WO2015193943A1 - 流動体の物性を測定する方法及び装置 - Google Patents

流動体の物性を測定する方法及び装置 Download PDF

Info

Publication number
WO2015193943A1
WO2015193943A1 PCT/JP2014/065890 JP2014065890W WO2015193943A1 WO 2015193943 A1 WO2015193943 A1 WO 2015193943A1 JP 2014065890 W JP2014065890 W JP 2014065890W WO 2015193943 A1 WO2015193943 A1 WO 2015193943A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
viscosity
value
gain
target
Prior art date
Application number
PCT/JP2014/065890
Other languages
English (en)
French (fr)
Inventor
菅野 将弘
吉一 長根
Original Assignee
株式会社 エー・アンド・デイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エー・アンド・デイ filed Critical 株式会社 エー・アンド・デイ
Priority to PCT/JP2014/065890 priority Critical patent/WO2015193943A1/ja
Priority to EP14895082.7A priority patent/EP3156781B1/en
Priority to JP2015560474A priority patent/JP6345193B2/ja
Priority to US15/308,766 priority patent/US10352839B2/en
Publication of WO2015193943A1 publication Critical patent/WO2015193943A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • G01N11/162Oscillations being torsional, e.g. produced by rotating bodies
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system

Definitions

  • the present invention relates to a method and apparatus for measuring physical properties of a fluid, and more particularly to a method and apparatus for improving the response speed in measuring viscosity and making a measurement graph continuous.
  • FIG. 1 is a configuration diagram of a drive mechanism unit 2 of the tuning fork vibration type viscometer 1
  • FIG. 2 is a block diagram of a control system of the tuning fork vibration type viscometer of Patent Document 1.
  • the drive mechanism unit 2 includes a pair of vibrators 3 and 3 inserted into the measurement sample 4, a magnet 10 a and an electromagnetic coil 10 b for vibrating the vibrators 3 and 3, and the vibrator 3. , 3 has a displacement detection sensor 11 for detecting the amplitude.
  • the tuning fork vibration type viscometer of Patent Document 1 includes a sine wave generation circuit 13, a comparator 14, a controller 15, an I / V conversion circuit 16, and an A / D converter 17. And a microcontroller 18.
  • the microcontroller 18 is connected (or built-in) with a PWM modulation circuit 12 for changing the shear rate (amplitude value).
  • the pair of vibrators 3 and 3 is a control target, and the amplitude of the vibrators 3 and 3 is set to a target amplitude value (target value) inputted by pulse width modulation from the microcontroller 18.
  • the controller 15 performs feedback control (PID control) on the drive current flowing through the electromagnetic coil 10b. Using the fact that there is a proportional relationship between the driving current flowing through the electromagnetic coil 10b and the viscosity of the sample 4, the viscosity of the sample 4 when the amplitude is changed is measured.
  • FIG. 3 is a diagram showing the response speed of the tuning fork viscometer of Patent Document 1.
  • FIG. 3 shows standard values: 1 [mPa ⁇ s], 1000 [mPa ⁇ s], 8000 [mPa ⁇ s], taking the amplitude value [mm] on the horizontal axis and the response time [seconds] on the vertical axis.
  • each 45 [ml] was changed to a target amplitude value of 0.07 / 0.10 / 0.20 / 1.2 [mm] under a constant measurement temperature of 25 ° C.
  • the response time required until the viscosity value is stabilized at each amplitude value is examined.
  • FIG. 3 shows that the response speed is slow when the viscosity of the sample is high and the amplitude value is small.
  • the response time requires about 55 [seconds]. This can be attributed to the fact that the load on the mechanical system of the apparatus is large when the sample has a high viscosity, and the output signal obtained is small when the sample has a low amplitude value.
  • FIG. 4 is a measurement graph obtained with the tuning-fork vibration viscometer of Patent Document 1.
  • FIG. 4 shows that a commercially available body cream as a sample is 45 [ml] under a constant measurement temperature of 25 ° C., and the target amplitude value is 0.07 / 0.10 / 0.20 / 0.4 / 0.6 / 0. It is a change with time of the viscosity value when changed to 0.8 / 1.0 / 1.2 mm [mm].
  • the response speed is low in the low amplitude region, the fluctuation of the viscosity value is conspicuous when viewed with time.
  • the response speed is slow in this way, there arises a problem that a continuous and smooth measurement graph cannot be obtained, particularly in the case of measurement in which the shear speed is changed finely.
  • the disturbance in the feedback system of the viscometer becomes the viscosity of the sample, but in the case of the viscometer, most of the measurement objects are non-Newtonian fluids. Since the viscosity of the non-Newtonian fluid changes every moment according to the amplitude, the feedback gain is completely different for each measurement, and it is difficult to set the gain in advance using a table or the like. For this reason, the tuning-fork vibration viscometer disclosed in Patent Document 1 performs measurement with a constant feedback gain of the feedback system (0 [dB]) regardless of the viscosity of the sample and the set amplitude value.
  • the present invention relates to the measurement of the viscosity of a fluid, and in particular, improves the response speed of measurement in a high viscosity, low shear rate (low amplitude, low rotation) region, and continuously (A method and apparatus for obtaining a smooth (analog) measurement graph is provided.
  • a pair of vibrators to be inserted into a measurement sample, an electromagnetic drive unit that vibrates the vibrators, and an amplitude value change that outputs a target amplitude value of the vibrators And a displacement detection sensor that measures the amplitude of the vibrator, and performs feedback control for controlling a drive current that flows to the electromagnetic drive unit so that an output value of the displacement detection sensor becomes the target amplitude value.
  • the feedback gain in the feedback control is first set to a high value in the measurement at a certain target amplitude value for a certain viscosity sample, The gain is decreased until the limit point immediately before oscillation of the obtained viscosity value is found, and the gain at the limit point is set as the optimum feedback gain, and the optimum feedback gain is obtained.
  • the viscosity was measured by emission, characterized in that it comprises a gain control means for performing for each change in the target amplitude value, this.
  • a pair of vibrators to be inserted into a measurement sample an electromagnetic drive unit that vibrates the vibrators, amplitude value changing means that outputs a target amplitude value of the vibrators, and displacement detection that measures the amplitude of the vibrators
  • a tuning fork that performs feedback control to control a drive current that flows to the electromagnetic drive unit so that an output value of the displacement detection sensor becomes the target amplitude value, and measures the viscosity of the sample from the drive current value
  • a sample physical property measurement method using a vibration viscometer which was obtained by first setting a high feedback gain in the feedback control in a measurement with a certain target amplitude value for a sample with a certain viscosity. The gain is decreased until the limit point immediately before the viscosity value oscillates is found, and the gain at the limit point is set as the optimum feedback gain. Degrees were measured, and performing this for each change in the target amplitude value.
  • a mechanical unit that is inserted into a measurement sample and generates a shear rate in the sample
  • a mechanical drive unit that drives the mechanical unit
  • a shear rate changing unit that outputs a target shear rate of the mechanical unit
  • the mechanical unit A displacement detection sensor for measuring the displacement of the sample, and performing feedback control for controlling the drive force of the mechanical drive unit so that the output value of the displacement detection sensor becomes the target shear speed
  • This is a viscometer that measures the viscosity.
  • the feedback gain in the feedback control is initially set to a high value, and the obtained viscosity value is just before oscillation. The gain is decreased until the limit point is found, and the viscosity at the optimum feedback gain is measured using the gain at the limit point as the optimum feedback gain.
  • Gain control means for performing each change of characteristic shear rate characterized in that it comprises a.
  • a mechanical unit that is inserted into a measurement sample and generates a shear rate in the sample
  • a mechanical drive unit that drives the mechanical unit
  • a shear rate changing unit that outputs a target shear rate of the mechanical unit
  • the mechanical unit A displacement detection sensor for measuring the displacement of the sample, and performing feedback control for controlling the drive force of the mechanical drive unit so that the output value of the displacement detection sensor becomes the target shear speed
  • a method for measuring physical properties of a sample using a viscometer for measuring the viscosity wherein a feedback gain in the feedback control is first set to a high value in a measurement at a target shear rate for a sample having a certain viscosity.
  • the gain is decreased until a limit point immediately before the viscosity value oscillates is found, and the gain at the limit point is set as the optimum feedback gain.
  • the viscosity was measured with a gain, and performing this for each change in the target shear rate.
  • the response speed can be set for any measurement at a certain shear rate with a certain viscosity (even in a high viscosity and low shear rate region). A stable, continuous and smooth measurement graph is obtained as a result.
  • a pair of vibrators to be inserted into a measurement sample, an electromagnetic drive unit that vibrates the vibrators, an amplitude value changing unit that outputs a target amplitude value of the vibrators, and the vibrations
  • a displacement detection sensor for measuring the amplitude of the child, and performing feedback control for controlling a drive current that flows to the electromagnetic drive unit so that an output value of the displacement detection sensor becomes the target amplitude value, and the drive current value
  • the tuning fork vibration type viscometer that measures the viscosity of the sample from the previous, measure the sample of a certain viscosity in advance with a certain target amplitude value, the optimum feedback in the feedback control at the limit point immediately before the obtained viscosity value oscillates
  • a test for obtaining a gain is performed, and a plot area of the optimum feedback gain with respect to an amplitude value obtained by performing a plurality of patterns of the test is obtained as an oscillation area.
  • the feedback gain in the feedback control in response to said target amplitude value amplitude
  • a pair of vibrators to be inserted into a measurement sample an electromagnetic drive unit that vibrates the vibrators, amplitude value changing means that outputs a target amplitude value of the vibrators, and displacement detection that measures the amplitude of the vibrators
  • a tuning fork that performs feedback control to control a drive current that flows to the electromagnetic drive unit so that an output value of the displacement detection sensor becomes the target amplitude value, and measures the viscosity of the sample from the drive current value
  • a method for measuring physical properties of a sample using a vibration viscometer in which a sample having a certain viscosity is measured in advance at a certain target amplitude value, and the feedback control at the limit point immediately before the obtained viscosity value oscillates.
  • a test for obtaining the optimum feedback gain is performed, and a plot area of the optimum feedback gain with respect to the amplitude value obtained by performing a plurality of patterns of the test is obtained as an oscillation area.
  • the feedback gain in the feedback control in response to said target amplitude value amplitude value changing means outputs, and characterized by changing in a plurality of stages below the oscillation region.
  • a mechanical unit that is inserted into a measurement sample and generates a shear rate in the sample
  • a mechanical drive unit that drives the mechanical unit
  • a shear rate changing unit that outputs a target shear rate of the mechanical unit
  • the mechanical unit A displacement detection sensor for measuring the displacement of the sample, and performing feedback control for controlling the drive force of the mechanical drive unit so that the output value of the displacement detection sensor becomes the target shear speed
  • a viscometer that measures viscosity, measure a sample with a certain viscosity in advance at a target shear rate, and perform a test to determine the optimum feedback gain in the feedback control at the limit point immediately before the obtained viscosity value oscillates.
  • the plot region of the optimum feedback gain against the shear rate obtained by performing a plurality of patterns of the test is obtained as the oscillation region, and the feed
  • the feedback gain in the click control in accordance with a target shear rate output by the shear rate changing means, a simple feedback gain setting means for varying in a plurality of stages below the oscillation region, characterized in that it comprises a.
  • a mechanical unit that is inserted into a measurement sample and generates a shear rate in the sample
  • a mechanical drive unit that drives the mechanical unit
  • a shear rate changing unit that outputs a target shear rate of the mechanical unit
  • the mechanical unit A displacement detection sensor for measuring the displacement of the sample, and performing feedback control for controlling the drive force of the mechanical drive unit so that the output value of the displacement detection sensor becomes the target shear speed
  • a test to determine the optimum feedback gain in control is performed, and the plot area of the optimum feedback gain against the shear rate obtained by performing multiple patterns of the test is the oscillation region. Advance determined as a feedback gain in the feedback control, in accordance with a target shear rate output by the shear rate changing means, and wherein the changing in a plurality of stages below the oscillation region.
  • a plurality of tests covering a combination of viscosity and shear rate that can be assumed to be measured are performed in advance, and an oscillation region is obtained from these optimum feedback gains.
  • the feedback gain can be changed in multiple steps below the oscillation region (by setting the simple feedback gain), and any measurement (based on the target shear rate (target amplitude value) that can be controlled as known) Since a suitable gain can be set even from low viscosity to high viscosity, the response speed is stable in all measurements (even in high viscosity and low shear rate range) with a simple configuration, and the result As a result, a continuous and smooth measurement graph can be obtained.
  • the response speed of measurement in a particularly high viscosity and low shear rate region is improved, and a continuous (analog) smooth measurement graph can be obtained.
  • Embodiment 1 is a tuning fork vibration type viscometer.
  • the configuration of the drive mechanism unit 2 of the tuning-fork vibration viscometer of Patent Document 1 shown in FIG. 1 is common to the tuning-fork vibration viscometer 1 according to the first embodiment.
  • Detailed configurations of the main body of the tuning fork vibration type viscometer 1 and the drive mechanism section 2 are also described in, for example, Japanese Patent Publication No. 2005-9862.
  • the vibrators 3 and 3 are a pair of mechanical parts that are inserted into the measurement sample 4 and generate a shear rate in the sample 4, and are formed from a thin flat plate material such as a ceramic member or a metal member, and have a circular shape at the tip. An enlarged portion is provided. This enlarged portion becomes a liquid contact portion with the sample 4.
  • the vibrators 3 and 3 are configured such that the central axis in the thickness direction is located on the same plane in the sample 4.
  • Reference numerals 5 and 5 denote a pair of leaf springs, and the base ends of the vibrators 3 and 3 are fixed to the leaf springs 5 and 5 via connecting members 6 and 6.
  • the end of the leaf spring 5 opposite to the vibrator connecting side is fixed to the left and right convex portions of the reverse convex frame 7.
  • a thin portion is formed at the longitudinal center of the leaf spring 5.
  • the frame 7 is supported by a stand of the viscometer 1 main body (not shown), and is configured to be movable up and down and back and forth by a handle operation installed on the main body. As a result, the pair of vibrators 3 and 3 are inserted into the sample 4 at a predetermined depth.
  • a sample temperature sensor 8 is provided on the lower convex portion of the frame 7.
  • Reference numeral 10 denotes an electromagnetic drive unit, and one end portion of a ferrite magnet 10 a fixed to the central portion of the connection member 6 connected to the vibrator 3 is placed inside the electromagnetic coil 10 b fixed to the side surface of the lower convex portion of the frame 7. It is configured as an inserted moving magnet system.
  • the leaf springs 5, 5 are forcibly vibrated in a reverse phase at a constant frequency, so that the vibrators 3, 3 vibrate similarly.
  • Reference numeral 11 denotes an eddy current loss detection non-contact type displacement detection sensor.
  • the displacement detection sensor 11 is fixed to the frame 7 at a position close to the vibrator connecting side end of the leaf spring 5 on the assumption that the amplitude of the vibrator 3 is equal to the amplitude of the leaf spring 5 integrated with the vibrator 3. The amplitude of the leaf spring 5 is detected.
  • FIG. 5 is a block diagram of a control system of the tuning-fork vibration viscometer 1 according to the first embodiment.
  • the tuning fork vibration viscometer according to the first embodiment includes a sine wave generation circuit 13, a comparator 14, a controller 15, an I / V conversion circuit 16, an A / D converter 17, and a microcontroller 18.
  • the microcontroller 18 is connected (or built-in) with a PWM modulation circuit 12A for changing the target amplitude value and a PWM modulation circuit 12B for changing the feedback gain.
  • a PWM modulation circuit 12A and the comparator 14 an amplitude value D / A converter 31 for D / A converting the amplitude control signal related to the target amplitude value is connected.
  • a gain D / A converter 32 for D / A converting a gain control signal described later.
  • the microcontroller 18 and the PWM modulation circuit 12A are amplitude value changing means.
  • a display 22 for displaying the measured values numerically separately from the tuning fork vibratory viscometer 1 main body, and a dedicated controller 24 having an input unit and the like for graphing the measured values.
  • the user can set measurement conditions from the dedicated controller 24.
  • the measurement conditions include an amplitude change pattern of the vibrators 3 and 3 (amplitude lower and upper limit values, amplitude change amount, whether the amplitude is increased, decreased, or reciprocated).
  • the dedicated controller 24 can display the graph in various graph forms according to the setting, such as a graph of change over time of measured values and a flow curve curve of amplitude values and viscosity values.
  • a drive signal is output from the microcontroller 18 to the sine wave generation circuit 13, and the drive current flows through the electromagnetic coil 10b via the I / V conversion circuit 16.
  • a magnetic force is generated in the electromagnetic drive unit 10, and the vibrators 3 and 3 start a resonance vibration having an opposite phase.
  • the amplitude of the vibrator 3 is detected by the displacement detection sensor 11 and output to the comparator 14.
  • the microcontroller 18 outputs an amplitude control signal corresponding to the target amplitude value according to the measurement condition to the comparator 14 via the PWM modulation circuit 12A.
  • the comparator 14 compares the target amplitude value with the input value from the displacement detection sensor 11 and sends it to the controller 15.
  • the microcontroller 18 sets the initial value of the gain of the gain control unit 33 by the gain control signal, and decreases the gain by observing the oscillation of the viscosity value as will be described later (Steps S103 to S105 in FIG. 6).
  • the controller 15 includes a gain control unit 33 and a PID control unit 15A configured to include a variable amplifier.
  • the gain control unit 33 multiplies the signal from the comparator 14 and the feedback gain set by the gain control signal, and outputs the result to the PID control unit 15A.
  • the PID control unit 15A increases and decreases the drive current that flows through the electromagnetic coil 10b so that the vibrators 3 and 3 vibrate at the target amplitude value, and performs feedback control.
  • the microcontroller 18, the PWM modulation circuit 12B, and the gain controller 33 are gain control means.
  • the drive current flowing through the electromagnetic coil 10b is sampled at a preset timing. Then, this drive current is input to the microcontroller 18 via the I / V conversion circuit 16 and the A / D converter 17, converted into a corresponding viscosity value by the microcontroller 18, and sent to the display 22 and the dedicated controller 24. Is displayed. A signal from the sample temperature sensor 8 is input to the microcontroller 18 via the temperature A / D converter 19 and displayed on the display 22 and the dedicated controller 24 as necessary.
  • FIG. 6 is a flowchart showing a method for measuring sample physical properties of the tuning-fork vibration viscometer 1 according to the first embodiment.
  • step S101 a target amplitude value is set according to the set measurement conditions.
  • step S102 the vibration of the vibrators 3 and 3 is started.
  • step S103 the microcontroller 18 outputs a gain control signal to the gain control unit 33, and sets it to a predetermined high feedback gain.
  • step S104 it is confirmed whether or not the viscosity value obtained with the set gain oscillates. As an example, whether or not to oscillate is determined by whether or not the viscosity value is 10% or more of the display level when the viscosity value sampling is 2 [times / second].
  • the determination of whether or not to oscillate may be suitably designed from the measurement accuracy and measurement time required for the apparatus.
  • the process proceeds to step S105, the previous gain is decreased by a preset ⁇ dB, and the process returns to step S104. If the oscillation does not occur, it is determined that the limit point immediately before the viscosity value oscillates is found, and the process proceeds to step S106, where the current gain is determined as the optimum feedback gain FG OP .
  • step S107 the viscosity value obtained with the optimum feedback gain FG OP is acquired as a measured value of the viscosity at the target amplitude value, and this measured value is displayed on the display 22, and the dedicated controller 24 And display it as a graph.
  • step S108 changes to the next target amplitude value, and repeats this until measurement conditions are completed.
  • FIG. 7 is a view showing the response speed of the tuning-fork vibration viscometer 1 according to the first embodiment.
  • FIG. 7 shows standard values: 1 [mPa ⁇ s], 1000 [mPa ⁇ s], 8000 [mPa ⁇ s], taking the amplitude value [mm] on the horizontal axis and the response time [seconds] on the vertical axis.
  • each 45 [ml] was changed to a target amplitude value of 0.07 / 0.10 / 0.20 / 1.2 [mm] under a constant measurement temperature of 25 ° C.
  • the response time required until the viscosity value is stabilized at each amplitude value was examined. From FIG. 7, it can be seen that in the first embodiment, the response time is within about 15 [seconds] in any measurement from low viscosity to high viscosity and from low amplitude to high amplitude.
  • the response speed is increased in each region (even in the high viscosity region and the low amplitude region), so that the amplitude is finely changed (a change amount of the amplitude value is reduced). ) Even if set, the fluctuation of the data is not noticeable even when viewed over time, and a continuous and smooth measurement graph can be obtained.
  • the overall measurement time is greatly shortened because the response speed of the measurement in the high viscosity and low amplitude range (low shear rate range) is increased.
  • Embodiment 2 (Apparatus configuration of Embodiment 2)
  • the second embodiment is also a tuning fork vibration type viscometer, but is different in the concept of gain setting from the first embodiment and has a different method and control configuration from the first embodiment.
  • the configuration of the drive mechanism unit 2 of the tuning fork vibration viscometer 1 according to the second embodiment is the same as that of the first embodiment (FIG. 1).
  • FIG. 8 is a block diagram of a control system of the tuning-fork vibration viscometer 1 according to the second embodiment
  • FIG. 9 is a detailed circuit diagram of the main part of FIG.
  • the same components as those of the first embodiment (FIG. 5) are referred to by the same reference numerals, and the description thereof is omitted as appropriate.
  • the microcontroller 18 and the PWM modulation circuit 12A are amplitude value changing means.
  • the configuration of the controller 15 is different.
  • the controller 15 includes a gain setting unit 34 including a selection circuit 34A and an amplifier 34B each having a different resistance value R1, R2,... Rn, and a PID control unit 15A.
  • the gain setting unit 34 operates by selecting one of the analog switches SW1, SW2,... SWn connected to the resistance values R1, R2,.
  • the analog switches SW1, SW2,... SWn are operated by a gain selection signal output from the microcontroller 18.
  • the microcontroller 18 and the gain setting unit 34 are simple feedback gain setting means.
  • the oscillation region Pos includes a pair of vibrators to be inserted into a measurement sample, an electromagnetic drive unit that vibrates the vibrators, an amplitude value changing unit that outputs a target amplitude value of the vibrators, A test machine capable of performing feedback control for controlling a drive current to flow to the electromagnetic drive unit so that an output value of the displacement detection sensor becomes the target amplitude value.
  • a sample having a certain viscosity is measured at a certain target amplitude value, and a test for obtaining an optimum feedback gain FG OP in feedback control at a limit point immediately before the obtained viscosity value oscillates is performed.
  • obtained by performing pattern is a plot area of the optimal feedback gain FG OP to the amplitude value.
  • the apparatus (FIG. 5) and the measurement method (FIG. 6) of the first embodiment may be mentioned.
  • the test machine and the test method for obtaining the oscillation region Pos are not limited to the first embodiment as long as the data immediately before the measurement value oscillates can be obtained.
  • the optimum feedback gain FG OP can also be obtained by sweeping the frequency with a device having a system including the mechanical system and the electrical system and obtaining the gain characteristic and phase characteristic of the system.
  • FIG. 10 is a diagram illustrating an example of the oscillation region Pos .
  • FIG. 10 shows, as an example, standard solutions: 1 [mPa ⁇ s], 1000 [mPa ⁇ s], 8000 [mPa ⁇ s], 26000 by the apparatus (FIG. 5) and the measurement method (FIG. 6) of the first embodiment.
  • [mPa ⁇ s] as the sample 4, each 45 [ml] was changed to a target amplitude value of 0.07 / 0.10 / 0.20 / 1.2 [mm] under a constant measurement temperature of 25 ° C.
  • the optimum feedback gain FG OP [dB] is plotted with the amplitude value [mm] on the horizontal axis and the optimum feedback gain FG OP [dB] on the vertical axis.
  • the optimum feedback gain FG OP is obtained by performing a plurality of patterns of a test for giving a change, and a plot area (maximum value is taken for each amplitude value and the maximum value is obtained for the obtained optimum feedback gain FG OP (Fig. 10 areas) under the one-dot chain line in, previously obtained as the oscillation region P os. that is, the hatched portion in FIG. 10 is an oscillation region P os.
  • FIG. 11 is a diagram illustrating an example of the simple feedback gain FG sim setting.
  • FIG. 11 shows that when the oscillation region P os of FIG. 10 is obtained in a preliminary test, the target amplitude value is measured from 0 to 0.2 [mm] based on the value of the oscillation region P os.
  • the simple feedback gain FG sim is set to 14 [dB] when you are, the simple feedback gain FG sim when the target amplitude value is measured at 0.2 super ⁇ 0.4 [mm] to 5 [dB]
  • the simple feedback gain FG sim is set to 0 [dB] when the target amplitude value is measured at a value exceeding 0.4 [mm].
  • the numerical values and the number of steps in FIG. 11 are merely examples.
  • the simple feedback gain FG sim that functions favorably in any measurement (from low viscosity to high viscosity) is set in a stepwise manner with reference to a target amplitude value that is controllable and known.
  • the simple feedback gain FG sim may be changed in a stepwise manner to gain (1), gain (2),... Gain (n) below the oscillation region Pos in accordance with the target amplitude value.
  • resistance values R1, R2,... Rn are determined from these set simple feedback gains FG sim , and at the time of measurement, the microcontroller 18 uses the switches SW1, SW2,. Select a gain selectively.
  • FIG. 12 is a flowchart showing a method for measuring sample physical properties of the tuning-fork vibration viscometer according to the second embodiment.
  • step S201 a target amplitude value is set according to the set measurement conditions.
  • step S202 it is determined whether the set target amplitude value is 0.2 [mm] or less. If the target amplitude value is 0.2 [mm] or less, the process proceeds to step S203, and the gain (1), in this case, the simple feedback gain FG sim is set to 14 [dB].
  • step S207 the gain (1), in this case, the simple feedback gain FG sim is set to 14 [dB].
  • step S207 the vibration of the vibrators 3 and 3 is started.
  • step S204 it is determined whether the set target amplitude value is 0.4 [mm] or less.
  • step S205 the gain (2), in this case, the simple feedback gain FG sim is set to 5 [dB]
  • step S207 the vibrator 3 , 3 is started.
  • step S206 the gain (3), in this case, the simple feedback gain FG sim is set to 0 [dB]
  • step S207 The vibrations of the vibrators 3 and 3 are started.
  • step S207 When the vibrations of the vibrators 3 and 3 are started in step S207, the process proceeds to step S208, and the viscosity value obtained with the set simple feedback gain FG sim is measured for the viscosity at the target amplitude value. It is acquired as a value, and this measured value is displayed on the display 22, and is graphed and displayed by the dedicated controller 24. Next, it progresses to step S208, changes to the next target amplitude value, returns to step S201, and repeats this until measurement conditions are completed.
  • FIG. 13 is a diagram showing the response speed of the tuning-fork vibration viscometer according to the second embodiment.
  • FIG. 13 shows standard values: 1 [mPa ⁇ s], 1000 [mPa ⁇ s], 8000 [mPa ⁇ s], with the amplitude value [mm] on the horizontal axis and the response time [seconds] on the vertical axis.
  • each 45 [ml] was changed to a target amplitude value of 0.07 / 0.10 / 0.20 / 1.2 [mm] under a constant measurement temperature of 25 ° C.
  • the response time required until the viscosity value is stabilized at each amplitude value was examined. From FIG. 13, it can be seen that, in the second embodiment, the response time is within about 25 [seconds] in any measurement from low viscosity to high viscosity and from low amplitude to high amplitude.
  • the response speed is increased in each region (even in the high viscosity region and the low amplitude region), so that the amplitude is changed finely (the amount of change in the amplitude value is small). ) Even if set, the fluctuation of the data is not noticeable even when viewed over time, and a continuous and smooth measurement graph can be obtained.
  • the overall measurement time is greatly shortened because the response speed of the measurement in the high viscosity and low amplitude range (low shear rate range) is increased.
  • Example 14 and 15 are measurement graphs obtained with the tuning-fork vibration type viscometer 1 according to Embodiment 2, using a commercially available hand cream as a sample 4, 45 [ml] at a measurement temperature of 25 ° C. under a target condition.
  • the amplitude value was changed from 0.07 to 1.20 [mm] in increments of 0.01 [mm] (227 [steps]), and then measured by increasing and decreasing.
  • FIG. 14 shows time [second] on the horizontal axis, amplitude value [mm] on the right vertical axis, viscosity value [mPa ⁇ s] on the left vertical axis, and
  • FIG. 15 shows the amplitude value [mm] on the horizontal axis.
  • the vertical axis represents the viscosity value [mPa ⁇ s].
  • the response speed of each region is increased. Therefore, even if the amplitude is changed finely (in steps of 0.01 [mm] (227 [ Step]), it can be seen that a continuous and smooth measurement graph can be obtained in which the fluctuation of the data is not noticeable.
  • the overall measurement time can be shortened in response to the increased response speed of each area.
  • the amplitude is changed in increments of 0.01 [mm] (227 [steps]) as in the measurement conditions of FIGS.
  • the result of the response speed in FIG. 3 can be considered to design a data acquisition of about 55 [seconds] waiting for stabilization +5 [seconds] for measurement value acquisition.
  • the measurement time is about 3. It will take 4 hours.
  • the gain change is a configuration using hardware elements such as the switches SW1, SW2,... SWn, so that the configuration is simple and the apparatus cost can be reduced.
  • FIG. 16 is a block diagram of a control system of the rotary viscometer according to the third embodiment.
  • Embodiment 3 Equipment and control configuration of Embodiment 3
  • a rotary viscometer (cone plate type, coaxial double cylinder type) according to Embodiment 3 is inserted into a sample 4 to drive a rotor (mechanical unit) 3 that generates a shear rate, and this rotor 3.
  • Displacement such as an actuator (mechanical drive unit) 13 that rotates the rotor 3, a comparator 14, a controller 15, a microcontroller 18, and a rotary encoder that detects the rotation (displacement) of the rotor 3 It has a detection sensor 11 and a torque detection sensor 110 such as a torsion spring that detects the torque of the rotor 3.
  • the controller 15 includes a gain control unit 33 and a PID control unit 15A.
  • the microcontroller 18 is connected to a display unit, an input unit, and the like (not shown), determines the target shear speed (rotation speed [rpm]) of the rotor 3 according to the measurement conditions, and controls the shear speed corresponding to the target shear speed. A signal is output to the comparator 14 and the actuator 13 is controlled.
  • the microcontroller 18 is a shear speed changing means.
  • the rotation speed of the rotor 3 is detected by the displacement detection sensor 11 and output to the comparator 14.
  • the comparator 14 compares the target shear speed with the input value from the displacement detection sensor 11 and sends it to the controller 15.
  • the microcontroller 18 sets the initial value of the gain of the gain control unit 33 by the gain control signal, and decreases the gain by observing the oscillation of the viscosity value as will be described later (steps S103 to S105 in FIG. 17).
  • the controller 15 multiplies the signal from the comparator 14 by the feedback gain set by the gain control signal, and outputs the result to the PID controller 15A.
  • the PID control unit 15A performs feedback control by increasing or decreasing the driving force of the actuator 13 so that the rotor 3 rotates at the target shear speed.
  • the microcontroller 18, the PWM modulation circuit 12B, and the gain controller 33 are gain control means.
  • torque acting on the rotor 3 is detected by the torque detection sensor 110 and output to the microcontroller 18.
  • the microcontroller 18 converts it into a corresponding viscosity value and displays it on the display unit or the like.
  • FIG. 17 is a flowchart showing a method for measuring sample physical properties of the rotary viscometer according to the third embodiment. Since the measurement method of the third embodiment is substantially the same as the measurement method of the first embodiment, the step numbers of the first embodiment are referred to, and different portions are read and described.
  • step S101 a target shear speed is set according to the set measurement conditions.
  • step S102 when driving of the rotor 3 is started in step S102, a high feedback gain is initially set in step S103.
  • step S104 if it is determined in step S104 that the viscosity value oscillates, the process proceeds to step S105, and the gain is decreased until a limit point is found.
  • step S106 the optimum feedback gain FG OP is determined in step S106, the viscosity value at the target shear speed is acquired as a measured value, and this measured value is displayed on the display unit and displayed in a graph.
  • step S108 it changes to the next target shearing speed and repeats this until measurement conditions are completed.
  • FIG. 18 is a block diagram of a control system of the rotary viscometer according to the fourth embodiment.
  • the viscometer according to the fourth embodiment has the same configuration as that of the viscometer according to the third embodiment, and includes a rotor (mechanical unit) 3, an actuator (mechanical drive unit) 13, a comparator 14, a controller 15, and a microcontroller 18. , A displacement detection sensor 11, and a torque detection sensor 110.
  • the controller 15 includes a gain setting unit 34 including a selection circuit 34A and an amplifier 34B, each having a resistance value R1, R2,... Rn that varies from large to small, and a PID control unit 15A.
  • the microcontroller 18 outputs a shear speed control signal related to the target shear speed to the comparator 14 and controls the actuator 13.
  • the microcontroller 18 is a shear speed changing means.
  • the rotational speed of the rotor 3 is detected by the displacement detection sensor 11 and output to the comparator 14.
  • the comparator 14 compares the target shear speed with the input value from the displacement detection sensor 11 and sends it to the controller 15.
  • the microcontroller 18 and the gain setting unit 34 are simple feedback gain setting means.
  • the oscillation region P os is a test that covers in advance a combination of viscosity and shear rate that can be assumed to be measured (from low to high shear rates for low to high viscosity fluids).
  • a plurality of patterns for the shear rate change test are performed to obtain these optimum feedback gains FG OP , and the obtained optimum feedback gain FG OP plot area (maximum value is obtained for each shear rate, connecting the maximum values) Find the area below.
  • the simple feedback gain FG sim is set in a stepwise manner in accordance with the target shear speed in a plurality of stages, ie, gain (1), gain (2),... Gain (n) below the oscillation region Pos .
  • FIG. 19 is a flowchart showing a method for measuring sample physical properties of the rotary viscometer according to the fourth embodiment. Since the measurement method of the fourth embodiment is substantially the same as the measurement method of the second embodiment, the description will be made by quoting the step numbers of the second embodiment and replacing different portions. First, it progresses to step S201 and a target shear speed is set according to the set measurement conditions. Then, in step S202, it is determined whether the target shear rate which is set A [rpm] or less, if the A [rpm] Hereinafter, the process proceeds to step S203, sets the simple feedback gain FG sim (1), Proceed to step S207.
  • step S204 determines whether the set target shear speed is B [rpm] or less. If it is equal to or less than B [rpm], the process proceeds to step S205, the simple feedback gain FG sim (2) is set, and the process proceeds to step S207. On the other hand, if it exceeds B [rpm], the process proceeds to step S206, the simple feedback gain FG sim (3) is set, the process proceeds to step S207, and the rotation of the rotor 3 is started.
  • step S208 the viscosity value obtained with the set simple feedback gain FG sim is acquired as a viscosity measurement value at the target shear rate, and this measurement value is displayed on the display unit and graphed. To display.
  • step S208 the speed is changed to the next target shear speed, and this is repeated until the measurement conditions are completed.
  • the simple feedback gain FG sim is set in three stages as described above, but it may be set in a plurality of stages below the oscillation region Pos .
  • the measurement method of the present invention is inserted into a set target shear rate input value and a sample. It can also be realized by other viscometers having a configuration in which a feedback system is constructed with output values from the mechanical system and the measured values are obtained when the output is stable.
  • a continuous (analog) smooth measurement graph can be obtained, so that an inflection point can be easily grasped.
  • FIG. 7 is a flowchart showing a method for measuring sample physical properties of the tuning-fork vibration viscometer according to the first embodiment. The figure which shows the response speed of the tuning fork vibration type viscometer which concerns on Embodiment 1.
  • FIG. 7 is a flowchart showing a method for measuring sample physical properties of the tuning-fork vibration viscometer according to the first embodiment. The figure which shows the response speed of the tuning fork vibration type viscometer which concerns on Embodiment 1.
  • Block diagram of control system of tuning-fork vibration viscometer according to embodiment 2 Detailed circuit diagram of the main part of the control system Diagram showing an example of the oscillation region Diagram showing an example of simple feedback gain setting 7 is a flowchart showing a method for measuring sample physical properties of a tuning-fork vibration viscometer according to the second embodiment. The figure which shows the response speed of the tuning fork vibration type viscometer which concerns on Embodiment 2.
  • FIG. 1 Block diagram of control system of tuning-fork vibration viscometer according to embodiment 2
  • Block diagram of control system of rotary viscometer according to embodiment 3 9 is a flowchart showing a method for measuring sample physical properties of a rotary viscometer according to Embodiment 3.
  • Block diagram of control system of rotary viscometer according to Embodiment 4 9 is a flowchart showing a method for measuring sample physical properties of a rotary viscometer according to Embodiment 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Feedback Control In General (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

 流動体の粘度の測定に関し、応答速度を改善し、連続的ななめらかな測定グラフを得る方法及び装置を提供する。測定試料にずり速度を発生させる機械部と、機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い試料の粘度を測定する粘度計で、フィードバックゲインを、測定ごとに最適設計又は目標ずり速度に応じて簡易設定する。

Description

流動体の物性を測定する方法及び装置
 本発明は、流動体の物性を測定する方法及び装置であり、特に粘度の測定における応答速度を改善し、測定グラフを連続的にする方法及び装置に関する。
 流動体の物性を測定する装置として、従来から、回転式、振動式等の粘度計が利用されている。このうち、振動式のものに、ずり速度(振動子の振幅)が変更可能な音叉振動式粘度計がある(例えば特許文献1)。
 図1は、音叉振動式粘度計1の駆動機構部2の構成図、図2は特許文献1の音叉振動式粘度計の制御系のブロック図である。図1に示すように、駆動機構部2は、測定試料4に挿入される一対の振動子3,3と、振動子3,3を振動させるための磁石10aと電磁コイル10bと、振動子3,3の振幅を検出する変位検出センサ11を有する。そして、特許文献1の音叉振動式粘度計は、図2のブロック図に示すように、正弦波発生回路13、比較器14、制御器15、I/V変換回路16、A/D変換器17、マイクロコントローラ18を有する。マイクロコントローラ18は、ずり速度(振幅値)を変更するためのPWM変調回路12が接続(或いは内蔵)されている。
 音叉振動式粘度計は、一対の振動子3,3が制御対象であり、振動子3,3の振幅がマイクロコントローラ18からパルス幅変調されて入力される目標振幅値(目標値)となるように、制御器15によって、電磁コイル10bに流す駆動電流がフィードバック制御(PID制御)される。電磁コイル10bに流す駆動電流と試料4の粘度には比例関係があることを利用して、振幅が変更する場合の試料4の粘度が測定される。
国際公開第2014/049698号
 図3は、特許文献1の音叉式粘度計の応答速度を示す図である。図3は、振幅値[mm]を横軸に、応答時間[秒]を縦軸に取って、標準液:1[mPa・s],1000[mPa・s],8000[mPa・s],26000[mPa・s]を試料として、それぞれ45[ml]を、測定温度25℃一定条件下、目標振幅値0.07/0.10/0.20/1.2[mm]と変更させ、各振幅値で粘度値が安定する(一例として、表示レベルの粘度値1%以内となったときで判断した)までに要した応答時間を調べたものである。図3から、試料の粘度が高い場合、振幅値が小さい場合は、応答速度が遅いことがわかる。特に、試料の粘度が26000[mPa・s]と高粘度で振幅値が0.07[mm]と小さい場合は、応答時間は約55[秒]も要する。これは、試料が高粘度の場合は装置の機械系での負荷が大きいこと、低振幅値の場合は得られる出力信号が小さいことが原因に考えられる。
 次に、図4は特許文献1の音叉振動式粘度計で得られた測定グラフである。図4は、試料として市販のボディクリームを、45[ml]、測定温度25℃一定条件下、目標振幅値を0.07/0.10/0.20/0.4/0.6/0.8/1.0/1.2 [mm]と変更させたときの粘度値の経時変化である。上述した通り、低振幅域では応答速度が遅いため、経時変化で見ると、粘度値の乱高下が目立っている。このように応答速度が遅いと、特にずり速度の変更を細かく行う測定の場合に、連続的ななめらかな測定グラフが得られないという問題が生じる。
 粘度計のフィードバック系の外乱は試料の粘性となるが、粘度計の場合、測定対象のほとんどは非ニュートン流体である。非ニュートン流体は、振幅に応じて粘度が刻々と変化するため、フィードバックゲインは測定ごとに全く異なり、予めテーブル等でゲイン設定しておくことが難しい。このため、特許文献1のような音叉振動式粘度計は、試料の粘度、設定した振幅値の如何を問わず、フィードバック系のフィードバックゲインは一定(0[dB])で測定を行っている。
 このことは、音叉振動式粘度計に限らない。他の粘度計であっても、粘度の測定は、設定した目標ずり速度の入力値と試料に挿入される機械系からの出力値でフィードバック系を構築して、出力が安定したときに測定する構成で行われているため、同様の理由で、高粘度、低ずり速度域で応答速度が遅く、連続的ななめらかな測定グラフは得られないことが知られている。
 本発明は、従来技術の問題を解決するために、流動体の粘度の測定に関し、特に高粘度、低ずり速度(低振幅、低回転)域の測定の応答速度を改善し、連続的な(アナログ的な)なめらかな測定グラフを得る方法及び装置を提供するものである。
発明を解決するための手段
 前記目的を達成するために、本発明のある態様では、測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計で、ある粘度の試料に対する、ある目標振幅値での測定にて、前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、これを目標振幅値の変更ごとに行うゲインコントロール手段、を含むことを特徴とする。
 または、測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計を用いた試料物性の測定方法であって、ある粘度の試料に対する、ある目標振幅値での測定にて、前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、これを目標振幅値の変更ごとに行うことを特徴とする。
 または、測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計で、ある粘度の試料に対する、ある目標ずり速度での測定にて、前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、これを目標ずり速度の変更ごとに行うゲインコントロール手段、を含むことを特徴とする。
 または、測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計を用いた試料物性の測定方法であって、ある粘度の試料に対する、ある目標ずり速度での測定にて、前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、これを目標ずり速度の変更ごとに行うことを特徴とする。
 この態様によれば、測定ごとに最適なフィードバックゲインを設定することができるので、ある粘度あるずり速度でのあらゆる測定で(高粘度、低ずり速度域での測定であっても)応答速度が安定し、結果として連続的ななめらかな測定グラフが得られる。
 また、本発明の別の態様では、測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計で、予め、ある粘度の試料をある目標振幅値で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、振幅値に対する前記最適フィードバックゲインのプロット領域を発振領域として求めておき、前記フィードバック制御におけるフィードバックゲインを、前記振幅値変更手段が出力する目標振幅値に応じて、前記発振領域以下で複数段階で変化させる簡易フィードバックゲイン設定手段、を含むことを特徴とする。
 または、測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計を用いた試料物性の測定方法であって、予め、ある粘度の試料をある目標振幅値で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、振幅値に対する前記最適フィードバックゲインのプロット領域を発振領域として求めおき、前記フィードバック制御におけるフィードバックゲインを、前記振幅値変更手段が出力する目標振幅値に応じて、前記発振領域以下で複数段階で変化させることを特徴とする。
 または、測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計で、予め、ある粘度の試料をある目標ずり速度で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、ずり速度に対する最適フィードバックゲインのプロット領域を発振領域として求めておき、前記フィードバック制御におけるフィードバックゲインを、前記ずり速度変更手段が出力する目標ずり速度に応じて、前記発振領域以下で複数段階で変化させる簡易フィードバックゲイン設定手段、を含むことを特徴とする。
 または、測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計を用いた試料物性の測定方法であって、予め、ある粘度の試料をある目標ずり速度で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、ずり速度に対する最適フィードバックゲインのプロット領域を発振領域として求めておき、前記フィードバック制御におけるフィードバックゲインを、前記ずり速度変更手段が出力する目標ずり速度に応じて、前記発振領域以下で複数段階で変化させることを特徴とする。
 この態様によれば、予め、測定が想定されうる粘度とずり速度の組み合わせを網羅する試験を複数パターン行って、これらの最適フィードバックゲインから発振領域を求めておき、測定時には、目標ずり速度(目標振幅値)に応じて、発振領域以下でフィードバックゲインを複数段階で変化させる(簡易フィードバックゲインを設定する)ことで、既知として制御できる目標ずり速度(目標振幅値)を基準として、いずれの測定(低粘度から高粘度まで)でも好適なゲインを設定することができるので、簡易な構成で、あらゆる測定で(高粘度、低ずり速度域での測定であっても)応答速度が安定し、結果として連続的ななめらかな測定グラフが得られる。
 本発明によれば、特に高粘度、低ずり速度域の測定の応答速度が改善され、連続的な(アナログ的な)なめらかな測定グラフを得ることができる。
 次に、本発明の好適な実施の形態について説明する。
(実施形態1)
(実施形態1の装置構成)
 実施形態1は、音叉振動式粘度計である。図1に示した特許文献1の音叉振動式粘度計の駆動機構部2の構成は、実施形態1に係る音叉振動式粘度計1にも共通する。音叉振動式粘度計1の本体及び駆動機構部2の詳細な構成は、例えば日本国特許公開公報2005-9862号等にも記載されている。
 振動子3,3は、測定試料4中に挿入され、試料4にずり速度を発生させる一対の機械部であり、セラミック部材や金属部材等の薄肉平板状の板材から形成され、先端に円形状の拡大部が設けられている。この拡大部が、試料4との接液部となる。振動子3,3は、厚み方向の中心軸が試料4中で同一平面上に位置するように構成されている。
 符号5,5は、一対の板バネであり、板バネ5,5に対し、振動子3,3の基端部が、接続部材6,6を介して固定されている。板バネ5の振動子接続側端部と反対側の端部は、逆凸形状のフレーム7の左右凸部に固定されている。板バネ5の長手方向中央部には、薄肉部が形成されている。フレーム7は、図示しない粘度計1本体のスタンドにより支持されており、本体に設置のハンドル操作により、昇降及び前後移動可能に構成されている。これにより、一対の振動子3,3は、試料4に所定の深さで挿入される。フレーム7の下方凸部には、試料用温度センサ8が設けられている。
 符号10は電磁駆動部であり、振動子3と接続する接続部材6の中央部に固定されたフェライト磁石10aの一端部が、フレーム7の下方凸部側面に固定された電磁コイル10bの内側に挿入された、ムービングマグネット方式として構成されている。この電磁駆動部10により、板バネ5,5を一定の振動数で逆位相に強制的に振動させることで、振動子3,3が同様の振動をする。符号11は渦電流損検出非接触型の変位検出センサである。変位検出センサ11は、振動子3の振幅は振動子3と一体の板バネ5の振幅と同等であるとして、フレーム7に、板バネ5の振動子接続側端部と近接する位置に固定され、板バネ5の振幅を検出する。
(実施形態1の制御構成)
 次に、図5は、実施形態1に係る音叉振動式粘度計1の制御系のブロック図である。実施形態1に係る音叉振動式粘度計は、正弦波発生回路13、比較器14、制御器15、I/V変換回路16、A/D変換器17、マイクロコントローラ18を有する。マイクロコントローラ18には、目標振幅値を変更するためのPWM変調回路12Aと、フィードバックゲインを変更するためのPWM変調回路12Bが接続(或いは内蔵)されている。PWM変調回路12Aと比較器14の間には、目標振幅値に係る振幅制御信号をD/A変換する振幅値D/A変換器31が接続されている。PWM変調回路12Bと制御器15の間には、後述するゲインコントロール信号をD/A変換するゲインD/A変換器32が接続されている。マイクロコントローラ18及びPWM変調回路12Aが振幅値変更手段である。
 マイクロコントローラ18には、音叉振動式粘度計1本体とは別体の、測定値を数値表示する表示器22と、入力部等を有し測定値をグラフ化する専用コントローラ24が接続されており、ユーザは、専用コントローラ24から測定条件の設定が行える。測定条件とは、振動子3,3の振幅の変更パターン(振幅の下限値及び上限値、振幅の変化量、振幅を上昇させるか,下降させるか、又は往復させるか)等である。専用コントローラ24では、測定値の経時変化グラフや、振幅値と粘度値のフローカーブ曲線など、設定に応じて種々のグラフ形態で表示が可能である。
 測定を開始すると、マイクロコントローラ18から正弦波発生回路13に駆動信号が出力され、I/V変換回路16を経て、駆動電流が電磁コイル10bに流れる。これにより、電磁駆動部10で磁力が発生し、振動子3,3が逆位相の共振振動を開始する。これを受けた振動子3の振幅が変位検出センサ11により検出され、比較器14に出力される。
 マイクロコントローラ18は、PWM変調回路12Aを介し、測定条件に添った目標振幅値に対応する振幅制御信号を、比較器14に出力する。比較器14は、目標振幅値と変位検出センサ11からの入力値を比較し、制御器15に送る。マイクロコントローラ18は、ゲインコントロール信号により、ゲインコントロール部33のゲインの初期値を設定するとともに、後述(図6のステップS103~S105)するように、粘度値の発振をみてゲインを減少させる。制御器15は、可変増幅器を含んで構成されたゲインコントロール部33とPID制御部15Aを有する。ゲインコントロール部33は、比較器14からの信号と、ゲインコントロール信号によって設定されたフィードバックゲインとを乗算し、PID制御部15Aに出力する。PID制御部15Aは、振動子3,3が目標振幅値で振動するように電磁コイル10bに流す駆動電流を増減し、フィードバック制御する。マイクロコントローラ18、PWM変調回路12B及びゲインコントロール部33がゲインコントロール手段である。
 電磁コイル10bに流れる駆動電流は、予め設定されたタイミングでサンプリングされる。そして、この駆動電流が、I/V変換回路16及びA/D変換器17を介してマイクロコントローラ18に入力され、マイクロコントローラ18で対応する粘度値に換算され、表示器22と専用コントローラ24に表示される。試料用温度センサ8からの信号は、温度用A/D変換器19を介して、マイクロコントローラ18に入力され、必要に応じ表示器22と専用コントローラ24に表示される。
(実施形態1の測定方法)
 次に、ゲインコントロールの方法を含む、実施形態1に係る音叉振動式粘度計1の試料物性の測定方法について説明する。図6は実施形態1に係る音叉振動式粘度計1の試料物性の測定方法を示すフローチャートである。
 まず、ステップS101に進み、設定した測定条件に従って、目標振幅値が設定される。次に、ステップS102に進み、振動子3,3の振動が開始される。次に、ステップS103で、マイクロコントローラ18は、ゲインコントロール信号をゲインコントロール部33に出力し、予め定めた高いフィードバックゲインに設定する。次に、ステップS104で、設定したゲインで得られた粘度値が発振するか否かを確認する。発振するか否かは、一例として、粘度値のサンプリングを2[回/秒]としたときの表示レベルの粘度値10%以上となるか否かで判断する。なお、発振するか否かの判断(限界点の設定)は、装置に求められる測定精度及び測定時間から好適に設計されてよい。発振する場合は、ステップS105に進み、前回のゲインを予め設定されたΔdBだけ減少し、ステップS104に戻る。発振しない場合は、粘度値が発振する直前の限界点を見つけたとして、ステップS106に進み、現在のゲインを最適フィードバックゲインFGOPとして確定する。次に、ステップS107に進み、最適フィードバックゲインFGOPで得られた粘度値を、この目標振幅値のときの粘度の測定値として取得し、この測定値を表示器22に表示し、専用コントローラ24でグラフ化して表示する。次に、ステップS108に進み、次の目標振幅値に変更し、測定条件が完了するまでこれを繰り返す。
(実施形態1の応答速度)
 図7は実施形態1に係る音叉振動式粘度計1の応答速度を示す図である。図7は、振幅値[mm]を横軸に、応答時間[秒]を縦軸に取って、標準液:1[mPa・s],1000[mPa・s],8000[mPa・s],26000[mPa・s]を試料4として、それぞれ45[ml]を、測定温度25℃一定条件下、目標振幅値0.07/0.10/0.20/1.2[mm]と変更させ、各振幅値で粘度値が安定する(一例として、表示レベルの粘度値1%以内となったときで判断した)までに要した応答時間を調べたものである。図7から、実施形態1では、低粘度から高粘度、低振幅から高振幅のいずれの測定であっても、応答時間は約15 [秒] 以内に収まることがわかる。
 このことから、実施形態1によれば、各域で(高粘度域、低振幅域であっても)応答速度が速まったため、振幅の変更を細かく行うように(振幅値の変化量を小さく)設定しても、経時変化で見てもデータの乱高下が目立たず、連続的ななめらかな測定グラフが得られる。また、実施形態1によれば、特に高粘度、低振幅域(低ずり速度域)の測定の応答速度が早まったことにより、全体的な測定時間が大幅に短縮する。
(実施形態2)
(実施形態2の装置構成)
 実施形態2も、音叉振動式粘度計であるが、実施形態1とはゲイン設定の思想が異なり、実施形態1とは別の方法及び制御構成である。実施形態2に係る音叉振動式粘度計1の駆動機構部2の構成は、実施形態1(図1)と同様である。
(実施形態2の制御構成)
 次に、図8は、実施形態2に係る音叉振動式粘度計1の制御系のブロック図、図9は図8の要部の詳細回路図である。ただし、実施形態1(図5)と同一の構成については、同一の符号を引用し、適宜説明を割愛する。
 実施形態1と同様、マイクロコントローラ18及びPWM変調回路12Aが振幅値変更手段である。実施形態2では、制御器15の構成が異なる。制御器15は、抵抗値R1、R2、…Rnがそれぞれ異なる選択回路34Aと、増幅器34Bとを含んで構成されたゲイン設定部34と、PID制御部15Aを有する。ゲイン設定部34は、抵抗値R1、R2、…Rnに一対に接続されたアナログスイッチSW1、SW2、…SWnのON/OFFにより、いずれか一が選択されて動作する。アナログスイッチSW1、SW2、…SWnは、マイクロコントローラ18が出力するゲイン選択信号により動作する。ゲイン設定部34は、比較器14からの信号と、ゲイン選択信号によって設定された簡易フィードバックゲインFGsim=Rn/R0(R0:比較器14とゲイン設定部34間に接続した抵抗器の抵抗値)とを乗算し、PID制御部15Aに出力する。マイクロコントローラ18がどの簡易フィードバックゲインFGsimを選択するかは、次に述べる発振領域Posから決定する。マイクロコントローラ18及びゲイン設定部34が、簡易フィードバックゲイン設定手段である。
(発振領域)
 発振領域Posは、予め、測定試料に挿入する一対の振動子と、該振動子を振動させる電磁駆動部と、該振動子の目標振幅値を出力する振幅値変更手段と、該振動子の振幅を測定する変位検出センサと、を含み、上記変位検出センサの出力値が上記目標振幅値となるように上記電磁駆動部に流す駆動電流を制御するフィードバック制御を行うことのできる、ある試験機を用いて、ある粘度の試料をある目標振幅値で測定し、得られた粘度値が発振する直前となる限界点でのフィードバック制御における最適フィードバックゲインFGOPを求める試験を行い、上記試験を複数パターン行って得られた、振幅値に対する上記最適フィードバックゲインFGOPのプロット領域である。
 発振領域Posを求めるための試験機及び試験方法の一例として、実施形態1の装置(図5)及び測定方法(図6)が挙げられる。ただし、発振領域Posを求めるための試験機及び試験方法は、測定値が発振する直前のデータが得られるものであればよく、実施形態1に限定されるものではない。例えば、上記の機械系と電気系を含むシステムを有する装置で周波数をスイープさせ、システムのゲイン特性と位相特性を求めることでも、最適フィードバックゲインFGOPを求めることができる。
 具体的に、図10は発振領域Posの一例を示す図である。図10は、一例として、実施形態1の装置(図5)及び測定方法(図6)によって、標準液:1[mPa・s],1000[mPa・s],8000[mPa・s],26000[mPa・s]を試料4として、それぞれ45[ml]を、測定温度25℃一定条件下、目標振幅値0.07/0.10/0.20/1.2[mm]と変更させたときの、各最適フィードバックゲインFGOP[dB]を、振幅値[mm]を横軸に、最適フィードバックゲインFGOP[dB]を縦軸に取ってプロットしたものである。
 このように、予め、測定が想定されうる粘度と振幅の組み合わせを網羅する試験(測定が想定されうる低粘度から高粘度の各流動体に対し、測定が想定されうる低振幅から高振幅の振幅変化を与える試験)を複数パターン行って、これらの最適フィードバックゲインFGOPを求め、得られた最適フィードバックゲインFGOPのプロット領域(振幅値ごとに最大値を取り、最大値を結んだ線(図10の一点鎖線の下の領域)を、発振領域Posとして求めておく。すなわち、図10の斜線部が発振領域Posである。
(簡易フィードバックゲインの設定方法)
 簡易フィードバックゲインFGsimは、発振領域Pos以下のところで、目標振幅値に応じて複数段階で変化するように設定する。図11は簡易フィードバックゲインFGsim設定の一例を示す図である。図11は、例えば予めの試験で図10の発振領域Posが得られた場合に、この発振領域Posの値を元に、目標振幅値が0~0.2[mm]で測定しているときは簡易フィードバックゲインFGsimを14[dB]に設定し、目標振幅値が0.2超~0.4[mm] で測定しているときは簡易フィードバックゲインFGsimを5[dB]に設定し、目標振幅値が0.4超 [mm] で測定しているときは簡易フィードバックゲインFGsimを0[dB]に設定する例である。図11の数値及び段階数はあくまで一例である。
 すなわち、実施形態2では、制御可能で既知となる目標振幅値を基準として、いずれの測定(低粘度から高粘度)でも好適に機能する簡易フィードバックゲインFGsimを、段階的に設定する。簡易フィードバックゲインFGsimは、目標振幅値に応じて、発振領域Pos以下でゲイン(1)、ゲイン(2)、…ゲイン(n)、と複数に段階的に変化すればよい。そして、これらの設定した簡易フィードバックゲインFGsimから抵抗値R1,R2・・・Rnを決定し、測定時には、スイッチSW1、SW2、…SWnを利用して、マイクロコントローラ18が目標振幅値に照らして選択的にゲインを設定する。
(実施形態2の測定方法)
 次に、図11の例示のように簡易フィードバックゲインFGsimを設定した場合の、実施形態2に係る音叉振動式粘度計1の試料物性の測定方法について説明する。図12は実施形態2に係る音叉振動式粘度計の試料物性の測定方法を示すフローチャートである。
 まず、ステップS201に進み、設定した測定条件に従って、目標振幅値が設定される。次に、ステップS202に進み、設定された目標振幅値が0.2[mm]以下か判定される。目標振幅値が0.2[mm]以下であれば、ステップS203に進み、ゲイン(1)、この場合は簡易フィードバックゲインFGsimを14[dB]に設定する。次に、ステップS207に進み、振動子3,3の振動が開始される。一方、ステップS202で目標振幅値が0.2[mm]超であれば、ステップS204に進み、設定された目標振幅値が0.4[mm]以下か判定される。目標振幅値が0.4[mm]以下であれば、ステップS205に進み、ゲイン(2)、この場合は簡易フィードバックゲインFGsimを5[dB]に設定し、ステップS207に進み、振動子3,3の振動が開始される。ステップS204で目標振幅値が0.4[mm]超であれば、ステップS206に進み、ゲイン(3)、この場合は簡易フィードバックゲインFGsimを0[dB]に設定し、ステップS207に進み、振動子3,3の振動が開始される。ステップS207で振動子3,3の振動が開始されると、次に、ステップS208に進み、設定された簡易フィードバックゲインFGsimで得られた粘度値を、この目標振幅値のときの粘度の測定値として取得し、この測定値を表示器22に表示し、専用コントローラ24でグラフ化して表示する。次に、ステップS208に進み、次の目標振幅値に変更し、ステップS201に戻り、測定条件が完了するまでこれを繰り返す。
(実施形態2の応答速度)
 図13は実施形態2に係る音叉振動式粘度計の応答速度を示す図である。図13は、振幅値[mm]を横軸に、応答時間[秒]を縦軸に取って、標準液:1[mPa・s],1000[mPa・s],8000[mPa・s],26000[mPa・s]を試料4として、それぞれ45[ml]を、測定温度25℃一定条件下、目標振幅値0.07/0.10/0.20/1.2[mm]と変更させ、各振幅値で粘度値が安定する(一例として、表示レベルの粘度値1%以内となったときで判断した)までに要した応答時間を調べたものである。図13から、実施形態2では、低粘度から高粘度、低振幅から高振幅のいずれの測定であっても、応答時間は約25 [秒] 以内に収まることがわかる。
 このことから、実施形態2によれば、各域で(高粘度域、低振幅域であっても)応答速度が速まったため、振幅の変更を細かく行うように(振幅値の変化量を小さく)設定しても、経時変化で見てもデータの乱高下が目立たず、連続的ななめらかな測定グラフが得られる。また、実施形態2によれば、特に高粘度、低振幅域(低ずり速度域)の測定の応答速度が早まったことにより、全体的な測定時間が大幅に短縮する。
(実施例)
 図14及び図15は 実施形態2に係る音叉振動式粘度計1で得られた測定グラフであり、市販のハンドクリームを試料4として、45[ml]を、測定温度25℃一定条件下、目標振幅値を0.07~1.20[mm]まで0.01[mm]刻み(227[ステップ])で変更し、上昇のち下降させて測定したものである。図14は、横軸に時間[秒]、右縦軸に振幅値[mm]、左縦軸に粘度値[mPa・s]としたもの、図15は、横軸は振幅値[mm]、縦軸は粘度値[mPa・s]としたものである。
 図14及び図15にあらわれている通り、実施形態2によれば、一に、各域の応答速度が速まったため、振幅の変更を細かく行っても(0.01[mm]刻み(227[ステップ])、データの乱高下が目立たない、連続的ななめらかな測定グラフが得られることがわかる。
 二に、各域の応答速度が速まったことを受けて、全体の測定時間が短縮できる。具体的に、例えば従来(特許文献1)の音叉式粘度計で、図14及び図15の測定条件と同様に、振幅を0.01[mm]刻み(227[ステップ])で変更する測定を試みると、図3の応答速度の結果を鑑みれば、測定値の取得に約55[秒]の安定待ち+5[秒]のデータ取得の設計が考えられるが、この場合、測定時間は約3.4時間も要することになる。一方、実施形態2の音叉振動式粘度計1で、振幅の変更量を小さく(0.01[mm]刻み、227[ステップ]で変更)した例が図14及び図15であるが、この実施例では、ゲインの簡易設定により各域の応答速度が速まったこと、また、振幅の変更量が小さいため、系が安定するのがいっそう早くなったことを受けて、ステップ208における粘度の測定値の取得は、10[秒]の安定待ち+2[秒]のデータ取得の設計が可能であった。結果、測定時間は45分で終了した。
 また、実施形態2では、ゲインの変更は、スイッチSW1、SW2、…SWnのようなハード的要素を利用する構成であるため、簡易な構成であり、装置コストを低減することができる。
(実施形態3)
 実施形態3は、実施形態1の測定方法を、回転式粘度計で行うものである。図16は実施形態3に係る回転式粘度計の制御系のブロック図である。
(実施形態3の装置及び制御構成)
 なお、実施形態1の構成と(要素機能として)共通する構成については、同一の符号を引用する。実施形態3に係る回転式粘度計(コーン・プレート式、共軸二重円筒式)は、試料4に挿入され、ずり速度を発生させる回転子(機械部)3と、この回転子3を駆動させるものとして、回転子3を回転させるアクチュエータ(機械駆動部)13と、比較器14と、制御器15と、マイクロコントローラ18と、回転子3の回転(変位)を検出するロータリーエンコーダ等の変位検出センサ11と、回転子3のトルクを検出するトーションバネ等のトルク検出センサ110を有する。制御器15は、ゲインコントロール部33と、PID制御部15Aを有する。マイクロコントローラ18は、図示しない表示部、入力部等が接続されており、回転子3の目標ずり速度(回転数[rpm])を測定条件に応じ決定し、目標ずり速度に対応するずり速度制御信号を比較器14に出力するとともに、アクチュエータ13を制御する。マイクロコントローラ18がずり速度変更手段である。
 回転子3の回転数は、変位検出センサ11により検出され、比較器14に出力される。比較器14は、目標ずり速度と変位検出センサ11からの入力値を比較し、制御器15に送る。マイクロコントローラ18は、ゲインコントロール信号により、ゲインコントロール部33のゲインの初期値を設定するとともに、後述(図17のステップS103~S105)するように、粘度値の発振をみてゲインを減少させる。制御器15は、ゲインコントロール部33において、比較器14からの信号と、ゲインコントロール信号によって設定されたフィードバックゲインとを乗算し、PID制御部15Aに出力する。PID制御部15Aは、回転子3が目標ずり速度で回転するようにアクチュエータ13の駆動力を増減し、フィードバック制御する。マイクロコントローラ18、PWM変調回路12B及びゲインコントロール部33がゲインコントロール手段である。一方で、回転子3に作用するトルクがトルク検出センサ110で検出され、マイクロコントローラ18に出力される。マイクロコントローラ18は、このトルクと試料粘度には比例関係があることを利用して、対応する粘度値に換算し、表示部等に表示する。
(実施形態3の測定方法)
 図17は実施形態3に係る回転式粘度計の試料物性の測定方法を示すフローチャートである。実施形態3の測定方法は、実施形態1の測定方法と略同様であるため、実施形態1のステップ番号を引用して、異なる部分を読み替えて説明する。まず、ステップS101に進むと、設定した測定条件に従って、目標ずり速度が設定される。次に、ステップS102で回転子3の駆動が開始すると、ステップS103で、最初は高いフィードバックゲインが設定される。次に、ステップS104で粘度値が発振すると判断されればステップS105に進み、限界点を見つけるまでゲインが減少される。限界点が見つかれば、ステップS106で最適フィードバックゲインFGOPが確定され、この目標ずり速度のときの粘度値を測定値として取得し、この測定値を表示部に表示し、グラフ化して表示する。次に、ステップS108で、次の目標ずり速度に変更し、測定条件が完了するまでこれを繰り返す。
(実施形態4)
 実施形態4は、実施形態2の測定方法を、回転式粘度計で行うものである。図18は実施形態4に係る回転式粘度計の制御系のブロック図である。
(実施形態4の装置及び制御構成)
 実施形態4に係る粘度計は、実施形態3の粘度計の装置構成と同様であり、回転子(機械部)3、アクチュエータ(機械駆動部)13、比較器14、制御器15、マイクロコントローラ18、変位検出センサ11、そしてトルク検出センサ110を有する。制御器15は、抵抗値R1、R2、…Rnがそれぞれ大~小に異なる選択回路34Aと増幅器34Bを含んで構成されたゲイン設定部34と、PID制御部15Aを有する。マイクロコントローラ18は、目標ずり速度に係るずり速度制御信号を比較器14に出力するとともに、アクチュエータ13を制御する。マイクロコントローラ18がずり速度変更手段である。
 回転子3の回転数は変位検出センサ11により検出され、比較器14に出力される。比較器14は、目標ずり速度と変位検出センサ11からの入力値を比較し、制御器15に送る。制御器15では、ゲイン設定部34において、比較器14からの信号と、ゲイン選択信号によって設定された簡易フィードバックゲインFGsim=Rn/R0とを乗算し、PID制御部15Aに出力する。マイクロコントローラ18がどの簡易フィードバックゲインFGsimを選択するかは、発振領域Posから決定する。マイクロコントローラ18及びゲイン設定部34が、簡易フィードバックゲイン設定手段である。
(簡易フィードバックゲインの設定方法)
 実施形態4においても、発振領域Posは、予め、測定が想定されうる粘度とずり速度の組み合わせを網羅する試験(低粘度から高粘度の各流動体に対し、低ずり速度から高ずり速度のずり速度変化を与える試験)を複数パターン行って、これらの最適フィードバックゲインFGOPを求め、得られた最適フィードバックゲインFGOPのプロット領域(ずり速度ごとに最大値を取り、最大値を結んだ線の下の領域)を求めておく。そして、簡易フィードバックゲインFGsimは、目標ずり速度に応じて、発振領域Pos以下でゲイン(1)、ゲイン(2)、…ゲイン(n)、と複数に段階的に設定する。
(実施形態4の測定方法)
 図19は実施形態4に係る回転式粘度計の試料物性の測定方法を示すフローチャートである。実施形態4の測定方法は、実施形態2の測定方法略同様であるため、実施形態2のステップ番号を引用して、異なる部分を読み替えて説明する。まず、ステップS201に進み、設定した測定条件に従って、目標ずり速度が設定される。次に、ステップS202に進み、設定された目標ずり速度がA[rpm] 以下か判定され、A[rpm]以下であれば、ステップS203に進み、簡易フィードバックゲインFGsim(1)に設定し、ステップS207に進む。一方、A[rpm] 超であれば、ステップS204に進み、設定された目標ずり速度がB[rpm]以下か判定される。B[rpm]以下であれば、ステップS205に進み、簡易フィードバックゲインFGsim(2)に設定し、ステップS207に進む。一方、B[rpm] 超であれば、ステップS206に進み、簡易フィードバックゲインFGsim(3)に設定し、ステップS207に進み、回転子3の回転が開始される。次に、ステップS208で、設定された簡易フィードバックゲインFGsimで得られた粘度値を、この目標ずり速度のときの粘度の測定値として取得し、この測定値を表示部に表示し、グラフ化して表示する。次に、ステップS208で、次の目標ずり速度に変更し、測定条件が完了するまでこれを繰り返す。なお、実施形態2を引用して、上述で簡易フィードバックゲインFGsimは3段階に設定しているが、発振領域Pos以下で複数段階的に設定されていれば良い。
 以上、本発明の方法及び装置の実施の形態を、音叉振動式粘度計、回転式粘度計で説明したが、本発明の測定方法は、設定した目標ずり速度の入力値と試料に挿入される機械系からの出力値でフィードバック系を構築して、出力が安定したときに測定値を得る構成を有する、他の粘度計でも実現できる。
 また、本発明の方法及び装置によれば、連続的な(アナログ的な)なめらかな測定グラフが得られるので、変曲点が把握しやすくなるという効果が得られる。このことは、試料の物性の一指針となる降伏値等の測定精度の向上に繋がり、本発明の方法及び装置は、より実態に近い流動体の物性解明に貢献することができる。
音叉振動式粘度計の駆動機構部の構成図 従来の音叉振動式粘度計の制御系のブロック図 従来の音叉式粘度計の応答速度を示す図 従来の音叉振動式粘度計で得られた測定グラフ 実施形態1に係る音叉振動式粘度計の制御系のブロック図 実施形態1に係る音叉振動式粘度計の試料物性の測定方法を示すフローチャート 実施形態1に係る音叉振動式粘度計の応答速度を示す図 実施形態2に係る音叉振動式粘度計の制御系のブロック図 同制御系の要部の詳細回路図 発振領域の一例を示す図 簡易フィードバックゲイン設定の一例を示す図 実施形態2に係る音叉振動式粘度計の試料物性の測定方法を示すフローチャート 実施形態2に係る音叉振動式粘度計の応答速度を示す図 実施形態2に係る音叉振動式粘度計で得られた測定グラフ 実施形態2に係る音叉振動式粘度計で得られた測定グラフ 実施形態3に係る回転式粘度計の制御系のブロック図 実施形態3に係る回転式粘度計の試料物性の測定方法を示すフローチャート 実施形態4に係る回転式粘度計の制御系のブロック図 実施形態4に係る回転式粘度計の試料物性の測定方法を示すフローチャート
1 粘度計
3 振動子(機械部)
4 試料
10 電磁駆動部
11 変位検出センサ
13 アクチュエータ(機械駆動部)
14 比較器
15 制御器
18 マイクロコントローラ
33 ゲインコントロール部
34 ゲイン設定部

Claims (8)

  1.  測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計で、
     ある粘度の試料に対する、ある目標振幅値での測定にて、
     前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、
     これを目標振幅値の変更ごとに行うゲインコントロール手段、を含む
     ことを特徴とする音叉振動式粘度計。
  2.  測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計を用いた試料物性の測定方法であって、
     ある粘度の試料に対する、ある目標振幅値での測定にて、
     前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、
     これを目標振幅値の変更ごとに行う
     ことを特徴とする試料物性の測定方法。
  3.  測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計で、
     ある粘度の試料に対する、ある目標ずり速度での測定にて、
     前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、
     これを目標ずり速度の変更ごとに行うゲインコントロール手段、を含む
     ことを特徴とする粘度計。
  4.  測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計を用いた試料物性の測定方法であって、
     ある粘度の試料に対する、ある目標ずり速度での測定にて、
     前記フィードバック制御でのフィードバックゲインを高い値に最初設定し、得られた粘度値が発振する直前となる限界点を見つけるまでゲインを減少し、前記限界点でのゲインを最適フィードバックゲインとして、前記最適フィードバックゲインにて粘度を測定し、
     これを目標ずり速度の変更ごとに行う
     ことを特徴とする試料物性の測定方法。
  5.  測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計で、
     予め、ある粘度の試料をある目標振幅値で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、振幅値に対する前記最適フィードバックゲインのプロット領域を発振領域として求めておき、
     前記フィードバック制御におけるフィードバックゲインを、前記振幅値変更手段が出力する目標振幅値に応じて、前記発振領域以下で複数段階で変化させる簡易フィードバックゲイン設定手段、を含む
     ことを特徴とする音叉振動式粘度計。
  6.  測定試料に挿入する一対の振動子と、前記振動子を振動させる電磁駆動部と、前記振動子の目標振幅値を出力する振幅値変更手段と、前記振動子の振幅を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標振幅値となるように前記電磁駆動部に流す駆動電流を制御するフィードバック制御を行い、前記駆動電流値から試料の粘度を測定する音叉振動式粘度計を用いた試料物性の測定方法であって、
     予め、ある粘度の試料をある目標振幅値で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、振幅値に対する前記最適フィードバックゲインのプロット領域を発振領域として求めおき、
     前記フィードバック制御におけるフィードバックゲインを、前記振幅値変更手段が出力する目標振幅値に応じて、前記発振領域以下で複数段階で変化させる
     ことを特徴とする試料物性の測定方法。
  7.  測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計で、
     予め、ある粘度の試料をある目標ずり速度で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、ずり速度に対する最適フィードバックゲインのプロット領域を発振領域として求めておき、
     前記フィードバック制御におけるフィードバックゲインを、前記ずり速度変更手段が出力する目標ずり速度に応じて、前記発振領域以下で複数段階で変化させる簡易フィードバックゲイン設定手段、を含む
     ことを特徴とする粘度計。
  8.  測定試料に挿入し、前記試料にずり速度を発生させる機械部と、前記機械部を駆動させる機械駆動部と、前記機械部の目標ずり速度を出力するずり速度変更手段と、前記機械部の変位を測定する変位検出センサと、を含み、前記変位検出センサの出力値が前記目標ずり速度となるように前記機械駆動部の駆動力を制御するフィードバック制御を行い、前記駆動力から試料の粘度を測定する粘度計を用いた試料物性の測定方法であって、
     予め、ある粘度の試料をある目標ずり速度で測定し、得られた粘度値が発振する直前となる限界点での前記フィードバック制御における最適フィードバックゲインを求める試験を行い、前記試験を複数パターン行って得られた、ずり速度に対する最適フィードバックゲインのプロット領域を発振領域として求めておき、
     前記フィードバック制御におけるフィードバックゲインを、前記ずり速度変更手段が出力する目標ずり速度に応じて、前記発振領域以下で複数段階で変化させる
     ことを特徴とする試料物性の測定方法。
PCT/JP2014/065890 2014-06-16 2014-06-16 流動体の物性を測定する方法及び装置 WO2015193943A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/065890 WO2015193943A1 (ja) 2014-06-16 2014-06-16 流動体の物性を測定する方法及び装置
EP14895082.7A EP3156781B1 (en) 2014-06-16 2014-06-16 Method and device for measuring physical properties of fluid
JP2015560474A JP6345193B2 (ja) 2014-06-16 2014-06-16 流動体の物性を測定する方法及び装置
US15/308,766 US10352839B2 (en) 2014-06-16 2014-06-16 Method and device for measuring physical properties of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065890 WO2015193943A1 (ja) 2014-06-16 2014-06-16 流動体の物性を測定する方法及び装置

Publications (1)

Publication Number Publication Date
WO2015193943A1 true WO2015193943A1 (ja) 2015-12-23

Family

ID=54934977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065890 WO2015193943A1 (ja) 2014-06-16 2014-06-16 流動体の物性を測定する方法及び装置

Country Status (4)

Country Link
US (1) US10352839B2 (ja)
EP (1) EP3156781B1 (ja)
JP (1) JP6345193B2 (ja)
WO (1) WO2015193943A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870389A (zh) * 2019-04-12 2019-06-11 长春工程学院 基于磁致伸缩位移传感器灌溉水粘滞系数检测装置及方法
JP2024517382A (ja) * 2021-04-16 2024-04-22 チンタン デイブ 流体の粘度または1種類か複数のレオロジー特性を測定する装置および方法
CN113533135B (zh) * 2021-07-15 2022-10-28 湖南工业大学 一种基于非牛顿流体流变特性测试系统的流量控制方法
CN117110143B (zh) * 2023-10-24 2024-02-02 钛玛科(北京)工业科技有限公司 一种锂电池浆料粘度在线检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635206A (en) * 1979-08-31 1981-04-07 Hitachi Ltd Gain control device for servo-group driving unit
JPH07160304A (ja) * 1993-12-03 1995-06-23 Toyota Motor Corp フィードバックゲイン決定方法
JPH07218415A (ja) * 1994-02-03 1995-08-18 Denki Kagaku Kogyo Kk 粘度測定方法及びその装置
JP2009271251A (ja) * 2008-05-02 2009-11-19 Konica Minolta Business Technologies Inc 画像形成装置
WO2011086879A1 (ja) * 2010-01-18 2011-07-21 独立行政法人産業技術総合研究所 粘度の測定方法および粘度測定装置
WO2014049698A1 (ja) * 2012-09-26 2014-04-03 株式会社 エー・アンド・デイ 流動体の物性測定方法及び装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769088A (en) * 1968-08-12 1973-10-30 Gulton Ind Inc Rechargeable batteries and charge control circuit therefore
US3762429A (en) * 1971-01-12 1973-10-02 Nat Metal & Refining Co High precision wide dynamic range viscous loss measuring apparatus
SE366588B (ja) * 1971-12-01 1974-04-29 Project Ind Produkter Ab
US4754640A (en) * 1987-03-17 1988-07-05 National Metal And Refining Company, Ltd. Apparatus and method for determining the viscoelasticity of liquids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635206A (en) * 1979-08-31 1981-04-07 Hitachi Ltd Gain control device for servo-group driving unit
JPH07160304A (ja) * 1993-12-03 1995-06-23 Toyota Motor Corp フィードバックゲイン決定方法
JPH07218415A (ja) * 1994-02-03 1995-08-18 Denki Kagaku Kogyo Kk 粘度測定方法及びその装置
JP2009271251A (ja) * 2008-05-02 2009-11-19 Konica Minolta Business Technologies Inc 画像形成装置
WO2011086879A1 (ja) * 2010-01-18 2011-07-21 独立行政法人産業技術総合研究所 粘度の測定方法および粘度測定装置
WO2014049698A1 (ja) * 2012-09-26 2014-04-03 株式会社 エー・アンド・デイ 流動体の物性測定方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156781A4 *

Also Published As

Publication number Publication date
EP3156781B1 (en) 2020-08-05
US20170160176A1 (en) 2017-06-08
JPWO2015193943A1 (ja) 2017-04-20
US10352839B2 (en) 2019-07-16
JP6345193B2 (ja) 2018-06-20
EP3156781A4 (en) 2017-07-12
EP3156781A1 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6345193B2 (ja) 流動体の物性を測定する方法及び装置
US20190120740A1 (en) Vibratory sensor and method of varying vibration in a vibratory sensor
JP7377840B2 (ja) 位相誤差に基づいて振動センサの振動を制御する方法
CN105527192B (zh) 用于测量流体密度的方法
WO2014049698A1 (ja) 流動体の物性測定方法及び装置
JP2013532581A (ja) 超音波トランスデューサ制御のためのシステムおよび方法
JP6602379B2 (ja) 振動要素の振動応答パラメータを決定する方法
CN106996813B (zh) 用于运行质量流量测量仪器的方法和质量流量测量仪器
JP2006214842A (ja) 液体物性値測定装置及び液体物性値測定方法
JP2015132570A (ja) 粘度測定装置及び粘度測定方法
JP2015190829A (ja) 流動体の降伏値を求める方法、そのプログラム及び装置
CN106568688A (zh) 用于促动电动马达的方法
JP5683825B2 (ja) 動的粘弾性測定装置および動的粘弾性測定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15308766

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014895082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895082

Country of ref document: EP