CN109136261B - 人源化cd28基因改造动物模型的制备方法及应用 - Google Patents

人源化cd28基因改造动物模型的制备方法及应用 Download PDF

Info

Publication number
CN109136261B
CN109136261B CN201810621710.4A CN201810621710A CN109136261B CN 109136261 B CN109136261 B CN 109136261B CN 201810621710 A CN201810621710 A CN 201810621710A CN 109136261 B CN109136261 B CN 109136261B
Authority
CN
China
Prior art keywords
gene
sequence
seq
chimeric
humanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810621710.4A
Other languages
English (en)
Other versions
CN109136261A (zh
Inventor
沈月雷
白阳
郭雅南
张美玲
黄蕤
尚诚彰
姚佳维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baccetus Beijing Pharmaceutical Technology Co ltd
Original Assignee
Baccetus Beijing Pharmaceutical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baccetus Beijing Pharmaceutical Technology Co ltd filed Critical Baccetus Beijing Pharmaceutical Technology Co ltd
Priority to PCT/CN2018/091846 priority Critical patent/WO2018233608A1/en
Publication of CN109136261A publication Critical patent/CN109136261A/zh
Priority to US16/435,441 priority patent/US11350614B2/en
Application granted granted Critical
Publication of CN109136261B publication Critical patent/CN109136261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70521CD28, CD152
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Humanized animals, e.g. knockin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases
    • C12N2015/8572Animal models for proliferative diseases, e.g. comprising an oncogene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

本发明公开了一种CD28基因人源化动物模型构建的方法及应用。本发明还保护一种能够特异的靶向Cd28基因的sgRNA序列、一种制备多基因人源化动物模型的方法以及相关应用。本发明提供了一种适合人源细胞或组织移植的工具小鼠,一种新的人源化动物模型制备方法,有利于相关疾病的研究,为生物医学实验的开展提供了有效的技术手段。本发明还涉及人源化基因改造非人动物,特别是基因改造啮齿动物,但尤其是基因改造小鼠,具体涉及人源化CD28基因动物模型的构建方法及其在生物医药领域的应用。

Description

人源化CD28基因改造动物模型的制备方法及应用
技术领域
本申请涉及人源化基因改造动物模型的建立方法及应用,具体而言,涉及基于一种人源化CD28基因改造动物模型的构建方法及其在生物医药的应用。
背景技术
实验动物疾病模型对于研究人类疾病发生的病因、发病机制、开发防治技术和开发药物是不可缺少的研究工具。但由于动物与人类的生理结构和代谢系统本身的差异,传统的动物模型并不能很好的反映人体的真实状况,在动物体内建立更接近人类的生理特征的疾病模型是生物医药行业的迫切需求。
随着基因工程技术的不断发展和成熟,用人类基因替代或置换动物的同源基因已经实现,通过这种方式开发人源化动物模型(humanized animal model)是动物模型未来的重要发展方向。其中基因人源化动物模型,即利用基因编辑技术,用人源正常或突变基因序列替换动物基因组的同源基因序列,可建立更接近人类生理或疾病特征的正常或突变基因动物模型。基因人源化动物不但本身具有重要应用价值,如通过基因人源化可改进和提升异种细胞或组织移植生长的效率,更重要的是,由于人类基因片段的插入,动物体内可表达部分或全部人源蛋白,可作为识别人蛋白序列的药物的靶点,为在动物水平进行抗人抗体及其它药物的筛选提供了可能。然而,由于动物与人类在生理学及病理学方面存在差异,加上基因(即遗传因子)的复杂性,如何能构建出“有效”的人源化动物模型用于新药研发仍是最大的挑战(Scheer N et al.Drug Discov Today.2013Dec;18(23-24):1200-11)。
免疫疗法通过激活免疫系统攻击并杀死癌细胞,是近年来肿瘤治疗研究的一个重要领域。目前和肿瘤免疫治疗相关的一些药物已经用于治疗,已有药品上市并应用在多个适应症,如靶向T细胞共刺激分子CTLA-4、PD-1及其配体的单克隆抗体已经取得确切疗效,但病人的平均应答率较低,随着研究的不断深入,已明确单一的免疫治疗策略治疗效果有限,在临床中一般需要结合两种或多种免疫治疗手段进行。开发更多可以用于提高免疫系统对肿瘤识别及杀伤能力的药物一直是免疫学研究的热点之一。
CD28分子一种I型跨膜二聚体糖蛋白,属于免疫球蛋白超家族成员,由胞外IgV区、穿膜功能区和胞浆功能区组成,人外周血中表达在95%的CD4+和近50%的CD8+T细胞上,在小鼠和大鼠中可表达于全部的T淋巴细胞上,被认为是T细胞特有的一种表面分子。
CD28与T细胞表面的协同抑制性分子受体CD152(CTLA-4)高度同源,通过与相同的配体B7家族分子(CD86,又称B7-2和CD80,又称B7-1)竞争性的结合,传导T细胞激活所必需的共刺激信号。已知宿主防御病毒感染和抗肿瘤中发挥关键性作用的是活化的T细胞。T细胞活化的双信号观点认为,第一信号来自由T细胞表面的TCR识别的MHC/抗原肽复合物,第二信号来自抗原呈递细胞表面表达的B7家族分子与T细胞表面CD28的结合。第一信号和第二信号同时存在时T细胞克隆活化并增殖,产生免疫效应。因此,CD28/B7信号对于免疫应答的启动具有相当重要的作用。已有研究表明,T/APC细胞接触时,CD28与lck,CD3,TCR及某些细胞表面的分子结合形成超分子复合物,并通过使ITAM磷酸化,从而刺激TCR相关的下游信号,最终激活T细胞,而CD28/B7共刺激信号缺陷将导致T细胞无应答,甚至进入死亡程序。
尽管CD28及其家族成员和配体对T细胞活化具有关键作用,但CD28还有许多其他的功能,如CD28能调节并维持适量的、有功能性的T细胞存活,保证特异的免疫应答;同时,通过细胞因子的平衡和激活CTLA-4,维持免疫的平衡和稳定,且CD28生物学的许多其他方面尚不清楚(Immunity.2016May17;44(5):973-88.doi:10.1016)。已有研究表明,阻断CD28/B7信号通路可以诱导耐受性,且与CD40/CD40L通路的阻断相结合时,同种异体移植物的存活率显著提高。而保持CD28/B7信号的激活则对于T细胞功能的激活、调节至关重要。目前,阻断PD-1通路的免疫检查点抑制剂已经被批准用来治疗黑色素瘤、肺癌和几种其它的癌症,且非常成功,但临床中发现很多病人的肿瘤并不对这些抑制剂作出反应,研究表明CD28/B7信号可能在实现PD-1治疗的有效性中具有重要作用(Kamphorst AO etal.Science.2017Mar 31;355(6332):1423-1427;Cancer Discov May 1 2017(7)(5)453;Clouthier DL,Ohashi PS,Science.2017Mar31;355(6332):1373-1374)。
针对CD28靶点的药物,目前仅有百时美施贵宝(BMS)公司的抑制性抗体Abatacept及较高亲和力的Belatacept获批上市,其适应症分别为抗风湿性关节炎和预防肾移植排异反应。这两种抗体区别仅有两个氨基酸不同,属于免疫球蛋白超家族成员,均为可溶性重组融合蛋白,由人细胞毒T淋巴细胞相关抗原-4(CTLA-4)的胞外区和人IgG1的Fc片段组成,可结合至抗原-提呈细胞上的CD80和CD86,从而阻断CD28介导T细胞的共刺激作用。目前还有部分在研抑制性药物,如CD28多肽类似物p2TA(AB103)、单价聚乙二醇化Fab'Ab(FR104)均显示出非常好的安全性和有效性(PLoS One.2014;9(7):e101161;J Immunol.2016Dec 15;197(12):4593-4602)。
CD28抗体可促进移植耐受,但却显示有严重的毒性。2006年德国生物技术公司TeGenero研发的CD28激动剂TGN1412,在首次临床实验时,施用的剂量比动物安全剂量低约500倍,却意外引发了所有6名健康受试者体内严重的细胞因子风暴。TGN1412随后被Theramab公司收购后重新命名为TAB08,并以首次临床使用剂量的0.1%试用并完成了部分I期临床,目前仍处于临床研究阶段。GN1412事件的调查结果表明临床前试验或药物制造中没有缺陷,而是临床试验本身可能存在风险。因此,开发更多可模拟人类进行药物研发的动物模型将极大的有助于降低这类风险(H Attarwala,J Young Pharm.2010Jul-Sep;2(3):332–336;Immunity.2016May 17;44(5):973-88)。
目前已有与Cd28相关的动物模型主要是Cd28基因敲除小鼠,主要应用于Cd28基因的生物学功能(基因型、功能、调控)及相关疾病机制研究。如Shahinian(1993年)、Lucas等人(1995年)分别通过传统的胚胎干细胞重组的方法破坏小鼠体内Cd28基因的2号外显子,得到的Cd28基因敲除小鼠T细胞发育正常,有细胞毒性,但Th细胞功能降低,且不产生IL-2,表明可能存在另外的共刺激途径(Science.1993Jul 30;261(5121):609-12,JImmunol.1995Jun1;154(11):5757-68)。Deborah J Lenschow等人(1996年)将Cd28基因敲除小鼠与NOD鼠交配后,回交4代,得到NOD背景的Cd28基因敲除小鼠,发现通过调节Th1和Th2T细胞亚群的平衡,CD28信号通路可以控制NOD小鼠自身免疫性糖尿病的发展和进展。Mandelbrot等人(2001年)制备了Cd28与Ctla4双敲小鼠,发现该小鼠与Cd28敲除小鼠类似,表现出体外T细胞活化标记物表达降低、T细胞增殖减少,且可能存在第三种B7分子受体(JClin Invest.2001Apr;107(7):881-7.)。
在CD28靶点相关药物研发过程中,由于啮齿类如小鼠的Cd28蛋白与人CD28蛋白在氨基酸序列上同源性为68%左右,所以,一般情况下识别人CD28蛋白的抗体,无法识别小鼠Cd28,即无法用普通小鼠来筛选和评价靶向人源CD28药物的药效。目前研究靶向药物药效广泛使用的是人源肿瘤异体移植小鼠模型,但该类模型在特定靶点研究中的靶向性和特异性不强,因此这类模型研究药效的结果准确性不高。
鉴于CD28基因在肿瘤和免疫治疗领域具有巨大应用价值,为了进一步的研究CD28相关的生物学特性,提高临床前期的药效试验的有效性,提高研发成功率,本发明在世界范围内提供一种建立CD28基因人源化改造动物模型的新方法,并得到CD28基因人源化动物。具体来说,本发明的目的是制备一种非人动物模型,该动物体内可正常表达CD28蛋白,且表达的CD28蛋白能被识别并结合抗人CD28的抗体,该方法在药物筛选、有效性验证等方面有着广阔的应用前景。此外,本方法得到的非人动物还可与其它免疫检查点人源化非人动物,如B-hPD-1小鼠交配得到CD28和PD-1双基因人源化动物模型,用于筛选和评估针对该信号通路的人用药及联合用药的药效研究。
发明内容
本发明第一方面,涉及一种人源化动物模型构建的方法,所述人源化动物模型基因组中包括人CD28基因,该人源化动物模型体内可表达人或人源化CD28蛋白,同时内源CD28的蛋白表达降低或缺失。
优选的,所述人源化动物模型基因组中包括嵌合CD28基因,所述嵌合CD28基因编码人源化CD28蛋白,所述人源化CD28蛋白的组成包括胞外区、跨膜区以及胞内参与信号传导的区域,其中所述嵌合CD28基因编码的胞内参与信号传导的部分为动物来源,所述嵌合CD28基因编码的胞外区域包含人CD28蛋白胞外域的全部或部分片段,同时该动物来源部分和人源部分通过序列拼接连接于动物模型内源的Cd28启动子后;优选的,所述嵌合CD28基因的跨膜区为动物来源。
在本发明的一个实施例中,动物来源部分包括Cd28基因的1号外显子全部序列、2号外显子部分序列、3号外显子部分序列及其后所有外显子的全部序列;和/或所述人CD28基因部分为2号外显子和/或3号外显子的部分序列。
优选的,使用基因编辑技术进行CD28人源化动物模型的构建,所述基因编辑技术包括基于胚胎干细胞的DNA同源重组技术、CRISPR/Cas9技术、锌指核酸酶技术、转录激活子样效应因子核酸酶技术、归巢核酸内切酶或其他分子生物学技术;优选的,使用基于CRISPR/Cas9的基因编辑技术进行CD28人源化动物的构建。
进一步优选的,将动物来源的Cd28的2号外显子和/或3号外显子全部或部分序列替换为人源CD28的2号外显子和/或3号外显子全部或部分序列,其中,使用sgRNA靶向的5’端靶位点序列如SEQ ID NO:1-12任一项所示,3’端靶位点序列如SEQ ID NO:13-20任一项所示;优选的,使用的sgRNA靶位点序列为SEQ ID NO:4和/或SEQ ID NO:17。
优选的,所述人源化CD28蛋白为嵌合CD28蛋白,所述的嵌合CD28蛋白包括胞外区、跨膜区以及胞内参与信号传导的区域,其中所述胞内参与信号传导的部分为动物来源,所述胞外区域包含人CD28蛋白的全部或部分片段,所述跨膜区为动物来源;
进一步优选的,所述的嵌合CD28蛋白选自下列组中的一种:
a)嵌合CD28蛋白序列为SEQ ID NO:33所述氨基酸序列的部分或全部;
b)嵌合CD28蛋白序列与SEQ ID NO:33所示氨基酸的序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
c)编码嵌合CD28蛋白的核酸序列在严格条件下,与编码SEQ ID NO:33所示蛋白的核苷酸序列杂交;
d)嵌合CD28蛋白序列与SEQ ID NO:33所示的氨基酸的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个氨基酸;
e)嵌合CD28蛋白序列具有SEQ ID NO:33所示的,包括取代、缺失和/或插入一个或多个氨基酸残基的氨基酸序列。
进一步优选的,所述人源化动物模型基因组中包括嵌合CD28基因,所述嵌合CD28基因编码权利要求7所述的嵌合CD28蛋白,或所述的嵌合CD28基因选自下列组中的一种:
a)嵌合CD28基因为SEQ ID NO:30所示的序列的部分或全部;
b)嵌合CD28基因的CDS序列为SEQ ID NO:31所示的序列的部分或全部;
c)嵌合CD28基因的mRNA序列为SEQ ID NO:32所示的序列的部分或全部;
d)嵌合CD28基因序列与SEQ ID NO:30、SEQ ID NO:31或SEQ ID NO:32所示的核苷酸序列的部分或全部的同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
e)嵌合CD28基因的序列在严格条件下,与SEQ ID NO:30、SEQ ID NO:31或SEQ IDNO:32所示的核苷酸序列杂交;
f)嵌合CD28基因的序列与SEQ ID NO:30、SEQ ID NO:31或SEQ ID NO:32所示的核苷酸序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
g)嵌合CD28基因序列具有SEQ ID NO:30、SEQ ID NO:31或SEQ ID NO:32所示的核苷酸序列所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列;
h)嵌合CD28基因中来源于人CD28基因的部分为SEQ ID NO:35所示的序列的部分或全部;
i)嵌合CD28基因中来源于人CD28基因的部分为与SEQ ID NO:35所示的核苷酸序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
j)嵌合CD28基因中来源于人CD28基因的部分在严格条件下,与SEQ ID NO:35所示的核苷酸序列杂交;
k)嵌合CD28基因中来源于人CD28基因的部分为与SEQ ID NO:35所示的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
l)嵌合CD28基因中来源于人CD28基因的部分为具有SEQ ID NO:35所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列。在本发明的一个实施例中,所述动物来源的Cd28基因为啮齿类动物来源的Cd28基因,优选的,所述啮齿类动物为小鼠,所述小鼠Cd28的mRNA序列的全部或部分片段如SEQ ID NO:26中的全部或部分片段所示,所述小鼠Cd28的蛋白序列的全部或部分片段如SEQ ID NO:27中的全部或部分片段所示。
在本发明的另一个实施例中,所述人CD28基因的全部或部分片段的人CD28mRNA序列如SEQ ID NO:28中的全部或部分片段所示,所述人CD28全部或部分片段的蛋白序列如SEQ ID NO:29中的全部或部分片段所示。
本发明的第二方面,涉及一种上述的方法构建的人源化动物模型或其后代,所述的人源化动物模型或其后代表达嵌合CD28蛋白。
优选的,将动物来源的Cd28的2号外显子和/或3号外显子全部或部分序列替换为人源CD28的2号外显子和/或3号外显子全部或部分序列,其中,使用sgRNA靶向的5’端靶位点序列如SEQ ID NO:1-12任一项所示,3’端靶位点序列如SEQ ID NO:13-20任一项所示。优选的,使用的sgRNA靶位点序列为SEQ ID NO:4和/或SEQ ID NO:17。
本发明的第三方面,涉及一种CD28敲除动物模型构建的方法,具体为将动物体内的Cd28的2号外显子和/或3号外显子全部或部分敲除,使得内源Cd28蛋白失活;其中,使用sgRNA靶向的5’端靶位点如SEQ ID NO:1-12任一项所示,3’端靶位点的序列如SEQ ID NO:13-20任一项所示;优选的,使用的sgRNA靶位点序列为SEQ ID NO:4和/或SEQ ID NO:17。
本发明的第四方面,涉及一种能够特异的靶向CD28基因的sgRNA序列,所述sgRNA序列靶向的5’端靶位点的序列如SEQ ID NO:1-12任一项所示,sgRNA靶向的3’端靶位点的序列如SEQ ID NO:13-20任一项所示;优选的,sgRNA靶向的5’端靶位点的序列如SEQ IDNO:4所示,sgRNA靶向的3’端靶位点的序列如SEQ ID NO:17所示。
本发明的第五方面,涉及一种编码上述所述sgRNA的DNA分子;优选的,DNA双链序列分别如SEQ ID NO:21和SEQ ID NO:22,或SEQ ID NO:23和SEQ ID NO:24所示。
本发明的第六方面,涉及一种构建动物模型的载体,所述载体能够产生上述的sgRNA序列,用于敲除或替换Cd28基因的2号外显子和/或3号外显子的部分或全部。
本发明的第七方面,涉及一种制备sgRNA载体的方法,包括以下步骤:
(1)将序列如SEQ ID NO:1-12所示的任一项sgRNA靶序列和/或SEQ ID NO:13-20所示的任一项sgRNA靶序列,制备获得正向寡核苷酸序列和反向寡核苷酸序列;
优选的,所述sgRNA靶序列为SEQ ID NO:4和SEQ ID NO:17,获得的正向寡核苷酸序列如SEQ ID NO:21或SEQ ID NO:23所示;反向寡核苷酸序列如SEQ ID NO:22或SEQ IDNO:24所示,其中SEQ ID NO:21和SEQ ID NO:22为A组,SEQ ID NO:23和SEQ ID NO:24为B组;
(2)合成含有T7启动子及sgRNA scaffold的片段DNA,其中含有T7启动子及sgRNAscaffold的片段DNA如SEQ ID NO:25所示,将上述片段依次通过EcoRI和BamHI酶切连接至骨架载体pHSG299上,经测序验证,获得pT7-sgRNAG2载体;
(3)分别合成步骤1中所述的正向寡核苷酸和反向寡核苷酸,优选为A组和B组中的正向寡核苷酸和反向寡核苷酸,将合成的sgRNA寡聚核苷酸变性、退火,形成可以连入步骤2所述的pT7-sgRNAG2载体的双链;
(4)将步骤3中退火的双链sgRNA寡聚核苷酸分别与pT7-sgRNAG2载体进行链接,筛选获得sgRNA载体。
本发明的第八方面,涉及一种Cd28基因敲除动物模型的制备方法,包括以下步骤:
第一步:按照上述制备sgRNA载体的方法步骤1-4,获得sgRNA载体;
第二步:将sgRNA载体的体外转录产物和Cas9mRNA进行混合,获得混合液,将混合液注射至小鼠受精卵细胞质或细胞核中,将注射后的受精卵转移至培养液中进行培养,然后移植至受体母鼠的输卵管中发育,得到F0代小鼠;
第三步:将F0代小鼠利用PCR技术进行检验,验证细胞中的CD28基因被敲除,获得CD28基因敲除阳性小鼠;
第四步:将第三步筛选的阳性小鼠通过杂交和自交的方式,扩大种群数量,建立稳定的CD28-/-小鼠;
优选的,所述第三步中使用的PCR检测引物对序列如SEQ ID NO:48和SEQ ID NO:49所示。
本发明的第九方面,涉及一种人源化动物模型的制备方法,包括以下步骤:
第一步:按照上述制备sgRNA载体的方法步骤1-4,获得sgRNA载体;
第二步:将sgRNA载体的体外转录产物、上述的靶向载体和Cas9mRNA进行混合,将混合液注射至动物受精卵细胞质或细胞核中,将注射后的受精卵转移至培养液中进行培养,然后移植至受体动物的输卵管中发育,得到F0代动物;
第三步:将F0代动物利用PCR技术进行检验,验证细胞中的CD28基因改造嵌合动物;优选的,所述第三步中使用的PCR检测的5'端引物对如SEQ ID NO:44和SEQ ID NO:45所示;3'端引物对如SEQ ID NO:46和SEQ ID NO:47所示。
优选的,本发明所述的方法中,涉及的动物为非人类哺乳动物。更优选的,本发明所述的方法中,涉及的动物为啮齿类动物。进一步优选的,本发明所述的方法中,涉及的动物为小鼠。
本发明的第十方面,涉及一种靶向载体,其包含:a)与待改变的转换区5’端同源的DNA片段,即5’臂,其选自CD28基因基因组DNA的100-10000个长度的核苷酸;b)插入或替换的供体DNA序列,其编码供体转换区;和c)与待改变的转换区3’端同源的第二个DNA片段,即3’臂,其选自CD28基因基因组DNA的100-10000个长度的核苷酸。
在本发明的一个实施例中涉及的靶向载体,a)与待改变的转换区5’端同源的DNA片段,即5’臂,其选自与NCBI登录号为NC_000067.6至少具有90%同源性的核苷酸;c)与待改变的转换区3’端同源的第二个DNA片段,即3’臂,其选自NCBI登录号为NC_000067.6至少具有90%同源性的核苷酸。
在本发明的一个实施例中涉及的靶向载体,其中a)与待改变的转换区5’端同源的DNA片段,即5’臂,其选自如NCBI登录号为NC_000067.6的第60761678-60763007位核苷酸;c)与待改变的转换区3’端同源的第二个DNA片段即3’臂,其选自如所示的NCBI登录号为NC_000067.6的第60765309-60766648位核苷酸。
在本发明的一个实施例中涉及的靶向载体,所述的待改变的转换区位于CD28基因的第2外显子和/或第3外显子。
在本发明的一个实施例中涉及的靶向载体,所述5’臂序列如SEQ ID NO:34所示。
在本发明的一个实施例中涉及的靶向载体,所述3’臂序列如SEQ ID NO:36所示。
在本发明的一个实施例中涉及的靶向载体,所述靶向载体还包括可选择的基因标记。
优选的,所述标记基因为负筛选标记的编码基因。进一步优选的,所述负筛选标记的编码基因为白喉毒素A亚基的编码基因(DTA)。
优选的,所述靶向载体还包括阳性克隆筛选的抗性基因。进一步优选的,所述阳性克隆筛选的抗性基因为新霉素磷酸转移酶编码序列Neo。
优选的,所述靶向载体还包括特异性重组系统。进一步优选的,所述特异性重组系统为Frt重组位点(也可选择常规的LoxP重组系统)。所述的特异性重组系统为2个,分别装在抗性基因的两侧。
在本发明的一个实施例中涉及的靶向载体,其中替换的供体DNA序列片段来自人。
在本发明的一个实施例中涉及的靶向载体,其中替换的供体DNA序列为人CD28基因的核苷酸序列部分或全部。
在本发明的一个实施例中涉及的靶向载体,所述核苷酸序列包括人CD28基因DNA序列的2号外显子和/或3号外显子的全部或部分。
在本发明的一个实施例中涉及的靶向载体,所述人CD28基因的核苷酸序列选自NCBI登录号为NC_000002.12的第203726662-203729688位核苷酸。
在本发明的一个实施例中涉及的靶向载体,所述人源CD28的核苷酸序列如SEQ IDNO:35所示。
本发明的第十一方面,涉及一种上述的靶向载体、上述的sgRNA序列或上述的载体在敲除或替换Cd28基因的2号外显子和/或3号外显子的部分或全部中的应用。
在本发明的一个实施例中,涉及非人类哺乳动物,其是啮齿类动物。
在本发明的一个实施例中,涉及的啮齿类动物是小鼠。
在本发明的一个实施例中,涉及的小鼠为C57BL/6或BALB/c小鼠。
在本发明的一个实施例中,涉及的非人类哺乳动物,所述小鼠为C57BL/6或BALB/c小鼠的后代。
本发明的第十二方面,涉及一种Cd28基因缺失细胞株,使用上述能够特异的靶向Cd28基因的sgRNA序列、上述的DNA分子敲除2号外显子和/或3号外显子的部分或全部制备获得。
本发明的第十三方面,涉及一种CD28基因人源化细胞株,所述人源化细胞株基因组中包括人CD28基因,该人源化细胞株可表达人或人源化CD28蛋白,同时内源CD28的蛋白表达降低或缺失。
优选的,使用上述能够特异的靶向Cd28基因的sgRNA、上述的DNA分子、上述的载体通过对第2位外显子和/或第3位外显子的部分或全部进行替换制备获得。
本发明的第十四方面,涉及一种制备多基因人源化动物模型的方法,
(a)利用本发明所述方法获得动物模型;
(b)将步骤(a)获得的动物模型与其他人源化动物交配或直接进行基因编辑,并进行筛选,得到多基因人源化动物模型。
在本发明的一个实施例中,所述多基因人源化动物可以是双基因人源化动物、三基因人源化动物、四基因人源化动物、五基因人源化动物、六基因人源化动物、七基因人源化动物、八基因人源化动物或九基因人源化动物。
本发明的第十五方面,涉及一种上述制备多基因人源化动物模型的方法制备获得的多基因人源化动物模型或其后代;所述的多基因人源化动物模型Cd28基因座处与Cd28启动子可操作连接的编码人CD28的核酸,和所述多基因人源化动物模型基因组中还包括其他人源化基因,所述其他人源化基因选自PD-1、PD-L1、CTLA-4、LAG-3、BTLA、CD27、CD40、CD47、CD137、CD154、OX40、SIRPα、TIGIT、TIM-3或GITR中的一种或两种以上的组合。
优选的,所述动物模型为非人类哺乳动物;进一步优选的,所述动物模型为啮齿动物;再进一步优选的,所述动物模型为小鼠。
本发明的第十六方面,涉及一种荷瘤动物模型,所述荷瘤动物模型是通过本发明所述的方法制备获得的;优选的,所述荷瘤嵌合动物是啮齿动物;更优选的,所述荷瘤嵌合动物是小鼠。
本发明的第十七方面,涉及一种细胞或细胞系或原代细胞培养物,所述细胞或细胞系或原代细胞培养物来源于上述的人源化动物模型或其后代、上述的多基因人源化动物模型或其后代或上述的荷瘤动物模型。
本发明的第十八方面,涉及一种组织或器官或其培养物,所述的组织或器官或其培养物来源于上述的人源化动物模型或其后代、上述的多基因人源化动物模型或其后代或上述的荷瘤动物模型。
本发明的第十九方面,涉及一种荷瘤后的瘤组织,所述的荷瘤后的瘤组织来源于上述的人源化动物模型或其后代、上述的多基因人源化动物模型或其后代或上述的荷瘤动物模型。
本发明的第二十方面,涉及一种嵌合CD28蛋白,所述的嵌合CD28蛋白包括胞外区、跨膜区以及胞内参与信号传导的区域,其中所述胞内参与信号传导的部分为动物来源,所述胞外区域包含人CD28蛋白的全部或部分片段;优选的,所述跨膜区为动物来源。
优选的,所述的嵌合CD28蛋白选自下列组中的一种:
a)嵌合CD28蛋白序列为SEQ ID NO:33所述氨基酸序列的部分或全部;
b)嵌合CD28蛋白序列与SEQ ID NO:33所示氨基酸的序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
c)编码嵌合CD28蛋白的核酸序列在严格条件下,与编码SEQ ID NO:33所示蛋白的核苷酸序列杂交;
d)嵌合CD28蛋白序列与SEQ ID NO:33所示的氨基酸的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个氨基酸;
e)嵌合CD28蛋白序列具有SEQ ID NO:33所示的,包括取代、缺失和/或插入一个或多个氨基酸残基的氨基酸序列。
在本发明的一个具体实施方式中,所述的嵌合CD28蛋白选自下列组中的一种:
a)嵌合CD28蛋白序列中编码人CD28蛋白的mRNA序列如SEQ ID NO:28所示的序列的部分或全部所示;
b)嵌合CD28蛋白序列中编码人CD28蛋白的mRNA序列与SEQ ID NO:28所示的序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
c)嵌合CD28蛋白序列中编码人CD28蛋白的mRNA序列与SEQ ID NO:28所示的核苷酸序列杂交;
d)嵌合CD28蛋白序列中编码人CD28蛋白的mRNA序列与SEQ ID NO:28所示的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
e)嵌合CD28蛋白序列中编码人CD28蛋白的mRNA序列具有与SEQ ID NO:28所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列;
f)嵌合CD28蛋白序列中人CD28的蛋白序列如SEQ ID NO:29部分或全部序列所示;
g)嵌合CD28蛋白序列中人CD28的蛋白序列与SEQ ID NO:29所示氨基酸的序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
h)嵌合CD28蛋白序列中编码人CD28的蛋白序列的核酸序列在严格条件下,与编码SEQ ID NO:29所示的蛋白序列的核苷酸序列杂交;
i)嵌合CD28蛋白序列中人CD28的蛋白序列与SEQ ID NO:29所示的氨基酸的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个氨基酸;
g)嵌合CD28蛋白序列中人CD28的蛋白序列具有SEQ ID NO:29所示的,包括取代、缺失和/或插入一个或多个氨基酸残基的氨基酸序列;
k)嵌合CD28蛋白中编码人CD28蛋白的核苷酸序列为SEQ ID NO:35所示的序列的部分或全部;
l)嵌合CD28蛋白中编码人CD28蛋白的核苷酸序列与SEQ ID NO:35所示的核苷酸序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
m)嵌合CD28蛋白中编码人CD28蛋白的核苷酸序列在严格条件下,与编码SEQ IDNO:35所示的核苷酸序列杂交;
n)嵌合CD28蛋白中编码人CD28蛋白的核苷酸序列与SEQ ID NO:35所示的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
p)嵌合CD28蛋白中编码人CD28蛋白的核苷酸序列具有SEQ ID NO:35所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列;
q)嵌合CD28的嵌合mRNA序列为SEQ ID NO:32所示的序列的部分或全部;
r)嵌合CD28的嵌合mRNA序列与SEQ ID NO:32所示的序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
s)嵌合CD28的嵌合mRNA序列与SEQ ID NO:32所示的核苷酸序列杂交;
t)嵌合CD28的嵌合mRNA序列与SEQ ID NO:32所示的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
u)嵌合CD28的嵌合mRNA序列具有与SEQ ID NO:32所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列;
v)嵌合CD28蛋白中编码嵌合CD28蛋白的核苷酸的部分序列为SEQ ID NO:30所示的序列的部分或全部;
w)嵌合CD28蛋白中编码嵌合CD28蛋白的核苷酸部分序列与SEQ ID NO:30所示的核苷酸序列的部分或全部的同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
x)嵌合CD28蛋白中编码嵌合CD28蛋白的核苷酸部分序列在严格条件下,与编码SEQ ID NO:30所示的核苷酸序列杂交;
y)嵌合CD28蛋白中编码嵌合CD28蛋白的核苷酸部分序列与SEQ ID NO:30所示的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
z)嵌合CD28蛋白中编码嵌合CD28蛋白的核苷酸部分序列具有SEQ ID NO:30所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列。
本发明的第二十一方面,涉及一种表达上述人源化小鼠嵌合CD28蛋白的DNA。
本发明的第二十二方面,涉及一种编码上述嵌合CD28蛋白的嵌合CD28基因,其中所述的嵌合CD28基因序列选自下列组中的一种:
a)嵌合CD28基因为SEQ ID NO:30所示的序列的部分或全部;
b)嵌合CD28基因的CDS序列为SEQ ID NO:31所示的序列的部分或全部;
c)嵌合CD28基因的mRNA序列为SEQ ID NO:32所示的序列的部分或全部;
d)嵌合CD28基因序列与SEQ ID NO:30、SEQ ID NO:31或SEQ ID NO:32所示的核苷酸序列的部分或全部的同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
e)嵌合CD28基因的序列在严格条件下,与SEQ ID NO:30、SEQ ID NO:31或SEQ IDNO:32所示的核苷酸序列杂交;
f)嵌合CD28基因的序列与SEQ ID NO:30、SEQ ID NO:31或SEQ ID NO:32所示的核苷酸序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
g)嵌合CD28基因序列具有SEQ ID NO:30、SEQ ID NO:31或SEQ ID NO:32所示的核苷酸序列所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列;
h)嵌合CD28基因中来源于人CD28基因的部分为SEQ ID NO:35所示的序列的部分或全部;
i)嵌合CD28基因中来源于人CD28基因的部分为与SEQ ID NO:35所示的核苷酸序列同一性程度为至少大约为90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%;
j)嵌合CD28基因中来源于人CD28基因的部分在严格条件下,与SEQ ID NO:35所示的核苷酸序列杂交;
k)嵌合CD28基因中来源于人CD28基因的部分为与SEQ ID NO:35所示的序列差异不超过10、9、8、7、6、5、4、3、2或不超过1个核苷酸;
l)嵌合CD28基因中来源于人CD28基因的部分为具有SEQ ID NO:35所示的,包括取代、缺失和/或插入一个或多个核苷酸的核苷酸序列。优选的,其中嵌合小鼠CD28DNA的非模板链、编码链或有义链包含序列SEQ ID NO:30;进一步优选的,人源化小鼠CD28的基因组DNA,所述基因组DNA序列转录获得的mRNA逆转录后得到的DNA序列,与上述任意一项所述的DNA或基因序列一致或互补。
本发明的第二十三方面,涉及一种表达上述人源化小鼠嵌合CD28蛋白的构建体。
本发明的第二十四方面,涉及一种包含上述构建体的细胞。
本发明的第二十五方面,涉及一种包含上述细胞的组织。
本发明的第二十六方面,涉及上述的人源化动物模型或其后代、上述的多基因人源化动物模型或其后代或上述的荷瘤动物模型在需要涉及人类细胞的免疫过程的产品开发,制造人类抗体,或者作为药理学、免疫学、微生物学和医学研究的模型系统中的应用。
本发明的第二十七方面,涉及上述的人源化动物模型或其后代、上述的多基因人源化动物模型或其后代或上述的荷瘤动物模型在生产和利用动物实验疾病模型,用于病原学研究和/或用于开发新的诊断策略和/或治疗策略中的应用。
本发明的第二十八方面,涉及上述的人源化动物模型或其后代、上述的多基因人源化动物模型或其后代或上述的荷瘤动物模型在筛选、验证、评价或研究CD28基因功能、CD28抗体、针对CD28靶位点的药物、药效研究,免疫相关疾病药物以及抗肿瘤药物,筛选和评估人用药及药效研究方面的用途。
本发明所述“治疗(treating)”(或“治疗(treat)”或“治疗(treatment)”)表示减缓、中断、阻止、控制、停止、减轻、或逆转一种体征、症状、失调、病症、或疾病的进展或严重性,但不一定涉及所有疾病相关体征、症状、病症、或失调的完全消除。术语“治疗(treating)”等是指在疾病已开始发展后改善疾病或病理状态的体征、症状等等的治疗干预。
本发明所述“同源性”,是指在使用蛋白序列或核苷酸序列的方面,本领域技术人员可以根据实际工作需要对序列进行调整,使使用序列与现有技术获得的序列相比,具有(包括但不限于)1%,2%,3%,4%,5%,6%,7%,8%,9%,10%,11%,12%,13%,14%,15%,16%,17%,18%,19%,20%,21%,22%,23%,24%,25%,26%,27%,28%,29%,30%,31%,32%,33%,34%,35%,36%,37%,38%,39%,40%,41%,42%,43%,44%,45%,46%,47%,48%,49%,50%,51%,52%,53%,54%,55%,56%,57%,58%,59%,60%,70%,80%,81%,82%,83%,84%,85%,86%,87%,88%,89%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,99.1%,99.2%,99.3%,99.4%,99.5%,99.6%,99.7%,99.8%,99.9%的同源性。
本领域的技术人员能够确定并比较序列元件或同一性程度,以区分另外的小鼠和人序列。
本发明的嵌合CD28基因,包括具有2号外显子和/或3号外显子人CD28基因的全部或部分序列,或其与人CD28基因中的2号外显子和/或3号外显子具有至少50%,51%,52%,53%,54%,55%,56%,57%,58%,59%,60%,70%,80%,81%,82%,83%,84%,85%,86%,87%,88%,89%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,99.1%,99.2%,99.3%,99.4%,99.5%,99.6%,99.7%,99.8%,99.9%同一性的序列。
在一个方面,所述非人动物是哺乳动物。在一个方面,所述非人动物是小型哺乳动物,例如跳鼠科或鼠总科超家族。在一个实施方式中,所述基因修饰的动物是啮齿动物。在一个实施方式中,所述啮齿动物选自小鼠、大鼠和仓鼠。在一个实施方式中,所述啮齿动物选自鼠家族。在一个实施方式中,所述基因修饰的动物来自选自丽仓鼠科(例如小鼠样仓鼠)、仓鼠科(例如仓鼠、新世界大鼠和小鼠、田鼠)、鼠总科(真小鼠和大鼠、沙鼠、刺毛鼠、冠毛大鼠)、马岛鼠科(登山小鼠、岩小鼠、有尾大鼠、马达加斯加大鼠和小鼠)、刺睡鼠科(例如多刺睡鼠)和鼹形鼠科(例如摩尔大鼠、竹大鼠和鼢鼠)家族。在一个特定实施方式中,所述基因修饰的啮齿动物选自真小鼠或大鼠(鼠总科)、沙鼠、刺毛鼠和冠毛大鼠。在一个实施方式中,所述基因修饰的小鼠来自鼠科家族成员。在一个实施方式中,所述动物是啮齿动物。在一个特定实施方式中,所述啮齿动物选自小鼠和大鼠。在一个实施方式中,所述非人动物是小鼠。
在一个特定实施方式中,所述非人动物是啮齿动物,其为选自BALB/c、C57BL/A、C57BL/An、C57BL/GrFa、C57BL/KaLwN、C57BL/6、C57BL/6J、C57BL/6ByJ、C57BL/6NJ、C57BL/10、C57BL/10ScSn、C57BL/10Cr和C57BL/Ola的C57BL品系的小鼠。
本发明所述“癌”选自下组,该组由以下各项组成:白血病、淋巴瘤、卵巢癌、乳腺癌、子宫内膜癌、结肠癌、直肠癌、胃癌、膀胱癌、肺癌、支气管癌、骨癌、前列腺癌、胰腺癌、肝和胆管癌、食管癌、肾癌、甲状腺癌、头颈部癌、睾丸癌、胶质母细胞瘤、星形细胞瘤、黑色素瘤、骨髓增生异常综合征、以及肉瘤。其中,所述的白血病选自下组,该组由以下各项组成:急性淋巴细胞性(成淋巴细胞性)白血病、急性骨髓性白血病、髓性白血病、慢性淋巴细胞性白血病、多发性骨髓瘤、浆细胞白血病、以及慢性骨髓性白血病;所述淋巴瘤选自下组,该组由以下各项组成:霍奇金淋巴瘤和非霍奇金淋巴瘤,包括B细胞淋巴瘤、弥漫性大B细胞淋巴瘤、滤泡性淋巴瘤、套细胞淋巴瘤、边缘区B细胞淋巴瘤、T细胞淋巴瘤、和瓦尔登斯特伦巨球蛋白血症;并且所述肉瘤选自下组,该组由以下各项组成:骨肉瘤、尤文肉瘤、平滑肌肉瘤、滑膜肉瘤、腺泡状软组织肉瘤、血管肉瘤、脂肪肉瘤、纤维肉瘤、横纹肌肉瘤、以及软骨肉瘤。
除非特别说明,本发明的实践将采取细胞生物学、细胞培养、分子生物学、转基因生物学、微生物学、重组DNA和免疫学的传统技术。这些技术在以下文献中进行了详细的解释。例如:MolecularCloningALaboratoryManual,2ndEd.,ed.BySambrook,FritschandManiatis(ColdSpringHarborLaboratoryPress:1989);DNACloning,VolumesIandII(D.N.Glovered.,1985);OligonucleotideSynthesis(M.J.Gaited.,1984);Mullisetal.U.S.Pat.No.4,683,195;NucleicAcidHybridization(B.D.Hames&S.J.Higginseds.1984);TranscriptionAndTranslation(B.D.Hames&S.J.Higginseds.1984);CultureOfAnimalCells(R.I.Freshney,AlanR.Liss,Inc.,1987);ImmobilizedCellsAndEnzymes(IRLPress,1986);B.Perbal,APracticalGuideToMolecularCloning(1984);theseries,MethodsInENZYMOLOGY(J.AbelsonandM.Simon,eds.-in-chief,AcademicPress,Inc.,NewYork),specifically,Vols.154and155(Wuetal.eds.)andVol.185,″GeneExpressionTechnology″(D.Goeddel,ed.);GeneTransferVectorsForMammalianCells(J.H.MillerandM.P.Caloseds.,1987,ColdSpringHarborLaboratory);ImmunochemicalMethodsInCellAndMolecular Biology(MayerandWalker,eds.,AcademicPress,London,1987);HandbookOfExperimentalImmunology,VolumesV(D.M.WeirandC.C.Blackwell,eds.,1986);andManipulatingtheMouseEmbryo,(ColdSpringHarborLaboratoryPress,ColdSpringHarbor,N.Y.,1986)。
以上只是概括了本发明的一些方面,不是也不应该认为是在任何方面限制本发明。
本说明书提到的所有专利和出版物都是通过参考文献作为整体而引入本发明的。本领域的技术人员应认识到,对本发明可作某些改变并不偏离本发明的构思或范围。下面的实施例进一步详细说明本发明,不能认为是限制本发明或本发明所说明的具体方法的范围。
附图说明
以下,结合附图来详细说明本发明的实施例,其中:
图1:(A)5’端靶位点sgRNA活性检测结果(sgRNA1-sgRNA12);(B)3’端靶位点sgRNA活性检测结果(sgRNA13-sgRNA20),其中Con.为阴性对照,PC为阳性对照;
图2:pT7-sgRNA G2质粒图谱示意图;
图3:打靶策略示意图;
图4:人源化CD28小鼠基因示意图;
图5:pClon-2G-CD28质粒酶切结果图,其中,M为Marker,ck为未经酶切的质粒对照;
图6:鼠尾PCR鉴定结果,其中,WT为野生型,H2O为水对照,M为Marker,F0-1、F0-2、F0-3、F0-4为F0代小鼠编号;
图7:鼠尾PCR鉴定结果,其中,WT为野生型,H2O为水对照,+为阳性对照,M为Marker,F1-1、F1-2、F1-3为F1代小鼠编号;
图8:流式分析结果,其中,取野生型小鼠(WT,A、C)和B-hCD28阳性杂合子小鼠(B、D),分别用抗鼠CD3抗体刺激脾脏内T细胞激活,再用抗鼠CD28抗体(mCD28PE,图A、B)和抗人CD28抗体(hCD28APC,图C、D),进行细胞标记,经流式细胞仪检测分析;
图9:鼠尾PCR鉴定结果,其中,WT为野生型,H2O为水对照,+为阳性对照,M为Marker,F0-KO-1、F0-KO-2、F0-KO-3、F0-KO-4、F0-KO-5为小鼠编号;
图10:基于胚胎干细胞的打靶策略示意图。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
在下述每一实施例中,设备和材料是从以下所指出的几家公司获得:
C57BL/6小鼠购自中国食品药品检定研究院国家啮齿类实验动物种子中心;
EcoRI、BamHI、BbsI、HindIII、XhoI酶购自NEB,货号分别为;R3101M、R3136M、R0539L、R3104M、R0146S;
Ambion体外转录试剂盒购自Ambion,货号AM1354;
UCA试剂盒来源百奥赛图公司,货号BCG-DX-001;
大肠杆菌TOP10感受态细胞购自Tiangen公司,货号为CB104-02;
Cas9mRNA来源SIGMA,货号CAS9MRNA-1EA;
AIO试剂盒来源百奥赛图公司,货号BCG-DX-004;
pHSG299质粒购自Takara,货号3299;
Purified NA/LE Hamster Anti-Mouse CD3e(mCD3)购自BD公司,货号:553057;
PerCP/Cy5.5anti-mouse TCRβchain(mTcRβPerCP)购自Biolegend,货号为:109228;
PE anti-mouse CD28(mCD28PE)购自Biolegend,货号为:102105;
APC anti-human CD28(hCD28APC)购自Biolegend,货号为:302912;
实施例1 Cd28基因sgRNA的设计
靶序列决定了sgRNA的靶向特异性和诱导Cas9切割目的基因的效率。因此,高效特异的靶序列选择和设计是构建sgRNA表达载体的前提。
设计并合成识别5’端靶位点(sgRNA1-sgRNA12)、3’端靶位点(sgRNA13-sgRNA20)的sgRNA序列。5’端靶位点位于Cd28基因2号外显子上,3’端靶位点位于Cd28基因3号外显子上,各sgRNA序列在Cd28上的靶位点序列如下:
sgRNA-1靶位点序列(SEQ ID NO:1):5’-ctcggcattcgagcgaaactggg-3’
sgRNA-2靶位点序列(SEQ ID NO:2):5’-tgccgagttcaactgcgacgggg-3’
sgRNA-3靶位点序列(SEQ ID NO:3):5’-cgctgttcacgcccttgtacagg-3’
sgRNA-4靶位点序列(SEQ ID NO:4):5’-caagggcgtgaacagcgacgtgg-3’
sgRNA-5靶位点序列(SEQ ID NO:5):5’-atccccgtcgcagttgaactcgg-3’
sgRNA-6靶位点序列(SEQ ID NO:6):5’-aaacagtgacgttccgtctctgg-3’
sgRNA-7靶位点序列(SEQ ID NO:7):5’-cccggaattcctttgcgagaagg-3’
sgRNA-8靶位点序列(SEQ ID NO:8):5’-gcttgtggtagatagcaacgagg-3’
sgRNA-9靶位点序列(SEQ ID NO:9):5’-cgagcgaaactggggctgatagg-3’
sgRNA-10靶位点序列(SEQ ID NO:10):5’-tggaagtctgtgtcgggaatggg-3’
sgRNA-11靶位点序列(SEQ ID NO:11):5’-cgttgctatctaccacaagcagg-3’
sgRNA-12靶位点序列(SEQ ID NO:12):5’-agcgacgtggaagtctgtgtcgg-3’
sgRNA-13靶位点序列(SEQ ID NO:13):5’-gactcgatcatctaagctggtgg-3’
sgRNA-14靶位点序列(SEQ ID NO:14):5’-caaattcgcctctgatgtacagg-3’
sgRNA-15靶位点序列(SEQ ID NO:15):5’-caagactcgatcatctaagctgg-3’
sgRNA-16靶位点序列(SEQ ID NO:16):5’-gatgatcgagtcttgctctttgg-3’
sgRNA-17靶位点序列(SEQ ID NO:17):5’-agtcatctcctaagctgttttgg-3’
sgRNA-18靶位点序列(SEQ ID NO:18):5’-aaacacaacatgtgggttaaagg-3’
sgRNA-19靶位点序列(SEQ ID NO:19):5’-atttctgtcctgtacatcagagg-3’
sgRNA-20靶位点序列(SEQ ID NO:20):5’-ctctgaaaaacacaacatgtggg-3’
实施例2 Cd28基因sgRNA的筛选
利用UCA试剂盒检测多个sgRNA的活性,从结果可见sgRNA具有不同活性,检测结果参见图1和表1。根据活性检测结果,从中优选sgRNA4和sgRNA17进行后续实验。sgRNA4和sgRNA17的上下游单链序列如下:
sgRNA4序列:
上游:5’-GCGTGAACAGCGACG-3’(SEQ ID NO:21)
下游:5’-CGTCGCTGTTCACGC-3’(SEQ ID NO:22)
sgRNA17序列:
上游:5’-TCATCTCCTAAGCTGTTT-3’(SEQ ID NO:23)
下游:5’-AAACAGCTTAGGAGATGA -3’(SEQ ID NO:24)
表1 sgRNA的活性检测结果
Figure BDA0001698100250000211
Figure BDA0001698100250000221
实施例3 pT7-sgRNA G2质粒构建
由质粒合成公司合成含有T7启动子及sgRNA scaffold的片段DNA并依次通过酶切(EcoRI及BamHI)连接至骨架载体pHSG299上,经专业测序公司测序验证,结果表明获得了目的质粒:pT7-sgRNAG2质粒,pT7-sgRNA G2质粒图谱见图2。
含有T7启动子及sgRNA scaffold的片段DNA(SEQ ID NO:25):
gaattctaatacgactcactatagggggtcttcgagaagacctgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttaaaggatcc
实施例4 pT7-Cd28-4和pT7-Cd28-17重组表达载体的构建
将实施例2中获得的上游单链(SEQ ID NO:21或SEQ ID NO:23)的5’端分别加上TAGG得到正向寡核苷酸,下游单链(SEQ ID NO:22或SEQ ID NO:24)的5’端分别加上AAAC得到反向寡核苷酸:
sgRNA-4:
正向寡核苷酸:5’-TAGGGCGTGAACAGCGACG-3’(SEQ ID NO:51)
反向寡核苷酸:5’-AAACCGTCGCTGTTCACGC-3’(SEQ ID NO:52)
sgRNA17:
正向寡核苷酸:5’-TAGGTCATCTCCTAAGCTGTTT-3’(SEQ ID NO:53)反向寡核苷酸:5’-AAACAAACAGCTTAGGAGATGA-3’(SEQ ID NO:54)
退火后分别将退火产物连接至pT7-sgRNA G2质粒(质粒先用BbsI线性化),获得表达载体pT7-Cd28-4和pT7-Cd28-17。连接反应体系见表2:
表2连接反应体系
sgRNA退火产物 1μL(0.5μM)
pT7-sgRNA G2载体 1μL(10ng)
T4DNA Ligase 1μL(5U)
10×T4DNA Ligase buffer 1μL
50%PEG4000 1μL
H<sub>2</sub>O 补至10μL
反应条件:
室温连接10-30min,转化至30μL TOP10感受态细胞中,然后取200μL涂布于Kan抗性的平板,37℃培养至少12小时后挑选2个克隆接种含有Kan抗性的LB培养基(5mL)中,37℃,250rpm摇培至少12小时。
随机挑选克隆送测序公司进行测序验证,选择连接正确的表达载体pT7-Cd28-4和pT7-Cd28-17进行后续实验。
实施例5序列设计
将小鼠Cd28基因上(Gene ID:12487)2号外显子至3号外显子的部分序列(基于NCBI登录号为NM_007642.4→NP_031668.3的转录本,其mRNA序列如SEQ ID NO:26所示,对应的蛋白序列如SEQ ID NO:27所示)用人CD28基因(Gene ID:940)片段替换(基于NCBI登录号为NM_006139.3→NP_006130.1的转录本,其mRNA序列如SEQ ID NO:28所示,对应的蛋白序列如SEQ ID NO:29所示),所述人CD28基因片段如SEQ ID NO:35所示,最终得到的改造后的人源化小鼠CD28基因示意图见图4,DNA序列(嵌合CD28基因DNA)如SEQ ID NO:30所示:
aaacttgagaactttcagtgtagtcatcattccaagaagagctattaatatatctttttctgccaagggactaactttgttggaggtctgttcagttggctaattaattcactttgatttcagggcaatggaattattattcttatgctcctaactaaatgtttttttcccttcagaaaacaagattttggtaaagcagtcgcccatgcttgtagcgtac gacaatgcggtcaaccttagctgcaagtattcctacaatctcttctcaagggagttccgggcatcccttcacaaag gactggatagtgctgtggaagtctgtgttgtatatgggaattactcccagcagcttcaggtttactcaaaaacggg gttcaactgtgatgggaaattgggcaatgaatcagtgacattctacctccagaatttgtatgttaaccaaacagat atttacttctgcaaaattgaagttatgtatcctcctccttacctagacaatgagaagagcaatggaaccattatcc atgtgaaaggtaacatacaactttaccagtgtaccaccctaaagtaatggttttcaaatgcagtcctgaaaactgg gttgtggtcagtggtggggttgaataaggcctaagtgatttgatactaacaaagacaaataatgttttcagaaaaa tttttccctttactgtagaggagattcaaggttatattttgaatatctttattttcctttgctgacattgagcggg agagtaagtgatgaagttaccgcatgtgggaacagatcatttttctccattccagtggatcatggcagaaaagagg ttaccattaaaatgtaagcccaggtgccctcaagtaacagctgggtctaatgggttaagactcaggaagactcact tctatttctaattaattctttttttgtgctccataatcttcctctgtaaaagtacctttccattttctttttcctt ccttccttccttccttccttccttccttccttttcttttctttttctttttctttttttttgagacggactctcgc tctgtcgcccaggctggagtgcagtggcgggatctcagttcactgcaagctctgcctcccgggttcacgtcattct cctgcctcagcctcccgatcagctgggactacagggcccgccaccacgcctggcttattttttgtatatttattta tttatttattttaattaattaatttttttttttgagagggagtcttgctctgtcgcccaggctggaatgcggtggc gcgatctcggctcactgcaagctccgcctcccaggttcatgccattctcctgcctcagcctcctgagtagctggga ctacaggtacctgccaccatgcccggctaattttttgtatttttagtagacagggtttcaccttgttagccaggat ggtctcgatttcctgacctcgtgacccgcccgtgttggcctcccaaagtgctgggattacaggcgtgagccaccgc gcccagccattttttgtacttttagtagagacggggtttcaccgtgttagcaaggatggtctcaatctcctgacct cgtgatctgcccacctgggcctcccaaagtgctgtgattacaggcgtaagccaccgcgcccagcccgtacctttcc attttctaaaatatacaaagaatgctggactagaaaccgggggacataaaatttgctattaatcaactgtgtgatc ttggataagtcacctaactttttcatagtcaaaaactcagtacaactgttaagcagtatttgtgaattagtgaaaa taagtctactgaacttttgttgatgttatgttctgcctaaatgttagggagaaaaatcatgattccccaactcaga agaatacagtattggtagcaacaagtaaagtttgattttttggtatactttgtggatatatcatagcttttcattt ttgtggaatgataataagaaacacatatgttcagttttgtactgaatcctagcataatgccaatgaatggtttttc ttcaatgctggaacagagccatgctgatgaaaaataggatactaaataaggaaagaattgttaatgtggcagataa gcttttgtgttctggcaaaatagagacaattaatgtgtgaatattttgtttgctgagtcctatttagatttctaat atctgtaatatccaaacagaatattttaattgtatcaagtcaaaggttaaaaaattatgctattttgcttgtagct aagagtgaaatattttttcctatatgaaaggcatgctactttaggatagtattttatatatatgtatacacacata tacacatatcatttatgttagaactgagaaggacaccaatgatcctgtacttagtaattttcaatcctatctgtat attataaatctgagtaggttttaaaagaaataccaatgcctagttccagccctgagattctgatgtaattgatatg ggttgaggaaggggtgctggacatcagtatattttcaaactttctcggataatttattgtgcagctaggatggaaa atcaatggactagaggatttttggtatgctttctagttctaattttctctaattttgaatagaattctataggttc cttctcatccccttttgattcctaaagatacaaagtgatttgtttgtcattatataatctatgagacagggttgga actagaaatttatcctctgattagcagtccagtgttctgactgccatattaggctgatgattttcttaaggcttga aaacatgcatattatttaacttattccaaggatgcagtttagggtctagattaactatcttctgatgggagaaacg gataaagttaggttaaggccattggaagtcaccgttttgaatcacacagtagaatccacaaagtcaagtgaataca agtctaccagtgtaccatcctaacgtaatggctttcaactgtggtcgtgaaaactgaccagatcatggtcagtggt ggggttgggtaagtctcaaagaggaaatctattcactctaagctggtgatatgtttaatatttttatttctttcac atttttctctgatgttcacaaggaaggaaatgcactcaattgctattcctgtatcatttaatccactctattttgt ttttcagggaaacacctttgtccaagtcccctatttcccggaccttctaagctgttttgggcactggtcgtggttgctggagtcctgttttgttatggcttgctagtgacagtggctctttgtgttatctgggtaagaggagcaacattgcttttatgtaacttctctgcgcctgccctctgactatattaagactctggcctgtatcttttctacgttaaagcaaatgacgcttttcagtctgtcca
SEQ ID NO:30仅列出涉及改造部分的DNA序列,其中斜体下划线区域为人源片段。
得到的改造后的人源化小鼠CD28的CDS区、mRNA序列及其编码的蛋白序列分别如SEQ ID NO:31、SEQ ID NO:32和SEQ ID NO:33所示。
实施例6载体构建
根据序列设计,发明人进一步的设计了如图3所示的打靶方案和包含5’同源臂、人CD28基因片段、3’同源臂的载体,其中5’同源臂(SEQ ID NO:34)与NCBI登录号为NC_000067.6的第60761678-60763007位核苷酸序列相同,3’同源臂(SEQ ID NO:36)与NCBI登录号为NC_000067.6的第60765309-60766648位核苷酸序列相同,人CD28基因片段(SEQ IDNO:35)与为NCBI登录号为NC_000002.12的第203726662-203729688位核苷酸序列相同。
载体的构建过程如下:设计扩增4段同源重组片段(LR,A1,A2,RR)的上游引物和与其匹配的下游引物以及相关序列。其中,5’同源臂对应LR片段,人CD28基因片段对应A1+A2片段,3’同源臂对应RR片段,引物序列见表3。
表3同源重组片段引物序列
Figure BDA0001698100250000251
Figure BDA0001698100250000261
以C57BL/6小鼠基因组DNA为模板PCR扩增获得LR、RR片段;以人基因组DNA为模板PCR扩增获得A1、A2片段。将片段LR与A1;A2与RR通过PCR连接(反应体系和条件见表4、5),测序验证正确后,通过酶切连接的方式将LR+A1片段(XhoI+KpnI)和A2+RR(KpnI+NcoI)片段连接至AIO试剂盒配备的pClon-2G质粒上最终获得载体pClon-2G-CD28。
表4 PCR反应体系(20μL)
2×PCR buffer 10μL
dNTP(2mM) 4μL
引物F(10μM) 0.6μL
引物R(10μM) 0.6μL
鼠尾基因组DNA 100ng
KOD-FX(1U/μL) 0.4μL
H<sub>2</sub>O 补至20μL
表5 PCR扩增反应条件
Figure BDA0001698100250000262
Figure BDA0001698100250000271
其中,连接片段LR与A1时,表4所述引物F为SEQ ID NO:50,引物R为SEQ ID NO:39,片段DNA为扩增LR片段和A1片段的回收产物;连接片段A2与RR时,引物F为SEQ ID NO:40,引物R为SEQ ID NO:43,片段DNA为扩增A2片段和RR片段的回收产物。
实施例7载体pClon-2G-CD28的验证
随机挑选2个pClon-2G-CD28克隆,使用3组限制性内切酶进行酶切验证,其中,HindIII应出现5947bp+2460bp,EcoRI应出现4633bp+3774bp,XhoI+BamHI应出现5525bp+2882bp。酶切结果参见图5,质粒编号为2、12的酶切结果均符合预期,表明这两个质粒酶切验证结果正确。质粒2、12经测序公司测序验证正确,选择质粒2用于进行后续实验。
实施例8显微注射、胚胎移植及繁育
取小鼠的受精卵,利用显微注射仪将预混好的pT7-Cd28-4和pT7-Cd28-17质粒的体外转录产物(使用Ambion体外转录试剂盒,按照说明书方法进行转录)和Cas9mRNA,pClon-2G-CD28质粒注射至小鼠受精卵细胞质或细胞核中。按照《小鼠胚胎操作实验手册(第三版)》中的方法进行胚胎的显微注射,注射后的受精卵转移至培养液中短暂培养,然后移植至受体母鼠的输卵管,生产基因改造人源化小鼠,得到首建鼠(即founder鼠,为F0代)。将获得的小鼠通过杂交和自交,扩大种群数量,建立稳定的小鼠品系。应用本方法得到的免疫节点人源化小鼠命名为B-hCD28。
实施例9基因改造人源化小鼠的鉴定
1、F0代基因型鉴定
分别使用两对引物对得到的F0代B-hCD28的鼠尾基因组DNA进行PCR分析,引物位置L-GT-F位于5’同源臂左侧,R-GT-R位于3’同源臂右侧,R-GT-F和L-GT-R位于2号内含子上,具体引物序列如下:
5’端引物:
上游引物:L-GT-F(SEQ ID NO:44):5’-ggtagctcttagcatgcttccccag-3’;
下游引物:L-GT-R(SEQ ID NO:45):5’-gccagaacacaaaagcttatctgcca-3’
3’端引物:
上游引物:R-GT-F(SEQ ID NO:46):5’-gaatgctggactagaaaccggggg-3’;
下游引物:R-GT-R(SEQ ID NO:47):5’-cttagagctagagctgccctgtccc-3’
PCR反应体系和反应条件见表6、7。如果重组载体插入位置正确,则应只有1条PCR条带,5’端引物产物长度应为3439bp,3’端引物产物长度应为3128bp;野生型小鼠应无条带。4只阳性F0代B-hCD28小鼠的PCR鉴定结果见图6,阳性小鼠编号为F0-1、F0-2、F0-3、F0-4。
表6 PCR反应体系(20μL)如下:
2×PCR buffer 10μL
dNTP(2mM) 4μL
上游引物(10μM) 0.6μL
下游引物(10μM) 0.6μL
鼠尾基因组DNA 100ng
KOD-FX(1U/μL) 0.4μL
H<sub>2</sub>O 补至20μL
表7 PCR扩增反应条件如下:
Figure BDA0001698100250000281
2、F1代基因型鉴定
将F0鉴定为阳性的小鼠与野生型小鼠交配得到F1代小鼠,对F1代鼠尾基因组DNA进行PCR分析。PCR条件及引物同F0代基因型鉴定。3只F1代B-hCD28小鼠的PCR实验结果见图7,阳性小鼠具体编号为:F1-1、F1-2、F1-3。
这表明使用本方法能构建出可稳定传代的CD28人源化基因工程小鼠。
3、人源化小鼠的CD28蛋白表达情况分析
选取1只B-hCD28阳性杂合子小鼠,另选1只相同背景的野生型小鼠作为对照,给小鼠腹腔注射7.5μg抗鼠CD3抗体(mCD3),24h后取脾脏,研磨后过70μm细胞筛网,将过滤好的细胞悬液离心弃上清,加入红细胞裂解液,裂解5min后加入PBS溶液中和裂解反应,离心弃上清后用PBS清洗细胞1次,然后用鼠源Cd28抗体PE anti-mouse CD28(mCD28PE)和PerCP/Cy5.5anti-mouse TCRβchain(mTcRβPerCP)及人源CD28抗体APC anti-human CD28(hCD28APC)和PerCP/Cy5.5anti-mouse TCRβchain(mTcRβPerCP)对CD28的胞外蛋白进行识别染色,PBS清洗细胞1次,进行流式检测CD28蛋白表达。流式分析结果(见图8)显示,与经过mCD3抗体刺激的脾脏中T细胞激活后的野生型小鼠(图A、C)相比,抗人CD28抗体可以检测到B-hCD28阳性杂合子人源化小鼠脾脏内表达人源化CD28蛋白的细胞;而在野生型对照鼠的脾脏内未检测到表达人或人源化CD28蛋白的细胞。
实施例10基因敲除小鼠的鉴定
由于Cas9的切割造成双链断裂,同源重组的修复方式会产生插入/缺失突变,可能得到Cd28蛋白功能丧失的基因敲除小鼠。为此设计一对引物,分别位于5’端靶位点左侧和3’端靶位点右侧,序列如下:
5’-CACGCTCCTGTCTTCCCATTCAGAG-3’(SEQ ID NO:48)
5’-TTGGTGCCTTCTGGGAAACAGAACTC-3’(SEQ ID NO:49)
PCR条件同F0代基因型鉴定条件。野生型小鼠应无PCR条带,基因敲除小鼠应有1条PCR条带,产物长度应为约500bp。PCR结果见图9。其中编号为F0-KO-1、F0-KO-2、F0-KO-3、F0-KO-4、F0-KO-5的小鼠为F0代Cd28基因敲除杂合子小鼠。
实施例11双重人源化或多重人源化小鼠的制备
包含人源CD28基因的小鼠(如利用本方法或制得的B-hCD28动物模型)还可以用于制备双重人源化或多重人源化动物模型。如,前述实施例8中,显微注射及胚胎移植过程使用的受精卵细胞选择来源于其它基因修饰小鼠的受精卵细胞进行注射,或对B-hCD28小鼠的受精卵细胞进行基因编辑,可以进一步得到CD28人源化与其它基因修饰的双基因或多基因修饰的小鼠模型。另外,也可将本方法得到的B-hCD28动物模型纯合或杂合子与其它基因修饰纯合或杂合动物模型交配,对其后代进行筛选,根据孟德尔遗传规律,可有一定几率得到CD28人源化与其它基因修饰的双基因或多基因修饰的杂合动物模型,再将杂合子相互交配可以得到双基因或多基因修饰的纯合子动物模型。其中,其他人源化基因选自PD-1(具体参见201710505554.0,PCT/CN2017/090320)、PD-L1(具体参见201710757022.6,PCT/CN2017/099574)、CTLA-4(具体参见201710757917.X,PCT/CN2017/099577)、LAG-3(具体参见201711103245.7,PCT/CN2017/110435)、BTLA(具体参见201710948551.4,PCT/CN2017/106024)、CD27(具体参见201711402264.X,PCT/CN2017/117984)、CD47(具体参见201810295709.7,PCT/CN2018/081628)、CD137(具体参见201711473251.1,PCT/CN2017/120388)、CD154(具体参见201710464564.4,201710872886.2)、OX40(具体参见201710757005.2,PCT/CN2017/099575)、SIRPα(具体参见201810296193.8,PCT/CN2018/081629)、TIGIT(具体参见201710757916.5,PCT/CN2017/099576)、TIM-3(具体参见201711103773.2,PCT/CN2017/110494)、GITR(具体参见201710465493.X,201710872122.3)、CD40(具体参见201710464564.4,201710872886.2)。
实施例12基于胚胎干细胞的制备方法
采用其它基因编辑系统和制备方法也可以得到本发明的非人哺乳动物,包括但不限于基于胚胎干细胞(embryonic stem cell,ES)的基因同源重组技术、锌指核酸酶(ZFN)技术、转录激活子样效应因子核酸酶(TALEN)技术、归巢核酸内切酶(兆碱基大范围核酶)或其他分子生物学技术。本实施例以传统的ES细胞基因同源重组技术为例,阐述如何采用其它方法制备获得CD28基因人源化小鼠。
根据本发明的基因编辑策略和人源化小鼠CD28基因示意图(图4),发明人设计了图10所示的打靶策略,图10中还显示了重组载体的设计。鉴于本发明的目的之一是将小鼠CD28基因的2号至3号外显子全部或部分用人CD28基因片段替换,为此,发明人设计了包含5’同源臂(3325bp)、3’同源臂(3165bp)和人源化基因片段(3027bp)的重组载体,在重组载体上构建了用于阳性克隆筛选的抗性基因,如新霉素磷酸转移酶编码序列Neo,并在抗性基因的两侧装上两个同向排列的位点特异性重组系统,如Frt或LoxP重组位点。进一步的,还在重组载体3’同源臂下游构建了具有负筛选标记的编码基因,如白喉毒素A亚基的编码基因(DTA)。载体构建可采用常规方法进行,如酶切连接等。将构建正确的重组载体转染小鼠胚胎干细胞,如C57BL/6小鼠的胚胎干细胞,利用阳性克隆筛选标记基因对得到的重组载体转染细胞进行筛选,并利用Southern Blot技术进行DNA重组鉴定。将筛选出的正确阳性克隆按照《小鼠胚胎操作实验手册(第三版)》中的方法将阳性克隆细胞(黑色鼠)通过显微注射进入已分离好的囊胚中(白色鼠),注射后的嵌合囊胚转移至培养液中短暂培养,然后移植至受体母鼠(白色鼠)的输卵管,可生产F0代嵌合体鼠(黑白相间)。通过提取鼠尾基因组和PCR检测,挑选基因正确重组的F0代嵌合鼠用于后续繁殖和鉴定。将F0代嵌合鼠与野生型鼠交配获得F1代鼠,通过提取鼠尾基因组和PCR检测,挑选可以稳定遗传的基因重组阳性F1代杂合子小鼠。再将F1代杂合小鼠互相交配即可获得基因重组阳性F2代纯合子鼠。此外,可将F1代杂合鼠与Flp或Cre工具鼠交配去除阳性克隆筛选标记基因(neo等)后,再通过互相交配即可得到基因人源化纯合子小鼠。对获得的F1代杂合或F2代纯合鼠进行基因型和表型检测的方法与前述实施例9一致。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
序列表
<110> 北京百奥赛图基因生物技术有限公司
<120> 人源化CD28基因改造动物模型的制备方法及应用
<130> 1
<160> 54
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 1
ctcggcattc gagcgaaact ggg 23
<210> 2
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 2
tgccgagttc aactgcgacg ggg 23
<210> 3
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 3
cgctgttcac gcccttgtac agg 23
<210> 4
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 4
caagggcgtg aacagcgacg tgg 23
<210> 5
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 5
atccccgtcg cagttgaact cgg 23
<210> 6
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 6
aaacagtgac gttccgtctc tgg 23
<210> 7
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 7
cccggaattc ctttgcgaga agg 23
<210> 8
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 8
gcttgtggta gatagcaacg agg 23
<210> 9
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 9
cgagcgaaac tggggctgat agg 23
<210> 10
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 10
tggaagtctg tgtcgggaat ggg 23
<210> 11
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 11
cgttgctatc taccacaagc agg 23
<210> 12
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 12
agcgacgtgg aagtctgtgt cgg 23
<210> 13
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 13
gactcgatca tctaagctgg tgg 23
<210> 14
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 14
caaattcgcc tctgatgtac agg 23
<210> 15
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 15
caagactcga tcatctaagc tgg 23
<210> 16
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 16
gatgatcgag tcttgctctt tgg 23
<210> 17
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 17
agtcatctcc taagctgttt tgg 23
<210> 18
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 18
aaacacaaca tgtgggttaa agg 23
<210> 19
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 19
atttctgtcc tgtacatcag agg 23
<210> 20
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 20
ctctgaaaaa cacaacatgt ggg 23
<210> 21
<211> 15
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 21
gcgtgaacag cgacg 15
<210> 22
<211> 15
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 22
cgtcgctgtt cacgc 15
<210> 23
<211> 18
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 23
tcatctccta agctgttt 18
<210> 24
<211> 18
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 24
aaacagctta ggagatga 18
<210> 25
<211> 132
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 25
gaattctaat acgactcact atagggggtc ttcgagaaga cctgttttag agctagaaat 60
agcaagttaa aataaggcta gtccgttatc aacttgaaaa agtggcaccg agtcggtgct 120
tttaaaggat cc 132
<210> 26
<211> 4317
<212> DNA/RNA
<213> 小鼠(Mouse)
<400> 26
agaccttggc agatgtgact tcagttcaca ccacactctg ccttgctcac agaggagggg 60
ctgcagccct ggccctcatc agaacaatga cactcaggct gctgttcttg gctctcaact 120
tcttctcagt tcaagtaaca gaaaacaaga ttttggtaaa gcagtcgccc ctgcttgtgg 180
tagatagcaa cgaggtcagc ctcagctgca ggtattccta caaccttctc gcaaaggaat 240
tccgggcatc cctgtacaag ggcgtgaaca gcgacgtgga agtctgtgtc gggaatggga 300
attttaccta tcagccccag tttcgctcga atgccgagtt caactgcgac ggggatttcg 360
acaacgaaac agtgacgttc cgtctctgga atctgcacgt caatcacaca gatatttact 420
tctgcaaaat tgagttcatg taccctccgc cttacctaga caacgagagg agcaatggaa 480
ctattattca cataaaagag aaacatcttt gtcatactca gtcatctcct aagctgtttt 540
gggcactggt cgtggttgct ggagtcctgt tttgttatgg cttgctagtg acagtggctc 600
tttgtgttat ctggacaaat agtagaagga acagactcct tcaaagtgac tacatgaaca 660
tgactccccg gaggcctggg ctcactcgaa agccttacca gccctacgcc cctgccagag 720
actttgcagc gtaccgcccc tgacagggac ccctatccag aagcccgccg gctggtaccc 780
gtctacctgc tcatcatcac tgctctggat aggaaaggac agcctcatct tcagccggcc 840
actttggacc tctactgggc caccaatgcc aactatttta gagtgtctag atctaacatc 900
atgatcatct tgagactctg gaatgaatga cagaagcttc tatggcagga taaagtctgt 960
gtggcttgac ccaaactcaa gcttaataca tttattgact tgattgggga agttagagta 1020
gagcaatcaa aaagatcatt cattcagcct tgggaagtca atttgcaggc tcctggatga 1080
gccctgcccc gttttcactt gccagcacat ttcagtcatg tggtgtgata gccaaagatg 1140
ttttggacag agaagaaagg atagaaaaac cttctctttg gctaagttgg tgtttggggt 1200
ggggataggt tagagtatag tacttaacta tttgaaaaat aatgaaaaca cttttttcac 1260
tcatgaaatg agccacttag ctcctaaata gtgttttcct gttagtttag aaagttgtgg 1320
acatattttt ttaatgattt ctgaccattt ttaatcacat tgactcatgg aatggcctca 1380
aagcaccccc cagtgcttct ttcctcattc ccggtcatgg gaactcagta ttattaatag 1440
tcacaacatg atttcagaac tagatagccc tcccacacca agaagaatgt gagaggaagt 1500
aaggtcactt tatgtaaaaa aaaaaaaaaa caaacgcgta cacatatgta tgtatacata 1560
catacctatg tgcacacaca cacacatata catacacaca aaatgctatg aagagttatc 1620
tgtttagtag cctgttatag tcaaatcatt ttaagtttca acttcttaca gttgggccac 1680
ttgttgtcct ttgtggatgg atatctgaaa ttgtgtctat atattgctag tcatgatact 1740
gtgaacaaaa agggtagtgt tagtatttgt cagggtggta aggatgcatt ccaggaagct 1800
tcctctgagg aagggaatga ggtcattctt gccatgtatg aaagacatag atgttttcca 1860
gaaggcacca ttgggagccc cagtataagt tcctttagac tctacagttt agagggattt 1920
tatatgtcct aggactcagg actccagaac tttgtgggct cagctgcttc ataccatggg 1980
gatacattga catgaacaat tattttggaa tgtgtcttta gggacgacat caaagttctc 2040
aagtacctac aagacctgat actggaatga aggtggactt tcttttttgc ttccagttcg 2100
gatcaactgg aatgtatctg gggaccttga agaacggctg tccagctgtc ttcaccattt 2160
gtatagtgct ttgaattatt cagaggtttt aaagtcagga agacctggtt taaaaaacat 2220
ttcattatga gttaaatggc ctcaggcaag tcactgttca tccaagtcta tgactcctca 2280
actgtaagat ggccacactg aaacttgcta agatcctctg gcctctgcct cccaagagtt 2340
gggatttcag gagtgcacaa tcatgaccca aactcgtgat aatctctcag cttcaataac 2400
tttccagcta attggaatat cctgtaatca aacatgaggc atttcccctc cccccactgt 2460
ttttgtgtat aaagagatct ttaaactttt tttttaatat gaggggtaag aaaagatagg 2520
aatcttttaa ttctagacag aagatattgt gctttggttt tttttttttt taatggcttc 2580
tattctgtgc ttttaattaa accagagaag gccaagatta gccctacttg tgtgataaaa 2640
gaatgctggc ccttgtgatt gcagtcagcc tcttgacaca tagagttctt gaatctaagt 2700
tataaaatta tatttgaaaa tgacagagct ggagaattta tagaaagggt catagcaaat 2760
aacaaaccat ttttttttaa acggaaagat ttggtctttg gcaatcaata actttgtttt 2820
ctaactggaa aaggaggttt actggagatg aatcacacct gaaagttttc atacctcctc 2880
tgaacacaac cgaaacatag gtgtccaaag cctttcgctc tcggtatgaa ccaacaggcg 2940
ggttaaaaac actgggtcag agtaaagctt ttgcagtttc agatgtagtg tgtatgaaga 3000
aaactatgtc acttgctgct attattgtaa gagtctaaga actaaaggtg tgcctgtaat 3060
ttctaattat gagctcacct atttggtacc gagcatgcca attttaaaga gacccggtgt 3120
accttatagc tacatccaat gataaaatta ccacactagc acatgcctgt gtttaaactc 3180
gtgctttaat gtttttctta gggcaggtat gcaccccctt tgcagtgagt tgggagagat 3240
tttgaaaaag tgtatgacaa acatttttaa cacctttggt ttcctctctc tgtgtctctt 3300
tgtctctgtc tctctctttc tctcctgtgc atatgtctcc cctccctcac ttctctgtct 3360
cttcctctct ccctctctct gtctttctct gtgtgtctct ctgtctctgt gtatctctct 3420
gtctgtctct ttctctgcag attttcaaaa cgttgttttt ctatggaaga aatacaagct 3480
gtggttggtt tgctacgagt cagtagcagt ttatcagtag gccaatgttt tatctcttgg 3540
agatttcagt ctgggtttac ccaatgtatt ctctgtaatg tgactgctgg ggacagatat 3600
aacttgattg agccttcaaa tcatttaggt cttcaatcat ttagtcaacg gagtgagcca 3660
ctaatctgca atggctattt taatatgcat actgatggtc aaatggatgt ctgatctctc 3720
atcccagctt tctgtactac catatgggaa ctatatgtaa cttgtatact tacctgaata 3780
tgttaaattc aactacatgg taagatggac cagaaattgc aatgttcatg tccatatagc 3840
caccattaac ccaagttaag cacagtagtg tgggttctct caggacttgt gaatgagttt 3900
atgctctcta caaagacagg tgaagcttaa atctctcttg cactgctatg tttatgcaaa 3960
tatcaagatt gtttctgtac cagggactta acacattcta ttcatactat tttccctgtc 4020
tacaatgtta tttcatagat atctacttgg tttgctctta cttccttgac atatttgccc 4080
aaatgccacc ttcaactgta gttaattacc tgtacaacct gtctccatgc cttgttttat 4140
tttctctata actctactaa taggtatttt tcttatttat tggtttattg cctgtttttt 4200
ttcctaaatc tacaccggat ctccaaaggg aaagaactcc atttgctttg attttattgc 4260
tgtatcccca gtgcctagaa taatgcttag cctgcaataa atatttattc attgact 4317
<210> 27
<211> 218
<212> PRT
<213> 小鼠(Mouse)
<400> 27
Met Thr Leu Arg Leu Leu Phe Leu Ala Leu Asn Phe Phe Ser Val Gln
1 5 10 15
Val Thr Glu Asn Lys Ile Leu Val Lys Gln Ser Pro Leu Leu Val Val
20 25 30
Asp Ser Asn Glu Val Ser Leu Ser Cys Arg Tyr Ser Tyr Asn Leu Leu
35 40 45
Ala Lys Glu Phe Arg Ala Ser Leu Tyr Lys Gly Val Asn Ser Asp Val
50 55 60
Glu Val Cys Val Gly Asn Gly Asn Phe Thr Tyr Gln Pro Gln Phe Arg
65 70 75 80
Ser Asn Ala Glu Phe Asn Cys Asp Gly Asp Phe Asp Asn Glu Thr Val
85 90 95
Thr Phe Arg Leu Trp Asn Leu His Val Asn His Thr Asp Ile Tyr Phe
100 105 110
Cys Lys Ile Glu Phe Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Arg
115 120 125
Ser Asn Gly Thr Ile Ile His Ile Lys Glu Lys His Leu Cys His Thr
130 135 140
Gln Ser Ser Pro Lys Leu Phe Trp Ala Leu Val Val Val Ala Gly Val
145 150 155 160
Leu Phe Cys Tyr Gly Leu Leu Val Thr Val Ala Leu Cys Val Ile Trp
165 170 175
Thr Asn Ser Arg Arg Asn Arg Leu Leu Gln Ser Asp Tyr Met Asn Met
180 185 190
Thr Pro Arg Arg Pro Gly Leu Thr Arg Lys Pro Tyr Gln Pro Tyr Ala
195 200 205
Pro Ala Arg Asp Phe Ala Ala Tyr Arg Pro
210 215
<210> 28
<211> 4900
<212> DNA/RNA
<213> 人(human)
<400> 28
taaagtcatc aaaacaacgt tatatcctgt gtgaaatgct gcagtcagga tgccttgtgg 60
tttgagtgcc ttgatcatgt gccctaaggg gatggtggcg gtggtggtgg ccgtggatga 120
cggagactct caggccttgg caggtgcgtc tttcagttcc cctcacactt cgggttcctc 180
ggggaggagg ggctggaacc ctagcccatc gtcaggacaa agatgctcag gctgctcttg 240
gctctcaact tattcccttc aattcaagta acaggaaaca agattttggt gaagcagtcg 300
cccatgcttg tagcgtacga caatgcggtc aaccttagct gcaagtattc ctacaatctc 360
ttctcaaggg agttccgggc atcccttcac aaaggactgg atagtgctgt ggaagtctgt 420
gttgtatatg ggaattactc ccagcagctt caggtttact caaaaacggg gttcaactgt 480
gatgggaaat tgggcaatga atcagtgaca ttctacctcc agaatttgta tgttaaccaa 540
acagatattt acttctgcaa aattgaagtt atgtatcctc ctccttacct agacaatgag 600
aagagcaatg gaaccattat ccatgtgaaa gggaaacacc tttgtccaag tcccctattt 660
cccggacctt ctaagccctt ttgggtgctg gtggtggttg gtggagtcct ggcttgctat 720
agcttgctag taacagtggc ctttattatt ttctgggtga ggagtaagag gagcaggctc 780
ctgcacagtg actacatgaa catgactccc cgccgccccg ggcccacccg caagcattac 840
cagccctatg ccccaccacg cgacttcgca gcctatcgct cctgacacgg acgcctatcc 900
agaagccagc cggctggcag cccccatctg ctcaatatca ctgctctgga taggaaatga 960
ccgccatctc cagccggcca cctcaggccc ctgttgggcc accaatgcca atttttctcg 1020
agtgactaga ccaaatatca agatcatttt gagactctga aatgaagtaa aagagatttc 1080
ctgtgacagg ccaagtctta cagtgccatg gcccacattc caacttacca tgtacttagt 1140
gacttgactg agaagttagg gtagaaaaca aaaagggagt ggattctggg agcctcttcc 1200
ctttctcact cacctgcaca tctcagtcaa gcaaagtgtg gtatccacag acattttagt 1260
tgcagaagaa aggctaggaa atcattcctt ttggttaaat gggtgtttaa tcttttggtt 1320
agtgggttaa acggggtaag ttagagtagg gggagggata ggaagacata tttaaaaacc 1380
attaaaacac tgtctcccac tcatgaaatg agccacgtag ttcctattta atgctgtttt 1440
cctttagttt agaaatacat agacattgtc ttttatgaat tctgatcata tttagtcatt 1500
ttgaccaaat gagggatttg gtcaaatgag ggattccctc aaagcaatat caggtaaacc 1560
aagttgcttt cctcactccc tgtcatgaga cttcagtgtt aatgttcaca atatactttc 1620
gaaagaataa aatagttctc ctacatgaag aaagaatatg tcaggaaata aggtcacttt 1680
atgtcaaaat tatttgagta ctatgggacc tggcgcagtg gctcatgctt gtaatcccag 1740
cactttggga ggccgaggtg ggcagatcac ttgagatcag gaccagcctg gtcaagatgg 1800
tgaaactccg tctgtactaa aaatacaaaa tttagcttgg cctggtggca ggcacctgta 1860
atcccagctg cccaagaggc tgaggcatga gaatcgcttg aacctggcag gcggaggttg 1920
cagtgagccg agatagtgcc acagctctcc agcctgggcg acagagtgag actccatctc 1980
aaacaacaac aacaacaaca acaacaacaa caaaccacaa aattatttga gtactgtgaa 2040
ggattatttg tctaacagtt cattccaatc agaccaggta ggagctttcc tgtttcatat 2100
gtttcagggt tgcacagttg gtctctttaa tgtcggtgtg gagatccaaa gtgggttgtg 2160
gaaagagcgt ccataggaga agtgagaata ctgtgaaaaa gggatgttag cattcattag 2220
agtatgagga tgagtcccaa gaaggttctt tggaaggagg acgaatagaa tggagtaatg 2280
aaattcttgc catgtgctga ggagatagcc agcattaggt gacaatcttc cagaagtggt 2340
caggcagaag gtgccctggt gagagctcct ttacagggac tttatgtggt ttagggctca 2400
gagctccaaa actctgggct cagctgctcc tgtaccttgg aggtccattc acatgggaaa 2460
gtattttgga atgtgtcttt tgaagagagc atcagagttc ttaagggact gggtaaggcc 2520
tgaccctgaa atgaccatgg atatttttct acctacagtt tgagtcaact agaatatgcc 2580
tggggacctt gaagaatggc ccttcagtgg ccctcaccat ttgttcatgc ttcagttaat 2640
tcaggtgttg aaggagctta ggttttagag gcacgtagac ttggttcaag tctcgttagt 2700
agttgaatag cctcaggcaa gtcactgccc acctaagatg atggttcttc aactataaaa 2760
tggagataat ggttacaaat gtctcttcct atagtataat ctccataagg gcatggccca 2820
agtctgtctt tgactctgcc tatccctgac atttagtagc atgcccgaca tacaatgtta 2880
gctattggta ttattgccat atagataaat tatgtataaa aattaaactg ggcaatagcc 2940
taagaagggg ggaatattgt aacacaaatt taaacccact acgcagggat gaggtgctat 3000
aatatgagga ccttttaact tccatcattt tcctgtttct tgaaatagtt tatcttgtaa 3060
tgaaatataa ggcacctccc acttttatgt atagaaagag gtcttttaat ttttttttaa 3120
tgtgagaagg aagggaggag taggaatctt gagattccag atcgaaaata ctgtactttg 3180
gttgattttt aagtgggctt ccattccatg gatttaatca gtcccaagaa gatcaaactc 3240
agcagtactt gggtgctgaa gaactgttgg atttaccctg gcacgtgtgc cacttgccag 3300
cttcttgggc acacagagtt cttcaatcca agttatcaga ttgtatttga aaatgacaga 3360
gctggagagt tttttgaaat ggcagtggca aataaataaa tacttttttt taaatggaaa 3420
gacttgatct atggtaataa atgattttgt tttctgactg gaaaaatagg cctactaaag 3480
atgaatcaca cttgagatgt ttcttactca ctctgcacag aaacaaagaa gaaatgttat 3540
acagggaagt ccgttttcac tattagtatg aaccaagaaa tggttcaaaa acagtggtag 3600
gagcaatgct ttcatagttt cagatatggt agttatgaag aaaacaatgt catttgctgc 3660
tattattgta agagtcttat aattaatggt actcctataa tttttgattg tgagctcacc 3720
tatttgggtt aagcatgcca atttaaagag accaagtgta tgtacattat gttctacata 3780
ttcagtgata aaattactaa actactatat gtctgcttta aatttgtact ttaatattgt 3840
cttttggtat taagaaagat atgctttcag aatagatatg cttcgctttg gcaaggaatt 3900
tggatagaac ttgctattta aaagaggtgt ggggtaaatc cttgtataaa tctccagttt 3960
agcctttttt gaaaaagcta gactttcaaa tactaatttc acttcaagca gggtacgttt 4020
ctggtttgtt tgcttgactt cagtcacaat ttcttatcag accaatggct gacctctttg 4080
agatgtcagg ctaggcttac ctatgtgttc tgtgtcatgt gaatgctgag aagtttgaca 4140
gagatccaac ttcagccttg accccatcag tccctcgggt taactaactg agccaccggt 4200
cctcatggct attttaatga gggtattgat ggttaaatgc atgtctgatc ccttatccca 4260
gccatttgca ctgccagctg ggaactatac cagacctgga tactgatccc aaagtgttaa 4320
attcaactac atgctggaga ttagagatgg tgccaataaa ggacccagaa ccaggatctt 4380
gattgctata gacttattaa taatccaggt caaagagagt gacacacact ctctcaagac 4440
ctggggtgag ggagtctgtg ttatctgcaa ggccatttga ggctcagaaa gtctctcttt 4500
cctatagata tatgcatact ttctgacata taggaatgta tcaggaatac tcaaccatca 4560
caggcatgtt cctacctcag ggcctttaca tgtcctgttt actctgtcta gaatgtcctt 4620
ctgtagatga cctggcttgc ctcgtcaccc ttcaggtcct tgctcaagtg tcatcttctc 4680
ccctagttaa actaccccac accctgtctg ctttccttgc ttatttttct ccatagcatt 4740
ttaccatctc ttacattaga catttttctt atttatttgt agtttataag cttcatgagg 4800
caagtaactt tgctttgttt cttgctgtat ctccagtgcc cagagcagtg cctggtatat 4860
aataaatatt tattgactga gtgaaaaaaa aaaaaaaaaa 4900
<210> 29
<211> 220
<212> PRT
<213> 人(human)
<400> 29
Met Leu Arg Leu Leu Leu Ala Leu Asn Leu Phe Pro Ser Ile Gln Val
1 5 10 15
Thr Gly Asn Lys Ile Leu Val Lys Gln Ser Pro Met Leu Val Ala Tyr
20 25 30
Asp Asn Ala Val Asn Leu Ser Cys Lys Tyr Ser Tyr Asn Leu Phe Ser
35 40 45
Arg Glu Phe Arg Ala Ser Leu His Lys Gly Leu Asp Ser Ala Val Glu
50 55 60
Val Cys Val Val Tyr Gly Asn Tyr Ser Gln Gln Leu Gln Val Tyr Ser
65 70 75 80
Lys Thr Gly Phe Asn Cys Asp Gly Lys Leu Gly Asn Glu Ser Val Thr
85 90 95
Phe Tyr Leu Gln Asn Leu Tyr Val Asn Gln Thr Asp Ile Tyr Phe Cys
100 105 110
Lys Ile Glu Val Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Lys Ser
115 120 125
Asn Gly Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro Ser Pro
130 135 140
Leu Phe Pro Gly Pro Ser Lys Pro Phe Trp Val Leu Val Val Val Gly
145 150 155 160
Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile
165 170 175
Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met
180 185 190
Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro
195 200 205
Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser
210 215 220
<210> 30
<211> 3432
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
aaacttgaga actttcagtg tagtcatcat tccaagaaga gctattaata tatctttttc 60
tgccaaggga ctaactttgt tggaggtctg ttcagttggc taattaattc actttgattt 120
cagggcaatg gaattattat tcttatgctc ctaactaaat gtttttttcc cttcagaaaa 180
caagattttg gtaaagcagt cgcccatgct tgtagcgtac gacaatgcgg tcaaccttag 240
ctgcaagtat tcctacaatc tcttctcaag ggagttccgg gcatcccttc acaaaggact 300
ggatagtgct gtggaagtct gtgttgtata tgggaattac tcccagcagc ttcaggttta 360
ctcaaaaacg gggttcaact gtgatgggaa attgggcaat gaatcagtga cattctacct 420
ccagaatttg tatgttaacc aaacagatat ttacttctgc aaaattgaag ttatgtatcc 480
tcctccttac ctagacaatg agaagagcaa tggaaccatt atccatgtga aaggtaacat 540
acaactttac cagtgtacca ccctaaagta atggttttca aatgcagtcc tgaaaactgg 600
gttgtggtca gtggtggggt tgaataaggc ctaagtgatt tgatactaac aaagacaaat 660
aatgttttca gaaaaatttt tccctttact gtagaggaga ttcaaggtta tattttgaat 720
atctttattt tcctttgctg acattgagcg ggagagtaag tgatgaagtt accgcatgtg 780
ggaacagatc atttttctcc attccagtgg atcatggcag aaaagaggtt accattaaaa 840
tgtaagccca ggtgccctca agtaacagct gggtctaatg ggttaagact caggaagact 900
cacttctatt tctaattaat tctttttttg tgctccataa tcttcctctg taaaagtacc 960
tttccatttt ctttttcctt ccttccttcc ttccttcctt ccttccttcc ttttcttttc 1020
tttttctttt tctttttttt tgagacggac tctcgctctg tcgcccaggc tggagtgcag 1080
tggcgggatc tcagttcact gcaagctctg cctcccgggt tcacgtcatt ctcctgcctc 1140
agcctcccga tcagctggga ctacagggcc cgccaccacg cctggcttat tttttgtata 1200
tttatttatt tatttatttt aattaattaa tttttttttt tgagagggag tcttgctctg 1260
tcgcccaggc tggaatgcgg tggcgcgatc tcggctcact gcaagctccg cctcccaggt 1320
tcatgccatt ctcctgcctc agcctcctga gtagctggga ctacaggtac ctgccaccat 1380
gcccggctaa ttttttgtat ttttagtaga cagggtttca ccttgttagc caggatggtc 1440
tcgatttcct gacctcgtga cccgcccgtg ttggcctccc aaagtgctgg gattacaggc 1500
gtgagccacc gcgcccagcc attttttgta cttttagtag agacggggtt tcaccgtgtt 1560
agcaaggatg gtctcaatct cctgacctcg tgatctgccc acctgggcct cccaaagtgc 1620
tgtgattaca ggcgtaagcc accgcgccca gcccgtacct ttccattttc taaaatatac 1680
aaagaatgct ggactagaaa ccgggggaca taaaatttgc tattaatcaa ctgtgtgatc 1740
ttggataagt cacctaactt tttcatagtc aaaaactcag tacaactgtt aagcagtatt 1800
tgtgaattag tgaaaataag tctactgaac ttttgttgat gttatgttct gcctaaatgt 1860
tagggagaaa aatcatgatt ccccaactca gaagaataca gtattggtag caacaagtaa 1920
agtttgattt tttggtatac tttgtggata tatcatagct tttcattttt gtggaatgat 1980
aataagaaac acatatgttc agttttgtac tgaatcctag cataatgcca atgaatggtt 2040
tttcttcaat gctggaacag agccatgctg atgaaaaata ggatactaaa taaggaaaga 2100
attgttaatg tggcagataa gcttttgtgt tctggcaaaa tagagacaat taatgtgtga 2160
atattttgtt tgctgagtcc tatttagatt tctaatatct gtaatatcca aacagaatat 2220
tttaattgta tcaagtcaaa ggttaaaaaa ttatgctatt ttgcttgtag ctaagagtga 2280
aatatttttt cctatatgaa aggcatgcta ctttaggata gtattttata tatatgtata 2340
cacacatata cacatatcat ttatgttaga actgagaagg acaccaatga tcctgtactt 2400
agtaattttc aatcctatct gtatattata aatctgagta ggttttaaaa gaaataccaa 2460
tgcctagttc cagccctgag attctgatgt aattgatatg ggttgaggaa ggggtgctgg 2520
acatcagtat attttcaaac tttctcggat aatttattgt gcagctagga tggaaaatca 2580
atggactaga ggatttttgg tatgctttct agttctaatt ttctctaatt ttgaatagaa 2640
ttctataggt tccttctcat ccccttttga ttcctaaaga tacaaagtga tttgtttgtc 2700
attatataat ctatgagaca gggttggaac tagaaattta tcctctgatt agcagtccag 2760
tgttctgact gccatattag gctgatgatt ttcttaaggc ttgaaaacat gcatattatt 2820
taacttattc caaggatgca gtttagggtc tagattaact atcttctgat gggagaaacg 2880
gataaagtta ggttaaggcc attggaagtc accgttttga atcacacagt agaatccaca 2940
aagtcaagtg aatacaagtc taccagtgta ccatcctaac gtaatggctt tcaactgtgg 3000
tcgtgaaaac tgaccagatc atggtcagtg gtggggttgg gtaagtctca aagaggaaat 3060
ctattcactc taagctggtg atatgtttaa tatttttatt tctttcacat ttttctctga 3120
tgttcacaag gaaggaaatg cactcaattg ctattcctgt atcatttaat ccactctatt 3180
ttgtttttca gggaaacacc tttgtccaag tcccctattt cccggacctt ctaagctgtt 3240
ttgggcactg gtcgtggttg ctggagtcct gttttgttat ggcttgctag tgacagtggc 3300
tctttgtgtt atctgggtaa gaggagcaac attgctttta tgtaacttct ctgcgcctgc 3360
cctctgacta tattaagact ctggcctgta tcttttctac gttaaagcaa atgacgcttt 3420
tcagtctgtc ca 3432
<210> 31
<211> 666
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 31
atgacactca ggctgctgtt cttggctctc aacttcttct cagttcaagt aacagaaaac 60
aagattttgg taaagcagtc gcccatgctt gtagcgtacg acaatgcggt caaccttagc 120
tgcaagtatt cctacaatct cttctcaagg gagttccggg catcccttca caaaggactg 180
gatagtgctg tggaagtctg tgttgtatat gggaattact cccagcagct tcaggtttac 240
tcaaaaacgg ggttcaactg tgatgggaaa ttgggcaatg aatcagtgac attctacctc 300
cagaatttgt atgttaacca aacagatatt tacttctgca aaattgaagt tatgtatcct 360
cctccttacc tagacaatga gaagagcaat ggaaccatta tccatgtgaa agggaaacac 420
ctttgtccaa gtcccctatt tcccggacct tctaagctgt tttgggcact ggtcgtggtt 480
gctggagtcc tgttttgtta tggcttgcta gtgacagtgg ctctttgtgt tatctggaca 540
aatagtagaa ggaacagact ccttcaaagt gactacatga acatgactcc ccggaggcct 600
gggctcactc gaaagcctta ccagccctac gcccctgcca gagactttgc agcgtaccgc 660
ccctga 666
<210> 32
<211> 4326
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 32
agaccttggc agatgtgact tcagttcaca ccacactctg ccttgctcac agaggagggg 60
ctgcagccct ggccctcatc agaacaatga cactcaggct gctgttcttg gctctcaact 120
tcttctcagt tcaagtaaca gaaaacaaga ttttggtaaa gcagtcgccc atgcttgtag 180
cgtacgacaa tgcggtcaac cttagctgca agtattccta caatctcttc tcaagggagt 240
tccgggcatc ccttcacaaa ggactggata gtgctgtgga agtctgtgtt gtatatggga 300
attactccca gcagcttcag gtttactcaa aaacggggtt caactgtgat gggaaattgg 360
gcaatgaatc agtgacattc tacctccaga atttgtatgt taaccaaaca gatatttact 420
tctgcaaaat tgaagttatg tatcctcctc cttacctaga caatgagaag agcaatggaa 480
ccattatcca tgtgaaaggg aaacaccttt gtccaagtcc cctatttccc ggaccttcta 540
agctgttttg ggcactggtc gtggttgctg gagtcctgtt ttgttatggc ttgctagtga 600
cagtggctct ttgtgttatc tggacaaata gtagaaggaa cagactcctt caaagtgact 660
acatgaacat gactccccgg aggcctgggc tcactcgaaa gccttaccag ccctacgccc 720
ctgccagaga ctttgcagcg taccgcccct gacagggacc cctatccaga agcccgccgg 780
ctggtacccg tctacctgct catcatcact gctctggata ggaaaggaca gcctcatctt 840
cagccggcca ctttggacct ctactgggcc accaatgcca actattttag agtgtctaga 900
tctaacatca tgatcatctt gagactctgg aatgaatgac agaagcttct atggcaggat 960
aaagtctgtg tggcttgacc caaactcaag cttaatacat ttattgactt gattggggaa 1020
gttagagtag agcaatcaaa aagatcattc attcagcctt gggaagtcaa tttgcaggct 1080
cctggatgag ccctgccccg ttttcacttg ccagcacatt tcagtcatgt ggtgtgatag 1140
ccaaagatgt tttggacaga gaagaaagga tagaaaaacc ttctctttgg ctaagttggt 1200
gtttggggtg gggataggtt agagtatagt acttaactat ttgaaaaata atgaaaacac 1260
ttttttcact catgaaatga gccacttagc tcctaaatag tgttttcctg ttagtttaga 1320
aagttgtgga catatttttt taatgatttc tgaccatttt taatcacatt gactcatgga 1380
atggcctcaa agcacccccc agtgcttctt tcctcattcc cggtcatggg aactcagtat 1440
tattaatagt cacaacatga tttcagaact agatagccct cccacaccaa gaagaatgtg 1500
agaggaagta aggtcacttt atgtaaaaaa aaaaaaaaac aaacgcgtac acatatgtat 1560
gtatacatac atacctatgt gcacacacac acacatatac atacacacaa aatgctatga 1620
agagttatct gtttagtagc ctgttatagt caaatcattt taagtttcaa cttcttacag 1680
ttgggccact tgttgtcctt tgtggatgga tatctgaaat tgtgtctata tattgctagt 1740
catgatactg tgaacaaaaa gggtagtgtt agtatttgtc agggtggtaa ggatgcattc 1800
caggaagctt cctctgagga agggaatgag gtcattcttg ccatgtatga aagacataga 1860
tgttttccag aaggcaccat tgggagcccc agtataagtt cctttagact ctacagttta 1920
gagggatttt atatgtccta ggactcagga ctccagaact ttgtgggctc agctgcttca 1980
taccatgggg atacattgac atgaacaatt attttggaat gtgtctttag ggacgacatc 2040
aaagttctca agtacctaca agacctgata ctggaatgaa ggtggacttt cttttttgct 2100
tccagttcgg atcaactgga atgtatctgg ggaccttgaa gaacggctgt ccagctgtct 2160
tcaccatttg tatagtgctt tgaattattc agaggtttta aagtcaggaa gacctggttt 2220
aaaaaacatt tcattatgag ttaaatggcc tcaggcaagt cactgttcat ccaagtctat 2280
gactcctcaa ctgtaagatg gccacactga aacttgctaa gatcctctgg cctctgcctc 2340
ccaagagttg ggatttcagg agtgcacaat catgacccaa actcgtgata atctctcagc 2400
ttcaataact ttccagctaa ttggaatatc ctgtaatcaa acatgaggca tttcccctcc 2460
ccccactgtt tttgtgtata aagagatctt taaacttttt ttttaatatg aggggtaaga 2520
aaagatagga atcttttaat tctagacaga agatattgtg ctttggtttt tttttttttt 2580
aatggcttct attctgtgct tttaattaaa ccagagaagg ccaagattag ccctacttgt 2640
gtgataaaag aatgctggcc cttgtgattg cagtcagcct cttgacacat agagttcttg 2700
aatctaagtt ataaaattat atttgaaaat gacagagctg gagaatttat agaaagggtc 2760
atagcaaata acaaaccatt tttttttaaa cggaaagatt tggtctttgg caatcaataa 2820
ctttgttttc taactggaaa aggaggttta ctggagatga atcacacctg aaagttttca 2880
tacctcctct gaacacaacc gaaacatagg tgtccaaagc ctttcgctct cggtatgaac 2940
caacaggcgg gttaaaaaca ctgggtcaga gtaaagcttt tgcagtttca gatgtagtgt 3000
gtatgaagaa aactatgtca cttgctgcta ttattgtaag agtctaagaa ctaaaggtgt 3060
gcctgtaatt tctaattatg agctcaccta tttggtaccg agcatgccaa ttttaaagag 3120
acccggtgta ccttatagct acatccaatg ataaaattac cacactagca catgcctgtg 3180
tttaaactcg tgctttaatg tttttcttag ggcaggtatg cacccccttt gcagtgagtt 3240
gggagagatt ttgaaaaagt gtatgacaaa catttttaac acctttggtt tcctctctct 3300
gtgtctcttt gtctctgtct ctctctttct ctcctgtgca tatgtctccc ctccctcact 3360
tctctgtctc ttcctctctc cctctctctg tctttctctg tgtgtctctc tgtctctgtg 3420
tatctctctg tctgtctctt tctctgcaga ttttcaaaac gttgtttttc tatggaagaa 3480
atacaagctg tggttggttt gctacgagtc agtagcagtt tatcagtagg ccaatgtttt 3540
atctcttgga gatttcagtc tgggtttacc caatgtattc tctgtaatgt gactgctggg 3600
gacagatata acttgattga gccttcaaat catttaggtc ttcaatcatt tagtcaacgg 3660
agtgagccac taatctgcaa tggctatttt aatatgcata ctgatggtca aatggatgtc 3720
tgatctctca tcccagcttt ctgtactacc atatgggaac tatatgtaac ttgtatactt 3780
acctgaatat gttaaattca actacatggt aagatggacc agaaattgca atgttcatgt 3840
ccatatagcc accattaacc caagttaagc acagtagtgt gggttctctc aggacttgtg 3900
aatgagttta tgctctctac aaagacaggt gaagcttaaa tctctcttgc actgctatgt 3960
ttatgcaaat atcaagattg tttctgtacc agggacttaa cacattctat tcatactatt 4020
ttccctgtct acaatgttat ttcatagata tctacttggt ttgctcttac ttccttgaca 4080
tatttgccca aatgccacct tcaactgtag ttaattacct gtacaacctg tctccatgcc 4140
ttgttttatt ttctctataa ctctactaat aggtattttt cttatttatt ggtttattgc 4200
ctgttttttt tcctaaatct acaccggatc tccaaaggga aagaactcca tttgctttga 4260
ttttattgct gtatccccag tgcctagaat aatgcttagc ctgcaataaa tatttattca 4320
ttgact 4326
<210> 33
<211> 221
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 33
Met Thr Leu Arg Leu Leu Phe Leu Ala Leu Asn Phe Phe Ser Val Gln
1 5 10 15
Val Thr Glu Asn Lys Ile Leu Val Lys Gln Ser Pro Met Leu Val Ala
20 25 30
Tyr Asp Asn Ala Val Asn Leu Ser Cys Lys Tyr Ser Tyr Asn Leu Phe
35 40 45
Ser Arg Glu Phe Arg Ala Ser Leu His Lys Gly Leu Asp Ser Ala Val
50 55 60
Glu Val Cys Val Val Tyr Gly Asn Tyr Ser Gln Gln Leu Gln Val Tyr
65 70 75 80
Ser Lys Thr Gly Phe Asn Cys Asp Gly Lys Leu Gly Asn Glu Ser Val
85 90 95
Thr Phe Tyr Leu Gln Asn Leu Tyr Val Asn Gln Thr Asp Ile Tyr Phe
100 105 110
Cys Lys Ile Glu Val Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Lys
115 120 125
Ser Asn Gly Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro Ser
130 135 140
Pro Leu Phe Pro Gly Pro Ser Lys Leu Phe Trp Ala Leu Val Val Val
145 150 155 160
Ala Gly Val Leu Phe Cys Tyr Gly Leu Leu Val Thr Val Ala Leu Cys
165 170 175
Val Ile Trp Thr Asn Ser Arg Arg Asn Arg Leu Leu Gln Ser Asp Tyr
180 185 190
Met Asn Met Thr Pro Arg Arg Pro Gly Leu Thr Arg Lys Pro Tyr Gln
195 200 205
Pro Tyr Ala Pro Ala Arg Asp Phe Ala Ala Tyr Arg Pro
210 215 220
<210> 34
<211> 1330
<212> DNA/RNA
<213> 小鼠(Mouse)
<400> 34
cggtcagcta tttaggtggt gtagcctttg gtttcagttc tgattttgtt caccatttgc 60
tcaatgtctg tagatgaacc attcatgttt ctagacctca ttcagtcatc tttttctttt 120
taaacaaatg tacagggacg gtgtcccaca cttttaatcc caacactcag gaggcaaagg 180
caggtgaatt agtgagttat aggccagcct ggtctatgta gtagacagcc agtgaatacc 240
tgtttctgtt tctgttttgt tttgtttgtt tagaaaaaaa aaagagagtc aaagacatgg 300
taggcacctg ttaccaagcc tgacctgtgg gtggagggaa agaaccaatc ctacaacttg 360
acctctgacc tccatttgca tgcatgttct ctctctctct ctctctctct ctctctctct 420
ctctctctct cacacacaca catttaaaat gtaatacttt cttttaaaaa aggagtgtac 480
ttctgtattt ctgtgttctg gaaatggggg tgcattggaa acagtacgag ctttgtctcc 540
cttctcccaa aggaactgag agtatagttt tattttcttt gcctttaagg ggagaaattg 600
aattagatgg tatccagagc tttgattgtt gcataaagat agaactcttc ttgctttgag 660
agaataatca tgcaacgttt ttgggaggct cttatctgaa tttgctctgg aagagtaatt 720
taagccagcc cttggggcta caaacgtggt gcctttcttt acccctttat tgactgctct 780
tggtttggtc aataagcaaa gtcagaatgt tttaaaactt tgaaatactt ttacaaaaat 840
ctgttgcaga gttgaaaaaa aaatcacttg gacatctgtg tcaggctttc aagaggcctc 900
caagctgatc agttattcag gaagtcaacc caaggcctga ctaacatcat aggaatctca 960
actggactaa caaaattcta gtgactagct ggggtgctca atgctcacag cagctcacat 1020
ttagctgggg tactcagtgc tcacagcagc tcacattgtg ctgtccaggt ggaagcacgc 1080
tcctgtcttc ccattcagag aaagatgcca gcatcattga aatataaact tgagaacttt 1140
cagtgtagtc atcattccaa gaagagctat taatatatct ttttctgcca agggactaac 1200
tttgttggag gtctgttcag ttggctaatt aattcacttt gatttcaggg caatggaatt 1260
attattctta tgctcctaac taaatgtttt tttcccttca gaaaacaaga ttttggtaaa 1320
gcagtcgccc 1330
<210> 35
<211> 3027
<212> DNA
<213> 人(human)
<400> 35
atgcttgtag cgtacgacaa tgcggtcaac cttagctgca agtattccta caatctcttc 60
tcaagggagt tccgggcatc ccttcacaaa ggactggata gtgctgtgga agtctgtgtt 120
gtatatggga attactccca gcagcttcag gtttactcaa aaacggggtt caactgtgat 180
gggaaattgg gcaatgaatc agtgacattc tacctccaga atttgtatgt taaccaaaca 240
gatatttact tctgcaaaat tgaagttatg tatcctcctc cttacctaga caatgagaag 300
agcaatggaa ccattatcca tgtgaaaggt aacatacaac tttaccagtg taccacccta 360
aagtaatggt tttcaaatgc agtcctgaaa actgggttgt ggtcagtggt ggggttgaat 420
aaggcctaag tgatttgata ctaacaaaga caaataatgt tttcagaaaa atttttccct 480
ttactgtaga ggagattcaa ggttatattt tgaatatctt tattttcctt tgctgacatt 540
gagcgggaga gtaagtgatg aagttaccgc atgtgggaac agatcatttt tctccattcc 600
agtggatcat ggcagaaaag aggttaccat taaaatgtaa gcccaggtgc cctcaagtaa 660
cagctgggtc taatgggtta agactcagga agactcactt ctatttctaa ttaattcttt 720
ttttgtgctc cataatcttc ctctgtaaaa gtacctttcc attttctttt tccttccttc 780
cttccttcct tccttccttc cttccttttc ttttcttttt ctttttcttt ttttttgaga 840
cggactctcg ctctgtcgcc caggctggag tgcagtggcg ggatctcagt tcactgcaag 900
ctctgcctcc cgggttcacg tcattctcct gcctcagcct cccgatcagc tgggactaca 960
gggcccgcca ccacgcctgg cttatttttt gtatatttat ttatttattt attttaatta 1020
attaattttt ttttttgaga gggagtcttg ctctgtcgcc caggctggaa tgcggtggcg 1080
cgatctcggc tcactgcaag ctccgcctcc caggttcatg ccattctcct gcctcagcct 1140
cctgagtagc tgggactaca ggtacctgcc accatgcccg gctaattttt tgtattttta 1200
gtagacaggg tttcaccttg ttagccagga tggtctcgat ttcctgacct cgtgacccgc 1260
ccgtgttggc ctcccaaagt gctgggatta caggcgtgag ccaccgcgcc cagccatttt 1320
ttgtactttt agtagagacg gggtttcacc gtgttagcaa ggatggtctc aatctcctga 1380
cctcgtgatc tgcccacctg ggcctcccaa agtgctgtga ttacaggcgt aagccaccgc 1440
gcccagcccg tacctttcca ttttctaaaa tatacaaaga atgctggact agaaaccggg 1500
ggacataaaa tttgctatta atcaactgtg tgatcttgga taagtcacct aactttttca 1560
tagtcaaaaa ctcagtacaa ctgttaagca gtatttgtga attagtgaaa ataagtctac 1620
tgaacttttg ttgatgttat gttctgccta aatgttaggg agaaaaatca tgattcccca 1680
actcagaaga atacagtatt ggtagcaaca agtaaagttt gattttttgg tatactttgt 1740
ggatatatca tagcttttca tttttgtgga atgataataa gaaacacata tgttcagttt 1800
tgtactgaat cctagcataa tgccaatgaa tggtttttct tcaatgctgg aacagagcca 1860
tgctgatgaa aaataggata ctaaataagg aaagaattgt taatgtggca gataagcttt 1920
tgtgttctgg caaaatagag acaattaatg tgtgaatatt ttgtttgctg agtcctattt 1980
agatttctaa tatctgtaat atccaaacag aatattttaa ttgtatcaag tcaaaggtta 2040
aaaaattatg ctattttgct tgtagctaag agtgaaatat tttttcctat atgaaaggca 2100
tgctacttta ggatagtatt ttatatatat gtatacacac atatacacat atcatttatg 2160
ttagaactga gaaggacacc aatgatcctg tacttagtaa ttttcaatcc tatctgtata 2220
ttataaatct gagtaggttt taaaagaaat accaatgcct agttccagcc ctgagattct 2280
gatgtaattg atatgggttg aggaaggggt gctggacatc agtatatttt caaactttct 2340
cggataattt attgtgcagc taggatggaa aatcaatgga ctagaggatt tttggtatgc 2400
tttctagttc taattttctc taattttgaa tagaattcta taggttcctt ctcatcccct 2460
tttgattcct aaagatacaa agtgatttgt ttgtcattat ataatctatg agacagggtt 2520
ggaactagaa atttatcctc tgattagcag tccagtgttc tgactgccat attaggctga 2580
tgattttctt aaggcttgaa aacatgcata ttatttaact tattccaagg atgcagttta 2640
gggtctagat taactatctt ctgatgggag aaacggataa agttaggtta aggccattgg 2700
aagtcaccgt tttgaatcac acagtagaat ccacaaagtc aagtgaatac aagtctacca 2760
gtgtaccatc ctaacgtaat ggctttcaac tgtggtcgtg aaaactgacc agatcatggt 2820
cagtggtggg gttgggtaag tctcaaagag gaaatctatt cactctaagc tggtgatatg 2880
tttaatattt ttatttcttt cacatttttc tctgatgttc acaaggaagg aaatgcactc 2940
aattgctatt cctgtatcat ttaatccact ctattttgtt tttcagggaa acacctttgt 3000
ccaagtcccc tatttcccgg accttct 3027
<210> 36
<211> 1340
<212> DNA/RNA
<213> 小鼠(Mouse)
<400> 36
aagctgtttt gggcactggt cgtggttgct ggagtcctgt tttgttatgg cttgctagtg 60
acagtggctc tttgtgttat ctgggtaaga ggagcaacat tgcttttatg taacttctct 120
gcgcctgccc tctgactata ttaagactct ggcctgtatc ttttctacgt taaagcaaat 180
gacgcttttc agtctgtcca acttatacat agtaatgatc tgatgtgagt tctgtttccc 240
agaaggcacc aagtagccag gcagaattag aatgaaatgg gaagattacg gtgggaaatt 300
agagaattag cttttcttat tcttaatttt ctaacataat aattgcatat caagcagctt 360
aaatgcatac ataaggtata aaatctaaat ctcatcagga ttaggcaact gaagcccgtg 420
ctttggcttg gggtcaaaaa tcaggagaaa gtaggctgct gaaattgtgc attcaaacca 480
gaagaaagca ggtctgttta tgtcagtcct attttctgtc tcttctgaag cagttgccct 540
gtgtgaggtc aacttggatg ctgtcattat gagactgtaa gaggagaggg actgttcaga 600
gctctcccca ctgaatagag attactagtc tctatagatt tttctgcaat aagtttaata 660
gatattttct tcctcaatgt tgaatttttg attcaagatt aaacattttg tgttcgtttg 720
attttttttt tttttttctg agacaatgac tcaccatgtg gaccagattc gtctggaagc 780
tactatgcaa tccaaactga cctcgactca tgtcaatcct cctgcttcat cctcttgagg 840
gcttataggt gtatagcacc atgtctgact tttgaacata tttaaagatt tttgaatttt 900
aatttgtgtg agtaagtgtt ttgcctgcat gcatgtctgt gcaccattta tatgtctggc 960
actcattgaa agccagaaga gggcatcagt ttttctgaaa ctggagttac agatatttgt 1020
gagctaccat gtaggtgctg ggaattgaac cccgttccct ggaagagagg ccagtgctgt 1080
taactgctaa gctatcttcc ttatgcttgt tgaacacatt ttgatgaaca cattcactgt 1140
taagatggta cgaccttaac aaggatcctt ttcttagaaa cccctttgtg taggagtaac 1200
agaatgcctt atgtattgat tccaaatgcc tctgattttt ttttccccag aagttgggtg 1260
aatatacagg taagttcttc aatgagaaat gtatgctgca caagacaaaa aagacccctt 1320
atcttgctac tcttcaccca 1340
<210> 37
<211> 45
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 37
ttgtcgtacg ctacaagcat gggcgactgc tttaccaaaa tcttg 45
<210> 38
<211> 45
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 38
ttttggtaaa gcagtcgccc atgcttgtag cgtacgacaa tgcgg 45
<210> 39
<211> 45
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 39
cgggcatggt ggcaggtacc tgtagtccca gctactcagg aggct 45
<210> 40
<211> 45
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 40
cctgagtagc tgggactaca ggtacctgcc accatgcccg gctaa 45
<210> 41
<211> 45
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 41
accagtgccc aaaacagctt agaaggtccg ggaaataggg gactt 45
<210> 42
<211> 45
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 42
ccctatttcc cggaccttct aagctgtttt gggcactggt cgtgg 45
<210> 43
<211> 37
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 43
atcgccatgg tgggtgaaga gtagcaagat aaggggt 37
<210> 44
<211> 25
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 44
ggtagctctt agcatgcttc cccag 25
<210> 45
<211> 26
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 45
gccagaacac aaaagcttat ctgcca 26
<210> 46
<211> 24
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 46
gaatgctgga ctagaaaccg gggg 24
<210> 47
<211> 25
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 47
cttagagcta gagctgccct gtccc 25
<210> 48
<211> 25
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 48
cacgctcctg tcttcccatt cagag 25
<210> 49
<211> 26
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 49
ttggtgcctt ctgggaaaca gaactc 26
<210> 50
<211> 35
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 50
atcgctcgag cggtcagcta tttaggtggt gtagc 35
<210> 51
<211> 19
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 51
tagggcgtga acagcgacg 19
<210> 52
<211> 19
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 52
aaaccgtcgc tgttcacgc 19
<210> 53
<211> 22
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 53
taggtcatct cctaagctgt tt 22
<210> 54
<211> 22
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 54
aaacaaacag cttaggagat ga 22

Claims (24)

1.一种人源化小鼠动物模型构建的方法,其特征在于,所述人源化小鼠动物模型基因组中包括嵌合CD28基因,所述的嵌合CD28基因的核苷酸序列如SEQ ID NO:30所示,该人源化小鼠动物模型体内可表达人源化CD28蛋白,同时内源CD28的蛋白表达降低或缺失。
2.根据权利要求1所述的方法,其特征在于,所述嵌合CD28基因编码人源化CD28蛋白,所述人源化CD28蛋白的组成包括胞外区、跨膜区以及胞内参与信号传导的区域,所述嵌合CD28基因编码的胞内参与信号传导的部分为小鼠来源,所述嵌合CD28基因编码的胞外区域包含人CD28蛋白胞外域的部分片段,同时该小鼠来源部分和人源部分通过序列拼接连接于小鼠动物模型内源的Cd28启动子后。
3.根据权利要求2所述的方法,其特征在于,所述小鼠来源部分包括Cd28基因的1号外显子全部序列、2号外显子部分序列、3号外显子部分序列及其后所有外显子的全部序列。
4.根据权利要求1-3任一所述的方法,其特征在于,使用基因编辑技术进行CD28人源化小鼠动物模型的构建,所述基因编辑技术包括利用胚胎干细胞的基因打靶技术、CRISPR/Cas9技术、锌指核酸酶技术、转录激活子样效应因子核酸酶技术或归巢核酸内切酶。
5.根据权利要求1-3任一所述的方法,其特征在于,将小鼠来源的Cd28的2号外显子至3号外显子的部分序列替换为人源CD28的2号外显子至3号外显子部分序列,使用sgRNA靶向的5’端靶序列如SEQ ID NO:4所示,靶向的3’端靶序列如SEQ ID NO:17所示。
6.根据权利要求1或2所述的方法,其特征在于,所述人源化CD28蛋白的氨基酸序列如SEQ ID NO:33所示。
7.根据权利要求1-3任一所述的方法,其特征在于,所述嵌合CD28基因编码权利要求6所述的人源化CD28蛋白,或所述的嵌合CD28基因选自下列组中的一种:
a)CDS序列为SEQ ID NO:31所示的序列;
b)转录的mRNA序列为SEQ ID NO:32所示的序列;
或c)来源于人CD28基因的核苷酸序列为SEQ ID NO:35所示的序列。
8.一种靶向载体,其包含:a)与待改变的转换区5’端同源的DNA片段,即5’臂;b)插入或替换的供体DNA序列,其编码供体转换区;c)与待改变的转换区3’端同源的第二个DNA片段,即3’臂;所述供体DNA序列为人CD28基因的核苷酸序列,所述的人CD28基因的核苷酸序列如SEQ ID NO:35所示,所述的待改变的转换区位于Cd28基因的2号外显子至3号外显子,所述5’臂序列如SEQ ID NO:34所示;所述3’臂序列如SEQ ID NO:36所示。
9.一种构建人源化小鼠动物模型的载体,其特征在于,所述载体包含sgRNA,用于敲除或替换Cd28基因的2号外显子至3号外显子的部分,所述sgRNA靶向的5’端靶序列如SEQ IDNO:4所示,sgRNA靶向的3’端靶序列如SEQ ID NO:17所示。
10.一种权利要求8所述的靶向载体、权利要求9所述的载体在敲除或替换CD28基因的2号外显子至3号外显子的部分中的应用。
11.一种CD28基因人源化细胞株,其特征在于,所述人源化细胞株基因组中包括嵌合CD28基因,所述的嵌合CD28基因的核苷酸序列如SEQ ID NO:30所示,该人源化细胞株可表达人源化CD28蛋白,同时细胞株内源CD28的蛋白表达降低或缺失,所述的细胞株来源于小鼠,所述的细胞株不能发育为个体。
12.一种制备多基因人源化小鼠动物模型的方法,其特征在于,
(a) 利用权利要求1-7任一所述方法获得人源化小鼠动物模型;
(b) 将步骤(a)获得的小鼠动物模型与其他人源化小鼠交配、体外授精或直接进行基因编辑,并进行筛选,得到多基因人源化小鼠动物模型。
13.根据权利要求12所述的方法,其特征在于,所述多基因人源化小鼠可以是双基因人源化小鼠、三基因人源化小鼠、四基因人源化小鼠、五基因人源化小鼠、六基因人源化小鼠、七基因人源化小鼠、八基因人源化小鼠或九基因人源化小鼠。
14.根据权利要求12或13所述的方法,其特征在于,所述其他人源化基因选自PD-1、PD-L1、CTLA-4、LAG-3、BTLA、CD27、CD40、CD47、CD137、CD154、OX40、SIRPα、TIGIT、TIM-3或GITR中的一种或两种以上的组合。
15.一种细胞或细胞系,其特征在于,所述的细胞或细胞系通过权利要求1-7任一所述方法获得,或者通过权利要求12-14任一所述方法获得,所述的细胞或细胞系不能发育为个体。
16.一种组织或器官或其培养物,其特征在于,所述的组织或器官或其培养物通过权利要求1-7任一所述方法获得,或者通过权利要求12-14任一所述方法获得,所述的组织或器官或其培养物不能发育为个体。
17.一种嵌合CD28蛋白,其特征在于,所述的嵌合CD28蛋白序列为SEQ ID NO:33所述氨基酸序列。
18.一种编码权利要求17所述的嵌合CD28蛋白的嵌合CD28基因,其特征在于,所述的嵌合CD28基因选自下列组中的一种:
a)嵌合CD28基因为SEQ ID NO:30所示的序列;
b)嵌合CD28基因的CDS序列为SEQ ID NO:31所示的序列;
c)嵌合CD28基因的mRNA序列为SEQ ID NO:32所示的序列;
或d)嵌合CD28基因中来源于人CD28基因的核苷酸序列为SEQ ID NO:35所示的序列。
19.根据权利要求18所述的嵌合CD28基因,其特征在于,嵌合小鼠CD28 DNA的非模板链、编码链或有义链包含序列SEQ ID NO:30。
20.人源化小鼠CD28的基因组DNA,其特征在于,所述基因组DNA序列转录获得的mRNA逆转录后得到的cDNA序列,与权利要求18-19任一所述的嵌合CD28基因序列一致或互补。
21.一种表达权利要求17所述的嵌合CD28蛋白的构建体。
22.一种包含权利要求21所述构建体的细胞,所述的细胞不能发育为个体。
23.一种包含权利要求22所述细胞的组织,所述的组织不能发育为个体。
24.来源于权利要求1-7任一所述方法构建的人源化小鼠动物模型或者权利要求12-14任一所述的方法获得的多基因人源化小鼠动物模型在需要涉及人类细胞的免疫过程的产品开发,制造人类抗体,或者作为药理学、免疫学、微生物学和医学研究的模型系统中的应用;或在生产和利用动物实验疾病模型,用于病原学研究中的应用;或在筛选、验证、评价或研究CD28基因功能、CD28抗体、针对CD28靶位点的药物、药效研究,免疫相关疾病药物以及抗肿瘤药物,筛选和评估人用药及药效研究方面的应用,所述的应用为非疾病的诊断和治疗目的。
CN201810621710.4A 2017-06-19 2018-06-15 人源化cd28基因改造动物模型的制备方法及应用 Active CN109136261B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/091846 WO2018233608A1 (en) 2017-06-19 2018-06-19 NON-HUMAN ANIMAL GENETICALLY MODIFIED TO CD28 HUMAN OR CHIMERIC
US16/435,441 US11350614B2 (en) 2017-06-19 2019-06-07 Genetically modified non-human animal with human or chimeric CD28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017104652173 2017-06-19
CN201710465217 2017-06-19

Publications (2)

Publication Number Publication Date
CN109136261A CN109136261A (zh) 2019-01-04
CN109136261B true CN109136261B (zh) 2021-03-16

Family

ID=64802097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810621710.4A Active CN109136261B (zh) 2017-06-19 2018-06-15 人源化cd28基因改造动物模型的制备方法及应用

Country Status (2)

Country Link
US (1) US11350614B2 (zh)
CN (1) CN109136261B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106205A (zh) * 2019-05-10 2019-08-09 江苏集萃药康生物科技有限公司 一种gitr人源化动物模型的构建方法及其应用
CN111019972A (zh) * 2019-12-30 2020-04-17 江苏集萃药康生物科技有限公司 一种cd27人源化小鼠模型的构建方法及其应用
US20230172171A1 (en) * 2020-05-22 2023-06-08 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric cd94 and/or nkg2a
CN111549072B (zh) * 2020-06-03 2022-09-13 上海南方模式生物科技股份有限公司 Vista基因人源化动物细胞及动物模型的构建方法与应用
CN113603765A (zh) * 2020-07-15 2021-11-05 百奥赛图(北京)医药科技股份有限公司 Il17f基因人源化的非人动物及其构建方法和应用
US20230320332A1 (en) * 2020-09-11 2023-10-12 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric ccr8
CN114621971A (zh) * 2021-02-19 2022-06-14 百奥赛图(北京)医药科技股份有限公司 经遗传修饰的非人动物及其构建方法和应用
CN112852875B (zh) * 2021-02-26 2022-10-21 福建省立医院 示踪肿瘤T淋巴细胞浸润的CD3e转基因小鼠模型的构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010628A3 (en) * 1993-09-28 1996-09-19 Dana Farber Cancer Inst Inc Signal transduction via cd28
WO2003006639A1 (fr) * 2001-07-13 2003-01-23 Genoway Cellule et animal transgenique modelisant la presentation antigenique humaine et leurs utilisations
CN106604635A (zh) * 2014-06-19 2017-04-26 瑞泽恩制药公司 具有人源化程序性细胞死亡1基因的非人动物

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
EP0843961B1 (en) 1995-08-29 2007-01-24 Kirin Beer Kabushiki Kaisha Chimeric animal and method for constructing the same
US6875904B2 (en) 2000-09-20 2005-04-05 The Ohio State University Research Foundation Animal model for identifying agents that inhibit or enhance CTLA4 signaling
AU2002246733B2 (en) 2000-12-19 2007-09-20 Altor Bioscience Corporation Transgenic animals comprising a humanized immune system
KR100510211B1 (ko) 2002-09-05 2005-08-26 주식회사 그린진 바이오텍 높은 성장율을 갖는 식물체의 생산방법
JP2005537805A (ja) 2002-09-09 2005-12-15 カリフォルニア インスティチュート オブ テクノロジー ヒト化マウスを作成するための方法および組成物
EP2322637B1 (en) 2003-12-24 2016-05-18 Novo Nordisk A/S Transgenic mouse comprising a polynucleotide encoding human or humanized C5AR
RS58365B1 (sr) 2013-09-23 2019-03-29 Regeneron Pharma Ne-humane životinje koje imaju humanizovan signal-regulatorni proteinski gen
EP3051942B1 (en) 2013-10-01 2020-09-02 Kymab Limited Animal models and therapeutic molecules
PL3138397T3 (pl) 2013-10-15 2019-06-28 Regeneron Pharmaceuticals, Inc. Zwierzęta z humanizowanym IL-15
CN103548775B (zh) 2013-10-23 2015-03-18 中国科学院武汉病毒研究所 一种cd81和ocln双转基因小鼠的构建方法和用途
WO2018001241A1 (zh) 2016-06-28 2018-01-04 北京百奥赛图基因生物技术有限公司 一种pd-1基因修饰人源化动物模型的构建方法及其应用
WO2018041118A1 (en) 2016-08-31 2018-03-08 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric pd-l1
US11279948B2 (en) 2016-08-31 2022-03-22 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric OX40
WO2018041120A1 (en) 2016-08-31 2018-03-08 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric tigit
WO2018041121A1 (en) 2016-08-31 2018-03-08 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric ctla-4
WO2018068756A1 (en) 2016-10-14 2018-04-19 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric btla
WO2018086594A1 (en) 2016-11-11 2018-05-17 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric tim-3
WO2018086583A1 (en) 2016-11-11 2018-05-17 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric lag-3
WO2018121787A1 (en) 2016-12-30 2018-07-05 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric cd137
WO2018177441A1 (en) 2017-03-31 2018-10-04 Beijing Biocytogen Co., Ltd GENETICALLY MODIFIED NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC SIRPα
CN108588126B (zh) 2017-03-31 2020-04-10 北京百奥赛图基因生物技术有限公司 Cd47基因人源化改造动物模型的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010628A3 (en) * 1993-09-28 1996-09-19 Dana Farber Cancer Inst Inc Signal transduction via cd28
WO2003006639A1 (fr) * 2001-07-13 2003-01-23 Genoway Cellule et animal transgenique modelisant la presentation antigenique humaine et leurs utilisations
CN106604635A (zh) * 2014-06-19 2017-04-26 瑞泽恩制药公司 具有人源化程序性细胞死亡1基因的非人动物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Generation of improved humanized mouse models for human infectious diseases;M. A. Brehm等;《J Immunol Methods》;20140304;第6节、表1和图3 *
Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement;Dahan, R.等;《Cancer Cell》;20160613;第29卷(第6期);第822页左栏第3段 *
人CD137和CD28蛋白表达及单克隆抗体制备;李加涛;《中国优秀硕士学位论文全文数据库(电子期刊)》;20140228;第36-37页 *

Also Published As

Publication number Publication date
US20190335728A1 (en) 2019-11-07
CN109136261A (zh) 2019-01-04
US11350614B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
CN109136261B (zh) 人源化cd28基因改造动物模型的制备方法及应用
CN108588126B (zh) Cd47基因人源化改造动物模型的制备方法及应用
CN109136274B (zh) 人源化cd40基因改造动物模型的制备方法及应用
US11279948B2 (en) Genetically modified non-human animal with human or chimeric OX40
CN107815465B (zh) 人源化基因改造动物模型的制备方法及应用
US11071290B2 (en) Genetically modified non-human animal with human or chimeric CTLA-4
EP3507373B1 (en) Genetically modified non-human animal with human or chimeric pd-l1
WO2018041121A1 (en) Genetically modified non-human animal with human or chimeric ctla-4
CN108531487B (zh) 人源化sirpa基因改造动物模型的制备方法及应用
WO2018086583A1 (en) Genetically modified non-human animal with human or chimeric lag-3
US11464876B2 (en) Genetically modified mouse comprising a chimeric TIGIT
CN109136275B (zh) 人源化gitr基因改造动物模型的制备方法及应用
WO2018233607A1 (en) NON-HUMAN ANIMAL GENETICALLY MODIFIED WITH HUMAN OR CHIMERIC CD40
US10925264B2 (en) Genetically modified non-human animal with human or chimeric LAG-3
CN113429486A (zh) 基因修饰非人动物的构建方法及应用
CN108070614B (zh) 人源化基因改造动物模型的制备方法及应用
CN114751973B (zh) Siglec15基因人源化非人动物的构建方法和应用
CN113046389B (zh) 一种ccr2基因人源化的非人动物及其构建方法和应用
CN112553252B (zh) Tnfr2基因人源化的非人动物的构建方法和应用
WO2018233606A1 (en) GENETICALLY MODIFIED NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC GITR
CN111304247B (zh) 人源化lag-3基因改造动物模型的制备方法及应用
CN113461802A (zh) 一种cd276基因人源化的非人动物及其构建方法和应用
CN113388640B (zh) Ccr4基因人源化的非人动物及其构建方法和应用
CN112048522A (zh) Tmem173基因人源化改造的动物模型的构建方法及其应用
CN115010800A (zh) Pvrig基因人源化非人动物的构建方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 102609 No.12, Baoshen South Street, Daxing biomedical industry base, Zhongguancun Science and Technology Park, Daxing District, Beijing

Applicant after: Baccetus (Beijing) Pharmaceutical Technology Co.,Ltd.

Address before: 101111 room 1201-1210, incubation center, 88 Kechuang 6th Street, Ludong District, Daxing District, Beijing

Applicant before: BEIJING BIOCYTOGEN Co.,Ltd.

GR01 Patent grant
GR01 Patent grant