WO2015194036A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2015194036A1
WO2015194036A1 PCT/JP2014/066439 JP2014066439W WO2015194036A1 WO 2015194036 A1 WO2015194036 A1 WO 2015194036A1 JP 2014066439 W JP2014066439 W JP 2014066439W WO 2015194036 A1 WO2015194036 A1 WO 2015194036A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
arm portion
arm
core
antenna device
Prior art date
Application number
PCT/JP2014/066439
Other languages
English (en)
French (fr)
Inventor
英俊 牧村
深沢 徹
崇 ▲柳▼
正信 平峰
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016528753A priority Critical patent/JP6173588B2/ja
Priority to PCT/JP2014/066439 priority patent/WO2015194036A1/ja
Publication of WO2015194036A1 publication Critical patent/WO2015194036A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • the present invention relates to an antenna device used in a wireless communication device, and more particularly to an antenna device equipped with a plurality of bar antennas.
  • the smart keyless entry system is mounted on a vehicle and includes a vehicle-mounted device that locks or unlocks a door by wireless communication operation, and a portable device that is carried by a user who wirelessly transmits a signal for locking or unlocking the door. It is configured.
  • the vehicle-mounted device forms a magnetic field around the vehicle, and a signal for locking or unlocking the door is transmitted to the vehicle by using a trigger detected by the portable device as the magnetic field.
  • the on-board unit Since the range of the magnetic field formed by the on-board unit is directly linked to the working distance of the smart keyless entry system, the on-board unit is required to form a magnetic field within the necessary and sufficient range. That is, a high transmission capability is required for the antenna device mounted on the vehicle-mounted device.
  • the frequency of the magnetic field formed by the vehicle-mounted device is set to a 30 to 300 kilohertz (kHz) band, so-called “LF band”, in order to limit the operating range of the system to several meters around the vehicle.
  • LF band kilohertz
  • a so-called “bar antenna” having a structure in which a coil is wound around a ferrite core and having directivity in the axial direction of the coil is used for an antenna device mounted on the vehicle-mounted device.
  • an antenna device mounted on a vehicle-mounted device is provided with a plurality of bar antennas having different coil axial directions so that a door can be operated when a user approaches the vehicle from either direction.
  • the bar antennas have a small electromagnetic coupling. They are arranged at a distance. For this reason, there are problems that the system becomes difficult to assemble and the cost becomes high.
  • the individual bar antennas tend to be large, which has become a factor that increases the size of the antenna device, increases costs, and makes layout difficult.
  • Patent Document 1 discloses an antenna device in which electromagnetic coupling between antennas is reduced by arranging two bar antennas orthogonally so that magnetic fluxes generated from each other do not interlink.
  • Patent Document 2 discloses an antenna device in which two bar antennas with reduced electromagnetic coupling are formed by winding coils around shafts orthogonal to each other in a cross-shaped core. Yes.
  • the antenna device of Patent Document 1 reduces electromagnetic coupling between antennas by arranging two bar antennas orthogonally. Each antenna operated independently of each other, and the communication performance was equivalent to that of an antenna apparatus using one antenna.
  • a two-core core is integrated to produce a cross-shaped core, the first coil is wound around the first shaft portion of the cross-shaped core, and the second coil is cross-shaped.
  • the electromagnetic coupling between the antennas is reduced by winding around the second shaft portion.
  • the magnetic flux generated by the first coil passes only through the first shaft portion of the core, and the magnetic flux generated by the second coil passes only through the second shaft portion of the core.
  • electromagnetic coupling between antennas is reduced.
  • One core around which the coil is wound does not affect the operation of the other antenna.
  • Patent Document 1 and Patent Document 2 have a structure in which one antenna does not affect the other antenna, an effect of reducing electromagnetic coupling between the antennas can be obtained. In order to obtain a sufficient communication distance, it was necessary to make the core sufficiently large.
  • the present invention has been made to solve the above-described problems, and can communicate more than a plurality of bar antennas that can be arranged close to each other and each bar antenna operates independently of each other.
  • An object of the present invention is to provide an antenna device capable of improving performance.
  • the antenna device includes a first arm portion and a second arm portion extending in opposite directions, and a direction in which the first arm portion and the second arm portion extend from a central portion between the first arm portion and the second arm portion.
  • a core having a third arm portion extending in a direction perpendicular to the first arm portion, a first small coil wound around the first arm portion, and a second small coil wound around the second arm portion are connected in series.
  • a first signal source that feeds power to the first coil, a second coil that is wound around the third arm, and a second signal source that feeds power to the second coil. It is.
  • the antenna device of the present invention can arrange a plurality of bar antennas close to each other, and can improve the communication performance as compared with one in which each bar antenna operates independently of each other.
  • FIG. 1 is an explanatory diagram illustrating a configuration of a main part of the antenna device according to the first embodiment of the present invention.
  • 1 is a core.
  • the core 1 is made of ferrite molded in a substantially T shape.
  • the core 1 has a first arm portion 11 and a second arm portion 12 that extend in opposite directions (the positive direction and the negative direction of the X axis in the drawing).
  • the core 1 extends from the central portion 13 between the first arm portion 11 and the second arm portion 12 in a direction perpendicular to the extending direction of the first arm portion 11 and the second arm portion 12 (the positive direction of the Y axis in the figure).
  • the third arm portion 14 is extended.
  • the first arm portion 11, the second arm portion 12, and the third arm portion 14 are all rod-shaped.
  • the length of the first arm portion 11 is equal to the length of the second arm portion 12, and the cross-sectional area of the first arm portion 11 is equal to the cross-sectional area of the second arm portion 12.
  • the length of the third arm portion 14 is shorter than the lengths of the first arm portion 11 and the second arm portion 12.
  • the shape of the core 1 is symmetric with respect to the axis of the third arm portion 14 (Y axis in the figure).
  • a first small coil 21 is wound around the first arm portion 11.
  • a second small coil 22 is wound around the second arm portion 12.
  • the number of turns of the first small coil 21 is set equal to the number of turns of the second small coil 22.
  • the winding direction of the first small coil 21 is the same as the winding direction of the second small coil 22.
  • the first small coil 21 and the second small coil 22 are electrically connected in series via the central portion 13 of the core 1, and the first coil 2 is configured.
  • the second coil 3 is wound around the third arm portion 14.
  • the first signal source 4 is electrically connected between both ends of the first coil 2 in parallel with the first coil 2.
  • the first signal source 4 supplies a high frequency current to the first coil 2.
  • a second signal source 5 is electrically connected between both ends of the second coil 3 in parallel with the second coil 3.
  • the second signal source 5 supplies a high frequency current to the second coil 3.
  • the first signal source 4 supplies a high-frequency current to the first coil 2.
  • the first coil 2 strongly radiates radio waves in two directions along the extending direction of the first arm portion 11 and the second arm portion 12 (positive direction and negative direction of the X axis in the drawing).
  • the second signal source 5 supplies a high frequency current to the second coil 3.
  • the second coil 3 strongly radiates radio waves in the direction along the extending direction of the third arm portion 14 (the positive direction of the Y axis in the figure). For this reason, the antenna device 100 as a whole has an effect of strongly radiating radio waves in three directions.
  • the second coil 3 When the second signal source 5 supplies the high-frequency current to the second coil 3, the second coil 3 generates a loop-shaped first magnetic flux ( ⁇ 1) I.
  • the first magnetic flux ( ⁇ 1) I is generated from the third arm portion 14 around which the second coil 3 is wound, to the center portion 13 of the core 1, the first arm portion 11 around which the first small coil 21 is wound, and the antenna device.
  • the magnetic flux sequentially passes through the external space 100 and returns to the third arm portion 14 again.
  • the second coil 3 when the second signal source 5 supplies a high frequency current to the second coil 3, the second coil 3 generates a loop-shaped second magnetic flux ( ⁇ 2) II.
  • the second magnetic flux ( ⁇ 2) II is transmitted from the third arm portion 14 around which the second coil 3 is wound, to the center portion 13 of the core 1, the second arm portion 12 around which the second small coil 22 is wound, and the antenna device.
  • the magnetic flux sequentially passes through the external space 100 and returns to the third arm portion 14 again.
  • the length of the core 1 that contributes to the radiation of the first magnetic flux ( ⁇ 1) I Is the sum of the length from the central portion 13 to the distal end portion of the third arm portion 14 and the length from the central portion 13 to the distal end portion of the first arm portion 11.
  • the length of the core 1 that contributes to the radiation of the second magnetic flux ( ⁇ 2) II is The sum of the length from the central portion 13 to the distal end portion of the third arm portion 14 and the length from the central portion 13 to the distal end portion of the second arm portion 12 is obtained.
  • the portions of the core 1 that contribute to the emission of radio waves from the first coil 2 are the first arm portion 11, the second arm portion 12, and the central portion 13. Further, the portion of the core 1 that contributes to the emission of radio waves from the second coil 3 is the entire core 1 from the first arm portion 11 to the third arm portion 14.
  • the first arm portion 11, the second arm portion 12, and the central portion 13 of the core 1 have the radiation from the first coil 2 and the radiation from the second coil 3. Shared by. For this reason, the sensitivity of the 2nd coil 3 can be improved, reducing the volume of the core 1, rather than the antenna apparatus which consists of two bar antennas which operate
  • the antenna device 100 operates in the same manner as the transmission antenna device when it operates as a reception antenna device due to the so-called “reciprocity of the antenna device”.
  • FIG. 3 shows a first experimental state used by the inventors for verification of the effect of the present invention.
  • the second coil 3 of the antenna device 100 according to the first embodiment is used for the transmitting antenna device.
  • the first coil 2 of the antenna device 100 is connected to a termination resistor 4a instead of the first signal source 4 shown in FIG. 1, and is electrically terminated.
  • a receiving antenna device 400 in which the signal source 42 is connected to the coil 41 is disposed so as to face the second coil 3.
  • FIG. 4 shows a second experimental state used by the inventors for comparison with the present invention.
  • the transmitting antenna device 300 is configured by winding the coil 32 around the rod-shaped core 31 and connecting the signal source 33 to the coil 32.
  • the length a of the core 31 is set to be equal to the length a from the central portion 13 of the core 1 in the first experimental state to the distal end portion of the third arm portion 14.
  • the receiving antenna device 400 similar to that in the first experimental state is arranged.
  • FIG. 5 is a characteristic diagram showing a radio wave passing amplitude
  • the characteristic line A shows the passage amplitude
  • the characteristic line B shows the passage amplitude
  • the length a from the central portion 13 of the core 1 in the first experimental state to the tip portion of the third arm portion 14 is set equal to the length a of the core 31 in the second experimental state.
  • of the characteristic line A is about 10 decibels (dB) higher than the passing amplitude
  • the second coil 3 in the first experimental state is wound around the third arm portion 14 of the substantially T-shaped core 1, so that the first arm portion 11 and the second arm portion 12 are also transmitting antenna devices. It is because it can utilize as a part of.
  • the antenna device 100 has the core 1 molded in a substantially T shape.
  • a first small coil 21 is wound around the first arm portion 11 of the core 1, and a second small coil 22 is wound around the second arm portion 12.
  • the first small coil 21 and the second small coil 22 are connected in series via the central portion 13 of the core 1, and the first coil 2 is configured.
  • the second coil 3 is wound around the third arm portion 14.
  • the frequency of the high-frequency current supplied from the first signal source 4 to the first coil 2 may be the same as or different from the frequency of the high-frequency current supplied from the second signal source 5 to the second coil 3. . In either case, the effect of improving the sensitivity of the second coil 3 while reducing the volume of the core 1 can be obtained.
  • the core 1 is not limited to one in which the length of the third arm portion 14 is shorter than the length of the first arm portion 11 and the second arm portion 12.
  • the length of the third arm portion 14 may be longer than the lengths of the first arm portion 11 and the second arm portion 12.
  • the length of the third arm portion 14 may be equal to the length of the first arm portion 11 and the second arm portion 12.
  • FIG. 6 With reference to FIG. 6, an antenna device in which the shapes of the first arm portion and the second arm portion and the number of turns of the first small coil and the second small coil are set to appropriate values will be described.
  • symbol is attached
  • the first electromotive force V11 induced in the first small coil 21 by interlinking the first magnetic flux ( ⁇ 1) I and the second small coil 22 inducing by interlinking the second magnetic flux ( ⁇ 2) II. So that the second electromotive force V12 has the same amplitude and opposite phase to each other, the shape of the first arm portion 11, the shape of the second arm portion 12, the number of turns of the first small coil 21, and the second small coil 22 The number of turns is set. In this way, the antenna device 101 is configured.
  • the first electromotive force V11 induced in the first small coil 21 by the interlinkage of the first magnetic flux ( ⁇ 1) I is expressed by the following equation (1).
  • N1 represents the number of turns of the first small coil 21, and d / dt represents time differentiation.
  • V11 -d / dt (N1 ⁇ 1) (1)
  • the second electromotive force V12 induced in the second small coil 22 by the linkage of the second magnetic flux ( ⁇ 2) II is expressed by the following formula (2).
  • the winding direction of the second small coil 22 viewed from the second magnetic flux ( ⁇ 2) II is opposite to the winding direction of the first small coil 21 viewed from the first magnetic flux ( ⁇ 1) I. Therefore, a minus sign is attached to the second magnetic flux ( ⁇ 2) II.
  • N2 represents the number of turns of the second small coil 22.
  • the electromagnetic coupling between the first coil 2 and the second coil 3 is small, the signal received by the other coil is hindered by the signal transmitted by one coil, It is possible to prevent the signal source from being destroyed when the other coil receives a part of the transmitted large power.
  • the number of turns of the first small coil 21 is different from the number of turns of the second small coil 22, or the shapes of the first arm part 11 and the second arm part 12 are on the axis of the third arm part 14 (Y-axis in the figure). Even if the structure is not symmetrical, the same effect can be obtained as follows. That is, when the lengths of the first arm portion 11 and the second arm portion 12 are different from each other, or when the cross-sectional shapes of the first arm portion 11 and the second arm portion 12 are different from each other, generally ⁇ 1 ⁇ ⁇ 2.
  • N1 ⁇ 1 ⁇ N2 ⁇ 2.
  • the magnetic flux interlinking with a coil having N turns is ⁇ , N ⁇ is generally called “magnetic flux interlinkage number”.
  • the first coil 2 and the second coil are equalized by equalizing the time change of the magnetic flux linkage number of the first small coil 21 and the magnetic flux linkage number of the second small coil 22.
  • the electromagnetic coupling with 3 can be made zero.
  • the antenna device 101 includes the first electromotive force V11 that is induced in the first small coil 21 by the interlinkage of the first magnetic flux ( ⁇ 1) I and the second magnetic flux ( ⁇ 2).
  • the shape of the first arm portion 11 and the shape of the second arm portion 12 are set so that the second electromotive force V12 induced in the second small coil 22 by the chain II is in the same amplitude and opposite phase.
  • the number of turns of the first small coil 21 and the number of turns of the second small coil 22 are set.
  • the first electromotive force V11 and the second electromotive force V12 cancel each other, and the voltage V1 appearing at the first signal source 4 due to the magnetic flux generated by the second coil 3 becomes zero.
  • the electromagnetic coupling with the two coils 3 can be made zero.
  • the core 1 is not limited to the substantially T-shape shown in FIG. 6 and may be asymmetric with respect to the axis of the third arm portion 14 (Y-axis in the figure). As shown in FIG. 7, the antenna device 102 in which the tip portion of the first arm portion 11 is bent to form the convex portion 15 may be used. Alternatively, the core 1 may have a shape in which the cross-sectional area of each arm portion is not constant. As shown in FIG. 8, a narrow-diameter portion 13 a having a smaller cross-sectional area than the first arm portion 11 and the second arm portion 12 is formed at the end portion on the central portion 13 side of the first arm portion 11 and the second arm portion 12. The antenna device 103 may be used.
  • the first small coil 21 and the first small coil 21 and the second small coil 22 have the same number of magnetic flux linkages and the second small coil 22. If the number of turns of the second small coil 22 is set, the effect of making the electromagnetic coupling between the first coil 2 and the second coil 3 zero can be obtained.
  • Embodiment 3 With reference to FIG. 9, an antenna apparatus in which a capacitor is connected between the signal source and the coil will be described.
  • symbol is attached
  • a first capacitor 6 is electrically connected in series between the first signal source 4 and one end of the first coil 2.
  • a second capacitor 7 is electrically connected in series between the second signal source 5 and one end of the second coil 3. In this way, the antenna device 104 is configured.
  • the electrostatic capacitances of the first capacitor 6 and the second capacitor 7 are set to such a capacitance that the first coil 2 and the second coil 3 resonate at the operating frequency of the antenna device 102, respectively.
  • the imaginary part of the impedance of the first coil 2 viewed from the first signal source 4 and the imaginary part of the impedance of the second coil 3 viewed from the second signal source 5 are respectively canceled.
  • power is efficiently supplied from the first signal source 4 to the first coil 2, and power is efficiently supplied from the second signal source 5 to the second coil 3. Can be improved.
  • Embodiment 4 FIG. With reference to FIG. 10, an antenna device in which two members are combined to form a core will be described.
  • symbol is attached
  • the first arm portion 11, the second arm portion 12, and the central portion 13 constitute a rod-shaped first core member 1a.
  • the third arm portion 14 forms a rod-shaped second core member 1b.
  • the first core member 1a and the second core member 1b are molded as different members.
  • the core 1c is configured by combining the first core member 1a and the second core member 1b in a substantially T shape. That is, one end of the second core member 1b is bonded to the central portion 13 of the first core member 1a with an adhesive or the like. Or the 1st core member 1a and the 2nd core member 1b are being fixed to the substantially T shape by accommodating in the case which is not illustrated.
  • the antenna device 105 configured as described above operates as follows in the same manner as the antenna device 100 of the first embodiment. That is, the portions of the core 1 c that contribute to the emission of radio waves from the first coil 2 are the first arm portion 11, the second arm portion 12, and the central portion 13. Further, the portion of the core 1 c that contributes to the emission of radio waves from the second coil 3 is the entire core 1 c from the first arm portion 11 to the third arm portion 14. Thereby, the sensitivity of the 2nd coil 3 can be improved, reducing the volume of the core 1c rather than the antenna apparatus which consists of two bar antennas which operate
  • the core 1c is configured by combining the first core member 1a and the second core member 1b which are molded as different members, a core having a simple shape can be easily created.
  • the core 1c is configured by combining the rod-shaped first core member 1a and the rod-shaped second core member 1b, it is possible to use conventional manufacturing equipment for manufacturing a rod-shaped core.
  • the two rod-shaped first core member 1a and the second core member 1b can be more densely arranged in the rectangular transport container than the T-shaped core, so that the transport container is made compact. It is suitable for mass transportation from the manufacturing location of each member to the assembly location.
  • the antenna device 105 when a T-shaped core is molded from an integral member, it is necessary to wind a coil around each of the three arms. Therefore, when winding a coil, it is necessary to devise a manufacturing apparatus and a manufacturing procedure so that physical interference with the conducting wire which comprises the 1st coil 2, and the conducting wire which comprises the 2nd coil 3 may be prevented.
  • the first core member 1a is wound after the first coil 2 is wound around the first core member 1a and the second coil 3 is wound around the second core member 1b.
  • the second core member 1b can be combined, so that it is not necessary to consider physical interference with the other coil when winding one coil, and the manufacturing apparatus and the manufacturing procedure can be further simplified. .
  • coils are wound around the first arm part to the third arm part of the substantially T-shaped core, respectively, and communication performance can be improved. Therefore, a smart keyless entry system and other wireless devices are provided. Suitable for use in communication devices.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

 アンテナ装置100は、互いに逆方向に延伸した第1腕部11及び第2腕部12と、第1腕部11と第2腕部12間の中央部13から第1腕部11及び第2腕部12の延伸方向と直交する方向に延伸した第3腕部14とを有するコア1を備える。アンテナ装置100は、第1腕部11に巻回された第1小コイル21と、第2腕部12に巻回された第2小コイル22とを直列に接続してなる第1コイル2を備える。アンテナ装置100は、第1コイル2に給電する第1信号源4と、第3腕部14に巻回された第2コイル3と、第2コイル3に給電する第2信号源5とを備える。

Description

アンテナ装置
 本発明は、無線通信装置に用いられるアンテナ装置に関するものであり、特に複数のバーアンテナを搭載したアンテナ装置に関する。
 従来、車両とその車両の利用者が所持する携帯機との間で無線通信を行い、車両のドアをロック或いはアンロックするシステムである、いわゆる「スマートキーレスエントリーシステム」が開発されている。
 スマートキーレスエントリーシステムは、車両に取り付けられて、無線通信による操作によってドアをロック或いはアンロックする車載器と、ドアをロック或いはアンロックするための信号を無線送信する利用者が携帯する携帯機によって構成されている。車載器が車両周囲に磁界を形成して、携帯機がその磁界を検知したことをトリガーにしてドアをロック或いはアンロックするための信号を車両に送信するようになっている。
 車載器が形成する磁界の範囲はスマートキーレスエントリーシステムの作動距離に直結しているため、車載器が必要十分な範囲に磁界を形成することが求められている。すなわち、車載器に搭載されるアンテナ装置には、高い送信能力が求められている。
 車載器が形成する磁界の周波数は、システムの作動範囲を車両の周囲数メートルに限定するために、30~300キロヘルツ(kHz)帯、いわゆる「LF帯」に設定されている。車載器に搭載されるアンテナ装置には、フェライト製のコアにコイルを巻回した構造を有し、コイルの軸方向に指向性を有するいわゆる「バーアンテナ」が用いられている。
 一般に、車載器に搭載されるアンテナ装置は、利用者が車両に対してどちらの方向から近づいた場合でもドアを操作できるように、コイルの軸方向が互いに異なる複数のバーアンテナが配置されている。また、いずれかのバーアンテナに給電する信号源が、他のバーアンテナが発生した磁界との電磁的な結合によって破壊されるのを防ぐために、バーアンテナ同士は電磁的な結合が小さくなるように距離を離して配置されている。そのため、システムが組み立て難くなったり、コストが高くなる課題があった。
 また、バーアンテナによって離れた位置に強い磁界を形成するためには、コアを軸方向に長くすることが有効である。アンテナ装置の通信性能を向上させるためには、個々のバーアンテナが大型になる傾向にあり、アンテナ装置が大型になったり、コストが高くなったり、レイアウトがし難くなる要因となっていた。
 これらの問題に対して、複数のバーアンテナを近接して配置したアンテナ装置が開発されている。例えば、特許文献1には、2つのバーアンテナを直交配置することで互いが発生する磁束が鎖交しないようにして、アンテナ間の電磁的な結合を低減したアンテナ装置が開示されている。また、特許文献2には、十文字型に形成したコアの互いに直交する軸部にそれぞれコイルを巻回することで、電磁的な結合を低減した2つのバーアンテナを形成したアンテナ装置が開示されている。
特開2004-187159号公報 特開2003-92509号公報
 特許文献1のアンテナ装置は、2つのバーアンテナを直交させて配置することによってアンテナ間の電磁的な結合を低減している。各々のアンテナは互いに独立して動作しており、通信性能は1つのアンテナを用いたアンテナ装置と同等であった。
 特許文献2のアンテナ装置は、2本の棒状コアを一体化することで十文字型のコアを作製し、第1コイルを十文字型コアの第1軸部に巻回し、第2コイルを十文字型コアの第2軸部に巻回することでアンテナ間の電磁的な結合を低減している。この構造では、第1コイルが発生した磁束はコアの第1軸部のみを通過し、第2コイルが発生した磁束はコアの第2軸部のみを通過するため、特許文献1のアンテナ装置と同様にアンテナ間の電磁的な結合は低減される。コイルが巻回されている一方のコアは他方のアンテナの動作に影響を与えない。
 すなわち、特許文献1及び特許文献2のアンテナ装置は、いずれも一方のアンテナが他方のアンテナに影響を与えない構造となっているため、アンテナ間の電磁的な結合を低減する効果は得られるものの、十分な通信距離を得るためにはコアを十分に大きくする必要があった。
 本発明は、上記のような課題を解決するためになされたものであり、複数のバーアンテナを近接して配置することができ、かつ各々のバーアンテナが互いに独立して動作するものよりも通信性能を向上させることができるアンテナ装置を提供することを目的とする。
 本発明のアンテナ装置は、互いに逆方向に延伸した第1腕部及び第2腕部と、第1腕部と第2腕部間の中央部から第1腕部及び第2腕部の延伸方向と直交する方向に延伸した第3腕部とを有するコアと、第1腕部に巻回された第1小コイルと、第2腕部に巻回された第2小コイルとを直列に接続してなる第1コイルと、第1コイルに給電する第1信号源と、第3腕部に巻回された第2コイルと、第2コイルに給電する第2信号源と、を具備するものである。
 本発明のアンテナ装置は、複数のバーアンテナを近接して配置することができ、かつ各々のバーアンテナが互いに独立して動作するものよりも通信性能を向上させることができる。
本発明の実施の形態1のアンテナ装置の構成を示す説明図である。 図1に示すアンテナ装置が発生する磁束を示す説明図である。 本発明の実施の形態1のアンテナ装置の実験状態を示す説明図である。 比較対象のアンテナ装置の実験状態を示す説明図である。 送信アンテナ装置と受信アンテナ装置間の距離に対する通過振幅を示す特性図である。 本発明の実施の形態2のアンテナ装置の構成を示す説明図である。 本発明の実施の形態2の他のアンテナ装置の構成を示す説明図である。 本発明の実施の形態2の他のアンテナ装置の構成を示す説明図である。 本発明の実施の形態3のアンテナ装置の構成を示す説明図である。 本発明の実施の形態4のアンテナ装置の構成を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本発明の実施の形態1のアンテナ装置の要部の構成を示す説明図である。
 図中、1はコアである。コア1は、略T字状に成型されたフェライトにより構成されている。コア1は、互いに逆方向(図中X軸の正方向と負方向)に延伸した第1腕部11及び第2腕部12を有している。コア1は、第1腕部11と第2腕部12間の中央部13から、第1腕部11及び第2腕部12の延伸方向と直交する方向(図中Y軸の正方向)に延伸した第3腕部14を有している。
 第1腕部11、第2腕部12及び第3腕部14は、いずれも棒形状である。第1腕部11の長さは第2腕部12の長さと等しく、第1腕部11の断面積は第2腕部12の断面積と等しくなっている。第3腕部14の長さは、第1腕部11及び第2腕部12の長さよりも短くなっている。コア1の形状は、第3腕部14の軸(図中Y軸)に対して対称である。
 第1腕部11には、第1小コイル21が巻回されている。第2腕部12には、第2小コイル22が巻回されている。第1小コイル21の巻数は、第2小コイル22の巻数と等しく設定されている。第1小コイル21の巻回方向は、第2小コイル22の巻回方向と同じ向きである。第1小コイル21と第2小コイル22とは、コア1の中央部13を介して電気的に直列に接続されており、第1コイル2が構成されている。第3腕部14には、第2コイル3が巻回されている。
 第1コイル2の両端部間には、第1コイル2に対して並列に、第1信号源4が電気的に接続されている。第1信号源4は、第1コイル2に高周波電流を供給するものである。第2コイル3の両端部間には、第2コイル3に対して並列に、第2信号源5が電気的に接続されている。第2信号源5は、第2コイル3に高周波電流を供給するものである。
 次に、図2を参照して、このように構成されたアンテナ装置100の動作について、電波を放射する送信アンテナ装置の動作を中心に説明する。図中、図1と同様の構成部材には同一符号を付して説明を省略する。
 まず、第1信号源4が第1コイル2に高周波電流を供給する。第1コイル2は、第1腕部11及び第2腕部12の延伸方向に沿う2方向(図中X軸の正方向及び負方向)に電波を強く放射する。また、第2信号源5が第2コイル3に高周波電流を供給する。第2コイル3は、第3腕部14の延伸方向に沿う方向(図中Y軸の正方向)に電波を強く放射する。そのため、アンテナ装置100全体では、3方向に電波を強く放射する効果が得られる。
 第2信号源5が第2コイル3に高周波電流を供給したことにより、第2コイル3はループ状の第1磁束(Φ1)Iを発生する。第1磁束(Φ1)Iは、第2コイル3を巻回した第3腕部14から、コア1の中央部13と、第1小コイル21を巻回した第1腕部11と、アンテナ装置100の外部の空間とを順次通過して第3腕部14に再び戻る磁束である。
 同様に、第2信号源5が第2コイル3に高周波電流を供給したことにより、第2コイル3はループ状の第2磁束(Φ2)IIを発生する。第2磁束(Φ2)IIは、第2コイル3を巻回した第3腕部14から、コア1の中央部13と、第2小コイル22を巻回した第2腕部12と、アンテナ装置100の外部の空間とを順次通過して第3腕部14に再び戻る磁束である。
 このとき、第1磁束(Φ1)Iが第3腕部14だけでなく中央部13及び第1腕部11も通過するため、第1磁束(Φ1)Iの放射に寄与するコア1の長さは、中央部13から第3腕部14の先端部までの長さと中央部13から第1腕部11の先端部までの長さとの和となる。また、第2磁束(Φ2)IIが第3腕部14だけでなく中央部13及び第2腕部12も通過するため、第2磁束(Φ2)IIの放射に寄与するコア1の長さは、中央部13から第3腕部14の先端部までの長さと中央部13から第2腕部12の先端部までの長さとの和となる。
 すなわち、第1コイル2からの電波の放射に寄与するコア1の部位は、第1腕部11、第2腕部12及び中央部13である。また、第2コイル3からの電波の放射に寄与するコア1の部位は、第1腕部11から第3腕部14までのコア1全体である。
 このように、実施の形態1のアンテナ装置100は、コア1の第1腕部11、第2腕部12及び中央部13が、第1コイル2からの放射と第2コイル3からの放射とで共用される。このため、互いに独立して動作する2つのバーアンテナからなるアンテナ装置よりも、コア1の体積を削減しつつ第2コイル3の感度を向上させることができる。
 なお、アンテナ装置100は、いわゆる「アンテナ装置の可逆性(reciprocity)」により、受信アンテナ装置として動作する場合も送信アンテナ装置と同様に動作する。
 次に、図3~図5を参照して、アンテナ装置100の効果について説明する。
 図3は、発明者らが本発明の効果の検証に用いた第1実験状態を示している。第1実験状態では、実施の形態1のアンテナ装置100の第2コイル3を送信アンテナ装置に用いている。アンテナ装置100の第1コイル2は、図1に示す第1信号源4に代えて終端抵抗4aが接続されており、電気的に終端されている。第2コイル3と対向して、コイル41に信号源42を接続した受信アンテナ装置400が配置されている。
 図4は、発明者らが本発明との対比に用いた第2実験状態を示している。第2実験状態では、棒形状のコア31にコイル32を巻回し、コイル32に信号源33を接続することで、送信アンテナ装置300が構成されている。コア31の長さaは、第1実験状態のコア1の中央部13から第3腕部14の先端部までの長さaと等しく設定されている。送信アンテナ装置300と対向して、第1実験状態と同様の受信アンテナ装置400が配置されている。
 図5は、送信アンテナ装置と受信アンテナ装置間の距離dに対する、送信アンテナ装置と受信アンテナ装置間の電波の通過振幅|S21|を示す特性図である。特性線Aは第1実験状態の通過振幅|S21|を示しており、特性線Bは第2実験状態の通過振幅|S21|を示している。
 図5に示す如く、第1実験状態のコア1の中央部13から第3腕部14の先端部までの長さaが、第2実験状態のコア31の長さaと等しく設定されているにも関わらず、距離dが1センチメートル(cm)から6cmの範囲に亘って、特性線Aの通過振幅|S21|が特性線Bの通過振幅|S21|よりも10デシベル(dB)程度高くなっている。この理由は、第1実験状態の第2コイル3が略T字状のコア1の第3腕部14に巻回されているので、第1腕部11及び第2腕部12も送信アンテナ装置の一部として利用することができるからである。
 以上のように、実施の形態1のアンテナ装置100は、略T字状に成型したコア1を有している。コア1の第1腕部11には第1小コイル21が巻回されており、第2腕部12には第2小コイル22が巻回されている。第1小コイル21と第2小コイル22とはコア1の中央部13を介して直列に接続されており、第1コイル2が構成されている。第3腕部14には第2コイル3が巻回されている。これにより、第1コイルと第2コイルとをそれぞれ別の棒状コアに巻回した従来のアンテナ装置と比較して、同等の通信可能距離をより小さな体積のコア1で実現できる。
 なお、第1信号源4が第1コイル2に供給する高周波電流の周波数は、第2信号源5が第2コイル3に供給する高周波電流の周波数と等しくしてもよく、異なるものとしても良い。いずれの場合も、同様にコア1の体積を削減しつつ第2コイル3の感度を向上させる効果を得ることができる。
 また、コア1は、第3腕部14の長さが、第1腕部11及び第2腕部12の長さよりも短いものに限定されない。第3腕部14の長さは、第1腕部11及び第2腕部12の長さより長くても良い。又は、第3腕部14の長さは、第1腕部11及び第2腕部12の長さと等しくても良い。
実施の形態2.
 図6を参照して、第1腕部及び第2腕部の形状と、第1小コイル及び第2小コイルの巻数とを適切な値に設定したアンテナ装置について説明する。なお、図1及び図2に示す実施の形態1のアンテナ装置100と同様の構成部材には同一符号を付して説明を省略する。
 第1磁束(Φ1)Iが鎖交することによって第1小コイル21に誘導される第1起電力V11と、第2磁束(Φ2)IIが鎖交することによって第2小コイル22に誘導される第2起電力V12とが、互いに等振幅かつ逆位相になるように、第1腕部11の形状、第2腕部12の形状、第1小コイル21の巻数及び第2小コイル22の巻数が設定されている。このようにして、アンテナ装置101が構成されている。
 次に、アンテナ装置101の動作及び効果について説明する。
 いわゆる「ファラデーの電磁誘導の法則」に基づき、第1磁束(Φ1)Iが鎖交することによって第1小コイル21に誘導される第1起電力V11は、以下の式(1)で表される。式(1)において、N1は第1小コイル21の巻数を表しており、d/dtは時間微分を表している。
 V11=-d/dt(N1Φ1) (1)
 同様に、第2磁束(Φ2)IIが鎖交することによって第2小コイル22に誘導される第2起電力V12は、以下の式(2)で表される。第2磁束(Φ2)IIから見た第2小コイル22の巻回方向は、第1磁束(Φ1)Iから見た第1小コイル21の巻回方向と逆向きになっている。そのため、第2磁束(Φ2)IIにはマイナスの符号をつけている。式(2)において、N2は第2小コイル22の巻数を表している。
 V12=-d/dt(-N2Φ2)=d/dt(N2Φ2) (2)
 式(1)及び式(2)より、第2コイル3が発生した磁束によって第1信号源4に現れる電圧V1は、以下の式(3)で表される。第1コイル2と第2コイル3間の電磁的な結合を抑えると、電圧V1は小さくなる。
 V1=V11+V12=-d/dt(N1Φ1)+d/dt(N2Φ2) (3)
 ここで、第1小コイル21の巻数は第2小コイル22の巻数と等しく、かつ第1腕部11及び第2腕部12の形状は第3腕部14の軸(図中Y軸)に対して対称であるものとする。第1腕部11及び第2腕部12の形状が第3腕部14の軸に対して対称であるため、第2コイル3から見た第1小コイル21と第2小コイル22とは電気的に互いに同等であり、Φ1=Φ2となる。
 このとき、式(3)においてN1=N2かつΦ1=Φ2となるため、d/dt(N1Φ1)=d/dt(N2Φ2)である。その結果、V1=0となる。これは、第1信号源4と第2信号源5とが電磁的に結合しておらず、一方の信号源がコイルに給電することにより発生した磁界によって、他方の信号源が破壊されないことを示している。
 このように、第1コイル2と第2コイル3との電磁的な結合が小さくなっているため、一方のコイルが送信する信号によって他方のコイルが受信する信号が妨げられたり、一方のコイルが送信した大電力の一部を他方のコイルが受信することで信号源が破壊されるのを防止することができる。
 なお、第1小コイル21の巻数が第2小コイル22の巻数と異なるか、又は第1腕部11及び第2腕部12の形状が第3腕部14の軸(図中Y軸)に対して対称でない構造であっても、以下のように同様の効果を得ることができる。すなわち、第1腕部11と第2腕部12の長さが互いに異なる場合、又は第1腕部11と第2腕部12の断面形状が互いに異なる場合、一般にΦ1≠Φ2となる。この場合も、N1Φ1=-N2Φ2となるように第1小コイル21及び第2小コイル22の巻数を設定することで、d/dt(N1Φ1)=d/dt(N2Φ2)とすることができる。例えば、Φ1=2・Φ2である場合、第1小コイル21の巻数N1と第2小コイル22の巻数N2とを2・N1=N2となるように設定する。
 巻数Nのコイルに鎖交する磁束をΦとすると、NΦを一般に「磁束鎖交数」という。第2コイル3が磁束を発生したとき、第1小コイル21の磁束鎖交数と第2小コイル22の磁束鎖交数との時間変化を等しくすることで、第1コイル2と第2コイル3との電磁的な結合をゼロにすることができる。
 以上のように、実施の形態2のアンテナ装置101は、第1磁束(Φ1)Iが鎖交することによって第1小コイル21に誘導される第1起電力V11と、第2磁束(Φ2)IIが鎖交することによって第2小コイル22に誘導される第2起電力V12とが、互いに等振幅かつ逆位相になるように、第1腕部11の形状、第2腕部12の形状、第1小コイル21の巻数及び第2小コイル22の巻数が設定されている。これにより、第1起電力V11と第2起電力V12とが互いに打ち消し合い、第2コイル3が発生した磁束によって第1信号源4に現れる電圧V1がゼロになるため、第1コイル2と第2コイル3との電磁的な結合をゼロにすることができる。
 なお、コア1は、図6に示す略T字状の形状に限定されるものではなく、第3腕部14の軸(図中Y軸)に対して非対称な形状でも良い。図7に示す如く、第1腕部11の先端部を折り曲げて凸部15を形成したアンテナ装置102としても良い。又は、コア1は、各腕部の断面積が一定でない形状でも良い。図8に示す如く、第1腕部11及び第2腕部12の中央部13側の端部に、第1腕部11及び第2腕部12よりも断面積が小さい細径部13aを形成したアンテナ装置103としても良い。第1腕部11及び第2腕部12の形状に応じて、第1小コイル21の磁束鎖交数と第2小コイル22の磁束鎖交数とが等しくなるように第1小コイル21及び第2小コイル22の巻数を設定したものであれば、同様に第1コイル2と第2コイル3との電磁的な結合をゼロにする効果が得られる。
実施の形態3.
 図9を参照して、信号源とコイル間にキャパシタを接続したアンテナ装置について説明する。なお、図1及び図2に示す実施の形態1のアンテナ装置100と同様の構成部材には同一符号を付して説明を省略する。
 第1信号源4と第1コイル2の一端部との間には、第1キャパシタ6が電気的に直列に接続されている。第2信号源5と第2コイル3の一端部との間には、第2キャパシタ7が電気的に直列に接続されている。このようにして、アンテナ装置104が構成されている。
 第1キャパシタ6及び第2キャパシタ7の静電容量は、第1コイル2及び第2コイル3がアンテナ装置102の動作周波数でそれぞれ共振するような容量に設定されている。これにより、第1信号源4から見た第1コイル2のインピーダンスの虚部と、第2信号源5から見た第2コイル3のインピーダンスの虚部とがそれぞれ打ち消される。この結果、第1信号源4から第1コイル2に効率よく電力が供給され、かつ第2信号源5から第2コイル3に効率よく電力が供給されるようになり、アンテナ装置104の通信性能を向上させることができる。
実施の形態4.
 図10を参照して、2つの部材を組み合わせてコアを構成するようにしたアンテナ装置について説明する。なお、図1及び図2に示す実施の形態1のアンテナ装置100と同様の構成部材には同一符号を付して説明を省略する。
 第1腕部11、第2腕部12及び中央部13によって、棒形状の第1コア部材1aが構成されている。第3腕部14によって、棒形状の第2コア部材1bが構成されている。第1コア部材1aと第2コア部材1bとは、それぞれ異なる部材として成型されている。
 第1コア部材1aと第2コア部材1bとを略T字状に組み合わせることで、コア1cが構成されている。すなわち、第2コア部材1bの一端部は、第1コア部材1aの中央部13に接着剤などで接着されている。又は、第1コア部材1a及び第2コア部材1bは、図示しないケースに収容することで、略T字状に固定されている。
 このように構成されたアンテナ装置105は、実施の形態1のアンテナ装置100と同様に以下のとおり動作する。
 すなわち、第1コイル2からの電波の放射に寄与するコア1cの部位は、第1腕部11、第2腕部12及び中央部13になる。また、第2コイル3からの電波の放射に寄与するコア1cの部位は、第1腕部11から第3腕部14までのコア1c全体になる。これにより、互いに独立して動作する2つのバーアンテナからなるアンテナ装置よりも、コア1cの体積を削減しつつ第2コイル3の感度を向上させることができる。
 また、それぞれ異なる部材として成型した第1コア部材1aと第2コア部材1bとを組み合わせることによりコア1cを構成しているため、簡単な形状のコアを容易に作成することができる。特に、棒形状の第1コア部材1aと棒形状の第2コア部材1bとを組み合わせることによりコア1cを構成しているため、棒形状のコアを製造する従来の製造設備を利用できる。また、2本の棒形状の第1コア部材1a及び第2コア部材1bは、T字状のコアよりも長方形の搬送容器内に密に配置することができるため、搬送容器をコンパクトにすることができ、各部材の製造場所から組立場所などへの大量輸送に適している。
 さらに、T字状のコアを一体の部材で成型した場合、3本の腕部にそれぞれコイルを巻回する必要が生じる。そのため、コイルを巻回する際に、第1コイル2を構成する導線と第2コイル3を構成する導線との物理的な干渉を防ぐように、製造装置及び製造手順を工夫する必要がある。これに対し、実施の形態4のアンテナ装置105は、第1コア部材1aに第1コイル2を巻回し、かつ第2コア部材1bに第2コイル3を巻回した後に、第1コア部材1aと第2コア部材1bとを組み合わせることができるので、一方のコイルの巻回時に他方のコイルとの物理的な干渉を考慮する必要がなく、製造装置及び製造手順をより簡略にすることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明のアンテナ装置は、略T字状のコアの第1腕部~第3腕部にそれぞれコイルを巻回しており、通信性能を向上させることができるので、スマートキーレスエントリーシステム及びその他の無線通信装置に用いるのに適している。
 1 コア、1a 第1コア部材、1b 第2コア部材、1c コア、2 第1コイル、3 第2コイル、4 第1信号源、4a 終端抵抗、5 第2信号源、6 第1キャパシタ、7 第2キャパシタ、11 第1腕部、12 第2腕部、13 中央部、13a 細径部、14 第3腕部、15 凸部、21 第1小コイル、22 第2小コイル、31 コア、32 コイル、33 信号源、41 コイル、42 信号源、100,101,102,103,104,105 アンテナ装置、300 送信アンテナ装置、400 受信アンテナ装置。

Claims (6)

  1.  互いに逆方向に延伸した第1腕部及び第2腕部と、前記第1腕部と前記第2腕部間の中央部から前記第1腕部及び前記第2腕部の延伸方向と直交する方向に延伸した第3腕部とを有するコアと、
     前記第1腕部に巻回された第1小コイルと、前記第2腕部に巻回された第2小コイルとを直列に接続してなる第1コイルと、
     前記第1コイルに給電する第1信号源と、
     前記第3腕部に巻回された第2コイルと、
     前記第2コイルに給電する第2信号源と、
     を具備することを特徴とするアンテナ装置。
  2.  前記第2コイルが発生する磁束によって前記第1小コイルに生じる第1起電力と、前記第2コイルが発生する磁束によって前記第2小コイルに生じる第2起電力とが互いに等振幅かつ逆位相となるように、前記第1腕部の形状、前記第2腕部の形状、前記第1小コイルの巻数及び前記第2小コイルの巻数を設定したことを特徴とする請求項1記載のアンテナ装置。
  3.  前記コアの形状が前記第3腕部の軸に対して対称であり、
     前記第1小コイルの巻数と前記第2小コイルの巻数とが等しい
     ことを特徴とする請求項1記載のアンテナ装置。
  4.  前記第1腕部、前記第2腕部及び前記第3腕部が棒形状であり、
     前記第1腕部の長さと前記第2腕部の長さとが等しく、
     前記第1腕部の断面積と前記第2腕部の断面積とが等しく、
     前記第1小コイルの巻数と前記第2小コイルの巻数とが等しい
     ことを特徴とする請求項1記載のアンテナ装置。
  5.  前記コアは、前記第1腕部、前記第2腕部及び前記中央部を含む第1コア部材と、前記第3腕部を含む第2コア部材との組み合わせ体であることを特徴とする請求項1記載のアンテナ装置。
  6.  前記第1コイルと前記第1信号源との間に第1キャパシタを接続し、
     前記第2コイルと前記第2信号源との間に第2キャパシタを接続した
     ことを特徴とする請求項1記載のアンテナ装置。
PCT/JP2014/066439 2014-06-20 2014-06-20 アンテナ装置 WO2015194036A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016528753A JP6173588B2 (ja) 2014-06-20 2014-06-20 アンテナ装置
PCT/JP2014/066439 WO2015194036A1 (ja) 2014-06-20 2014-06-20 アンテナ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066439 WO2015194036A1 (ja) 2014-06-20 2014-06-20 アンテナ装置

Publications (1)

Publication Number Publication Date
WO2015194036A1 true WO2015194036A1 (ja) 2015-12-23

Family

ID=54935064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066439 WO2015194036A1 (ja) 2014-06-20 2014-06-20 アンテナ装置

Country Status (2)

Country Link
JP (1) JP6173588B2 (ja)
WO (1) WO2015194036A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525286A1 (de) * 2018-02-09 2019-08-14 SUMIDA Components & Modules GmbH Ferritstabantenne und sende- und empfangseinheit mit entsprechender ferritstabantenne

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728535U (ja) * 1980-07-23 1982-02-15
JPS5854111U (ja) * 1981-10-09 1983-04-13 シチズン時計株式会社 超小型ラジオ受信機のバ−アンテナコイル
DE3504660A1 (de) * 1985-02-12 1986-08-21 Rainer Dipl.-Ing. 6500 Mainz Bermbach Ferritantenne fuer funkuhren
JP2005277524A (ja) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd 磁性体アンテナ
JP2008035464A (ja) * 2006-03-13 2008-02-14 Murata Mfg Co Ltd 携帯電子機器
JP2009253576A (ja) * 2008-04-04 2009-10-29 Toko Inc バーアンテナ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728535U (ja) * 1980-07-23 1982-02-15
JPS5854111U (ja) * 1981-10-09 1983-04-13 シチズン時計株式会社 超小型ラジオ受信機のバ−アンテナコイル
DE3504660A1 (de) * 1985-02-12 1986-08-21 Rainer Dipl.-Ing. 6500 Mainz Bermbach Ferritantenne fuer funkuhren
JP2005277524A (ja) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd 磁性体アンテナ
JP2008035464A (ja) * 2006-03-13 2008-02-14 Murata Mfg Co Ltd 携帯電子機器
JP2009253576A (ja) * 2008-04-04 2009-10-29 Toko Inc バーアンテナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525286A1 (de) * 2018-02-09 2019-08-14 SUMIDA Components & Modules GmbH Ferritstabantenne und sende- und empfangseinheit mit entsprechender ferritstabantenne

Also Published As

Publication number Publication date
JPWO2015194036A1 (ja) 2017-04-20
JP6173588B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
US9831685B2 (en) Wireless power transmitter
JP5187071B2 (ja) 高周波電界結合器並びに結合用電極
US9406435B2 (en) Misalignment insensitive wireless power transfer
US20110095617A1 (en) Ferrite antennas for wireless power transfer
WO2011077493A1 (ja) 無線電力伝送装置及び受電装置
KR20130099576A (ko) 무선 전력 전송 장치
JP6635230B1 (ja) アンテナ装置、通信システム、及び電子機器
US10978791B2 (en) Combination antenna
JP6201380B2 (ja) 非接触通信コイル、非接触給電装置、及び非接触受電装置
KR102402279B1 (ko) 자동차의 보드 상에 있는 휴대용 요소와 근거리 무선 주파수 통신을 하기 위한 디바이스
AU2002215265B2 (en) An antenna device
US10763921B1 (en) Near-field electromagnetic induction device
JP2018011475A (ja) 受信装置及び無線伝送システム
JP6173588B2 (ja) アンテナ装置
WO2024009485A1 (ja) 電力伝送コイル
JP6217006B2 (ja) 磁性体装荷アンテナ
JP6729148B2 (ja) アンテナ装置、アンテナモジュールおよび電子機器
US20170155285A1 (en) Open type resonance coil without dual loops having serial type in-phase direct power feeding method without dual loops
JP6444510B2 (ja) 無線電力伝送装置及び受信装置
KR20110075105A (ko) 무선전력 전송 장치 및 수신 장치
KR101360024B1 (ko) 커패시터를 이용한 무선 전력 전송 장치 및 방법
JP4934659B2 (ja) 共用アンテナ及び整合回路
KR102064360B1 (ko) 무선전력 전송용 안테나 코어 및 이를 포함하는 무선전력 전송모듈
CN109845033B (zh) 具有缠绕和联接在一起的铁磁体杆的天线
KR101833744B1 (ko) 무선 전력 송수신용 코일 및 상기 코일을 사용한 송신기 및 수신기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895378

Country of ref document: EP

Kind code of ref document: A1