/CTLA-4 family of T cell regulators.
- the protein structure of a PD- 1 protein includes an extracellular amino-terminal immunoglobulin V domain, a transmembrane domain and a carboxyl-terminal intracellular tail, which intracellular tail contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif.
- ITIM immunoreceptor tyrosine-based inhibitory motif
- PD-1 is expressed on the cell surface and interacts with PD-L1 and PD-L2, members of the B7 family immune-regulatory ligands (Collins, M. et al.
- PD-1 is expressed in, inter alia, activated T cells, B cells, macrophages, monocytes, mast cells, and also in many tumors. PD-1 has been shown to be involved in negative regulation of immune response and, in particular, negative regulation of T cell responses.
- nucleotide and amino acid sequences of mouse and human Pdcdl genes, which encode PD-1 proteins, are provided in Figure 8.
- one or more endogenous Pdcdl genes in a genome can be replaced by one or more heterologous Pdcdl genes (e.g., polymorphic variants, subtypes or mutants, genes from another species, humanized forms, etc.).
- heterologous Pdcdl genes e.g., polymorphic variants, subtypes or mutants, genes from another species, humanized forms, etc.
- a "PD-1 -expressing cell” includes a cell that expresses a PD-1 type I membrane protein.
- a PD-1 -expressing cell expresses a PD-1 type I membrane protein on its surface.
- a PD-1 protein is expressed on the surface of the cell in an amount sufficient to mediate cell-to-cell interactions.
- Exemplary PD-1- expressing cells include B cells, macrophages and T cells.
- PD-1 -expressing cells regulate various cellular processes via the interaction of PD-1 expressed on the surface of immune cells (e.g., T and B cells) and play a role in determining the differentiation and fate of such cells.
- non-human animals of the present invention demonstrate regulation of various cellular processes (as described herein) via humanized PD-1 proteins expressed on the surface of one more cells of the non-human animal.
- non-human animals of the present invention demonstrate negative regulation of signaling through T cell receptors (TCRs) via humanized PD-1 proteins expressed on the surface of one or more cells of the non-human animal.
- non-human animals demonstrate negative regulation of immune responses via humanized PD- 1 proteins expressed on the surface of one or more cells of the non-human animal.
- the term "reference” includes a standard or control agent, cohort, individual, population, sample, sequence or value against which an agent, animal, cohort, individual, population, sample, sequence or value of interest is compared.
- a reference agent, cohort, individual, population, sample, sequence or value is tested and/or determined substantially simultaneously with the testing or determination of the agent, cohort, individual, population, sample, sequence or value of interest.
- a reference agent, cohort, individual, population, sample, sequence or value is a historical reference, optionally embodied in a tangible medium.
- a reference may refer to a control.
- a "reference" may include a "reference animal".
- a “reference animal” may have a modification as described herein, a modification that is different as described herein or no modification (i.e., a wild-type animal).
- a reference agent, animal, cohort, individual, population, sample, sequence or value is determined or characterized under conditions comparable to those utilized to determine or characterize the agent, animal (e.g., a mammal), cohort, individual, population, sample, sequence or value of interest.
- the term "substantially” includes the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest.
- substantially homology includes a comparison between amino acid or nucleic acid sequences. As will be appreciated by those of ordinary skill in the art, two sequences are generally considered to be “substantially homologous” if they contain homologous residues in corresponding positions. Homologous residues may be identical residues. Alternatively, homologous residues may be non-identical residues will
- amino acid or nucleic acid sequences may be compared using any of a variety of algorithms, including those available in commercial computer programs such as BLASTN for nucleotide sequences and BLASTP, gapped BLAST, and PSI-BLAST for amino acid sequences.
- Exemplary such programs are described in Altschul et al. (1990) Basic local alignment search tool, /. Mol. Biol., 215(3): 403-410; Altschul et al. (1997) Methods in Enzymology; Altschul et al., "Gapped BLAST and PSI- BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389- 3402; Baxevanis et al.
- the relevant stretch is a complete sequence. In some embodiments, the relevant stretch is at least 9, 10, 11, 12, 13, 14, 15, 16, 17 or more residues. In some embodiments, the relevant stretch includes contiguous residues along a complete sequence. In some embodiments, the relevant stretch includes
- the relevant stretch is at least 10, 15, 20, 25, 30, 35, 40, 45, 50, or more residues.
- amino acid or nucleic acid sequences include a comparison between amino acid or nucleic acid sequences. As will be appreciated by those of ordinary skill in the art, two sequences are generally considered to be “substantially identical” if they contain identical residues in corresponding positions. As is well known in this art, amino acid or nucleic acid sequences may be compared using any of a variety of algorithms, including those available in commercial computer programs such as BLASTN for nucleotide sequences and BLASTP, gapped BLAST, and PSI-BLAST for amino acid sequences. Exemplary such programs are described in Altschul et al. (1990) Basic local alignment search tool, J. Mol.
- two sequences are considered to be substantially identical if at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of their corresponding residues are identical over a relevant stretch of residues.
- the relevant stretch is a complete sequence. In some embodiments, the relevant stretch is at least 10, 15, 20, 25, 30, 35, 40, 45, 50, or more residues.
- targeting vector or “targeting construct” includes a polynucleotide molecule that comprises a targeting region.
- a targeting region comprises a sequence that is identical or substantially identical to a sequence in a target cell, tissue or animal and provides for integration of the targeting construct into a position within the genome of the cell, tissue or animal via homologous recombination.
- Targeting regions that target using site-specific recombinase recognition sites are also included.
- site-specific recombinase recognition sites e.g., loxP or Frt sites
- a targeting construct of the present invention further comprises a nucleic acid sequence or gene of particular interest, a selectable marker, control and or regulatory sequences, and other nucleic acid sequences that allow for recombination mediated through exogenous addition of proteins that aid in or facilitate recombination involving such sequences.
- a targeting construct of the present invention further comprises a gene of interest in whole or in part, wherein the gene of interest is a heterologous gene that encodes a protein, in whole or in part, that has a similar function as a protein encoded by an endogenous sequence.
- a targeting construct of the present invention further comprises a humanized gene of interest, in whole or in part, wherein the humanized gene of interest encodes a protein, in whole or in part, that has a similar function as a protein encoded by the endogenous sequence.
- therapeutically effective amount includes an amount that produces the desired effect for which it is administered. In some embodiments, the term refers to an amount that is sufficient, when administered to a subject (e.g., an animal) suffering from or susceptible to a disease, disorder, and/or condition in accordance with a therapeutic dosing regimen, to treat the disease, disorder, and/or condition.
- a subject e.g., an animal
- a subject e.g., an animal
- a disease, disorder, and/or condition in accordance with a therapeutic dosing regimen, to treat the disease, disorder, and/or condition.
- a subject e.g., an animal
- therapeutically effective amount is one that reduces the incidence and/or severity of, and/or delays onset of, one or more symptoms of the disease, disorder, and/or condition.
- therapeutically effective amount does not in fact require successful treatment be achieved in a particular individual. Rather, a therapeutically effective amount may be that amount that provides a particular desired pharmacological response in a significant number of subjects when administered to subjects in need of such treatment.
- reference to a therapeutically effective amount may be a reference to an amount as measured in one or more specific tissues (e.g., a tissue affected by the disease, disorder or condition) or fluids (e.g., blood, saliva, serum, sweat, tears, urine, etc.).
- a therapeutically effective amount of a particular agent or therapy may be formulated and/or administered in a single dose.
- a therapeutically effective agent may be formulated and/or administered in a plurality of doses, for example, as part of a dosing regimen.
- treatment in its broadest sense includes any administration of a substance (e.g., provided compositions) that partially or completely alleviates, ameliorates, relives, inhibits, delays onset of, reduces severity of, and/or reduces incidence of one or more symptoms, features, and/or causes of a particular disease, disorder, and/or condition.
- a substance e.g., provided compositions
- such treatment may be administered to a subject who does not exhibit signs of the relevant disease, disorder and/or condition and/or of a subject who exhibits only early signs of the disease, disorder, and/or condition.
- treatment may be administered to a subject who exhibits one or more established signs of the relevant disease, disorder and/or condition.
- treatment may be of a subject who has been diagnosed as suffering from the relevant disease, disorder, and/or condition. In some embodiments, treatment may be of a subject known to have one or more susceptibility factors that are statistically correlated with increased risk of development of the relevant disease, disorder, and/or condition.
- the term "variant" includes an entity that shows significant structural identity with a reference entity, but differs structurally from the reference entity in the presence or level of one or more chemical moieties as compared with the reference entity. In many embodiments, a "variant” also differs functionally from its reference entity. In general, whether a particular entity is properly considered to be a "variant" of a reference entity is based on its degree of structural identity with the reference entity.
- any biological or chemical reference entity has certain characteristic structural elements.
- a "variant”, by definition, is a distinct chemical entity that shares one or more such characteristic structural elements.
- a small molecule may have a characteristic core structural element (e.g., a macrocycle core) and/or one or more characteristic pendent moieties so that a variant of the small molecule is one that shares the core structural element and the characteristic pendent moieties but differs in other pendent moieties and/or in types of bonds present (single vs. double, E vs.
- a polypeptide may have a characteristic sequence element comprised of a plurality of amino acids having designated positions relative to one another in linear or three-dimensional space and/or contributing to a particular biological function, a nucleic acid may have a
- a "variant polypeptide” may differ from a reference polypeptide as a result of one or more differences in amino acid sequence and/or one or more differences in chemical moieties (e.g., carbohydrates, lipids, etc.) covalently attached to the polypeptide backbone.
- a "variant polypeptide” shows an overall sequence identity with a reference polypeptide that is at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, or 99%.
- a "variant polypeptide” does not share at least one characteristic sequence element with a reference polypeptide.
- the reference polypeptide has one or more biological activities.
- a "variant polypeptide” shares one or more of the biological activities of the reference polypeptide.
- a "variant polypeptide” lacks one or more of the biological activities of the reference polypeptide.
- a "variant polypeptide” shows a reduced level of one or more biological activities as compared with the reference polypeptide.
- a polypeptide of interest is considered to be a "variant" of a parent or reference polypeptide if the polypeptide of interest has an amino acid sequence that is identical to that of the parent but for a small number of sequence alterations at particular positions. Typically, fewer than 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% of the residues in the variant are substituted as compared with the parent. In some embodiments, a "variant" has 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 substituted residue as compared with a parent.
- a "variant” has a very small number (e.g., fewer than 5, 4, 3, 2, or 1) number of substituted functional residues (i.e., residues that participate in a particular biological activity). Furthermore, a "variant” typically has not more than 5, 4, 3, 2, or 1 additions or deletions, and often has no additions or deletions, as compared with the parent. Moreover, any additions or deletions are typically fewer than about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 10, about 9, about 8, about 7, about 6, and commonly are fewer than about 5, about 4, about 3, or about 2 residues.
- the parent or reference polypeptide is one found in nature. As will be understood by those of ordinary skill in the art, a plurality of variants of a particular polypeptide of interest may commonly be found in nature, particularly when the polypeptide of interest is an infectious agent polypeptide.
- vector includes a nucleic acid molecule capable of transporting another nucleic acid to which it is associated.
- vectors are capable of extra-chromosomal replication and/or expression of nucleic acids to which they are linked in a host cell such as a eukaryotic and/or prokaryotic cell.
- vectors capable of directing the expression of operatively linked genes are referred to herein as "expression vectors.”
- wild-type includes an entity having a structure and/or activity as found in nature in a "normal” (as contrasted with mutant, diseased, altered, etc.) state or context.
- wild- type genes and polypeptides often exist in multiple different forms (e.g., alleles).
- the present invention provides, among other things, improved and/or engineered non-human animals having humanized genetic material encoding a Programmed cell death 1 (Pdcdl) gene for determining the therapeutic efficacy of Pdcdl modulators (e.g., an anti-PD- 1 antibody) for the treatment of cancer, and assays in T cell responses and signal
- Pdcdl Programmed cell death 1
- the present invention is particularly useful for the development of anti- PD-1 therapies for the treatment of various cancers, as well as for augmenting immune responses to treat and/or remove viral infection in non-human animals.
- the present invention encompasses the humanization of a murine Pdcdl gene resulting in expression of a humanized PD-1 protein on the surface of cells of the non-human animal.
- Such humanized PD-1 proteins have the capacity to provide a source of human PD-1 + cells for determining the efficacy of anti-PD-1 therapeutics to promote anti-tumor immune responses.
- non-human animals of the present invention demonstrate augmented immune responses via blockade of PD-1 signaling through the humanized PD-1 protein expressed on the surface of cells of the non-human animal.
- humanized PD-1 proteins have a sequence corresponding to the N-terminal immunoglobulin V domain, in whole or in part, of a human PD-1 protein.
- humanized PD-1 proteins have a sequence corresponding to the intracellular tail of a murine PD-1 protein; in some embodiments, a sequence corresponding to the transmembrane domain and intracellular tail of a murine PD-1 protein.
- humanized PD-1 proteins have a sequence corresponding to amino acid residues 21-170 (or 26-169, 27-169, or 27-145, or 35-145) of a human PD-1 protein.
- non-human animals of the present invention comprise an endogenous Pdcdl gene that contains genetic material from the non-human animal and a heterologous species (e.g., a human).
- non- human animals of the present invention comprise a humanized Pdcdl gene, wherein the humanized Pdcdl gene comprises exon 2 and exon 3, in whole or in part, of a human PDCDl gene.
- non-human animals of the present invention comprise a humanized Pdcdl gene, wherein the humanized Pdcdl gene compries 883 bp of a human PDCDl gene corresponding to exon 2 and the first 71 bp of exon 3 (i.e., encoding the stalk) of a human PDCDl gene.
- Pdcdl (also referred to as CD279) was originally discovered as an upregulated gene in a T cell hybridoma that was undergoing apoptosis (Ishida, Y. et al. (1992) EMBO J. 11(11):3887-3895).
- the Pdcdl gene consists of 5 exons that encode PD-1, which is a type I membrane protein (referred to as PD-1) that includes an N-terminal immunoglobulin V (IgV) domain, a stalk (-20 amino acids in length), a transmembrane domain, and an intracellular tail that contains both an immunoreceptor tyrosine inhibitory motif (ITIM) and an
- PD-1 immunoreceptor tyrosine switch motif
- PD-1 is expressed on many cell types such as, for example, B cells, dendritic cells, activated monocytes, natural killer (NK) cells and activated T cells (Keir, M.E., et al. (2008) Annu. Rev. Immunol. 26:677-704).
- NK natural killer
- T cells T cells
- Various splice variants of PD-1 have also been reported and vary based on which exon is lacking (Nielsen, C. et al. (2005) Cell. Immunol. 235: 109-116). Indeed, certain splice variants have been observed as a causitive factor in autoimmune diseases (Wan, B. et al. (2006) J. Immunol.
- mice have been reported to develop autoimmune conditions (Nishimura, H. et al. (1998) Intern. Immunol. 10(10): 1563-1572; Nishimura, H. et al. (1999) Immunity 11: 141-151; Nishimura, H. et al. (2001) Science 291:319-322), which have lead the way to solidifying PD-1 as a negative regulator of activated lymphocytes and serves to protect against the development of autoimmune disease.
- tumors have been discovered to use PD-1 signaling to evade surveillance by the immune system.
- PD-1 and at least one of its ligands are currently being explored as targets for cancer therapy by promotion of anti-tumor activity in tumor microenvironments via PD-1 blockade (see e.g., Pedoeem, A. et al. (2014) Clin. Immunol. 153: 145-152; and Philips, G.K. and Atkins, M. (2014) Intern. Immunol. 8 pages).
- Exemplary murine, human and humanized Pdcdl and PD-1 sequences are set forth in Figure 8.
- An exemplary human nucleic acid sequence for humanization of a non- human Pdcdl gene is also set forth in Figure 8.
- Non-human animals are provided that express humanized PD-1 proteins on the surface of cells of the non-human animals resulting from a genetic modification of an endogenous locus (e.g., a Pdcdl locus) of the non-human animal that encodes a PD-1 protein.
- Suitable examples described herein include rodents, in particular, mice.
- a humanized Pdcdl gene in some embodiments, comprises genetic material from a heterologous species (e.g., humans), wherein the humanized Pdcdl gene encodes a PD-1 protein that comprises the encoded portion of the genetic material from the heterologous species.
- a humanized Pdcdl gene of the present invention comprises genomic DNA of a heterologous species that encodes the extracellular portion of a PD- 1 protein that is expressed on the plasma membrane of a cell.
- Non-human animals, embryos, cells and targeting constructs for making non-human animals, non-human embryos, and cells containing said humanized Pdcdl gene are also provided.
- an endogenous Pdcdl gene is deleted.
- an endogenous Pdcdl gene is altered, wherein a portion of the endogenous Pdcdl gene is replaced with a heterologous sequence (e.g., a human PDCD1 sequence, in whole or in part). In some embodiments, all or substantially all of an endogenous Pdcdl gene is replaced with a heterologous gene (e.g., a human PDCD1 gene). In some embodiments, a portion of a heterologous Pdcdl gene is inserted into an endogenous non-human Pdcdl gene at an endogenous Pdcdl locus. In some embodiments, the heterologous gene is a human gene.
- the modification or humanization is made to one of the two copies of the endogenous Pdcdl gene, giving rise to a non-human animal that is heterozygous with respect to the humanized Pdcdl gene.
- a non-human animal is provided that is homozygous for a humanized Pdcdl gene.
- a non-human animal contains a human PDCD1 gene, in whole or in part, at an endogenous non-human Pdcdl locus.
- non-human animals can be described as having a heterologous Pdcdl gene.
- the replaced, inserted, modified or altered Pdcdl gene at the endogenous Pdcdl locus or a protein expressed from such gene can be detected using a variety of methods including, for example, PCR, Western blot, Southern blot, restriction fragment length polymorphism (RFLP), or a gain or loss of allele assay.
- the non-human animal is heterozygous with respect to the humanized Pdcdl gene.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a second exon having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a second exon that appears in a human PDCD1 gene of Figure 8.
- a second exon having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a second exon that appears in a human PDCD1 gene of Figure 8.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a second exon having a sequence that is subtantially identicial to a second exon that appears in a human PDCD1 gene of Figure 8.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a second exon having a sequence that is identicial to a second exon that appears in a human PDCD1 gene of Figure 8.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a third exon having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a third exon that appears in a humanized Pdcdl mRNA sequence of Figure 8.
- a third exon having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a third exon that appears in a humanized Pdcdl mRNA sequence of Figure 8.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a third exon having a sequence that is subtantially identicial to a third exon that appears in a humanized Pdcdl mRNA sequence of Figure 8.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a third exon having a sequence that is identicial to a third exon that appears in a humanized Pdcdl mRNA sequence of Figure 8.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that comprises a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to SEQ ID NO:21 or SEQ ID NO:23.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that comprises a sequence that is substantially identical to SEQ ID NO:21 or SEQ ID NO:23.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that comprises a sequence that is identical to SEQ ID NO:21 or SEQ ID NO:23.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a second exon and a portion of a third exon each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a second exon and a portion of a third exon that appear in a human PDCD1 gene of Figure 8.
- 50% e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a first, fourth and fifth exon each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a first, fourth and fifth exon that appear in a mouse Pdcdl gene of Figure 8.
- a first, fourth and fifth exon each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a first, fourth and fifth exon that appear in a mouse Pdcdl gene of Figure 8.
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a first, a portion of a third, a fourth and a fifth exon each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a first, a portion of a third, a fourth and a fifth exon that appear in a mouse Pdcdl gene of Figure 8.
- 50% e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a 5' untranslated region and a 3' untranslated region each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a 5' untranslated region and a 3' untranslated region that appear in a mouse Pdcdl gene of Figure 8.
- 50% e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more
- a humanized Pdcdl gene according to the present invention includes a Pdcdl gene that has a nucleotide coding sequence (e.g., a cDNA sequence) at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a nucleotide coding sequence that appears in a humanized Pdcdl nucleotide coding sequence of Figure 8.
- a nucleotide coding sequence e.g., a cDNA sequence
- a humanized Pdcdl mRNA sequence according to the present invention comprises a sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a humanized mRNA sequence that appears in Figure 8.
- a humanized Pdcdl gene encodes a PD-1 polypeptide having an amino acid sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an amino acid sequence that appears in a PD-1 polypeptide sequence of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion having an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an extracellular portion of a human PD-1 protein that appears in Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 21-170 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is substantially identical to amino acid residues 21- 170 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is identical to amino acid residues 21-170 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 26-169 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is substantially identical to amino acid residues 26- 169 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is identical to amino acid residues 26-169 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 27-169 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is substantially identical to amino acid residues 27- 169 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is identical to amino acid residues 27-169 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 27-145 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is substantially identical to amino acid residues 27- 145 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is identical to amino acid residues 27-145 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 35-145 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is substantially identical to amino acid residues 35- 145 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an extracellular portion, which extracellular portion comprises an amino acid sequence that is identical to amino acid residues 35-145 that appear in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an N-terminal immunoglobulin V domain having an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an N-terminal immunoglobulin V domain of a human or humanized PD-1 protein that appears in Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an N-terminal immunoglobulin V domain having an amino acid sequence that is substantially identical to an N-terminal immunoglobulin V domain that appears in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an N-terminal immunoglobulin V domain having an amino acid sequence that is identical to an N-terminal immunoglobulin V domain that appears in a human or humanized PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has a transmembrane domain having a sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a transmembrane domain of a mouse PD-1 protein that appears in Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an intracellular tail having a sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an intracellular tail of a mouse PD-1 protein that appears in Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 27-169 (or 26-169) that appear in a human PD- 1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an amino acid sequence that is substantially identical to amino acid residues 27-169 (or 26-169) that appear in a human PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an amino acid sequence that is identical to amino acid residues 27-169 (or 26-169) that appear in a human PD-1 protein of Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invention has an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an amino acid sequence of a humanized PD-1 protein that appears in Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invnetion has an amino acid sequence that is substantially identical to an amino acid sequence of a humanized PD-1 protein that appears in Figure 8.
- a humanized PD-1 protein produced by a non-human animal of the present invnetion has an amino acid sequence that is identical to an amino acid sequence of a humanized PD-1 protein that appears in Figure 8.
- compositions and methods for making non-human animals that express a humanized PD-1 protein including specific polymorphic forms, allelic variants (e.g., single amino acid differences) or alternatively spliced isoforms, are provided, including
- compositions and methods for making non-human animals that express such proteins from a human promoter and a human regulatory sequence are also provided.
- compositions and methods for making non-human animals that express such proteins from an endogenous promoter and an endogenous regulatory sequence are also provided.
- endogenous promoters and endogenous regulatory sequences are endogenous rodent promoters and endogenous rodent regulatory sequences. The methods include inserting the genetic material encoding a human PD- 1 protein in whole or in part at a precise location in the genome of a non-human animal that corresponds to an endogenous Pdcdl gene thereby creating a humanized Pdcdl gene that expresses a PD-1 protein that is human in whole or in part.
- the methods include inserting genomic DNA corresponding to exon 2 and exon 3, in whole or in part, of a human PDCD1 gene into an endogenous Pdcdl gene of the non-human animal thereby creating a humanized gene that encodes a PD-1 protein that contains a human portion containing amino acids encoded by the inserted exons.
- the coding region of the genetic material or polynucleotide sequence(s) encoding a human (or humanized) PD-1 protein in whole or in part may be modified to include codons that are optimized for expression from cells in the non-human animal (e.g., see U.S. Patent No.'s 5,670,356 and 5,874,304).
- Codon optimized sequences are synthetic sequences, and preferably encode the identical polypeptide (or a biologically active fragment of a full length polypeptide which has substantially the same activity as the full length polypeptide) encoded by the non-codon optimized parent polynucleotide.
- the coding region of the genetic material encoding a human (or humanized) PD-1 protein may include an altered sequence to optimize codon usage for a particular cell type (e.g., a rodent cell).
- a particular cell type e.g., a rodent cell
- the codons of the genomic DNA corresponding to exon 2 and a portion of exon 3 (e.g., 71 bp) of a human PDCD1 gene to be inserted into an endogenous Pdcdl gene of a non-human animal (e.g., a rodent) may be optimized for expression in a cell of the non-human animal.
- a sequence may be described as a codon-optimized sequence.
- a humanized Pdcdl gene approach employs a relatively minimal modification of the endogenous gene and results in natural PD-1 -mediated signal transduction in the non- human animal, in various embodiments, because the genomic sequence of the Pdcdl sequences are modified in a single fragment and therefore retain normal functionality by including necessary regulatory sequences.
- the Pdcdl gene modification does not affect other surrounding genes or other endogenous Pdcdl -interacting genes (e.g., PD-Ll, PD-L2, etc.).
- the modification does not affect the assembly of a functional PD-1 transmembrane protein on the cell membrane and maintains normal effector functions via binding and subsequent signal transduction through the cytoplasmic portion of the protein which is unaffected by the modification.
- FIG. 1 A schematic illustration (not to scale) of the genomic organization of an endogenous murine Pdcdl gene and a human PDCDl gene is provided in Figure 1.
- An exemplary method for humanizing an endogenous murine Pdcdl gene using a genomic fragment containing exon 2 and a portion of exon 3 of a human PDCDl gene is provided in Figure 2.
- an 883 bp genomic DNA fragment containing exon 2 and a portion of exon 3 (e.g., the first 71 bp) of a human PDCDl gene is inserted into the place of a 900 bp sequence of an endogenous murine Pdcdl gene locus by a targeting construct.
- the 883 bp human DNA fragment may be cloned directly from human DNA or synthesized from a source sequence (e.g., Genbank accession no. NM_005018.2).
- This genomic DNA includes the portion of the gene that encodes substantially all of the extracellular portion (e.g., amino acid residues 27-169 or 26-169) of a human PD-1 protein responsible for ligand binding.
- a non-human animal having a humanized Pdcdl gene at the endogenous Pdcdl locus
- a targeting vector can be made that introduces a human Pdcdl gene in whole or in part with a selectable marker gene.
- Figure 2 illustrates a targeting vector that contains an endogenous Pdcdl locus of a mouse genome comprising an insertion of an 883 bp human DNA fragment that includes exon 2 and the first 71 bp of exon 3 of a human PDCDl gene.
- the targeting construct contains a 5' homology arm containing sequence upstream of exon 2 of an endogenous murine Pdcdl gene (-61.7 Kb), followed by a drug selection cassette (e.g., a neomycin resistance gene flanked on both sides by loxP sequences; -5 Kb), a genomic DNA fragment containing exon 2 and the first 71 bp of exon 3 of a human Pdcdl gene (883 bp), and a 3' homology arm containing the remaining sequence of an endogenous murine exon 3 (i.e., portion which encodes a transmembrane portion of a PD-1 protein), exon 4 and exon 5 of an endogenous murine Pdcdl gene (-84 Kb).
- a drug selection cassette e.g., a neomycin resistance gene flanked on both sides by loxP sequences; -5 Kb
- the targeting construct contains a self-deleting drug selection cassette (e.g., a neomycin resistance gene flanked by loxP sequences; see U.S. Patent No.'s 8,697,851, 8,518,392 and 8,354,389, all of which are herein incorporated by reference).
- a modified endogenous Pdcdl gene is created that exchanges 900 bp of an endogenous wild-type Pdcdl gene with 883 bp of a human PDCDl gene (i.e., exon 2 and the first 71 bp of exon 3), which is contained in the targeting vector.
- a humanized Pdcdl gene is created resulting in a cell or non-human animal that expresses a humanized PD-1 protein that contains amino acids encoded by the 883 bp human DNA fragment (i.e., exon 2 and 71 bp of exon 3 of a human PDCD1 gene).
- the drug selection cassette is removed in a development-dependent manner, i.e., progeny derived from mice whose germ line cells containing the humanized Pdcdl gene described above will shed the selectable marker from differentiated cells during development (see bottom of Figure 2).
- a humanized Pdcdl gene in a mouse i.e., a mouse with a Pdcdl gene that encodes a PD- 1 protein that includes a human portion and a mouse portion
- other non-human animals that comprise a humanized Pdcdl gene are also provided.
- such non-human animals comprise a humanized Pdcdl gene operably linked to a rodent Pdcdl promoter.
- such non-human animals comprise a humanized Pdcdl gene operably linked to an endogenous Pdcdl promoter; in some embodiments, an endogenous rodent Pdcdl promoter.
- such non-human animals express a humanized PD-1 protein from an endogenous locus, wherein the humanized PD-1 protein comprises amino acid residues 21-170 (or 26-169, or 27-169, 27-145 or 35-145) of a human PD-1 protein.
- Such non-human animals include any of those which can be genetically modified to express a PD-1 protein as disclosed herein, including, e.g., mammals, e.g., mouse, rat, rabbit, pig, bovine (e.g., cow, bull, buffalo), deer, sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey), etc.
- non-human animals for those non-human animals for which suitable genetically modifiable ES cells are not readily available, other methods are employed to make a non-human animal comprising the genetic modification.
- methods include, e.g., modifying a non-ES cell genome (e.g., a fibroblast or an induced pluripotent cell) and employing somatic cell nuclear transfer (SCNT) to transfer the genetically modified genome to a suitable cell, e.g., an enucleated oocyte, and gestating the modified cell (e.g., the modified oocyte) in a non-human animal under suitable conditions to form an embryo.
- SCNT somatic cell nuclear transfer
- Methods for modifying a non-human animal genome include, e.g., employing a zinc finger nuclease (ZFN) or a transcription activator- like effector nuclease (TALEN) to modify a genome to include a humanized Pdcdl gene.
- ZFN zinc finger nuclease
- TALEN transcription activator- like effector nuclease
- a non-human animal of the present invention is a mammal.
- a non-human animal of the present invention is a small mammal, e.g., of the superfamily Dipodoidea or Muroidea.
- a genetically modified animal of the present invention is a rodent.
- a rodent of the present invention is selected from a mouse, a rat, and a hamster.
- a rodent of the present invention is selected from the superfamily Muroidea.
- a genetically modified animal of the present invention is from a family selected from
- Calomyscidae e.g., mouse-like hamsters
- Cricetidae e.g., hamster, New World rats and mice, voles
- Muridae true mice and rats, gerbils, spiny mice, crested rats
- Nesomyidae climbing mice, rock mice, white-tailed rats, Malagasy rats and mice
- Platacanthomyidae e.g., spiny dormice
- Spalacidae e.g., mole rates, bamboo rats, and zokors
- a genetically modified rodent of the present invention is selected from a true mouse or rat (family Muridae), a gerbil, a spiny mouse, and a crested rat. In some certain embodiments, a genetically modified mouse of the present invention is from a member of the family Muridae. In some embodiment, a non-human animal of the present invention is a rodent. In some certain embodiments, a rodent of the present invention is selected from a mouse and a rat. In some embodiments, a non-human animal of the present invention is a mouse.
- a non-human animal of the present invention is a rodent that is a mouse of a C57BL strain selected from C57BL/A, C57BL/An, C57BL/GrFa, C57BL/KaLwN, C57BL/6, C57BL/6J, C57BL/6ByJ, C57BL/6NJ, C57BL/10,
- a mouse of the present invention is a 129 strain selected from the group consisting of a strain that is 129P1, 129P2, 129P3, 129X1, 129S1 (e.g., 129S1/SV, 129Sl/SvIm), 129S2, 129S4, 129S5, 129S9/SvEvH, 129/SvJae, 129S6 (129/SvEvTac), 129S7, 129S8, 129T1, 129T2 (see, e.g., Festing et al., 1999, Mammalian Genome 10:836; Auerbach, W.
- a genetically modified mouse of the present invention is a mix of an aforementioned 129 strain and an aforementioned C57BL/6 strain.
- a mouse of the present invention is a mix of aforementioned 129 strains, or a mix of aforementioned BL/6 strains.
- a 129 strain of the mix as described herein is a 129S6 (129/SvEvTac) strain.
- a mouse of the present invention is a BALB strain, e.g., BALB/c strain.
- a mouse of the present invention is a mix of a BALB strain and another aforementioned strain.
- a non-human animal of the present invention is a rat.
- a rat of the present invention is selected from a Wistar rat, an LEA strain, a Sprague Dawley strain, a Fischer strain, F344, F6, and Dark Agouti.
- a rat strain as described herein is a mix of two or more strains selected from the group consisting of Wistar, LEA, Sprague Dawley, Fischer, F344, F6, and Dark Agouti.
- mice generated by knock-in of a human PD-1 cDNA into exon 1 of a mouse Pdcdl gene did not express human PD-1 even after stimulation with PMA (Carter, L.L. et al., supra).
- Non-human animals of the present invention provide an improved in vivo system and source of biological materials (e.g., cells) expressing human (or humanized) PD-1 that are useful for a variety of assays.
- non-human animals of the present invention are used to develop therapeutics that target PD-1 and/or modulate PD-1 signaling (e.g., interferring with interactions with PD-L1 and/or PD-L2).
- non-human animals of the present invention are used to identify, screen and/or develop candidate therapeutics (e.g., antibodies) that bind human PD-1.
- non-human animals of the present invention are used to screen and develop candidate therapeutics (e.g., antibodies) that block interaction of human PD-1 with human PD-L1 and/or human PD-L2.
- candidate therapeutics e.g., antibodies
- non-human animals of the present invention are used to determine the binding profile of antagonists and/or agonists of a humanized PD-1 on the surface of a cell of a non-human animal as described herein; in some embodiments, non-human animals of the present invention are used to determine the epitope or epitopes of one or more candidate therapeutic antibodies that bind human PD-1.
- non-human animals of the present invention are used to determine the pharmacokinetic profiles of anti-PD-1 antibodies.
- one or more non-human animals of the present invention and one or more control or reference non-human animals are each exposed to one or more candidate therapeutic anti-PD- 1 antibodies at various doses (e.g., 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 1 mg/kg, 2 mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/mg, 7.5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, 25 mg/kg, 30 mg/kg, 40 mg/kg, or 50 mg/kg or more).
- various doses e.g., 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 1 mg/kg, 2 mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/mg, 7.5 mg/kg, 10 mg/kg, 15 mg
- Candidate therapeutic antibodies may be dosed via any desired route of administration including parenteral and non-parenteral routes of administration.
- Parenteral routes include, e.g., intravenous, intraarterial, intraportal, intramuscular, subcutaneous, intraperitoneal, intraspinal, intrathecal, intracerebro ventricular, intracranial, intrapleural or other routes of injection.
- Non-parenteral routes include, e.g., oral, nasal, transdermal, pulmonary, rectal, buccal, vaginal, ocular.
- Administration may also be by continuous infusion, local administration, sustained release from implants (gels, membranes or the like), and/or intravenous injection. Blood is isolated from non-human animals
- Various assays may be performed to determine the pharmacokinetic profiles of administered candidate therapeutic antibodies using samples obtained from non-human animals as described herein including, but not limited to, total IgG, anti-therapeutic antibody response, agglutination, etc.
- non-human animals of the present invention are used to measure the therapeutic effect of blocking or modulating PD- 1 signaling and the effect on gene expression as a result of cellular changes.
- a non-human animal of the present invention or cells isolated therefrom are exposed to a candidate therapeutic that binds a humanized PD-1 protein (or a human portion of a PD-1 protein) on the surface of a cell of the non-human animal and, after a subsequent period of time, analyzed for effects on PD-1 -dependent processes, for example, adhesion, apoptosis, cytokine production, inflammation, proliferation, self-tolerance and viral infection (or responses).
- Non-human animals of the present invention express humanized PD-1 protein, thus cells, cell lines, and cell cultures can be generated to serve as a source of humanized PD- 1 for use in binding and functional assays, e.g., to assay for binding or function of a PD-1 antagonist or agonist, particularly where the antagonist or agonist is specific for a human PD- 1 sequence or epitope or, alternatively, specific for a human PD-1 sequence or epitope that associates with PD-L1 and/or PD-L2.
- PD-1 epitopes bound by candidate therapeutic antibodies can be determined using cells isolated from non-human animals of the present invention.
- a humanized PD-1 protein expressed by a non-human animal as described herein may comprise a variant amino acid sequence.
- Variant human PD-1 proteins e.g., polymorphisms
- autoimmune and infectious diseases have been reported (e.g., see Lee, Y.H. et al. (2014) Z. Rheumatol. PMID: 24942602; Mansur, A. et al. (2014) J. Investig. Med. 62(3):638-643; Nasi, M. et al. (2013) Intern. J. Infect. Dis. 17:e845-e850; Piskin, I.E. et al. (2013) Neuropediatrics
- non-human animals of the present invention express a humanized PD-1 protein variant.
- the variant is polymorphic at an amino acid position associated with ligand binding.
- non-human animals of the present invention are used to determine the effect of ligand binding through interaction with a polymorphic variant of human PD-1.
- non-human animals of the present invention express a human PD-1 variant that appears in Table 3.
- Cells from non-human animals of the present invention can be isolated and used on an ad hoc basis, or can be maintained in culture for many generations.
- cells from a non-human animal of the present invention are immortalized (e.g., via use of a virus) and maintained in culture indefinitely (e.g., in serial cultures).
- cells and/or non-human animals of the present invention are used in various immunization regimens to determine the PD-1 -mediated functions in the immune response to an antigen.
- candidate therapeutics that bind to, or block one or more functions of, human (or humanized) PD-1 are characterized in a non- human animal of the present invention. Suitable measurements include various cellular assays, proliferation assays, serum immunoglobulin analysis (e.g., antibody titer), cytotoxicity assays, characterization of ligand-receptor interactions (e.g.,
- non-human animals of the present invention are used to characterize the PD-1 -mediated functions regulating an immune response to an antigen.
- the antigen is associated with an autoimmune disease, disorder or condition.
- the antigen is associated with an inflammatory disease, disorder or condition.
- the antigen is a test antigen (e.g., ovalbumin or OVA).
- the antigen is a target associated with a disease or condition suffered by one or more human patients in need of treatment.
- non-human animals of the present invention are used in serum assays for determining titers of autoantibody production for testing the pharmaco- toxicological aspects of candidate therapeutics that target human PD-1.
- autoantibody production in non-human animals of the present invention results from one or more autoimmune diseases, disorders or conditions induced in the non-human animal.
- non-human animals of the present invention are used for challenge with one or more antigens to determine the therapeutic potential of compounds or biological agents to modulate PD-1 -dependent regulation of an immune response, including but not limited to, the specific T cell-dependent and B cell-dependent responses to a given antigen.
- cells and/or non-human animals of the present invention are used in a survival and/or proliferation assay (e.g., employing B or T cells) to screen and develop candidate therapeutics that modulate human PD-1 signaling.
- Activation or loss of PD-1 plays an important role in the regulation of T cell responses, and regulation of self- tolerance by PD-1 may result from the activation of specific epitopes of the extracellular domain of PD-1, therefore, candidate PD-1 modulators (e.g., antagonists or agonists) may be identified, characterized and developed using cells of non-human animals of the present invention and/or a non-human animal as described herein.
- cells and/or non-human animals of the present invention are used in survival or death assay(s) to determine the effect on proliferation or apoptosis of a specific cell(s) (e.g., cancer cells) in the presence and absence of PD-1.
- a specific cell(s) e.g., cancer cells
- cells and/or non-human animals of the present invention are used in xenotransplantation of heterologous (e.g., human) cells or tissue to determine the PD-l-mediated functions in the physiological (e.g., immune) response to the transplanted human cells or tissue.
- candidate therapeutics that bind, or block one or more functions of, human PD-1 are characterized in a non-human animal of the present invention. Suitable measurements include various cellular assays, proliferation assays, serum immunoglobulin analysis (e.g., antibody titer), cytotoxicity assays, and characterization of ligand-receptor interactions (immunoprecipitation assays).
- non- human animals of the present invention are used to characterize the PD-l-mediated functions regulating an immune response to an antigen.
- the antigen is associated with a neoplasm.
- the antigen is associated with an autoimmune disease, disorder or condition.
- the antigen is associated with an inflammatory disease, disorder or condition.
- the antigen is a target associated with a disease or condition suffered by one or more human patients in need of treatment.
- non-human animals of the present invention are used in transplantation or adoptive transfer experiments to determine the therapeutic potential of compounds or biological agents to modulate PD-1 -dependent regulation of new lymphocytes and their immune function.
- non-human animals of the present invention are transplanted with human T cells; in some embodiments, naive T cells; in some embodiments, activated T cells.
- cells of non-human animals of the present invention are used to in T cell assays to determine the therapeutic potential of compounds or biological agents to modulate PD-1 -dependent regulation of T cell-dependent response and function.
- T cell assays include, but are not limited to, ELISpot, intracellular cytokine staining, major histocompatibility complex (MHC) restriction, viral suppression assays, cytotoxicity assays, proliferation assays and regulatory T cell suppression assays.
- cells of non-human animals of the present invention are used in a cell transmigration assay to screen and develop candidate therapeutics that modulate human PD-1.
- Cell transmigration involves the migration of cells across the endothelium and transmigration assays permit the measurement of interactions with, and transmigration of, the endothelium by leukocytes or tumor cells.
- cells of non-human animals of the present invention are used in tumor cell growth (or proliferation) assays to determine the therapeutic potential of compounds or biological agents to modulate PD-1 -dependent regulation and/or apoptosis of tumor cells.
- cells of non-human animals of the present invention are used in cytokine production assays to determine the therapeutic potential of compounds or biological agents to modulate PD-1 -dependent regulation of cytokine release from T cells.
- cells of non-human animals of the present invention are used for detection (and/or measurement) of intracellular cytokine release resulting from interaction of humanized PD-1 with a drug targeting human PD-1 or a PD-1 ligand (e.g., PD-L1 or PD-L2).
- an autoimmune disease, disorder or condition is induced in one or more non-human animals of the present invention to provide an in vivo system for determining the therapeutic potential of compounds or biological agents to modulate PD-1- dependent regulation of one or more functions of the autoimmune disease, disorder or condition.
- exemplary autoimmune diseases, disorders or conditions that may be induced in one or more non-human animals of the present invention include diabetes, experimental autoimmune encephalomyelitis (e.g., a model for multiple sclerosis), rheumatoid arthritis, and systemic lupus erythematosus.
- Non-human animals of the present invention provide an in vivo system for the analysis and testing of a drug or vaccine.
- a candidate drug or vaccine may be delivered to one or more non-human animals of the present invention, followed by monitoring of the non-human animals to determine one or more of the immune response to the drug or vaccine, the safety profile of the drug or vaccine, or the effect on a disease or condition.
- the vaccine targets a virus such as, for example, human immunodeficiency virus or hepatitis virus (e.g. HCV).
- Exemplary methods used to determine the safety profile include measurements of toxicity, optimal dose concentration, efficacy of the drug or vaccine, and possible risk factors.
- Such drugs or vaccines may be improved and/or developed in such non-human animals.
- Non-human animals of the present invention provide an in vivo system for assessing the pharmacokinetic properties of a drug targeting human PD-1.
- a drug targeting human PD-1 may be delivered or administered to one or more non-human animals of the present invention, followed by monitoring of, or performing one or more assays on, the non-human animals (or cells isolated therefrom) to determine the effect of the drug on the non-human animal.
- Pharmacokinetic properties include, but are not limited to, how an animal processes the drug into various metabolites (or detection of the presence or absence of one or more drug metabolites, including, toxic metabolites), drug half- life, circulating levels of drug after administration (e.g., serum concentration of drug), antidrug response (e.g., anti-drug antibodies), drug absorption and distribution, route of administration, routes of excretion and/or clearance of the drug.
- pharmacokinetic and pharmacodynamic properties of drugs are monitored in or through the use of non-human animals of the present invention.
- Non-human animals of the present invention provide an in vivo system for assessing the on-target toxicity of a drug targeting human PD-1.
- a drug targeting human PD-1 may be delivered or administered to one or more non-human animals of the present invention, followed by monitoring of or performing one or more assays on the non-human animals (or cells isolated therefrom) to determine the on-target toxic effect of the drug on the non-human animal.
- drugs are intended to modulate one or more functions of their targets.
- a PD-1 modulator is intended to modulate PD-l-mediated functions (e.g., PD-1 signal transduction) through interacting in some way with the PD-1 molecule on the surface of one or more cells.
- such a modulator may have an adverse effect that is an exaggeration of the desired pharmacologic action(s) of the modulator.
- Such effects are termed on-target effects.
- Exemplary on-target effects include too high of a dose, chronic activation/inactivation, and correct action in an incorrect tissue.
- on-target effects of a drug targeting PD-1 identified in or through the use of non-human animals of the present invention are used to determine a previously unknown function(s) of PD-1.
- Non-human animals of the present invention provide an in vivo system for assessing the off-target toxicity of a drug targeting human PD-1.
- a drug targeting human PD-1 may be delivered or administered to one or more non-human animals of the present invention, followed by monitoring of or performing one or more assays on the non-human animals (or cells isolated therefrom) to determine the off-target toxic effect of the drug on the non-human animal.
- Off-target effects can occur when a drug interacts with an unintended target (e.g., cross-reactivity to a common epitope). Such interactions can occur in an intended or unintended tissue.
- mirror image isomers (enantiomers) of a drug can lead to off-target toxic effects. Further, a drug can inappropriately interact with and unintentionally activate different receptor subtypes.
- off-target effects include incorrect activation/inhibition of an incorrect target regardless of the tissue in which the incorrect target is found.
- off- target effects of a drug targeting human PD- 1 are determined by comparing the effects of administering the drug to non-human animals of the present invention to one or more reference non-human animals.
- performing an assay includes determining the effect on the phenotype and/or genotype of the non-human animal to which the drug is administered. In some embodiments, performing an assay includes determining lot-to-lot variability for a PD- 1 modulator (e.g., an antagonist or an agonist). In some embodiments, performing an assay includes determining the differences between the effects of a drug targeting PD- 1
- a PD- 1 modulator e.g., an antagonist or an agonist
- reference non-human animals may have a modification as described herein, a modification that is different as described herein (e.g., one that has a disruption, deletion or otherwise non-functional Pdcdl gene) or no modification (i.e., a wild- type non-human animal).
- Exemplary parameters that may be measured in non-human animals (or in and/or using cells isolated therefrom) for assessing the pharmacokinetic properties, on-target toxicity, and/or off-target toxicity of a drug targeting human PD-1 include, but are not limited to, agglutination, autophagy, cell division, cell death, complement-mediated hemolysis, DNA integrity, drug-specific antibody titer, drug metabolism, gene expression arrays, metabolic activity, mitochondrial activity, oxidative stress, phagocytosis, protein biosynthesis, protein degradation, protein secretion, stress response, target tissue drug concentration, non-target tissue drug concentration, transcriptional activity and the like.
- non- human animals of the present invention are used to determine a pharmaceutically effective dose of a PD-1 modulator.
- Non-human animals of the present invention provide an improved in vivo system for the development and characterization of candidate therapeutics for use in cancer.
- non-human animals of the present invention may be implanted with a tumor, followed by administration of one or more candidate therapeutics.
- candidate therapeutics may include a multi- specific antibody (e.g., a bi- specific antibody) or an antibody cocktail; in some embodiments, candidate therapeutics include combination therapy such as, for example, administration of mono-specific antibodies dosed sequentially or simultaneously.
- the tumor may be allowed sufficient time to be established in one or more locations within the non-human animal. Tumor cell proliferation, growth, survival, etc. may be measured both before and after administration with the candidate therapeutic(s). Cytoxicity of candidate therapeutics may also be measured in the non-human animal as desired.
- Non-human animals of the present invention may be used to develop one or more disease models to evaluate or assess candidate therapeutics and/or therapeutic regimens (e.g., monotherapy, combination therapy, dose range testing, etc.) to effectively treat diseases, disorders or conditions that affect humans.
- Various disease conditions may be established in non-human animals of the present invention followed by administration of one or more candidate molecules (e.g., drugs targeting PD-1) so that efficacy of the one or more candidate molecules in a disease condition can determined.
- disease models include autoimmune, inflammatory and/or neoplastic diseases, disorders or conditions.
- non-human animals of the present invention provide an improved animal model for prophylactic and/or therapeutic treatment of a tumor or tumor cells.
- non-human animals of the present invention may be implanted with one or more tumor cells, followed by administration of one or more candidate therapeutics (e.g., antibodies).
- administration of one or more candidate therapeutics is performed subsequent to (e.g., minutes or hours but typically on the same day as) implantation of one or more tumor cells and one or more candidate therapeutics are evaluated in non-human animals of the present invention for efficacy in preventing establishment of a solid tumor and/or growth of tumor cells in said non-human animals.
- administration of one or more candidate therapeutics is performed subsequent to (e.g., days after) implantation of one or more tumor cells and, in some certain embodiments, after a sufficient time such that one or more implanted tumor cells have reached a predetermined size (e.g., volume) in non-human animals of the present invention; and one or more candidate therapeutics are evaluated for efficacy in treatment of one or more established tumors.
- Non-human animals may be placed into different treatment groups according to dose so that an optimal dose or dose range that correlates to effective treatment of an established tumor can be determined.
- Candidate molecules can be administered to non-human animal disease models using any method of administration including parenteral and non-parenteral routes of administration.
- Parenteral routes include, e.g., intravenous, intraarterial, intraportal, intramuscular, subcutaneous, intraperitoneal, intraspinal, intrathecal, intracerebroventricular, intracranial, intrapleural or other routes of injection.
- Non-parenteral routes include, e.g., oral, nasal, transdermal, pulmonary, rectal, buccal, vaginal, ocular. Administration may also be by continuous infusion, local administration, sustained release from implants (gels, membranes or the like), and/or intravenous injection.
- candidate molecules can be administered via the same administration route or via different administration routes.
- candidate molecules may be administered at bimonthly, monthly, triweekly, biweekly, weekly, daily, at variable intervals and/or in escalating concentrations to determine a dosing regimen that demonstrates a desired therapeutic or prophylactic effect in a non-human animal in which one or more disease models has been established.
- Non-human animals of the present invention provide an improved in vivo system for the development and characterization of candidate therapeutics for use in infectious diseases.
- non-human animals of the present invention may be infected by injection with a virus (e.g., MHV, HIV, HCV, etc.) or pathogen (e.g., bacteria), followed by administration of one or more candidate therapeutics.
- virus e.g., MHV, HIV, HCV, etc.
- pathogen e.g., bacteria
- candidate thereapeutics may include a multi- specific antibody (e.g., a bi-specific antibody) or an antibody cocktail; in some embodiments, candidate therapeutics include combination therapy such as, for example, administration of mono-specific antibodies dosed sequentially or simultaneously; in some embodiments, candidate therapeutics may include a vaccine.
- the virus or pathogen may be allowed sufficient time to be established in one or more locations or cells within the non-human animal so that one or more symptoms associated with infection of the virus or pathogen develop in the non-human animal. T cell proliferation and growth may be measured both before and after administration with the candidate therapeutic(s). Further, survival, serum and/or intracellular cytokine analysis, liver and/or spleen histopathology may be measured in non-human animals infected with the virus or pathogen. In some
- non-human animals of the present invention are used to determine the extent of organ damage associated with viral infection. In some embodiments, non-human animals of the present invention are used to determine the cytokine expression profile in various organs of non-human animals infected with a particular virus.
- Non-human animals of the present invention can be employed to assess the efficacy of a therapeutic drug targeting human cells.
- a non-human animal of the present invention is transplanted with human cells, and a drug candidate targeting such human cells is administered to such non-human animal.
- the therapeutic efficacy of the drug is then determined by monitoring the human cells in the non-human animal after the administration of the drug.
- Drugs that can be tested in the non-human animals include both small molecule compounds, i.e., compounds of molecular weights of less than 1500 kD, 1200 kD, 1000 kD, or 800 daltons, and large molecular compounds (such as proteins, e.g., antibodies), which have intended therapeutic effects for the treatment of human diseases and conditions by targeting (e.g., binding to and/or acting on) human cells.
- the drug is an anti-cancer drug
- the human cells are cancer cells, which can be cells of a primary cancer or cells of cell lines established from a primary cancer.
- a non-human animal of the present invention is transplanted with human cancer cells, and an anti-cancer drug is given to the non-human animal.
- the efficacy of the drug can be determined by assessing whether growth or metastasis of the human cancer cells in the non-human animal is inhibited as a result of the administration of the drug.
- the anti-cancer drug is an antibody molecule, which binds an antigen on human cancer cells.
- the anti-cancer drug is a bi-specific antibody that binds to an antigen on human cancer cells, and to an antigen on other human cells, for example, cells of the human immune system (or "human immune cells") such as B cells and T cells.
- This example illustrates exemplary methods of humanizing an endogenous Pdcdl gene encoding Programmed cell death protein 1 (PD-1) in a non-human mammal such as a rodent (e.g., a mouse).
- a rodent e.g., a mouse
- the methods described in this example can be employed to humanize an endogenous Pdcdl gene of a non-human animal using any human sequence, or combination of human sequences (or sequence fragments) as desired.
- an -883 bp human DNA fragment containing exon 2, intron 2, and the first 71 bp of exon 3 of a human PDCD1 gene that appears in GenBank accesion NM_005018.2 (SEQ ID NO:23) is employed for humanizing an endogenous Pdcdl gene of a mouse.
- a targeting vector for humanization of the genetic material encoding an extracellular N-terminal IgV domain, of an endogenous Pdcdl gene was constructed using VELOCIGENE® technology (see, e.g., U.S. Patent No. 6,586,251 and Valenzuela et al., 2003, Nature Biotech. 21(6):652-659; herein incorporated by reference).
- BAC bacterial artificial chromosome
- Sequence analysis of the -883 bp human DNA fragment confirmed all human PDCDl exons (i.e., exon 2 and 71 bp of exon 3) and splicing signals. Sequence analysis revealed that the sequence matched the reference genome and PDCDl transcript NM_005018.2.
- a small bacterial homologous recombination donor was constructed from a synthetic DNA fragment containing the following: [(Hindlll)-(mouse upstream 78bp)-(XhoI/NheI restriction enzyme sites)-(human PDCDl 883bp)-(mouse downstream 75bp)- (Hindlll)]. This fragment was synthesized by Genescript Inc.
- the resulting targeting vector contained, from 5' to 3', a 5' homology arm containing -61.7 kb of mouse genomic DNA from BAC clone RP23-93N20, a self-deleting neomycin cassette flanked by loxP sites, an 883 bp human genomic DNA fragment (containing exon 2 through the first 71 bp of exon 3 of a human Pdcdl gene) and -84 kb of mouse genomic DNA from BAC clone RP23-93N20.
- modified RP23-93N20 BAC clone described above was used to electroporate mouse embryonic stem (ES) cells to create modified ES cells comprising an endogenous Pdcdl gene that is humanized from exon 2 through to part of exon 3 (i.e., deletion of 900 bp of the endogenous Pdcdl gene and insertion of 883 bp of human sequence).
- ES mouse embryonic stem
- Positively targeted ES cells containing a humanized Pdcdl gene were identified by an assay (Valenzuela et al., supra) that detected the presence of the human PDCD1 sequences (e.g., exon 2 and part of exon 3) and confirmed the loss and/or retention of mouse Pdcdl sequences (e.g., exon 2 and part of exon 3, and/or exons 1, 4 and 5).
- Table 4 sets forth the primers and probes that were used to confirm humanization of an endogenous Pdcdl gene as described above ( Figure 3).
- the nucleotide sequence across the upstream insertion point included the following, which indicates endogenous mouse sequence (contained within the parentheses below with an Xhol restriction site italicized) upstream of the 5' end of self-deleting neomycin cassette of the insertion point linked contiguously to a loxP site (bolded) and cassette sequence present at the insertion point: (TCAAAGGACA GAATAGTAGC
- CTCCAGACCC TAGGTTCAGT TATGCTGAAG GAAGAGCCCT
- the nucleotide sequence across the downstream insertion point at the 3' end of the self-deleting neomycin cassette included the following, which indicates cassette sequence (contained within the parentheses below with loxP sequence bolded and an Nhel restriction site italicized) contiguous with human Pdcdl genomic sequence downstream of the insertion point: (CTGGAATAAC TTCGTATAAT GTATGCTATA CGAAGTTATG
- CTAGTAACTA TAACGGTCCT AAGGTAGCGA GCTAGC) AAGAGGCTCT
- the nucleotide sequence across the downstream insertion point at the 3' end of the human PDCD1 genomic sequence included the following, which indicates human PDCD1 sequence contiguous with mouse Pdcdl genomic sequence (contained within the parentheses below): CCCTTCCAGA GAGAAGGGCA GAAGTGCCCA CAGCCCACCC CAGCCCCTCA CCCAGGCCAG CCGGCCAGTT CCAAACCCTG (GTCATTGGTA TCATGAGTGC CCTAGTGGGT ATCCCTGTAT TGCTGCTGCT GGCCTGGGCC CTAGCTGTCT TCTGCTCAAC) (SEQ ID NO:21).
- the nucleotide sequence across the upstream insertion point after deletion of the neomycin cassette included the following, which indicates mouse and human genomic sequence juxtaposed with remaining cassette sequence loxP sequence (contained within the parentheses below with Xhol and Nhel restriction sites italicized and loxP sequence in bold): TCAAAGGACA GAATAGTAGC CTCCAGACCC TAGGTTCAGT TATGCTGAAG GAAGAGCCCT (CTCGAG ATAACTTCGT ATAATGTATG CTATACGAAG TTATGCTAGT
- VELOCIMOUSE® method (see, e.g., U.S. Pat. No. 7,294,754 and Poueymirou et al., 2007, Nature Biotech. 25(l):91-99) to generate a litter of pups containing an insertion of human PDCD1 exon 2 and part of human PDCD1 exon 3 into an endogenous Pdcdl gene of a mouse.
- mice bearing the humanization of exon 2 and 3 in part (i.e., the 883 bp human DNA fragment) of an endogenous Pdcdl gene were again confirmed and identified by genotyping of DNA isolated from tail snips using a modification of allele assay (Valenzuela et al., supra) that detected the presence of the human PDCD1 gene sequences.
- Pups are genotyped and cohorts of animals heterozygous for the humanized Pdcdl gene construct are selected for characterization.
- This Example demonstrates that non-human animals (e.g., rodents) modified to contain a humanized Pdcdl gene according to Example 1 express a humanized PD-1 protein on the surface of activated lymphocytes.
- activated T cells from mice heterozygous for humanization of an endogenous Pdcdl gene as described in Example 1 were stained with anti-PD- 1 antibodies to determine the expression of PD-1 in stimulated T cells isolated from wild-type and humanized mice.
- spleens were harvested and processed from a wild- type mouse and a mouse heterozygous for humanization of an endogenous Pdcdl gene as described in Example 1 into single cell suspensions by mechanical dissociation.
- Cells were washed in media (RPMI supplemented with 10% FBS) and re-suspended at lxl0 6 /mL and 200 (200,000 cells) were plated in 96- well plates.
- Cells in selected wells were stimulated with anti-CD3 and anti-CD28 antibodies (both at 1 ⁇ g/mL) for 72 hours.
- mice bearing a humanized Pdcdl gene as described in Example 1 express a PD-1 polypeptide that comprises a human portion and an endogenous mouse portion.
- the human portion is detectably expressed via recognition by an antibody that recognizes a fully human PD-1 polypeptide.
- Example 2 demonstrates that non-human animals (e.g., rodents) modified to contain a humanized Pdcdl gene according to Example 1 can be used in an in vivo assay to screen PD-1 modulators (e.g., anti-PD- 1 antibodies) and determine various characterisitics such as, for example, inhibition of tumor growth and/or killing of tumor cells.
- PD-1 modulators e.g., anti-PD- 1 antibodies
- anti-PD- 1 antibodies e.g., anti-PD- 1 antibodies
- mice homozygous for humanization of an endogenous Pdcdl gene as described in Example 1 to determine the optimal antibody dose that inhibits tumor growth and the extent to which anti-PD- 1 antibodies mediate killing of tumor cells.
- mice were anesthetized by isofhirane inhalation and then subcutaneously injected with MC38.ova cells in suspension of 100 ⁇ . of DMEM into the right flank (Study 1: 5xl0 5 ; Study 2/3: lxlO 6 ).
- MC38.ova mouse colon adenocarcinoma cells were engineered to express chicken ovalbumin in order to increase tumor immunogenicity.
- treatment groups were intraperitoneally injected with 200 ⁇ g of either one of three anti-PD-1 antibodies, or an isotype control antibody with irrelevant specificity on days 3, 7, 10, 14, and 17 of the experiment, while one group of mice was left untreated.
- treatment groups were intraperitoneally injected with either one of three anti-PD-1 antibodies at lOmg/kg or 5mg/kg per/dose, one anti-PD-1 antibody (Ab B, IgG4) at lOmg/kg per dose, or an isotype control antibody with irrelevant specificity at lOmg/kg on days 3, 7, 10, 14, and 17 of the experiment.
- treatment groups were intraperitoneally injected with either one of two anti-PD-1 antibodies at 5mg/kg or 2.5mg/kg per/dose, or a control antibody not specific to PD-1 (control) at 5mg/kg on days 3, 7, 10, 14, and 17 of the experiment.
- Table 5 sets forth experimental dosing and treatment protocol for groups of mice.
- mice treated with Ab A did not develop any detectable tumors during the course of the study.
- Mice treated with Ab C exhibited a sustained reduced tumor volume as compared to controls at days 17 and 24 of the study; and 3 out of 5 mice were tumor free by the end of the experiment.
- treatment with Ab B did not demonstrate significant efficacy in reducing tumor volume in this study as compared to controls.
- day 23 of the study 1 out of 5 mice died in the group that received Ab B, and 2 out of 5 mice died in the isotype control treatment group.
- In non-treatment and isotype control groups some mice exhibited spontaneous regression of tumors (1 out of 5 mice and 2 out of 5 mice, respectively).
- mice treated with Ab A at lOmg/kg did not develop detectable tumors during the course of the study.
- Groups of mice treated with 10 mg/kg of either Ab C or Ab D exhibited substantially reduced tumor volume as compared to controls at days 17 and 24 of the study.
- Four out of 5 mice in each group treated with lOmg/kg of either Ab C or Ab D were tumor free at Day 31, whereas in the isotype control treatment group only 1 out of 5 animals was tumor free as a result of spontaneous tumor regression.
- Ab B tested at lOmg/kg demonstrated substantially reduced tumor volume as compared to controls at days 17 and 24 of the study, but this antibody was the least efficacious anti-PDl antibody with only 2 out of 5 mice surviving at the end of the experiment.
- a dose-dependent response in tumor suppression at the tested doses (5 mg/kg and 10 mg/kg) was observed in groups treated with Ab A, Ab C, and Ab D.
- Ab A or Ab C therapy at 5 mg/kg was less efficacious, with 4 out of 5 tumor-free mice at the end of experiment on day 31, whereas 5 out of 5 mice remained tumor-free in 10 mg/kg dose group of Ab A.
- Dunett's test in 2 way ANOVA multiple comparisons revealed that the differences in tumor growth between the group treated with isotype control antibody at 10 mg/kg as reference and the groups treated at 10 mg/kg with Ab A, Ab C or Ab D were statistically significant with p value ⁇ 0.005.
- the differences in tumor growth between the group treated with isotype control antibody at 10 mg/kg as reference and the groups treated at 5 mg/kg with Ab A, Ab C or Ab D were also statistically significant with a p value ⁇ 0.05.
- anti-PD-1 antibodies significantly inhibited tumor growth in a prophylactic MC38.ova tumor growth model in PD-1 humanized mice made according to Example 1.
- Anti-PD-1 Ab therapy at 10 mg/kg promoted tumor regression in all mice (5 out of 5) throughout the course of the experiment, whereas only one out of five animals remained tumor- free in the control group resulting from spontaneous tumor regression.
- Anti-PD-1 therapy at 5 mg/kg was slightly less efficacious, with four out of five tumor-free mice at the end of the experiment.
- One-way ANOVA with Dunnett's multiple comparison post-test revealed a significant difference in tumor volumes between anti-PD-1 and control antibody treatments with a p value ⁇ 0.05 (5 mg/kg) and p value ⁇ 0.01 (10 mg/kg).
- Non-human animals e.g., mice
- mice demonstrate functional PD-1- signaling and proper PD-1 -dependent immune responses via humanized PD-1 as evidenced by expansion of T cells and cytokine expression (e.g., IFN- ⁇ ).
- cytokine expression e.g., IFN- ⁇
- mice Treatment (mm 3 , +SD) mice group Day 17 Day 23 Day 17 Day 23 Day 42
- This Example demonstrates that non-human animals (e.g., rodents) modified to contain a humanized Pdcdl gene according to Example 1 can be used in a tumor model to determine optimal therapeutic dose(s) of PD-1 modulators (e.g., anti-PD-1 antibodies).
- PD-1 modulators e.g., anti-PD-1 antibodies
- an anti-PD- 1 antibody is administered to mice homozygous for humanization of an endogenous Pdcdl gene as described in Example 1 to determine the optimal therapeutic dose for treatment of established tumors.
- mice containing a humanized Pdcdl gene were subcutaneously implanted with lxlO 6 MC38.0va cells (described above) and
- mice were intraperitoneally administered anti-hPD-1 antibody in an escalating dose range of 0.3-25 mg/kg (i.e., 0.3, 1, 3, 10 or 25 mg/kg) or an isotype control antibody at 25 mg/kg.
- Antibodies were dosed on days 0, 3, 7, 10 and 13.
- Tumor volumes were monitored by calipered measurements twice per week for the duration of the experiment (60 days). Exemplary tumor growth curves are provided in Figure 7.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- Environmental Sciences (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Endocrinology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15738177.3A EP3157956B1 (en) | 2014-06-19 | 2015-06-19 | Non-human animals having a humanized programmed cell death 1 gene |
PL15738177T PL3157956T3 (pl) | 2014-06-19 | 2015-06-19 | Zwierzęta inne niż człowiek mające humanizowany gen zaprogramowanej śmierci komórkowej 1 |
IL287519A IL287519B2 (en) | 2014-06-19 | 2015-06-19 | Non-human animals with a humanized gene PROGRAMMED CELL DEATH 1 |
SI201531158T SI3157956T1 (sl) | 2014-06-19 | 2015-06-19 | Nehumane živali, ki imajo humaniziran gen programirane celične smrti 1 |
BR112016029650A BR112016029650A2 (pt) | 2014-06-19 | 2015-06-19 | roedor, polipeptídeo pd-1, célula isolada ou tecido de roedor, célula-tronco embrionária de roedor, métodos de produzir um roedor, de reduzir o crescimento de tumor em um roedor, de matar células tumorais em um roedor e de avaliar as propriedades farmacocinéticas de uma droga que direciona pd-1 humano, e, modelo de tumor de roedor? |
KR1020167035520A KR102482295B1 (ko) | 2014-06-19 | 2015-06-19 | 인간화 프로그램화 세포 사멸 1 유전자를 가지는 비인간 동물 |
CN201580033075.2A CN106604635B (zh) | 2014-06-19 | 2015-06-19 | 具有人源化程序性细胞死亡1基因的非人动物 |
CA2951278A CA2951278A1 (en) | 2014-06-19 | 2015-06-19 | Non-human animals having a humanized programmed cell death 1 gene |
MX2016016903A MX2016016903A (es) | 2014-06-19 | 2015-06-19 | Animales no humanos que tienen un gen de muerte celular programada 1 humanizado. |
JP2016573923A JP6904707B2 (ja) | 2014-06-19 | 2015-06-19 | ヒト化プログラム細胞死1遺伝子を持つ非ヒト動物 |
LTEP15738177.3T LT3157956T (lt) | 2014-06-19 | 2015-06-19 | Nepriklausantys žmonėms gyvūnai, turintys humanizuotą užprogramuotos ląstelių žūties 1 geną |
EP19215361.7A EP3683238A1 (en) | 2014-06-19 | 2015-06-19 | Non-human animals having a humanized programmed cell death 1 gene |
DK15738177.3T DK3157956T3 (da) | 2014-06-19 | 2015-06-19 | Ikke-humane dyr med et humaniseret gen med programmeret celledød 1 |
ES15738177T ES2783424T3 (es) | 2014-06-19 | 2015-06-19 | Animales no humanos que tienen un gen de muerte celular programada 1 humanizado |
SG11201609638RA SG11201609638RA (en) | 2014-06-19 | 2015-06-19 | Non-human animals having a humanized programmed cell death 1 gene |
RS20200389A RS60097B1 (sr) | 2014-06-19 | 2015-06-19 | Ne-humane životinje koje imaju humanizovani gen za programiranu ćelijsku smrt 1 |
NZ727157A NZ727157B2 (en) | 2015-06-19 | Non-human animals having a humanized programmed cell death 1 gene | |
AU2015276978A AU2015276978B2 (en) | 2014-06-19 | 2015-06-19 | Non-human animals having a humanized programmed cell death 1 gene |
KR1020227045421A KR102594863B1 (ko) | 2014-06-19 | 2015-06-19 | 인간화 프로그램화 세포 사멸 1 유전자를 가지는 비인간 동물 |
RU2016149434A RU2735958C2 (ru) | 2014-06-19 | 2015-06-19 | Животные, отличные от человека, имеющие гуманизированный ген 1 запрограммированной гибели клеток |
IL249145A IL249145B (en) | 2014-06-19 | 2016-11-23 | Non-human animals possessing the human programmed cell death 1 gene |
HRP20200613TT HRP20200613T1 (hr) | 2014-06-19 | 2020-04-17 | Neljudske životinje koje imaju humanizirani gen 1 za programiranu staničnu smrt |
CY20201100369T CY1122940T1 (el) | 2014-06-19 | 2020-04-22 | Μη ανθρωπινα ζωα που εχουν ενα εξανθρωπισμενο γονιδιο προγραμματισμενου κυτταρικου θανατου 1 |
AU2021203100A AU2021203100B2 (en) | 2014-06-19 | 2021-05-14 | Non-human animals having a humanized programmed cell death 1 gene |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462014181P | 2014-06-19 | 2014-06-19 | |
US62/014,181 | 2014-06-19 | ||
US201462086518P | 2014-12-02 | 2014-12-02 | |
US62/086,518 | 2014-12-02 | ||
US201562138221P | 2015-03-25 | 2015-03-25 | |
US62/138,221 | 2015-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015196051A1 true WO2015196051A1 (en) | 2015-12-23 |
Family
ID=53546709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/036649 WO2015196051A1 (en) | 2014-06-19 | 2015-06-19 | Non-human animals having a humanized programmed cell death 1 gene |
Country Status (23)
Country | Link |
---|---|
US (4) | US10390522B2 (pt) |
EP (2) | EP3683238A1 (pt) |
JP (3) | JP6904707B2 (pt) |
KR (2) | KR102482295B1 (pt) |
CN (2) | CN106604635B (pt) |
AU (2) | AU2015276978B2 (pt) |
BR (1) | BR112016029650A2 (pt) |
CA (1) | CA2951278A1 (pt) |
CY (1) | CY1122940T1 (pt) |
DK (1) | DK3157956T3 (pt) |
ES (1) | ES2783424T3 (pt) |
HR (1) | HRP20200613T1 (pt) |
HU (1) | HUE048677T2 (pt) |
IL (2) | IL287519B2 (pt) |
LT (1) | LT3157956T (pt) |
MX (1) | MX2016016903A (pt) |
PL (1) | PL3157956T3 (pt) |
PT (1) | PT3157956T (pt) |
RS (1) | RS60097B1 (pt) |
RU (1) | RU2735958C2 (pt) |
SG (2) | SG10201811116UA (pt) |
SI (1) | SI3157956T1 (pt) |
WO (1) | WO2015196051A1 (pt) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016094481A1 (en) * | 2014-12-09 | 2016-06-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cluster of differentiation 274 gene |
WO2017087780A1 (en) | 2015-11-20 | 2017-05-26 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized lymphocyte-activation gene 3 |
WO2017136712A1 (en) * | 2016-02-04 | 2017-08-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered angptl8 gene |
US9815897B2 (en) | 2013-05-02 | 2017-11-14 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
WO2018001241A1 (zh) * | 2016-06-28 | 2018-01-04 | 北京百奥赛图基因生物技术有限公司 | 一种pd-1基因修饰人源化动物模型的构建方法及其应用 |
WO2018041118A1 (en) * | 2016-08-31 | 2018-03-08 | Beijing Biocytogen Co., Ltd | Genetically modified non-human animal with human or chimeric pd-l1 |
US9920123B2 (en) | 2008-12-09 | 2018-03-20 | Genentech, Inc. | Anti-PD-L1 antibodies, compositions and articles of manufacture |
CN107828722A (zh) * | 2016-11-04 | 2018-03-23 | 北京泰盛生物科技有限公司 | 特异性表达pd‑1的干细胞、其鉴定和分离方法及用途 |
US10015953B2 (en) | 2014-12-05 | 2018-07-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cluster of differentiation 47 gene |
US10070632B2 (en) | 2016-02-29 | 2018-09-11 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
CN109452229A (zh) * | 2018-11-19 | 2019-03-12 | 北京百奥赛图基因生物技术有限公司 | 狗源化pd-1基因改造动物模型的制备方法及应用 |
US10945418B2 (en) | 2016-08-31 | 2021-03-16 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric PD-L1 |
US11155624B2 (en) | 2016-11-01 | 2021-10-26 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
US11272695B2 (en) | 2017-10-13 | 2022-03-15 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric PD-1 |
US11407830B2 (en) | 2017-01-09 | 2022-08-09 | Tesaro, Inc. | Methods of treating cancer with anti-PD-1 antibodies |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8307177B2 (en) | 2008-09-05 | 2012-11-06 | Commvault Systems, Inc. | Systems and methods for management of virtualization data |
US9461881B2 (en) | 2011-09-30 | 2016-10-04 | Commvault Systems, Inc. | Migration of existing computing systems to cloud computing sites or virtual machines |
US9740702B2 (en) | 2012-12-21 | 2017-08-22 | Commvault Systems, Inc. | Systems and methods to identify unprotected virtual machines |
US9378035B2 (en) | 2012-12-28 | 2016-06-28 | Commvault Systems, Inc. | Systems and methods for repurposing virtual machines |
KR102482295B1 (ko) | 2014-06-19 | 2022-12-30 | 리제너론 파마슈티칼스 인코포레이티드 | 인간화 프로그램화 세포 사멸 1 유전자를 가지는 비인간 동물 |
DK3223605T3 (da) | 2014-11-24 | 2020-11-16 | Regeneron Pharma | Ikke-humane dyr, der eksprimerer humaniseret cd3-kompleks |
US9563514B2 (en) | 2015-06-19 | 2017-02-07 | Commvault Systems, Inc. | Assignment of proxies for virtual-machine secondary copy operations including streaming backup jobs |
US10084873B2 (en) | 2015-06-19 | 2018-09-25 | Commvault Systems, Inc. | Assignment of data agent proxies for executing virtual-machine secondary copy operations including streaming backup jobs |
CA2991976A1 (en) | 2015-07-13 | 2017-01-19 | Cytomx Therapeutics, Inc. | Anti-pd-1 antibodies, activatable anti-pd-1 antibodies, and methods of use thereof |
TWI822521B (zh) | 2016-05-13 | 2023-11-11 | 美商再生元醫藥公司 | 藉由投予pd-1抑制劑治療皮膚癌之方法 |
US11352413B2 (en) | 2016-05-17 | 2022-06-07 | Albert Einstein College Of Medicine | Engineered PD-1 variants |
KR102598120B1 (ko) * | 2016-06-03 | 2023-11-07 | 리제너론 파마슈티칼스 인코포레이티드 | 외인성 말단 데옥시뉴클레오타이드 전달효소를 발현하는 비인간 동물 |
JP7105235B2 (ja) * | 2016-12-01 | 2022-07-22 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 免疫petイメージングのための放射性標識された抗pd-l1抗体 |
CA3054289A1 (en) | 2017-02-21 | 2018-08-30 | Regeneron Pharmaceuticals, Inc. | Anti-pd-1 antibodies for treatment of lung cancer |
US10949308B2 (en) | 2017-03-15 | 2021-03-16 | Commvault Systems, Inc. | Application aware backup of virtual machines |
US10853195B2 (en) | 2017-03-31 | 2020-12-01 | Commvault Systems, Inc. | Granular restoration of virtual machine application data |
CN109136261B (zh) | 2017-06-19 | 2021-03-16 | 百奥赛图(北京)医药科技股份有限公司 | 人源化cd28基因改造动物模型的制备方法及应用 |
CN109136274B (zh) * | 2017-06-19 | 2021-04-23 | 百奥赛图江苏基因生物技术有限公司 | 人源化cd40基因改造动物模型的制备方法及应用 |
CN109136275B (zh) * | 2017-06-19 | 2021-03-16 | 百奥赛图(北京)医药科技股份有限公司 | 人源化gitr基因改造动物模型的制备方法及应用 |
CN109280674B (zh) * | 2017-07-21 | 2020-12-01 | 北京百奥赛图基因生物技术有限公司 | 一种筛选抗体的非人模式动物的构建方法及其应用 |
AU2018338790B2 (en) * | 2017-09-29 | 2022-09-15 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized TTR locus and methods of use |
CN109666701B (zh) * | 2017-10-13 | 2021-08-24 | 百奥赛图(北京)医药科技股份有限公司 | 一种pd-1基因修饰人源化动物模型的构建方法及其应用 |
IL274740B2 (en) | 2017-11-30 | 2024-06-01 | Regeneron Pharma | Non-human animals containing a human TRKB locus |
IL314733A (en) | 2018-03-26 | 2024-10-01 | Regeneron Pharma | Humanized rodents for testing therapeutic agents |
SG11202011284RA (en) | 2018-07-16 | 2020-12-30 | Regeneron Pharma | Non-human animal models of ditra disease and uses thereof |
CN109266656B (zh) * | 2018-10-10 | 2021-02-19 | 江苏集萃药康生物科技股份有限公司 | 一种PD1人源化BALB/c小鼠模型的构建方法及其应用 |
US20220272953A1 (en) * | 2019-07-29 | 2022-09-01 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric il33 |
AU2021212668A1 (en) * | 2020-01-28 | 2022-08-18 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized PNPLA3 locus and methods of use |
US11656951B2 (en) | 2020-10-28 | 2023-05-23 | Commvault Systems, Inc. | Data loss vulnerability detection |
WO2024002259A1 (zh) * | 2022-06-29 | 2024-01-04 | 百奥赛图(北京)医药科技股份有限公司 | 一种osm、osmr、il31ra和/或il31基因修饰的非人动物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5670356A (en) | 1994-12-12 | 1997-09-23 | Promega Corporation | Modified luciferase |
US5874304A (en) | 1996-01-18 | 1999-02-23 | University Of Florida Research Foundation, Inc. | Humanized green fluorescent protein genes and methods |
WO2002036789A2 (en) * | 2000-10-31 | 2002-05-10 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US7294754B2 (en) | 2004-10-19 | 2007-11-13 | Regeneron Pharmaceuticals, Inc. | Method for generating an animal homozygous for a genetic modification |
US7414171B2 (en) | 2000-11-15 | 2008-08-19 | Ono Pharmaceutical Co., Ltd. | PD-1-lacking mouse and use thereof |
US8354389B2 (en) | 2009-08-14 | 2013-01-15 | Regeneron Pharmaceuticals, Inc. | miRNA-regulated differentiation-dependent self-deleting cassette |
WO2013063361A1 (en) * | 2011-10-28 | 2013-05-02 | Regeneron Pharmaceuticals, Inc. | Genetically modified t cell receptor mice |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2143491C (en) | 1994-03-01 | 2011-02-22 | Yasumasa Ishida | A novel peptide related to human programmed cell death and dna encoding it |
ES2402546T3 (es) | 2000-06-28 | 2013-05-06 | Genetics Institute, Llc | Moléculas PD-L2: nuevos ligandos de PD-1 y usos de lso mismos |
US20040033497A1 (en) * | 2002-08-13 | 2004-02-19 | Alarcon-Riquelme Marta E. | Polymorphisms of PD-1 |
CN101899114A (zh) | 2002-12-23 | 2010-12-01 | 惠氏公司 | 抗pd-1抗体及其用途 |
JP4936899B2 (ja) | 2003-12-24 | 2012-05-23 | ジー2 インフラメイション ピーティーワイ エルティーディー | ヒトまたはヒト化C5aRをコードするポリヌクレオチドを含むトランスジェニック非ヒト哺乳動物 |
EP1701611B1 (en) | 2003-12-24 | 2011-05-18 | G2 Inflammation Pty Ltd | Transgenic non-human mammal comprising a polynucleotide encoding human or humanized c5ar |
CN117534755A (zh) * | 2005-05-09 | 2024-02-09 | 小野药品工业株式会社 | 程序性死亡-1(pd-1)的人单克隆抗体及使用抗pd-1抗体来治疗癌症的方法 |
EP1891107B1 (en) * | 2005-05-12 | 2011-07-06 | ZymoGenetics, Inc. | Compositions and methods for modulating immune responses |
BRPI0611766A2 (pt) * | 2005-06-08 | 2011-12-20 | Dana Farber Cancer Inst Inc | métodos e composições para o tratamento de infecções persistentes e cáncer por inibição da rota de morte celular programada |
CN102245640B (zh) | 2008-12-09 | 2014-12-31 | 霍夫曼-拉罗奇有限公司 | 抗-pd-l1抗体及它们用于增强t细胞功能的用途 |
RU2425880C2 (ru) | 2009-07-30 | 2011-08-10 | Учреждение Российской академии наук Институт общей генетики им. Н.И. Вавилова РАН | Способ получения трансгенных мышей |
TW201134488A (en) | 2010-03-11 | 2011-10-16 | Ucb Pharma Sa | PD-1 antibodies |
US8871996B2 (en) * | 2010-06-09 | 2014-10-28 | Regeneron Pharmaceuticals, Inc. | Mice expressing human voltage-gated sodium channels |
PT2770822T (pt) | 2011-10-28 | 2017-09-18 | Regeneron Pharma | Ratinhos geneticamente modificados que expressam moléculas quiméricas de complexo principal de histocompatibilidade (mhc) ii |
MY164836A (en) | 2011-10-28 | 2018-01-30 | Regeneron Pharma | Genetically modified major histocompatibility complex mice |
CN108866101A (zh) | 2011-10-28 | 2018-11-23 | 瑞泽恩制药公司 | 人源化il-6和il-6受体 |
RU2673156C2 (ru) | 2012-11-05 | 2018-11-22 | Ридженерон Фармасьютикалз, Инк. | Генетически модифицированные не относящиеся к человеческому роду животные и способы их применения |
SI2958938T1 (sl) | 2013-02-20 | 2019-08-30 | Regeneron Pharmaceuticals, Inc. | Miši, ki izražajo humanizirane koreceptorje za celice T |
US10154658B2 (en) | 2013-02-22 | 2018-12-18 | Regeneron Pharmaceuticals, Inc. | Genetically modified major histocompatibility complex mice |
ES2959333T3 (es) | 2013-09-23 | 2024-02-23 | Regeneron Pharma | Animales no humanos que tienen un gen humanizado de la proteína reguladora de señales |
KR102173260B1 (ko) | 2013-11-19 | 2020-11-03 | 리제너론 파마슈티칼스 인코포레이티드 | 인간화된 b-세포 활성화 인자 유전자를 가지고 있는 비-인간 동물 |
PT3129400T (pt) | 2014-04-08 | 2020-05-27 | Regeneron Pharma | Animais não humanos que possuem recetores fc-gamma humanizados |
NO2785538T3 (pt) | 2014-05-07 | 2018-08-04 | ||
AU2015264427B2 (en) | 2014-05-19 | 2021-09-23 | Institute For Research In Biomedicine (Irb) | Genetically modified non-human animals expressing human EPO |
KR102482295B1 (ko) | 2014-06-19 | 2022-12-30 | 리제너론 파마슈티칼스 인코포레이티드 | 인간화 프로그램화 세포 사멸 1 유전자를 가지는 비인간 동물 |
-
2015
- 2015-06-19 KR KR1020167035520A patent/KR102482295B1/ko active IP Right Grant
- 2015-06-19 US US14/744,592 patent/US10390522B2/en active Active
- 2015-06-19 CA CA2951278A patent/CA2951278A1/en active Pending
- 2015-06-19 MX MX2016016903A patent/MX2016016903A/es unknown
- 2015-06-19 EP EP19215361.7A patent/EP3683238A1/en active Pending
- 2015-06-19 EP EP15738177.3A patent/EP3157956B1/en active Active
- 2015-06-19 AU AU2015276978A patent/AU2015276978B2/en active Active
- 2015-06-19 IL IL287519A patent/IL287519B2/en unknown
- 2015-06-19 DK DK15738177.3T patent/DK3157956T3/da active
- 2015-06-19 CN CN201580033075.2A patent/CN106604635B/zh active Active
- 2015-06-19 JP JP2016573923A patent/JP6904707B2/ja active Active
- 2015-06-19 RS RS20200389A patent/RS60097B1/sr unknown
- 2015-06-19 ES ES15738177T patent/ES2783424T3/es active Active
- 2015-06-19 RU RU2016149434A patent/RU2735958C2/ru active
- 2015-06-19 CN CN201911291579.0A patent/CN110923256A/zh active Pending
- 2015-06-19 HU HUE15738177A patent/HUE048677T2/hu unknown
- 2015-06-19 BR BR112016029650A patent/BR112016029650A2/pt not_active IP Right Cessation
- 2015-06-19 SI SI201531158T patent/SI3157956T1/sl unknown
- 2015-06-19 WO PCT/US2015/036649 patent/WO2015196051A1/en active Application Filing
- 2015-06-19 SG SG10201811116UA patent/SG10201811116UA/en unknown
- 2015-06-19 SG SG11201609638RA patent/SG11201609638RA/en unknown
- 2015-06-19 LT LTEP15738177.3T patent/LT3157956T/lt unknown
- 2015-06-19 PL PL15738177T patent/PL3157956T3/pl unknown
- 2015-06-19 KR KR1020227045421A patent/KR102594863B1/ko active IP Right Grant
- 2015-06-19 PT PT157381773T patent/PT3157956T/pt unknown
-
2016
- 2016-11-23 IL IL249145A patent/IL249145B/en unknown
-
2018
- 2018-03-20 US US15/926,586 patent/US20180206462A1/en not_active Abandoned
-
2019
- 2019-11-04 US US16/673,119 patent/US11684050B2/en active Active
-
2020
- 2020-04-17 HR HRP20200613TT patent/HRP20200613T1/hr unknown
- 2020-04-22 CY CY20201100369T patent/CY1122940T1/el unknown
-
2021
- 2021-03-24 JP JP2021049567A patent/JP2021094035A/ja active Pending
- 2021-05-14 AU AU2021203100A patent/AU2021203100B2/en active Active
-
2023
- 2023-04-20 JP JP2023069178A patent/JP2023083469A/ja active Pending
- 2023-05-12 US US18/316,461 patent/US20240298619A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5670356A (en) | 1994-12-12 | 1997-09-23 | Promega Corporation | Modified luciferase |
US5874304A (en) | 1996-01-18 | 1999-02-23 | University Of Florida Research Foundation, Inc. | Humanized green fluorescent protein genes and methods |
WO2002036789A2 (en) * | 2000-10-31 | 2002-05-10 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US6586251B2 (en) | 2000-10-31 | 2003-07-01 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US7414171B2 (en) | 2000-11-15 | 2008-08-19 | Ono Pharmaceutical Co., Ltd. | PD-1-lacking mouse and use thereof |
EP1334659B1 (en) | 2000-11-15 | 2012-01-11 | Ono Pharmaceutical Co., Ltd. | Pd-1-lacking mouse and use thereof |
US7294754B2 (en) | 2004-10-19 | 2007-11-13 | Regeneron Pharmaceuticals, Inc. | Method for generating an animal homozygous for a genetic modification |
US8354389B2 (en) | 2009-08-14 | 2013-01-15 | Regeneron Pharmaceuticals, Inc. | miRNA-regulated differentiation-dependent self-deleting cassette |
US8518392B2 (en) | 2009-08-14 | 2013-08-27 | Regeneron Pharmaceuticals, Inc. | Promoter-regulated differentiation-dependent self-deleting cassette |
US8697851B2 (en) | 2009-08-14 | 2014-04-15 | Regeneron Pharmaceuticals, Inc. | MiRNA-regulated differentiation-dependent self-deleting cassette |
WO2013063361A1 (en) * | 2011-10-28 | 2013-05-02 | Regeneron Pharmaceuticals, Inc. | Genetically modified t cell receptor mice |
Non-Patent Citations (47)
Title |
---|
"MACVECTORTM 10.0.2", 2008, MACVECTOR INC. |
"Methods in Molecular Biology", vol. 132, 1999, HUMANA PRESS, article "Bioinformatics Methods and Protocols" |
ALTSCHUL ET AL., METHODS IN ENZYMOLOGY |
ALTSCHUL ET AL., METHODS IN ENZYMOLOGY, 1997 |
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
ALTSCHUL ET AL.: "Basic local alignment search tool", J. MOL. BIOL., vol. 215, no. 3, 1990, pages 403 - 410, XP002949123, DOI: doi:10.1006/jmbi.1990.9999 |
ALTSCHUL ET AL.: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NUCLEIC ACIDS RES., vol. 25, pages 3389 - 3402, XP002905950, DOI: doi:10.1093/nar/25.17.3389 |
ANNY DEVOY ET AL: "Genomically humanized mice: technologies and promises", NATURE REVIEWS GENETICS, vol. 13, 1 January 2012 (2012-01-01), pages 14 - 20, XP055126260 * |
AUERBACH, W. ET AL., BIOTECHNIQUES, vol. 29, no. 5, 2000, pages 1024 - 1028,1030,1032 |
AZZAZY H.; HIGHSMITH W. E., CLIN. BIOCHEM., vol. 35, 2002, pages 425 - 445 |
BAXEVANIS ET AL.: "Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins", 1998, WILEY |
CARTER, L.L. ET AL., J. NEUROIMMUNOL., vol. 182, 2007, pages 124 - 134 |
CARTER, L.L. ET AL., J. NEUROIMMUNOL., vol. 182, no. 1-2, 2007, pages 124 - 134 |
CHEN, L. ET AL., EUROP. SOC. ORGAN TRANSPLANT., vol. 21, 2007, pages 21 - 29 |
COLLINS, M. ET AL., GENOME BIOL., vol. 6, 2005, pages 223 |
ELENA BUROVA ET AL: "Abstract 266: Antitumor activity of REGN2810, a fully human anti-PD-1 monoclonal antibody, against MC38.Ova tumors grown in immune-competent humanized PD-1 mice", CANCER RESEARCH, vol. 75, no. 15 Suppl, 18 April 2015 (2015-04-18), XP055211538 * |
FESTING ET AL., MAMMALIAN GENOME, vol. 10, 1999, pages 836 |
GAVILONDO J. V.; LARRICK J. W., BIOTECHNIQUES, vol. 29, 2002, pages 128 - 145 |
GONNET ET AL.: "Exhaustive Matching of the Entire Protein Sequence Database", SCIENCE, vol. 256, 1992, pages 1443 - 45, XP008148163, DOI: doi:10.1126/science.1604319 |
HOOGENBOOM H. R., TIB TECH., vol. 15, 1997, pages 62 - 70 |
HOOGENBOOM H.; CHAMES P., IMMUNOLOGY TODAY, vol. 21, 2000, pages 371 - 378 |
ISHIDA, Y. ET AL., EMBO J., vol. 11, no. 11, 1992, pages 3887 - 3895 |
IWAI, Y. ET AL., INTERN. IMMUNOL., vol. 17, no. 2, 2004, pages 133 - 144 |
KEIR, M. E. ET AL., J. IMMUNOL., vol. 175, 2005, pages 7372 - 7379 |
KEIR, M. E. ET AL., J. IMMUNOL., vol. 179, 2007, pages 5064 - 5070 |
KEIR, M.E. ET AL., ANNU. REV. IMMUNOL., vol. 26, 2008, pages 677 - 704 |
KELLERMANN S-A.; GREEN L. L., CURRENT OPINION IN BIOTECHNOLOGY, vol. 13, 2002, pages 593 - 597 |
LEE, Y.H. ET AL., Z. RHEUMATOL. PMID, 2014, pages 24942602 |
LITTLE M. ET AL., IMMUNOLOGY TODAY, vol. 21, 2000, pages 364 - 370 |
MANSUR, A. ET AL., J. INVESTIG. MED., vol. 62, no. 3, 2014, pages 638 - 643 |
MARK SELBY, JOHN ENGELHARDT, LI-SHENG LU, MICHAEL QUIGLEY, CHANGYU WANG,BINGLIANG CHEN, ALAN J. KORMAN: "Abstract No. 3061 Antitumor activity of concurrent blockade of immune checkpoint moleculesCTLA-4 and PD-1 in preclinical models", J CLIN ONCOL, vol. 31 Suppl, 31 May 2013 (2013-05-31), XP002744200, Retrieved from the Internet <URL:http://meetinglibrary.asco.org/print/1156931> [retrieved on 20150908] * |
MURPHY, A.J. ET AL., PROC. NATL. ACAD. SCI. U. S. A., vol. 111, no. 14, 2014, pages 5153 - 5158 |
NASI, M. ET AL., INTERN. J. INFECT. DIS., vol. 17, 2013, pages E845 - E850 |
NIELSEN, C. ET AL., CELL. IMMUNOL., vol. 235, 2005, pages 109 - 116 |
NISHIMURA, H. ET AL., IMMUNITY, vol. 11, 1999, pages 141 - 151 |
NISHIMURA, H. ET AL., INTERN. IMMUNOL., vol. 10, no. 10, 1998, pages 1563 - 1572 |
NISHIMURA, H. ET AL., SCIENCE, vol. 291, 2001, pages 319 - 322 |
OKAZAKI, T. ET AL., J. EXP. MED., vol. 208, no. 2, 2011, pages 395 - 407 |
PEDOEEM, A. ET AL., CLIN. IMMUNOL., vol. 153, 2014, pages 145 - 152 |
PHILIPS, G.K.; ATKINS, M., INTERN. IMMUNOL., 2014, pages 8 |
PISKIN, I.E. ET AL., NEUROPEDIATRICS, vol. 44, no. 4, 2013, pages 187 - 190 |
POUEYMIROU ET AL., NATURE BIOTECH., vol. 25, no. 1, 2007, pages 91 - 99 |
TAYLOR, L. D. ET AL., NUCL. ACIDS RES., vol. 20, 1992, pages 6287 - 6295 |
VALENZUELA D M ET AL: "High-throughput engineering of the mouse genome coupled with high-resolution expression analysis", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, US, vol. 21, no. 6, 1 June 2003 (2003-06-01), pages 652 - 659, XP002735683, ISSN: 1087-0156, [retrieved on 20030505], DOI: 10.1038/NBT822 * |
VALENZUELA ET AL., NATURE BIOTECH., vol. 21, no. 6, 2003, pages 652 - 659 |
WAN, B. ET AL., J. IMMUNOL., vol. 177, no. 12, 2006, pages 8844 - 8850 |
YOSHIKO IWAI ET AL: "PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells.", INTERNATIONAL IMMUNOLOGY, vol. 17, no. 2, 1 February 2005 (2005-02-01), pages 133 - 44, XP055142463, ISSN: 0953-8178, DOI: dxh194 * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9920123B2 (en) | 2008-12-09 | 2018-03-20 | Genentech, Inc. | Anti-PD-L1 antibodies, compositions and articles of manufacture |
US9815897B2 (en) | 2013-05-02 | 2017-11-14 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
US10738117B2 (en) | 2013-05-02 | 2020-08-11 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
US11910788B2 (en) | 2014-12-05 | 2024-02-27 | Regeneron Pharmaceuticals, Inc. | Mouse having a humanized cluster of differentiation 47 gene |
US10015953B2 (en) | 2014-12-05 | 2018-07-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cluster of differentiation 47 gene |
US10939673B2 (en) | 2014-12-05 | 2021-03-09 | Regeneron Pharmaceuticals, Inc. | Method of using mouse having a humanized cluster of differentiation 47 gene |
EP3808775A1 (en) * | 2014-12-09 | 2021-04-21 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cluster of differentiation 274 gene |
US10881086B2 (en) | 2014-12-09 | 2021-01-05 | Regeneron Pharmaceuticals, Inc. | Genetically modified mouse whose genome comprises a humanized CD274 gene |
WO2016094481A1 (en) * | 2014-12-09 | 2016-06-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cluster of differentiation 274 gene |
US12089575B2 (en) | 2014-12-09 | 2024-09-17 | Regeneron Pharmaceuticals, Inc. | Genetically modified mouse that expresses humanized PD1 and PD-L1 proteins |
US9913461B2 (en) | 2014-12-09 | 2018-03-13 | Regeneron Pharmaceuticals, Inc. | Genetically modified mouse whose genome comprises a humanized CD274 gene |
KR20180083381A (ko) * | 2015-11-20 | 2018-07-20 | 리제너론 파마슈티칼스 인코포레이티드 | 인간화 림프구 활성화 유전자 3을 갖는 비인간 동물 |
KR102454546B1 (ko) | 2015-11-20 | 2022-10-14 | 리제너론 파마슈티칼스 인코포레이티드 | 인간화 림프구 활성화 유전자 3을 갖는 비인간 동물 |
US11102961B2 (en) | 2015-11-20 | 2021-08-31 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized lymphocyte-activation gene 3 |
US10306874B2 (en) | 2015-11-20 | 2019-06-04 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized lymphocyte-activation gene 3 |
US12096754B2 (en) | 2015-11-20 | 2024-09-24 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized lymphocyte-activation gene 3 |
WO2017087780A1 (en) | 2015-11-20 | 2017-05-26 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized lymphocyte-activation gene 3 |
CN108779159A (zh) * | 2016-02-04 | 2018-11-09 | 瑞泽恩制药公司 | 具有经改造的angptl8基因的非人动物 |
CN108779159B (zh) * | 2016-02-04 | 2022-12-30 | 瑞泽恩制药公司 | 具有经改造的angptl8基因的非人动物 |
US10582702B2 (en) | 2016-02-04 | 2020-03-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered ANGPTL8 gene |
RU2742354C2 (ru) * | 2016-02-04 | 2021-02-05 | Регенерон Фармасьютикалз, Инк. | Животные, отличные от человека, имеющие сконструированный ген angptl8 |
WO2017136712A1 (en) * | 2016-02-04 | 2017-08-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered angptl8 gene |
US10863729B2 (en) | 2016-02-29 | 2020-12-15 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
US10070631B2 (en) | 2016-02-29 | 2018-09-11 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
US11910787B2 (en) | 2016-02-29 | 2024-02-27 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
US10070632B2 (en) | 2016-02-29 | 2018-09-11 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
US11234420B2 (en) * | 2016-06-28 | 2022-02-01 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Method for constructing PD-1 gene modified humanized animal model and use thereof |
US10912287B2 (en) * | 2016-06-28 | 2021-02-09 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd | Genetically modified mice expressing humanized PD-1 |
WO2018001241A1 (zh) * | 2016-06-28 | 2018-01-04 | 北京百奥赛图基因生物技术有限公司 | 一种pd-1基因修饰人源化动物模型的构建方法及其应用 |
US20190343094A1 (en) * | 2016-06-28 | 2019-11-14 | Beijing Biocytogen Co., Ltd. | Method for Constructing PD-1 Gene Modified Humanized Animal Model and Use Thereof |
US10945418B2 (en) | 2016-08-31 | 2021-03-16 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric PD-L1 |
US11317611B2 (en) | 2016-08-31 | 2022-05-03 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric PD-L1 |
WO2018041118A1 (en) * | 2016-08-31 | 2018-03-08 | Beijing Biocytogen Co., Ltd | Genetically modified non-human animal with human or chimeric pd-l1 |
US11155624B2 (en) | 2016-11-01 | 2021-10-26 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
CN107828722B (zh) * | 2016-11-04 | 2021-07-23 | 北京泰盛生物科技有限公司 | 特异性表达pd-1的干细胞、其鉴定和分离方法及用途 |
CN107828722A (zh) * | 2016-11-04 | 2018-03-23 | 北京泰盛生物科技有限公司 | 特异性表达pd‑1的干细胞、其鉴定和分离方法及用途 |
US11407830B2 (en) | 2017-01-09 | 2022-08-09 | Tesaro, Inc. | Methods of treating cancer with anti-PD-1 antibodies |
US11272695B2 (en) | 2017-10-13 | 2022-03-15 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric PD-1 |
CN109452229B (zh) * | 2018-11-19 | 2021-10-22 | 百奥赛图(北京)医药科技股份有限公司 | 狗源化pd-1基因改造动物模型的制备方法及应用 |
WO2020103830A1 (en) * | 2018-11-19 | 2020-05-28 | Beijing Biocytogen Co., Ltd | Genetically modified animal with canine or chimeric pd-1 |
CN109452229A (zh) * | 2018-11-19 | 2019-03-12 | 北京百奥赛图基因生物技术有限公司 | 狗源化pd-1基因改造动物模型的制备方法及应用 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021203100B2 (en) | Non-human animals having a humanized programmed cell death 1 gene | |
US12089575B2 (en) | Genetically modified mouse that expresses humanized PD1 and PD-L1 proteins | |
NZ727157B2 (en) | Non-human animals having a humanized programmed cell death 1 gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15738177 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 249145 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2951278 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2015738177 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015738177 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016573923 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/016903 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20167035520 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015276978 Country of ref document: AU Date of ref document: 20150619 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016029650 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016149434 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016029650 Country of ref document: BR Kind code of ref document: A2 Effective date: 20161216 |