WO2015192481A1 - 一种滤波器盖板、滤波器及滤波器盖板加工方法 - Google Patents

一种滤波器盖板、滤波器及滤波器盖板加工方法 Download PDF

Info

Publication number
WO2015192481A1
WO2015192481A1 PCT/CN2014/085870 CN2014085870W WO2015192481A1 WO 2015192481 A1 WO2015192481 A1 WO 2015192481A1 CN 2014085870 W CN2014085870 W CN 2014085870W WO 2015192481 A1 WO2015192481 A1 WO 2015192481A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
hole
cavity
filter cover
cover
Prior art date
Application number
PCT/CN2014/085870
Other languages
English (en)
French (fr)
Inventor
戴晓文
康玉龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/319,937 priority Critical patent/US20170207508A1/en
Priority to EP14894879.7A priority patent/EP3159961A4/en
Priority to JP2016573462A priority patent/JP2017520185A/ja
Publication of WO2015192481A1 publication Critical patent/WO2015192481A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/007Manufacturing frequency-selective devices

Definitions

  • the present invention relates to the field of filters, and more particularly to a filter cover, a filter, and a filter cover method.
  • Existing filters are typically constructed of a plurality of resonant cavities formed by the cavity of the filter mating with the filter cover.
  • the structure of the resonant cavity is as shown in FIG. 1, and includes a fastening nut 101, a threaded through hole 102, a filter cover 103, and a cavity 104 (also a part of the filter cavity). ), the resonant column 105 , the tuning screw 106 .
  • the lower surface of the resonant column 105 is fixed to the bottom of the cavity 104.
  • the filter cover 103 and the cavity 104 are sealed by screws to form a closed cavity.
  • the tuning screw 106 enters the cavity through the threaded through hole 102 in the cover plate 103, and a portion of the tuning screw 106 is inside the resonant column 105 for adjusting the resonant cavity frequency range and is fixed to the filter cover 103 by the tightening nut 101. on. Since the threaded through hole 102 and the tightening nut 101 together fasten the tuning screw 106, the through hole height is too low, which directly affects the stability of the tuning screw 106.
  • the threaded through hole 102 is usually set at a height of 3 mm to 5 mm to ensure the stability of the tuning screw 106. Since the threaded through hole 102 is located on the cover plate 103, the thickness of the cover plate 103 is usually 3 mm - 5 mm.
  • the resonant cavity is a completely enclosed cavity.
  • the ideal conductor wall is called the electric wall in electromagnetic theory, and the electromagnetic wave is incident on the electric wall and will be completely reflected back, and no transmitted wave passes through the electric wall. Therefore, the electric wall encloses a closed cavity. Once an electromagnetic wave of a proper frequency is fed, the electromagnetic wave will be reflected back and forth on the electric wall of the closed cavity, and an electromagnetic standing wave is formed in the closed cavity, and electromagnetic resonance occurs. At this time, even if the external stop feeding energy into the closed cavity, the established electromagnetic resonance will be maintained without attenuation.
  • the cavity formed by the non-ideal conductor wall also has the similar characteristics of the electric wall cavity, except that after the external stop feeding energy, the electromagnetic resonance that has been established inside will not be maintained for a long time, and will follow Time gradually decays and finally disappears, becoming a damped oscillation.
  • the quality factor Q is an important parameter of the resonant cavity. It characterizes the frequency selectivity of the cavity and the energy loss of the cavity.
  • the relationship between the cavity volume and the quality factor Q is that the larger the cavity volume is, the larger the electromagnetic energy stored in the cavity is, and the larger the Q value is. The larger the Q value, the smaller the filter insertion loss. Therefore, as the filter cavity volume increases, the insertion loss can be reduced.
  • Embodiments of the present invention provide a filter cover, a filter, and a filter cover processing method, which solve the problem that the thickness of the filter cover affects the volume of the resonant cavity in the related art.
  • a filter cover provided by an embodiment of the present invention includes a flanged through hole for mounting a tuning screw disposed on a filter cover.
  • the flanged threaded through hole is preferably a one-way flanged threaded through hole, and the flanged edge thereof faces the inside of the filter cover.
  • a confining boss is further disposed on the outer side of the filter cover corresponding to the through-threaded through hole, and a reinforcing rib is disposed around the reinforcing boss.
  • the flanged threaded through hole is a bidirectional flanged threaded through hole.
  • the embodiment of the present invention further provides a filter, the filter includes a cavity, at least one resonant column and the filter cover plate; the filter cover plate is fixed on the cavity; the resonant column is disposed in the cavity; the flanged threaded hole Set at the position on the filter cover that corresponds to the resonant column.
  • at least one resonant cavity is disposed in the cavity of the filter, and at least one resonant column is disposed in each cavity, the axis of the resonant column is parallel to the cavity wall of the resonant cavity, and the bottom end of the resonant column is fixed at the resonance The bottom of the cavity.
  • the top end of the resonant column extends in a trumpet shape toward the periphery.
  • the embodiment of the invention further provides a filter cover processing method, comprising: processing a cover material to obtain a cover base; and punching a side hole at a position where a tuning screw is mounted on the cover base of the cover; Internal tapping.
  • the punching of the edge hole at the position where the tuning screw is mounted on the cover substrate comprises: using a mold to mount the tuning screw on the cover base, and punching the one-way flange toward the inner side of the filter cover. .
  • the punching of the edge hole at the position where the tuning screw is mounted on the cover substrate by the mold comprises: punching the bidirectional flange hole at a position where the tuning screw is mounted on the cover substrate by using a mold.
  • the filter cover provided by the embodiment of the invention is provided with a flanged through hole for mounting the tuning screw.
  • the cover plate provided with the flanged through hole has the following features: The flanged threaded through hole has a certain depth, and the thickness of the other portion on the cover plate is thinner than the depth of the flanged threaded through hole.
  • the flanged threaded through hole is provided on the filter cover plate, and the tuning screw is fixed in the flanged threaded hole, which can reduce the thickness of the cover plate while ensuring that the tuning screw hole has a sufficient number of threads to perform the tuning screw. Fixed to ensure that the tuning screw is stable.
  • the overall thickness of the filter cover is reduced, thereby increasing the volume of the filter cavity, thereby increasing the quality factor Q value and reducing the filter insertion loss, thereby improving the performance of the filter.
  • FIG. 1 is a schematic structural view of a filter cavity in the related art
  • FIG. 2 is a schematic structural view of a filter cover plate mated with a tuning screw and a fastening nut according to Embodiment 1 of the present invention
  • 3 is a schematic structural view of another filter cover plate and a tuning screw and a fastening nut according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural view showing another filter cover cooperated with a tuning screw and a fastening nut according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural diagram of a filter according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic flow chart of a method for processing a filter cover according to Embodiment 3 of the present invention. Preferred embodiment of the invention
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a filter cover plate on which a flanged threaded through hole for mounting a tuning screw is disposed, and a threaded through hole is provided with a thread that engages with the tuning screw.
  • Flange Threaded through holes can be unidirectional flanged threaded through holes or bidirectional flanged threaded through holes.
  • a one-way flanged threaded through hole means that it only flies toward one side of the cover plate, and can be turned toward the inside of the filter cover (the side of the cover plate facing the filter cavity), or toward the filter The outer side of the cover is flanged.
  • a two-way threaded through hole means that it is flanged toward the inside and outside of the filter cover.
  • FIG. 2 is a schematic structural view of a filter cover and a tuning screw and a fastening nut according to an embodiment of the present invention.
  • a flanged threaded through hole 203 is provided in the filter cover 202, and a flanged threaded through hole 203 is provided for mounting the tuning screw 204 for fixing the tuning screw 204.
  • the flanged threaded through hole 203 is a one-way flanged threaded through hole with its flange facing the inside of the filter cover 202.
  • the flanged threaded through hole is a one-way flanged threaded through hole
  • a reinforcing boss on the filter cover corresponding to the flanged threaded through hole, further increasing the filter cover.
  • the thickness at the location where the tuning screw is mounted allows the tuning screw to be mounted more securely on the filter cover.
  • the reinforcing ribs are further disposed around the reinforcing bosses, so that the reinforcing bosses can be more stably fixed on the filter cover, so that the tuning screws can be more stably fixed in the flanged threaded through holes.
  • FIG. 3 is a schematic structural view of another filter cover plate and a tuning screw and a fastening nut provided in the embodiment.
  • the filter cover 302 of FIG. 3 is provided with a unidirectional flange threaded through hole 303, and a consolidation boss 305 is disposed at a position corresponding to the flange threaded through hole at the outer side of the filter cover 302.
  • the consolidation boss 305 is coupled to the filter cover 302, and a thread that mates with the thread of the tuning screw 304 is also disposed on the inside of the consolidation boss 305.
  • the tightening nut 301 fastens the tuning screw 304 on the consolidation boss 305.
  • Reinforcing ribs 306 are provided around the reinforcing boss 305.
  • FIG. 4 is a schematic structural view of another filter cover and a tuning screw and a fastening nut according to the embodiment.
  • the filter cover 402 is provided with a flanged threaded through hole 403, which is a bidirectional flanged threaded through hole, which has a flange facing the inside of the filter cover, and Flange towards the outside of the filter cover.
  • the flanged threaded through hole 403 is for mounting a tuning screw 404 for fixing the tuning screw 404.
  • the tuning screw installed in FIG. 4 is 404 will be more stable. If the depth of the bidirectional flanged threaded through hole 403 in FIG. 4 is the same as the depth of the one-way flanged threaded through hole 203 in FIG. 2, the bidirectional flanged threaded through hole 403 in FIG. 4 faces the inside of the filter cover.
  • the length of the flange is shorter than the length of the one-way flanged through hole 203 in FIG. 2 toward the inside of the filter cover, which in turn increases the volume of the filter cavity. High filter performance. It can be seen that the effect of providing a bidirectional threaded through hole on the filter cover is better than setting a one-way threaded through hole.
  • the filter cover thickness can be reduced by 2/3, and the filter cavity height can be increased by 1.5mm-2mm, which is more conducive to filter design and improves the filter cavity Q value. Reduces losses and greatly improves filter performance.
  • the thickness of the conventional cover plate is generally 2.5 mm or 3 mm.
  • the thickness of the filter cover plate provided in this embodiment is 1.0 mm to 1.5 mm, which increases the filter design space compared with the conventional cover plate.
  • the filter cavity height and the tuning space of the tuning screw are increased, which is more conducive to design.
  • the cost is reduced and the material cost is reduced compared to the conventional cover. For example, when cold rolled sheets are used, the material cost is 30% of that of conventional aluminum sheets.
  • the filter cover material in this embodiment can be made of a metal having good conductivity, such as an aluminum plate, a cold rolled Hong Kong plate, or a copper plate.
  • Embodiment 2 a metal having good conductivity, such as an aluminum plate, a cold rolled Hong Kong plate, or a copper plate.
  • the embodiment provides a filter including a filter cover and a cavity, and the filter cover is the filter cover provided in the first embodiment.
  • the filter cover is fixed to the cavity.
  • At least one resonant column is further disposed in the filter, and the flanged threaded through hole is located on the filter cover corresponding to the resonant column in the cavity, and after the cover is mounted on the cavity, the threaded through the flange
  • the tuning screw that the hole enters the cavity is just inside the resonant column.
  • At least one cavity can be disposed in the cavity of the filter. When there is only one cavity in the filter, the cavity of the filter is the cavity of the cavity.
  • each resonant column in the resonant cavity is parallel to the cavity wall of the cavity, and the bottom end of the resonant column is fixed at the bottom of the resonant cavity.
  • the top end of the resonant column can also be arranged to extend outward in a flared shape.
  • a plurality of flanged through holes may be correspondingly provided on the filter cover.
  • FIG. 5 is a schematic structural diagram of a filter according to an embodiment of the present disclosure.
  • the filter includes a filter cover 503, and a one-way flanged through hole 502 disposed on the filter cover 503.
  • the filter cover 503 is fixed on the filter cavity 504, and a resonant column 505 is disposed in the cavity 504 of the filter.
  • the tuning screw 506 enters the hollow of the resonant column in the resonant cavity through the one-way flanged through hole 502. .
  • a tightening nut 501 secures the tuning screw 506 to the filter cover 503.
  • the axis of the resonant column 506 is parallel to the cavity wall of the cavity 504.
  • the bottom end of the resonant column 506 is fixed to the bottom of the cavity, and the top end is flared outward.
  • Embodiment 3 Embodiment 3:
  • FIG. 6 is a schematic flowchart of the processing method, and the method includes the following steps:
  • Step S601 processing the cover material to obtain the cover base.
  • Step S602 The side hole is punched at a position where the tuning screw is mounted on the cover base by a mold.
  • the punching edge hole may specifically include: punching the edge pre-hole, and using a mold to turn over the flange at the pre-hole.
  • Step S603 Tapping in the flange hole.
  • the flange hole may be unidirectional or bidirectional, so that the punching hole can be punched at the position where the tuning screw is mounted on the cover substrate by using a mold. At the position of the screw, punch the one-way flange hole toward the inside of the filter cover. It is also possible to punch the two-way flanged hole at a position where the tuning screw is mounted on the cover substrate with a mold.
  • the embodiment of the invention reduces the overall thickness of the filter cover, thereby increasing the volume of the filter cavity, thereby increasing the quality factor Q value, reducing the filter insertion loss, thereby improving the performance of the filter. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Punching Or Piercing (AREA)

Abstract

本发明实施例公开了一种滤波器盖板、滤波器及滤波器盖板加工方法,滤波器盖板上设置有用于安装调谐螺钉的翻边螺纹通孔,设置有翻边螺纹通孔的盖板的特点是:翻边螺纹通孔有一定的深度,而盖板上其他地方的厚度相对于翻边螺纹通孔的深度薄一些,因此,在滤波器盖板上设置翻边螺纹通孔,将调谐螺钉固定在翻边螺纹孔内,可在减小盖板厚度的同时,又保证调谐螺钉孔有足够的螺纹数量对调谐螺钉进行固定,保证调谐螺钉稳固。

Description

一种滤波器盖板、 滤波器及滤波器盖板加工方法 技术领域
本发明涉及滤波器领域, 尤其涉及一种滤波器盖板、 滤波器及滤波器盖 板力口工方法。
背景技术
现有的滤波器通常由多个谐振腔构成, 谐振腔是由滤波器的腔体与滤波 器盖板配合而形成。 以同轴腔滤波器为例, 其谐振腔的结构如图 1所示, 包 括紧固螺母 101、 螺紋通孔 102、 滤波器盖板 103、 谐振腔腔体 104 (也是滤 波器腔体的一部分)、 谐振柱 105 , 调谐螺钉 106。 谐振柱 105下表面固定在 腔体 104的底部。 滤波器盖板 103与谐振腔腔体 104通过螺钉进行密封, 形 成一个密闭腔体。调谐螺钉 106通过盖板 103上的螺紋通孔 102进入腔体内, 且调谐螺钉 106的一部分在谐振柱 105内部, 用于调节谐振腔频率范围, 并 通过紧固螺母 101固定在滤波器盖板 103上。 由于螺紋通孔 102与紧固螺母 101共同对调谐螺钉 106进行紧固, 通孔高度太低的话, 会直接影响调谐螺 钉 106的稳固性。 通常将螺紋通孔 102高度定为 3mm-5mm, 可以保证调谐螺 钉 106的稳固性。 由于螺紋通孔 102位于盖板 103上, 因此通常盖板 103厚 度也为 3mm-5mm„
由图 1可见, 谐振腔是一个完全封闭的空腔。 理想导体壁在电磁理论中 称为电壁, 电磁波入射到电壁上将被完全反射回来, 没有透射波穿过电壁。 因此, 用电壁围成一个封闭腔, 一旦有适当频率的电磁波馈入, 电磁波将在 封闭腔的电壁上来回反射, 在封闭腔内形成电磁驻波, 发生电磁谐振。 此时 即使外部停止向封闭腔内馈送能量, 已建立起来的电磁谐振会无衰减的维持 下去。 非理想导体壁构成的空腔, 也具有电壁空腔的类似特性, 只不过外部 停止馈送能量后, 其内部已建立起来的电磁谐振不会长期的维持下去, 将随 时间而逐渐衰减, 终于消逝, 成为阻尼振荡。 品质因数 Q是谐振腔的一个重 要参数。 它表征了谐振腔的频率选择性和谐振腔能量损耗。 谐振腔体积与品 质因数 Q的关系是, 谐振腔体积越大则谐振腔储存的电磁能越大, Q值就越 大。 Q值越大, 滤波器插入损耗就越小, 因此, 滤波器谐振腔体积增大, 则 插入损耗就可减小。
由于整个滤波器的外形尺寸要求是固定的, 也即滤波器总高度固定, 因 此滤波器盖板厚度越高, 谐振腔的腔高越低, 则谐振腔实际体积越小, 谐振 腔储存的电磁能越小, Q值就越小。 Q值越小, 滤波器插入损耗就越大, 严 重影响滤波器的性能。 因此, 滤波器中如何增大谐振腔体积成为关键, 如何 在外形相同的前提下, 增大滤波器单个谐振腔体积成为滤波器应用的重点研 方向。 发明内容
本发明实施例提供一种滤波器盖板、 滤波器及滤波器盖板加工方法, 解 决相关技术中, 因滤波器盖板厚度影响谐振腔体积的问题。
本发明实施例提供的一种滤波器盖板, 包括设置在滤波器盖板上的用于 安装调谐螺钉的翻边螺紋通孔。
其中, 翻边螺紋通孔优选为单向翻边螺紋通孔, 且其翻边朝向滤波器盖 板内侧。
较佳地, 在滤波器盖板外侧上与翻边螺紋通孔对应的位置处还设置有巩 固凸台, 在巩固凸台四周设置有加强筋。
较佳的, 翻边螺紋通孔为双向翻边螺紋通孔。
本发明实施例还提供了一种滤波器, 滤波器包括腔体、 至少一个谐振柱 和上述滤波器盖板; 滤波器盖板固定在腔体上; 谐振柱设置在腔体内; 翻边 螺紋孔设置在滤波器盖板上与谐振柱对应的位置处。 较佳的, 滤波器的腔体内设置有至少一个谐振腔腔体, 在各谐振腔腔体 内设置有至少一个谐振柱, 谐振柱的轴线与谐振腔腔壁平行, 谐振柱的底端 固定在谐振腔腔体底部。
较佳的, 谐振柱的顶端呈喇叭状朝四周延伸。
本发明实施例还提供了一种滤波器盖板加工方法, 包括: 加工盖板材料, 获得盖板基体; 用模具在盖板基体上安装调谐螺钉的位置处冲翻边孔; 在翻 边孔内攻丝。
较佳地, 用模具在盖板基体上安装调谐螺钉的位置处冲翻边孔包括: 用 模具在盖板基体上安装调谐螺钉的位置处, 朝滤波器盖板的内侧冲单向翻边 孔。
较佳的, 用模具在盖板基体上安装调谐螺钉的位置处冲翻边孔包括: 用 模具在盖板基体上安装调谐螺钉的位置处冲双向翻边孔。 本发明实施例提供的滤波器盖板上设置有用于安装调谐螺钉的翻边螺紋 通孔。 设置有翻边螺紋通孔的盖板的特点是: 翻边螺紋通孔有一定的深度, 而盖板上其他地方的厚度相对于翻边螺紋通孔的深度薄一些。 因此, 在滤波 器盖板上设置翻边螺紋通孔, 将调谐螺钉固定在翻边螺紋孔内, 可在减小盖 板厚度的同时, 又保证调谐螺钉孔有足够的螺紋数量对调谐螺钉进行固定, 保证调谐螺钉稳固。 减小了滤波器盖板的整体厚度, 从而增大了滤波器谐振 腔的体积, 进而增大了品质因数 Q值, 减小了滤波器插入损耗, 从而提高了 滤波器的性能。 附图概述
图 1为相关技术中的滤波器谐振腔的结构示意图;
图 2为本发明实施例一提供的一种滤波器盖板与调谐螺钉和紧固螺母配 合的结构示意图; 图 3为本发明实施例一提供的另一种滤波器盖板与调谐螺钉和紧固螺母 配合的结构示意图;
图 4为本发明实施例一提供的又一种滤波器盖板与调谐螺钉和紧固螺母 配合的结构示意图;
图 5为本发明实施例二提供的一种滤波器的结构示意图;
图 6为本发明实施例三提供的一种滤波器盖板加工方法的流程示意图。 本发明的较佳实施方式
下面结合附图对本发明的实施方式作详细说明, 在不冲突的情况下, 本 发明实施例及实施例中的特征可以相互任意组合。
实施例一:
本实施例提供了一种滤波器盖板, 在该滤波器盖板上设置有用于安装调 谐螺钉的翻边螺紋通孔, 翻边螺紋通孔内布有与调谐螺钉配合的螺紋。 翻边 螺紋通孔可以是单向翻边螺紋通孔, 也可以是双向翻边螺紋通孔。 单向翻边 螺紋通孔是指其只朝盖板的一侧翻边, 可以朝滤波器盖板的内侧 (盖板内侧 指朝向滤波器腔体的一侧)翻边, 也可以朝向滤波器盖板的外侧翻边。 双向 螺紋通孔是指其朝滤波器盖板的内、 外两侧翻边。
为进一步说明本实施例提供的滤波器盖板, 下面以一个示例性的说明对 其进行说明。 请参见图 2, 图 2为本实施例提供的一种滤波器盖板与调谐螺 钉和紧固螺母配合的结构示意图。 在滤波器盖板 202上设置有翻边螺紋通孔 203 , 翻边螺紋通孔 203用于安装调谐螺钉 204, 紧固螺母 201用于固定调谐 螺钉 204。 在该图中, 翻边螺紋通孔 203为单向翻边螺紋通孔, 且其翻边朝 向滤波器盖板 202的内侧。
对于翻边螺紋通孔为单向翻边螺紋通孔这种情况, 还可以在滤波器盖板 上与翻边螺紋通孔对应的位置上设置巩固凸台, 进一步增加滤波器盖板上安 装调谐螺钉的位置处的厚度, 使调谐螺钉能更稳固地安装在滤波器盖板上。 较佳地, 还可以在巩固凸台的四周设置加强筋, 使巩固凸台能更稳定地固定 在滤波器盖板上, 从而也使调谐螺钉能更稳定地固定在翻边螺紋通孔内。 如 果滤波器的腔体内设置有多个谐振腔, 那么相邻谐振腔之间就会有隔离筋。 为使加强筋能更好地将调谐螺钉稳定地固定在翻边螺紋通孔内, 可将加强筋 设置在盖板外侧上与隔离筋对应的位置处。 请参见图 3 , 图 3为本实施例提 供的另一种滤波器盖板与调谐螺钉和紧固螺母配合的结构示意图。 图 3中的 滤波器盖板 302上除了设置有单向翻边螺紋通孔 303之外, 还在滤波器盖板 302的外侧与翻边螺紋通孔对应的位置处设置有巩固凸台 305 , 巩固凸台 305 是与滤波器盖板 302相连的,在巩固凸台 305的内侧也设置有与调谐螺钉 304 的螺紋配合的螺紋。 紧固螺母 301在巩固凸台 305上紧固调谐螺钉 304。 在 巩固凸台 305的四周设置有加强筋 306。
本实施例还提供了又一种滤波器盖板, 请参见图 4, 图 4为本实施例提 供的又一种滤波器盖板与调谐螺钉和紧固螺母配合的结构示意图。在该图中, 滤波器盖板 402上设置有翻边螺紋通孔 403 , 该翻边螺紋通孔 403为双向翻 边螺紋通孔, 其既有朝向滤波器盖板内侧的翻边, 又有朝向滤波器盖板外侧 的翻边。 翻边螺紋通孔 403用于安装调谐螺钉 404, 紧固螺母 401用于固定 调谐螺钉 404。 从图 4和图 2的对比可见, 如果图 4中的双向翻边螺紋通孔 403朝向滤波器盖板内侧的翻边的长度与图 2中的单向翻边螺紋通孔 203朝 向滤波器盖板内侧的翻边的长度相同, 则图 4中的双向翻边螺紋通孔 403的 深度就会大于图 2中的单向翻边螺紋通孔 203的深度, 因此安装在图 4中的 调谐螺钉 404会更稳定。 如果图 4中的双向翻边螺紋通孔 403的深度与图 2 中的单向翻边螺紋通孔 203的深度相同, 则图 4中的双向翻边螺紋通孔 403 朝向滤波器盖板内侧的翻边的长度就会比图 2中的单向翻边螺紋通孔 203朝 向滤波器盖板内侧的翻边的长度短, 这样又会增加滤波器谐振腔的体积, 提 高滤波器性能。 可见, 在滤波器盖板上设置双向螺紋通孔的效果会更优于设 置单向螺紋通孔。
釆用本实施例提供的滤波器盖板, 可将滤波器盖板厚度减少 2/3 , 滤波器 谐振腔腔高增加 1.5mm-2mm, 更加有利于滤波器设计, 提高滤波器谐振腔 Q 值,降低损耗,极大的提高了滤波器性能。传统盖板厚度一般为 2.5mm或 3mm, 本实施例提供的滤波器盖板的厚度为 1.0mm至 1.5mm, 与传统盖板相比增加 了滤波器设计空间。 滤波器谐振腔腔高和调谐螺钉的调谐空间增加, 更加利 于设计。 另外, 与普通盖板相比, 成本降低, 材料费减少。 如釆用冷轧板加 工, 材料成本是传统铝板的 30%。
本实施例中的滤波器盖板材料可釆用导电性良好的金属, 例如铝板、 冷 轧港版、 铜板。 实施例二:
本实施例提供了一种滤波器, 该滤波器包括滤波器盖板和腔体, 其滤波 器盖板为上述实施例一提供的滤波器盖板。 滤波器盖板固定在腔体上。 在滤 波器内还设置有至少一个谐振柱, 翻边螺紋通孔在滤波器盖板上与腔体内的 谐振柱对应的位置处, 在将盖板安装在腔体上之后, 通过翻边螺紋通孔进入 腔体内的调谐螺钉正好在谐振柱内。 在滤波器的腔体内可以设置至少一个谐 振腔腔体, 当滤波器内只有一个谐振腔腔体时, 滤波器的腔体就是谐振腔的 腔体。 当滤波器内设置了多个谐振腔腔体时, 说明滤波器内有多个子腔体, 各子腔体由滤波器腔体内的隔离筋隔离而成。 对于同轴腔滤波器, 是指谐振 腔内的各谐振柱与腔体的腔壁是平行的, 且谐振柱的底端固定在所述谐振腔 腔体底部。 较佳地, 还可以将谐振柱的顶端设置为呈喇叭状向外延伸。 对于 同轴腔滤波器, 如果在腔体内设置有多个谐振柱, 在滤波器盖板上也可相应 地设置多个翻边螺紋通孔。 为进一步说明本实施例提供的滤波器, 下面以一个示例性的例子对其进 行说明。 请参见图 5 , 图 5为本申请实施例提供的一种滤波器的结构示意图, 该滤波器包括滤波器盖板 503 , 设置在滤波器盖板 503上的单向翻边螺紋通 孔 502 ,滤波器盖板 503固定在滤波器腔体 504上,在滤波器的腔体 504内设 置有谐振柱 505 , 调谐螺钉 506通过单向翻边螺紋通孔 502进入谐振腔内的 谐振柱的中空处。 紧固螺母 501将调谐螺钉 506固定在滤波器盖板 503上。 谐振柱 506的轴线与腔体 504的腔壁平行, 谐振柱 506的底端固定在腔体底 部, 顶端呈喇叭状向外延伸。 实施例三:
本实施例提供了一种滤波器盖板加工方法, 请参见图 6 , 图 6为该加工 方法的流程示意图, 该方法包括如下步骤:
步骤 S601 : 加工盖板材料, 获得盖板基体。
步骤 S602: 用模具在盖板基体上安装调谐螺钉的位置处冲翻边孔。 冲翻 边孔具体可包括: 冲翻边预孔, 用模具在翻边预孔处翻边。
步骤 S603 : 在翻边孔内攻丝。
在上述步骤 S602中, 翻边孔可以是单向的, 也可以是双向的, 因此用模 具在盖板基体上安装调谐螺钉的位置处冲翻边孔可以为用模具在盖板基体上 安装调谐螺钉的位置处, 朝滤波器盖板的内侧冲单向翻边孔。 也可以为用模 具在盖板基体上安装调谐螺钉的位置处冲双向翻边孔。 以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能 认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或 替换, 都应当视为属于本发明的保护范围。 工业实用性
本发明实施例减小了滤波器盖板的整体厚度, 从而增大了滤波器谐振腔 的体积, 进而增大了品质因数 Q值, 减小了滤波器插入损耗, 从而提高了滤 波器的性能。

Claims

权 利 要 求 书
1. 一种滤波器盖板, 包括: 设置在所述滤波器盖板上的用于安装调 谐螺钉的翻边螺紋通孔。
2. 如权利要求 1所述的滤波器盖板, 其中, 所述翻边螺紋通孔为单 向翻边螺紋通孔, 且其翻边朝向滤波器盖板内侧。
3. 如权利要求 2所述的滤波器盖板, 其中, 在所述滤波器盖板外侧 上与所述翻边螺紋通孔对应的位置处还设置有巩固凸台, 在所述巩固凸台四 周设置有加强筋。
4. 如权利要求 1所述的滤波器盖板, 其中, 所述翻边螺紋通孔为双 向翻边螺紋通孔。
5. 一种滤波器, 所述滤波器包括腔体、 至少一个谐振柱和如权利要 求 1_4任一项所述的滤波器盖板; 所述滤波器盖板固定在所述腔体上; 所述 谐振柱设置在所述腔体内; 所述翻边螺紋孔设置在所述滤波器盖板上与所述 谐振柱对应的位置处。
6. 如权利要求 5所述的滤波器, 其中, 所述滤波器的腔体内设置有 至少一个谐振腔腔体, 在每个谐振腔腔体内设置有至少一个谐振柱, 所述谐 振柱的轴线与谐振腔腔壁平行, 所述谐振柱的底端固定在所述谐振腔腔体底 部。
7. 如权利要求 5或 6所述的滤波器, 其中, 所述谐振柱的顶端呈喇 叭状朝四周延伸。
8. 一种滤波器盖板加工方法, 包括:
加工盖板材料, 获得盖板基体;
用模具在所述盖板基体上安装调谐螺钉的位置处冲翻边孔;
在所述翻边孔内攻丝。
9. 如权利要求 8所述的滤波器盖板加工方法, 其中, 所述用模具在 所述盖板基体上安装调谐螺钉的位置处冲翻边孔包括: 用模具在所述盖板基 体上安装调谐螺钉的位置处, 朝滤波器盖板的内侧冲单向翻边孔。
10. 如权利要求 8所述的滤波器盖板加工方法, 其中, 所述用模具在 所述盖板基体上安装调谐螺钉的位置处冲翻边孔包括: 用模具在盖板基体上 安装调谐螺钉的位置处冲双向翻边孔。
PCT/CN2014/085870 2014-06-17 2014-09-03 一种滤波器盖板、滤波器及滤波器盖板加工方法 WO2015192481A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/319,937 US20170207508A1 (en) 2014-06-17 2014-09-03 Filter cover plate, filter and machining method of filter cover plate
EP14894879.7A EP3159961A4 (en) 2014-06-17 2014-09-03 Filter cover plate, filter and machining method of filter cover plate
JP2016573462A JP2017520185A (ja) 2014-06-17 2014-09-03 フィルタカバープレート、フィルタ及びフィルタカバープレートの加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410268754.5 2014-06-17
CN201410268754.5A CN105304986A (zh) 2014-06-17 2014-06-17 一种滤波器盖板、滤波器及滤波器盖板加工方法

Publications (1)

Publication Number Publication Date
WO2015192481A1 true WO2015192481A1 (zh) 2015-12-23

Family

ID=54934762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085870 WO2015192481A1 (zh) 2014-06-17 2014-09-03 一种滤波器盖板、滤波器及滤波器盖板加工方法

Country Status (5)

Country Link
US (1) US20170207508A1 (zh)
EP (1) EP3159961A4 (zh)
JP (1) JP2017520185A (zh)
CN (1) CN105304986A (zh)
WO (1) WO2015192481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613417A (zh) * 2021-07-29 2021-11-05 成都市浩泰电子科技有限公司 一种毫米波滤波器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615116A (zh) * 2020-12-30 2021-04-06 苏州波发特电子科技有限公司 小型化5g滤波器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201655936U (zh) * 2010-04-12 2010-11-24 深圳市大富科技股份有限公司 腔体滤波器盖板和腔体滤波器
CN102544655A (zh) * 2011-11-30 2012-07-04 深圳市大富科技股份有限公司 一种腔体滤波器及腔体滤波器盖板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857819B1 (fr) * 2003-07-18 2008-11-28 Cit Alcatel Dispositif a circuits hybrides hyperfrequences a blindage par element(s)de contact elastique(s)
US20060160629A1 (en) * 2005-01-14 2006-07-20 Fu-Kuang Hsu Method for extrusion molding of a self-locked nut
KR20090113169A (ko) * 2006-11-13 2009-10-29 주식회사 케이엠더블유 무선 주파수 필터
CN101627503A (zh) * 2006-11-13 2010-01-13 Kmw株式会社 射频滤波器
CN201804987U (zh) * 2010-06-29 2011-04-20 深圳市威富通讯技术有限公司 一种tm模介质滤波器的介质固定装置
CN102881983B (zh) * 2012-10-18 2016-08-17 宁波泰立电子科技有限公司 一种tm介质谐振器单、双谐振模结构

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201655936U (zh) * 2010-04-12 2010-11-24 深圳市大富科技股份有限公司 腔体滤波器盖板和腔体滤波器
CN102544655A (zh) * 2011-11-30 2012-07-04 深圳市大富科技股份有限公司 一种腔体滤波器及腔体滤波器盖板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159961A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613417A (zh) * 2021-07-29 2021-11-05 成都市浩泰电子科技有限公司 一种毫米波滤波器

Also Published As

Publication number Publication date
US20170207508A1 (en) 2017-07-20
CN105304986A (zh) 2016-02-03
JP2017520185A (ja) 2017-07-20
EP3159961A1 (en) 2017-04-26
EP3159961A4 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US8854160B2 (en) Dielectric resonator fixed by a pressing metal plate and method of assembly
WO2014114265A1 (zh) 腔体滤波器
US20160315368A1 (en) Resonator, Filter, Duplexer, Multiplexer, and Communications Device
CN102361117A (zh) 一种容性交叉耦合飞杆及其同轴腔体谐振器
WO2020010984A1 (zh) 一种容性交叉耦合结构及腔体滤波器
WO2015192481A1 (zh) 一种滤波器盖板、滤波器及滤波器盖板加工方法
WO2014127639A1 (zh) 介质谐振器及其装配方法、介质滤波器
WO2014090004A1 (zh) 一种介质谐振器及其装配方法、介质滤波器
WO2015074616A1 (zh) 滤波器
WO2015168883A1 (zh) 一种横磁(tm)模介质滤波器
CN110416671A (zh) 谐振器、腔体滤波器及其调试方法
CN108493538B (zh) 一种能调节耦合强度的腔体滤波器
CN104241751B (zh) 一种介质滤波器端口耦合结构
WO2013189074A1 (zh) 腔体滤波器及其制造方法
CN107732390B (zh) 一种电磁混合耦合腔体滤波器
CN201528033U (zh) 一种3.5GHz频段滤波器的温度补偿装置
WO2019119657A1 (zh) 一种全介质混合谐振结构及滤波器
WO2013097737A1 (zh) 介质滤波器及多工器
CN215266614U (zh) 调谐结构和具有该调谐结构的射频滤波器
CN205583106U (zh) 一种te模介质滤波器
CN102025014B (zh) 一种3.5GHz频段滤波器的温度补偿结构
CN217544890U (zh) 滤波器及通信设备
CN217405673U (zh) 谐振结构及滤波器
WO2013117073A1 (zh) 腔体滤波器
CN204375884U (zh) Tm模介质滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15319937

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014894879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894879

Country of ref document: EP