WO2015192666A1 - 逆变电源系统 - Google Patents

逆变电源系统 Download PDF

Info

Publication number
WO2015192666A1
WO2015192666A1 PCT/CN2015/072551 CN2015072551W WO2015192666A1 WO 2015192666 A1 WO2015192666 A1 WO 2015192666A1 CN 2015072551 W CN2015072551 W CN 2015072551W WO 2015192666 A1 WO2015192666 A1 WO 2015192666A1
Authority
WO
WIPO (PCT)
Prior art keywords
alternating current
voltage
sub
unit
output
Prior art date
Application number
PCT/CN2015/072551
Other languages
English (en)
French (fr)
Inventor
邹建龙
梁向辉
刘永桥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15788310.9A priority Critical patent/EP3010132B1/en
Publication of WO2015192666A1 publication Critical patent/WO2015192666A1/zh
Priority to US14/980,441 priority patent/US9800168B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to the field of electrical energy conversion, and in particular to an inverter power supply system.
  • the inverter power supply system generally includes an inverter, the DC voltage receiving end of the inverter receives a DC voltage, converts the DC voltage into an AC voltage, and passes the AC voltage through an AC voltage output end of the inverter. Output to the load.
  • the DC voltage receiving end is connected to a rectifier, which converts an AC voltage, such as a mains voltage, into the DC voltage, and outputs the DC voltage to the inverter via the DC voltage receiving end.
  • the load applied to the AC voltage output terminal of the inverter increases, the voltage of the DC bus connected to the DC voltage receiving end of the inverter drops.
  • the invention provides an inverter power supply system, which can effectively reduce the volume and cost of the inverter power system, and effectively increase the stability of the inverter power system.
  • an inverter power supply system in a first aspect, includes an inverter circuit and a feedback circuit, and the inverter circuit is configured to convert a first alternating current voltage into a second alternating current voltage, and the first alternating current The current circuit is converted into a second alternating current, and the feedback circuit determines whether the magnitude of the second alternating current exceeds a preset threshold. When the magnitude of the second alternating voltage exceeds the preset threshold, the feedback circuit obtains feedback.
  • a current which compensates a reference value of the first alternating current according to the feedback current, And generating a control signal according to the reference value of the compensated first alternating current, and outputting the control signal to the inverter circuit to adjust the size of the second alternating current voltage.
  • the inverter circuit includes an AC power source, a rectifier, and an inverter, wherein the AC power source generates the first AC voltage and the first AC current, and the rectifier is configured to The first alternating current voltage and the first alternating current are respectively converted into a first direct current voltage and a first direct current, and the inverter is connected to the rectifier through a first direct current bus and a second direct current bus, the inverse The transformer is configured to convert the first DC voltage and the second DC current into a second alternating current voltage and a second alternating current, respectively.
  • the feedback circuit includes a detecting unit and a rectifier control unit, and the detecting unit is connected to the inverter circuit to detect the output of the inverter circuit. a signal, and the detection result is output, the rectifier control unit receives the detection result, where the detection result includes a magnitude of a second alternating voltage, and the rectifier control unit is configured to determine the second alternating current voltage according to the detection result. Whether the size exceeds the preset threshold.
  • the rectifier control unit includes a determining unit, a sampling data processing unit, and a loop control and wave sending unit, where the detection result further includes a first communication
  • the determining unit is configured to receive the second alternating current voltage output by the detecting unit, and determine the magnitude of the voltage, the second alternating current, the voltage of the first DC bus, and the voltage of the second DC bus Whether the size of the second AC voltage exceeds the preset threshold.
  • the determining unit sends an enable signal to the sampling data processing unit.
  • the sampling data processing unit calculates the first alternating current voltage, the second alternating current voltage, and the second alternating current to obtain the feedback current, and the loop control and transmitting unit receives the feedback current. And transmitting the feedback current to the loop control and wave sending unit, the loop control and wave sending unit controlling the feedback current and pre-existing the loop.
  • the inner hair cells of the first wave of alternating current to compensate the reference value and generates the control signal according to the reference value of the first alternating voltage is compensated.
  • the reference value of the first alternating current is subtracted from the reference values of the first DC bus and the second DC bus voltage respectively Calculating a function of a difference between the first DC bus voltage and the second DC bus voltage, wherein the reference values of the first DC bus voltage and the second DC bus voltage are preset constants,
  • the function is an integral function or a product function.
  • the sampling data processing unit is configured to: according to the first alternating current voltage, the second alternating current voltage, and the second alternating current Obtaining the feedback current includes:
  • control signal is used to reduce a first output of the rectifier
  • the magnitude of the alternating voltage is used to adjust the first direct current voltage output by the rectifier.
  • the inverter power supply system further includes a first capacitor and a second capacitor, and the first capacitor is electrically connected to the first end One DC bus is grounded, and the other end is grounded. One end of the second capacitor is connected to the second DC bus, and the other end is grounded.
  • the AC power supply includes a first output, a second output, and a second
  • the first output voltage and the first common end are three-phase alternating current voltages, which are a first phase alternating current voltage, a second phase alternating current voltage, and a third phase alternating current voltage, respectively, the first phase alternating current voltage,
  • the voltages of the second phase alternating voltage and the third phase alternating voltage are equal, and the phases are sequentially different by 120°
  • the first alternating current is a three-phase alternating current, which is a first phase alternating current and a second phase alternating current respectively.
  • the inverter power supply system further includes a first inductor, a second inductor, and a third An inductor, the first output terminal connects the first inductor to the rectifier, the second output terminal connects the second inductor to the rectifier, and the third output terminal connects the third inductor to a Rectifier, the first public The common terminal is connected to the rectifier.
  • the inverter power supply system further includes a first inductor, a second inductor, and a third inductor, where the first output is connected to the first One end of the inductor, the other end of the first inductor is electrically connected to the rectifier, the second output is connected to one end of the second inductor, and the other end of the second inductor is electrically connected to the rectifier, The third output is connected to one end of the third inductor, the other end of the third inductor is electrically connected to the rectifier, and the first common end is connected to the rectifier.
  • the inverter power supply system further includes a first filter capacitor, a second filter capacitor, and a third filter capacitor, the first One end of the filter capacitor is electrically connected to the first output end, and the other end is connected to the first common end, the second filter capacitor is connected to the second output end, and the other end is connected to the first common end, the first The three filter capacitors are electrically connected to the third output end, and the other end is connected to the first common end.
  • the inverter includes a fourth output terminal, a fifth output terminal, a sixth output terminal, and a second common terminal
  • the inverter power supply system further includes a fourth inductor, a fifth inductor, and a sixth inductor, where the The fourth output is connected to one end of the fourth inductor, the other end of the fourth inductor is electrically connected to the load, the fifth output is connected to one end of the fifth inductor, and the other end of the fifth inductor Electrically connected to the load, the sixth output is connected to one end of the sixth inductor, the other end of the sixth inductor is electrically connected to the load, and the second common end is connected to the load, The second alternating voltage and the second alternating current are output to the load.
  • the inverter power supply system further includes a fourth filter capacitor, a fifth filter capacitor, and a sixth filter capacitor, wherein the fourth filter capacitor One end is connected to the fourth output end, and the other end is connected to the second common end, the fifth filter capacitor is connected to the fifth output end, and the other end is connected to the second common end, the sixth filter capacitor One end is connected to the sixth output end, and the other end is connected to the second common end.
  • control signal is a pulse width modulation signal
  • the duty cycle of the pulse width modulated signal is used to adjust the magnitude of the first DC voltage.
  • the fourteenth possible implementation manner when the duty ratio of the pulse width modulation signal is decreased, the size of the first DC voltage is decreased, thereby reducing The magnitude of the second alternating voltage.
  • the rectifier includes a first switching unit, a second switching unit, a third switching unit, a first sub-capacitor and a second sub-capacitor, the first sub-capacitor includes a first end and a second end, and the second sub-capacitor includes a third end and a fourth end, the second end Connecting the third end and connecting the first common end, the first switch unit is connected between the first end and the fourth end, and the second switch unit is connected to the first end and the first end Between the four ends, the third switch unit is connected between the first end and the fourth end, and the first switch unit is connected to the first output end, and the second switch unit is connected to the first a second output terminal, the third switch unit is connected to the third output end, the first end is connected to the inverter through the first bus bar, and the second end is connected by the second bus bar An inverter, the first switching unit, the
  • the first switch unit includes a first sub-switch unit and a second sub-switch unit, the first sub-switch unit and the The second sub-switch unit includes a first control end, a first conductive end, and a second conductive end, and the first conductive end of the first sub-switching unit is electrically connected to the first end, the first sub- The second conductive end of the switch unit is electrically connected to the first conductive end of the second sub-switch unit, and the second conductive end of the second switch unit is electrically connected to the fourth end, the first The first control terminals of the sub-switch unit and the second sub-switch unit are both connected to the rectifier control unit to receive the control signal.
  • the second switching unit includes a third sub-switch unit and a fourth sub-switch unit
  • the third sub- The switch unit and the fourth sub-switch unit each include a second control end, a third conductive end, and a fourth conductive end
  • the third conductive end of the third sub-switch unit is electrically connected to the first end
  • the fourth conduction end of the third sub-switch unit is electrically connected to the third conduction end of the fourth sub-switch unit
  • the fourth conduction end of the fourth sub-switch unit is electrically connected to the At the three ends, the second control terminals of the third sub-switch unit and the fourth sub-switch unit are electrically connected to the rectifier control unit to receive the control signal.
  • the third switch unit includes a fifth sub-switch unit and a sixth sub-switch unit, and the fifth sub-switch unit and the sixth sub-switch unit each include a third control end and a fifth conductive end.
  • the fifth conductive end of the fifth sub-switching unit is electrically connected to the first end
  • the fifth conductive end of the fifth sub-switching unit is electrically connected to the sixth sub-switch a fifth conductive end of the unit
  • the sixth conductive end of the sixth sub-switching unit is electrically connected to the fourth end
  • the third sub-switching unit and the third of the sixth sub-switching unit The control terminals are each electrically coupled to the rectifier control unit to receive the control signals.
  • the reference value of the feedback signal obtained by the inverter power supply system according to the first alternating current voltage, the second alternating current voltage, and the second alternating current to the first alternating current voltage is compared with the prior art.
  • the adjustment does not cause the first bus voltage and the second bus voltage to drop, thereby making the inverter power system more stable. It is also unnecessary to increase the capacitance of the first DC bus and the second DC bus, and therefore, the volume and cost of the inverter power system can be effectively reduced.
  • the feedback current compensates the reference value of the first alternating current voltage to generate a control signal to adjust the magnitude of the first direct current voltage, thereby adjusting the magnitude of the second alternating current voltage, and comparing the first bus voltage and the second bus voltage to the control signal
  • the adjustment is closer to the end of the control signal generation and, therefore, has a faster adjustment speed.
  • FIG. 1 is a schematic diagram showing the circuit structure of an inverter power supply system according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of processing data by a sampling data processing unit in a rectification control unit in an inverter power supply system according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic diagram of a loop control and wave sending unit in an inverter power supply system according to a preferred embodiment of the present invention, according to the feedback current, adjusting a first DC voltage output by the rectifier;
  • FIG. 4 is a schematic diagram showing the circuit structure of a rectifier in an inverter power supply system according to a preferred embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a circuit of an inverter power supply system according to a preferred embodiment of the present invention.
  • the inverter power system 10 includes an inverter circuit 100 and a feedback circuit 200.
  • the inverter circuit 100 is configured to convert a first alternating current voltage into a second alternating current voltage and convert the first alternating current into a second alternating current.
  • the feedback circuit 200 determines whether the magnitude of the second alternating voltage exceeds a preset threshold.
  • the feedback circuit 200 acquires a feedback current, and compensates the reference value of the first alternating current according to the feedback current, and according to the compensated
  • the reference value of the first alternating current generates a control signal, and outputs the control signal to the inverter circuit 100 to adjust the magnitude of the second alternating voltage.
  • the inverter circuit 100 includes an AC power source 110, a rectifier 120, and an inverter 130.
  • the AC power source 110 generates a first alternating current voltage and a first alternating current.
  • the rectifier 120 is electrically connected to the AC power source 110, and converts the first AC voltage and the first AC current into a first DC voltage and a first DC current, respectively.
  • the inverter 130 is connected to the rectifier 120 via a first DC bus 160 and a second DC bus 170.
  • the inverter 130 converts the first DC voltage and the first DC current into a second alternating current voltage and a second alternating current, respectively, and outputs the same to the load 20 .
  • the feedback circuit 200 includes a detection unit 210 and a rectifier control unit 220.
  • the detecting unit 210 is connected to the inverter circuit 100 for detecting a signal output by the inverter 100 and outputting the detection result.
  • the rectifier control unit 220 receives the detection result, and the detection result includes a magnitude of the second alternating current voltage, and the rectifier control unit 220 is configured to determine, according to the detection result, whether the size of the second alternating current voltage exceeds Preset thresholds.
  • the detecting unit 210 detects the first alternating current voltage, the first alternating current, the second alternating current voltage, the second alternating current, and the first direct current of the first DC bus 160 The magnitude of the bus voltage and the second DC bus voltage of the second DC bus 170.
  • One end of the rectifier control unit 220 is electrically connected to the detecting unit 210, and the other end is electrically connected to the rectifier 120 for receiving the first alternating current voltage, the first alternating current, and the second alternating current voltage. And the stated The second alternating current.
  • the rectifier control unit 220 determines whether the size of the second AC voltage exceeds a predetermined threshold.
  • the rectifier control unit 220 is configured according to the first The AC voltage, the second AC voltage, and the second AC current obtain a feedback current, and the feedback current is compensated for the reference value of the first AC current, according to the reference of the compensated first AC current The value generates a control signal, and outputs the control signal to the rectifier 120 to adjust the magnitude of the first DC voltage output by the rectifier 120, thereby adjusting the magnitude of the second AC voltage.
  • the reference value of the first alternating current is obtained by subtracting the difference between the first DC bus voltage and the second DC bus voltage based on the reference values of the first DC bus and the second DC bus voltage, respectively. The function is calculated.
  • the reference values of the first DC bus and the second DC bus voltage are fixed values.
  • the predetermined threshold value is an upper limit value of an AC voltage that the load 20 can withstand.
  • the rectifier control unit 220 may determine that the increase of the load 20 is large by determining whether the magnitude of the second AC voltage exceeds the preset threshold, which may cause system instability.
  • the rectifier control unit 220 includes a determination unit 221, a sample data processing unit 222, and a loop control and wave generation unit 223.
  • the detection result further includes a first alternating current voltage, a second alternating current, a voltage of the first direct current bus 160, and a voltage of the second direct current bus 170.
  • the determining unit 221 is electrically connected to the detecting unit 210 for receiving the second alternating current voltage output by the detecting unit 210, and determining whether the size of the second alternating current voltage exceeds the preset threshold. When the magnitude of the second alternating voltage exceeds the preset threshold, the determining unit 221 sends an enable signal to the sample data processing unit 222.
  • the sampling data processing unit 222 is electrically connected to the detecting unit 210, the determining unit 221, and the loop control and transmitting unit 223.
  • the sampling data processing unit 222 receives the enable signal sent by the determining unit 221, and receives the first alternating current voltage, the first alternating current, and the first alternating current output by the detecting unit 210 under the control of the enabling signal.
  • the second alternating current voltage and the second alternating current are calculated, and the first alternating current voltage, the second alternating current voltage, and the second alternating current are calculated to obtain the feedback current, and the feedback is Current output.
  • the sampling data processing unit 222 obtains the feedback current according to the first alternating current voltage, the second alternating current voltage, and the second alternating current, including: the second alternating current voltage and the second
  • the alternating current is performed by performing an active component modulus, and performing coordinate transformation on the first alternating voltage, and calculating an active component modulus according to the second alternating current voltage and the second alternating current
  • the obtained data and the data obtained by performing coordinate transformation on the first alternating voltage obtain the feedback current.
  • the loop control and wave-generating unit 223 receives the feedback current and compensates the feedback current with a reference value pre-existing in the first AC voltage in the loop control and wave-generating unit 223, and The control signal is generated according to a reference value of the compensated first alternating voltage.
  • the AC power source 110 is a three-phase AC power source, that is, the first AC voltage is a three-phase AC voltage, and the first AC current is a three-phase AC current.
  • the first alternating voltage includes a first phase alternating voltage, a second phase alternating voltage, and a third phase alternating voltage, and the first phase alternating voltage, the second phase alternating voltage, and the third phase alternating voltage
  • the amplitudes are equal and the phases are 120° out of order.
  • the first alternating current includes a first phase alternating current, a second phase alternating current, and a third phase alternating current, and the first phase alternating current, the second phase alternating current, and the third phase alternating current current
  • the amplitudes are equal and the phases are 120° out of order.
  • the AC power supply 110 includes a first output end 111, a second output end 112, a third output end 113, and a first common end 114.
  • the first alternating current voltage and the first alternating current are output via the first output end 111 and the first common end 114, and the second alternating current voltage and the second alternating current are via the second output
  • the terminal 112 and the second common terminal 114 output, and the third alternating current voltage and the third alternating current are output via the third output end 113 and the first common output end 114.
  • the inverter power system 10 further includes a first inductor L1, a second inductor L2, and a third inductor L3.
  • the first output end 111 is connected to one end of the first inductor L1, the other end of the first inductor L1 is electrically connected to the rectifier 120, and the second output end 112 is connected to one end of the second inductor L2.
  • the other end of the second inductor L2 is electrically connected to the rectifier 120
  • the third output end 113 is connected to one end of the second inductor L3, and the other end of the inductor L3 is electrically connected to the rectifier 120.
  • the first common terminal 114 is connected to the rectifier 120.
  • the first inductor L1, the second inductor L2, and the third inductor L3 are freewheeling inductors.
  • the first inductor L1 is configured to store and transfer energy of the first phase alternating voltage and the first phase alternating current to the rectifier 120
  • the second inductor L2 is configured to use a second phase alternating current voltage and The energy of the second phase alternating current is stored and transmitted to the rectifier 120
  • the third inductor L3 is configured to store and transfer energy of the third phase alternating voltage and the third phase alternating current to the rectifier 120 .
  • the inverter power system 10 further includes a first filter capacitor C1, a second filter capacitor C2, and a third filter capacitor C3.
  • One end of the first filter capacitor C1 is electrically connected to the first output end 111, and the other end is The first common terminal 114 is electrically connected to filter out ripples in the first phase AC voltage and the first phase AC current.
  • One end of the second filter capacitor C2 is electrically connected to the second output end 112, and the other end is electrically connected to the first common end 114 for filtering out the second phase AC voltage and the second phase AC current.
  • the third filter capacitor C3 is electrically connected to the third output end 113, and the other end is electrically connected to the first common end 114 for filtering out the third phase AC voltage and the third phase AC current. Ripple.
  • the rectifier 120 is electrically connected to the alternating current power source 110, receives a first alternating current voltage output by the alternating current power source 110, and converts the first alternating current voltage into a first direct current voltage, and converts the first alternating current into The first alternating current.
  • the rectifier 120 electrically connects the first inductor L1 to the first output terminal 111, electrically connects the second inductor L2 to the second output terminal 112, and electrically connects the third inductor L3 to The third output end 113 is electrically connected to the first common end 114.
  • the rectifier 120 receives the first phase alternating current voltage and the second phase alternating current outputted through the first output end 111 and the first common end 114, and receives the second output end 112 and the The second alternating current voltage and the second alternating current outputted by the first common terminal 114 receive the third alternating current voltage outputted through the third output end 113 and the first common end 114 The third alternating current.
  • the inverter power system 10 further includes a first capacitor C11 and a second capacitor C12. One end of the first capacitor C11 is electrically connected to the first DC bus 160, and the other end is grounded. One end of the second capacitor C12 is electrically connected to the second DC bus 170, and the other end is grounded.
  • the first capacitor C11 and the second capacitor C12 are used to balance the voltages of the first DC bus 160 and the second DC bus 170 to make the first DC bus voltage and the second The DC bus voltage is stabilized to avoid damage to the first DC bus 160 or the second DC bus 170 caused by the first DC bus 160 and the second DC bus 170 being unbalanced.
  • first DC bus 160 and the second DC bus 170 are different to cause an imbalance, or because the first DC bus 160 and the second DC bus 170 are connected to each other. If the first DC bus 160 and the second DC bus 170 are unbalanced due to the instantaneous loading of the unbalanced load, the first capacitor C11 and the second capacitor C12 are absent. The first DC bus 160 and the second DC bus 170 are unbalanced, which may cause the first DC bus 160 and the second DC bus 170 to fail due to overvoltage. Causing the first DC bus 160 and the second DC Damage to bus bar 170.
  • the inverter 130 further includes a fourth output terminal 131, a fifth output terminal 132, a sixth output terminal 133, and a second common terminal 134.
  • the inverter power system further includes a fourth inductor L4, a fifth inductor L5, and a sixth inductor L6.
  • the fourth output end 131 connects the fourth inductor L4 to the load 20
  • the fifth output end 132 connects the fifth inductor L5 to the load 20
  • the sixth output end 133 connects the The sixth inductor L6 is connected to the load 20
  • the second common terminal 134 is electrically connected to the load 20 to output the second alternating current voltage and the second alternating current to the load 20.
  • the second alternating current voltage is a three-phase alternating current voltage
  • the second alternating current voltage includes a fourth phase alternating current voltage, a fifth phase alternating current voltage, and a sixth phase alternating current voltage
  • the fourth The voltages of the phase alternating voltage, the fifth phase alternating voltage, and the sixth phase alternating voltage are equal, and the phases are sequentially different by 120 degrees.
  • the second alternating current is a three-phase alternating current
  • the second alternating current includes a fourth phase alternating current, a fifth phase alternating current, and a sixth phase alternating current, the fourth phase alternating current, the fifth phase
  • the current amplitudes of the alternating current and the sixth phase alternating current are equal, and the phases are sequentially different by 120°.
  • the fourth phase alternating voltage and the fourth phase alternating current are output to the load 20 via the fourth output terminal 131 and the second common terminal 134, the fifth phase alternating voltage and the fifth The alternating current is output to the load 20 via the fifth output terminal 132 and the second common terminal 134, and the sixth phase alternating current voltage and the sixth phase alternating current are via the sixth output terminal 133 and The second common terminal 134 is output to the load 20.
  • the fourth inductor L4, the fifth inductor L5, and the sixth inductor L6 are freewheeling inductors.
  • the fourth inductor L4 is configured to store and transfer the fourth phase alternating current voltage and the fourth phase alternating current energy to the load 20
  • the fifth inductor L5 is configured to use the fifth phase alternating current voltage And the fifth phase alternating current energy is stored and transmitted to the load 20
  • the sixth inductor L6 is configured to store and transfer the sixth phase alternating current voltage and the sixth phase alternating current energy to the load 20.
  • the inverter power system 10 further includes a fourth filter capacitor C4, a fifth filter capacitor C5, and a sixth filter capacitor C6.
  • the fourth filter capacitor C4 is electrically connected to the fourth output end 131, and the other end is connected to the second common end 134 for filtering out the fourth phase AC voltage and the fourth phase AC voltage.
  • the fifth filter capacitor C5 is electrically connected to the fifth output terminal 132 at one end, and the other end is electrically connected to the second common terminal 134 for filtering out the fifth phase AC voltage and the fifth phase AC voltage. Ripple.
  • One end of the sixth filter capacitor C6 is electrically connected to the sixth output end 133, and the other The terminal is electrically connected to the second common terminal 134 for filtering out the ripple signal in the sixth phase alternating voltage and the sixth phase alternating current.
  • FIG. 2 is a schematic diagram of processing data by a sampling data processing unit in a rectification control unit in an inverter power supply system according to a preferred embodiment of the present invention.
  • the third phase alternating current is represented by u RECA , i RECA , u RECB , i RECB , u RECC , i RECC , respectively;
  • the fourth phase alternating voltage, the fourth phase alternating current, and the fifth phase alternating current a voltage, the fifth phase alternating current, the sixth phase alternating voltage, and the sixth phase alternating current are represented by u INVA , i INVA , u INVB , i INVB , u INVC , i INVC , respectively ; Expressed by i dFeedforward .
  • the sampling data processing unit 222 performs coordinate transformation on the first phase alternating current i RECA , the second phase alternating current i RECB , and the third phase alternating current i RECC to facilitate subsequent calculation.
  • the sampling data processing unit 222 performs the first phase alternating current i RECA , the second phase alternating current i RECB , and the third phase alternating current i RECC from the ABC coordinate system to the DQZ.
  • the sample data processing unit 222 also performs coordinate transformation on the first phase AC voltage u RECA , the second phase AC voltage u RECB , and the third phase AC voltage u RECC to facilitate subsequent calculation.
  • the sampling data processing unit 222 performs the first phase AC voltage u RECA , the second phase AC voltage u RECB , and the third phase AC voltage u RECC from the ABC coordinate system to the DQZ.
  • the sampling data processing unit 222 further performs active component modulus calculation on the fourth phase alternating voltage u INVA and the fourth phase alternating current i INVA to obtain the fourth phase alternating voltage u INVA and the first
  • the active component modulus of the four-phase alternating current i INVA for convenience of description, the active component modulus obtained by the fourth phase alternating voltage u INVA and the fourth phase alternating current i INVA is named as the first active component modulus value, Expressed by the symbol I InvActiveA .
  • the sampling data processing unit 222 performs an active component modulus calculation on the fifth phase alternating voltage u INVB and the fifth phase alternating current i INVB to obtain the fifth phase alternating voltage u INVB and
  • the active component modulus of the fifth phase alternating current i INVB for convenience of description, the active component of the fifth phase alternating voltage u INVB and the fifth phase alternating current i INVB is named as the second active component
  • the modulus value is represented by the symbol I InvActiveB .
  • the sampling data processing unit 222 further performs active component modulus calculation on the sixth phase alternating voltage u INVC and the sixth phase alternating current i INVC to obtain the sixth phase alternating voltage u INVC and the first
  • the active component modulus of the six-phase alternating current i INVC for convenience of description, the active component value obtained by the sixth phase alternating voltage u INVC and the sixth phase alternating current i INVC is named as the third active component modulus value, It is represented by the symbol I InvActiveC .
  • the sampling data processing unit 222 obtains the feedback current according to the first alternating current voltage, the second alternating current voltage, and the second alternating current.
  • the feedback current i dFeedforward is expressed by the following formula.
  • i dFeedforward (I InvActiveA *u INVA +I InvActiveB *u INVB +I InvActiveC *u INVC )/(3v d ) 1
  • the sampled data processing unit 222 outputs the obtained feedback currents i dFeedforward , i d , i q , i z , v d , v q , and v z to the loop control and transmitting unit 223.
  • FIG. 3 is a schematic diagram of a loop control and wave sending unit in an inverter power supply system that adjusts a first DC voltage output by the rectifier according to the feedback current according to a preferred embodiment of the present invention.
  • the feedback current i dFeedforward compensates the reference value i dref of the first alternating current.
  • the reference value of the first alternating current obtained by the feedback current i dFeedforward after compensating the reference value i dref of the first alternating current is denoted by i′ dref .
  • the loop control and wave sending unit 223 generates a control signal according to the reference value i' dref of the compensated first alternating current, and outputs the control signal to the rectifier 120 to adjust the output of the finisher 120
  • the magnitude of the first DC voltage which in turn adjusts the magnitude of the second AC voltage.
  • the reference value of the first alternating current voltage is a function of the first direct current bus voltage and the second direct current bus voltage.
  • the working principle of the loop control and wave sending unit 223 is described as follows.
  • the first DC bus voltage and the second DC bus voltage are denoted by symbols v busp and v busn , respectively.
  • the reference value i dref of the first alternating current is expressed by the formula 2.
  • the v bus-ref represents a reference value of the bus voltage, which is a fixed value.
  • the v bus represents the sum of the first DC bus voltage v busp and the second DC bus voltage v busn .
  • P denotes i dref as a function of the v bus-ref and v bus . Since v bus-ref represents a reference value of the bus voltage, which is a fixed value, the v bus represents a sum of the first DC bus voltage v busp and the second DC bus voltage v busn , and therefore, the first alternating current
  • the reference value i dref is a function of the first DC bus voltage v busp and the second DC bus voltage v busn .
  • the function P may be an integral function or a product function.
  • Equation 3 The reference value i'dref of the first alternating current compensated via the feedback current i dFeedforward is expressed as Equation 3.
  • i' dref P(v bus-ref -v bus )+i dFeedforward 3
  • control signals are three.
  • the three generated control signals are respectively named as a first control signal, a second control signal, and a third control signal.
  • the first control signal, the second control signal, and the third control signal are represented by symbols S1, S2, and S3, respectively.
  • the formulas of the first control signal, the second control signal, and the third control signal are represented by equations 4, 5, and 6, respectively.
  • P is a function
  • PI also represents a function
  • the function represented by the P and the PI may be an integral function or a product function.
  • the loop control and wave sending unit 223 is further configured to perform coordinate transformation on the first control signal S1, the second control signal S2, and the third control signal S3, so as to facilitate subsequent Control of rectifier 120.
  • the loop control and wave sending unit 223 is further configured to perform the first control signal S1, the second control signal S2, and the third control signal S3 from the DQZ coordinate axis to the ABC. Coordinate transformation of the coordinate axes.
  • the first control signal S1, the second control signal S2, and the third control signal S3 output a control signal obtained by coordinate transformation from the DQZ coordinate axis to the ABC coordinate axis to the rectifier 120.
  • FIG. 4 is a schematic diagram of a circuit structure of a rectifier in an inverter power supply system according to a preferred embodiment of the present invention.
  • the rectifier 120 includes a first sub-capacitor C01, a second sub-capacitor C02, a first switching unit 121, a second switching unit 122, and a third switching unit 123.
  • the first sub-capacitor C01 includes a first end 1241 and a second end 1242.
  • the first end 1241 and the second end 1242 are respectively a positive pole and a negative pole of the first sub-capacitor C01.
  • the second sub-capacitor C02 includes a third end
  • the first terminal 1251 and the fourth terminal 1252 are respectively a positive electrode and a negative electrode of the second sub-capacitor C02.
  • the second end 1242 is electrically connected to the third end 1251 and connected to the first common end 114.
  • the first switch unit 121 is connected between the first end 1241 and the second end 1242, and the second switch unit 122 is connected between the first end 1241 and the fourth end 1252.
  • the third switch unit 123 is connected between the first end 1241 and the fourth end 1252.
  • the first switch unit 121 is electrically connected to the first output end 111 for receiving the first phase AC voltage and the first phase AC current.
  • the second switching unit 122 is electrically connected to the second output terminal 112 for receiving the second phase alternating voltage and the second phase alternating current.
  • the third switching unit 123 is electrically connected to the third output end 113 for receiving the third phase alternating current voltage and the third phase alternating current.
  • the first switch unit 121, the second switch unit 122, and the third switch unit 123 respectively receive the control signals sent by the rectifier control unit 220, and are turned on or off under the control of the corresponding control signals. .
  • the first switch unit 121, the second switch unit 122, and the third switch unit 123 are turned on under the control of the corresponding control signals, the corresponding phase AC voltage and the corresponding phase AC current are given via the corresponding switch unit.
  • the first sub-capacitor C01 and the second sub-capacitor C02 are charged such that the first sub-capacitor C01 and the second sub-capacitor C02 store energy, and the first sub-capacitor C01 and the second sub-capacitor C02
  • the stored energy is output via the first end 121 and the fourth end 1252, whereby the first alternating voltage is converted to the first direct current voltage.
  • the first switching unit 121 receives the first control signal S1 and is turned on or off under the control of the first control signal S1.
  • the first switching unit 121 When the first switching unit 121 is turned on under the control of the first control signal S1 issued by the rectifier control unit 220, the first phase alternating voltage and the first phase alternating current are via the first switch The unit 121 charges the first sub-capacitor C01 and the second sub-capacitor C02 such that the first sub-capacitor C01 and the second sub-capacitor C02 store energy.
  • the second switching unit 122 receives the second control signal S2 and is turned on or off under the control of the second control signal S2.
  • the second switching unit 122 When the second switching unit 122 is turned on under the control of the second control signal S2 issued by the rectifier control unit 220, the second phase alternating voltage and the second phase alternating current are via the second switch
  • the unit 122 charges the first sub-capacitor C01 and the second sub-capacitor C02 to store the first sub-capacitor C01 and the second sub-capacitor C02.
  • the third switching unit 123 receives the third control signal S3 and is turned on or off under the control of the third control signal S3.
  • the third phase alternating voltage and the third phase alternating current are supplied to the first sub-capacitor C01 and the third via the third switching unit 123 when the third control signal is generated by the control unit 220.
  • the second sub-capacitor C02 is charged to store the first sub-capacitor C01 and the second sub-capacitor C02.
  • the first end 1241 is connected to the inverter 130 via the first DC bus 160
  • the second end 1252 is connected to the inverter 130 via the second DC bus 170.
  • the first switch unit 121 includes a first sub-switch unit Q1 and a second sub-switch unit Q2, and the second switch unit 122 includes a third sub-switch unit Q3 and a fourth sub-switch unit Q4.
  • the three-switch unit 123 includes a fifth sub-switch unit Q5 and a sixth sub-switch unit Q6.
  • the switch unit Q6 includes a control end g, a first conduction end d and a second conduction end s.
  • each of the sub-switch units is configured to receive a control signal sent by the rectifier control unit 220, and control the first conduction end d and the second conduction end of the corresponding sub-switch unit under the control of the corresponding control signal. Turning on or off of s to turn on or off the corresponding sub-switch unit.
  • control terminal g of the first sub-switch unit Q1 receives the first control signal sent by the rectifier control unit 220, and controls the first sub-switch unit Q1 under the control of the first control signal.
  • the first conductive terminal d is turned on or off with the second conductive terminal s of the first sub-switching unit Q1 to enable the first sub-switching unit Q1 to be turned on or off.
  • the control terminal g of the first sub-switch unit Q1 controls the first conduction end d of the first sub-switch unit Q1 and the second conduction of the first sub-switch unit Q1 under the control of the first control signal
  • the terminal s is turned on
  • the first sub-switch unit Q1 is turned on; when the control terminal g of the first sub-switch unit Q1 controls the first sub-switch unit Q1 under the control of the first control signal
  • the first conductive terminal d and the second conductive terminal s of the first sub-switching unit Q1 are turned off, the first sub-switching unit Q1 is turned off.
  • the control end g of the second sub-switch unit Q2 receives the first control signal sent by the rectifier control unit 220, and the first conduction of the second sub-switch unit Q2 under the control of the first control signal
  • the terminal d is turned on or off with the second conductive terminal s of the second sub-switching unit Q1 to turn on or off the second sub-switching unit Q2.
  • the control terminal g of the second sub-switch unit Q2 controls the first conduction end d of the second sub-switch unit Q2 and the second sub-switch unit Q2 under the control of the first control signal
  • the second sub-switch unit Q1 is turned on; when the second sub-switch When the control terminal g of the unit Q2 controls the first conduction end d of the second sub-switch unit Q2 and the second conduction terminal s of the second sub-switch unit Q2 to be turned off under the control of the first control signal,
  • the second sub-switch unit Q2 is turned off.
  • control ends of the third sub-switch unit Q3 and the fourth sub-switch unit Q4 both accept the second control signal and are turned on or off under the control of the second control signal.
  • the control ends of the fifth sub-switch unit Q5 and the sixth sub-switch unit Q6 both receive the third control signal and are turned on or off under the control of the third control signal.
  • the sixth sub-switching unit Q6 can be an n-channel metal oxide field effect transistor (NMOSFET).
  • the control terminal g is a gate of the NMOSFET
  • the first conduction terminal d is a drain of the NMOSFET
  • the second conduction terminal s is a source of the NMOSFET.
  • the control signal adjusts the on-time of each of the switch units to adjust the magnitude of the first DC voltage output by the rectifier 120.
  • the magnitude of the second alternating voltage is further adjusted. Specifically, when the control signal controls the on-time of each of the switch units to decrease, the magnitude of the first DC voltage output by the rectifier 120 decreases, and the magnitude of the second AC voltage outputted through the inverter 130. Reduced. Thereby protecting the load 20 connected to the inverter 130 from being burnt due to overvoltage, and the feedback current is compensating for the reference value of the first alternating current, as can be seen from FIG.
  • the v bus changes, that is, does not cause the first bus voltage and the second bus voltage to drop, thereby making the inverter power system 10 more stable.
  • the feedback current compensates the reference value of the first alternating current voltage, and the adjustment of the control signal is closer to the generation of the first control signal S1 than the first bus voltage and the second voltage drop (ie, v bus change)
  • the feedback current is compensated for the reference value of the first AC voltage to generate a control signal to adjust the magnitude of the first DC voltage, and thus the magnitude of the second AC voltage has a faster adjustment speed.
  • the control signal is controlled as a pulse width modulation (PWM) signal, and the duty ratio of the PWM signal is adjusted to adjust each switch.
  • PWM pulse width modulation
  • the on time of the unit to adjust the magnitude of the first DC voltage.
  • the rectifier control unit 220 determines that the size of the second AC voltage exceeds the preset threshold
  • the first control signal controls the first switch subunit Q1, the second switch subunit The on-time of Q2 is decreased;
  • the second control signal controls an on-time of the third switch sub-unit Q3 and the fourth switch sub-unit Q4 to decrease; and the third control signal controls the fifth The on-time of the switching sub-unit Q5 and the sixth switching sub-unit Q6 is reduced.
  • the present invention adjusts the reference value of the first alternating current voltage according to the feedback signals obtained by the first alternating current voltage, the second alternating current voltage, and the second alternating current, compared with the prior art.
  • the drop of the first bus voltage and the second bus voltage is not caused, thereby making the inverter power system 10 more stable. It is also unnecessary to increase the capacitance of the first DC bus and the second DC bus, and therefore, the volume and cost of the inverter power system can be effectively reduced.
  • the feedback current compensates the reference value of the first alternating current voltage to generate a control signal to adjust the magnitude of the first direct current voltage, thereby adjusting the magnitude of the second alternating current voltage, and comparing the first bus voltage and the second bus voltage to the control signal
  • the adjustment is closer to the end of the control signal generation and, therefore, has a faster adjustment speed.
  • the first alternating current voltage is a three-phase alternating current voltage
  • the first alternating current is a three-phase alternating current
  • the second alternating current is a three-phase alternating current
  • the first The two alternating currents are described as an example of a three-phase alternating current.
  • the three-phase alternating current voltage and the three-phase alternating current can also be a single-phase alternating current voltage and a single-phase alternating current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种逆变电源系统(10),包括逆变电路(100)及反馈电路(200),所述逆变电路(100)用于将第一交流电压转换为第二交流电压,并将第一交流电流转换为第二交流电流,所述反馈电路(200)判断所述第二交流电压的大小是否超过预设阈值,当所述第二交流电压的大小超过所述预设阈值时,所述反馈电路(200)获取反馈电流,根据所述反馈电流对所述第一交流电流的参考值进行补偿,并根据补偿后的第一交流电流的参考值产生控制信号,并将所述控制信号输出至所述逆变电路(100)以调整所述第二交流电压的大小。

Description

逆变电源系统 技术领域
本发明涉及电能转换领域,尤其涉及一种逆变电源系统。
背景技术
逆变电源系统被广泛用于为交流负载提供电能。逆变电源系统通常包括一逆变器,所述逆变器的直流电压接收端接收直流电压,将所述直流电压转换为交流电压,并将所述交流电压经由逆变器的交流电压输出端输出至负载。通常情况下,直流电压接收端连接一整流器,所述整流器将一交流电压,比如市电电压,转换为所述直流电压,并经由所述直流电压接收端输出至所述逆变器。当所述逆变器的交流电压输出端所加载的负载增大时,会导致与逆变器的直流电压接收端相连的直流母线的电压跌落。当负载的增大量较大时,所述直流母线的电压快速跌落,从而造成所述逆变电源系统不稳定。为了防止此种情况下直流母线电压跌落过快,通常做法是加大直流母线的电容,或者改进所述整流器,以提高所述整流器的响应速度,以减小直流母线电压跌落的幅值以及直流母线电压恢复到稳定值所需要的时间。然而,加大直流母线电容的方法会增加所述逆变电源系统的体积以及制造成本。由于母线电压的变化是一个滞后的惯性环节,即使加大整流器的响应速度,所述直流母线电压也会有较大的跌落幅值,且直流母线电压恢复到稳定值所需要的时间也较长。
发明内容
提供一种逆变电源系统,能够有效降低逆变电源系统的体积和成本,且有效增加逆变电源系统的稳定性。
第一方面,提供一种逆变电源系统,所述逆变电源系统包括逆变电路及反馈电路,所述逆变电路用于将第一交流电压转换为第二交流电压,并将第一交流电流转换为第二交流电流,所述反馈电路判断所述第二交流电压的大小是否超过预设阈值,当所述第二交流电压的大小超过所述预设阈值时,所述反馈电路获取反馈电流,根据所述反馈电流对所述第一交流电流的参考值进行补偿, 并根据补偿后的第一交流电流的参考值产生控制信号,并将所述控制信号输出至所述逆变电路以调整所述第二交流电压的大小。
在第一种可能的实现方式中,所述逆变电路包括交流电源、整流器以及逆变器,所述交流电源产生所述第一交流电压及所述第一交流电流,所述整流器用于将所述第一交流电压及所述第一交流电流分别转换为第一直流电压及第一直流电流,所述逆变器通过第一直流母线及第二直流母线连接所述整流器,所述逆变器用于将所述第一直流电压及所述第二直流电流分别转换为第二交流电压及第二交流电流。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述反馈电路包括检测单元及整流器控制单元,所述检测单元连接所述逆变电路,检测所述逆变电路输出的信号,并将检测结果输出,所述整流器控制单元接收所述检测结果,所述检测结果中包括第二交流电压的大小,所述整流器控制单元用于根据检测结果判断所述第二交流电压的大小是否超过所述预设阈值。
结合第二种可能的实现方式,在第三种可能的实现方式中,所述整流器控制单元包括判断单元、采样数据处理单元以及环路控制和发波单元,所述检测结果还包括第一交流电压、第二交流电流、所述第一直流母线的电压及所述第二直流母线的电压的大小,所述判断单元用于接收所述检测单元输出的所述第二交流电压,并判断所述第二交流电压的大小是否超过所述预设阈值,当所述第二交流电压的大小超过所述预设阈值时,所述判断单元发出使能信号至所述采样数据处理单元,所述采样数据处理单元对所述第一交流电压、所述第二交流电压及所述第二交流电流进行计算以得到所述反馈电流,所述环路控制和发波单元接收所述反馈电流,并将所述反馈电流发送给所述环路控制和发波单元,所述环路控制和发波单元将所述反馈电流与预存在所述环路控制和发波单元内的所述第一交流电流的参考值进行补偿,并根据补偿后的第一交流电压的参考值产生所述控制信号。
结合第三种可能的实现方式,在第四种可能的实现方式中,所述第一交流电流的参考值基于第一直流母线及所述第二直流母线电压的参考值分别减去所述第一直流母线电压及所述第二直流母线电压所得的差值的函数计算得到,其中,所述第一直流母线电压及第二直流母线电压的参考值为预设常数,所述 函数为积分函数或乘积函数。
结合第三种或第四种可能的实现方式,在第五种可能的实现方式中,所述采样数据处理单元根据所述第一交流电压、所述第二交流电压及所述第二交流电流得到所述反馈电流包括:
对所述第二交流电压及第二交流电流进行有功分量模值计算,并对所述第一交流电压进行坐标变换,并根据对所述第二交流电压及所述第二交流电流进行有功分量模值计算得到的数据以及对所述第一交流电压进行坐标变换得到的数据得到所述反馈电流。
结合第一方面,及第一方面的第一种至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述控制信号用于减小所述整流器输出的第一交流电压的大小,以调整所述整流器输出的第一直流电压。
结合第一至五任意一种可能的实现方式,在第七种可能的实现方式中,所述逆变电源系统还包括第一电容及第二电容,所述第一电容一端电连接所述第一直流母线,另一端接地,所述第二电容一端连接所述第二直流母线,另一端接地。
结合第一至地五任意一种可能的实现方式,或结合第七种可能的实现方式,在第八种可能的实现方式中,所述交流电源包括第一输出端、第二输出端、第三输出端及第一公共端,所述第一交流电压为三相交流电压,分别为第一相交流电压、第二相交流电压及第三相交流电压,所述第一相交流电压、所述第二相交流电压及所述第三相交流电压的电压幅值相等,相位依次相差120°,所述第一交流电流为三相交流电流,分别为第一相交流电流、第二相交流电流及第三相交流电流,所述第一相交流电流、所述第二相交流电流、所述第三相交流电流的电流幅值相等,相位依次相差120°,所述第一相交流电压及所述第一相交流电流经由所述第一输出端及所述第一公共端输出,所述第二相交流电压及所述第二相交流电流经由所述第二输出端及所述第一公共端输出,所述第三相交流电压及所述第三相交流电流经由所述第三输出端及所述第一公共端输出;所述逆变器电源系统还包括第一电感、第二电感及第三电感,所述第一输出端连接所述第一电感至所述整流器,所述第二输出端连接所述第二电感至所述整流器,所述第三输出端连接所述第三电感至所述整流器,所述第一公 共端连接至所述整流器。
结合第八种可能的实现方式,在第九种可能的实现方式中,所述逆变电源系统还包括第一电感、第二电感及第三电感,所述第一输出端连接所述第一电感的一端,所述第一电感的另一端电连接至所述整流器,所述第二输出端连接所述第二电感的一端,所述第二电感的另一端电连接至所述整流器,所述第三输出端连接所述第三电感的一端,所述第三电感的另一端电连接至所述整流器,所述第一公共端连接至所述整流器。
结合第八种或第九种可能的实现方式,在第十种可能的实现方式中,所述逆变电源系统还包括第一滤波电容、第二滤波电容及第滤波三电容,所述第一滤波电容一端电连接所述第一输出端,另一端连接所述第一公共端,所述第二滤波电容一端连接所述第二输出端,另一端连接所述第一公共端,所述第三滤波电容一电连接所述第三输出端,另一端连接所述第一公共端。
结合第一方面或第一种至所述第五种可能的实施方式的任意一种可能的实施方式或结合第七种至第十种可能的实施方式,在第十一种可能的实施方式中,所述逆变器包括第四输出端、第五输出端、第六输出端及第二公共端,所述逆变电源系统还包括第四电感、第五电感及第六电感,所述第四输出端连接所述第四电感的一端,所述第四电感的另一端电连接至所述负载,所述第五输出端连接所述第五电感的一端,所述第五电感的另一端电连接至所述负载,所述第六输出端连接所述第六电感的一端,所述第六电感的另一端电连接至所述负载,所述第二公共端连接至所述负载,以将所述第二交流电压及所述第二交流电流输出至所述负载。
结合第十一种可能的实施方式,在第十二种可能的实施方式中,所述逆变电源系统还包括第四滤波电容、第五滤波电容及第六滤波电容,所述第四滤波电容一端连接所述第四输出端,另一端连接所述第二公共端,所述第五滤波电容一端连接所述第五输出端,另一端连接所述第二公共端,所述第六滤波电容一端连接所述第六输出端,另一端连接所述第二公共端。
结合第一方面,或第一方面的第一种至第十二种任意一种可能的实施方式,在第十三种可能的实施方式中,所述控制信号为脉冲宽度调制信号,通过调整所述脉冲宽度调制信号的占空比以调整所述第一直流电压的大小。
结合第十三种可能的实施方式,在第十四种可能的实施方式中,当所述脉冲宽度调制信号的占空比减小时,以减小所述第一直流电压的大小,进而减小所述第二交流电压的大小。
结合第一种至第五种或第七种至第十二种任意一种可能的实施方式,在第十五种可能的实施方式中,所述整流器包括第一开关单元、第二开关单元、第三开关单元、第一子电容及第二子电容,所述第一子电容包括第一端及第二端,所述第二子电容包括第三端及第四端,所述第二端连接所述第三端并连接所述第一公共端,所述第一开关单元连接在所述第一端及第四端之间,所述第二开关单元连接在所述第一端及第四端之间,所述第三开关单元连接在所述第一端及第四端之间,且所述第一开关单元连接所述第一输出端,所述第二开关单元连接所述第二输出端,所述第三开关单元连接所述第三输出端,所述第一端通过所述第一母线连接所述逆变器,所述第二端通过所述第二母线连接所述逆变器,所述第一开关单元、所述第二开关单元及所述第三开关单元电连接所述整流器控制单元,以接收所述控制信号。
结合第十五种可能的实施方式,在第十六种可能的实施方式中,所述第一开关单元包括第一子开关单元及第二子开关单元,所述第一子开关单元及所述第二子开关单元均包括第一控制端、第一导通端及第二导通端,所述第一子开关单元的第一导通端电连接所述第一端,所述第一子开关单元的第二导通端及所述第二子开关单元的第一导通端电连接,所述第二开关单元的第二导通端电连接至所述第四端,所述第一子开关单元及所述第二子开关单元的第一控制端均连接至所述整流器控制单元,以接收所述控制信号。
结合第十五种或第十六种可能的实施方式,在第十七种可能的实施方式中,所述第二开关单元包括第三子开关单元及第四子开关单元,所述第三子开关单元及所述第四子开关单元均包括第二控制端、第三导通端及第四导通端,所述第三子开关单元的第三导通端电连接至所述第一端,所述第三子开关单元的第四导通端与所述第四子开关单元的第三导通端电连接,所述第四子开关单元的第四导通端电连接至所述第三端,所述第三子开关单元及所述第四子开关单元的第二控制端均电连接至所述整流器控制单元,以接收所述控制信号。
结合第十五至第十七种任意一种可能的实施方式,在第十八种可能的实施 方式中,所述第三开关单元包括第五子开关单元及第六子开关单元,所述第五子开关单元及所述第六子开关单元均包括第三控制端、第五导通端及第六导通端,所述第五子开关单元的第五导通端电连接至所述第一端,所述第五子开关单元的第五导通端电连接至所述第六子开关单元的第五导通端,所述第六子开关单元的第六导通端电连接至所述第四端,所述第五子开关单元及所述第六子开关单元的所述第三控制端均电连接至所述整流器控制单元,以接收所述控制信号。
相较于现有技术,以上各实施方式提供的逆变电源系统根据所述第一交流电压、所述第二交流电压及所述第二交流电流得到的反馈信号对第一交流电压的参考值进行调整,不会导致第一母线电压及第二母线电压的跌落,从而使得所述逆变电源系统更加稳定。也不用增加第一直流母线及第二直流母线的电容,因此,能够有效降低所述逆变电源系统的体积和成本。且反馈电流对第一交流电压的参考值进行补偿产生控制信号以调整第一直流电压的大小,进而调整第二交流电压的大小,相较于第一母线电压及第二母线电压跌落对控制信号的调整更接近控制信号产生的一端,因此,具有更快的调整速度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一较佳实施方式的逆变电源系统的电路结构示意图;
图2为本发明一较佳实施方式的逆变电源系统中的整流控制单元中的采样数据处理单元对数据进行处理的示意图;
图3为本发明一较佳实施方式的逆变电源系统中的环路控制和发波单元根据所述反馈电流调整所述整流器输出的第一直流电压的示意图;
图4为本发明一较佳实施方式的逆变电源系统中的整流器的电路结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,其为本发明一较佳实施方式的逆变电源系统的电路结构示意图。所述逆变电源系统10包括逆变电路100及反馈电路200。所述逆变电路100用于将第一交流电压转换为第二交流电压,并将所述第一交流电流转换为第二交流电流。所述反馈电路200判断所述第二交流电压的大小是否超过预设阈值。当所述第二交流电压的大小超过所述预设阈值时,所述反馈电路200获取反馈电流,并根据所述反馈电流对所述第一交流电流的参考值进行补偿,并根据补偿后的第一交流电流的参考值产生控制信号,并将所述控制信号输出至所述逆变电路100以调整所述第二交流电压的大小。
所述逆变电路100包括交流电源110、整流器120、逆变器130。所述交流电源110产生第一交流电压及第一交流电流。所述整流器120与所述交流电源110电连接,并将所述第一交流电压及所述第一交流电流分别转换为第一直流电压及第一直流电流。所述逆变器130通过第一直流母线160及第二直流母线170连接所述整流器120。所述逆变器130将所述第一直流电压及所述第一直流电流分别转换为第二交流电压及第二交流电流,并输出至负载20。
所述反馈电路200包括检测单元210及整流器控制单元220。所述检测单元210连接所述逆变电路100,用于检测所述逆变器100输出的信号,并将检测结果输出。所述整流器控制单元220接收所述检测结果,所述检测结果中包括第二交流电压的大小,所述整流器控制单元220用于根据所述检测结果判断所述第二交流电压的大小是否超过所述预设阈值。
具体地,所述检测单元210检测所述第一交流电压、所述第一交流电流、所述第二交流电压、所述第二交流电流、所述第一直流母线160的第一直流母线电压及所述第二直流母线170的第二直流母线电压的大小。所述整流器控制单元220的一端与所述检测单元210电连接,另一端与所述整流器120电连接,用于接收所述第一交流电压、所述第一交流电流、所述第二交流电压以及所述 第二交流电流。所述整流器控制单元220判断所述第二交流电压的大小是否超过一预设阈值,当所述第二交流电压的大小超过所述预设阈值时,所述整流器控制单元220根据所述第一交流电压、所述第二交流电压及所述第二交流电流得到一反馈电流,并将所述反馈电流对所述第一交流电流的参考值进行补偿,根据补偿后的第一交流电流的参考值产生一控制信号,并将所述控制信号输出至所述整流器120,以调整所述整流器120输出的第一直流电压的大小,进而调整所述第二交流电压的大小。其中,所述第一交流电流的参考值基于第一直流母线及第二直流母线电压的参考值分别减去所述第一直流母线电压及所述第二直流母线电压所得的差值的函数计算得到。其中,第一直流母线及第二直流母线电压的参考值为固定值。在一实施方式中,所述预设阈值的大小为所述负载20能承受的交流电压的上限值。所述整流器控制单元220通过判断所述第二交流电压的大小是否超过所述预设阈值,以判断所述负载20的增加量较大而可能会导致系统不稳定。
所述整流器控制单元220包括判断单元221、采样数据处理单元222、以及环路控制和发波单元223。所述检测结果还包括第一交流电压、第二交流电流、所述第一直流母线160的电压及所述第二直流母线170的电压。所述判断单元221电连接所述检测单元210,用于接收所述检测单元210输出的所述第二交流电压,并判断所述第二交流电压的大小是否超过所述预设阈值。当所述第二交流电压的大小超过所述预设阈值时,所述判断单元221发出一使能信号至所述采样数据处理单元222。所述采样数据处理单元222电连接所述检测单元210、所述判断单元221以及所述环路控制和发波单元223。所述采样数据处理单元222接收所述判断单元221发出的使能信号,在所述使能信号的控制下接收所述检测单元210输出的所述第一交流电压、所述第一交流电流、所述第二交流电压及所述第二交流电流,并对所述第一交流电压、所述第二交流电压及所述第二交流电流进行计算以得到所述反馈电流,并将所述反馈电流输出。具体地,所述采样数据处理单元222根据所述第一交流电压、所述第二交流电压及所述第二交流电流得到所述反馈电流包括:对所述第二交流电压及所述第二交流电流进行有功分量模值进行,并对所述第一交流电压进行坐标变换,并根据对所述第二交流电压及所述第二交流电流进行有功分量模值计算得 到的数据及对所述第一交流电压进行坐标变换得到的数据得到所述反馈电流。所述环路控制和发波单元223接收所述反馈电流,并将所述反馈电流与预存在所述环路控制和发波单元223内的所述第一交流电压的参考值进行补偿,并根据补偿后的第一交流电压的参考值产生所述控制信号。
在本实施方式中,所述交流电源110为三相交流电源,即,所述第一交流电压为三相交流电压,所述第一交流电流为三相交流电流。所述第一交流电压包括第一相交流电压、第二相交流电压及第三相交流电压,所述第一相交流电压、所述第二相交流电压及所述第三相交流电压的电压幅值相等,相位依次相差120°。所述第一交流电流包括第一相交流电流、第二相交流电流及第三相交流电流,所述第一相交流电流、所述第二相交流电流、所述第三相交流电流的电流幅值相等,相位依次相差120°。所述交流电源110包括第一输出端111、第二输出端112、第三输出端113及第一公共端114。所述第一交流电压及所述第一交流电流经由所述第一输出端111及所述第一公共端114输出,所述第二交流电压及所述第二交流电流经由所述第二输出端112及所述第二公共端114输出,所述第三交流电压及所述第三交流电流经由所述第三输出端113及所述第一公共输出端114输出。
在本实施方式中,所述逆变电源系统10还包括第一电感L1、第二电感L2及第三电感L3。所述第一输出端111连接所述第一电感L1的一端,所述第一电感L1的另一端电连接至所述整流器120,所述第二输出端112连接所述第二电感L2的一端,所述第二电感L2的另一端电连接至至所述整流器120,所述第三输出端113连接所述第二电感L3的一端,所述电感L3的另一端电连接至所述整流器120,所述第一公共端114连接至所述整流器120。所述第一电感L1、所述第二电感L2及所述第三电感L3为续流电感。所述第一电感L1用于将所述第一相交流电压及所述第一相交流电流的能量存储和传递至所述整流器120,所述第二电感L2用于将第二相交流电压及所述第二相交流电流的能量存储和传递至所述整流器120,所述第三电感L3用于将第三相交流电压及所述第三相交流电流的能量存储和传递至所述整流器120。
所述逆变电源系统10还包括第一滤波电容C1、第二滤波电容C2及第三滤波电容C3。所述第一滤波电容C1一端电连接所述第一输出端111,另一端 电连接所述第一公共端114,用于滤除所述第一相交流电压及所述第一相交流电流中的纹波。所述第二滤波电容C2一端电连接所述第二输出端112,另一端电连接所述第一公共端114,用于滤除所述第二相交流电压及所述第二相交流电流中的纹波。所述第三滤波电容C3一端电连接所述第三输出端113,另一端电连接所述第一公共端114,用于滤除所述第三相交流电压及所述第三相交流电流中的纹波。
所述整流器120电连接至所述交流电源110,接收所述交流电源110输出的第一交流电压,并将所述第一交流电压转换为第一直流电压,将所述第一交流电流转换为第一交流电流。具体地,所述整流器120电连接所述第一电感L1至所述第一输出端111,电连接所述第二电感L2至所述第二输出端112,电连接所述第三电感L3至所述第三输出端113,且电连接所述第一公共端114。所述整流器120接收经由所述第一输出端111和所述第一公共端114输出的所述第一相交流电压及所述第二相交流电流,接收经由所述第二输出端112及所述第一公共端114输出的所述第二相交流电压及所述第二相交流电流,接收经由所述第三输出端113及所述第一公共端114输出的所述第三交流电压及所述第三交流电流。
所述逆变电源系统10还包括第一电容C11及第二电容C12。所述第一电容C11一端电连接所述第一直流母线160,另一端接地,所述第二电容C12一端电连接所述第二直流母线170,另一端接地。所述第一电容C11及所述第二电容C12用于平衡所述第一直流母线160及所述第二直流母线170的电压大小,使所述第一直流母线电压及所述第二直流母线电压稳定,以避免在所述第一直流母线160及所述第二直流母线170不平衡时造成的所述第一直流母线160或第二直流母线170的损坏。具体地,当所述第一直流母线160及所述第二直流母线170有差异而造成不平衡时,或者由于所述第一直流母线160及所述第二直流母线170所连接的逆变器170瞬间加载不平衡的负载而造成的所述第一直流母线160及所述第二直流母线170不平衡等情况发生时,如果没有所述第一电容C11及所述第二电容C12,则会导致所述第一直流母线160及所述第二直流母线170不平衡,严重时会造成所述第一直流母线160及所述第二直流母线170由于过压而失效,从而造成所述第一直流母线160及所述第二直流 母线170的损坏。
所述逆变器130还包括第四输出端131、第五输出端132、第六输出端133及第二公共端134。所述逆变电源系统还包括第四电感L4、第五电感L5及第六电感L6。所述第四输出端131连接所述第四电感L4至所述负载20,所述第五输出端132连接所述第五电感L5至所述负载20,所述第六输出端133连接所述第六电感L6至所述负载20,所述第二公共端134电连接所述负载20,以将所述第二交流电压及所述第二交流电流输出至所述负载20。具体地,在本实施方式中,所述第二交流电压为三相交流电压,所述第二交流电压包括第四相交流电压、第五相交流电压及第六相交流电压,所述第四相交流电压、所述第五相交流电压及所述第六相交流电压的电压幅值相等,相位依次相差120°。所述第二交流电流为三相交流电流,所述第二交流电流包括第四相交流电流、第五相交流电流及第六相交流电流,所述第四相交流电流、所述第五相交流电流及所述第六相交流电流的电流幅值相等,相位依次相差120°。所述第四相交流电压及所述第四相交流电流经由所述第四输出端131和所述第二公共端134输出至所述负载20,所述第五相交流电压及所述第五相交流电流经由所述第五输出端132及所述第二公共端134输出至所述负载20,所述第六相交流电压及所述第六相交流电流经由所述第六输出端133及所述第二公共端134输出至所述负载20。所述第四电感L4、所述第五电感L5及所述第六电感L6为续流电感。所述第四电感L4用于将所述第四相交流电压及所述第四相交流电流能量存储和传递至所述负载20,所述第五电感L5用于将所述第五相交流电压及所述第五相交流电流能量存储和传递至所述负载20,所述第六电感L6用于将所述第六相交流电压及所述第六相交流电流能量存储和传递至所述负载20。
所述逆变电源系统10还包括第四滤波电容C4、第五滤波电容C5及第六滤波电容C6。所述第四滤波电容C4一端电连接所述第四输出端131,另一端连接所述第二公共端134,用于滤除所述第四相交流电压及所述第四相交流电压中的纹波。所述第五滤波电容C5一端电连接所述第五输出端132,另一端电连接所述第二公共端134,用于滤除所述第五相交流电压及所述第五相交流电压中的纹波。所述第六滤波电容C6一端电连接所述第六输出端133,另一 端电连接所述第二公共端134,用于滤除所述第六相交流电压及所述第六相交流电流中的纹波信号。
请一并参阅图2,其为本发明一较佳实施方式的逆变电源系统中的整流控制单元中的采样数据处理单元对数据进行处理的示意图。在本实施方式中,为方便描述,所述第一相交流电压、所述第一相交流电流、所述第二相交流电压、所述第二相交流电流、所述第三相交流电压及所述第三相交流电流分别用uRECA,iRECA,uRECB,iRECB,uRECC,iRECC表示;所述第四相交流电压、所述第四相交流电流、所述第五相交流电压、所述第五相交流电流、所述第六相交流电压及所述第六相交流电流分别用uINVA,iINVA,uINVB,iINVB,uINVC,iINVC表示;所述反馈电流用idFeedforward表示。所述采样数据处理单元222对所述第一相交流电流iRECA、所述第二相交流电流iRECB以及所述第三相交流电流iRECC进行坐标变换,以方便后续计算。在本实施方式中,所述采样数据处理单元222对所述第一相交流电流iRECA、所述第二相交流电流iRECB以及所述第三相交流电流iRECC进行从ABC坐标系至DQZ坐标系的坐标变换,以分别得到第一相交流电流iRECA、所述第二相交流电流iRECB以及所述第三相交流电流iRECC在DQZ坐标系中所对应的电流id,iq以及iz。所述采样数据处理单元222还对所述第一相交流电压uRECA、所述第二相交流电压uRECB以及所述第三相交流电压uRECC进行坐标变换,以方便后续计算。在本实施方式中,所述采样数据处理单元222对所述第一相交流电压uRECA、所述第二相交流电压uRECB以及所述第三相交流电压uRECC进行从ABC坐标系至DQZ坐标系的坐标变换,以分别得到所述第一相交流电压uRECA、所述第二相交流电压uRECB以及所述第三相交流电压uRECC在DQZ坐标系中所对应的电压vd,vq以及vz
所述采样数据处理单元222还对所述第四相交流电压uINVA以及所述第四相交流电流iINVA进行有功分量模值计算,以得到所述第四相交流电压uINVA和所述第四相交流电流iINVA的有功分量模值,为方便描述,所述第四相交流电压uINVA与所述第四相交流电流iINVA得到的有功分量模值命名为第一有功分量模值,用符号IInvActiveA表示。同样地,所述采样数据处理单元222还对所述第五相交流电压uINVB以及所述第五相交流电流iINVB进行有功分量模值计算,以得到所述第五相交流电压uINVB与所述第五相交流电流iINVB的有功分量模值, 为方便描述,所述第五相交流电压uINVB与所述第五相交流电流iINVB得到的有功分量模值命名为第二有功分量模值,用符号IInvActiveB表示。所述采样数据处理单元222还对所述第六相交流电压uINVC以及所述第六相交流电流iINVC进行有功分量模值计算,以得到所述第六相交流电压uINVC与所述第六相交流电流iINVC的有功分量模值,为方便描述,所述第六相交流电压uINVC与所述第六相交流电流iINVC得到的有功分量模值命名为第三有功分量模值,用符号IInvActiveC表示。
所述采样数据处理单元222根据所述第一交流电压、所述第二交流电压及所述第二交流电流得到所述反馈电流。在本实施方式中,所述反馈电流idFeedforward用如下公式表示。
idFeedforward=(IInvActiveA*uINVA+IInvActiveB*uINVB+IInvActiveC*uINVC)/(3vd)  ①
所述采样数据处理单元222将得到的反馈电流idFeedforward,id,iq,iz,vd,vq以及vz输至所述环路控制和发波单元223。
请一并参阅图3,其为本发明一较佳实施方式的逆变电源系统中的环路控制和发波单元根据所述反馈电流调整所述整流器输出的第一直流电压的示意图。如图3所示,所述反馈电流idFeedforward对所述第一交流电流的参考值idref进行补偿。为方便描述,所述反馈电流idFeedforward对所述第一交流电流的参考值idref进行补偿后得到的第一交流电流的参考值用i'dref表示。所述环路控制和发波单元223根据补偿后的第一交流电流的参考值i'dref产生控制信号,并将所述控制信号输出至所述整流器120,以调整所述整理器120输出的第一直流电压的大小,进而调整所述第二交流电压的大小。其中,所述第一交流电压的参考值为所述第一直流母线电压及所述第二直流母线电压的函数。具体地,所述环路控制和发波单元223的工作原理介绍如下。为方便描述,所述第一直流母线电压及所述第二直流母线电压分别用符号vbusp以及vbusn表示。所述第一交流电流的参考值idref用公式②表示。
idref=P(vbus-ref-vbus)      ②
其中,所述vbus-ref表示母线电压的参考值,为固定值。所述vbus表示第一直流母线电压vbusp与所述第二直流母线电压vbusn之和。P表示idref为所述vbus-ref及vbus的函数。由于vbus-ref表示母线电压的参考值,为固定值,所述vbus 表示第一直流母线电压vbusp与所述第二直流母线电压vbusn之和,因此,所述第一交流电流的参考值idref为所述第一直流母线电压vbusp与所述第二直流母线电压vbusn的函数。其中,所述函数P可为积分函数,也可为乘积函数。
经由所述反馈电流idFeedforward补偿后的所述第一交流电流的参考值i'dref如公式③表示。
i'dref=P(vbus-ref-vbus)+idFeedforward           ③
由补偿后的所述第一交流电流的参考值产生控制信号的过程详细描述如下。在本实施方式中,所述控制信号为三个,为方便描述,产生的三个控制信号分别命名为第一控制信号,第二控制信号以及第三控制信号。所述第一控制信号,所述第二控制信号以及所述第三控制信号分别用符号S1、S2及S3表示。所述第一控制信号,所述第二控制信号以及所述第三控制信号的公式分别如公式④、⑤、⑥表示。
S1=vd-PI(i'dref-id)              ④
S2=vq-PI(icq+iq)            ⑤
S3=vz+PI[P*(vbusp-vbusn)+iz]          ⑥
其中,P为一个函数,PI也表示一个函数,所述P以及所述PI表示的函数可以为积分函数,也可以为乘积函数。
优选地,所述环路控制和发波单元223还用于对所述第一控制信号S1、所述第二控制信号S2以及所述第三控制信号S3进行坐标变换,以方便后续对所述整流器120的控制。在本实施方式中,所述环路控制和发波单元223还用于对所述第一控制信号S1、所述第二控制信号S2以及所述第三控制信号S3进行从DQZ坐标轴到ABC坐标轴的坐标变换。所述第一控制信号S1、所述第二控制信号S2以及所述第三控制信号S3进行从DQZ坐标轴到ABC坐标轴的坐标变换后得到的控制信号输出至所述整流器120。
请一并参阅图4,其为本发明一较佳实施方式的逆变电源系统中的整流器的电路结构示意图。所述整流器120包括第一子电容C01、第二子电容C02、第一开关单元121、第二开关单元122及第三开关单元123。所述第一子电容C01包括第一端1241及第二端1242,所述第一端1241及所述第二端1242可分别为所述第一子电容C01的正极和负极。所述第二子电容C02包括第三端 1251及第四端1252,所述第三端1251及所述第四端1252可分别为所述第二子电容C02的正极和负极。所述第二端1242电连接所述第三端1251并连接所述第一公共端114。所述第一开关单元121连接在所述第一端1241及所述第二端1242之间,所述第二开关单元122连接在所述第一端1241及所述第四端1252之间,所述第三开关单元123连接在所述第一端1241及所述第四端1252之间。且所述第一开关单元121电连接所述第一输出端111,用于接收所述第一相交流电压及所述第一相交流电流。所述第二开关单元122电连接所述第二输出端112,用于接收所述第二相交流电压及所述第二相交流电流。所述第三开关单元123电连接所述第三输出端113,用于接收所述第三相交流电压及所述第三相交流电流。且所述第一开关单元121、所述第二开关单元122及所述第三开关单元123分别接收所述整流器控制单元220发出的控制信号,并在相应控制信号的控制下导通或断开。当所述第一开关单元121、所述第二开关单元122及所述第三开关单元123在相应控制信号的控制下导通时,相应相交流电压及相应相交流电流经由相应开关单元给所述第一子电容C01及所述第二子电容C02充电以使得所述第一子电容C01及所述第二子电容C02存储能量,所述第一子电容C01及所述第二子电容C02存储的能量经由所述第一端121及所述第四端1252输出,由此,所述第一交流电压转换为所述第一直流电压。具体地,所述第一开关单元121接收所述第一控制信号S1,并在所述第一控制信号S1的控制下导通或者断开。当所述第一开关单元121在所述整流器控制单元220发出的第一控制信号S1的控制下导通时,所述第一相交流电压及所述第一相交流电流经由所述第一开关单元121给所述第一子电容C01及所述第二子电容C02充电,以使所述第一子电容C01及所述第二子电容C02存储能量。所述第二开关单元122接收所述第二控制信号S2,并在所述第二控制信号S2的控制下导通或断开。当所述第二开关单元122在所述整流器控制单元220发出的第二控制信号S2的控制下导通时,所述第二相交流电压及所述第二相交流电流经由所述第二开关单元122给所述第一子电容C01及所述第二子电容C02充电,以使所述第一子电容C01及所述第二子电容C02存储能量。所述第三开关单元123接收所述第三控制信号S3,并在所述第三控制信号S3的控制下导通或断开。当所述第三开关单元123在所述整流器控 制单元220发出的第三控制信号的控制下导通时,所述第三相交流电压及所述第三相交流电流经由所述第三开关单元123给所述第一子电容C01及所述第二子电容C02充电,以使所述第一子电容C01及所述第二子电容C02存储能量。所述第一端1241通过所述第一直流母线160连接所述逆变器130,所述第二端1252通过所述第二直流母线170连接所述逆变器130。
具体地,所述第一开关单元121包括第一子开关单元Q1及第二子开关单元Q2,所述第二开关单元122包括第三子开关单元Q3及第四子开关单元Q4,所述第三开关单元123包括第五子开关单元Q5及第六子开关单元Q6。所述第一子开关单元Q1、所述第二子开关单元Q2、所述第三子开关单元Q3、所述第四子开关单元Q4、所述第五子开关单元Q5及所述第六子开关单元Q6均包括控制端g、第一导通端d及第二导通端s。所述各个子开关单元的控制端g用于接收所述整流器控制单元220发出的控制信号,并在相应控制信号的控制下控制相应子开关单元的第一导通端d及第二导通端s的导通或截止,以实现相应子开关单元的导通或断开。
举例而言,所述第一子开关单元Q1的控制端g接收所述整流器控制单元220发出的第一控制信号,并在所述第一控制信号的控制下控制所述第一子开关单元Q1的第一导通端d与所述第一子开关单元Q1的第二导通端s的导通或截止,以实现所述第一子开关单元Q1的导通或断开。当所述第一子开关单元Q1的控制端g在第一控制信号的控制下控制所述第一子开关单元Q1的第一导通端d与所述第一子开关单元Q1的第二导通端s导通时,所述第一子开关单元Q1导通;当所述第一子开关单元Q1的控制端g在第一控制信号的控制下控制所述第一子开关单元Q1的第一导通端d与所述第一子开关单元Q1的第二导通端s截止时,所述第一子开关单元Q1断开。所述第二子开关单元Q2的控制端g接收所述整流器控制单元220发出的第一控制信号,并在所述第一控制信号的控制下所述第二子开关单元Q2的第一导通端d与所述第二子开关单元Q1的第二导通端s的导通或截止,以实现所述第二子开关单元Q2的导通或断开。当所述第二子开关单元Q2的控制端g在所述第一控制信号的控制下控制所述第二子开关单元Q2的第一导通端d与所述第二子开关单元Q2的第二导通端s导通时,所述第二子开关单元Q1导通;当所述第二子开关 单元Q2的控制端g在第一控制信号的控制下控制所述第二子开关单元Q2的第一导通端d与所述第二子开关单元Q2的第二导通端s截止时,所述第二子开关单元Q2断开。可以理解地,所述第三子开关单元Q3及所述第四子开关单元Q4的控制端均接受所述第二控制信号,并在所述第二控制信号的控制下导通或断开。所述第五子开关单元Q5及所述第六子开关单元Q6的控制端均接受所述第三控制信号,并在所述第三控制信号的控制下导通或断开。具体控制过程可参见所述第一控制信号对所述第一子开关单元Q1及所述第二子开关单元Q2的控制过程,在此不再赘述。
在一实施方式中,所述第子一开关单元Q1、所述第二子开关单元Q2、所述第三子开关单元Q3、所述第四子开关单元Q4、所述第五子开关单元Q5、所述第六子开关单元Q6可为N沟道金属氧化物场效应晶体管(n-channel metal oxide field effect transistor,NMOSFET)。所述控制端g为所述NMOSFET的栅极,所述第一导通端d为所述NMOSFET的漏极,所述第二导通端s为所述NMOSFET的源极。
所述控制信号通过控制各个开关单元的导通时间,以调整所述整流器120输出的第一直流电压的大小。在所述逆变器130转换策略固定的情况下,进而调整了所述第二交流电压的大小。具体地,当所述控制信号控制各个开关单元的导通时间减小时,所述整流器120输出的第一直流电压的大小减小,进而经由所述逆变器130输出的第二交流电压的大小减小。从而保护了与所述逆变器130连接的负载20不会由于过压而被烧毁,且所述反馈电流是对所述第一交流电流的参考值进行补偿,由图3可见,不会导致vbus变化,即不会导致所述第一母线电压及所述第二母线电压跌落,从而使得所述逆变电源系统10更加稳定。且所述反馈电流对第一交流电压的参考值进行补偿相较于第一母线电压及所述第二电压跌落(即vbus变化)对控制信号的调整更接近于第一控制信号S1的产生的一端,因此,将反馈电流对第一交流电压的参考值进行补偿产生控制信号以调整第一直流电压的大小,进而调整第二交流电压的大小具有更快的调整速度。
在本实施方式中,所述控制信号控制为脉冲宽度调制(pulse width modulation,PWM)信号,通过调整所PWM信号的占空比,以调整各个开关 单元的导通时间,以调整所述第一直流电压的大小。具体地,当所述整流器控制单元220判断所述第二交流电压的大小超过所述预设阈值时,所述第一控制信号控制所述第一开关子单元Q1、所述第二开关子单元Q2的导通时间减小;所述第二控制信号控制所述第三开关子单元Q3及所述第四开关子单元Q4的导通时间减小;所述第三控制信号控制所述第五开关子单元Q5及所述第六开关子单元Q6的导通时间减小。由此,所述整流器120输出的第一直流电压的大小减小,经由所述逆变器130输出的第二直流电压的大小减小。
综上所述,相较于现有技术,本发明根据所述第一交流电压、所述第二交流电压及所述第二交流电流得到的反馈信号对第一交流电压的参考值进行调整,不会导致第一母线电压及第二母线电压的跌落,从而使得所述逆变电源系统10更加稳定。也不用增加第一直流母线及第二直流母线的电容,因此,能够有效降低所述逆变电源系统的体积和成本。且反馈电流对第一交流电压的参考值进行补偿产生控制信号以调整第一直流电压的大小,进而调整第二交流电压的大小,相较于第一母线电压及第二母线电压跌落对控制信号的调整更接近控制信号产生的一端,因此,具有更快的调整速度。
可以理解地,虽然上述实施例中均以所述第一交流电压为三相交流电压,所述第一交流电流为三相交流电流,所述第二交流电压为三相交流电压,所述第二交流电流为三相交流电流为例进行描述,本领域普通技术人员可以理解,上述三相交流电压以及三相交流也可以为单相交流电压以及单相交流电流。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (19)

  1. 一种逆变电源系统,其特征在于,所述逆变电源系统包括逆变电路及反馈电路,所述逆变电路用于将第一交流电压转换为第二交流电压,并将第一交流电流转换为第二交流电流,所述反馈电路判断所述第二交流电压的大小是否超过预设阈值,当所述第二交流电压的大小超过所述预设阈值时,所述反馈电路获取反馈电流,根据所述反馈电流对所述第一交流电流的参考值进行补偿,并根据补偿后的第一交流电流的参考值产生控制信号,并将所述控制信号输出至所述逆变电路以调整所述第二交流电压的大小。
  2. 如权利要求1所述的逆变电源系统,其特征在于,所述逆变电路包括交流电源、整流器以及逆变器,所述交流电源产生所述第一交流电压及所述第一交流电流,所述整流器用于将所述第一交流电压及所述第一交流电流分别转换为第一直流电压及第一直流电流,所述逆变器通过第一直流母线及第二直流母线连接所述整流器,所述逆变器用于将所述第一直流电压及所述第二直流电流分别转换为第二交流电压及第二交流电流。
  3. 如权利要求2所述的逆变电源系统,其特征在于,所述反馈电路包括检测单元及整流器控制单元,所述检测单元连接所述逆变电路,检测所述逆变电路输出的信号,并将检测结果输出,所述整流器控制单元接收所述检测结果,所述检测结果中包括第二交流电压的大小,所述整流器控制单元用于根据检测结果判断所述第二交流电压的大小是否超过所述预设阈值。
  4. 如权利要求3所述的逆变电源系统,其特征在于,所述整流器控制单元包括判断单元、采样数据处理单元以及环路控制和发波单元,所述检测结果还包括第一交流电压、第二交流电流、所述第一直流母线的电压及所述第二直流母线的电压的大小,所述判断单元用于接收所述检测单元输出的所述第二交流电压,并判断所述第二交流电压的大小是否超过所述预设阈值,当所述第二交流电压的大小超过所述预设阈值时,所述判断单元发出使能信号至所述采样 数据处理单元,所述采样数据处理单元对所述检测单元输出的第一交流电压、所述第二交流电压及所述第二交流电流进行计算以得到所述反馈电流,并将所述反馈电流发送给所述环路控制和发波单元,所述环路控制和发波单元将所述反馈电流与预存在所述环路控制和发波单元内的所述第一交流电流的参考值进行补偿,并根据补偿后的第一交流电流的参考值产生所述控制信号。
  5. 如权利要求4所述的逆变电源系统,其特征在于,所述第一交流电流的参考值基于第一直流母线及所述第二直流母线电压的参考值分别减去所述第一直流母线电压及所述第二直流母线电压所得的差值的函数计算得到,其中,所述第一直流母线电压及第二直流母线电压的参考值为预设常数,所述函数为积分函数或乘积函数。
  6. 如权利要求4或5所述的逆变电源系统,其特征在于,所述采样数据处理单元根据所述第一交流电压、所述第二交流电压及所述第二交流电流得到所述反馈电流包括:
    对所述第二交流电压及第二交流电流进行有功分量模值计算,并对所述第一交流电压进行坐标变换,并根据对所述第二交流电压及所述第二交流电流进行有功分量模值计算得到的数据以及对所述第一交流电压进行坐标变换得到的数据得到所述反馈电流。
  7. 如权利要求1-6任一项所述的逆变电源系统,其特征在于,所述控制信号用于减小所述整流器输出的第一交流电压的大小,以调整所述整流器输出的第一直流电压。
  8. 如权利要求2-6任意一项所述的逆变电源系统,其特征在于,所述逆变电源系统还包括第一电容及第二电容,所述第一电容一端电连接所述第一直流母线,另一端接地,所述第二电容一端连接所述第二直流母线,另一端接地。
  9. 如权利要求2-6任一项或8所述的逆变电源系统,其特征在于,所述 交流电源包括第一输出端、第二输出端、第三输出端及第一公共端,所述第一交流电压为三相交流电压,分别为第一相交流电压、第二相交流电压及第三相交流电压,所述第一相交流电压、所述第二相交流电压及所述第三相交流电压的电压幅值相等,相位依次相差120°,所述第一交流电流为三相交流电流,分别为第一相交流电流、第二相交流电流及第三相交流电流,所述第一相交流电流、所述第二相交流电流、所述第三相交流电流的电流幅值相等,相位依次相差120°,所述第一相交流电压及所述第一相交流电流经由所述第一输出端及所述第一公共端输出,所述第二相交流电压及所述第二相交流电流经由所述第二输出端及所述第一公共端输出,所述第三相交流电压及所述第三相交流电流经由所述第三输出端及所述第一公共端输出。
  10. 如权利要求9所述的逆变器电源系统,其特征在于,所述逆变电源系统还包括第一电感、第二电感及第三电感,所述第一输出端连接所述第一电感的一端,所述第一电感的另一端电连接至所述整流器,所述第二输出端连接所述第二电感的一端,所述第二电感的另一端电连接至所述整流器,所述第三输出端连接所述第三电感的一端,所述第三电感的另一端电连接至所述整流器,所述第一公共端连接至所述整流器。
  11. 如权利要求9或10所述的逆变电源系统,其特征在于,所述逆变电源系统还包括第一滤波电容、第二滤波电容及第滤波三电容,所述第一滤波电容一端电连接所述第一输出端,另一端连接所述第一公共端,所述第二滤波电容一端连接所述第二输出端,另一端连接所述第一公共端,所述第三滤波电容一电连接所述第三输出端,另一端连接所述第一公共端。
  12. 如权利要求2-6或8-11任意一项所述的逆变电源系统,其特征在于,所述逆变器包括第四输出端、第五输出端、第六输出端及第二公共端,所述逆变电源系统还包括第四电感、第五电感及第六电感,所述第四输出端连接所述第四电感的一端,所述第四电感的另一端电连接至所述负载,所述第五输出端连接所述第五电感的一端,所述第五电感的另一端电连接至所述负载,所述第 六输出端连接所述第六电感的一端,所述第六电感的另一端电连接至所述负载,所述第二公共端连接至所述负载,以将所述第二交流电压及所述第二交流电流输出至所述负载。
  13. 如权利要求12所述的逆变电源系统,其特征在于,所述逆变电源系统还包括第四滤波电容、第五滤波电容及第六滤波电容,所述第四滤波电容一端连接所述第四输出端,另一端连接所述第二公共端,所述第五滤波电容一端连接所述第五输出端,另一端连接所述第二公共端,所述第六滤波电容一端连接所述第六输出端,另一端连接所述第二公共端。
  14. 如权利要求1至13任一项所述的逆变电源系统,其特征在于,所述控制信号为脉冲宽度调制信号,通过调整所述脉冲宽度调制信号的占空比以调整所述第一直流电压的大小。
  15. 如权利要求14所述的逆变电源系统,其特征在于,当所述脉冲宽度调制信号的占空比减小时,以减小所述第一直流电压的大小,进而减小所述第二交流电压的大小。
  16. 如权利要求2-6,8-13任意一项所述的逆变电源系统,其特征在于,所述整流器包括第一开关单元、第二开关单元、第三开关单元、第一子电容及第二子电容,所述第一子电容包括第一端及第二端,所述第二子电容包括第三端及第四端,所述第二端连接所述第三端和所述第一公共端,所述第一开关单元连接在所述第一端及第四端之间,所述第二开关单元连接在所述第一端及第四端之间,所述第三开关单元连接在所述第一端及第四端之间,且所述第一开关单元连接所述第一输出端,所述第二开关单元连接所述第二输出端,所述第三开关单元连接所述第三输出端,所述第一端通过所述第一直流母线连接所述逆变器,所述第二端通过所述第二直流母线连接所述逆变器,所述第一开关单元、所述第二开关单元及所述第三开关单元电连接所述整流器控制单元,以接收所述控制信号。
  17. 如权利要求16所述的逆变电源系统,其特征在于,所述第一开关单元包括第一子开关单元及第二子开关单元,所述第一子开关单元及所述第二子开关单元均包括第一控制端、第一导通端及第二导通端,所述第一子开关单元的第一导通端电连接所述第一端,所述第一子开关单元的第二导通端及所述第二子开关单元的第一导通端电连接,所述第二开关单元的第二导通端电连接至所述第四端,所述第一子开关单元及所述第二子开关单元的第一控制端均连接至所述整流器控制单元,以接收所述控制信号。
  18. 如权利要求16或17所述的逆变电源系统,其特征在于,所述第二开关单元包括第三子开关单元及第四子开关单元,所述第三子开关单元及所述第四子开关单元均包括第二控制端、第三导通端及第四导通端,所述第三子开关单元的第三导通端电连接至所述第一端,所述第三子开关单元的第四导通端与所述第四子开关单元的第三导通端电连接,所述第四子开关单元的第四导通端电连接至所述第三端,所述第三子开关单元及所述第四子开关单元的第二控制端均电连接至所述整流器控制单元,以接收所述控制信号。
  19. 如权利要求16-18任意一项所述的逆变电源系统,其特征在于,所述第三开关单元包括第五子开关单元及第六子开关单元,所述第五子开关单元及所述第六子开关单元均包括第三控制端、第五导通端及第六导通端,所述第五子开关单元的第五导通端电连接至所述第一端,所述第五子开关单元的第五导通端电连接至所述第六子开关单元的第五导通端,所述第六子开关单元的第六导通端电连接至所述第四端,所述第五子开关单元及所述第六子开关单元的所述第三控制端均电连接至所述整流器控制单元,以接收所述控制信号。
PCT/CN2015/072551 2014-06-18 2015-02-09 逆变电源系统 WO2015192666A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15788310.9A EP3010132B1 (en) 2014-06-18 2015-02-09 Inverter power system
US14/980,441 US9800168B2 (en) 2014-06-18 2015-12-28 Inverter power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410272694.4 2014-06-18
CN201410272694.4A CN104079182B (zh) 2014-06-18 2014-06-18 逆变电源系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/980,441 Continuation US9800168B2 (en) 2014-06-18 2015-12-28 Inverter power supply system

Publications (1)

Publication Number Publication Date
WO2015192666A1 true WO2015192666A1 (zh) 2015-12-23

Family

ID=51600271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072551 WO2015192666A1 (zh) 2014-06-18 2015-02-09 逆变电源系统

Country Status (4)

Country Link
US (1) US9800168B2 (zh)
EP (1) EP3010132B1 (zh)
CN (1) CN104079182B (zh)
WO (1) WO2015192666A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535754A (zh) * 2020-11-24 2022-05-27 中国石油天然气股份有限公司 逆变焊机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079182B (zh) 2014-06-18 2017-11-21 华为技术有限公司 逆变电源系统
GB201610369D0 (en) * 2016-06-15 2016-07-27 Rolls Royce Plc Control of an electrical converter
CN107769376A (zh) * 2016-08-18 2018-03-06 上海睿飓智能科技有限公司 变压器系统
CN107069704B (zh) * 2017-02-14 2020-02-14 上海蔚来汽车有限公司 多电路悬浮电压抑制方法及系统
CN110571781B (zh) * 2018-06-05 2022-10-21 台达电子工业股份有限公司 直流母线电压控制方法与系统
CN109275255B (zh) * 2018-10-29 2024-04-26 同方威视技术股份有限公司 用于电子加速器的灯丝电源和电子加速器
CN117277840A (zh) * 2022-06-15 2023-12-22 茂睿芯(深圳)科技有限公司 单相无桥功率因数校正变换器及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223251A1 (en) * 2002-06-04 2003-12-04 Hammond Peter W. Control method and apparatus to reduce current through DC capacitor linking two static converters
CN1744421A (zh) * 2004-08-30 2006-03-08 株式会社日立制作所 变换器以及使用该变换器的电能变换装置
WO2009016340A1 (en) * 2007-07-28 2009-02-05 Converteam Technology Ltd Control methods for vsc active rectifier/inverters under unbalanced operating conditions
US20100142234A1 (en) * 2008-12-31 2010-06-10 Mehdi Abolhassani Partial regeneration in a multi-level power inverter
US20130057297A1 (en) * 2010-05-28 2013-03-07 Zhongyuan Cheng Method and apparatus for detecting power converter capacitor degradation using negative sequence currents
CN104079182A (zh) * 2014-06-18 2014-10-01 华为技术有限公司 逆变电源系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269010B1 (en) * 2000-02-29 2001-07-31 Rockwell Technologies, Llc CSI based drive having feedforward control of inverter input voltage
DE10156694B4 (de) * 2001-11-17 2005-10-13 Semikron Elektronik Gmbh & Co. Kg Schaltungsanordnung
US7336509B2 (en) * 2005-09-28 2008-02-26 Rockwell Automation Technologies, Inc. Method and apparatus for estimating line inductance for PWM rectifier control
GB0523087D0 (en) * 2005-11-11 2005-12-21 Alstom Power Conversion Ltd Power converters
JP5259077B2 (ja) * 2006-12-04 2013-08-07 株式会社京三製作所 瞬時電圧低下補償回路、電力変換装置、瞬時電圧低下補償方法及び瞬時電圧低下補償プログラム
US7495410B2 (en) * 2007-01-30 2009-02-24 Rockwell Automation Technologies, Inc. Systems and methods for improved motor drive power factor control
US7800348B2 (en) * 2007-11-21 2010-09-21 Rockwell Automation Technologies, Inc. Motor drive with VAR compensation
US8009450B2 (en) * 2008-08-26 2011-08-30 Rockwell Automation Technologies, Inc. Method and apparatus for phase current balance in active converter with unbalanced AC line voltage source
US7990097B2 (en) * 2008-09-29 2011-08-02 Rockwell Automation Technologies, Inc. Power conversion system and method for active damping of common mode resonance
US8259426B2 (en) * 2010-05-28 2012-09-04 Rockwell Automation Technologies, Inc. Variable frequency drive and methods for filter capacitor fault detection
KR101621994B1 (ko) * 2011-12-30 2016-05-17 엘에스산전 주식회사 회생형 고압 인버터의 제어장치
JP5724903B2 (ja) * 2012-02-20 2015-05-27 株式会社安川電機 電源回生装置および電力変換装置
JP5664589B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生コンバータおよび電力変換装置
JP5664588B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生装置および電力変換装置
US9653984B2 (en) * 2012-04-30 2017-05-16 Rockwell Automation Technologies, Inc. Filter capacitor degradation detection apparatus and method
WO2013185847A1 (en) * 2012-06-15 2013-12-19 Huawei Technologies Co., Ltd. Method and apparatus for performing power conversion
US9203298B2 (en) * 2012-10-23 2015-12-01 Huawei Technologies Co., Ltd. Three-phase interleave converter with three-state switching cell
US9490738B2 (en) * 2013-01-16 2016-11-08 Rockwell Automation Technologies, Inc. Sensorless motor drive vector control
US9294005B2 (en) * 2013-10-01 2016-03-22 Rockwell Automation Technologies, Inc. Method and apparatus for detecting AFE filter capacitor degradation
US9488686B2 (en) * 2014-02-24 2016-11-08 Rockwell Automation Technologies, Inc. Filter capacitor degradation identification using computed current
US9490690B2 (en) * 2014-03-11 2016-11-08 Rockwell Automation Technologies, Inc. Filter capacitor degradation identification using computed power
US9389263B2 (en) * 2014-06-05 2016-07-12 Rockwell Automation Technologies, Inc. Filter capacitor degradation identification using measured and expected voltage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223251A1 (en) * 2002-06-04 2003-12-04 Hammond Peter W. Control method and apparatus to reduce current through DC capacitor linking two static converters
CN1744421A (zh) * 2004-08-30 2006-03-08 株式会社日立制作所 变换器以及使用该变换器的电能变换装置
WO2009016340A1 (en) * 2007-07-28 2009-02-05 Converteam Technology Ltd Control methods for vsc active rectifier/inverters under unbalanced operating conditions
US20100142234A1 (en) * 2008-12-31 2010-06-10 Mehdi Abolhassani Partial regeneration in a multi-level power inverter
US20130057297A1 (en) * 2010-05-28 2013-03-07 Zhongyuan Cheng Method and apparatus for detecting power converter capacitor degradation using negative sequence currents
CN104079182A (zh) * 2014-06-18 2014-10-01 华为技术有限公司 逆变电源系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3010132A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535754A (zh) * 2020-11-24 2022-05-27 中国石油天然气股份有限公司 逆变焊机

Also Published As

Publication number Publication date
EP3010132B1 (en) 2023-04-05
US20160111968A1 (en) 2016-04-21
EP3010132A4 (en) 2016-11-09
US9800168B2 (en) 2017-10-24
CN104079182B (zh) 2017-11-21
EP3010132A1 (en) 2016-04-20
CN104079182A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2015192666A1 (zh) 逆变电源系统
WO2015165191A1 (zh) 一种三相双模式逆变器的稳态控制方法
CN107748292B (zh) 一种交流绝缘检测电路、系统及方法
JP2019187229A (ja) 中高圧エネルギー変換システム
CN110048626B (zh) 逆变器交流合闸共模冲击电流抑制方法及其应用装置
CN110048597B (zh) 功率因数校正电路的控制方法、控制器及系统
CN110048588B (zh) 逆变器交流合闸共模冲击电流抑制方法及其应用装置
Blaabjerg et al. An integrated high power factor three-phase AC-DC-AC converter for AC-machines implemented in one microcontroller
CN105703689A (zh) 大功率无刷双馈电机三电平双向变频调速系统
Segaran et al. High-performance bi-directional AC-DC converters for PHEV with minimised DC bus capacitance
CN109617426B (zh) 一种电力电子变压器电路、电力电子变压器及控制方法
CN114123203A (zh) 一种交流电网电压不平衡时直流母线电压纹波抑制策略
WO2024055705A1 (zh) 光伏逆变器及其控制方法
CN112701914B (zh) 一种升压功率变换电路及其控制方法
JP6268786B2 (ja) パワーコンディショナ、パワーコンディショナシステムおよびパワーコンディショナの制御方法
CN112491075B (zh) 一种新型储能逆变器控制装置及其控制方法
US10122253B2 (en) Power conversion apparatus and initial charging method of the same
CN108667322A (zh) 单相整流器控制方法及系统
JP2004208345A (ja) 三相不平衡電圧抑制装置
CN103904908A (zh) 一种直流侧电压稳定控制方法
Bhus et al. Virtual infinite capacitor applied to DC-link voltage filtering for electric vehicle chargers
CN100388608C (zh) 一种在不间断电源断中线后控制其整流器零线电压差的方法
CN105717388A (zh) 一种变压器测试平台
Farhadi et al. Predictive control of neutral-point clamped indirect matrix converter
CN212137538U (zh) 预充电电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2015788310

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE