WO2024055705A1 - 光伏逆变器及其控制方法 - Google Patents

光伏逆变器及其控制方法 Download PDF

Info

Publication number
WO2024055705A1
WO2024055705A1 PCT/CN2023/104301 CN2023104301W WO2024055705A1 WO 2024055705 A1 WO2024055705 A1 WO 2024055705A1 CN 2023104301 W CN2023104301 W CN 2023104301W WO 2024055705 A1 WO2024055705 A1 WO 2024055705A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
conversion circuit
signal
photovoltaic inverter
bus
Prior art date
Application number
PCT/CN2023/104301
Other languages
English (en)
French (fr)
Inventor
李文超
董明轩
辛凯
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024055705A1 publication Critical patent/WO2024055705A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to the field of power electronics technology, and in particular, to a photovoltaic inverter and a control method thereof.
  • the conversion circuit in the inverter converts the DC power from the power supply into AC power and supplies it to the load.
  • conversion circuits for example, Neutral Point Clamped (NPC) inverter circuits
  • NPC Neutral Point Clamped
  • Figure 1 is a schematic structural diagram of two NPC inverter circuits provided by this application.
  • the NPC inverter circuit that is, the conversion circuit
  • the NPC inverter circuit includes two series-connected capacitors and three switching bridge arms. The series connection of the two capacitors The point is the midpoint of the conversion circuit, and each switch bridge arm includes four switch tubes and two clamping diodes.
  • the amount of charge flowing into and out of the midpoint of the conversion circuit is the same, that is, the voltages of the two series-connected capacitors of the conversion circuit are equal.
  • the working status of each switch tube in the switching bridge arm of the conversion circuit is usually asymmetric (for example, different switch tube models, different losses, asymmetric loads, or affected by switching dead zones and other factors) , resulting in that the amount of charge flowing into and out of the midpoint of the conversion circuit is not the same during a power supply cycle, that is to say, the charging (or discharging) amounts of the two series-connected capacitors in the conversion circuit are not equal, resulting in The voltages of the two series-connected capacitors are not equal (that is, the positive DC bus voltage and the negative DC bus voltage of the conversion circuit are not equal, or the midpoint voltage of the conversion circuit is unbalanced), which will cause the output voltage of the conversion circuit (or Output current) produces distortion and even damages the power components in
  • the inventor of this application found that the method of calculating and adjusting redundant small vectors based on the DC bus voltage difference, and then adjusting the midpoint voltage, is complicated, the calculation process is cumbersome, the cost is high, and the control is cumbersome and complicated; in the modulation wave
  • the method of injecting zero-sequence voltage to balance the mid-point voltage has many restrictions on the algorithm and load type of the modulation wave of the conversion circuit. For example, in the case of Discontinuous Pulse Width Modulation (DPWM) wave, the modulation wave is injected into the zero-sequence space. Limited, resulting in poor adaptability, poor adjustment ability, and poor control effect of this method of modulating the midpoint voltage.
  • DPWM Discontinuous Pulse Width Modulation
  • This application provides a photovoltaic inverter and its control method, which can improve the voltage stability of the midpoint of the conversion circuit by adjusting the on or off time of the switching tube in the conversion circuit. It has a simple structure, a simple control method and applicability. powerful.
  • this application provides a photovoltaic inverter, which is suitable for power supply systems.
  • the photovoltaic inverter includes a conversion circuit, a collection circuit and a controller.
  • the input end of the conversion circuit can be connected to the power supply through the positive DC bus and the negative DC bus, and the output end of the conversion circuit can be used to connect the load.
  • the acquisition circuit here can obtain the positive DC bus voltage of the conversion circuit and the negative DC bus voltage of the conversion circuit.
  • the controller here can generate an even-order harmonic voltage adjustment signal based on the positive DC bus voltage of the conversion circuit, the negative DC bus voltage of the conversion circuit, and the phase of the output voltage of the photovoltaic inverter, and generate an even-order harmonic voltage adjustment signal based on the phase.
  • the drive control signal controls the switch tube in the conversion circuit to be turned on or off to control the conversion circuit to output a target voltage and reduce the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit.
  • the power supply can be connected to the conversion circuit through the positive DC bus and the negative DC bus, and the conversion circuit can convert the DC power provided by the power supply into AC power and provide it to the load.
  • the conversion circuit can charge and discharge the capacitor in the conversion circuit by turning on and off different switches, respectively, and convert the DC power provided by the power supply into AC power and transmit it to the load.
  • the output voltage (or output current) of the photovoltaic inverter is asymmetric (for example, the switch tube model is different, the loss is different, the load is asymmetric, or it is affected by switching dead zone and other factors), within a power supply cycle,
  • the positive DC bus voltage and the negative DC bus voltage of the conversion circuit are not equal, or in other words, there is a difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, which will cause the output voltage (or output current) of the conversion circuit to be distorted, or even Damage the power components in the system.
  • the acquisition circuit can obtain the positive DC bus voltage and the negative DC bus voltage of the conversion circuit.
  • the controller can generate an even harmonic voltage adjustment signal based on the phase of the positive DC bus voltage, the negative DC bus voltage of the conversion circuit and the output voltage of the photovoltaic inverter, and then generate a drive control signal based on the even harmonic voltage adjustment signal ( For example, pulse width modulation (Pulse Width Modulation, PWM wave and other driving control signals) controls the on or off of the switching tube in the conversion circuit.
  • the drive control signal generated based on the even harmonic voltage adjustment signal can control the conversion circuit to output an output voltage containing even harmonics.
  • the even harmonics in the output voltage generate an output current containing even harmonic components through the load.
  • the photovoltaic inverter provided in this application can be applied to a conversion circuit that uses Discontinuous Pulse Width Modulation (DPWM) waves as drive control signals, and can also be applied to conversion circuits that use other PWM waves (for example, sinusoidal pulses) Width modulation (Sinusoidal Pulse Width Modulation, SPWM) wave, Third Harmonic Injection Pulse Width Modulation (THIPWM) wave, Carrier Based Space Vector Pulse Width Modulation (CBPWM) wave etc.) as a conversion circuit for drive control signals, it is applicable to a wide range of scenarios and has good control effects.
  • DPWM Discontinuous Pulse Width Modulation
  • SPWM sinusoidal Pulse Width Modulation
  • THIPWM Third Harmonic Injection Pulse Width Modulation
  • CBPWM Carrier Based Space Vector Pulse Width Modulation
  • the photovoltaic inverter can control the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, improving the voltage stability of the midpoint of the conversion circuit, and has a simple structure.
  • the control method is simple and has strong applicability.
  • the conversion circuit may include two groups of capacitors and at least one switching bridge arm.
  • One switching bridge arm includes a plurality of switching tubes.
  • the two groups of capacitors are connected in series with at least one switching bridge arm. It is connected in parallel between the positive DC bus and negative DC bus of the conversion circuit.
  • the series connection point of the two sets of capacitors is the midpoint of the conversion circuit.
  • the input end of the acquisition circuit is connected to the positive DC bus, negative DC bus and midpoint of the conversion circuit.
  • the acquisition circuit here can also obtain the positive DC bus voltage and the negative DC bus voltage of the conversion circuit based on the potential of the positive DC bus, the potential of the negative DC bus and the potential of the midpoint.
  • the connection method is simple, the detection method is simple, and the detection efficiency is high. high.
  • the controller may also be configured to generate an even harmonic amplitude signal based on the positive DC bus voltage and the negative DC bus voltage, An even harmonic phase signal is generated based on the phase of the output voltage, and an even harmonic voltage adjustment signal is generated based on the even harmonic amplitude signal and the even harmonic phase signal.
  • the controller can obtain the midpoint voltage difference of the conversion circuit based on the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, and generate even harmonic amplitude signals based on the midpoint voltage difference of the conversion circuit.
  • the controller can also generate corresponding even harmonic phase signals based on the phase multiplication of the output voltage of the photovoltaic inverter. It can be understood that the controller can generate an even harmonic voltage adjustment signal based on the even harmonic amplitude signal and the even harmonic phase signal, and then generate a drive control signal based on the even harmonic voltage adjustment signal, and control based on the drive control signal.
  • the switching tube in the conversion circuit is turned on or off.
  • the even harmonic voltage adjustment signal here may be an even harmonic voltage adjustment signal generated based on one even harmonic (for example, the 2nd harmonic, etc.), or it may be based on multiple even harmonics.
  • the even-order harmonic voltage adjustment signal is generated after superposition of waves (for example, 2nd harmonic, 4th harmonic, etc.).
  • the photovoltaic inverter can determine the amplitude of the even harmonic voltage adjustment signal based on the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, and determine the even harmonics based on the phase of the output voltage of the photovoltaic inverter.
  • the phase of the voltage adjustment signal is then used to generate a drive control signal based on the even harmonic voltage adjustment signal. While controlling the output target voltage of the conversion circuit, the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit is reduced, and the voltage stability of the midpoint of the conversion circuit is improved.
  • the structure is simple, the control method is accurate and simple, and the applicability is strong.
  • the acquisition circuit may also be used to obtain the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter.
  • the acquisition circuit can also determine the type of load based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter, and generate even harmonic phases based on the phase of the output voltage of the photovoltaic inverter and the type of load.
  • the load type is one or more of inductive load, capacitive load and/or resistive load.
  • the photovoltaic inverter can obtain the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter through the acquisition circuit, and then determine the load based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current. type.
  • different phases have different adjustment effects for different types of loads. That is to say, for different types of loads, the photovoltaic inverter can generate the first phase for resistive loads, the second phase for capacitive loads, the third phase for inductive loads, or a mixture of multiple types.
  • the load generates the fourth phase, or for multiple types of mixed loads, the first phase, the second phase or the third phase are superimposed according to the weight to generate a new phase (for example, the fifth phase), and based on the photovoltaic inverter
  • the phase of the output voltage is multiplied and superimposed with the first phase, the second phase, the third phase, the fourth phase or the fifth phase to generate an even harmonic phase signal.
  • the photovoltaic inverter here can also determine the output power (including active power and reactive power) of the photovoltaic inverter based on the output voltage and output current of the photovoltaic inverter, and determine the output power of the photovoltaic inverter based on the active power of the photovoltaic inverter.
  • the photovoltaic inverter can also determine the power factor of the conversion circuit based on the output voltage and output current of the photovoltaic inverter, and determine the type of load based on the power factor of the conversion circuit. Specifically, Determined based on application scenarios.
  • the photovoltaic inverter can generate an even harmonic voltage adjustment signal based on an even harmonic amplitude signal and an even harmonic phase signal.
  • the even harmonic voltage adjustment signal here can be based on an even harmonic ( For example, the even-order harmonic voltage regulation signal generated by the second harmonic, etc.) can also be the even-order harmonic generated by the superposition of multiple even harmonics (for example, the second harmonic, the fourth harmonic, etc.) voltage regulation signal.
  • the photovoltaic inverter here can generate multiple even harmonic phase signals of different phases for multiple types of mixed loads, and based on multiple even harmonic phase signals and even harmonics of different phases
  • the amplitude signal generates multiple even-order harmonic voltage adjustment signals, and the multiple even-order harmonic voltage adjustment signals are superimposed according to weights to obtain an even-order harmonic voltage adjustment signal.
  • the photovoltaic inverter can determine the load type based on the phase of the output voltage and the phase of the output current of the photovoltaic inverter, and The phase of the even-order harmonic voltage adjustment signal is determined based on the phase of the output voltage of the photovoltaic inverter and the load type, and then the drive control signal is generated based on the even-order harmonic voltage adjustment signal.
  • the photovoltaic inverter can generate targeted drive control signals based on different load types, thereby controlling the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit. value, improve the voltage stability of the midpoint of the conversion circuit, have a simple structure, a simple control method, strong applicability and high control efficiency.
  • the controller may include a signal generation unit, a voltage control unit and a drive control unit, and the signal generation unit may be connected to the acquisition circuit and the voltage control unit,
  • the voltage control unit is connected to the conversion circuit through the drive control unit.
  • the signal generation unit here can generate an even harmonic amplitude signal based on the positive DC bus voltage and the negative DC bus voltage, generate an even harmonic phase signal based on the phase of the output voltage of the photovoltaic inverter, and generate an even harmonic amplitude signal based on the phase of the output voltage of the photovoltaic inverter.
  • the value signal and the even harmonic phase signal generate an even harmonic voltage adjustment signal.
  • the voltage control unit here can generate a voltage command signal of the conversion circuit based on the even harmonic voltage adjustment signal.
  • the drive control unit here can generate a drive control signal based on the voltage command signal of the conversion circuit, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the photovoltaic inverter here can generate the voltage command signal of the conversion circuit based on the even harmonic voltage adjustment signal, and then the photovoltaic inverter can generate the drive control signal based on the voltage command signal, and control the conversion circuit based on the drive control signal.
  • the switch tube is turned on or off, so that the conversion circuit can output the target voltage while maintaining the stability of the midpoint voltage of the conversion circuit.
  • the structure is simple and the control method is simple.
  • the voltage control unit may also be used to obtain fundamental wave instructions of an external central control system.
  • the voltage control unit here can also be used to superimpose the fundamental wave command and the even harmonic voltage adjustment signal to obtain the voltage command signal of the conversion circuit.
  • the photovoltaic inverter here can obtain the fundamental wave command sent by the external central control system, directly obtain the fundamental wave signal based on the fundamental wave command or obtain the fundamental wave signal through calculation, and adjust the fundamental wave signal with the even harmonic voltage The signals are superimposed and modulated to obtain the voltage command signal of the conversion circuit.
  • the drive control unit can generate a drive control signal based on the voltage command signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the structure is simple and the control method Simple and high control efficiency.
  • the controller may further include a voltage feedback unit, and the voltage feedback unit may be connected to the acquisition circuit and the voltage control unit.
  • the voltage feedback unit here can be used to obtain the output voltage of the photovoltaic inverter through the acquisition circuit, and use the output voltage of the photovoltaic inverter as a voltage feedback signal.
  • the voltage control unit here can also generate a primary voltage command signal based on the voltage feedback signal and the voltage command signal of the conversion circuit.
  • the drive control unit here can also generate a drive control signal based on the primary voltage command signal.
  • the voltage control unit here can be a voltage control loop
  • the voltage feedback unit here can obtain the output voltage of the photovoltaic inverter, and input the output voltage of the photovoltaic inverter to the voltage control unit as a voltage feedback signal, and then The voltage control unit can compare and adjust the voltage feedback signal and the voltage command signal to generate a first-level voltage command signal (that is, a voltage command signal adjusted based on the voltage feedback signal).
  • the drive control unit can also generate a drive control signal based on the primary voltage command signal, and control the switching tube in the conversion circuit to be turned on or off based on the drive control signal.
  • the conversion circuit can keep the midpoint voltage of the conversion circuit stable while outputting the target voltage, with a simple structure and a simple control method.
  • the photovoltaic inverter can be adjusted in real time based on the output voltage of the photovoltaic inverter as a voltage feedback signal. Drive control signal, high control efficiency.
  • the controller may further include a current control unit and a current feedback unit.
  • the current control unit may be connected to the voltage control unit and the drive control unit.
  • the current feedback unit The unit can be connected to the acquisition circuit and current control unit.
  • the current feedback unit here can be used to obtain the output current of the photovoltaic inverter through the acquisition circuit, and use the output current of the photovoltaic inverter as a current feedback signal.
  • the current control unit here can generate a secondary voltage command signal based on the primary voltage command signal and the current feedback signal output by the voltage control unit.
  • the drive control unit here can also generate a drive control signal based on the secondary voltage command signal.
  • the current control unit here can be a current control loop
  • the current feedback unit here can obtain the output current of the photovoltaic inverter, and input the output current of the photovoltaic inverter to the current control unit as a current feedback signal, and then The current control unit can compare and adjust the current feedback signal with the primary voltage command signal output by the voltage control unit to generate a secondary voltage command signal (that is, a voltage command signal adjusted based on the voltage feedback signal and the current feedback signal).
  • the drive control unit can also generate a drive control signal based on the secondary voltage command signal, and control the switching tube in the conversion circuit to be turned on or off based on the drive control signal.
  • the conversion circuit can keep the midpoint voltage of the conversion circuit stable while outputting the target voltage.
  • the structure is simple and the control method is simple.
  • the photovoltaic inverter can adjust the drive in real time based on the output current of the photovoltaic inverter as a feedback signal. control signal, high control efficiency.
  • the drive control unit may also be connected to the signal generation unit.
  • the drive control unit here can also be used to obtain the even harmonic voltage adjustment signal of the signal generation unit, and generate the drive control signal based on the even harmonic voltage adjustment signal and the secondary voltage command signal.
  • the drive control unit can also obtain the even-order harmonic voltage adjustment signal of the signal generation unit and the fundamental wave signal generated based on the fundamental wave instruction of the external central control system (it can also directly obtain the even-order harmonic voltage adjustment signal and The signal after the superposition of the fundamental wave signal), and generates a drive control signal based on the even harmonic voltage adjustment signal, the fundamental wave signal and the secondary voltage command signal.
  • the drive control unit here can be a PWM wave generating circuit or a generating circuit of other types of modulated signals, or it can be a combination circuit of a PWM wave generating circuit or other types of modulated signal generating circuits and a switching tube driving circuit.
  • the drive control unit can obtain the even-order harmonic voltage adjustment signal output by the signal generation unit, and then the drive control unit can generate a drive control signal based on the even-order harmonic voltage adjustment signal and the secondary voltage command signal.
  • the drive control unit may also generate a drive control signal based on the even harmonic voltage adjustment signal and the primary voltage command signal.
  • the conversion circuit can keep the midpoint voltage of the conversion circuit stable while outputting the target voltage, with a simple structure and a simple control method.
  • the drive control unit can further adjust the signal based on the even harmonic voltage and the secondary voltage command signal. Generating a drive control signal is equivalent to adding even-order harmonic components to the drive control signal, further maintaining the midpoint balance of the conversion circuit and achieving high control efficiency.
  • this application provides a power supply system, which may include a power supply and a photovoltaic inverter in the first aspect or any possible implementation of the first aspect.
  • the power supply system can reduce the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit in the photovoltaic inverter while the photovoltaic inverter outputs the target voltage, and improve the voltage stability of the midpoint of the conversion circuit. , simple structure, simple control method and strong applicability.
  • this application provides a photovoltaic inverter control method.
  • the control method can be applied to the photovoltaic inverter.
  • the photovoltaic inverter includes a conversion circuit and a positive and negative DC bus. One end of the positive and negative DC bus is connected to the conversion circuit. , the other end of the positive and negative DC bus is used to connect the power supply, and the method includes: detecting the positive DC bus voltage of the conversion circuit and the negative DC bus voltage of the conversion circuit.
  • the even harmonic voltage adjustment signal is generated based on the phase of the positive DC bus voltage of the conversion circuit, the negative DC bus voltage of the conversion circuit and the output voltage of the photovoltaic inverter, and the drive control signal is generated based on the even harmonic voltage adjustment signal to control
  • the switch tube in the conversion circuit is turned on or off to control the output target voltage of the conversion circuit and reduce the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit.
  • the photovoltaic inverter may generate an even harmonic voltage adjustment signal based on the positive DC bus voltage, the negative DC bus voltage of the conversion circuit and the phase of the output voltage of the photovoltaic inverter. Furthermore, the photovoltaic inverter can generate a drive control signal based on the even harmonic voltage adjustment signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the drive control signal generated based on the even harmonic voltage adjustment signal can control the conversion circuit to output an output voltage containing even harmonics.
  • the even harmonics in the output voltage generate an output current containing even harmonic components through the load.
  • the even harmonic components in the output current can interact with the fundamental wave component in the drive control signal, and/or the even harmonic components in the drive control signal can interact with the fundamental wave component in the output current, reducing the transformation The difference between the positive DC bus voltage and the negative DC bus voltage of a circuit.
  • the photovoltaic inverter can control the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, improving the voltage stability of the midpoint of the conversion circuit, and has a simple structure.
  • the control method is simple and has strong applicability.
  • the conversion circuit may include two sets of capacitors and at least one switching bridge arm, detecting the positive DC bus voltage of the conversion circuit and the negative DC bus voltage of the conversion circuit, including: based on the conversion The potential of the positive DC bus, the potential of the negative DC bus and the potential of the midpoint of the circuit are used to detect the positive DC bus voltage and the negative DC bus voltage of the conversion circuit.
  • the connection method is simple, the detection method is simple, and the detection efficiency is high.
  • Generating even-order harmonic voltage adjustment signals may include: generating even-order harmonic amplitude signals based on the positive DC bus voltage and negative DC bus voltage of the conversion circuit, and generating even-order harmonic phases based on the phase of the output voltage of the photovoltaic inverter. signal, and generates an even harmonic voltage adjustment signal based on the even harmonic amplitude signal and the even harmonic phase signal.
  • the photovoltaic inverter can detect the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, thereby obtain the midpoint voltage difference of the conversion circuit, and generate an even harmonic amplitude signal based on the midpoint voltage difference of the conversion circuit.
  • the phase of the output voltage of the photovoltaic inverter can be detected, and then a corresponding even harmonic phase signal is generated based on the phase multiplication of the output voltage of the photovoltaic inverter.
  • the photovoltaic inverter can generate an even harmonic voltage adjustment signal based on the even harmonic amplitude signal and the even harmonic phase signal, and then generate a drive control signal (for example, PWM wave) based on the even harmonic voltage adjustment signal.
  • the even harmonic voltage adjustment signal here may be an even harmonic voltage adjustment signal generated based on one even harmonic (for example, the 2nd harmonic, etc.), or it may be based on multiple even harmonics.
  • the even-order harmonic voltage adjustment signal is generated after superposition of waves (for example, 2nd harmonic, 4th harmonic, etc.).
  • the photovoltaic inverter can determine the amplitude of the even harmonic voltage adjustment signal based on the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, and determine the even harmonics based on the phase of the output voltage of the photovoltaic inverter.
  • the phase of the voltage adjustment signal is then used to generate a drive control signal based on the even harmonic voltage adjustment signal. While controlling the output target voltage of the conversion circuit, the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit is reduced, and the voltage stability of the midpoint of the conversion circuit is improved.
  • the structure is simple, the control method is accurate and simple, and the applicability is strong.
  • generating an even harmonic phase signal based on the phase of the output voltage of the photovoltaic inverter may include: detecting the output of the photovoltaic inverter The phase of the voltage and the phase of the output current of the photovoltaic inverter.
  • the type of load is determined based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter, and an even harmonic phase signal is generated based on the phase of the output voltage of the photovoltaic inverter and the type of load.
  • the type is one or more of inductive load, capacitive load and/or resistive load.
  • the photovoltaic inverter can detect the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter through the acquisition circuit, and then determine the load based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current. type.
  • different phases have different adjustment effects for different types of loads. That is to say, for different types of loads, the photovoltaic inverter can generate the first phase for resistive loads, the second phase for capacitive loads, the third phase for inductive loads, or a mixture of multiple types.
  • the load generates the fourth phase, or for multiple types of mixed loads, the first phase, the second phase or the third phase are superimposed according to the weight to generate a new phase (for example, the fifth phase), and based on the photovoltaic inverter
  • the phase of the output voltage is multiplied and superimposed with the first phase, the second phase, the third phase, the fourth phase or the fifth phase to generate an even harmonic phase signal.
  • the photovoltaic inverter here can also determine the output power (including active power and reactive power) of the photovoltaic inverter based on the output voltage and output current of the photovoltaic inverter, and determine the output power (including active power and reactive power) of the photovoltaic inverter based on the active power and reactive power of the conversion circuit.
  • the sign of the active power determines the type of load, or the photovoltaic inverter can also determine the power factor of the conversion circuit based on the output voltage and output current of the photovoltaic inverter, and determine the type of load based on the power factor of the conversion circuit. Specifically, it can be based on the application. The scene is determined.
  • the photovoltaic inverter can generate an even harmonic voltage adjustment signal based on an even harmonic amplitude signal and an even harmonic phase signal.
  • the even harmonic voltage adjustment signal here can be based on an even harmonic (
  • the even-order harmonic voltage regulation signal generated by the second harmonic, etc.) can also be the even-order harmonic generated by the superposition of multiple even harmonics (for example, the second harmonic, the fourth harmonic, etc.) voltage regulation signal.
  • the photovoltaic inverter can determine the load type based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current, and determine the even harmonic voltage adjustment signal based on the phase of the output voltage of the photovoltaic inverter and the load type. phase, and then generate a drive control signal based on the even harmonic voltage adjustment signal.
  • the photovoltaic inverter can generate targeted drive control signals based on different load types, thereby controlling the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit. value, improve the voltage stability of the midpoint of the conversion circuit, have a simple structure, a simple control method, strong applicability and high control efficiency.
  • generating a drive control signal based on an even-order harmonic voltage adjustment signal may include: generating a conversion circuit based on an even-order harmonic voltage adjustment signal. voltage command signal.
  • a drive control signal is generated based on the voltage command signal of the conversion circuit.
  • the photovoltaic inverter here can generate the voltage command signal of the conversion circuit based on the even harmonic voltage adjustment signal, and then the photovoltaic inverter can generate the drive control signal based on the voltage command signal, and control the conversion circuit based on the drive control signal.
  • the switch tube is turned on or off, so that the conversion circuit can output the target voltage while maintaining the stability of the midpoint voltage of the conversion circuit.
  • the structure is simple and the control method is simple.
  • generating the voltage command signal of the conversion circuit based on the even harmonic voltage adjustment signal may include: detecting the fundamental wave of the external central control system instruction.
  • the voltage command signal of the conversion circuit is obtained by superimposing the fundamental wave command and the even harmonic voltage adjustment signal.
  • the photovoltaic inverter here can detect the fundamental wave command sent by the external central control system, directly obtain the fundamental wave signal based on the fundamental wave command or obtain the fundamental wave signal through calculation, and adjust the fundamental wave signal with the even harmonic voltage The signals are superimposed and modulated to obtain the voltage command signal of the conversion circuit.
  • the photovoltaic inverter can generate a drive control signal based on the voltage command signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the structure is simple and the control is
  • the method is simple and the control efficiency is high.
  • the method may further include: detecting the photovoltaic inverter
  • the output voltage of the photovoltaic inverter is used as the voltage feedback signal.
  • a primary voltage command signal is generated based on the voltage feedback signal and the voltage command signal of the conversion circuit.
  • the drive control signal is generated based on the primary voltage command signal.
  • the photovoltaic inverter here can detect the output voltage of the photovoltaic inverter and use the output voltage of the photovoltaic inverter as a voltage feedback signal.
  • the photovoltaic inverter can compare and adjust based on the voltage feedback signal and the voltage command signal.
  • a primary voltage command signal (that is, a voltage command signal adjusted based on the voltage feedback signal) is generated. Furthermore, the photovoltaic inverter can also generate a drive control signal based on the primary voltage command signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the conversion circuit can keep the midpoint voltage of the conversion circuit stable while outputting the target voltage, with a simple structure and a simple control method.
  • the photovoltaic inverter can be adjusted in real time based on the output voltage of the photovoltaic inverter as a voltage feedback signal. Drive control signal, high control efficiency.
  • the method may further include: detecting the photovoltaic inversion signal.
  • the output current of the photovoltaic inverter is used as the current feedback signal.
  • a secondary voltage command signal is generated based on the primary voltage command signal and the current feedback signal.
  • a drive control signal is generated based on the secondary voltage command signal.
  • the photovoltaic inverter here can detect the output current of the photovoltaic inverter and The output current of the photovoltaic inverter is used as a current feedback signal, and the photovoltaic inverter can compare and adjust the current feedback signal and the primary voltage command signal to generate a secondary voltage command signal (that is, based on the voltage feedback signal and the current feedback signal adjusted voltage command signal).
  • the photovoltaic inverter can also generate a drive control signal based on the secondary voltage command signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the conversion circuit can keep the midpoint voltage of the conversion circuit stable while outputting the target voltage, with a simple structure and a simple control method.
  • the photovoltaic inverter can be adjusted in real time based on the output current of the photovoltaic inverter as a current feedback signal. Drive control signal, high control efficiency.
  • the method may further include: detecting even harmonics
  • the wave voltage adjustment signal generates a drive control signal based on the even harmonic voltage adjustment signal and the secondary voltage command signal.
  • the photovoltaic inverter can also detect the even-order harmonic voltage adjustment signal and the fundamental wave signal generated based on the fundamental wave instruction of the external central control system (it can also directly detect the even-order harmonic voltage adjustment signal and the fundamental wave signal after superposition) signal), and generate a drive control signal based on the even harmonic voltage adjustment signal, the fundamental wave signal and the secondary voltage command signal.
  • the photovoltaic inverter can generate a drive control signal based on the even harmonic voltage adjustment signal and the secondary voltage command signal.
  • the photovoltaic inverter can also generate a drive control signal based on the even harmonic voltage adjustment signal and the primary voltage command signal.
  • the conversion circuit can keep the midpoint voltage of the conversion circuit stable while outputting the target voltage, with a simple structure and a simple control method.
  • the photovoltaic inverter can further adjust the signal based on the even harmonic voltage and the secondary voltage command.
  • the signal generates a drive control signal, which is equivalent to adding an even-order harmonic component to the drive control signal to further maintain the midpoint balance of the conversion circuit and achieve high control efficiency.
  • Figure 1 is a schematic structural diagram of two NPC inverter circuits provided by this application.
  • FIG2 is a schematic diagram of an application scenario of a photovoltaic inverter provided in an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a photovoltaic inverter provided by an embodiment of the present application.
  • Figure 4 is another structural schematic diagram of a photovoltaic inverter provided by an embodiment of the present application.
  • FIG. 5 is another structural schematic diagram of the photovoltaic inverter provided by the embodiment of the present application.
  • Figure 6 is another structural schematic diagram of a photovoltaic inverter provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of the power supply system provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of the control method provided by the embodiment of the present application.
  • FIG. 9 is another schematic flowchart of the control method provided by the embodiment of the present application.
  • the photovoltaic inverter provided by this application can be applied to various application fields such as new energy power generation, traditional power generation peaking and frequency regulation, important equipment power supply, new energy vehicles, etc. The details can be determined according to the actual application scenario and will not be discussed here. limit.
  • the photovoltaic inverter provided in this application can be applied to different power supply systems such as energy storage systems, uninterrupted power supply systems, motor drive systems, etc. The specific details can be determined according to the actual application scenario and are not limited here.
  • the photovoltaic inverter provided by this application can be adapted to different application scenarios, such as the application scenario of controlling the conversion circuit in the light energy power supply environment, the application scenario of controlling the conversion circuit in the wind energy power supply environment, pure energy storage
  • application scenarios of controlling the conversion circuit in the power supply environment or other application scenarios will be described below by taking the application scenario of controlling the conversion circuit in the pure energy storage power supply environment as an example, and will not be described in detail below.
  • FIG 2 is a schematic diagram of the application scenario of the photovoltaic inverter provided by the embodiment of the present application.
  • the power supply system includes a photovoltaic inverter 1, a power supply 2 and a load 3.
  • the photovoltaic inverter 1 includes a conversion circuit 13, and the power supply 2 can pass through the conversion circuit 13.
  • the input terminal of the photovoltaic inverter 1 can be connected to the input terminal and the output terminal of the conversion circuit 13 respectively.
  • the power supply 2 can supply power to the load 3 through the conversion circuit 13 .
  • the power supply 2 provided in this application is suitable for powering base station equipment in remote areas where there is no mains power or poor mains power, or for powering household equipment (such as refrigerators, air conditioners, etc.) and other types of electrical equipment.
  • the details can be determined according to the actual application scenario, and there are no restrictions here.
  • the load 3 in Figure 2 may include a power grid, and the power grid here may include electrical equipment or power transmission equipment such as transmission lines, power transfer sites, communication base stations, or household equipment.
  • the load 3 here may also include motors, rectifier equipment and other loads (power consumption devices or power transmission devices) whose voltage and current have a non-linear relationship during operation (power supply or power consumption).
  • the conversion circuit 13 may be an NPC inverter circuit. Please refer to Figure 1 together.
  • the conversion circuit 13 may include two sets of capacitors (for example, C11 and C12) and at least one switch.
  • the bridge arm (for example, the switch bridge arm composed of switch tube Ta1, switch tube Ta2, switch tube Ta3 and switch tube Ta4, opens The switch bridge arm composed of switch tube Tb1, switch tube Tb2, switch tube Tb3 and switch tube Tb4, and the switch bridge arm composed of switch tube Tc1, switch tube Tc2, switch tube Tc3 and switch tube Tc4).
  • a set of capacitors can be one capacitor or a capacitor composed of multiple capacitors integrated together.
  • the conversion circuit 13 can charge and discharge the two sets of capacitors respectively by turning on and off different switch tubes in the switch bridge arm, and convert the DC power provided by the power supply into AC power and transmit it to the load. It can be understood that when the output voltage (or output current) of the photovoltaic inverter 1 is asymmetric (for example, the switch tube model is different, the loss is different, the load is asymmetric, or it is affected by the switching dead zone and other factors), within a power supply cycle , the amount of charge flowing into and out of the midpoint of the conversion circuit 13 is not the same.
  • the charging (or discharging) amounts of the two sets of capacitors in the conversion circuit 13 are not equal, resulting in the voltages of the two sets of capacitors in the conversion circuit 13 being unequal (that is, the positive DC bus voltage and the negative DC bus voltage of the conversion circuit 13 are not equal).
  • the bus voltages are not equal, or the midpoint voltage of the conversion circuit 13 is unbalanced), which will distort the output voltage (or output current) of the photovoltaic inverter 1 and even damage the power components in the system.
  • the photovoltaic inverter 1 may also include a collection circuit 11 and a controller 12 .
  • the acquisition circuit 11 can obtain the positive DC bus voltage and the negative DC bus voltage of the conversion circuit 13 .
  • the controller 12 can generate an even harmonic voltage adjustment signal based on the positive DC bus voltage, the negative DC bus voltage of the conversion circuit 13 and the phase of the output voltage of the photovoltaic inverter 1, and generate a drive based on the even harmonic voltage adjustment signal.
  • Control signals for example, drive control signals such as PWM waves
  • the photovoltaic inverter 1 can control the conversion circuit 13 to output the target voltage while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit 13 and improving the voltage stability of the midpoint of the conversion circuit 13. Structure Simple, easy control method and strong applicability.
  • Figure 3 is a schematic structural diagram of a photovoltaic inverter provided by an embodiment of the present application.
  • the power supply system includes a power supply, a photovoltaic inverter, a conversion circuit 103 and a load.
  • the photovoltaic inverter includes a collection circuit 101 and a controller 102.
  • the power supply can be connected to the load through the conversion circuit 103, the first sampling end of the acquisition circuit 101 can be connected to the DC bus of the conversion circuit 103, the second sampling end of the acquisition circuit 101 can be connected to the output end of the conversion circuit 103, and the output of the acquisition circuit 101
  • One end of the controller 102 can be connected to one end of the controller 102 , and the other end of the controller 102 can be connected to the control end of the conversion circuit 103 .
  • the conversion circuit 103 may include two sets of capacitors (for example, C1 and C2) and at least one switching bridge arm (the conversion circuit 103 shown in FIG. 3 includes three sets of switching tubes Ta1, switching tubes Ta2, switching tubes Ta3 and switching tubes).
  • a switch bridge arm includes a plurality of switch tubes. Two sets of capacitors are connected in series and in parallel with at least one switch bridge arm between the positive DC bus and the negative DC bus of the conversion circuit 103. The series connection point of the two sets of capacitors is the At the midpoint, the three terminals of the first sampling end of the acquisition circuit are respectively connected to the positive DC bus, the negative DC bus and the midpoint of the conversion circuit 103 .
  • the controller 102 may generate an even harmonic voltage adjustment signal based on the positive DC bus voltage, the negative DC bus voltage of the conversion circuit 103 and the phase of the output voltage of the photovoltaic inverter.
  • the acquisition circuit 101 can also acquire the positive DC bus voltage and the negative DC bus voltage of the conversion circuit 103 based on the potential of the positive DC bus, the potential of the negative DC bus and the potential of the midpoint, and connect
  • the method is simple, the detection method is simple, and the detection efficiency is high.
  • the controller 102 can generate a drive control signal (for example, a drive control signal such as a PWM wave) based on the even harmonic voltage adjustment signal, and control the on or off of the switch tube in the conversion circuit 103 based on the drive control signal.
  • a drive control signal for example, a drive control signal such as a PWM wave
  • the controller 102 generates a drive control signal based on the even-order harmonic voltage adjustment signal, and can control the conversion circuit 103 to output an output voltage containing even-order harmonics.
  • the even-order harmonics in the output voltage are generated by the load and contain even-order harmonics. component output current.
  • the even harmonic component in the output current can interact with the fundamental wave component in the drive control signal, and/or the even harmonic component in the drive control signal can interact with the fundamental wave component in the output current, and then
  • the midpoint potential of the conversion circuit 103 can be adjusted so that the midpoint potential of the conversion circuit 103 remains balanced.
  • the photovoltaic inverter provided in this application can be applied to a conversion circuit that uses DPWM waves as drive control signals, and can also be applied to use other PWM waves (for example, SPWM waves, THIPWM waves, CBSVPWM waves, etc.) as drive control signals.
  • the conversion circuit has a wide range of applicable scenarios and good control effect.
  • the photovoltaic inverter can control the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, and improving the voltage stability of the midpoint of the conversion circuit. , simple structure, simple control method and strong applicability.
  • the controller 102 may generate even harmonic amplitude signals based on the positive DC bus voltage and the negative DC bus voltage.
  • the controller 102 here may also generate even harmonic phase signals based on the phase of the output voltage.
  • the controller 102 here may also generate an even harmonic voltage adjustment signal based on the even harmonic amplitude signal and the even harmonic phase signal. It can be understood that the controller 102 can obtain the midpoint voltage difference of the conversion circuit 103 based on the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, and generate an even harmonic amplitude signal based on the midpoint voltage difference of the conversion circuit 103 .
  • the controller 102 may also generate a corresponding even harmonic phase signal based on the phase multiplication of the output voltage of the photovoltaic inverter.
  • the controller 102 can also generate an even harmonic voltage based on the even harmonic amplitude signal and the even harmonic phase signal.
  • the adjustment signal is then generated based on the even harmonic voltage adjustment signal to generate a driving control signal, and based on the driving control signal, the switching tube in the conversion circuit 103 is controlled to be turned on or off.
  • the even harmonic voltage adjustment signal here may be an even harmonic voltage adjustment signal generated based on one even harmonic (for example, the 2nd harmonic, etc.), or it may be based on multiple even harmonics.
  • the even-order harmonic voltage adjustment signal is generated after superposition of waves (for example, 2nd harmonic, 4th harmonic, etc.).
  • the photovoltaic inverter can determine the amplitude of the even harmonic voltage adjustment signal based on the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, and determine the amplitude based on the phase of the output voltage of the photovoltaic inverter.
  • the even-order harmonic voltage adjusts the phase of the signal, and then generates a drive control signal based on the even-order harmonic voltage adjustment signal. While controlling the output target voltage of the conversion circuit, the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit is reduced, and the voltage stability of the midpoint of the conversion circuit is improved.
  • the structure is simple, the control method is accurate and simple, and the applicability is strong.
  • the acquisition circuit 101 may also be used to obtain the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter.
  • the controller 102 may also determine the type of load based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter, and generate even harmonics based on the phase of the output voltage of the photovoltaic inverter and the type of load. phase signal.
  • the load type is one or more of inductive load, capacitive load and/or resistive load.
  • the photovoltaic inverter can obtain the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter through the acquisition circuit 101, and then make a judgment based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current.
  • Type of load Here, different phases have different adjustment effects for different types of loads. That is to say, for different types of loads, the photovoltaic inverter can generate the first phase for resistive loads, the second phase for capacitive loads, the third phase for inductive loads, or a mixture of multiple types.
  • the load generates the fourth phase, or for multiple types of mixed loads, the first phase, the second phase or the third phase are superimposed according to the weight to generate a new phase (for example, the fifth phase), and based on the photovoltaic inverter
  • the phase of the output voltage is multiplied and superimposed with the first phase, the second phase, the third phase, the fourth phase or the fifth phase to generate an even harmonic phase signal.
  • the photovoltaic inverter here can also determine the output power (including active power and reactive power) of the photovoltaic inverter based on the output voltage and output current of the photovoltaic inverter, and determine the output power of the photovoltaic inverter based on the active power of the photovoltaic inverter.
  • the photovoltaic inverter can also determine the power factor of the photovoltaic inverter based on the output voltage and output current of the photovoltaic inverter, and determine the load type based on the power factor of the photovoltaic inverter.
  • the type can be determined based on the application scenario.
  • the photovoltaic inverter can generate an even harmonic voltage adjustment signal based on an even harmonic amplitude signal and an even harmonic phase signal.
  • the even harmonic voltage adjustment signal here can be based on an even harmonic (
  • the even-order harmonic voltage regulation signal generated by the second harmonic, etc.) can also be the even-order harmonic generated by the superposition of multiple even harmonics (for example, the second harmonic, the fourth harmonic, etc.) voltage regulation signal.
  • the photovoltaic inverter here can generate multiple even harmonic phase signals of different phases for multiple types of mixed loads, and based on multiple even harmonic phase signals and even harmonics of different phases
  • the amplitude signal generates multiple even-order harmonic voltage adjustment signals, and the multiple even-order harmonic voltage adjustment signals are superimposed according to weights to obtain an even-order harmonic voltage adjustment signal.
  • the photovoltaic inverter can determine the load type based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current, and determine the even harmonic voltage adjustment signal based on the phase of the output voltage of the photovoltaic inverter and the load type. phase, and then generate a drive control signal based on the even harmonic voltage adjustment signal.
  • the photovoltaic inverter can generate targeted drive control signals based on different load types, thereby controlling the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit. value, improve the voltage stability of the midpoint of the conversion circuit, have a simple structure, a simple control method, strong applicability and high control efficiency.
  • the controller may include a signal generation unit, a voltage control unit and a drive control unit.
  • FIG. 4 is another schematic structural diagram of a photovoltaic inverter provided by an embodiment of the present application.
  • the controller 302 may include a signal generation unit 3020, a voltage control unit 3021 and a drive control unit 3022.
  • the signal generation unit 3020 may be connected to the voltage control unit 3021 and the acquisition circuit 301.
  • the voltage control unit 3021 may be driven by The control unit 3022 is connected to the conversion circuit 303.
  • the signal generation unit 3020 here may generate an even harmonic amplitude signal based on the positive DC bus voltage and the negative DC bus voltage, generate an even harmonic phase signal based on the phase of the output voltage of the photovoltaic inverter, and generate an even harmonic based on the phase of the output voltage of the photovoltaic inverter.
  • the amplitude signal and the even harmonic phase signal generate an even harmonic voltage adjustment signal.
  • the voltage control unit 3021 here can generate the voltage command signal of the conversion circuit 303 based on the even harmonic voltage adjustment signal.
  • the drive control unit 3022 here can generate a drive control signal based on the voltage command signal of the conversion circuit 303, and control the switching tube in the conversion circuit 303 to be turned on or off based on the drive control signal.
  • the photovoltaic inverter here can generate the voltage command signal of the conversion circuit 303 based on the even harmonic voltage adjustment signal, and then the photovoltaic inverter can generate the drive control signal based on the voltage command signal, and control the conversion circuit based on the drive control signal.
  • the switching tube in 303 is turned on or off, so that the conversion circuit 303 outputs the target voltage while keeping the midpoint voltage of the conversion circuit 303 stable.
  • the structure is simple and the control method is simple.
  • the voltage control unit 3021 can also be used to obtain fundamental wave instructions of an external central control system.
  • the voltage control unit 3021 here can also be used to superpose the fundamental wave command and the even harmonic voltage adjustment signal to obtain the voltage command signal of the conversion circuit 303.
  • the photovoltaic inverter here can obtain the fundamental wave command sent by the external central control system, and directly obtain the fundamental wave signal based on the fundamental wave command or The fundamental wave signal is obtained through calculation, and the fundamental wave signal is superimposed and modulated with the even harmonic voltage adjustment signal to obtain the voltage command signal of the conversion circuit 303.
  • the drive control unit 3022 can generate a drive control signal based on the voltage command signal, and based on The drive control signal controls the switching tube in the conversion circuit 303 to be turned on or off.
  • the structure is simple, the control method is simple, and the control efficiency is high.
  • the controller may also include a voltage feedback unit.
  • FIG. 5 is another structural schematic diagram of a photovoltaic inverter provided by an embodiment of the present application.
  • the controller 402 may also include a voltage feedback unit 4023 .
  • the voltage feedback unit 4023 here can connect the acquisition circuit 401 and the voltage control unit 4021.
  • the connection method and working principle of the acquisition circuit 401 and the signal generation unit 4020 in Figure 5 are the same as those of the acquisition circuit 301 and the signal generation unit 3020 in Figure 4, and will not be described again here.
  • the voltage feedback unit 4023 here can be used to obtain the output voltage of the photovoltaic inverter through the acquisition circuit 401, and use the output voltage of the photovoltaic inverter as a voltage feedback signal.
  • the voltage control unit 4021 here can also generate a primary voltage command signal based on the voltage feedback signal and the voltage command signal of the conversion circuit 403 .
  • the drive control unit 4022 here may also generate a drive control signal based on the primary voltage command signal. It can be understood that the voltage control unit 4021 here can be a voltage control loop, and the voltage feedback unit 4023 here can obtain the output voltage of the photovoltaic inverter and input the output voltage of the photovoltaic inverter to the voltage control unit as a voltage feedback signal.
  • the voltage control unit can perform comparison and adjustment based on the voltage feedback signal and the voltage command signal to generate a first-level voltage command signal (that is, a voltage command signal adjusted based on the voltage feedback signal).
  • the drive control unit 4022 can also generate a drive control signal based on the primary voltage command signal, and control the switching tube in the conversion circuit 403 to be turned on or off based on the drive control signal.
  • the conversion circuit can maintain the stability of the midpoint voltage of the conversion circuit while outputting the target voltage.
  • the structure is simple and the control method is simple.
  • the photovoltaic inverter can use the output voltage of the photovoltaic inverter as the voltage.
  • the feedback signal adjusts the drive control signal in real time, and the control efficiency is high.
  • the controller may also include a current control unit and a current feedback unit.
  • Figure 6 is another schematic structural diagram of a photovoltaic inverter provided by an embodiment of the present application.
  • the controller 502 may also include a current control unit 5024 and a current feedback unit 5025.
  • the current control unit 5024 can be connected to the voltage control unit 5021 and the drive control unit 5022, and the current feedback unit 5025 can be connected to the acquisition circuit 501 and the current control unit 5024.
  • the connection method and working principle of the acquisition circuit 501 in Figure 6 and the aforementioned acquisition circuit 401 in Figure 5 are the same, and will not be described again here.
  • the current feedback unit 5025 here can obtain the output current of the photovoltaic inverter through the acquisition circuit 501, and use the output current of the photovoltaic inverter as a current feedback signal.
  • the current control unit 5024 here may generate a secondary voltage command signal based on the primary voltage command signal and the current feedback signal output by the voltage control unit 5021.
  • the drive control unit 5022 here may also generate a drive control signal based on the secondary voltage command signal. It can be understood that the current control unit 5024 here can be a current control loop, and the current feedback unit 5025 here can obtain the output current of the photovoltaic inverter, and input the output current of the photovoltaic inverter to the current control unit as a current feedback signal.
  • the current control unit 5024 can perform comparison and adjustment based on the current feedback signal and the primary voltage command signal output by the voltage control unit 5021 to generate a secondary voltage command signal (that is, the voltage adjusted based on the voltage feedback signal and the current feedback signal command signal).
  • the drive control unit 5022 can also generate a drive control signal based on the secondary voltage command signal, and control the switching tube in the conversion circuit 503 to be turned on or off based on the drive control signal.
  • the conversion circuit can maintain the stability of the midpoint voltage of the conversion circuit while outputting the target voltage.
  • the structure is simple and the control method is simple.
  • the photovoltaic inverter can use the output current of the photovoltaic inverter as the current.
  • the feedback signal adjusts the drive control signal in real time, and the control efficiency is high.
  • the drive control unit 5022 may also be connected to the signal generation unit 5020.
  • the drive control unit 5022 here can also be used to obtain the even harmonic voltage adjustment signal of the signal generation unit 5020, and generate a drive control signal based on the even harmonic voltage adjustment signal and the secondary voltage command signal.
  • the drive control unit 5022 can also obtain the even-order harmonic voltage adjustment signal of the signal generation unit 5020 and the fundamental wave signal generated based on the fundamental wave instruction of the external central control system (it can also directly obtain the even-order harmonic voltage adjustment signal and The signal after the superposition of the fundamental wave signal), and generates a drive control signal based on the even harmonic voltage adjustment signal, the fundamental wave signal and the secondary voltage command signal.
  • the drive control unit 5022 here may be a PWM wave generation circuit or other types of modulation signal generation circuits, or may be a combination circuit of a PWM wave generation circuit or other types of modulation signal generation circuits and a switch transistor drive circuit.
  • the drive control unit 5022 here can obtain the even harmonic voltage adjustment signal output by the signal generation unit 5020, and then the drive control unit 5022 can generate a drive control signal based on the even harmonic voltage adjustment signal and the secondary voltage command signal.
  • the drive control unit 5022 can also be based on the even harmonic voltage adjustment signal and the primary voltage command signal (i.e. , the voltage control unit 5021 generates a drive control signal based on the voltage feedback signal (adjusted voltage command signal) transmitted by the voltage feedback unit 5023.
  • the conversion circuit can maintain the stability of the midpoint voltage of the conversion circuit while outputting the target voltage.
  • the structure is simple and the control method is simple.
  • the drive control unit can further adjust the signal and the second harmonic voltage based on the even order.
  • the stage voltage command signal generates a drive control signal, which is equivalent to adding an even-order harmonic component to the drive control signal to further maintain the midpoint balance of the conversion circuit. High control efficiency.
  • FIG. 7 is a schematic structural diagram of a power supply system provided by an embodiment of the present application.
  • the power supply system can be applied to the power supply system.
  • the power supply system also includes a power supply and a photovoltaic inverter.
  • the photovoltaic inverter here is suitable for any power supply system or power supply system shown in Figures 1 to 6 above.
  • Figure 7 only takes the photovoltaic inverter shown in Figure 6 as an example.
  • the signal generation unit 6020, the voltage control unit 6021, the drive control unit 6022, the voltage feedback unit 6023, the current control unit 6024 and the current feedback unit 6025 in the acquisition circuit 601 and the controller 602 in Figure 7 are the same as those collected in the aforementioned Figure 6
  • the connection methods and working principles of the signal generation unit 5020, voltage control unit 5021, drive control unit 5022, voltage feedback unit 5023, current control unit 5024 and current feedback unit 5025 in the circuit 501 and the controller 502 are the same and will not be described again here.
  • a transformer 604 may also be included, and the transformer 604 may connect the conversion circuit 603 and the load. Please further refer to Figure 7.
  • the power supply system may also include a parallel and off-grid wiring device 605.
  • the conversion circuit 603 can use the parallel and off-grid wiring device 605 to use power for transmission lines, power transfer sites, batteries, communication base stations or household equipment in the load. equipment or power transmission equipment to supply power.
  • the photovoltaic inverter, power supply system and functional modules in the power supply system are composed in various and flexible ways, which can adapt to different power supply environments, improve the diversity of application scenarios of the power supply system, and enhance the adaptability of the power supply system.
  • any power supply system or photovoltaic inverter shown in Figures 1 to 7 above can control the on or off time of the switch tube in the conversion circuit, while controlling the output target voltage of the conversion circuit, while reducing the conversion
  • the difference between the positive DC bus voltage and the negative DC bus voltage of the circuit improves the voltage stability at the midpoint of the conversion circuit. It has a simple structure, a simple control method and strong applicability.
  • the grid connection control method provided by the embodiment of the present application will be illustrated below using the structure of the power supply system shown in Figure 2.
  • FIG 8 is a schematic flow chart of the control method provided by this application.
  • the control method provided by this application is suitable for photovoltaic inverters.
  • the photovoltaic inverter includes a conversion circuit and a positive and negative DC bus. One end of the positive and negative DC bus is connected to the conversion circuit, and the other end of the positive and negative DC bus is used to connect to the power supply.
  • the control The method is also applicable to any of the power supply systems shown in Figures 1 to 7 above or the photovoltaic inverter in the power supply system. As shown in Figure 8, the control method provided by this application includes the following steps:
  • S702 Generate an even-order harmonic voltage adjustment signal based on the phase of the positive DC bus voltage of the conversion circuit, the negative DC bus voltage of the conversion circuit, and the output voltage of the photovoltaic inverter, and generate a drive control signal based on the even-order harmonic voltage adjustment signal. , to control the switching tube in the conversion circuit to turn on or off.
  • the photovoltaic inverter can generate an even harmonic voltage adjustment signal based on the positive DC bus voltage, the negative DC bus voltage of the conversion circuit and the phase of the output voltage of the photovoltaic inverter. Furthermore, the photovoltaic inverter can generate a drive control signal based on the even harmonic voltage adjustment signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the drive control signal generated based on the even harmonic voltage adjustment signal can control the conversion circuit to output an output voltage containing even harmonics.
  • the even harmonics in the output voltage generate an output current containing even harmonic components through the load.
  • the even harmonic components in the output current can interact with the fundamental wave component in the drive control signal, and/or the even harmonic components in the drive control signal can interact with the fundamental wave component in the output current, thereby regulating
  • the midpoint potential of the conversion circuit keeps the midpoint potential of the conversion circuit balanced.
  • the photovoltaic inverter can control the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, improving the voltage stability of the midpoint of the conversion circuit, and has a simple structure.
  • the control method is simple and has strong applicability.
  • the conversion circuit may include two sets of capacitors and at least one switch bridge arm.
  • the method may include: based on: The potential of the positive DC bus, the potential of the negative DC bus and the potential of the midpoint of the conversion circuit detect the positive DC bus voltage and the negative DC bus voltage of the conversion circuit. This method has simple connection method, simple detection method and high detection efficiency.
  • FIG. 9 is another schematic flowchart of the control method provided by this application.
  • generating an even harmonic voltage adjustment signal based on the positive DC bus voltage of the conversion circuit, the negative DC bus voltage of the conversion circuit, and the phase of the output voltage of the photovoltaic inverter in step S701 may include the following steps :
  • S801 Generate even harmonic amplitude signals based on the positive DC bus voltage of the conversion circuit and the negative DC bus voltage of the conversion circuit.
  • S802 Generate an even harmonic phase signal based on the phase of the output voltage of the photovoltaic inverter.
  • S803 Generate an even harmonic voltage adjustment signal based on the even harmonic amplitude signal and the even harmonic phase signal.
  • the photovoltaic inverter can detect the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, thereby obtaining the midpoint voltage difference of the conversion circuit, and generate even harmonic amplitude signals based on the midpoint voltage difference of the conversion circuit.
  • the photovoltaic inverter can detect the phase of the output voltage of the photovoltaic inverter, and then generate a corresponding even harmonic phase signal based on the phase multiplication of the output voltage of the photovoltaic inverter.
  • the photovoltaic inverter can generate an even harmonic voltage adjustment signal based on the even harmonic amplitude signal and the even harmonic phase signal, and then generate a drive control signal (for example, PWM wave) based on the even harmonic voltage adjustment signal.
  • the even harmonic voltage adjustment signal here may be an even harmonic voltage adjustment signal generated based on one even harmonic (for example, the 2nd harmonic, etc.), or it may be based on multiple even harmonics.
  • the even-order harmonic voltage regulation signal is generated after superposition of waves (for example, 2nd harmonic, 4th harmonic, etc.).
  • the photovoltaic inverter can determine the amplitude of the even harmonic voltage adjustment signal based on the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, and determine the even harmonics based on the phase of the output voltage of the photovoltaic inverter.
  • the phase of the voltage adjustment signal is then used to generate a drive control signal based on the even harmonic voltage adjustment signal. While controlling the output target voltage of the conversion circuit, the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit is reduced, and the voltage stability of the midpoint of the conversion circuit is improved.
  • the structure is simple, the control method is accurate and simple, and the applicability is strong.
  • generating an even harmonic phase signal based on the phase of the output voltage of the photovoltaic inverter in the aforementioned step S802 may include: detecting the phase of the output voltage of the photovoltaic inverter and the output of the photovoltaic inverter. The phase of the current.
  • the type of load is determined based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter, and an even harmonic phase signal is generated based on the phase of the output voltage of the photovoltaic inverter and the type of load.
  • the type is one or more of inductive load, capacitive load and/or resistive load.
  • the photovoltaic inverter can detect the phase of the output voltage of the photovoltaic inverter and the phase of the output current of the photovoltaic inverter through the acquisition circuit, and then determine the load based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current. type.
  • different phases have different adjustment effects for different types of loads. That is to say, for different types of loads, the photovoltaic inverter can generate the first phase for resistive loads, the second phase for capacitive loads, the third phase for inductive loads, or a mixture of multiple types.
  • the load generates the fourth phase, or for multiple types of mixed loads, the first phase, the second phase or the third phase are superimposed according to the weight to generate a new phase (for example, the fifth phase), and based on the photovoltaic inverter
  • the phase of the output voltage is multiplied and superimposed with the first phase, the second phase, the third phase, the fourth phase or the fifth phase to generate an even harmonic phase signal.
  • the photovoltaic inverter here can also determine the output power (including active power and reactive power) of the photovoltaic inverter based on the output voltage and output current of the photovoltaic inverter, and determine the output power (including active power and reactive power) of the photovoltaic inverter based on the active power and reactive power of the conversion circuit.
  • the sign of the active power determines the type of load, or the photovoltaic inverter can also determine the power factor of the conversion circuit based on the output voltage and output current of the photovoltaic inverter, and determine the type of load based on the power factor of the conversion circuit. Specifically, it can be based on the application. The scene is determined.
  • the photovoltaic inverter can generate an even harmonic voltage adjustment signal based on an even harmonic amplitude signal and an even harmonic phase signal.
  • the even harmonic voltage adjustment signal here can be based on an even harmonic (
  • the even-order harmonic voltage regulation signal generated by the second harmonic, etc.) can also be the even-order harmonic generated by the superposition of multiple even harmonics (for example, the second harmonic, the fourth harmonic, etc.) voltage regulation signal.
  • the photovoltaic inverter can determine the load type based on the phase of the output voltage of the photovoltaic inverter and the phase of the output current, and determine the even harmonic voltage adjustment signal based on the phase of the output voltage of the photovoltaic inverter and the load type. phase, and then generate a drive control signal based on the even harmonic voltage adjustment signal.
  • the photovoltaic inverter can generate targeted drive control signals based on different load types, thereby controlling the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit. value, improve the voltage stability of the midpoint of the conversion circuit, have a simple structure, a simple control method, strong applicability and high control efficiency.
  • generating the drive control signal based on the even-order harmonic voltage adjustment signal in the aforementioned step S702 may include: generating a voltage command signal of the conversion circuit based on the even-order harmonic voltage adjustment signal.
  • a drive control signal is generated based on the voltage command signal of the conversion circuit.
  • the photovoltaic inverter here can generate the voltage command signal of the conversion circuit based on the even harmonic voltage adjustment signal, and then the photovoltaic inverter can generate the drive control signal based on the voltage command signal, and control the conversion circuit based on the drive control signal.
  • the switch tube is turned on or off, so that the conversion circuit can output the target voltage while maintaining the stability of the midpoint voltage of the conversion circuit.
  • the structure is simple and the control method is simple.
  • generating the voltage command signal of the conversion circuit based on the even harmonic voltage adjustment signal in step S702 may include: detecting the fundamental wave command of the external central control system.
  • the voltage command signal of the conversion circuit is obtained by superimposing the fundamental wave command and the even harmonic voltage adjustment signal.
  • the photovoltaic inverter here can detect the fundamental wave command sent by the external central control system, directly obtain the fundamental wave signal based on the fundamental wave command or obtain the fundamental wave signal through calculation, and adjust the fundamental wave signal with the even harmonic voltage The signals are superimposed and modulated to obtain the voltage command signal of the conversion circuit.
  • the photovoltaic inverter can generate a drive control signal based on the voltage command signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the structure is simple and the control is
  • the method is simple and the control efficiency is high.
  • the method may further include: detecting the output voltage of the photovoltaic inverter, and adjusting the The output voltage serves as the voltage feedback signal.
  • a primary voltage command signal is generated based on the voltage feedback signal and the voltage command signal of the conversion circuit.
  • the drive control signal is generated based on the primary voltage command signal.
  • the photovoltaic inverter here can detect the output voltage of the photovoltaic inverter and use the output voltage of the photovoltaic inverter as a voltage feedback signal.
  • the photovoltaic inverter can compare and adjust based on the voltage feedback signal and the voltage command signal.
  • a primary voltage command signal (that is, a voltage command signal adjusted based on the voltage feedback signal) is generated. Furthermore, the photovoltaic inverter can also generate a drive control signal based on the primary voltage command signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the conversion circuit can be made to output the target voltage while maintaining the stability of the midpoint voltage of the conversion circuit.
  • the structure is simple and the control method is simple.
  • the photovoltaic inverter can adjust the drive control signal in real time based on the output voltage of the photovoltaic inverter as a voltage feedback signal, and the control efficiency is high.
  • the method may further include: detecting the output current of the photovoltaic inverter, and converting the output current of the photovoltaic inverter to current as a current feedback signal.
  • a secondary voltage command signal is generated based on the primary voltage command signal and the current feedback signal.
  • a drive control signal is generated based on the secondary voltage command signal.
  • the photovoltaic inverter can also generate a drive control signal based on the secondary voltage command signal, and control the on or off of the switch tube in the conversion circuit based on the drive control signal.
  • the conversion circuit can maintain the stability of the midpoint voltage of the conversion circuit while outputting the target voltage.
  • the structure is simple and the control method is simple.
  • the photovoltaic inverter can use the output current of the photovoltaic inverter as the current.
  • the feedback signal adjusts the drive control signal in real time, and the control efficiency is high.
  • the method may further include: detecting the even harmonic voltage adjustment signal of the signal generation unit, based on the even harmonic The voltage adjustment signal and the secondary voltage command signal generate the drive control signal.
  • the photovoltaic inverter can also detect the even-order harmonic voltage adjustment signal and the fundamental wave signal generated based on the fundamental wave instruction of the external central control system (it can also directly detect the even-order harmonic voltage adjustment signal and the fundamental wave signal after superposition) signal), and generate a drive control signal based on the even harmonic voltage adjustment signal, the fundamental wave signal and the secondary voltage command signal.
  • the photovoltaic inverter can generate a drive control signal based on the even harmonic voltage adjustment signal and the secondary voltage command signal.
  • the drive control unit can also generate a drive control signal based on the even harmonic voltage adjustment signal and the primary voltage command signal.
  • the conversion circuit can maintain the stability of the midpoint voltage of the conversion circuit while outputting the target voltage.
  • the structure is simple and the control method is simple.
  • the drive control unit can further adjust the signal and the second harmonic voltage based on the even order.
  • the stage voltage command signal generates a drive control signal, which is equivalent to adding an even-order harmonic component to the drive control signal to further maintain the midpoint balance of the conversion circuit and achieve high control efficiency.
  • the photovoltaic inverter can control the output target voltage of the conversion circuit while reducing the difference between the positive DC bus voltage and the negative DC bus voltage of the conversion circuit, improving the voltage stability of the midpoint of the conversion circuit, and has a simple structure.
  • the control method is simple and has strong applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

本申请提供了一种光伏逆变器及其控制方法,该光伏逆变器适用于供电系统,光伏逆变器包括变换电路、采集电路和控制器;采集电路用于获取变换电路的正直流母线电压和负直流母线电压;控制器用于基于变换电路的正、负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,并基于偶次谐波电压调节信号生成驱动控制信号,控制变换电路中的开关管导通或关断,以控制变换电路输出目标电压且减小变换电路的正、负直流母线电压的差值。采用本申请,可调节变换电路中开关管的导通或关断,提高变换电路中点的电压稳定性,结构简单,方法简便,适用性强。

Description

光伏逆变器及其控制方法
本申请要求于2022年09月16日提交中国专利局、申请号为202211131328.8、申请名称为“光伏逆变器及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,尤其涉及一种光伏逆变器及其控制方法。
背景技术
在电力电子技术领域中,逆变器中的变换电路将电源的直流电能转换为交流电能提供给负载。其中,变换电路(例如,中点钳位式(Neutral Point Clamped,NPC)逆变电路)由于安全性高,效率高,损耗少,谐波小等优点被广泛应用。请参见图1,图1是本申请提供的两种NPC逆变电路的结构示意图。如图1中的(a)部分和图1中的(b)部分所示,NPC逆变电路(也即,变换电路)包括两个串联的电容和三个开关桥臂,两个电容的串联点为变换电路的中点,每一个开关桥臂包括四个开关管和两个钳位二极管。在理想状态下,在变换电路的一个供电周期内,流入和流出变换电路中点的电荷量相同,也就是说,变换电路的两个串联的电容的电压相等。然而,在实际应用中,由于变换电路的开关桥臂中各开关管的工作状态通常是不对称的(例如,开关管型号不同、损耗不同、负载不对称、或者受开关死区等因素影响),导致在一个供电周期内,流入和流出变换电路中点的电荷量并不相同,也就是说,变换电路中两个串联的电容的充电量(或放电量)并不相等,导致变换电路的两个串联的电容的电压不相等(也即,变换电路的正直流母线电压和负直流母线电压不相等,或者说,变换电路的中点电压不平衡),这会使得变换电路输出电压(或者输出电流)产生畸变,甚至损坏系统内的功率元件。
本申请的发明人在研究和实践的过程中发现,基于直流母线电压差值计算调整冗余小矢量,进而调整中点电压的方法复杂,计算过程繁琐,成本高,控制繁琐复杂;在调制波中注入零序电压平衡中点电压的方法对变换电路的调制波的算法和负载类型限制多,例如在不连续脉冲宽度调制(Discontinuous Pulse Width Modulation,DPWM)波时,调制波注入零序的空间有限,导致这种调制中点电压的方法的适应性差,调节能力差,控制效果差。
发明内容
本申请提供了一种光伏逆变器及其控制方法,可通过调节变换电路中开关管的导通或关断时间,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。
第一方面,本申请提供了一种光伏逆变器,该光伏逆变器适用于供电系统,光伏逆变器包括变换电路、采集电路和控制器。这里,变换电路的输入端可通过正直流母线和负直流母线连接电源,变换电路的输出端可用于连接负载。这里的采集电路可获取变换电路的正直流母线电压和变换电路的负直流母线电压。这里的控制器可基于变换电路的正直流母线电压、变换电路的负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,并基于偶次谐波电压调节信号生成驱动控制信号,控制变换电路中的开关管导通或关断,以控制变换电路输出目标电压且减小变换电路的正直流母线电压和负直流母线电压的差值。
在本申请中,电源可以通过正直流母线和负直流母线连接变换电路,变换电路可以将电源提供的直流电能转换为交流电能提供给负载。在供电过程中,变换电路可以通过不同的开关管的导通和关断,分别对变换电路中的电容进行充电和放电,将电源提供的直流电能转换为交流电能传输给负载。可以理解,当光伏逆变器的输出电压(或者输出电流)不对称时(例如,开关管型号不同、损耗不同、负载不对称、或者受开关死区等因素影响),在一个供电周期内,变换电路的正直流母线电压和负直流母线电压不相等,或者说,变换电路的正直流母线电压和负直流母线电压存在差值,这会使得变换电路输出电压(或者输出电流)产生畸变,甚至损坏系统内的功率元件。
在本申请中,采集电路可以获取变换电路的正直流母线电压和负直流母线电压。控制器可以基于变换电路的正直流母线电压、负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,进而可以基于偶次谐波电压调节信号生成驱动控制信号(例如,脉冲宽度调制Pulse Width Modulation,PWM波等驱动控制信号),控制变换电路中开关管的导通或者关断。这里,基于偶次谐波电压调节信号生成的驱动控制信号可以控制变换电路输出含有偶次谐波的输出电压,输出电压中的偶次谐波经负载产生含有偶次谐波分量的输出电流,输出电流中的偶次谐波分量可以与驱动控制信号中的基波分量相互作用,和/或 驱动控制信号中的偶次谐波分量可以与输出电流中的基波分量相互作用,进而可以减小所述正直流母线电压和所述负直流母线电压的差值。可以理解,本申请提供的光伏逆变器可以适用于采用不连续脉冲宽度调制(Discontinuous Pulse Width Modulation,DPWM)波作为驱动控制信号的变换电路,也可以适用于采用其他PWM波(例如,正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation,SPWM)波、三次谐波注入脉冲宽度调制(Third Harmonic Injection Pulse Width Modulation,THIPWM)波、基于载波空间矢量脉冲宽度调制(Carrier Based Space Vector Pulse Width Modulation,CBPWM)波等)作为驱动控制信号的变换电路,适用场景广泛,控制效果好。
采用本申请,光伏逆变器可以在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。
结合第一方面,在第一种可能的实施方式中,变换电路可包括两组电容和至少一个开关桥臂,一个开关桥臂包括多个开关管,两组电容串联后与至少一个开关桥臂并联于变换电路的正直流母线和负直流母线之间,两组电容的串联连接点为变换电路的中点,采集电路的输入端连接变换电路的正直流母线、负直流母线和中点。这里的采集电路还可基于变换电路的正直流母线的电位、负直流母线的电位和中点的电位获取变换电路的正直流母线电压和负直流母线电压,连接方式简单,检测方法简便,检测效率高。
结合第一方面或第一方面第一种可能的实施方式,在第二种可能的实施方式中,控制器还可用于基于正直流母线电压和负直流母线电压生成偶次谐波幅值信号,基于输出电压的相位生成偶次谐波相位信号,并基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号。
采用本申请,控制器可以基于变换电路的正直流母线电压、负直流母线电压,进而得到变换电路中点电压差,并基于变换电路中点电压差生成偶次谐波幅值信号。控制器还可以基于光伏逆变器的输出电压的相位倍频后生成相应的偶次谐波相位信号。可以理解,控制器可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号,进而基于偶次谐波电压调节信号生成驱动控制信号,并基于驱动控制信号控制变换电路中开关管的导通或者关断。进一步可以理解,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。
采用本申请,光伏逆变器可以基于变换电路的正直流母线电压、负直流母线电压确定偶次谐波电压调节信号的幅值,并基于光伏逆变器的输出电压的相位确定偶次谐波电压调节信号的相位,进而基于偶次谐波电压调节信号生成驱动控制信号。在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法精确简便,适用性强。
结合第一方面第二种可能的实施方式,在第三种可能的实施方式中,采集电路还可用于获取光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位。采集电路还可基于光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位判断负载的类型,并基于光伏逆变器的输出电压的相位和负载的类型生成偶次谐波相位信号。这里,负载的类型为感性负载、容性负载和/或阻性负载中的一种或几种。可以理解,光伏逆变器可以通过采集电路获取光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位,进而基于光伏逆变器的输出电压的相位和输出电流的相位判断负载的类型。这里,针对不同类型的负载,不同的相位的调节效果不同。也就是说,对于不同类型的负载,光伏逆变器可以针对阻性负载相应生成第一相位,针对容性负载相应生成第二相位,针对感性负载相应生成第三相位,或者针对多种类型混合的负载生成第四相位,或者针对多种类型混合的负载按照权重将第一相位、第二相位或第三相位进行叠加生成新的相位(例如,第五相位),并基于光伏逆变器的输出电压的相位倍频后与第一相位、第二相位、第三相位、第四相位或者第五相位进行叠加,生成偶次谐波相位信号。进一步可以理解,这里的光伏逆变器也可以基于光伏逆变器的输出电压和输出电流确定光伏逆变器的输出功率(包括有功功率和无功功率),并根据光伏逆变器的有功功率和无功功率的符号判断负载的类型,或者光伏逆变器还可以基于光伏逆变器的输出电压和输出电流确定变换电路的功率因数,并根据变换电路的功率因数判断负载的类型,具体可以基于应用场景确定。这里,光伏逆变器可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。进一步还可以理解,这里的光伏逆变器可以针对多种类型混合的负载生成多个不同相位的偶次谐波相位信号,并基于多个不同相位的偶次谐波相位信号和偶次谐波幅值信号生成多个偶次谐波电压调节信号,并将多个偶次谐波电压调节信号按照权重进行叠加得到偶次谐波电压调节信号。
采用本申请,光伏逆变器可以基于光伏逆变器的输出电压的相位和输出电流的相位判断负载类型,并 基于光伏逆变器的输出电压的相位和负载类型确定偶次谐波电压调节信号的相位,再基于偶次谐波电压调节信号生成驱动控制信号。也就是说,光伏逆变器可以基于不同的负载类型生成具有针对性的驱动控制信号,进而在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强,控制效率高。
结合第一方面第三种可能的实施方式,在第四种可能的实施方式中,控制器可包括信号生成单元、电压控制单元和驱动控制单元,信号生成单元可连接采集电路和电压控制单元,电压控制单元通过驱动控制单元连接变换电路。这里的信号生成单元可基于正直流母线电压和负直流母线电压生成偶次谐波幅值信号,基于光伏逆变器的输出电压的相位生成偶次谐波相位信号,并基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号。这里的电压控制单元可基于偶次谐波电压调节信号生成变换电路的电压指令信号。这里的驱动控制单元可基于变换电路的电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断。可以理解,这里的光伏逆变器可以基于偶次谐波电压调节信号生成变换电路的电压指令信号,进而光伏逆变器可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断,使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便。
结合第一方面第四种可能的实施方式,在第五种可能的实施方式中,电压控制单元还可用于获取外部的中控系统的基波指令。这里的电压控制单元还可用于将基波指令和偶次谐波电压调节信号叠加得到变换电路的电压指令信号。可以理解,这里的光伏逆变器可以获取外部中控系统发送的基波指令,基于基波指令直接得到基波信号或者经过计算得到基波信号,并将基波信号与偶次谐波电压调节信号叠加调制,得到变换电路的电压指令信号,进而驱动控制单元可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断,结构简单,控制方法简便,控制效率高。
结合第一方面第五种可能的实施方式,在第六种可能的实施方式中,控制器还可包括电压反馈单元,电压反馈单元可连接采集电路和电压控制单元。这里的电压反馈单元可用于通过采集电路获取光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号。这里的电压控制单元还可基于电压反馈信号和变换电路的电压指令信号生成一级电压指令信号。这里的驱动控制单元还可基于一级电压指令信号生成驱动控制信号。可以理解,这里的电压控制单元可以是电压控制环路,这里的电压反馈单元可以获取光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号输入给电压控制单元,进而电压控制单元可以基于电压反馈信号与电压指令信号进行比较调节,生成一级电压指令信号(也即,基于电压反馈信号调整后的电压指令信号)。进而驱动控制单元还可基于一级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断。
采用本申请,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电压作为电压反馈信号实时调整驱动控制信号,控制效率高。
结合第一方面第六种可能的实施方式,在第七种可能的实施方式中,控制器还可包括电流控制单元和电流反馈单元,电流控制单元可连接电压控制单元和驱动控制单元,电流反馈单元可连接采集电路和电流控制单元。这里的电流反馈单元可用于通过采集电路获取光伏逆变器的输出电流,并将光伏逆变器的输出电流作为电流反馈信号。这里的电流控制单元可基于电压控制单元输出的一级电压指令信号和电流反馈信号生成二级电压指令信号。这里的驱动控制单元还可基于二级电压指令信号生成驱动控制信号。可以理解,这里的电流控制单元可以是电流控制环路,这里的电流反馈单元可以获取光伏逆变器的输出电流,并将光伏逆变器的输出电流作为电流反馈信号输入给电流控制单元,进而电流控制单元可以基于电流反馈信号与电压控制单元输出的一级电压指令信号进行比较调节,生成二级电压指令信号(也即,基于电压反馈信号和电流反馈信号调整后的电压指令信号)。这里,驱动控制单元还可基于二级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断。
采用本申请,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电流作为反馈信号实时调整驱动控制信号,控制效率高。
结合第一方面第七种可能的实施方式,在第八种可能的实施方式中,驱动控制单元还可连接信号生成单元。这里的驱动控制单元还可用于获取信号生成单元的偶次谐波电压调节信号,基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。这里,驱动控制单元也可以获取信号生成单元的偶次谐波电压调节信号和基于外部的中控系统的基波指令生成的基波信号(也可以直接获取偶次谐波电压调节信号和 基波信号叠加后的信号),并基于偶次谐波电压调节信号、基波信号和二级电压指令信号生成驱动控制信号。可以理解,这里的驱动控制单元可以是PWM波的生成电路或其他类型调制信号的生成电路,也可以是PWM波的生成电路或其他类型调制信号的生成电路与开关管驱动电路的组合电路,这里的驱动控制单元可以获取信号生成单元输出的偶次谐波电压调节信号,进而驱动控制单元可以基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。这里,在光伏逆变器中不包括电流控制单元和电流反馈单元时,驱动控制单元也可以基于偶次谐波电压调节信号和一级电压指令信号生成驱动控制信号。
采用本申请,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时驱动控制单元可以进一步基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号,相当于在驱动控制信号中增加注入偶次谐波分量,进一步维持变换电路的中点平衡,控制效率高。
第二方面,本申请提供了一种供电系统,该供电系统可包括电源和第一方面或第一方面任一种可能的实施方式中的光伏逆变器。
采用本申请,供电系统可以在光伏逆变器输出目标电压的同时,减小光伏逆变器中变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。
第三方面,本申请提供了一种光伏逆变器控制方法,该控制方法可适用于光伏逆变器,光伏逆变器包括变换电路以及正负直流母线,正负直流母线的一端连接变换电路,正负直流母线的另一端用于连接电源,该方法包括:检测变换电路的正直流母线电压和变换电路的负直流母线电压。基于变换电路的正直流母线电压、变换电路的负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,并基于偶次谐波电压调节信号生成驱动控制信号,控制变换电路中的开关管导通或关断,以控制变换电路输出目标电压且减小变换电路的正直流母线电压和负直流母线电压的差值。
在本申请中,光伏逆变器可以基于变换电路的正直流母线电压、负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号。进而光伏逆变器可以基于偶次谐波电压调节信号生成驱动控制信号,并基于驱动控制信号控制变换电路中开关管的导通或者关断。这里,基于偶次谐波电压调节信号生成的驱动控制信号可以控制变换电路输出含有偶次谐波的输出电压,输出电压中的偶次谐波经负载产生含有偶次谐波分量的输出电流,输出电流中的偶次谐波分量可以与驱动控制信号中的基波分量相互作用,和/或驱动控制信号中的偶次谐波分量可以与输出电流中的基波分量相互作用,减小变换电路的正直流母线电压和负直流母线电压的差值。
采用本申请,光伏逆变器可以在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。
结合第三方面,在第一种可能的实施方式中,变换电路可包括两组电容和至少一个开关桥臂,检测变换电路的正直流母线电压和变换电路的负直流母线电压,包括:基于变换电路的正直流母线的电位、负直流母线的电位和中点的电位检测变换电路的正直流母线电压和负直流母线电压,连接方式简单,检测方法简便,检测效率高。
结合第三方面或第三方面第一种可能的实施方式,在第二种可能的实施方式中,基于变换电路的正直流母线电压、变换电路的负直流母线电压和光伏逆变器的输出电压生成偶次谐波电压调节信号,可包括:基于变换电路的正直流母线电压和负直流母线电压生成偶次谐波幅值信号,基于光伏逆变器的输出电压的相位生成偶次谐波相位信号,并基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号。
采用本申请,光伏逆变器可以检测变换电路的正直流母线电压、负直流母线电压,进而得到变换电路中点电压差,并基于变换电路中点电压差生成偶次谐波幅值信号。可以检测光伏逆变器的输出电压的相位,进而基于光伏逆变器的输出电压的相位倍频后生成相应的偶次谐波相位信号。可以理解,光伏逆变器可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号,进而基于偶次谐波电压调节信号生成驱动控制信号(例如,PWM波等驱动控制信号),并基于驱动控制信号控制变换电路中开关管的导通或者关断。进一步可以理解,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。
采用本申请,光伏逆变器可以基于变换电路的正直流母线电压和负直流母线电压确定偶次谐波电压调节信号的幅值,并基于光伏逆变器的输出电压的相位确定偶次谐波电压调节信号的相位,进而基于偶次谐波电压调节信号生成驱动控制信号。在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法精确简便,适用性强。
结合第三方面第二种可能的实施方式,在第三种可能的实施方式中,基于光伏逆变器的输出电压的相位生成偶次谐波相位信号,可包括:检测光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位。基于光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位判断负载的类型,并基于光伏逆变器的输出电压的相位和负载的类型生成偶次谐波相位信号,负载的类型为感性负载、容性负载和/或阻性负载中的一种或几种。可以理解,光伏逆变器可以通过采集电路检测光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位,进而基于光伏逆变器的输出电压的相位和输出电流的相位判断负载的类型。这里,针对不同类型的负载,不同的相位的调节效果不同。也就是说,对于不同类型的负载,光伏逆变器可以针对阻性负载相应生成第一相位,针对容性负载相应生成第二相位,针对感性负载相应生成第三相位,或者针对多种类型混合的负载生成第四相位,或者针对多种类型混合的负载按照权重将第一相位、第二相位或第三相位进行叠加生成新的相位(例如,第五相位),并基于光伏逆变器的输出电压的相位倍频后与第一相位、第二相位、第三相位、第四相位或者第五相位进行叠加,生成偶次谐波相位信号。进一步可以理解,这里的光伏逆变器也可以基于光伏逆变器的输出电压和输出电流确定光伏逆变器的输出功率(包括有功功率和无功功率),并根据变换电路的有功功率和无功功率的符号判断负载的类型,或者光伏逆变器还可以基于光伏逆变器的输出电压和输出电流确定变换电路的功率因数,并根据变换电路的功率因数判断负载的类型,具体可以基于应用场景确定。这里,光伏逆变器可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。
采用本申请,光伏逆变器可以基于光伏逆变器的输出电压的相位和输出电流的相位判断负载类型,并基于光伏逆变器的输出电压的相位和负载类型确定偶次谐波电压调节信号的相位,再基于偶次谐波电压调节信号生成驱动控制信号。也就是说,光伏逆变器可以基于不同的负载类型生成具有针对性的驱动控制信号,进而在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强,控制效率高。
结合第三方面第三种可能的实施方式,在第四种可能的实施方式中,基于偶次谐波电压调节信号生成驱动控制信号,可包括:基于偶次谐波电压调节信号生成变换电路的电压指令信号。基于变换电路的电压指令信号生成驱动控制信号。可以理解,这里的光伏逆变器可以基于偶次谐波电压调节信号生成变换电路的电压指令信号,进而光伏逆变器可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断,使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便。
结合第三方面第四种可能的实施方式,在第五种可能的实施方式中,基于偶次谐波电压调节信号生成变换电路的电压指令信号,可包括:检测外部的中控系统的基波指令。将基波指令和偶次谐波电压调节信号叠加得到变换电路的电压指令信号。可以理解,这里的光伏逆变器可以检测外部中控系统发送的基波指令,基于基波指令直接得到基波信号或者经过计算得到基波信号,并将基波信号与偶次谐波电压调节信号叠加调制,得到变换电路的电压指令信号,进而光伏逆变器可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断,结构简单,控制方法简便,控制效率高。
结合第三方面第五种可能的实施方式,在第六种可能的实施方式中,在基于偶次谐波电压调节信号生成变换电路的电压指令信号之后,方法还可包括:检测光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号。基于电压反馈信号和变换电路的电压指令信号生成一级电压指令信号。基于一级电压指令信号生成驱动控制信号。可以理解,这里的光伏逆变器可以检测光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号,光伏逆变器可以基于电压反馈信号与电压指令信号进行比较调节,生成一级电压指令信号(也即,基于电压反馈信号调整后的电压指令信号)。进而光伏逆变器还可基于一级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断。
采用本申请,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电压作为电压反馈信号实时调整驱动控制信号,控制效率高。
结合第三方面第六种可能的实施方式,在第七种可能的实施方式中,在基于电压反馈信号和变换电路的电压指令信号生成一级电压指令信号之后,方法还可包括:检测光伏逆变器的输出电流,并将光伏逆变器的输出电流作为电流反馈信号。基于一级电压指令信号和电流反馈信号生成二级电压指令信号。基于二级电压指令信号生成驱动控制信号。可以理解,这里的光伏逆变器可以检测光伏逆变器的输出电流,并将 光伏逆变器的输出电流作为电流反馈信号,进而光伏逆变器可以基于电流反馈信号与一级电压指令信号进行比较调节,生成二级电压指令信号(也即,基于电压反馈信号和电流反馈信号调整后的电压指令信号)。这里,光伏逆变器还可基于二级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断。
采用本申请,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电流作为电流反馈信号实时调整驱动控制信号,控制效率高。
结合第三方面第七种可能的实施方式,在第八种可能的实施方式中,在基于一级电压指令信号和电流反馈信号生成二级电压指令信号之后,方法还可包括:检测偶次谐波电压调节信号,基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。这里,光伏逆变器也可以检测偶次谐波电压调节信号和基于外部的中控系统的基波指令生成的基波信号(也可以直接检测偶次谐波电压调节信号和基波信号叠加后的信号),并基于偶次谐波电压调节信号、基波信号和二级电压指令信号生成驱动控制信号。可以理解,光伏逆变器可以基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。这里,光伏逆变器中没有电流控制单元时,光伏逆变器也可以基于偶次谐波电压调节信号和一级电压指令信号生成驱动控制信号。
采用本申请,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以进一步基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号,相当于在驱动控制信号中增加注入偶次谐波分量,进一步维持变换电路的中点平衡,控制效率高。
附图说明
图1是本申请提供的两种NPC逆变电路的结构示意图;
图2是本申请实施例提供的光伏逆变器的应用场景示意图;
图3是本申请实施例提供的光伏逆变器的一结构示意图;
图4是本申请实施例提供的光伏逆变器的另一结构示意图;
图5是本申请实施例提供的光伏逆变器的另一结构示意图;
图6是本申请实施例提供的光伏逆变器的另一结构示意图;
图7是本申请实施例提供的供电系统的结构示意图;
图8是本申请实施例提供的控制方法的一流程示意图;
图9是本申请实施例提供的控制方法的另一流程示意图。
具体实施方式
本申请提供的光伏逆变器可以适用于新能源发电领域,传统发电调峰调频领域,重要设备供电领域,新能源汽车领域等多种应用领域,具体可根据实际应用场景确定,在此不做限制。本申请提供的光伏逆变器可适用于储能系统,不间断供电系统,电机驱动系统等不同的供电系统,具体可根据实际应用场景确定,在此不做限制。本申请提供的光伏逆变器可适配于不同的应用场景,比如,对光能供电环境中的变换电路进行控制的应用场景、风能供电环境中的变换电路进行控制的应用场景、纯储能供电环境中的变换电路进行控制的应用场景或者其它应用场景,下面将以对纯储能供电环境中的变换电路进行控制的应用场景为例进行说明,以下不再赘述。
请参见图2,图2是本申请实施例提供的光伏逆变器的应用场景示意图。在纯储能供电的供电系统中,如图2所示,供电系统包括光伏逆变器1、电源2和负载3,其中,光伏逆变器1包括变换电路13,电源2可通过变换电路13与负载3相连,光伏逆变器1的输入端可以分别连接于变换电路13的输入端和输出端。在一些可行的实施方式中,电源2可以通过变换电路13为负载3供电。可以理解,本申请提供的电源2适用于为在无市电或者市电差的偏远地区的基站设备供电,或者为家用设备(如冰箱、空调等等)供电等为多种类型的用电设备供电的应用场景中,具体可根据实际应用场景确定,在此不做限制。进一步可以理解,图2中的负载3可以包括电网,这里的电网可以包括传输线、电力中转站点、通信基站或者家用设备等用电设备或电力传输设备。这里的负载3还可以包括电机、整流设备等在运行(供电或者用电)过程中电压和电流为非线性关系的负载(用电装置或者电力传输装置)。在一些可行的实施方式中,变换电路13可以是NPC逆变电路,请一并结合图1,如图1所示,变换电路13可包括两组电容(例如,C11和C12)和至少一个开关桥臂(例如,开关管Ta1、开关管Ta2、开关管Ta3和开关管Ta4组成的开关桥臂,开 关管Tb1、开关管Tb2、开关管Tb3和开关管Tb4组成的开关桥臂,以及开关管Tc1、开关管Tc2、开关管Tc3和开关管Tc4组成的开关桥臂)。这里,一组电容可以是一个电容,也可以是多个电容集成组成的电容。在供电过程中,变换电路13可以通过开关桥臂中不同的开关管的导通和关断,分别对两组电容进行充电和放电,将电源提供的直流电能转换为交流电能传输给负载。可以理解,当光伏逆变器1的输出电压(或者输出电流)不对称时(例如,开关管型号不同、损耗不同、负载不对称、或者受开关死区等因素影响),在一个供电周期内,流入和流出变换电路13中点的电荷量并不相同。也就是说,变换电路13中两组电容的充电量(或放电量)并不相等,导致变换电路13的两组电容的电压不相等(也即,变换电路13的正直流母线电压和负直流母线电压不相等,或者说,变换电路13的中点电压不平衡),这会使得光伏逆变器1的输出电压(或者输出电流)产生畸变,甚至损坏系统内的功率元件。这里,光伏逆变器1还可以包括采集电路11和控制器12。这里,采集电路11可以获取变换电路13的正直流母线电压和负直流母线电压。进而控制器12可以基于变换电路13的正直流母线电压、负直流母线电压和光伏逆变器1的输出电压的相位生成偶次谐波电压调节信号,并基于偶次谐波电压调节信号生成驱动控制信号(例如,PWM波等驱动控制信号),控制变换电路中开关管的导通或者关断。这里,光伏逆变器1可以在控制变换电路13输出目标电压的同时,减小变换电路13的正直流母线电压和负直流母线电压的差值,提高变换电路13中点的电压稳定性,结构简单,控制方法简便,适用性强。
下面将结合图3至图9对本申请提供的光伏逆变器及其工作原理进行示例说明。
请参见图3,图3是本申请实施例提供的光伏逆变器的一结构示意图。如图3所示,供电系统包括电源、光伏逆变器、变换电路103和负载,光伏逆变器包括采集电路101和控制器102。这里,电源可通过变换电路103连接负载,采集电路101的第一采样端可连接变换电路103的直流母线,采集电路101的第二采样端可连接变换电路103的输出端,采集电路101的输出端可连接控制器102的一端,控制器102的另一端可连接变换电路103的控制端。这里,变换电路103可包括两组电容(例如,C1和C2)和至少一个开关桥臂(图3中所示的变换电路103包括3组开关管Ta1、开关管Ta2、开关管Ta3和开关管Ta4组成的开关桥臂,开关管Tb1、开关管Tb2、开关管Tb3和开关管Tb4组成的开关桥臂,以及开关管Tc1、开关管Tc2、开关管Tc3和开关管Tc4组成的开关桥臂),一个开关桥臂包括多个开关管,两组电容串联后与至少一个开关桥臂并联于变换电路103的正直流母线和负直流母线之间,两组电容的串联连接点为变换电路103的中点,采集电路的第一采样端的三个端子分别连接变换电路103的正直流母线、负直流母线和中点。
这里,控制器102可以基于变换电路103的正直流母线电压、负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号。在一些可行的实施方式中,采集电路101还可基于变换电路103的正直流母线的电位、负直流母线的电位和中点的电位获取变换电路103的正直流母线电压和负直流母线电压,连接方式简单,检测方法简便,检测效率高。控制器102可以基于偶次谐波电压调节信号生成驱动控制信号(例如,PWM波等驱动控制信号),并基于驱动控制信号控制变换电路103中开关管的导通或者关断。这里,控制器102基于偶次谐波电压调节信号生成的驱动控制信号,可以控制变换电路103输出含有偶次谐波的输出电压,输出电压中的偶次谐波经负载产生含有偶次谐波分量的输出电流。其中,输出电流中的偶次谐波分量可以与驱动控制信号中的基波分量相互作用,和/或驱动控制信号中的偶次谐波分量可以与输出电流中的基波分量相互作用,进而可以调节变换电路103的中点电位,使得变换电路103的中点电位保持平衡。
可以理解,本申请提供的光伏逆变器可以适用于采用DPWM波作为驱动控制信号的变换电路,也可以适用于采用其他PWM波(例如,SPWM波、THIPWM波、CBSVPWM波等)作为驱动控制信号的变换电路,适用场景广泛,控制效果好。
采用本申请提供的实施方式,光伏逆变器可以在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。
在一些可行的实施方式中,控制器102可基于正直流母线电压和负直流母线电压生成偶次谐波幅值信号。这里的控制器102还可基于输出电压的相位生成偶次谐波相位信号。这里的控制器102还可基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号。可以理解,控制器102可以基于变换电路的正直流母线电压和负直流母线电压,得到变换电路103中点电压差,并基于变换电路103中点电压差生成偶次谐波幅值信号。控制器102还可以基于光伏逆变器的输出电压的相位倍频后生成相应的偶次谐波相位信号。同时可以理解,控制器102还可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压 调节信号,进而基于偶次谐波电压调节信号生成驱动控制信号,并基于驱动控制信号控制变换电路103中开关管的导通或者关断。进一步可以理解,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。
采用本申请提供的实施方式,光伏逆变器可以基于变换电路的正直流母线电压和负直流母线电压确定偶次谐波电压调节信号的幅值,并基于光伏逆变器的输出电压的相位确定偶次谐波电压调节信号的相位,进而基于偶次谐波电压调节信号生成驱动控制信号。在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法精确简便,适用性强。
在一些可行的实施方式中,采集电路101还可用于获取光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位。控制器102还可基于光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位判断负载的类型,并基于光伏逆变器的输出电压的相位和负载的类型生成偶次谐波相位信号。这里,负载的类型为感性负载、容性负载和/或阻性负载中的一种或几种。可以理解,光伏逆变器可以通过采集电路101获取光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位,进而基于光伏逆变器的输出电压的相位和输出电流的相位判断负载的类型。这里,针对不同类型的负载,不同的相位的调节效果不同。也就是说,对于不同类型的负载,光伏逆变器可以针对阻性负载相应生成第一相位,针对容性负载相应生成第二相位,针对感性负载相应生成第三相位,或者针对多种类型混合的负载生成第四相位,或者针对多种类型混合的负载按照权重将第一相位、第二相位或第三相位进行叠加生成新的相位(例如,第五相位),并基于光伏逆变器的输出电压的相位倍频后与第一相位、第二相位、第三相位、第四相位或者第五相位进行叠加,生成偶次谐波相位信号。进一步可以理解,这里的光伏逆变器也可以基于光伏逆变器的输出电压和输出电流确定光伏逆变器的输出功率(包括有功功率和无功功率),并根据光伏逆变器的有功功率和无功功率的符号判断负载的类型,或者光伏逆变器还可以基于光伏逆变器的输出电压和输出电流确定光伏逆变器的功率因数,并根据光伏逆变器的功率因数判断负载的类型,具体可以基于应用场景确定。这里,光伏逆变器可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。进一步还可以理解,这里的光伏逆变器可以针对多种类型混合的负载生成多个不同相位的偶次谐波相位信号,并基于多个不同相位的偶次谐波相位信号和偶次谐波幅值信号生成多个偶次谐波电压调节信号,并将多个偶次谐波电压调节信号按照权重进行叠加得到偶次谐波电压调节信号。
采用本申请,光伏逆变器可以基于光伏逆变器的输出电压的相位和输出电流的相位判断负载类型,并基于光伏逆变器的输出电压的相位和负载类型确定偶次谐波电压调节信号的相位,再基于偶次谐波电压调节信号生成驱动控制信号。也就是说,光伏逆变器可以基于不同的负载类型生成具有针对性的驱动控制信号,进而在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强,控制效率高。
在一些可行的实施方式中,控制器可包括信号生成单元、电压控制单元和驱动控制单元。请参见图4,图4是本申请实施例提供的光伏逆变器的另一结构示意图。如图4所示,这里,控制器302可包括信号生成单元3020、电压控制单元3021和驱动控制单元3022,信号生成单元3020可连接电压控制单元3021和采集电路301,电压控制单元3021可通过驱动控制单元3022连接变换电路303。这里的信号生成单元3020可基于正直流母线电压和负直流母线电压生成偶次谐波幅值信号,基于光伏逆变器的输出电压的相位生成偶次谐波相位信号,并基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号。这里的电压控制单元3021可基于偶次谐波电压调节信号生成变换电路303的电压指令信号。这里的驱动控制单元3022可基于变换电路303的电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路303中的开关管的导通或关断。可以理解,这里的光伏逆变器可以基于偶次谐波电压调节信号生成变换电路303的电压指令信号,进而光伏逆变器可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路303中的开关管的导通或关断,使得变换电路303在输出目标电压的同时保持变换电路303的中点电压稳定,结构简单,控制方法简便。
在一些可行的实施方式中,电压控制单元3021还可用于获取外部的中控系统的基波指令。这里的电压控制单元3021还可用于将基波指令和偶次谐波电压调节信号叠加得到变换电路303的电压指令信号。可以理解,这里的光伏逆变器可以获取外部中控系统发送的基波指令,基于基波指令直接得到基波信号或 者经过计算得到基波信号,并将基波信号与偶次谐波电压调节信号叠加调制,得到变换电路303的电压指令信号,进而驱动控制单元3022可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路303中的开关管的导通或关断,结构简单,控制方法简便,控制效率高。
在一些可行的实施方式中,控制器还可包括电压反馈单元,具体请参见图5,图5是本申请实施例提供的光伏逆变器的另一结构示意图。如图5所示,控制器402还可包括电压反馈单元4023。这里的电压反馈单元4023可连接采集电路401和电压控制单元4021。其中,图5中采集电路401和信号生成单元4020与前述图4中采集电路301和信号生成单元3020的连接方式与工作原理相同,在此不再赘述。这里的电压反馈单元4023可用于通过采集电路401获取光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号。这里的电压控制单元4021还可基于电压反馈信号和变换电路403的电压指令信号生成一级电压指令信号。这里的驱动控制单元4022还可基于一级电压指令信号生成驱动控制信号。可以理解,这里的电压控制单元4021可以是电压控制环路,这里的电压反馈单元4023可以获取光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号输入给电压控制单元,进而电压控制单元可以基于电压反馈信号与电压指令信号进行比较调节,生成一级电压指令信号(也即,基于电压反馈信号调整后的电压指令信号)。进而驱动控制单元4022还可基于一级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路403中的开关管的导通或关断。
采用本申请提供的实施方式,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电压作为电压反馈信号实时调整驱动控制信号,控制效率高。
在一些可行的实施方式中,控制器还可包括电流控制单元和电流反馈单元。具体请参见图6,图6是本申请实施例提供的光伏逆变器的另一结构示意图。如图6所示,控制器502还可包括电流控制单元5024和电流反馈单元5025。这里,电流控制单元5024可连接电压控制单元5021和驱动控制单元5022,电流反馈单元5025可连接采集电路501和电流控制单元5024。其中,图6中采集电路501与前述图5中采集电路401的连接方式与工作原理相同,在此不再赘述。这里的电流反馈单元5025可通过采集电路501获取光伏逆变器的输出电流,并将光伏逆变器的输出电流作为电流反馈信号。这里的电流控制单元5024可基于电压控制单元5021输出的一级电压指令信号和电流反馈信号生成二级电压指令信号。这里的驱动控制单元5022还可基于二级电压指令信号生成驱动控制信号。可以理解,这里的电流控制单元5024可以是电流控制环路,这里的电流反馈单元5025可以获取光伏逆变器的输出电流,并将光伏逆变器的输出电流作为电流反馈信号输入给电流控制单元5024,进而电流控制单元5024可以基于电流反馈信号与电压控制单元5021输出的一级电压指令信号进行比较调节,生成二级电压指令信号(也即,基于电压反馈信号和电流反馈信号调整后的电压指令信号)。这里,驱动控制单元5022还可基于二级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路503中的开关管的导通或关断。
采用本申请提供的实施方式,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电流作为电流反馈信号实时调整驱动控制信号,控制效率高。
在一些可行的实施方式中,驱动控制单元5022还可连接信号生成单元5020。这里的驱动控制单元5022还可用于获取信号生成单元5020的偶次谐波电压调节信号,基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。这里,驱动控制单元5022也可以获取信号生成单元5020的偶次谐波电压调节信号和基于外部的中控系统的基波指令生成的基波信号(也可以直接获取偶次谐波电压调节信号和基波信号叠加后的信号),并基于偶次谐波电压调节信号、基波信号和二级电压指令信号生成驱动控制信号。可以理解,这里的驱动控制单元5022可以是PWM波的生成电路或其他类型调制信号的生成电路,也可以是PWM波的生成电路或其他类型调制信号的生成电路与开关管驱动电路的组合电路。这里的驱动控制单元5022可以获取信号生成单元5020输出的偶次谐波电压调节信号,进而驱动控制单元5022可以基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。在一些可行的实施方式中,在光伏逆变器中不包括电流控制单元5024和电流反馈单元5025时,驱动控制单元5022也可以基于偶次谐波电压调节信号和一级电压指令信号(也即,电压控制单元5021基于电压反馈单元5023传输的电压反馈信号调整后的电压指令信号)生成驱动控制信号。
采用本申请提供的实施方式,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时驱动控制单元可以进一步基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号,相当于在驱动控制信号中增加注入偶次谐波分量,进一步维持变换电路的中点平衡, 控制效率高。
在一些可行的实施方式中,请一并参见图7,图7是本申请实施例提供的供电系统的结构示意图。如图7所示,供电系统可适用于供电系统,供电系统还包括电源和光伏逆变器,这里的光伏逆变器适用于上述图1至图6所示的任一供电系统或者供电系统中的光伏逆变器,图7中仅以图6所示的光伏逆变器为例作为说明。可以理解,图7中采集电路601、控制器602中的信号生成单元6020、电压控制单元6021、驱动控制单元6022、电压反馈单元6023、电流控制单元6024和电流反馈单元6025与前述图6中采集电路501、控制器502中的信号生成单元5020、电压控制单元5021、驱动控制单元5022、电压反馈单元5023、电流控制单元5024和电流反馈单元5025的连接方式与工作原理相同,在此不再赘述。在图7所示的供电系统中,还可以包括变压器604,变压器604可连接变换电路603和负载。请进一步参见图7,供电系统中还可以包括并离网接线装置605,变换电路603可通过并离网接线装置605为负载中的传输线、电力中转站点、蓄电池、通信基站或者家用设备等用电设备或电力传输设备进行供电。
在本申请中,光伏逆变器、供电系统和供电系统中功能模块的组成方式多样、灵活,可适应不同的供电环境,提高供电系统的应用场景的多样性,增强供电系统的适应性。同时,上述图1至图7所示的任一供电系统或者光伏逆变器,都可以控制变换电路中开关管的导通或关断时间,在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。为方便描述,下面将以图2所示的供电系统的结构对本申请实施例提供的并网控制方法进行示例说明。
请参见图8,图8是本申请提供的控制方法的一流程示意图。本申请提供的控制方法适用于光伏逆变器,光伏逆变器包括变换电路以及正负直流母线,正负直流母线的一端连接变换电路,正负直流母线的另一端用于连接电源,该控制方法也适用于上述图1至图7所示的任一供电系统或者供电系统中的光伏逆变器。如图8所示,本申请提供的控制方法包括如下步骤:
S701:检测变换电路的正直流母线电压和变换电路的负直流母线电压。
S702:基于变换电路的正直流母线电压、变换电路的负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,并基于偶次谐波电压调节信号生成驱动控制信号,控制变换电路中的开关管导通或关断。
在本申请提供的实施方式中,光伏逆变器可以基于变换电路的正直流母线电压、负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号。进而光伏逆变器可以基于偶次谐波电压调节信号生成驱动控制信号,并基于驱动控制信号控制变换电路中开关管的导通或者关断。这里,基于偶次谐波电压调节信号生成的驱动控制信号可以控制变换电路输出含有偶次谐波的输出电压,输出电压中的偶次谐波经负载产生含有偶次谐波分量的输出电流,输出电流中的偶次谐波分量可以与驱动控制信号中的基波分量相互作用,和/或驱动控制信号中的偶次谐波分量可以与输出电流中的基波分量相互作用,进而可以调节变换电路的中点电位,使得变换电路的中点电位保持平衡。
采用本申请,光伏逆变器可以在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。
在一些可行的实施方式中,变换电路可包括两组电容和至少一个开关桥臂,在执行步骤S701中的检测变换电路的正直流母线电压和变换电路的负直流母线电压,方法可包括:基于变换电路的正直流母线的电位、负直流母线的电位和中点的电位检测变换电路的正直流母线电压和负直流母线电压。这种方法的连接方式简单,检测方法简便,检测效率高。
在一些可行的实施方式中,请一并参见图9,图9是本申请提供的控制方法的另一流程示意图。如图9所示,前述步骤S701中的基于变换电路的正直流母线电压、变换电路的负直流母线电压和光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,可以包括如下步骤:
S801:基于变换电路的正直流母线电压和变换电路的负直流母线电压生成偶次谐波幅值信号。
S802:基于光伏逆变器的输出电压的相位生成偶次谐波相位信号。
S803:基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号。
可以理解,光伏逆变器可以检测变换电路的正直流母线电压和负直流母线电压,进而得到变换电路中点电压差,并基于变换电路中点电压差生成偶次谐波幅值信号。光伏逆变器可以检测光伏逆变器的输出电压的相位,进而基于光伏逆变器的输出电压的相位倍频后生成相应的偶次谐波相位信号。可以理解,光伏逆变器可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号,进而基于偶次谐波电压调节信号生成驱动控制信号(例如,PWM波等驱动控制信号),并基于驱动控制信号控制变换电路中开关 管的导通或者关断。进一步可以理解,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。
采用本申请,光伏逆变器可以基于变换电路的正直流母线电压和负直流母线电压确定偶次谐波电压调节信号的幅值,并基于光伏逆变器的输出电压的相位确定偶次谐波电压调节信号的相位,进而基于偶次谐波电压调节信号生成驱动控制信号。在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法精确简便,适用性强。
在一些可行的实施方式中,前述步骤S802中基于光伏逆变器的输出电压的相位生成偶次谐波相位信号,可包括:检测光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位。基于光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位判断负载的类型,并基于光伏逆变器的输出电压的相位和负载的类型生成偶次谐波相位信号,负载的类型为感性负载、容性负载和/或阻性负载中的一种或几种。可以理解,光伏逆变器可以通过采集电路检测光伏逆变器的输出电压的相位和光伏逆变器的输出电流的相位,进而基于光伏逆变器的输出电压的相位和输出电流的相位判断负载的类型。这里,针对不同类型的负载,不同的相位的调节效果不同。也就是说,对于不同类型的负载,光伏逆变器可以针对阻性负载相应生成第一相位,针对容性负载相应生成第二相位,针对感性负载相应生成第三相位,或者针对多种类型混合的负载生成第四相位,或者针对多种类型混合的负载按照权重将第一相位、第二相位或第三相位进行叠加生成新的相位(例如,第五相位),并基于光伏逆变器的输出电压的相位倍频后与第一相位、第二相位、第三相位、第四相位或者第五相位进行叠加,生成偶次谐波相位信号。进一步可以理解,这里的光伏逆变器也可以基于光伏逆变器的输出电压和输出电流确定光伏逆变器的输出功率(包括有功功率和无功功率),并根据变换电路的有功功率和无功功率的符号判断负载的类型,或者光伏逆变器还可以基于光伏逆变器的输出电压和输出电流确定变换电路的功率因数,并根据变换电路的功率因数判断负载的类型,具体可以基于应用场景确定。这里,光伏逆变器可以基于偶次谐波幅值信号和偶次谐波相位信号生成偶次谐波电压调节信号,这里的偶次谐波电压调节信号可以是基于一种偶次谐波(例如,2次谐波等)生成的偶次谐波电压调节信号,也可以是基于多种偶次谐波(例如,2次谐波、4次谐波等)叠加后生成的偶次谐波电压调节信号。
采用本申请,光伏逆变器可以基于光伏逆变器的输出电压的相位和输出电流的相位判断负载类型,并基于光伏逆变器的输出电压的相位和负载类型确定偶次谐波电压调节信号的相位,再基于偶次谐波电压调节信号生成驱动控制信号。也就是说,光伏逆变器可以基于不同的负载类型生成具有针对性的驱动控制信号,进而在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强,控制效率高。
在一些可行的实施方式中,前述步骤S702中基于偶次谐波电压调节信号生成驱动控制信号,可包括:基于偶次谐波电压调节信号生成变换电路的电压指令信号。基于变换电路的电压指令信号生成驱动控制信号。可以理解,这里的光伏逆变器可以基于偶次谐波电压调节信号生成变换电路的电压指令信号,进而光伏逆变器可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断,使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便。
在一些可行的实施方式中,前述步骤S702中基于偶次谐波电压调节信号生成变换电路的电压指令信号,可包括:检测外部的中控系统的基波指令。将基波指令和偶次谐波电压调节信号叠加得到变换电路的电压指令信号。可以理解,这里的光伏逆变器可以检测外部中控系统发送的基波指令,基于基波指令直接得到基波信号或者经过计算得到基波信号,并将基波信号与偶次谐波电压调节信号叠加调制,得到变换电路的电压指令信号,进而光伏逆变器可以基于电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断,结构简单,控制方法简便,控制效率高。
在一些可行的实施方式中,在执行步骤S702中基于偶次谐波电压调节信号生成变换电路的电压指令信号之后,方法还可包括:检测光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号。基于电压反馈信号和变换电路的电压指令信号生成一级电压指令信号。基于一级电压指令信号生成驱动控制信号。可以理解,这里的光伏逆变器可以检测光伏逆变器的输出电压,并将光伏逆变器的输出电压作为电压反馈信号,光伏逆变器可以基于电压反馈信号与电压指令信号进行比较调节,生成一级电压指令信号(也即,基于电压反馈信号调整后的电压指令信号)。进而光伏逆变器还可基于一级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断。
采用本申请提供的实施方式,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定, 结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电压作为电压反馈信号实时调整驱动控制信号,控制效率高。
在一些可行的实施方式中,在基于电压反馈信号和变换电路的电压指令信号生成一级电压指令信号之后,方法还可包括:检测光伏逆变器的输出电流,并将光伏逆变器的输出电流作为电流反馈信号。基于一级电压指令信号和电流反馈信号生成二级电压指令信号。基于二级电压指令信号生成驱动控制信号。可以理解,这里的光伏逆变器可以检测光伏逆变器的输出电流,并将光伏逆变器的输出电流作为电流反馈信号,进而光伏逆变器可以基于电流反馈信号与一级电压指令信号进行比较调节,生成二级电压指令信号(也即,基于电压反馈信号和电流反馈信号调整后的电压指令信号)。这里,光伏逆变器还可基于二级电压指令信号生成驱动控制信号,并基于驱动控制信号控制变换电路中的开关管的导通或关断。
采用本申请提供的实施方式,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时光伏逆变器可以基于光伏逆变器的输出电流作为电流反馈信号实时调整驱动控制信号,控制效率高。
在一些可行的实施方式中,在基于一级电压指令信号和电流反馈信号生成二级电压指令信号之后,方法还可包括:检测信号生成单元的偶次谐波电压调节信号,基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。这里,光伏逆变器也可以检测偶次谐波电压调节信号和基于外部的中控系统的基波指令生成的基波信号(也可以直接检测偶次谐波电压调节信号和基波信号叠加后的信号),并基于偶次谐波电压调节信号、基波信号和二级电压指令信号生成驱动控制信号。可以理解,光伏逆变器可以基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号。这里,在光伏逆变器中没有电流控制单元时,驱动控制单元也可以基于偶次谐波电压调节信号和一级电压指令信号生成驱动控制信号。
采用本申请提供的实施方式,可以使得变换电路在输出目标电压的同时保持变换电路的中点电压稳定,结构简单,控制方法简便,同时驱动控制单元可以进一步基于偶次谐波电压调节信号和二级电压指令信号生成驱动控制信号,相当于在驱动控制信号中增加注入偶次谐波分量,进一步维持变换电路的中点平衡,控制效率高。
在本申请中,光伏逆变器可以在控制变换电路输出目标电压的同时,减小变换电路的正直流母线电压和负直流母线电压的差值,提高变换电路中点的电压稳定性,结构简单,控制方法简便,适用性强。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种光伏逆变器,用于供电系统,其特征在于,所述光伏逆变器包括变换电路、采集电路和控制器;
    所述变换电路的输入端用于通过正直流母线和负直流母线连接电源,所述变换电路的输出端用于连接负载;
    所述采集电路用于获取所述变换电路的正直流母线电压和所述变换电路的负直流母线电压;
    所述控制器用于基于所述变换电路的正直流母线电压、所述变换电路的负直流母线电压和所述光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,并基于所述偶次谐波电压调节信号生成驱动控制信号,控制所述变换电路中的开关管导通或关断,以控制所述变换电路输出目标电压且减小所述正直流母线电压和所述负直流母线电压的差值。
  2. 根据权利要求1所述的光伏逆变器,其特征在于,所述变换电路包括两组电容和至少一个开关桥臂,一个所述开关桥臂包括多个开关管,所述两组电容串联后与所述至少一个开关桥臂并联于所述变换电路的正直流母线和负直流母线之间,所述两组电容的串联连接点为所述变换电路的中点,所述采集电路的输入端连接所述变换电路的所述正直流母线、所述负直流母线和所述中点;
    所述采集电路用于基于所述变换电路的所述正直流母线的电位、所述负直流母线的电位和所述中点的电位获取所述变换电路的所述正直流母线电压和所述负直流母线电压。
  3. 根据权利要求1或2所述的光伏逆变器,其特征在于,所述控制器还用于基于所述正直流母线电压和所述负直流母线电压生成偶次谐波幅值信号,基于所述光伏逆变器的输出电压的相位生成偶次谐波相位信号,并基于所述偶次谐波幅值信号和所述偶次谐波相位信号生成所述偶次谐波电压调节信号。
  4. 根据权利要求3所述的光伏逆变器,其特征在于,所述采集电路还用于获取所述光伏逆变器的输出电压的相位和所述光伏逆变器的输出电流的相位;
    所述控制器还用于基于所述光伏逆变器的输出电压的相位和所述光伏逆变器的输出电流的相位判断所述负载的类型,并基于所述光伏逆变器的输出电压的相位和所述负载的类型生成所述偶次谐波相位信号,所述负载的类型为感性负载、容性负载和/或阻性负载中的一种或几种。
  5. 根据权利要求4所述的光伏逆变器,其特征在于,所述控制器包括信号生成单元、电压控制单元和驱动控制单元,所述调节信号生成单元连接所述采集电路和所述电压控制单元,所述电压控制单元通过所述驱动控制单元连接所述变换电路;
    所述信号生成单元用于基于所述正直流母线电压和所述负直流母线电压生成偶次谐波幅值信号,基于所述光伏逆变器的输出电压的相位生成偶次谐波相位信号,并基于所述偶次谐波幅值信号和所述偶次谐波相位信号生成所述偶次谐波电压调节信号;
    所述电压控制单元用于基于所述偶次谐波电压调节信号生成所述变换电路的电压指令信号;
    所述驱动控制单元用于基于所述变换电路的电压指令信号生成所述驱动控制信号,并基于所述驱动控制信号控制所述变换电路中的开关管的导通或关断。
  6. 根据权利要求5所述的光伏逆变器,其特征在于,所述电压控制单元还用于获取所述外部的中控系统的基波指令;
    所述电压控制单元还用于将所述基波指令和所述偶次谐波电压调节信号叠加得到所述变换电路的电压指令信号。
  7. 根据权利要求6所述的光伏逆变器,其特征在于,所述控制器还包括电压反馈单元,所述电压反馈单元连接所述采集电路和所述电压控制单元;
    所述电压反馈单元用于通过所述采集电路获取所述光伏逆变器的输出电压,并将所述光伏逆变器的输出电压作为电压反馈信号;
    所述电压控制单元还用于基于所述电压反馈信号和所述变换电路的电压指令信号生成一级电压指令信号;
    所述驱动控制单元还用于基于所述一级电压指令信号生成所述驱动控制信号。
  8. 根据权利要求7所述的光伏逆变器,其特征在于,所述控制器还包括电流控制单元和电流反馈单元,所述电流控制单元连接所述电压控制单元和所述驱动控制单元,所述电流反馈单元连接所述采集电路和所述电流控制单元;
    所述电流反馈单元用于通过所述采集电路获取所述光伏逆变器的输出电流,并将所述光伏逆变器的输出电流作为电流反馈信号;
    所述电流控制单元用于基于所述电压控制单元输出的一级电压指令信号和所述电流反馈信号生成二级电压指令信号;
    所述驱动控制单元还用于基于所述二级电压指令信号生成所述驱动控制信号。
  9. 根据权利要求8所述的光伏逆变器,其特征在于,所述驱动控制单元还连接所述信号生成单元;
    所述驱动控制单元还用于获取所述信号生成单元的所述偶次谐波电压调节信号,基于所述偶次谐波电压调节信号和所述二级电压指令信号生成所述驱动控制信号。
  10. 一种光伏逆变器控制方法,用于光伏逆变器,所述光伏逆变器包括变换电路以及正负直流母线,所述正负直流母线的一端连接所述变换电路,所述正负直流母线的另一端用于连接电源,其特征在于,所述方法包括:
    检测所述变换电路的正直流母线电压和所述变换电路的负直流母线电压;
    基于所述变换电路的正直流母线电压、所述变换电路的负直流母线电压和所述光伏逆变器的输出电压的相位生成偶次谐波电压调节信号,并基于所述偶次谐波电压调节信号生成驱动控制信号,控制所述变换电路中的开关管导通或关断,以控制所述变换电路输出目标电压且减小所述变换电路的所述正直流母线电压和所述负直流母线电压的差值。
  11. 根据权利要求10所述的控制方法,其特征在于,所述变换电路包括两组电容和至少一个开关桥臂,所述检测所述变换电路的正直流母线电压和所述变换电路的负直流母线电压,包括:
    基于所述变换电路的所述正直流母线的电位、所述负直流母线的电位和所述中点的电位检测所述变换电路的所述正直流母线电压和所述负直流母线电压。
  12. 根据权利要求10或11所述的控制方法,其特征在于,所述基于所述变换电路的正直流母线电压、所述变换电路的负直流母线电压和所述光伏逆变器的输出电压生成偶次谐波电压调节信号,包括:
    基于所述变换电路的正直流母线电压和所述变换电路的负直流母线电压生成偶次谐波幅值信号,基于所述光伏逆变器的输出电压的相位生成偶次谐波相位信号,并基于所述偶次谐波幅值信号和所述偶次谐波相位信号生成所述偶次谐波电压调节信号。
  13. 根据权利要求12所述的控制方法,其特征在于,所述基于所述光伏逆变器的输出电压的相位生成偶次谐波相位信号,包括:
    检测所述光伏逆变器的输出电压的相位和所述光伏逆变器的输出电流的相位;
    基于所述光伏逆变器的输出电压的相位和所述光伏逆变器的输出电流的相位判断所述负载的类型,并基于所述光伏逆变器的输出电压的相位和所述负载的类型生成所述偶次谐波相位信号,所述负载的类型为感性负载、容性负载和/或阻性负载中的一种或几种。
  14. 根据权利要求13所述的控制方法,其特征在于,所述基于所述偶次谐波电压调节信号生成驱动控制信号,包括:
    基于所述偶次谐波电压调节信号生成所述变换电路的电压指令信号;
    基于所述变换电路的电压指令信号生成所述驱动控制信号。
  15. 根据权利要求14所述的控制方法,其特征在于,所述基于所述偶次谐波电压调节信号生成所述变换电路的电压指令信号,包括:
    检测所述外部的中控系统的基波指令;
    将所述基波指令和所述偶次谐波电压调节信号叠加得到所述变换电路的电压指令信号。
PCT/CN2023/104301 2022-09-16 2023-06-29 光伏逆变器及其控制方法 WO2024055705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211131328.8A CN115498906A (zh) 2022-09-16 2022-09-16 光伏逆变器及其控制方法
CN202211131328.8 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055705A1 true WO2024055705A1 (zh) 2024-03-21

Family

ID=84468250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104301 WO2024055705A1 (zh) 2022-09-16 2023-06-29 光伏逆变器及其控制方法

Country Status (2)

Country Link
CN (1) CN115498906A (zh)
WO (1) WO2024055705A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498906A (zh) * 2022-09-16 2022-12-20 华为数字能源技术有限公司 光伏逆变器及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182455A (ja) * 1995-12-21 1997-07-11 Fuji Electric Co Ltd 3レベルインバータの制御回路
JP2013255317A (ja) * 2012-06-06 2013-12-19 Meidensha Corp 3レベルインバータの制御装置
CN105226982A (zh) * 2015-11-02 2016-01-06 南京航空航天大学 一种基于中点电流的三电平npc逆变器中点电位均衡控制方法
CN108631326A (zh) * 2018-04-26 2018-10-09 南京理工大学 基于Buck型三电平交交变换器的无功和谐波补偿装置
JP2022060920A (ja) * 2020-10-05 2022-04-15 東芝三菱電機産業システム株式会社 3レベル電力変換器の制御装置
CN115498906A (zh) * 2022-09-16 2022-12-20 华为数字能源技术有限公司 光伏逆变器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182455A (ja) * 1995-12-21 1997-07-11 Fuji Electric Co Ltd 3レベルインバータの制御回路
JP2013255317A (ja) * 2012-06-06 2013-12-19 Meidensha Corp 3レベルインバータの制御装置
CN105226982A (zh) * 2015-11-02 2016-01-06 南京航空航天大学 一种基于中点电流的三电平npc逆变器中点电位均衡控制方法
CN108631326A (zh) * 2018-04-26 2018-10-09 南京理工大学 基于Buck型三电平交交变换器的无功和谐波补偿装置
JP2022060920A (ja) * 2020-10-05 2022-04-15 東芝三菱電機産業システム株式会社 3レベル電力変換器の制御装置
CN115498906A (zh) * 2022-09-16 2022-12-20 华为数字能源技术有限公司 光伏逆变器及其控制方法

Also Published As

Publication number Publication date
CN115498906A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
Vázquez et al. A new common-mode transformerless photovoltaic inverter
US9923484B2 (en) Method and system for operating a multilevel electric power inverter
CN102856916B (zh) 一种单相光伏逆变器无功控制方法及电路
WO2024131392A1 (zh) 逆变器及其控制方法
Lin Analysis and implementation of a three-level PWM rectifier/inverter
WO2024055705A1 (zh) 光伏逆变器及其控制方法
CN105958808A (zh) 一种光伏并网逆变器控制方法
CN113489363B (zh) 一种双向h6光伏并网变换器及其调制方法
Kumar et al. Asymmetrical Three-Phase Multilevel Inverter for Grid-Integrated PLL-Less System
CN105119317A (zh) 一种利用光伏发电装置补偿的方法
CN104300820A (zh) 一种两级式三相三电平光伏并网逆变器的数字控制方法
Vijayakumar et al. PV based three-level NPC shunt active power filter with extended reference current generation method
CN104124884A (zh) 光伏逆变器和光伏空调系统
CN108390404B (zh) 一种基于钒电池储能的变流器控制方法
CN111277160A (zh) 一种六开关功率解耦电路及其控制方法
CN106961226B (zh) 一种六开关的微逆变器交流侧功率耦合电路
CN210092891U (zh) 电流型rmc换流器及电动汽车可逆充放电系统
Ronilaya et al. A phase-based control method to control power flow of a grid-connected solar photovoltaics through a single phase micro-inverter
Razi et al. A novel single-stage PWM microinverter topology using two-power switches
CN112491075A (zh) 一种新型储能逆变器控制装置及其控制方法
Vidhyarubini et al. Z-source inverter based photovoltaic power generation system
Toyama et al. Study on a control method of a single-phase utility interactive inverter with a power decoupling function
Lin et al. Single-phase three-level rectifier and random PWM inverter drives
Shanshan et al. Sensorless power balance control for cascaded multilevel converter based solid state transformer
Miyada et al. Buck-Boost PFC Converter with Active Power Decoupling Capability Using Time-sharing Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864443

Country of ref document: EP

Kind code of ref document: A1