WO2015190879A1 - 고흡수성 수지 - Google Patents

고흡수성 수지 Download PDF

Info

Publication number
WO2015190879A1
WO2015190879A1 PCT/KR2015/005957 KR2015005957W WO2015190879A1 WO 2015190879 A1 WO2015190879 A1 WO 2015190879A1 KR 2015005957 W KR2015005957 W KR 2015005957W WO 2015190879 A1 WO2015190879 A1 WO 2015190879A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
meth
superabsorbent polymer
superabsorbent
super absorbent
Prior art date
Application number
PCT/KR2015/005957
Other languages
English (en)
French (fr)
Inventor
이혜민
박성현
이명한
임예훈
김상은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150082881A external-priority patent/KR101743274B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/315,111 priority Critical patent/US20170189575A1/en
Priority to EP15806538.3A priority patent/EP3156427B1/en
Priority to CN201580030758.2A priority patent/CN106459265A/zh
Priority to JP2016568684A priority patent/JP6592461B2/ja
Publication of WO2015190879A1 publication Critical patent/WO2015190879A1/ko
Priority to US16/266,838 priority patent/US20190167836A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a superabsorbent polymer which is optimized in water retention capacity, pressure absorption capacity, liquid permeability and gel strength, and shows overall balanced and superior physical properties.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (SAM) and absorbent gel (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological tools, and currently, in addition to sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in food distribution, and It is widely used as a material for steaming.
  • the present invention is to provide a super absorbent polymer which is optimized in water-retaining capacity, pressure-absorbing capacity, liquid permeability and gel strength, and exhibits overall balanced and superior physical properties.
  • the present invention provides a superabsorbent polymer comprising a crosslinked polymer obtained by crosslinking a surface-based polymer polymerized with a water-soluble ethylenically unsaturated monomer having at least part of a neutralized acid group. to provide:
  • CRC represents the centrifugal water retention capacity for 30 minutes with respect to the physiological saline solution (0.9 weight 0 /. Sodium chloride solution) of the super absorbent polymer
  • AUP is physiological saline solution of the super-absorbent resin (0.9 parts by weight 0/0 sodium chloride Aqueous absorption) under a pressure of 0.7 psi for 1 hour,
  • G ' is the high after swelling by absorbing the physiological saline solution (0.9 weight 0/0 aqueous sodium chloride solution) for 1 hour in the water-absorbent resin, a horizontal direction, the gel strength of a superabsorbent resin measured using a rheometer.
  • Such superabsorbent polymers may satisfy each of the following physical formulas:
  • the SFC is high inductive flow of saline solution (0.685 parts by weight 0 /.
  • Aqueous solution of sodium chloride) for the water-absorbent resin ⁇ 10-7 eta 3 ⁇ 5/9.
  • the super absorbent polymer may have a CRC of about 25 to 35 g / g, black to about 26 to 32 g / g, and an AUP of about 21 to 30 g / g, or about 22 to 26 g / g.
  • the horizontal gel strength G ' may be about 6,000 to 12,000 Pa, or about 7,000 to 12,000 Pa.
  • the super-absorbent resin is induced saline flow for saline property (SFC) of about 40 to about 85 * 10- 7 cm 3 * s / g , or from about 50 to about 75-10 "7 cm 3 -s / may be g.
  • SFC saline property
  • the storage elasticity and the loss modulus of the swollen superabsorbent polymer under the identified shear deformation may be measured, and the average value of the storage elasticity may be measured as gel strength.
  • the water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2- Acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-
  • the base resin is selected from the group consisting of bis (meth) acrylamide having 8 to 12 carbon atoms, poly (meth) acrylate of poly 2 to 10 carbon atoms and poly (meth) allyl ether of poly 2 to 10 carbon atoms
  • the monomer may comprise a crosslinked polymer.
  • the crosslinked polymer of the super absorbent polymer may be obtained by crosslinking the surface of the base resin in the presence of a surface crosslinking agent containing a diol or polyol having 2 to 8 carbon atoms.
  • the superabsorbent polymer may have a particle size of about 150 to 850.
  • a super absorbent polymer according to a specific embodiment of the present invention will be described in more detail. However, this is presented as an example of the invention, whereby the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
  • the superabsorbent polymer comprising a crosslinked polymer surface-crosslinked a base resin in the form of a polymerized water-soluble ethylenically unsaturated monomer having a neutralized acid group, satisfying the following formula 1 doing Superabsorbent resins are provided:
  • CRC represents the centrifugal water retention capacity for 30 minutes with respect to the physiological saline solution (0.9 weight 0 /. Sodium chloride solution) of the super absorbent polymer
  • AUP shows the pressure-absorbing capacity for 1 hour under o.7 psi to the physiological saline solution (0.9 weight 0 /. Sodium chloride solution) of the super absorbent polymer
  • G represents the horizontal gel strength of the superabsorbent polymer measured using a rheometer after swelling by absorbing physiological saline solution (0.9 wt% aqueous sodium chloride solution) for 1 hour to the superabsorbent polymer.
  • the super absorbent polymer of one embodiment may satisfy each of the following physical formulas:
  • Equation 2 AUP, CRC, and G 'are as defined in Equation 1, and SFC is a flow inducer of physiological saline solution (0.685 weight 0 /. Sodium chloride solution) to the superabsorbent polymer. 7 ⁇ 3 ⁇ 3/9).
  • the inventors of the present invention continued to improve the properties of superabsorbent polymers in a more balanced manner. However, by optimizing the kind of the surface crosslinking agent and the method of advancing the surface crosslinking conditions, it was confirmed that a super absorbent polymer having an optimized internal and surface crosslinking structure can be obtained.
  • the superabsorbent polymer having optimized crosslinked structure can express and maintain the centrifugal water retention capacity (CRC) reflecting its basic absorption ability and the pressure absorption capacity (AUP) reflecting the absorption retention under pressure.
  • CRC centrifugal water retention capacity
  • AUP pressure absorption capacity
  • the superabsorbent polymer is excellent in the horizontal gel strength (G ')
  • the hygienic material After the water absorption and swelling in the water is excellent in maintaining the shape, as a result it was confirmed that the liquid flows well through this super absorbent resin can exhibit excellent liquid permeability.
  • Equation 1 water-retaining capacity
  • AUP pressure-absorbing capacity
  • SFC liquid permeability
  • G ' horizontal gel strength
  • the superabsorbent polymer of one embodiment exhibits excellent balance of all physical properties such as absorption force, absorption retention force under pressure, and shape retention force (liquid permeability), which have been applied to various sanitary materials such as diapers and sanitary napkins.
  • absorption force absorption retention force under pressure
  • shape retention force liquid permeability
  • the super absorbent polymer may have a centrifugal water retention (CRC) of about 25 to 35 g / g, and black to about 26 to 32 g / g.
  • CRC centrifugal water retention
  • the centrifugal water retention capacity (CRC) for the physiological saline can be calculated by the following formula 1 after absorbing the superabsorbent resin in physiological saline over 30 minutes:
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • V ⁇ g) is absorbed by immersion in physiological saline for 30 minutes without using the superabsorbent polymer, and then 3 to 250G using a centrifuge
  • the weight of the device measured after dehydration for a minute, W 2 (g) is absorbed by immersing the superabsorbent resin in physiological saline for 30 minutes at room temperature, and then dehydrated at 250G for 3 minutes using a centrifuge, superabsorbent resin Including the measured device weight.
  • the superabsorbent polymer may have a pressure absorption capacity (AUP) of about 21 to 30 g / g, or about 22 to 26 g / g.
  • AUP pressure absorption capacity
  • This pressurized absorbent capacity (AUP) can be calculated according to Formula 2 after absorbing the superabsorbent resin in physiological saline under a pressurization of about 0.7 psi over 1 hour:
  • AUP (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 4 (g ) Is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for 1 hour under a load (0.7 psi).
  • the super absorbent polymer of one embodiment exhibits the centrifugal water retention capacity (CRC) and the pressurized absorbent capacity (AUP) in the above-described range, the basic absorbent power of the superabsorbent resin and the absorbent holding force under pressure are excellently expressed and various sanitary materials It can be used suitably.
  • CRC centrifugal water retention capacity
  • AUP pressurized absorbent capacity
  • the super absorbent polymer of the embodiment has the above-described CRC and AUP, the horizontal gel strength G 'is about 6,000 to 12,000 Pa, black is about 7,000 to 12,000
  • the horizontal gel strength G ' is the physical properties of the superabsorbent polymer newly measured by the present inventors, and can better reflect the excellent liquid permeability under the actual use environment of the superabsorbent polymer. That is, conventionally, the vertical gel strength of the superabsorbent polymer was mainly measured while applying a force in the vertical direction to the superabsorbent polymer. In spite of the forces applied in the horizontal direction, it was found to be more relevant depending on whether they exhibited good shape retention and high gel strength. Accordingly, the present inventors have devised a method for measuring a new parameter which can more effectively reflect and predict the excellent liquid permeability under actual use environment of such superabsorbent polymer, and this parameter is the horizontal gel strength G '.
  • the superabsorbent polymer of one embodiment in which such horizontal gel strength G 'satisfies the above-mentioned range, together with the excellent CRC and AUP as already described above, is excellent. As it shows fluid permeability, it has been confirmed that it can be used very favorably for hygiene materials, such as a diaper.
  • a superabsorbent polymer whose horizontal gel strength G'measured under this method satisfies the above-mentioned high range can satisfy the relationship of Equation 1 described above in the relationship between the above-mentioned CRC and AUP, and the CRC, AUP and In the relationship of SFC, the relationship of Equation 2 can be satisfied. Accordingly, since the overall physical properties required for the superabsorbent polymer are excellently balanced, it can be suitably used for hygiene materials such as diapers.
  • the superabsorbent polymer of one embodiment has a physiological saline flow inducibility (SFC) for physiological saline of about 40 to about 85 * 1 (T 7 cm 3 * s / g or about 50 to about 75 ⁇ ⁇ 7 cm 3
  • SFC physiological saline flow inducibility
  • Such physiological saline flow inducibility (SFC) is a method well known to those skilled in the art, for example, as disclosed in column 16 of US Patent Publication No. 2009-0131255.
  • the scale and unit portion of " • 1 CT 7 cm 3 * s / g" are calculated. Except, it can calculate by substitution to the left side of Formula 2.
  • the super absorbent polymer of one embodiment may be obtained by polymerizing a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized, such as acrylic acid in which at least some carboxylic acid is neutralized with sodium salt or the like.
  • the superabsorbent polymer may be obtained by crosslinking and polymerizing the monomer in the presence of an internal crosslinking agent to obtain a base resin in powder form, and then preparing a crosslinked polymer in which the base resin is surface crosslinked in the presence of a predetermined surface crosslinking agent.
  • the superabsorbent polymer may be in the form of crosslinked polymer particles of a water-soluble ethylenically unsaturated monomer such as acrylic acid having an internal crosslinked structure, and the surface of the crosslinked polymer particles may be further crosslinked to further improve crosslinking degree.
  • the superabsorbent polymer of one embodiment may exhibit various physical properties of the above-described embodiment as the internal crosslinking process or the surface crosslinking process is optimized and has a more suitable internal and surface crosslinking structure. .
  • the water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-
  • alkali metal salts such as acrylic acid or salts thereof, for example, acrylic acid and / or sodium salts of which at least a portion of the acrylic acid is neutralized may be used.
  • the production of superabsorbent polymers having superior physical properties using such monomers may be used.
  • acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
  • an internal crosslinking agent for crosslinking polymerization of such monomers bis (meth) acrylamide having 8 to 12 carbon atoms, poly (meth) acrylate of polyol having 2 to 10 carbon atoms, and poly (meth) having poly 2 to 10 carbon atoms
  • the internal crosslinking agent is polyethylene glycol di (meth) acrylate, polypropyleneoxy Poly (meth) acrylates of one or more polyols selected from the group consisting of di (meth) acrylates, glycerin diacrylates, glycerin triacrylates and trimethy triacrylate can be suitably used.
  • a base resin having a gel strength (G ′; Pa) before surface crosslinking of about 4500 Pa or more, black about 4600 Pa, or higher and black about 4600 to 7000 Pa can be obtained.
  • G ′; Pa gel strength
  • a superabsorbent polymer of one embodiment that satisfies the relationship of Formula 1 and / or 2 may be obtained.
  • the specific internal crosslinking agent is about 0.005 moles or more, black about 0.005 to 0.1 moles, black about 0.005 to 0.05 moles (or 100 weights of acrylic acid) based on 1 mole of non-amplified acrylic acid included in the monomer. About 0.3 parts by weight or more, or about 0.3 to 0.6 parts by weight).
  • a base resin having a gel strength ((3 '; Pa) of about 4500 Pa or more before surface crosslinking can be appropriately obtained and used to satisfy the relationship of Equations 1 and / or 2).
  • a water absorbent resin can be obtained.
  • the resulting super absorbent polymer is prepared and provided to have a particle diameter of about 150 to 850. More specifically, at least about 95 weight 0 /. Or more of the base resin and the super absorbent polymer obtained therefrom has a particle size of about 150 to 850, and fine powder having a particle size of less than about 150 ⁇ m is less than about 3 weight%, Or less than about 3 weights 0 /.
  • the super absorbent polymer of the embodiment may exhibit the above-described physical properties and better liquid permeability.
  • the super absorbent polymer of one embodiment may include a crosslinked polymer obtained by surface crosslinking the base resin, and the surface crosslinking may be performed in the presence of a surface crosslinking agent including diol or polyol having 2 to 8 carbon atoms.
  • diols or polyols having 2 to 8 carbon atoms that can be used as such surface crosslinking agents include 1,3-propanediol, 1,6-nucleic acid diol, ethylene glycol, propylene glycol and 1,2-nucleic acid diol 1,3- Butanediol, 2-methyl-1,3-propanedi, 2,5-nucleic acid diol, 2-methyl-1,3-pentanediol, or 2-methyl-2,4-pentanedi, and the like. Of course, two or more selected may be used together.
  • the surface crosslinking structure of the superabsorbent polymer can be further optimized. This is expected because these metal cations can further reduce the crosslinking distance by forming chelates with the carboxyl group (COOH) of the superabsorbent polymer.
  • the superabsorbent polymer of one embodiment described above and more specifically, the method for preparing a superabsorbent polymer that satisfies the above-described physical properties, such as the equations of Formulas 1 and 2, will be described in more detail at each step. Shall be.
  • the above-described monomer, internal crosslinking agent, surface crosslinking agent, particle size distribution, and the like will not be redundantly described, and the remaining process configurations and conditions will be described step by step.
  • the method of preparing the superabsorbent polymer may include forming a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator; Drying the hydrogel polymer; Grinding and classifying the dried polymer to form a base resin; And surface crosslinking with respect to the base resin.
  • a super absorbent polymer can be obtained. Can be.
  • the monomer composition includes a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent and a polymerization initiator, and the type of the monomer is as described above.
  • the three levels of the water-soluble ethylenically unsaturated monomer in such compositions is about 20 to about 60 parts by weight based on the total monomer composition comprising the respective raw materials and the solvent described above 0/0, or from about 40 to about 50 weight 0 / It may be ⁇ , and may be appropriate concentration in consideration of the polymerization time and reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, some of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
  • the said polymerization initiator will not be specifically limited if it is generally used for manufacture of a super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator may be additionally included.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • acyl phosphine and alpha-aminoketone can be used at least one selected from the group consisting of.
  • specific examples of acylphosphine include commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine octane 1 "id (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) ! "Can be used.
  • the photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0 weight 0 /. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K2S208), ammonium persulfate ((NH 4 ) 2 S 2 O 8 ),
  • azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2- amidinopropane) dihydrochloride), 2, 2-azobis -(N, N-dimethylene) isobutyramidine dihydrochlorai H.
  • the thermal polymerization initiator may be included in a concentration of about 0 ⁇ 01 to about 0.5% by weight based on the monomer composition.
  • concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, so that the effect of the addition of the thermal polymerization initiator may be insignificant.
  • concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
  • the type of the internal crosslinking agent included in the monomer composition is the same as described above, and the internal crosslinking agent is included at a concentration of about 0.01 to about 0.5 weight 0 /. Can be crosslinked.
  • the internal crosslinking agent is about 0.005 mol or more, or about 0.005 to 0.1 mol, or about 0.005 to 0.05 mol (or 100 of acrylic acid) based on 1 mol of unneutralized acrylic acid contained in the monomer. Parts by weight To about 0.3 parts by weight or more, or about 0.3 to 0.6 parts by weight).
  • an internal crosslinking agent is used in this content range, it is possible to appropriately satisfy the gel strength range before surface crosslinking described above.
  • Superabsorbent resins that more adequately stratify the physical properties of one embodiment already described above can be prepared.
  • the monomer composition may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants, and the like, as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-mentioned components, for example, water, ethane, ethylene glycol diethylene glycol, triethylene glycol, 1,4-butanediol, Propylene glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone cyclonuxanone, cyclopentanone, diethylene glycol monomethyl ether diethylene glycol ethyl ether, Luene xylene butyrolactone and carbye can be used in combination of 1 or more types chosen from methyl cellosolve acetate and ⁇ , ⁇ - dimethylacetamide.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the method of forming a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is not particularly limited as long as it is a commonly used polymerization method.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi machine having a stirring shaft such as kneader, when the photopolymerization, Although it can be carried out in a semi-unggi equipped with a conveyor belt possible, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the polymer may be in the form of several centimeters to several millimeters of the hydrogel polymer discharged to the reaction vessel outlet depending on the shape of the stirring shaft provided in the reaction vessel.
  • the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection rate of the monomer composition to be injected, it can be obtained a water-containing gel polymer having a weight average particle diameter of about 2 to 50 mm.
  • the form of the hydrous gel polymer generally obtained may be a hydrous gel polymer of the sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained.
  • the normal water content of the hydrogel polymer obtained by the above method may be about 40 to about 80 weight 0 /.
  • water content refers to the value of the moisture content of the total hydrogel polymer weight minus the weight of the polymer in the dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating and drying. At this time, the drying conditions are raised to a temperature of about 180 ° C at room temperature and maintained at about 18 CTC, the total drying time is set to 20 minutes, including 5 minutes of the temperature rise step, the moisture content is measured. Next, a step of drying the obtained hydrogel polymer is performed.
  • the pulverizer used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Any one selected from the group of grinding machines consisting of a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter It may include, but is not limited to the above-described example.
  • the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10mm.
  • the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C., the drying time is too long, there is a fear that the physical properties of the final superabsorbent polymer to be formed is lowered. If the drying temperature exceeds 250 ° C., only the polymer surface is dried excessively, Fine powder may occur in the grinding process, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Thus preferably the drying may proceed at a temperature of about 150 to about 200 ° C, more preferably at a temperature of about 160 to about 180 ° C.
  • drying time in consideration of the process efficiency, etc., it may proceed for about 20 to about 90 minutes, but is not limited thereto.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content after the drying phase, such a polymer may be from about 0.1 to about 10 wt. 0/0.
  • the polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850.
  • the grinder used to grind to such a particle size is specifically a pin mill, hammer mill, screw mill, roll mill, disc mill or jog. A jog mill or the like may be used, but is not limited to the example described above.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle size may be performed.
  • the polymer having a particle size of about 150 to about 850 may be classified and commercialized only through the surface crosslinking reaction step for the polymer powder having such a particle size. Since the particle size distribution of the base resin obtained through this process has already been described above, a detailed description thereof will be omitted.
  • the horizontal gel strength (G ′) before surface crosslinking of the base resin described above may be in a range of about 4500 Pa or more, or about 4600 Pa, or more, or about 4600 to TOPa, and the gel strength of the base resin before surface crosslinking is When it falls in the range, the superabsorbent polymer manufactured through the surface crosslinking reaction mentioned later may satisfy
  • the surface crosslinking agent and the base resin may be mixed in a semi-permanent mixture, or the surface crosslinking agent may be sprayed onto the base resin, or the base resin and the surface crosslinking agent may be continuously supplied to the mixer to be operated continuously. .
  • the surface crosslinker water and methane may be added in combination together. When water and methanol are added, there is an advantage that the surface crosslinking agent can be evenly dispersed in the base resin.
  • the amount of water and methane added is added ratio to 100 parts by weight of the base resin for the purpose of inducing even dispersion of the surface crosslinking agent and preventing aggregation of the base resin powder and optimizing the surface penetration depth of the crosslinking agent. It can be applied by adjusting.
  • the surface crosslinking process conditions are at most about half a degree. 180-200 ° C., holding at the maximum reaction temperature may be about 20 minutes or more, or about 20 minutes or more and 1 hour or less, or about 20 minutes to 50 minutes.
  • the temperature of the initial reaction reaction that is, at a temperature of about 60 ° C.
  • the temperature rise time of can be controlled to about 10 minutes or more, or about 10 minutes or more and 60 minutes or less, or about 10 minutes or more and 40 minutes or less. It has been confirmed that superabsorbent resins can be prepared.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • the kind of heat medium that can be used may be a mild fluid such as steam, hot air, or hot oil, but the present invention is not limited thereto, and the silver content of the heat medium to be supplied may be a means of a heat medium, a temperature increase rate, and a temperature increase target temperature. Consideration can be made as appropriate.
  • the heat source directly supplied may be a heating method through electricity, a heating method through a gas, but is not limited to the above examples.
  • the superabsorbent polymer obtained according to the above-described manufacturing method satisfies the excellent horizontal gel strength and liquid permeability and the like without sacrificing physical properties such as water-retaining capacity and pressure-absorbing capacity, and can satisfy the relational formulas of Equations 1 and 2, and the like. It can exhibit excellent physical properties that can be appropriately used for hygiene materials such as diapers and diapers.
  • the present invention by controlling the manufacturing process of the superabsorbent polymer, for example, internal and / or surface crosslinking process, centrifugal water retention capacity (CRC) reflecting the basic absorption force, and pressurization reflecting the absorption retention force under pressure
  • CRC centrifugal water retention capacity
  • AUP absorption retention force
  • G ' the horizontal gel strength
  • SFC liquid permeability
  • Such superabsorbent polymers exhibit excellent overall properties such as the water retention capacity (CRC), the pressure absorption capacity (AUP), the horizontal gel strength (G '), and the fluid permeability in a balanced manner. Can be stratified.
  • the superabsorbent polymer of the present invention exhibits excellent properties such as absorption force, absorption retention force under pressure, and form retention force (liquid permeability) in a balanced manner, and thus has been applied to various sanitary materials such as diapers and sanitary napkins.
  • the particle diameters of the base resin and the super absorbent polymer used in the examples and the comparative examples were measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
  • EDANA European Disposables and Nonwovens Association
  • W 0 (g) is the initial weight (g) of the super absorbent polymer
  • W ⁇ g is the weight of the device measured after immersion in physiological saline for 30 minutes without using a super absorbent polymer, and then dehydrated at 250 G for 3 minutes using a centrifuge.
  • W 2 (g) is the weight of the device, including the super absorbent polymer, after absorbing the superabsorbent polymer in physiological saline at room temperature for 30 minutes and then dehydrating it at 250 G for 3 minutes using a centrifuge.
  • AUP Absorbency under Pressure
  • a stainless steel 400 mesh wire mesh was mounted on a cylindrical bottom of a plastic having a diameter of 60 mm. Evenly spread the resin W 0 (g, 0.90 g) obtained in Examples 1 to 6 and Comparative Examples 1 to 3 on a wire mesh under a condition of silver of 23 ⁇ 2 ° C and a relative humidity of 45% and thereon 4.83 kPa (
  • the piston which can give a load of 0.7 psi more uniformly, has an outer diameter of slightly smaller than 60 mm, has no inner wall and no movement of up and down.
  • the weight W 3 (g) of the apparatus was measured.
  • a glass filter having a diameter of 125 mm and a thickness of 5 mm was placed on the inside of the petri dish having a diameter of 150 mm, and the physiological saline composed of 0.90 weight 0 / ° sodium chloride was brought to the same level as the upper surface of the glass filter.
  • One sheet of filter paper 120 mm in diameter was loaded thereon.
  • the measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted and the weight W 4 (g) was measured. Using each mass thus obtained, AUP (g / g) was calculated according to the following equation 2 to confirm the pressure absorbing ability.
  • AUP (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • W 0 (g) is the initial weight (g) of the super absorbent polymer
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 4 (g) is the sum of the weight of the superabsorbent resin and the device weight capable of applying a load to the superabsorbent resin after absorbing physiological saline into the superabsorbent resin for 1 hour under a load (0.7 psi).
  • the distance between the two parallel plates was adjusted to 1 mm.
  • the swelled superabsorbent polymer sample was pressed with a force of about 3N so as to contact all of the parallel plate surface to adjust the distance between the parallel plate.
  • the rheometer is used to increase the shear strain at an oscilation frequency of 10 rad / s while maintaining the shear modulus of a linear viscoelastic regime with a constant storage modulus and a loss modulus. Confirmed. Generally in a swollen superabsorbent polymer sample, 0.1% shear strain is within the linear viscoelastic state section.
  • the storage modulus and the loss modulus of the superabsorbent polymer swollen for 60 seconds were measured as shear strain values in the linear viscoelastic state section, respectively.
  • the storage elastic modulus value obtained at this time was averaged, and the horizontal gel strength was calculated
  • the loss modulus is measured as a very small value compared to the storage modulus.
  • aqueous monomer solution was first mixed with 30.54 g of 0.18% ascorbic acid solution and 33 g of 1% sodium persulfate solution first, followed by polymerization with 30.45 g of 0.15% hydrogen peroxide solution.
  • the polymerization was carried out by adding through a supply unit of. The temperature of the polymerization reactor was maintained at 80 ° C, the highest degree of polymerization is 1 10 ° C, the polymerization time is 1 minutes 15 seconds. Then, kneading was continued, and polymerization and kneading were performed for 20 minutes. The size of the resulting polymerizer was then distributed below 0.2 cm. At this time, the water content of the finally formed hydrogel polymer was 51 weight 0 /.
  • the hydrogel polymer was dried in a hot air dryer at 180 ° C. for 30 minutes, and the dried hydrogel polymer was pulverized with a pin mill grinder. Then, a sieve was used to classify the polymer having a particle size of less than about 150 m and the polymer having a particle size of about 150 m to 850.
  • the base resin was placed in a surface crosslinking reaction machine and surface crosslinking reaction was performed.
  • the base resin was found to be gradually warmed up at an initial silver temperature near about 160 ° C. and manipulated to reach a maximum reaction temperature of about 185 ° C. after about 30 minutes. After reaching this maximum reaction temperature, an additional reaction was performed for about 30 minutes before the final prepared superabsorbent polymer sample was taken.
  • Example 1 Surface crosslinking reaction conditions of Example 1 are as summarized in Table 1 below. After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve. The superabsorbent polymer has a particle size of about 150 ⁇ or less The content of the fine powder of less than about 2 wt. 0/0. Examples 2-6
  • the surface crosslinking reaction conditions such as the base resin initial silver at the start of the reaction, the maximum reaction temperature initial temperature ⁇ the soaking time of the maximum reaction temperature, and the holding time at the maximum reaction temperature were changed as shown in Table 1 below. Except the super absorbent polymers of Examples 2 to 6 were prepared in the same manner as in Example 1. Comparative Examples 1 to 3
  • the surface crosslinking reaction conditions such as the base resin initial temperature at the start of reaction, the maximum reaction silver degree, the initial temperature ⁇ maximum reaction temperature, and the holding time at the maximum reaction temperature are different as shown in Table 1 below.
  • Superabsorbent polymers of Comparative Examples 1 to 3 were prepared in the same manner as in Example 1.
  • Examples 1 to 6 are excellent in overall CRC, AUP, and gel strength, and compared to the relationship of the value of Equation 1 is 15 Pa 2 or more, Comparative Examples 1 to 3 are the above three physical properties It was found that one or more of the groups were poor and could not satisfy the relation of equation 1 above. In particular, in Comparative Examples 1 to 3, the temperature raising conditions or the reaction conditions in the surface crosslinking process are different from those in Examples, and it is expected that the gel strength or AUP is poor and the liquid permeability is poor compared to the three examples.
  • Example 7
  • a monomer aqueous solution of the composition ratio It was prepared to. Thereafter, 810 g of the aqueous monomer solution was first mixed with 30.54 g of 0.18% ascorbic acid solution and 33 g of 1% sodium persulfate solution first, followed by kneading while continuously polymerizing with 30.45 g of 0.15% hydrogen peroxide solution. The polymerization was carried out by adding through a supply unit of.
  • the temperature of the polymerization reactor was maintained at 80 ° C, the maximum temperature of the polymerization is 110 ° C, the polymerization time is 1 minutes 15 seconds. Then, kneading was continued, and polymerization and kneading were performed for 20 minutes. The size of the resulting polymerizer was then distributed below 0.2 cm. At this time, the water content of the finally formed hydrogel polymer was 51 weight 0 /.
  • the hydrogel polymer was dried for 30 minutes in a hot air dryer at 180 ° C., and the dried hydrogel polymer was pulverized with a pin mill grinder. Then, a sieve was used to classify the polymer having a particle size of less than about 150; m and the polymer having a particle size of about 150 to 850.
  • the prepared base resin is sprayed with a surface treatment solution containing 1,3-propanediol 5 weight 0 /. And propylene glycol 5 weight 0 /. And stirred at room temperature, whereby the surface treatment solution is uniformly distributed in the base resin. It was. Subsequently, the base resin was placed in a surface crosslinking reaction machine and surface crosslinking reaction was performed. Within this surface crosslinking reaction, the base resin was found to be gradually warmed up at an initial temperature near about 60 ° C. and manipulated to reach a maximum reaction temperature of about 185 ° C. after about 15 minutes. After reaching this maximum reaction temperature, the final prepared superabsorbent polymer sample was taken after additional reaction for about 30 minutes.
  • Example 7 Surface crosslinking reaction conditions of Example 7 are as summarized in Table 3 below. After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 was obtained using a sieve. The high content of fine powder having a particle size of about 150 m or less in the water-absorbent resin product of less than about 1 wt. 0/0. Examples 8, 9 and Comparative Example 4
  • Mw polyethylene glycol diacrylate
  • Example 10 Surface crosslinking reaction conditions of Example 10 are as summarized in Table 3 below. After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 mi was obtained using a sieve. The high content of fine powder having a particle size of about 150 or less to the water-absorbent resin product of less than about 1 wt. 0/0. Comparative Example 5
  • Mw polyethylene glycol diacrylate
  • Mw polyethylene glycol diacrylate
  • Equation 2 [(AUP + CRC) / 2] * [(3 '/ 100 * SFC> 100
  • Example 9 26.2 22.6 11028 70 90.5 137.2
  • Example 10 29.5 24.5 9840 54 66.8 119.8 Comparative Example 4 30.5 21.4 5354 27 14.1 61.2 Comparative Example 5 29.7 19.2 5770 35 13.9 70.3 Comparative Example 6 32.8 18.3 4183 15 5.4 40.0 Shown in Table 4 above As described above, the superabsorbent polymer obtained in the Examples is excellent in overall CRC, AUP, G ', and SFC, and not only satisfies the above-mentioned relational expression of 15 Pa 2 or more, but also has a value of Equation 2 is 100.
  • Comparative Examples 4 to 6 it was confirmed that one or more of the above physical properties is poor and do not satisfy the relational expression of the above formulas 1 and 2.
  • Comparative Examples 4 to 6 are gel strength before surface crosslinking, elevated temperature conditions in the surface crosslinking process, or reaction conditions (holding time at maximum reaction temperature) are different from those of Examples, and G 'or SFC are compared with Examples. It was confirmed that the back was poor and the liquid fluid was poor.

Abstract

본 발명은 보수능, 가압 흡수능, 통액성 및 겔 강도가 최적화되어, 전체적으로 균형 있고 보다 우수한 물성을 나타내는 고흡수성 수지에 관한 것이다. 이러한 고흡수성 수지는 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 중합시킨 분말 형태의 베이스 수지를 표면 가교시킨 가교 중합체를 포함하는 고흡수성 수지로서, 원심분리 보수능(CRC), 가압 흡수능(AUP), 겔 강도(G') 및 생리 식염수 흐름 유도성(SFC) 등이 소정의 관계식을 충족할 수 있다.

Description

【명세서】
【발명의 명칭】
고흡수성 수지
【관련 출원 (들)과의 상호 인용】
본 출원은 2014년 6월 12일자 한국 특허 출원 제 10-2014-0071547 호, 2014년 12월 10일자 한국 특허 출원 제 10-2014-0177736 호, 및 2015년 6월 1 1일자 한국 특허 출원 제 10-2015-0082881 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 땅세서의 일부로서 포함된다.
【기술분야】
본 발명은 보수능, 가압 흡수능, 통액성 및 겔 강도가 최적화되어, 전체적으로 균형 있고 보다 우수한 물성을 나타내는 고흡수성 수지에 관한 것이다.
【배경기술】
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를 잘 유지하여 우수한 통액성 (permeability)을 나타낼 필요가 있다.
특히, 상기 고흡수성 수지가 기저귀 등 위생재에 사용되어 보다 우수한 물성 및 성능을 나타내기 위해서는, 상술한 흡수력, 압력 하의 흡수 유지력 및 형태 유지력 (통액성) 등을 균형 있게 모두 우수하게 나타낼 필요가 있는 바, 이전부터 이들 제반 물성을 균형 있게 향상시키기 위한 다양한 연구가 이투어져 왔다.
특히 최근에는 고흡수성 수지의 형태 유지력 (통액성)의 향상이 보다 크게 요구되고 있는데, 이러한 통액성 등의 향상을 위해서는 적절한 방향의 겔 강도가 보다 높게 나타날 것이 요구된다. 이는 상기 겔 강도가 큰 고분자는 물을 흡수함에 따라 부피가 증가하여도 그 형태를 잘 유지할 수 있기 때문이다. 그런데, 이전에는 통액성과 직접적 관련성이 있는 적절한 방향의 겔 강도를 신뢰성 높게 측정하는 방법이 제대로 제안되지 못하였을 뿐 아니라, 우수한 통액성에 대웅하는 뛰어난 겔 강도와 함께, 상기 흡수력 및 압력 하의 흡수 유지력을 적절한 수준으로 유지하는 고흡수성 수지는 제대로 개발되지 못하고 있었던 것이 사실이다.
아 때문에, 아직까지도 이들 세 가지 측면의 물성을 모두 우수하게 나타내는 고흡수성 수지는 제대로 개발되지 못하고 있는 실정이며, 이로 인해 고흡수성 수지의 물성 향상에 관한 계속적인 연구가 요구되고 있다.
【발명의 내용】
【해결하려는 과제】
이에 본 발명은 보수능, 가압 흡수능, 통액성 및 겔 강도가 최적화되어, 전체적으로 균형 있고 보다 우수한 물성을 나타내는 고흡수성 수지를 제공하는 것이다.
【과제의 해결 수단】
본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 중합시킨 분말 형태의 베이스 수지를 표면 가교시킨 가교 중합체를 포함하는 고흡수성 수지로서, 하기 식 1의 관계식을 층족하는 고흡수성 수지를 제공한다:
[식 1]
/AUP- G" 、
X: >' 15 Pa 상기 식 1에서,
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /。 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며,
AUP는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /0 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능을 나타내고,
G'는 상기 고흡수성 수지에 1 시간 동안 생리 식염수 (0.9 중량0 /0 염화 나트륨 수용액)를 흡수시켜 팽윤시킨 후에, 레오미터를 이용하여 측정한 고흡수성 수지의 수평 방향 겔 강도를 나타낸다.
이러한 고흡수성 수지는 각 물성이 하기 식 2의 관계식을 충족할 수 있다:
[
Figure imgf000004_0001
상기 식 2에서, AUP, CRC, G'는 식 1에서 정의된 바와 같으며, SFC는 상기 고흡수성 수지에 대한 생리 식염수 (0.685 중량0 /。 염화 나트륨 수용액)의 흐름 유도성 (·10-7 η3·5/9)을 나타낸다.
상기 고흡수성 수지는 CRC가 약 25 내지 35 g/g, 흑은 약 26 내지 32 g/g로 될 수 있으며, AUP가 약 21 내지 30 g/g, 혹은 약 22 내지 26 g/g로 될 수 있고, 수평 방향 겔 강도 G'가 약 6,000 내지 12,000 Pa, 혹은 약 7,000 내지 12,000 Pa로 될 수 있다. 또, 상기 고흡수성 수지는 생리 식염수에 대한 생리 식염수 흐름 유도성 (SFC)이 약 40 내지 약 85*10-7cm3*s/g 혹은 약 50 내지 약 75-10"7cm3-s/g 일 수 있다.
이때 상기 고흡수성 수지의 수평 방향 겔 강도 G'는
상기 고흡수성 수지에 생리 식염수를 흡수시쪄 팽윤시키는 단계;
상기 팽윤된 고흡수성 수지를 소정의 간격을 갖는 레오미터의 플레이트 사이에 위치시키고 양 플레이트면을 가압하는 단계;
진동 하의 레오미터를 사용하여 전단 변형 (shear strain) 을 증가시키면서, 저장 탄성률 (storage modulus)과, 손실 탄성를 (loss modulus)이 일정한 선형 점탄성 상태 (linear viscoelastic regime) 구간의 전단 변형을 확인하는 단계; 및
상기 확인된 전단 변형 하에서 상기 팽윤된 고흡수성 수지의 저장 탄성를과, 손실 탄성률을 각각 측정하고, 상기 저장 탄성를의 평균 값을 겔 강도로서 측정하는 단계를 포함하는 방법으로 측정될 수 있다.
한편, 상기 고흡수성 수지에서 , 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2- 아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2-
(메트)아크릴로일프로판술폰산, 또는 2- (메트)아크필아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2- 히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메특시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 ^에서 선택된 1종 이상을 포함할 수 있다.
그리고, 상기 베이스 수지는 탄소수 8 내지 12의 비스 (메트)아크릴아미드, 탄소수 2 내지 10의 폴리을의 폴리 (메트)아크릴레이트 및 탄소수 2 내지 10의 폴리을의 폴리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 이상의 내부 가교제의 존재 하에, 상기 단량체가 가교 증합된 고분자를 포함할 수 있다.
또한, 상기 고흡수성 수지의 가교 중합체는 탄소수 2 내지 8의 디올 또는 폴리올을 포함한 표면 가교제의 존재 하에, 상기 베이스 수지의 표면을 가교시켜 얻어진 것으로 될 수 있다.
부가하여, 상기 고흡수성 수지는 약 150 내지 850 의 입경을 가질 수 있다. 이하, 발명의 구체적인 구현예에 따른 고흡수성 수지 등에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, —발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유 "라 함은 어떤 구성요소 (또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며, 다른 구성요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
발명의 일 구현예에 따르면, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 중합시킨 분말 형태의 베이스 수지를 표면 가교시킨 가교 중합체를 포함하는 고흡수성 수지로서, 하기 식 1의 관계식을 충족하는 고흡수성 수지가 제공된다:
[식 1]
> 15 Pa
CB£ 1000 상기 식 1에서,
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /。 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며,
AUP는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /。 염화 나트륨 수용액)에 대한 o.7psi 하에서 1시간 동안의 가압 흡수능을 나타내고,
G'는 상기 고흡수성 수지에 1 시간 동안 생리 식염수 (0.9 중량 % 염화 나트륨 수용액)를 흡수시켜 팽윤시킨 후에, 레오미터를 이용하여 측정한 고흡수성 수지의 수평 방향 겔 강도를 나타낸다.
또, 이러한 일 구현예의 고흡수성 수지는 각 물성이 하기 식 2의 관계식을 층족할 수 있다:
[식 2]
Figure imgf000006_0001
상기 식 2에서ᅳ AUP, CRC, G'는 식 1에서 정의된 바와 같으며, SFC는 상기 고흡수성 수지에 대한 생리 식염수 (0.685 중량0 /。 염화 나트륨 수용액)의 흐름 유도성 (·1 (Τ7 η3·3/9)을 나타낸다.
고흡수성 수지의 물성을 균형 있게 보다 향상시키고자 본 발명자들이 연구를 계속한 결과, 후술하는 고흡수성 수지의 제조 공정의 조건, 예를 들어, 후술하는 내부 가교제의 종류, 함량 및 내부 가교 중합의 조건이나, 표면 가교제의 종류 및 표면 가교 조건 둥의 진행 방법 등을 최적화함에 따라, 내부 및 표면 가교 구조가 최적화된 고흡수성 수지가 얻어질 수 있음이 확인되었다.
이렇게 가교 구조 등이 최적화된 고흡수성 수지는 이의 기본적인 흡수력을 반영하는 원심분리 보수능 (CRC)과, 압력 하의 흡수 유지력을 반영하는 가압 흡수능 (AUP)을 함께 우수하게 발현 및 유지할 수 있음이 확인되었다. 또한, 고흡수성 수지는 상기 수평 방향 겔 강도 (G')가 우수하게 나타남에 따라, 위생재 내에서 수분 흡수 및 팽윤된 후에도 그 형태를 유지하는 특성이 우수하며, 그 결과 이러한 고흡수성 수지를 통해 액체들이 잘 유동하여 우수한 통액성을 나타낼 수 있음이 확인되었다.
이러한 보수능 (CRC), 가압 흡수능 (AUP), 통액성 (생리 식염수 흐름 유도성; SFC) 및 수평 방향 겔 강도 (G')가 균형 있게 전체적으로 우수한 특성을 나타냄에 따라, 상기 식 1과 같이 이들로부터 도출되는 관계식이 약 15 Pa2 이상, 혹은 약 15 내지 100 Pa2, 혹은 약 25 내지 95 Pa2의 값을 충족함이 확인되었다. 또한, 이와 함께, 상기 식 2와 같은 관계식이 100 이상, 혹은 약 100 내지 약 150, 바람직하게는, 약 115 내지 약 145의 값을 충족함이 확인되었다.
이와 같이, 일 구현예의 고흡수성 수지는 이에 요구되는 흡수력, 압력 하의 흡수 유지력 및 형태 유지력 (통액성) 등의 제반 물성을 모두 균형 있게 우수하게 나타냄에 따라, 기저귀 및 생리대 등 각종 위생재에 적용되었을 때, 매우 우수한 성능의 발현을 가능케 하며, 더 나아가, 초박형 기술이 적용된 차세대 기저귀 등을 제공할 수 있게 한다.
한편, 상기 고흡수성 수지는 원심분리 보수능 (CRC)이 약 25 내지 35 g/g, 흑은 약 26 내지 32 g/g로 될 수 있다.
이때, 상기 생리 식염수에 대한 원심분리 보수능 (CRC)은 고흡수성 수지를 30분에 걸쳐 생리 식염수에 흡수시킨 후, 다음과 같은 계산식 1에 의해 산출될 수 있다:
[계산식 1ᅵ
CRC(g/g) = {[W2(g) - W^g) - W0(g)]/W0(g)}
상기 계산식 1에서,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, V^g)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, W2(g)는 상온에서 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다.
또한, 한편, 상기 고흡수성 수지는 상기 가압 흡수능 (AUP)이 약 21 내지 30 g/g, 혹은 약 22 내지 26 g/g로 될 수 있다. 이러한 가압 흡수능 (AUP)은 고흡수성 수지를 1 시간에 걸쳐 약 0.7 psi의 가압 하에 생리 식염수에 흡수시킨 후, 하기 계산식 2에 따라산출될 수 있다:
[계산식 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g)
상기 계산식 2에서,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W4(g)는 하중 (0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
일 구현예의 고흡수성 수지가 상술한 범위의 원심분리 보수능 (CRC) 및 가압 흡수능 (AUP)을 나타냄에 따라, 상기 고흡수성 수지의 기본적인 흡수력 및 압력 하 흡수 유지력 등이 우수하게 발현되어 각종 위생재에 적합하게 사용할 수 있다.
한편, 상기 일 구현예의 고흡수성 수지는 상술한 CRC 및 AUP와 함께, 수평 방향 겔 강도 G'가 약 6,000 내지 12,000 Pa, 흑은 약 7,000 내지 12,000
Pa인 특성을 나타낼 수 있다.
상기 수평 방향 겔 강도 G'는 본 발명자들이 새로이 측정한 고흡수성 수지의 물성으로서, 상기 고흡수성 수지의 실제 사용 환경 하에서의 우수한 통액성을 보다 잘 반영할 수 있다. 즉, 기존에는 주로 고흡수성 수지에 수직 방향으로 힘을 가하면서 고흡수성 수지의 수직 방향 겔 강도를 측정하였으나, 통상 고흡수성 수지의 통액성은 이러한 고흡수성 수지가 기저귀 등 위생재에 포함되었을 때, 수평 방향으로 가해지는 힘에도 불구하고 우수한 형태 유지성 및 높은 겔 강도를 나타내는지 여부에 따라 보다 관련성 높게 결정됨이 밝혀졌다. 이에 따라, 본 발명자들은 이러한 고흡수성 수지의 실제 사용 환경 하에서의 우수한 통액성을 보다 효과적으로 반영 및 예측할 수 있는 새로운 파라미터의 측정 방법을 고안하였으며, 이러한 파라미터가 바로 상기 수평 방향 겔 강도 G'이다.
이러한 수평 방향 겔 강도 G'가 상술한 범위를 층족하는 일 구현예의 고흡수성 수지는 이미 상술한 바와 같은 우수한 CRC 및 AUP와 함께, 뛰어난 통액성을 나타냄에 따라, 기저귀 등 위생재에 매우 바람직하게 사용 가능한 것으로 확인되었다.
이러한 수평 방향 겔 강도 G'는 고흡수성 수지에 1 시간 동안 생리 식염수를 흡수시킨 후에, 상용화된 레오미터를 사용하여, 다음의 각 단계를 포함하는 방법으로 측정될 수 있다:
1 ) 상기 고흡수성 수지에 생리 식염수를 흡수시켜 팽윤시키는 단계;
2) 상기 팽윤된 고흡수성 수지를 소정의 간격을 갖는 레오.미터의 플레이트 사이에 위치시키고 양 플레이트면을 가압하는 단계;
3) 진동 하의 레오미터를 사용하여 전단 변형을 증가시키면서, 저장 탄성를 (storage modulus)과, 손실 탄성률 (loss modulus)이 일정한 선형 점탄성 상태
(linear viscoelastic regime) 구간의 전단 변형올 확인하는 단계; 및
4) 상기 확인된 전단 변형 하에서 상기 팽윤된 고흡수성 수지의 저장 탄성률과, 손실 탄성률을 각각 측정하고, 상기 저장 탄성률의 평균 값을 겔 강도로서 측정하는 단계를 포함하는 방법.
이러한 방법 하에 측정된 수평 방향 겔 강도 G'가 상술한 높은 범위를 충족하는 고흡수성 수지는 이미 상술한 CRC와, AUP 간의 관계에서 이미 상술한 식 1의 관계를 충족할 수 있으며, CRC, AUP 및 SFC의 관계에서 식 2의 관계를 층족할 수 있다. 이에 따라, 고흡수성 수지에 요구되는 전반적인 물성이 균형 있게 우수하게 나타나므로, 기저귀 등 위생재에 매우 적합하게 사용될 수 있다. 부가하여, 일 구현예의 고흡수성 수지는 생리 식염수에 대한 생리 식염수 흐름 유도성 (SFC)이 약 40 내지 약 85*1 (T7cm3*s/g 혹은 약 50 내지 약 75·ΚΓ 7cm3-s/g 일 수 있다. 이러한 생리 식염수 흐름 유도성 (SFC)은 이전부터 당업자에게 잘 알려진 방법, 예를 들어, 미국공개특허 제 2009-0131255호의 컬럼 16의 [0184] 내지 [0189]에 개시된 방법에 따라 측정 및 산출할 수 있다. 또, 이러한 SFC의 측정 값을 기초로 상술한 식 2의 좌변 값을 산출함에 있어서는, "1 CT7cm3*s/g"의 스케일 및 단위 부분을 제외하고, 식 2의 좌변에 대입하여 산출할 수 있다.
한편, 일 구현예의 고흡수성 수지는 대표적으로 적어도 일부의 카르복시산이 나트륨염 등으로 중화된 아크릴산과 같이, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 중합시켜 얻어질 수 있다. 보다 구체적으로, 상기 고흡수성 수지는 상기 단량체를 내부 가교제의 존재 하에 가교 중합시켜 분말 형태의 베이스 수지를 얻은 후, 소정의 표면 가교제의 존재 하에 상기 베이스 수지를 표면 가교시킨 가교 중합체를 제조함으로서 얻을 수 있다. 이러한 고흡수성 수지는 내부 가교 구조를 갖는 아크릴산 등 수용성 에틸렌계 불포화 단량체의 가교 중합체 입자의 형태로 될 수 있고, 이러한 가교 중합체 입자의 표면이 더욱 가교되어 가교도가 더욱 향상된 형태로 될 수 있다. 이하에 더욱 상세히 설명하겠지만, 일 구현예의 고흡수성 수지는 내부 가교 공정이나 표면 가교 공정 등이 최적화되어, 보다 적절한 내부 및 표면 가교 구조를 가짐에 따라, 이미 상술한 일 구현예의 제반 물성을 나타낼 수 있다.
이러한 고흡수성 수지에서, 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2- 아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2-
(메트)아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2- 히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메특시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이중에서도, 아크릴산 또는 이의 염, 예를 들어, 아크릴산의 적어도 일부가 중화된 아크릴산 및 /또는 이의 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다.
또한, 이러한 단량체를 가교 중합하기 위한 내부 가교제로는 탄소수 8 내지 12의 비스 (메트)아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리 (메트)아크릴레이트 및 탄소수 2 내지 10의 폴리을의 폴리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 보다 구체적으로, 상기 내부 가교제로는 폴리에틸렌글리콜 디 (메트)아크릴레이트, 폴리프로필렌옥시 디 (메트)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트 및 트리메티를 트리아크릴레이트로 이루어진 군에서 선택된 하나 이상의 폴리올의 폴리 (메트)아크릴레이트를 적절히 사용할 수 있다. 이 중에서도, 상기 폴리에틸렌글리콜 디 (메트)아크릴레이트 등의 내부 가교제를 사용함에 따라, 내부 가교 구조가 보다 최적화된 베이스 수지 및 고흡수성 수지가 얻어질 수 있음이 확인되었으며, 이를 통해 일 구현예의 물성을 층족하는 고흡수성 수지가 보다 적절히 얻어질 수 있음이 밝혀졌다.
보다 구체적으로 이러한 특정 내부 가교제를 일정한 함량으로 사용함에 따라, 표면 가교 전의 겔 강도 (G'; Pa)가 약 4500Pa 이상, 흑은 약 4600Pa, 이상, 흑은 약 4600 내지 7000Pa인 베이스 수지를 얻올 수 있고, 이에 대해 후술하는 특정 조건 하에 표면 가교 단계를 진행함에 따라, 식 1 및 /또는 2의 관계를 층족하는 일 구현예의 고흡수성 수지를 얻을 수 있다.
예를 들어, 상기 특정 내부 가교제를 단량체에 포함된 미증화 상태의 아크릴산 1몰을 기준으로, 약 0.005 몰 이상, 흑은 약 0.005 내지 0.1 몰, 흑은 약 0.005 내지 0.05 몰 (혹은 아크릴산의 100 중량부 대비 약 0.3 중량부 이상, 혹은 약 0.3 내지 0.6 중량부)의 비율로 사용될 수 있다. 이러한 내부 가교제의 함량 범위에 따라, 표면 가교 전의 겔 강도 ((3'; Pa)가 약 4500Pa 이상인 베이스 수지를 적절히 얻을 수 있고, 이를 사용해 식 1 및 /또는 2의 관계를 충족하는 일 구현예의 고흡수성 수지를 얻을 수 있다.
그리고, 상기 내부 가교제를 사용하여 단량체를 중합시킨 후에는, 건조, 분쇄 및 분급 등의 공정을 거쳐 분말 형태의 베이스 수지를 얻을 수 있는데, 이러한 분쇄 및 분급 등의 공정을 통해, 베이스 수지 및 이로부터 얻어지는 고흡수성 수지는 약 150 내지 850 의 입경을 갖도록 제조 및 제공됨이 적절하다. 보다 구체적으로, 상기 베이스 수지 및 이로부터 얻어지는 고흡수성 수지의 적어도 약 95 중량0 /。 이상이 약 150 내지 850 의 입경을 가지며, 약 150^m 미만의 입경을 갖는 미분이 약 3 중량 % 미만, 혹은 약 3 중량0 /。 미만으로 될 수 있다.
이와 같이 상기 베이스 수지 및 고흡수성 수지의 입경 분포가 바람직한 범위로 조절됨에 따라, 상기 일 구현예의 고흡수성 수지가 이미 상술한 물성 및 보다 우수한 통액성을 나타낼 수 있다. ᅳ 또한, 일 구현예의 고흡수성 수지는 상기 베이스 수지를 표면 가교시킨 가교 중합체를 포함하게 되는데, 이러한 표면 가교는 탄소수 2 내지 8의 디을 또는 폴리올을 포함한 표면 가교제의 존재 하에 진행될 수 있다. 이러한 표면 가교제의 존재 하에, 표면 가교를 진행함에 따라, 표면 가교 구조가 최적화된 일 구현예의 고흡수성 수지가 적절히 얻어질 수 있고, 이러한 고흡수성 수지가 상술한 식 1 및 2의 관계식 등 이미 상술한 제반 물성을 보다 적절히 층족할 수 있다.
이러한 표면 가교제로 사용 가능한 탄소수 2 내지 8의 디올 또는 폴리올의 보다 적절한 예로는, 1 ,3-프로판디올, 1 ,6-핵산디올, 에틸렌글리콜, 프로필렌 글리콜, 1 ,2-핵산디올 1 ,3-부탄디올, 2-메틸 -1 ,3-프로판디을, 2,5-핵산디올, 2-메틸 -1 ,3- 펜탄디올, 또는 2-메틸 -2,4-펜탄디을 등을 들 수 있고, 이들 중에 선택된 2종 이상을 함께 사용할 수도 있음은 물론이다.
또한, 상기 표면 가교제와 함께, 다가의 금속 양이온을 첨가하여 표면 가교를 진행함에 따라, 고흡수성 수지의 표면 가교 구조를 더욱 최적화할 수 있다. 이는 이러한 금속 양이온이 고흡수성 수지의 카르복시기 (COOH)와 킬레이트를 형성함으로써 가교 거리를 더욱 줄일 수 있기 때문으로 예측된다.
한편, 이하에서는 상술한 일 구현예의 고흡수성 수지, 보다 구체적으로, 식 1 및 2의 관계식 등 상술한 제반 물성을 충족하는 고흡수성 수지를 제조할 수 있는 방법에 대해 각 단계별로 보다 구체적으로 설명하기로 한다. 다만 이미 상술한 단량체, 내부 가교제, 표면 가교제 및 입경 분포 등에 대해서는, 중복 설명을 생략하고, 나머지 공정 구성 및 조건을 단계별로 설명하기로 한다.
상기 고흡수성 수지의 제조 방법은 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합개시제를 포함하는 단량체 조성물에 열 중합 또는 광 중합을 진행하여 함수겔상 중합체를 형성하는 단계; 상기 함수겔상 중합체를 건조하는 단계; 상기 건조된 중합체를 분쇄 및 분급하여 베이스 수지를 형성하는 단계; 및 상기 베이스 수지에 대해 표면 가교를 진행하는 단계를 포함할 수 있다. 특히, 이러한 제조 방법 중에, 이미 상술한 내부 가교제, 표면 가교제 및 입경 분포를 적용하는 한편, 후술하는 내부 및 /또는 표면 가교제의 함량이나, 이들을 사용한 가교 중합 공정 및 /또는 표면 가교 공정 등의 진행 조건을 최적화함에 따라, 식 1 및 2의 관계식 등의 제반 물성을 충.족하는 일 구현예의 고흡수성 수지가 얻어질 수 있다.
이러한 제조 방법에서, 상기 단량체 조성물은 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는데, 상기 단량체의 종류에 관해서는 이미 상술한 바와 같다.
또, 이러한 조성물 중에세 상기 수용성 에틸렌계 불포화 단량체의 농도는, 상술한 각 원료 물질 및 용매를 포함하는 전체 단량체 조성물에 대해 약 20 내지 약 60 중량0 /0, 혹은 약 40 내지 약 50 중량 0/。로 될 수 있으며, 중합 시간 및 반웅 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.
또한, 상기 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다. - 구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydraxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파-아미노케톤 ( α - aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸 -벤조일-트리메틸 포스핀 옥入 1"이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 !"용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinh d Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" p1 15에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 광중합 개시제는 상기 단량체 조성물에 대하여 약 0.01 내지 약 1 .0 중량 0/。의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate;(NH4)2S2O8) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2-azobis(2- amidinopropane) dihydrochloride), 2, 2-아조비스 -(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이 H.(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2- (카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2, 2-아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2- imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4- azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열증합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981 )', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 열중합 개시제는 상기 단량체 조성물에 대하여 약 0Ό01 내지 약 0.5 중량 %의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
그리고, 상기 단량체 조성물에 함께 포함되는 내부 가교제의 종류에 대해서는 이미 상술한 바와 같으며, 이러한 내부 가교제는 상기 단량체 조성물에 대하여 약 0.01 내지 약 0.5 중량 0/。의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. 또한, 이미 상술한 바와 같이, 상기 내부 가교제는 단량체 중에 포함된 미중화 상태의 아크릴산 1몰을 기준으로, 약 0.005 몰 이상, 혹은 약 0.005 내지 0.1 몰, 혹은 약 0.005 내지 0.05 몰 (혹은 아크릴산의 100 중량부 대비 약 0.3 중량부 이상, 혹은 약 0.3 내지 0.6 중량부)의 비을로 사용될 수 있다 이러한 내부 가교제가 이러한 함량 범위로 사용됨에 따라, 이미 상술한 표면 가교 전의 겔 강도 범위를 적절히 층족할 수 있고, 이를 사용해 이미 상술한 일 구현예의 물성을 보다 적절히 층족하는 고흡수성 수지가 제조될 수 있다.
또, 상기 단량체 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 단량체 조성물 용액의 형태로 준비될 수 있다.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄을, 에틸렌글리콜 디에틸렌글리콜, 트리에틸렌글리콜, 1 ,4-부탄디올, 프로필렌글리콜 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르 디에틸렌글리콜에틸에테르, 를루엔 크실렌 부틸로락톤, 카르비를 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.
상기 용매는 단량체 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.
한편ᅤ 이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반웅기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 약 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반웅이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량0 /。일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180 °C까지 온도를 상승시킨 뒤 약 18CTC에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. 다음에, 얻어진 함수겔상 중합체를 건조하는 단계를 수행한다.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이때 조분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 10mm로 되도록 분쇄할 수 있다.
입경이 2 mm 미만으로 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10 mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250 °C일 수 있다. 건조 온도가 150 °C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250 °C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200 °C의 온도에서, 더욱 바람직하게는 약 160 내지 약 180 °C의 온도에서 진행될 수 있다.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량0 /0일 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 롤 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다. 그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850 인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반웅 단계를 거쳐 제품화할 수 있다. 이러한 과정을 통해 얻어진 베이스 수지의 입경 분포에 관해서는 이미 상술한 바도 있으므로, 이에 관한 더 이상의 구체적인 설명은 생략하기로 한다.
상술한 베이스 수지의 표면 가교 전 수평 방향 겔 강도 (G')는 약 4500Pa 이상, 혹은 약 4600Pa, 이상, 혹은 약 4600 내지 TOOOPa인 범위를 층족할 수 있고, 표면 가교 전 베이스 수지의 겔 강도가 상기 범위에 드는 경우, 후술하는 표면 가교 반웅을 통해 제조되는 고흡수성 수지가, 상기 물성들이나, 식 1 및 2의 관계를 만족할 수 있다.
한편, 상술한 분쇄 및 /또는 분급 공정을 거쳐 베이스 수지를 얻은 후에는, 표면 가교 공정을 통해 일 구현예의 고흡수성 수지를 제조할 수 있다. 이러한 표면 가교 공정에서 사용 가능한 표면 가교제의 종류에 관해서는 이미 상술한 바 있으므로, 관련 설명은 생략한다.
상기 표면 가교제를 베이스 수지에 첨가하는 방법에 대해서는 그 구성의 한정은 없다. 예를 들어, 표면 가교제와 베이스 수지를 반웅조에 넣고 흔합하거나, 베이스 수지에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지와 표면 가교제를 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다. 상기 표면 가교제의 첨가시, 추가로 물 및 메탄을을 함께 흔합하여 첨가할 수 있다. 물 및 메탄올을 첨가하는 경우, 표면 가교제가 베이스 수지에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물 및 메탄을의 함량은 표면 가교제의 고른 분산을 유도하고 베이스 수지 분말의 뭉침 현상을 방지함과 동시에 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 베이스 수지 100 중량부에 대한 첨가 비율을 조절하여 적용할 수 있다.
상기 표면 가교제가 첨가된 베이스 수지 분말에 대해 약 160 °C 이상, 혹은 약 180 내지 200'c에서 약 20 분 이상 동안 가열시킴으로써 표면 가교 결합 반웅이 이루어질 수 있다. 특히, 일 구현예에 따른 물성을 보다 적절히 충족하는 고흡수성 수지를 제조하기 위해, 상기 표면 가교 공정 조건은 최대 반웅은도 약 180 내지 200 °C, 최대 반응온도에서의 유지 시갚 약 20분 이상, 혹은 약 20분 이상 1시간 이하, 혹은 약 20분 내지 50분의 조건으로 될 수 있다. 또한, 최초 반웅 개시시의 온도, 즉, 표면 가교제를 포함하는 반웅액과 베이스 수지의 초기 흔합 온도인 약 60 °C 이상, 혹은 약 100 내지 170 °C의 온도에서, 상기 최대 반웅온도에 이르기까지의 승온 시간을 약 10 분 이상, 혹은 약 10 분 이상 60분 이하, 혹은 약 10분 이상 40분 이하로 제어할 수 있으며, 상술한 표면 가교 공정 조건의 층족에 의해 일 구현예의 물성을 적절히 층족하는 고흡수성 수지가 제조될 수 있음이 확인되었다.
표면 가교 반웅을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승은한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 은도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
상술한 제조방법에 따라 수득된 고흡수성 수지는 보수능과 가압 흡수능 등의 물성을 저하되지 않으면서 우수한 수평 방향 겔 강도 및 통액성 등을 충족하여, 식 1 및 2의 관계식 등을 층족할 수 있으며, 기저귀 등 위생재에 적절하게 사용 가능한 우수한 제반 물성을 나타낼 수 있다.
【발명의 효과】
본 발명에 따르면, 고흡수성 수지의 제조 공정, 예를 들어, 내부 및 /또는 표면 가교 공정 등을 제어하여, 기본적인 흡수력을 반영하는 원심분리 보수능 (CRC)과, 압력 하의 흡수 유지력을 반영하는 가압 흡수능 (AUP)을 함께 우수하게 발현 및 유지할 수 있으면서도, 수평 방향 겔 강도 (G')가 우수하게 나타남에 따라, 위생재 내에서 수분 흡수 및 팽윤된 후에도 그 형태를 유지하는 특성이 우수하고, 생리 식염수 흐름 유도성 (통액성; SFC)이 우수한, 고흡수성 수지가 제공될 수 있다.
이러한 고흡수성 수지는 상기 보수능 (CRC), 가압 흡수능 (AUP), 수평 방향 겔 강도 (G') 및 통액성이 균형 있게 전체적으로 우수한 특성을 나타냄에 따라, 상술한 식 1 및 2와 같은 관계식 물성을 층족할 수 있다. 이와 같이, 본 발명의 고흡수성 수지가 이에 요구되는 흡수력, 압력 하의 흡수 유지력 및 형태 유지력 (통액성) 등의 제반 물성을 모두 균형 있게 우수하게 나타냄에 따라, 기저귀 및 생리대 등 각종 위생재에 적용되었을 때, 매우 우수한 성능의 발현을 가능케 하며, 더 나아가, 초박형 기술이 적용된 차세대 기저귀 등을 제공할 수 있게 한다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이하의 실시예 및 비교예에서, 각 고흡수성 수지의 물성은 다음의 방법으로 측정 및 평가하였다.
(1) 입경평가
실시예 및 비교예에서 사용된 베이스 수지 및 고흡수성 수지의 입경은 유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정을 하였다.
(2) 원심분리 보수능 (CRC, Centrifuge Retention Capacity)
유럽부직포산업협회 (European Disposables and Nonwovens Association,
EDANA) 규격 EDANA WSP 241.3에 따라 실시예 및 비교예의 고흡수성 수지에 대하여, 무하중하 흡수배율에 의한 원심분리 보수능 (CRC)을 측정하였다.
실시예 및 비교예의 수지 W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (sea|)한 후에, 상온에 0.9 중량。/。의 염화 나트륨 수용액으로 되는 생리 식염수에 침수했다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W^g)을 측정했다.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.
[계산식 1] CRC(g/g) = {[W2(g) - W^g) - W0(g)]/W0(g)}
상기 계산식 1에서,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고,
W^g)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고,
W2(g)는 상온에서 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다.
(3)가압흡수능 (Absorbing under Pressure, AUP)
실시예 및 비교예의 고흡수성 수지에 대하여, 유럽부직포산업협회 (European Disposables and Nonwovens Association) 규격 EDANA WSP 242.3의 방법에 따라 가압 흡수능 (AUP: Absorbency under Pressure)을 측정하였다.
먼저, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 23 ± 2 °C의 은도 및 45%의 상대 습도 조건하에서 철망상에 실시예 1 ~6 및 비교예 1 ~3으로 얻어진 수지 W0(g, 0.90 g)을 균일하게 살포하고 그 위에 4.83 kPa(0.7 psi)의 하중을 균일하게 더 부여할 수 있는 피스톤 (piston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 름이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 125 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량0 /。 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 120 mm의 여과지 1장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다. 이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2에 따라 AUP(g/g)를 산출하여 가압 흡수능을 확인하였다.
[계산식 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g)
상기 계산식 2에서, W0(g)는 고흡수성 수지의 초기 무게 (g)이고,
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고,
W4(g)는 하중 (0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
(4) 겔 강도 (Gel Strength; G')
실시예 1~6 및 비교예 1 ~3의 고흡수성 수지에 대하여, 수평 방향 겔 강도 (Gel Strength)을 측정하였다.
먼저, 실시예 1 ~6 및 비교예 1 ~3의 고흡수성 수지 시료 (30 ~ 50 Mesh)를 체로 걸러서 0.5g을 칭량하였다. 칭량된 시료를 생리 식염수 50 g에 1시간 동안 충분히 팽윤시켰다. 그 후에, 흡수되지 않은 용매는 aspirator를 이용하여 4 분 동안 제거하고, 겉에 묻은 용매는 여과지에 골고루 분포시켜 1회 닦아 내었다. 팽윤된 고흡수성 수지 시료 2.5g을 레오미터 (Rheometer)와 2개 평행판 (직경
25mm, 하부에 2mm 정도의 샘플이 빠져나가지 않게 하는 벽이 있음) 사이에 놓고, 두 평행판 사이의 간격을 1 mm로 조절하였다. 이때, 팽윤된 고흡수성 수지 시료가 평행판 면에 모두 접촉되도록 약 3N의 힘으로 가압하여 상기 평행판 사이의 간격을 조절하였다.
상기 레오미터를 사용하여 10 rad/s의 Oscilation frequency에서, 전단 변형 을 증가시키면서, 저장 탄성를 (storage modulus)과, 손실 탄성를 (loss modulus)이 일정한 선형 점탄성 상태 (linear viscoelastic regime) 구간의 전단 변형을 확인하였다. 일반적으로 팽윤된 고흡수성 수지 시료에서, 전단 변형 0.1 %는 상기 선형 점탄성 상태 구간 내에 있다.
일정한 10 rad/s의 Oscilation frequency에서, 선형 점탄성 상태 구간의 전단 변형 값으로 60 초 동안 팽윤된 고흡수성 수지의 저장 탄성률과, 손실 탄성률을 각각 측정하였다. 이때 얻어진 저장 탄성률 값을 평균하여, 수평 방향 겔 강도를 구하였다. 참고로, 손실 탄성률은 저장 탄성률에 비해 매우 작은 값으로 측정된다.
(5) 생리 식염수흐름유도성 (SFC; saline flow conductivity) 미국공개특허 제 2009-0131255호의 컬럼 16의 [0184] 내지 [0189]에 개시된 방법에 따라 측정하였다. 실시예 1
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=523) 0.5 g
50% 가성소다 (Νε H) 83.3 g 및 물 89.8 g을 흔합하여, 단량체 농도가 45 중량0 /。인 모노머 수용액 조성물비를 가지도록 제조하였다.
이후, 상기 모노머 수용액 810 g을 먼저, 0.18% 아스코빅산 용액 30.54 g과, 1 % 과황산나트륨용액 33 g을 먼저 흔합하고 0.15% 과산화수소 용액 30.45 g과 함께 연속으로 중합을 하면서 니딩을 할 수 있는 증합기의 공급부를 통해 투입하여 중합을 실시하였다. 이때 중합기의 온도는 80 °C로 유지하였으며, 중합의 최고은도는 1 10 °C , 중합시간은 1분 15초이다. 이후 계속 니딩을 실시하여 20분간 중합과 니딩을 실시하였다. 이후 생성된 중합기의 크기는 0.2 cm 이하로 분포되었다. 이때, 최종 형성된 함수겔 중합체의 함수율은 51 중량0 /。였다.
이어서, 상기 함수겔 중합체에 대하여 180 °C 은도의 열풍건조기에서 30분 동안 건조하고, 건조된 함수겔 중합체를 핀밀 분쇄기로 분쇄하였다. 그런 다음, 시브 (sieve)를 이용하여 입경이 약 150 m 미만인 중합체와, 입경 약 150 m 내지 850 인 중합체를 분급하였다.
이후, 제조된 베이스 수지에 1 ,3-프로판디을 5 중량0 /。 및 프로필렌글리콜 5 중량 0/。를 포함하는 표면 처리 용액을 분사하고 상은에서 교반하여 베이스 수지에 표면 처리 용액이 고르게 분포하도록 흔합하였다. 이후 이러한 베이스 수지를 표면 가교 반웅기에 넣고 표면 가교 반웅을 진행하였다. 이러한 표면 가교 반응기 내에서, 베이스 수지는 약 160 °C 근방의 초기 은도에서 점진적으로 승온되는 것으로 확인되었고, 약 30분 경과 후에 약 185 °C의 최대 반웅 온도에 도달하도록 조작하였다. 이러한 최대 반웅 온도에 도달한 이후에, 약 30분 동안 추가 반웅시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 이러한 실시예 1의 표면 가교 반웅 조건은 하기 표 1에 정리된 바와 같다. 상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 상기 고흡수성 수지의 제품에 약 150 β 이하의 입경을 갖는 미분의 함량은 약 2 중량0 /0 미만이었다. 실시예 2~6
표면 가교 반웅 공정에서, 반응 개시시의 베이스 수지 초기 은도, 최대 반응 온도 초기 온도 ^ 최대 반웅 온도의 숭온 시간 및 최대 반웅 온도에서의 유지 시간과 같은 표면 가교 반웅 조건을 하기 표 1과 같이 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 2 내지 6의 고흡수성 수지를 제조하였다. 비교예 1 내지 3
표면 가교 반응 공정에서, 반웅 개시시의 베이스 수지 초기 온도, 최대 반웅 은도, 초기 온도 ^ 최대 반응 온도의 승은 시간 및 최대 반웅 온도에서의 유지 시간과 같은 표면 가교 반웅 조건을 하기 표 1과 같이 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 비교예 1 내지 3 의 고흡수성 수지를 제조하였다.
[표 1]
Figure imgf000024_0001
상기 실시예 1 내지 6 및 비교예 1 내지 3의 고흡수성 수지에 대하여 CRG AUP, 겔 강도 (G')의 물성 측정 및 평가를 수행하였으며, 측정된 물성값은 하기 표 2에 나타낸 바와 같다. 또한, 상기 측정된 CRC, AUP, 겔 강도로부터, 식 1의 관계식 좌변의 값을 산출하여, 하기 표 2에 함께 나타내었다.
Figure imgf000025_0001
식 1 :
[표 2]
Figure imgf000025_0002
상기 표 2에 나타낸 바와 같이, 실시예 1 내지 6은 CRC, AUP 및 겔 강도가 전반적으로 우수하여, 식 1의 값이 15Pa2 이상인 관계식을 층족하는데 비해, 비교예 1 내지 3은 위 3 가지 물성 중 하나 이상이 열악하여 위 식 1의 관계식을 층족하지 못함이 확인되었다. 특히, 비교예 1 내지 3은 표면 가교 공정에서의 승온 조건 또는 반응 조건이 실시예와 상이한 것으로세 실시예에 비해 겔 강도 또는 AUP 등이 열악하고 통액성 등이 열악하게 나타날 것으로 예측된다. 실시예 7
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=523) 0.5 g 50% 가성소다 (NaOH) 83.3 g 및 물 89.8 g을 흔합하여, 단량체 농도가 45 중량0 /。인 모노머 수용액 조성물비를 가지도록 제조하였다. 이후, 상기 모노머 수용액 810 g을 먼저, 0.18% 아스코빅산 용액 30.54 g과, 1 % 과황산나트륨용액 33 g을 먼저 흔합하고 0.15% 과산화수소 용액 30.45 g과 함께 연속으로 중합을 하면서 니딩을 할 수 있는 중합기의 공급부를 통해 투입하여 중합을 실시하였다. 이때 중합기의 온도는 80 °C로 유지하였으며, 중합의 최고온도는 110 °C , 중합시간은 1분 15초이다. 이후 계속 니딩을 실시하여 20분간 중합과 니딩을 실시하였다. 이후 생성된 중합기의 크기는 0.2 cm 이하로 분포되었다. 이때, 최종 형성된 함수겔 중합체의 함수율은 51 중량 0/。였다.
이어서, 상기 함수겔 중합체에 대하여 180 °C 온도의 열풍건조기에서 30분 동안 건조하고, 건조된 함수겔 중합체를 핀밀 분쇄기로 분쇄하였다. 그런 다음ᅳ 시브 (sieve)를 이용하여 입경이 약 150 ;m 미만인 중합체와 입경 약 150 내지 850 인 중합체를 분급하였다.
이후, 제조된 베이스 수지에 1 ,3-프로판디올 5 중량0 /。 및 프로필렌글리콜 5 중량0 /。를 포함하는 표면 처리 용액을 분사하고 상온에서 교반하여 베이스 수지에 표면 처리 용액이 고르게 분포하도록 흔합하였다. 이후, 이러한 베이스 수지를 표면 가교 반웅기에 넣고 표면 가교 반웅을 진행하였다. 이러한 표면 가교 반웅기 내에서, 베이스 수지는 약 60 °C 근방의 초기 온도에서 점진적으로 승온되는 것으로 확인되었고, 약 15분 경과 후에 약 185°C의 최대 반웅 온도에 도달하도록 조작하였다. 이러한 최대 반웅 온도에 도달한 이후에, 약 30분 동안 추가 반웅시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 이러한 실시예 7의 표면 가교 반웅 조건은 하기 표 3에 정리된 바와 같다. 상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 상기 고흡수성 수지의 제품에 약 150 m 이하의 입경을 갖는 미분의 함량은 약 1 중량0 /0 미만이었다. 실시예 8, 9 및 비교예 4
하기 표 3에 나타낸 바와 같이, 표면 가교 반웅시의 반응시간, 최대반응온도 및 승온속도를 달리한 것으로 제외하고는, 실시예 7과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 10
내부 가교제로서, 폴리에틸렌글리콜디아크릴레이트 (Mw=523) 0.8 g을 사용한 것을 제외하고는 실시예 7과 동일한 방법으로 분급 공정까지를 진행하여 베이스 수지를 제조하였다.
그리고, 표면 가교 반응시 초기 은도에서 최대 반응 온도인 185°C에 도달하는 시간을 15분으로 조작하였고 최대 반응 온도에 도달한 후 20분 동안 추가 반웅시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 이러한 실시예 10의 표면 가교 반웅 조건은 하기 표 3에 정리된 바와 같다. 상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 mi인 표면 가교된 고흡수성 수지를 얻었다. 상기 고흡수성 수지의 제품에 약 150 이하의 입경을 갖는 미분의 함량은 약 1 중량0 /0 미만이었다. 비교예 5
내부 가교제로서, 폴리에틸렌글리콜디아크릴레이트 (Mw=523) 0.8 g을 사용한 것을 제외하고는 실시예 7과 동일한 방법으로 분급 공정까지를 진행하여 베이스 수지를 제조하였다.
그리고, 표면 가교 반웅시 초기 온도에서 최대 반응 온도인 180 °C에 도달하는 시간을 30분으로 조작하였고, 최대 반웅 온도에 도달한 후 10분 동안 추가 반웅시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 이러한 비교예 5 의 표면 가교 반웅 조건은 하기 표 3에 정리된 바와 같다. 상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 인 표면 가교된 고흡수성 수지를 얻었다. 비교예 6
내부 가교제로서, 폴리에틸렌글리콜디아크릴레이트 (Mw=523) 0.2 g을 사용한 것을 제외하고는 실시예 7과 동일한 방법으로 분급 공정까지를 진행하여 베이스 수지를 제조하였다.
그리고, 표면 가교 반응시 초기 온도에서 최대 반웅 온도인 180 °C에 도달하는 시간을 15분으로 조작하였고, 최대 반웅 온도에 도달한 후 20분 동안 추가 반웅시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 이러한 비교예 5 의 표면 가교 반웅 조건은 하기 표 3에 정리된 바와 같다. 상기 표면 가교 공정 후, 시브 (sieve)를 이용하여 입경이 약 150 내지 850 j ^인 표면 가교된 고흡수성 수지를 얻었다.
[표 3]
Figure imgf000028_0001
상술한 방법으로 측정된 실시예 7 내지 10 및 비교예 4 내지 6의 물성을 표 4에 정리하였다. 그리고, 상기 측정된 CRC, AUP, G', SFC로부터, 식 1 및 2의 관계식 좌변의 값을 산출하여, 함께 나타내었다.
Γ AUP G'
> 15 Pa
CRC lOO
1
식 2: [(AUP+CRC)/2] * [(3'/100이 * SFC > 100
[표 4]
Figure imgf000028_0002
실시예 9 26.2 22.6 11028 70 90.5 137.2 실시예 10 29.5 24.5 9840 54 66.8 119.8 비교예 4 30.5 21.4 5354 27 14.1 61.2 비교예 5 29.7 19.2 5770 35 13.9 70.3 비교예 6 32.8 18.3 4183 15 5.4 40.0 상기 표 4에 나타낸 바와 같이, 실시예에서 얻어진 고흡수성 수지는 CRC, AUP, G', 및 SFC가 전반적으로 우수하여, 이미 상술한 식 1의 값이 15Pa2 이상인 관계식을 충족할 뿐 아니라, 식 2의 값이 100이상인 관계식을 충족하는데 비해, 비교예 4 내지 6은 위 물성 중 하나 이상이 열악하여 위 식 1 및 2의 관계식을 충족하지 못함이 확인되었다. 특히, 비교예 4 내지 6은 표면 가교 전 겔 강도, 표면 가교 공정에서의 승온 조건, 또는 반웅 조건 (최대 반응 온도에서의 유지 시간 둥)이 실시예와 상이한 것으로서, 실시예에 비해 G' 또는 SFC 등이 열악하여 통액성 등이 열악하게 나타나는 것으로 확인되었다.

Claims

【특허청구범위】
【청구항 1 1
적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 중합시킨 분말 형태의 베이스 수지를 표면 가교시킨 가교 중합체를 포함하는 고흡수성 수지로서,
하기 식 1의 관계식을 충족하는 고흡수성 수지:
[식
Figure imgf000030_0001
상기 식 1에서,
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 중량 % 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며,
AUP는 상기 고흡수성 수지의 생리 식염수 (0.9 중량0 /。 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능을 나타내고,
G'는 상기 고흡수성 수지에 1 시간 동안 생리 식염수 (0.9 중량0 /0 염화 나트륨 수용액)를 흡수시켜 팽윤시킨 후에, 레오미터를 이용하여 측정한 고흡수성 수지의 수평 방향 겔 강도를 나타낸다.
【청구항 2】
제 1 항에 있어서, 하기 식 2의 관계식을 충족하는 고흡수성 수지:
【청구항 3】 게 1 항에 있어서, 상기 고흡수성 수지의 CRC는 25 내지 35 g/g인 고흡수성 수지. .
【청구항 4】
제 1 항에 있어서, 상기 고흡수성 수지의 AUP는 21 내지 30 g/g인 고흡수성 수지.
【청구항 5】
제 1 항에 있어서, 상기 고흡수성 수지의 수평 방향 겔 강도 G'는 6,000 내지 12,000 Pa인 고흡수성 수지.
【청구항 6】
제 2 항에 있어서, 상기 고흡수성 수지의 SFC는 40 내지 85(·1 (Τ 7cm3*s/g)안고흡수성 수지 .
【청구항 7]
제 1 항에 있어서, 상기 고흡수성 수지의 수평 방향 겔 강도 G'는
상기 고흡수성 수지에 생리 식염수를 흡수시켜 팽윤시키는 단계;
상기 팽윤된 고홉수성 수지를 소정의 간격을 갖는 레오미터의 플레이트 사이에 위치시키고 양 플레이트면을 가압하는 단계;
진동 하의 레오미터를 사용하여 전단 변형을 증가시키면서, 저장 탄성률
(storage modulus)과, 손실 탄성률 (loss modulus)이 일정한 선형 점탄성 상태 (linear viscoelastic regime) 구간의 전단 변형을 확인하는 단계; 및
상기 확인된 전단 변형 하에서 상기 팽윤된 고흡수성 수지의 저장 탄성률과, 손실 탄성률을 각각 측정하고, 상기 저장 탄성률의 평균 값을 겔 강도로서 측정하는 단계를 포함하는 방법으로 측정되는 고흡수성 수지.
【청구항 8】
제 1 항에 있어서, 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)-디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 블포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지.
【청구항 9】
제 1 항에 있어서, 상기 베이스 수지는 탄소수 8 내지 12의 비스 (메트)아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리 (메트)아크릴레이트 및 탄소수 2 내지 10의 폴리을의 폴리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 이상의 내부 가교제의 존재 하에, 상기 단량체가 가교 중합된 고분자를 포함하는 고흡수성 수지.
【청구항 10]
제 1 항에 있어서, 상기 가교 중합체는 탄소수 2 내지 8의 디올 또는 폴리을을 포함한 표면 가교제의 존재 하에, 상기 베이스 수지의 표면을 가교시켜 얻어진 것인 고흡수성 수지.
【청구항 1 1】
제 1 항에 있어서, 150 내지 850 의 입경을 갖는 고흡수성 수지.
PCT/KR2015/005957 2014-06-12 2015-06-12 고흡수성 수지 WO2015190879A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/315,111 US20170189575A1 (en) 2014-06-12 2015-06-12 Super absorbent polymer
EP15806538.3A EP3156427B1 (en) 2014-06-12 2015-06-12 Super absorbent resin
CN201580030758.2A CN106459265A (zh) 2014-06-12 2015-06-12 超吸收性聚合物
JP2016568684A JP6592461B2 (ja) 2014-06-12 2015-06-12 高吸水性樹脂
US16/266,838 US20190167836A1 (en) 2014-06-12 2019-02-04 Super Absorbent Polymer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20140071547 2014-06-12
KR10-2014-0071547 2014-06-12
KR10-2014-0177736 2014-12-10
KR20140177736 2014-12-10
KR1020150082881A KR101743274B1 (ko) 2014-06-12 2015-06-11 고흡수성 수지
KR10-2015-0082881 2015-06-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/315,111 A-371-Of-International US20170189575A1 (en) 2014-06-12 2015-06-12 Super absorbent polymer
US16/266,838 Division US20190167836A1 (en) 2014-06-12 2019-02-04 Super Absorbent Polymer

Publications (1)

Publication Number Publication Date
WO2015190879A1 true WO2015190879A1 (ko) 2015-12-17

Family

ID=54833880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005957 WO2015190879A1 (ko) 2014-06-12 2015-06-12 고흡수성 수지

Country Status (1)

Country Link
WO (1) WO2015190879A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336134A4 (en) * 2016-03-31 2018-12-26 LG Chem, Ltd. Superabsorbent resin and method for producing same
US10821418B2 (en) 2016-02-19 2020-11-03 Lg Chem, Ltd. Super absorbent polymer
CN113788962A (zh) * 2016-12-23 2021-12-14 株式会社Lg化学 超吸收性聚合物及其生产方法
US11926939B2 (en) 2017-10-30 2024-03-12 Lg Chem, Ltd. Super absorbent polymer non-woven fabric and preparation method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068198A (ko) * 2000-12-29 2003-08-19 바스프 악티엔게젤샤프트 입체 또는 정전 스페이서로 코팅된 히드로겔
KR20040058305A (ko) * 2001-11-27 2004-07-03 에스체아 히기에너 프로덕츠 악티에볼라그 신규한 흡수성 제품
JP4436686B2 (ja) * 2002-03-27 2010-03-24 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収製品
JP2012512739A (ja) * 2008-12-19 2012-06-07 エスセーアー・ハイジーン・プロダクツ・アーベー 超吸収ポリマーとセルロース系ナノフィブリルとを含む超吸収ポリマー複合材
KR20140130034A (ko) * 2013-04-30 2014-11-07 주식회사 엘지화학 고흡수성 수지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068198A (ko) * 2000-12-29 2003-08-19 바스프 악티엔게젤샤프트 입체 또는 정전 스페이서로 코팅된 히드로겔
KR20040058305A (ko) * 2001-11-27 2004-07-03 에스체아 히기에너 프로덕츠 악티에볼라그 신규한 흡수성 제품
JP4436686B2 (ja) * 2002-03-27 2010-03-24 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収製品
JP2012512739A (ja) * 2008-12-19 2012-06-07 エスセーアー・ハイジーン・プロダクツ・アーベー 超吸収ポリマーとセルロース系ナノフィブリルとを含む超吸収ポリマー複合材
KR20140130034A (ko) * 2013-04-30 2014-11-07 주식회사 엘지화학 고흡수성 수지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156427A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821418B2 (en) 2016-02-19 2020-11-03 Lg Chem, Ltd. Super absorbent polymer
EP3336134A4 (en) * 2016-03-31 2018-12-26 LG Chem, Ltd. Superabsorbent resin and method for producing same
CN113788962A (zh) * 2016-12-23 2021-12-14 株式会社Lg化学 超吸收性聚合物及其生产方法
CN113788962B (zh) * 2016-12-23 2024-02-27 株式会社Lg化学 超吸收性聚合物及其生产方法
US11926939B2 (en) 2017-10-30 2024-03-12 Lg Chem, Ltd. Super absorbent polymer non-woven fabric and preparation method of the same

Similar Documents

Publication Publication Date Title
JP6592461B2 (ja) 高吸水性樹脂
JP6535056B2 (ja) 高吸水性樹脂およびその製造方法
JP6443998B2 (ja) 高吸水性樹脂
KR102075737B1 (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
JP6286055B2 (ja) 高吸水性樹脂およびその製造方法
WO2014077612A1 (ko) 고흡수성 수지의 제조 방법 및 이로부터 제조되는 고흡수성 수지
CN108350188B (zh) 超吸收性聚合物及其制备方法
WO2018004161A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
JP2019518839A (ja) 高吸水性樹脂およびその製造方法
KR101680830B1 (ko) 고흡수성 수지 및 이의 제조방법
US10829630B2 (en) Super absorbent polymer
WO2018147559A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2018004162A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
KR101595037B1 (ko) 고흡수성 수지의 제조 방법
WO2015190879A1 (ko) 고흡수성 수지
WO2016085123A1 (ko) 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
JP6811259B2 (ja) 高吸水性樹脂およびその製造方法
JP2021517927A (ja) 高吸水性樹脂およびその製造方法
KR101645684B1 (ko) 고흡수성 수지
KR102087339B1 (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
WO2015088200A1 (ko) 고흡수성 수지의 제조 방법
KR20210038250A (ko) 고흡수성 수지의 제조 방법
WO2017171208A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2017155197A1 (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
JP7258401B2 (ja) 高吸水性樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806538

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015806538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015806538

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016568684

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315111

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE