WO2014127639A1 - 介质谐振器及其装配方法、介质滤波器 - Google Patents

介质谐振器及其装配方法、介质滤波器 Download PDF

Info

Publication number
WO2014127639A1
WO2014127639A1 PCT/CN2013/084943 CN2013084943W WO2014127639A1 WO 2014127639 A1 WO2014127639 A1 WO 2014127639A1 CN 2013084943 W CN2013084943 W CN 2013084943W WO 2014127639 A1 WO2014127639 A1 WO 2014127639A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
dielectric resonator
sealing cover
metal cavity
fixing module
Prior art date
Application number
PCT/CN2013/084943
Other languages
English (en)
French (fr)
Inventor
赵丽娟
沈楠
白文德
周虹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/764,182 priority Critical patent/US9728830B2/en
Priority to EP13875819.8A priority patent/EP2930785B1/en
Publication of WO2014127639A1 publication Critical patent/WO2014127639A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/008Manufacturing resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component

Definitions

  • dielectric filter Dielectric resonator and assembly method thereof, dielectric filter
  • Embodiments of the present invention relate to a filter technology, and in particular, to a dielectric resonator, an assembly method thereof, and a dielectric filter.
  • dielectric filters are important components of wireless communication products, and dielectric filters are particularly important for miniaturization of communication products, especially the importance of dielectric resonators constituting dielectric filters.
  • a single-ended conductive dielectric resonator is shown in Fig. 1, and is mainly composed of a dielectric resonator column 103, a sealing cover 102, a tuning screw 101, and a metal cavity 104.
  • the upper end surface of the dielectric resonator 103 is not in contact with the lower end surface of the sealing cover 102, and the dielectric resonance There is a high electric field distribution at the contact portion between the lower end surface of the column 103 and the metal cavity 104. If the contact between the lower end surface of the dielectric resonator column 103 and the metal cavity 104 is insufficient, the impedance will be discontinuous, the field energy cannot be transmitted, and the high dielectric constant and high quality factor of the medium will not be exerted, and the medium will be burned.
  • the lower end surface of the dielectric resonator column in the single-ended conductive dielectric resonator is in good contact with the end face of the metal cavity. How to solve the single-ended conductive dielectric resonator The fixing and contact between the lower end surface of the dielectric resonator column and the end face of the metal cavity becomes the research focus of the dielectric filter application.
  • the existing single-ended conductive dielectric resonator is shown in FIG. 1.
  • the lower end surface of the dielectric resonator column 103 is directly soldered to the metal cavity 104 for close contact with the bottom surface of the metal cavity 104.
  • the sealing cover 102 and the metal cavity 104 are sealed by screws to form a closed cavity. Since the dielectric resonator column 103 is directly soldered to the bottom of the metal cavity 104, the welding process is very demanding, and the entire dielectric resonator column 103 has a falling off phenomenon during the welding process, which seriously affects the performance and service life of the filter.
  • a dielectric resonator including a dielectric resonator column, a cavity, a cover plate, the dielectric resonator column is disposed in the cavity body, and further includes: a metal base of the dielectric resonator column, the medium The bottom surface of the resonant column is welded to the first end of the metal base, and the metal base is fixed to the bottom surface of the cavity by screws. The second end of the metal base is adjacent to the cavity and is used for reducing metal. A tines of the contact area between the base and the bottom surface of the cavity.
  • the assembly process is complicated, the structure design is high, and the performance impact is relatively large, which is not conducive to mass production and high cost. Summary of the invention
  • a main object of embodiments of the present invention is to provide a dielectric resonator capable of bringing a dielectric resonator column into good contact with a metal cavity and improving the performance of the filter.
  • a method of assembling a dielectric resonator which enables the dielectric resonator column to be in good contact with the metal cavity to improve the performance of the filter.
  • a dielectric filter is provided which enables the dielectric resonator column to be in good contact with the metal cavity to improve the performance of the filter.
  • a dielectric resonator includes a dielectric resonator column, a metal cavity, a sealing cover plate, and a tuning screw, wherein the dielectric resonator column is located in the metal cavity, and the sealing cover plate is located at an upper end surface of the metal cavity.
  • the tuning screw is located on the sealing cover.
  • the dielectric resonator further includes an insulation fixing module between the lower end surface of the sealing cover and the upper end surface of the dielectric resonator, the insulation fixing module having a height sufficient to ensure a pressure is formed between the sealing cover and the dielectric resonator column, so that the The dielectric resonator column is fixed to the bottom of the metal cavity.
  • the insulation fixing module is an insulator.
  • the insulating fixing module is an elastic insulator.
  • the insulating fixing module is fixed on the lower end surface of the sealing cover, and the insulating fixing module is located between the lower end surface of the sealing cover and the upper end surface of the dielectric resonator column.
  • the insulating fixing module is provided with one.
  • the insulation fixing module is provided in plurality.
  • the lower end surface of the dielectric resonator column is plated with a layer of silver.
  • a dielectric filter comprising one or more of the above dielectric resonators connected together.
  • a method for assembling a dielectric resonator comprising: fixing a lower end surface of a dielectric resonator column to a metal cavity; mounting a sealing cover plate with an insulating fixing module on the metal cavity; and mounting on the metal cavity A tuning screw is attached to the upper sealing cover.
  • the step of mounting the sealing cover with the insulating fixing module on the metal cavity comprises: fixing the insulating fixing module on the lower end surface of the sealing cover, the height of the insulating fixing module is sufficient Ensuring that a pressure is formed between the sealing cover and the dielectric resonator column, so that the dielectric resonator column is fixed at the bottom of the metal cavity; and the sealing cover plate with the insulating fixing module is mounted on the metal cavity, the insulation fixing module It is between the lower end surface of the sealing cover and the upper end surface of the dielectric resonator column.
  • the insulation fixing module is an insulator.
  • the insulating fixing module is an elastic insulator.
  • the insulation fixing module is provided with one or more.
  • the embodiment of the present invention fixes the dielectric resonator column at the bottom of the metal cavity through the insulating fixing module, and ensures that the dielectric resonator column is in good contact with the metal cavity without soldering, even if the metal cavity is in In the external force or transportation process, good contact can be ensured, thereby improving the performance and reliability of the dielectric filter.
  • 1 is a schematic diagram of a related art dielectric filter
  • FIG. 2 is a schematic structural view of a dielectric resonator according to a first embodiment of the present invention
  • FIG. 3 is a side view showing the structure of a dielectric resonator according to a second embodiment of the present invention.
  • FIG. 4 is a top plan view showing the structure of a dielectric resonator of a second embodiment of the present invention. Preferred embodiment of the invention
  • FIG. 2 there is shown a schematic structural view of a dielectric resonator according to a first embodiment of the present invention.
  • the dielectric resonator column 203 is located inside the metal cavity 204; the lower end surface of the dielectric resonator column 203 is metallized (for example, a layer of silver is plated on the lower end surface of the dielectric resonator column) for ensuring the dielectric resonator column 203 and
  • the metal cavity 204 transmits electromagnetic waves.
  • the tuning screw 202 is located on the sealing cover 201 for tuning the resonant frequency of the filter; the sealing cover 201 is located at the upper end surface of the metal cavity 204, that is, the top end, for sealing the metal cavity 204.
  • an insulating fixing module 205 is disposed between the lower end surface of the sealing cover 201 and the upper end surface of the dielectric resonator column 203.
  • the insulating fixing module 205 may be in the shape of a circular cylinder or any other suitable shape; the insulating fixing module 205 has a hole in the middle to fit the tuning screw 202.
  • the insulating fixing module 205 is located between the lower end surface of the sealing cover 201 and the upper end surface of the dielectric resonator 203; the height of the insulating fixing module 205 is sufficient to ensure that the sealing cover is sealed when the metal cavity 204 is sealed by the sealing cover 201 A pressure is formed between the 201 and the dielectric resonator column 203 such that the dielectric resonator column 203 is fixed to the bottom of the metal cavity 204.
  • the insulating fixing module 205 is sized to ensure that the dielectric resonator column 203 is fixed to the bottom of the metal cavity 204.
  • the insulating fixing module 205 is fixed on the sealing cover 201 at a position directly above the dielectric resonator column 203, which has the advantages of easy assembly and is not prone to error; in other embodiments of the present invention, The insulating fixing module 205 may be fixed between the sealing cover 201 and the dielectric resonator column 203 in any other suitable manner, for example, fixing the insulating fixing module 205 and the dielectric resonant column 203 by any suitable means (for example, glue connection). Together.
  • the insulation fixing module can be considered as the insulation fixing module described herein above the dielectric resonator column as long as it is above the dielectric resonator column. Party. The point is that as long as the insulating fixing module can form a pressure between the sealing cover and the dielectric resonator column, the dielectric resonator column can be fixed at the bottom of the metal cavity.
  • the insulating fixing module 205 uses an insulator; in order to prevent damage of the dielectric resonator caused by hard pressure during the assembly process, Preferably, the insulating fixing module 205 is provided with an elastic insulator.
  • the assembly process of the entire dielectric resonator is: first, metallize the lower end surface of the dielectric resonator column 203 (for example, brush silver paste); and then place the dielectric resonator column 203 on the bottom surface of the metal cavity 204. The inside of the groove; then the sealing cover 201 of the insulating fixing module 205 is fixedly sealed to the metal cavity 204; finally, the tuning screw 202 is assembled. After the entire assembly is completed, the dielectric resonator column 203 is firmly fixed in the metal cavity 204 to form a closed resonant cavity.
  • the dielectric resonator column 203 is firmly fixed in the metal cavity 204 to form a closed resonant cavity.
  • the lower end surface of the dielectric resonator column is lower than the bottom upper surface of the metal cavity 204. According to the electromagnetic field theory, the propagation of the electric field in the medium is more favorable.
  • the dielectric resonator column is fixed to the bottom of the metal cavity by the insulating fixing module, and the dielectric resonator column can be ensured to be in good contact with the metal cavity without welding, even if the metal cavity is in an external force or transportation process. Both ensure good contact, which improves the performance and reliability of the dielectric filter.
  • FIG. 3 there is shown a side view of a dielectric resonator structure of a second embodiment of the present invention.
  • the dielectric resonator includes a dielectric resonator column 303, a sealing cover 301, a tuning screw 302, a metal cavity 304, and an insulating fixing module 305.
  • the dielectric resonator column 303 is located inside the metal cavity 304; the lower end surface of the dielectric resonator column 303 is metallized (for example, a layer of silver is plated on the lower end surface of the dielectric resonator column) for ensuring the dielectric resonator column 303 and
  • the metal cavity 304 transmits electromagnetic waves.
  • the tuning screw 302 is located on the sealing cover 301 for tuning the resonant frequency of the filter; the sealing cover 301 is located at the upper end surface of the metal cavity 304, that is, the top end, for sealing the metal cavity 304.
  • the lower end surface of the sealing cover 301 and the upper end surface of the dielectric resonator column 303 are A plurality of insulating fixing modules 305 are disposed therebetween.
  • Each of the insulating fixing modules 305 may be in the form of a circular column or any other suitable shape; all of the insulating fixing modules 305 are distributed around a hollow position for assembling the tuning screw 302.
  • there are four insulating fixing modules 305 which are respectively four cylindrical insulators, which are distributed around the hollow position of the assembly tuning screw 302.
  • the insulating fixing module 305 is located between the lower end surface of the sealing cover 301 and the upper end surface of the dielectric resonator 303.
  • the height of the insulating fixing module 305 is sufficient to ensure that the sealing cover is sealed when the metal cavity 304 is sealed by the sealing cover 301.
  • a pressure is formed between the 301 and the dielectric resonator column 303 such that the dielectric resonator column 303 is fixed to the bottom of the metal cavity 304.
  • the insulating fixing module 305 is sized to ensure that the dielectric resonator column 303 is fixed to the bottom of the metal cavity 304.
  • the insulating fixing module 305 is fixed on the sealing cover 301 at a position directly above the dielectric resonator column 303, which has the advantages of easy assembly and is not prone to error; in other embodiments of the present invention, The insulating fixing module 305 can be fixed between the sealing cover 301 and the dielectric resonator column 303 in any other suitable manner, for example, fixing the insulating fixing module 305 and the dielectric resonant column 303 by any suitable means (for example, glue connection). Together.
  • the insulating fixing module 305 uses an insulator; in order to prevent damage of the dielectric resonator caused by hard pressure during the assembly process, Preferably, the insulating fixing module 305 is made of an elastic insulator.
  • the assembly process of the entire dielectric resonator is: first, metallize the lower end surface of the dielectric resonator column 303 (for example, brush silver paste); and then place the dielectric resonator column 303 on the bottom surface of the metal cavity 304. The inside of the groove; then the sealing cover 301 of the insulating fixing module 305 is fixedly sealed to the metal cavity 304; finally, the tuning screw 302 is assembled. After the entire assembly is completed, the dielectric resonator column 303 is firmly fixed in the metal cavity 304 to form a closed resonant cavity.
  • the dielectric resonator column 303 is firmly fixed in the metal cavity 304 to form a closed resonant cavity.
  • the lower end surface of the dielectric resonator column is lower than the metal cavity
  • the bottom upper surface of 204 is more conducive to the propagation of the electric field within the medium.
  • the dielectric resonator column is fixed to the bottom of the metal cavity by the insulating fixing module, and the dielectric resonator column can be ensured to be in good contact with the metal cavity without welding, even if the metal cavity is in an external force or transportation process. Both ensure good contact, which improves the performance and reliability of the dielectric filter Sex.
  • Embodiments of the present invention also provide a dielectric filter including one or more dielectric resonators as described in the above embodiments.
  • the dielectric filter is coupled together by one or more of the dielectric resonators to form a multi-level dielectric filter.
  • the embodiment of the invention further provides a method for assembling a dielectric resonator, comprising:
  • a tuning screw is fitted to the sealing cover mounted on the metal cavity.
  • the dielectric resonator is firmly fixed to the metal cavity to form a closed resonant cavity.
  • One way of fixing the lower end surface of the dielectric resonator column to the metal cavity is to: fix the dielectric resonator column in the groove of the bottom surface of the metal cavity. At the same time, this embodiment does not exclude the use of other means to fix the lower end surface of the dielectric resonator column in the metal cavity.
  • the above assembling method further comprises: mounting the insulating fixing module on the sealing cover.
  • the method of assembling the dielectric resonator includes, but is not limited to, the above steps to those skilled in the art.
  • the dielectric resonator column is fixed at the bottom of the metal cavity by the insulating fixing module, and the dielectric resonator column can be ensured to be in good contact with the metal cavity without welding, even if the metal cavity is in an external force or transportation process. , can ensure good contact, thereby improving the performance and reliability of the dielectric filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种介质谐振器及其装配方法、介质滤波器,能够使介质谐振柱与金属腔体良好接触,提高滤波器的性能。所述介质谐振器包括介质谐振柱、金属腔体、密封盖板、调谐螺钉,所述介质谐振柱位于所述金属腔体内,所述密封盖板位于所述金属腔体的上端面,所述调谐螺钉位于所述密封盖板上,该介质谐振器还包括位于密封盖板下端面和介质谐振柱上端面之间的绝缘固定模块,所述绝缘固定模块的高度足以保证在密封盖板和介质谐振柱之间形成压力,使得所述介质谐振柱固定在金属腔体的底部。本发明实施例通过绝缘固定模块把介质谐振柱固定在金属腔体的底部,无需焊接,即可确保介质谐振柱与所述金属腔体良好接触,从而提高介质滤波器性能及可靠性。

Description

介质谐振器及其装配方法、 介质滤波器
技术领域
本发明实施例涉及一种滤波器技术, 特别涉及一种介质谐振器及其装配 方法、 介质滤波器。
背景技术
电磁波在高介电常数物质中传播时, 其波长会变短, 利用这一特性, 可 釆用介质材料代替传统金属材料, 在相同指标下, 滤波器的体积可以缩小。 对于介质滤波器的研究一直是通信行业的热点。 滤波器作为无线通信产品重 要部件, 介质滤波器对通信产品的小型化具有特别重要的意义, 尤其是组成 介质滤波器的介质谐振器的重要性不言而喻。
通常单端导电的介质谐振器参见图 1 所示, 主要由介质谐振柱 103、 密 封盖板 102、 调谐螺钉 101、 金属腔体 104组成。
根据 TM ( transverse magnetic , 横磁 )模介质谐振腔体的工作原理, 单 端导电的介质谐振器在正常工作时,介质谐振柱 103的上端面与密封盖板 102 的下端面不接触, 介质谐振柱 103下端面与金属腔体 104接触部位存在高电 场分布。 如果介质谐振柱 103的下端面与金属腔体 104的接触不充分, 会造 成阻抗不连续, 场能量无法传输出去, 介质的高介电常数、 高品质因数发挥 不出来, 甚至会烧毁介质。 因此, 单端导电的介质谐振器中介质谐振柱下端 面与金属腔体端面接触是否良好尤为关键。 如何解决单端导电的介质谐振器 中介质谐振柱下端面与金属腔体端面的固定与接触成为介质滤波器应用的重 点研究方向。
现有的单端导电的介质谐振器参见图 1 , 介质谐振柱 103下端面直接焊 接在金属腔体 104上, 用于与金属腔体 104的底面紧密接触。 密封盖板 102 与金属腔体 104通过螺钉进行密封,形成一个密闭腔体。 由于介质谐振柱 103 直接焊接在金属腔体 104的底部对焊接工艺要求很高, 整个介质谐振柱 103 焊接过程中存在脱落现象, 严重影响滤波器的性能和使用寿命。 在中国第 CN201020138885专利中,提供一种介质谐振器, 包括介质谐振 柱、 腔体、 盖板, 所述介质谐振柱设置于所述腔体内, 还包括: 介质谐振柱 的金属底座, 所述介质谐振柱的底面焊接于所述金属底座的第一端, 所述金 属底座通过螺钉固定于所述腔体底面上, 所述金属底座的第二端与腔体的接 触面周边有用于减小金属底座与腔体底面的接触面积的尖齿。 该专利具体实 施过程中装配工艺复杂, 对结构设计要求高, 对性能影响比较大, 不利于批 量生产、 成本高。 发明内容
本发明实施例的主要目的是提供一种介质谐振器, 能够使介质谐振柱与 金属腔体良好接触, 提高滤波器的性能。
此外, 还提供一种介质谐振器的装配方法, 能够使介质谐振柱与金属腔 体良好接触, 提高滤波器的性能。
此外,还提供一种介质滤波器, 能够使介质谐振柱与金属腔体良好接触, 提高滤波器的性能。
一种介质谐振器, 包括介质谐振柱、 金属腔体、 密封盖板、 调谐螺钉, 所述介质谐振柱位于所述金属腔体内, 所述密封盖板位于所述金属腔体的上 端面, 所述调谐螺钉位于所述密封盖板上。 该介质谐振器还包括位于密封盖 板下端面和介质谐振柱上端面之间的绝缘固定模块, 所述绝缘固定模块的高 度足以保证在密封盖板和介质谐振柱之间形成压力, 使得所述介质谐振柱固 定在金属腔体的底部。
优选地, 所述绝缘固定模块是绝缘体。
优选地, 所述绝缘固定模块是带弹性的绝缘体。
优选地, 所述绝缘固定模块固定在所述密封盖板下端面上, 所述绝缘固 定模块位于所述密封盖板下端面和介质谐振柱上端面之间。
优选地, 所述绝缘固定模块设置有一个。
优选地, 所述绝缘固定模块设置有多个。
优选地, 所述介质谐振柱下端面镀有一层银。 一种介质滤波器, 该介质滤波器包括连接在一起的一个或多个上述介质 谐振器。
一种介质谐振器的装配方法, 该装配方法包括: 将介质谐振柱的下端面 与金属腔体固定; 将带有绝缘固定模块的密封盖板安装在金属腔体上; 于安 装在金属腔体上的密封盖板上装配调谐螺钉。
优选地, 所述将带有绝缘固定模块的密封盖板安装在金属腔体上的步骤 包括: 将所述绝缘固定模块固定在所述密封盖板下端面上, 所述绝缘固定模 块的高度足以保证在密封盖板和介质谐振柱之间形成压力, 使得所述介质谐 振柱固定在金属腔体的底部; 将带有绝缘固定模块的密封盖板安装在金属腔 体上, 所述绝缘固定模块处于密封盖板下端面和介质谐振柱上端面之间。
优选地, 所述绝缘固定模块是绝缘体。
优选地, 所述绝缘固定模块是带弹性的绝缘体。
优选地, 所述绝缘固定模块设置有一个或多个。
相较相关技术, 本发明实施例通过绝缘固定模块把介质谐振柱固定在金 属腔体的底部, 无需焊接, 即可确保介质谐振柱与所述金属腔体良好接触, 即使所述金属腔体在外力或者运输过程中, 均能保证良好接触, 从而提高介 质滤波器性能及可靠性。 附图概述
图 1是相关技术介质滤波器的示意图;
图 2是本发明第一实施例介质谐振器结构示意图;
图 3是本发明第二实施例介质谐振器结构侧视示意图;
图 4是本发明第二实施例介质谐振器结构俯视示意图。 本发明的较佳实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 详细的描述, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部实施 例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前 提下所获得其它实施例, 均属于本发明保护范围。 需要说明的是, 在不冲突 的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
参见图 2所示, 是本发明第一实施例介质谐振器结构示意图。
该介质谐振器包括介质谐振柱 203、 密封盖板 201、 调谐螺钉 202、 金属 腔体 204、 绝缘固定模块 205。
所述介质谐振柱 203位于所述金属腔体 204内部; 所述介质谐振柱 203 下端面金属化(例如, 在所述介质谐振柱下端面镀一层银) , 用于确保介质 谐振柱 203与所述金属腔体 204电磁波的传输。
所述调谐螺钉 202位于密封盖板 201上, 用于调谐滤波器的谐振频率; 所述密封盖板 201位于所述金属腔体 204上端面, 即顶端, 用于密封所 述金属腔体 204。
在本实施例中, 在密封盖板 201的下端面和介质谐振柱 203的上端面之 间设置一个绝缘固定模块 205。 该绝缘固定模块 205可以成圓环柱状, 也可 以是其他任意适用的形状; 该绝缘固定模块 205中间具有一孔以装配调谐螺 钉 202。
所述绝缘固定模块 205位于密封盖板 201下端面和介质谐振柱 203上端 面之间; 所述绝缘固定模块 205的高度足以保证在用密封盖板 201密封金属 腔体 204时, 在密封盖板 201和介质谐振柱 203之间形成压力, 使得介质谐 振柱 203固定在金属腔体 204的底部。 所述绝缘固定模块 205的大小要足以 保证介质谐振柱 203固定在金属腔体 204的底部。
在本实施例中, 绝缘固定模块 205固定在密封盖板 201上, 位置在介质 谐振柱 203的正上方, 这样做的好处是容易装配, 不容易出错; 在本发明其 他实施例中, 所述绝缘固定模块 205可以以其他任意适用的方式固定在密封 盖板 201和介质谐振柱 203之间, 例如, 将绝缘固定模块 205与介质谐振柱 203通过任意适用的方式(例如, 胶水连接方式) 固定在一起。
对于本领域技术人员而言, 在可以允许的偏差内, 绝缘固定模块只要在 介质谐振柱的上方均可认为是本文所述的绝缘固定模块在介质谐振柱的正上 方。 重点在于, 只要所述绝缘固定模块能在密封盖板和介质谐振柱之间形成 压力, 使介质谐振柱固定在金属腔体底部即可。
在本实施例中, 为了实现单端导电的介质谐振器的滤波功能, 所述绝缘 固定模块 205釆用的是绝缘体; 为了防止装配的过程中, 出现硬性压力造成 的介质谐振器的损坏, 所述绝缘固定模块 205最好釆用的是带有弹性的绝缘 体。
在本实施例中, 整个介质谐振器的装配过程为: 首先将介质谐振柱 203 下端面金属化(例如, 刷银浆) ; 再将所述介质谐振柱 203放置在所述金属 腔体 204底面凹槽内; 然后将安装好绝缘固定模块 205的密封盖板 201 固定 密封所述金属腔体 204; 最后装配调谐螺钉 202。 整个装配完成后, 介质谐振 柱 203牢牢的固定在金属腔体 204内, 形成一个密闭的谐振腔体。
所述介质谐振柱 203装配完成后, 介质谐振柱下端面低于所述金属腔体 204的底部上表面, 根据电磁场理论, 这样更有利于电场在介质内的传播。
本实施例通过绝缘固定模块把介质谐振柱固定在金属腔体的底部, 无需 焊接, 即可确保介质谐振柱与所述金属腔体良好接触, 即使所述金属腔体在 外力或者运输过程中, 均能保证良好接触, 从而提高介质滤波器性能及可靠 性。
参见图 3所示, 是本发明第二实施例介质谐振器结构侧视示意图。
该介质谐振器包括介质谐振柱 303、 密封盖板 301、 调谐螺钉 302、 金属 腔体 304、 绝缘固定模块 305。
所述介质谐振柱 303位于所述金属腔体 304内部; 所述介质谐振柱 303 下端面金属化(例如, 在所述介质谐振柱下端面镀一层银) , 用于确保介质 谐振柱 303与所述金属腔体 304电磁波的传输。
所述调谐螺钉 302位于密封盖板 301上, 用于调谐滤波器的谐振频率; 所述密封盖板 301位于所述金属腔体 304上端面, 即顶端, 用于密封所 述金属腔体 304。
在本实施例中, 在密封盖板 301的下端面和介质谐振柱 303的上端面之 间设置多个绝缘固定模块 305。 各个绝缘固定模块 305可以是圓形柱状, 也 可以是其他任意适用的形状;所有绝缘固定模块 305围绕一个中空位置分布, 该中空位置用于装配调谐螺钉 302。 例如图 4所示, 绝缘固定模块 305有 4 个, 分别是 4个圓柱形绝缘体, 该 4个圓柱形绝缘体围绕装配调谐螺钉 302 的中空位置分布。
所述绝缘固定模块 305位于密封盖板 301下端面和介质谐振柱 303上端 面之间; 所述绝缘固定模块 305的高度足以保证在用密封盖板 301密封金属 腔体 304时, 在密封盖板 301和介质谐振柱 303之间形成压力, 使得介质谐 振柱 303固定在金属腔体 304的底部。 所述绝缘固定模块 305的大小要足以 保证介质谐振柱 303固定在金属腔体 304的底部。
在本实施例中, 绝缘固定模块 305固定在密封盖板 301上, 位置在介质 谐振柱 303的正上方, 这样做的好处是容易装配, 不容易出错; 在本发明其 他实施例中, 所述绝缘固定模块 305可以以其他任意适用的方式固定在密封 盖板 301和介质谐振柱 303之间, 例如, 将绝缘固定模块 305与介质谐振柱 303通过任意适用的方式(例如, 胶水连接方式) 固定在一起。
在本实施例中, 为了实现单端导电的介质谐振器的滤波功能, 所述绝缘 固定模块 305釆用的是绝缘体; 为了防止装配的过程中, 出现硬性压力造成 的介质谐振器的损坏, 所述绝缘固定模块 305最好釆用的是带有弹性的绝缘 体。
在本实施例中, 整个介质谐振器的装配过程为: 首先将介质谐振柱 303 下端面金属化(例如, 刷银浆) ; 再将所述介质谐振柱 303放置在所述金属 腔体 304底面凹槽内; 然后将安装好绝缘固定模块 305的密封盖板 301 固定 密封所述金属腔体 304; 最后装配调谐螺钉 302。 整个装配完成后, 介质谐振 柱 303牢牢的固定在金属腔体 304内, 形成一个密闭的谐振腔体。
所述介质谐振柱 303装配完成后, 介质谐振柱下端面低于所述金属腔体
204的底部上表面, 根据电磁场理论, 这样更有利于电场在介质内的传播。
本实施例通过绝缘固定模块把介质谐振柱固定在金属腔体的底部, 无需 焊接, 即可确保介质谐振柱与所述金属腔体良好接触, 即使所述金属腔体在 外力或者运输过程中, 均能保证良好接触, 从而提高介质滤波器性能及可靠 性。
本发明实施例还提供一种介质滤波器, 该介质滤波器包括一个或多个如 上述实施例中所述的介质谐振器。 所述介质滤波器由一个或多个所述介质谐 振器连接在一起形成一个多阶介质滤波器。
本发明实施例还提供一种介质谐振器的装配方法, 包括:
将介质谐振柱的下端面与金属腔体固定;
将带有绝缘固定模块的盖板安装在密封金属腔体上;
于安装在金属腔体上的密封盖板上装配调谐螺钉。
整个装配完成后, 介质谐振器牢牢的固定在金属腔体体, 形成一个密闭 的谐振腔体。
上述将介质谐振柱的下端面与金属腔体固定的一种方式是: 将所述介质 谐振柱放置在所述金属腔体底面凹槽内固定。 同时, 本实施例不排除釆用其 他方式使介质谐振柱的下端面固定在金属腔体内。
需要强调的是, 如果在装配的时候, 密封盖板上未带有绝缘固定模块, 则上述装配方法还包括: 将绝缘固定模块安装在密封盖板上。
对本领域的技术人员来说, 介质谐振器的装配方法包含但不限于上述步 骤。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。 工业实用性
本发明实施例通过绝缘固定模块把介质谐振柱固定在金属腔体的底部, 无需焊接, 即可确保介质谐振柱与所述金属腔体良好接触, 即使所述金属腔 体在外力或者运输过程中, 均能保证良好接触, 从而提高介质滤波器性能及 可靠性。

Claims

权 利 要 求 书
1、一种介质谐振器, 包括介质谐振柱、金属腔体、 密封盖板、调谐螺钉, 所述介质谐振柱位于所述金属腔体内, 所述密封盖板位于所述金属腔体的上 端面, 所述调谐螺钉位于所述密封盖板上, 该介质谐振器还包括位于密封盖 板下端面和介质谐振柱上端面之间的绝缘固定模块, 所述绝缘固定模块的高 度足以保证在密封盖板和介质谐振柱之间形成压力, 使得所述介质谐振柱固 定在金属腔体的底部。
2、如权利要求 1所述的介质谐振器,其中,所述绝缘固定模块是绝缘体。
3、 如权利要求 2所述的介质谐振器, 其中, 所述绝缘固定模块是带弹性 的绝缘体。
4、 如权利要求 1、 2或 3所述的介质谐振器, 其中, 所述绝缘固定模块 固定在所述密封盖板下端面上, 所述绝缘固定模块位于所述密封盖板下端面 和介质谐振柱上端面之间。
5、 如权利要求 4所述的介质谐振器, 其中, 所述绝缘固定模块设置有一 个。
6、 如权利要求 4所述的介质谐振器, 其中, 所述绝缘固定模块设置有多 个。
7、 如权利要求 1所述的介质谐振器, 还包括, 所述介质谐振柱下端面镀 有一层银。
8、 一种介质滤波器, 其特征在于, 该介质滤波器包括连接在一起的一个 或多个如权利要求 1-7中任一权利要求所述的介质谐振器。
9、 一种介质谐振器的装配方法, 包括:
将介质谐振柱的下端面与金属腔体固定;
将带有绝缘固定模块的密封盖板安装在金属腔体上;
于安装在金属腔体上的密封盖板上装配调谐螺钉。
10、 如权利要求 9所述的装配方法, 其中, 所述将带有绝缘固定模块的 密封盖板安装在金属腔体上的步骤包括: 将所述绝缘固定模块固定在所述密封盖板下端面上, 所述绝缘固定模块 的高度足以保证在密封盖板和介质谐振柱之间形成压力, 使得所述介质谐振 柱固定在金属腔体的底部;
将带有绝缘固定模块的密封盖板安装在金属腔体上, 所述绝缘固定模块 处于密封盖板下端面和介质谐振柱上端面之间。
11、 如权利要求 9或 10所述的装配方法, 其中, 所述绝缘固定模块是绝 缘体。
12、 如权利要求 11所述的装配方法, 其中, 所述绝缘固定模块是带弹性 的绝缘体。
13、 如权利要求 9或 10所述的装配方法, 其中, 所述绝缘固定模块设置 有一个或多个。
PCT/CN2013/084943 2013-02-25 2013-10-10 介质谐振器及其装配方法、介质滤波器 WO2014127639A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/764,182 US9728830B2 (en) 2013-02-25 2013-10-10 Dielectric resonator and filter including a dielectric column secured to a housing using multiple insulating fixed modules
EP13875819.8A EP2930785B1 (en) 2013-02-25 2013-10-10 Dielectric resonator, assembly method thereof and dielectric filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310058986.3A CN104009276A (zh) 2013-02-25 2013-02-25 介质谐振器及其装配方法、介质滤波器
CN201310058986.3 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014127639A1 true WO2014127639A1 (zh) 2014-08-28

Family

ID=51369840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084943 WO2014127639A1 (zh) 2013-02-25 2013-10-10 介质谐振器及其装配方法、介质滤波器

Country Status (4)

Country Link
US (1) US9728830B2 (zh)
EP (1) EP2930785B1 (zh)
CN (1) CN104009276A (zh)
WO (1) WO2014127639A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3006389C (en) * 2015-11-28 2022-05-31 Huawei Technologies Co., Ltd. Dielectric resonator and filter
CN106275856B (zh) * 2016-08-29 2018-07-24 中国计量大学 一种谐波滤波器运输用安全型放置装置
CN107464970A (zh) * 2017-08-16 2017-12-12 广东工业大学 一种铁电微波滤波器
EP3852190A4 (en) * 2018-09-12 2022-06-15 Kyocera Corporation RESONATOR, FILTER AND COMMUNICATION DEVICE
CN109244612B (zh) * 2018-09-28 2024-03-22 西南应用磁学研究所 一种小型化梳状陶瓷管介质腔体滤波器
CN219144465U (zh) * 2019-09-02 2023-06-06 康普技术有限责任公司 具有介电tm01模式谐振器的电子系统和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855693A (en) * 1987-08-08 1989-08-08 Oki Electric Industry Co., Ltd. Dielectric filter and a method of manufacture thereof
CN1330430A (zh) * 2000-06-15 2002-01-09 松下电器产业株式会社 谐振器及高频滤波器
CN102368574A (zh) * 2011-10-31 2012-03-07 华为技术有限公司 Tm模介质滤波器
CN102903987A (zh) * 2012-10-18 2013-01-30 江苏贝孚德通讯科技股份有限公司 金属同轴滤波器
CN103050760A (zh) * 2012-12-10 2013-04-17 中兴通讯股份有限公司 一种介质谐振器及其装配方法、介质滤波器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2129228B (en) * 1982-10-01 1986-06-18 Murata Manufacturing Co Dielectric resonator
US5221913A (en) * 1990-09-26 1993-06-22 Matsushita Electric Industrial Co., Ltd. Dielectric resonator device with thin plate type dielectric heat-radiator
US5652556A (en) * 1994-05-05 1997-07-29 Hewlett-Packard Company Whispering gallery-type dielectric resonator with increased resonant frequency spacing, improved temperature stability, and reduced microphony
US6535086B1 (en) * 2000-10-23 2003-03-18 Allen Telecom Inc. Dielectric tube loaded metal cavity resonators and filters
CN101826649A (zh) 2010-04-27 2010-09-08 江苏江佳电子股份有限公司 一种tm模介质谐振器
CN102025008B (zh) 2010-12-06 2013-09-04 深圳市大富科技股份有限公司 介质滤波器、介质谐振杆安装结构以及通信设备
CN102637940A (zh) 2012-04-27 2012-08-15 深圳市国人射频通信有限公司 介质滤波器及其介质谐振器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855693A (en) * 1987-08-08 1989-08-08 Oki Electric Industry Co., Ltd. Dielectric filter and a method of manufacture thereof
CN1330430A (zh) * 2000-06-15 2002-01-09 松下电器产业株式会社 谐振器及高频滤波器
CN102368574A (zh) * 2011-10-31 2012-03-07 华为技术有限公司 Tm模介质滤波器
CN102903987A (zh) * 2012-10-18 2013-01-30 江苏贝孚德通讯科技股份有限公司 金属同轴滤波器
CN103050760A (zh) * 2012-12-10 2013-04-17 中兴通讯股份有限公司 一种介质谐振器及其装配方法、介质滤波器

Also Published As

Publication number Publication date
EP2930785A4 (en) 2016-01-13
EP2930785B1 (en) 2018-12-05
EP2930785A1 (en) 2015-10-14
CN104009276A (zh) 2014-08-27
US20150364808A1 (en) 2015-12-17
US9728830B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2014127639A1 (zh) 介质谐振器及其装配方法、介质滤波器
WO2014090003A1 (zh) 一种介质谐振器及其装配方法及介质滤波器
EP2605330B1 (en) Transverse magnetic mode dielectric resonator, transverse magnetic mode dielectric filter and base station
US9979070B2 (en) Resonator, filter, duplexer, multiplexer, and communications device
WO2015070450A1 (zh) 谐振器、滤波器、双工器及多工器
CN207070345U (zh) 定心支片及具有该定心支片的扬声器
CN206963061U (zh) 定心支片及具有该定心支片的扬声器
CN206963062U (zh) 定心支片及具有该定心支片的扬声器
JP6284948B2 (ja) Tm媒質共振器及びその実現方法、並びにtm媒質濾波器
CN107275729A (zh) 谐振器、滤波器及谐振器的装配方法
WO2014090004A1 (zh) 一种介质谐振器及其装配方法、介质滤波器
WO2014180147A1 (zh) 一种介质滤波装置
CN106910967A (zh) 射频器件及其双端短路介质滤波器
WO2019153958A1 (zh) 一种应用于滤波器中的三模介质谐振腔结构
JP2976815B2 (ja) 圧電振動子
CN209201323U (zh) 发声器件
WO2018132985A1 (zh) 一种横磁模介质谐振器、滤波器及通信设备
CN209151125U (zh) 一种耐焊锡龟裂的石英晶体谐振器
CN107732390B (zh) 一种电磁混合耦合腔体滤波器
CN203504507U (zh) 一种石英晶体谐振器
CN203071893U (zh) 晶片一端固定的电阻焊小型石英晶体谐振器
CN203590459U (zh) 全指向麦克风
CN211125956U (zh) 一种滤波器
CN202978852U (zh) 小型化石英晶体谐振器
CN213124698U (zh) 双反射时延峰滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013875819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14764182

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE